当前位置: 仪器信息网 > 行业主题 > >

全自动液体加样系统

仪器信息网全自动液体加样系统专题为您提供2024年最新全自动液体加样系统价格报价、厂家品牌的相关信息, 包括全自动液体加样系统参数、型号等,不管是国产,还是进口品牌的全自动液体加样系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合全自动液体加样系统相关的耗材配件、试剂标物,还有全自动液体加样系统相关的最新资讯、资料,以及全自动液体加样系统相关的解决方案。

全自动液体加样系统相关的资讯

  • 精益求精!睿科全自动液体处理平台助力自动化核酸质谱检测
    随着中国IVD市场的发展成熟,核酸质谱作为临床检测中逐步兴起的前沿技术,相比于其他检测技术具有灵敏度高、高通量等优点,近年来在产前诊断、新生儿筛查、肿瘤个体化诊断、药物基因组学、传染病和心血管等领域有着广泛的应用。然而在实验过程中,数以万次的加样过程会导致严重的人为因素影响,难以保证实验准确性和高负荷的应用和开展。睿科集团结合移液工作平台,自主研发了多款仪器,助力核酸质谱检测自动化。Vitae 100核酸提取/PCR体系构建系统:可用于样品获取后的自动化核酸提取和PCR体系配置。Vitae SPOTTER生物芯片点样系统:可用于核酸质谱芯片自动化点样,能够实现纳升级液体控制,高效完成大批量的样品点样需求,通过电脑程序控制下完成样品的均匀分配,避免手工操作引起的体积误差和可能的外来污染。睿科核酸质谱检测前处理自动化操作流程产品介绍01Vitae 100全自动核酸纯化系统采用磁珠分离技术,可以快速提取1-96个样本,具有紫外灭菌及HEPA过滤系统,防止样本交叉污染,保护操作人员的安全。02Vitae 全自动PCR体系构建系统代替手工PCR反应体系配置中重复移液步骤,实现自动化高效精准移液,避免了人为重复操作带来的误差以及污染;可实现384孔PCR板的分装;移液精度可以达到CV2%;兼容国内外任意品牌核酸提取的耗材和PCR板。03Vitae SPOTTER生物芯片点样系统一款高通量的微阵列芯片点样系统,以阵列方式在玻片或薄膜上点样,制备生物样品微阵列芯片,为生物样品的TOF-MS分析提供了自动化制备手段。
  • 睿科集团发布睿科 Vitae 100全自动液体处理工作站新品
    产品简介Vitae 100 是一款功能强大、高性价比的全自动液体处理工作站,适用于高通量处理多种基因组学研究的实验室以及研究机构。Vitae 100 配有不同的工作模块,包括单通道、4/8通道、振荡、加热制冷等,用户可以根据应用需求选择不同的模块,并且可以灵活应对常规的液体处理工作,如随机挑选、母液配制及盘面重排等。我们具备应用开发解决方案及定制化开发,可为用户提供专属的工作站。Vitae 100 全自动液体处理工作站作为一个真正开放平台,兼容市面上绝大多数品牌试剂耗材,可根据不同的实验需求定制适合的实验模块,灵活性强,性价比极高。因此,拥有Vitae 100 即可将耗时而复杂的液体处理工作实现全自动化,减轻人工负担,节约成本与时间,使您的实验得心应手。 紧凑型设计,动作迅速盘面紧凑:标准9盘位,独特的磁吸与加热振荡器,可节约盘面空间以及实验时间快速分液:每孔分配50μL液体,一块96孔板时间小于1分钟。 具备可扩展性,满足不同实验需求4/8通道空气泵移液模块,兼单通道功能,可全自动化处理1到96个样品。 防止样品污染选配紫外灭菌灯与 HEPA 空气过滤装置,用于消除污染和洁净空气。 兼容性强开放平台,兼容市面上绝大多数品牌试剂耗材。 高效便捷的PIVOTING控制软件界面简洁,一目了然界面人性化设计,拖拽式布局,操作方便,易于使用;模块端口自动扫描,无需用户手动配置,用户使用更为省心;用户根据使用耗材拖拽式布置盘面,方便快捷;拖拽式生成实验流程,每个动作可独立配置参数,满足用户不同的实验需求。 产品参数移液体积:1μL-250μL 或 1μL -1000μL盘面容量:9个盘位(支持各种离心管(0.2 mL 到 50 mL)及孔位数高达 384 孔的各种孔板)液体处理模块:4/8通道空气泵移液模块,配备Tip更换器,兼单通道功能,1~6通道大体积试剂喷加器,分液范围(100μL-5000μL)选配模块:温控模块 (4℃-90℃)试剂冷槽 (4℃-90℃)独特的磁吸与加热(室温-90℃)振荡器,振荡器的转速可根据实际情况进行调节紫外灭菌灯与HEPA空气过滤装置通量:全自动完成96个样品,无须人工干预 应用领域基因组学:DNA/RNA 提取纯化DNA/RNA 片段长度选择酶反应体系构建文库标准化建设与混合单一/多重RT-PCR体系构建测序反应体系构建Oligo合成体系构建磁珠纯化应用 通用液体处理:盘面转移、复制与重排系列稀释、平行稀释ELISA操作(微孔板包被与洗板)母液配制和分装细胞接种和更换培养基细胞检测类实验基于孔板的生化类检测化合物及试剂添加创新点:1.可根据客户换移液端,单通道/四通道/八通道/1+8通道灵活定制;2.功能模块可根据实际实验操作量身定做;3.软件界面新颖时尚,使用简便,具有权限管理系统;4.性价比高,纯国产自主研发,成本大幅降低。5.测试结果准确可信,产品检验结果符合国际最新ISO9001-2015标准睿科 Vitae 100全自动液体处理工作站
  • 全自动液体快速分配仪新品上市
    2015年3月,我公司正式推出新款全自动液体快速分配仪FP-A/B,该仪器采用大触摸屏、快速定位装置、结合高精度泵以及耐腐蚀的管路,能够快速的完成批量样品试剂分配及添加,代替传统移液分液工具,同时具有高精度、速度快、高自动化程度、节省人工的优势,广泛的应用于实验室的无机或有机试剂的分配与添加。具体详情敬请咨询我们的服务电话400-0016-112。
  • 477万!中国医科大学附属第一医院全自动液体处理工作站、全自动多功能酶标仪采购项目
    项目编号:JH22-210000-64420项目名称:中国医科大学附属第一医院全自动液体处理工作站、全自动多功能酶标仪(国家医学检验临床医学研究中心)采购包组编号:001预算金额(元):4,770,000.00最高限价(元):4,770,000采购需求:查看合同履行期限:合同签订后1个月内到货。需落实的政府采购政策内容:对于中小微企业(含监狱企业)、促进残疾人就业的相关规定、对于节能产品、环境标志产品的相关规定等本项目(是/否)接受联合体投标:否中国医科大学附属第一医院全自动液体处理工作站、全自动多功能酶标仪(国家医学检验临床医学研究中心)采购.doc
  • 标液配制管理,一站搞定——AP 300全自动液体样品处理工作站全新上市
    睿科全新推出AP 300全自动液体样品处理工作站,可将实验人员从繁琐的样液配制过程中解放出来,保护实验人员身心健康。同时仪器可覆盖样液登记录入、样液配制和实验数据记录等功能,为客户提供液体样品处理全方位体验。全新亮点更严谨多级清洗 新增吹干功能更高效双Z轴取样针 适配多种应用更精准三量程注射器协同配合更便捷增加快速振荡摇匀功能产品特点1►高精度高精度注射器实现微量样液转移,配制稀释范围高达10000倍2►双模式枪头+加液针模式及穿刺针模组两种模式可供选择3►多功能可实现标准曲线配制、混标配制、固标配制等复杂流程4► 样品架样品架具有帕尔贴制冷与加热功能,集成振荡混匀功能,兼容性强性能可靠丨 智能便捷丨 安全健康应用范围:可应用于各种检测项目的标准曲线配制
  • 克莱克特发布克莱克特AS-3902全自动多功能进样系统新品
    AS-3902全自动多功能进样系统,是克莱克特潜心研发的多功能新型自动进样装置,可搭配多种功能模块,实现不同样品前处理流程。产品采用模块化的设计方式,用户只需更换样品盘即可实现液体进样、固相微萃取、顶空进样、自动标液配制之间的自由切换。AS-3902全自动多功能进样系统基于转塔式运动设计,圆周式运动路径,精密的步进电 机提供了机器的平稳移动和精确至 0.1mm 的定位。各个不同的功能模块主要集成在样品盘 和进样针上,用户可以根据自身实验需求自行选配。这种灵活的设计方法,赋予了产品丰富的可扩展性,以适应不同分析需要。各个功能部件皆经过精心的设计,用户可自行进行更换,模块之间的切换非常简单,无需移动自动进样器。并且可适配各大品牌的 GC/GC-MS 产品,无论是精密无残留的痕量分析, 还是大批量的样品处理,克莱克特全自动多功能进样系统都能满足您的需求。AS-3902全自动多功能进样系统性能特点 固相微萃取、顶空进样、液体进样、自动标液配置功能四合一;模块化设计,用户可根据需求选配不同功能模块,自由搭配;强大的多功能样品前处理平台,适合不同品牌气相色谱; 不占用进样口,支持同一台 GC 双进样口进样。 液体进样模式:全自动多功能进样系统的基本模块,可实现液体微量进样和大体积进样;定制进样针,进样深度、进样精度更高;进样速度可自由设置,适应不同黏度系数样品;进样针深度可结合实际需求调整;进样前后的时间延迟、进样针清洗可自由设置。固相微萃取模式:恒温和氮气吹扫功能的固相微萃取头老化模块,可进行固相微萃取头自动老化和氮气吹扫;转盘式样品恒温加热模块,可实现样品的恒温加热和萃取;全自动转塔式固相微萃取头插入萃取模块,可进行固相微萃取头全自动萃取;萃取的插入深度可调,可针对液面上(气体)及液面下(液体)样品进行萃取;具有磁力搅拌和加热功能,可控制样品瓶加热的时间、温度和磁力搅拌速度;可选用不同萃取头,以适应不同分析需求;萃取头自动清洗,避免交叉污染;具有固相微萃取针头自动插入色谱等仪器进样口系统的功能。顶空进样模式:旋转式运动进样方式,不占用进样口,可兼顾手动进样;采用可加热气密针进样方式,最大限度地减低样品流失,灵敏度高;进样量和进样速度可自由调节;用户可设置进样前后采用惰性气体加热吹洗次数,无样品交叉污染与残留;最多可同时加热六个样品,提高分析效率;内置单片机,具有自动进样器和色谱仪器全反控功能;一键启动,自动加热平衡、进针、取样、进样,启动色谱和工作站,实现流程全自动化;正压取样方式,可以测定液体或固体样品;常压进样,基线不漂移,可检测出水中 1ppb 的苯。 自动标液配制: 全自动标液配制,使重复手动样品制备更加简化和准确;只需一个高浓度标准溶液,即可完成标准溶液不同浓度的梯度稀释;样品处理前后自动进行洗针操作,减少交叉污染;所有过程无需接触化学品,保障操作者健康和环境安全;减少溶剂、试剂及溶剂处理的损耗,提升标液精度;可全自动配制10位单标或混标溶液;计量认证,保证结果准确有效。AS-3902全自动多功能进样系统【技术指标】 液体进样模式 样品盘 160位,适用于2ml样品瓶 最小进样体积 0.1μl 最大进样体积 500μl 进样针 气密性进样针 最大支持进样口 2个(可定制扩展) 进样速度选择 快速、中速、慢速、用户自定义 进样模式常规模式、三明治模式、PTV模式进样针深度位置2~40mm取样精度 ±0.01% 进样精度 RSD 0.5%固相微萃取模式 样品盘 22位/36位,适用于10/20ml样品瓶 老化时间/温度 0~60min, 温度设置范围:室温~350℃,控温精度±1℃ 萃取时间/温度 0~240min,温度设置范围:室温~150℃,控温精度±1℃ 解吸时间/温度0~30min, 温度设置范围:室温~350℃,控温精度±1℃ 磁力搅拌速度 0~1500rpm顶空进样模式 样品盘位 22位/36位(标配20ml顶空瓶) 进样针体积2.5ml(标配),可定制5ml 进样平衡延迟 可设定0~120秒 样品加热范围 可设定室温~200℃,控温精度±1℃进样针加热范围可设定室温~200℃,控温精度±1℃进样针取样时间可设定 0~9.99min进样时间可设定 0~9.99min恒温平衡时间可设定 0~1440min样品平衡搅拌时间可设定 0~120min可同时加热样品位数7 位(可扩展)进样精度RSD 2.0%(乙醇/水溶液)自动标液配制模式 标准溶液个数10个标准系列梯度15个单次最大稀释倍数200倍最大定容体积2ml最小取样体积 0.01ml混匀功能 自动混匀创新点:AS-3902全自动多功能进样系统,是克莱克特潜心研发的多功能新型自动进样装置,与公司上一代产品及市场上其他同类产品相比的创新之处是:可搭配多种功能模块,实现不同样品前处理流程。主要的创新是:产品采用模块化的设计方式,用户只需更换样品盘即可实现液体进样、固相微萃取、顶空进样、自动标液配制之间的自由切换。各个不同的功能模块主要集成在样品盘和进样针上,用户可以根据自身实验需求自行选配。这种灵活的设计方法,赋予了产品丰富的可扩展性,以适应不同分析需要。各个功能部件皆经过精心的设计,用户可自行进行更换,模块之间的切换非常简单,无需移动自动进样器。并且可适配各大品牌的GC/GC-MS产品,无论是精密无残留的痕量分析,还是大批量的样品处理,都可以满足用户需求。克莱克特AS-3902全自动多功能进样系统
  • 清研公司推出新一代液体加样设备——6D 4合1自动液体加样系统
    6D 4合1自动液体加样系统是清研公司推出的一款用于实验室液体样本前处理的新产品,具有稀释、分液、滴定和移液四项功能,它采用软件系统控制,利用数字化精准微量进样技术,实现了高度精确的自动吸液和吐液过程,轻松解决实验室常规的繁琐的液体操作工作,排除了实验中的人为误差因素。目前,已在科研院所、医药行业、食品行业、环境行业、质检部门、商检部门&hellip &hellip 多行业领域进行应用,得到用户的一致好评。清研公司是依靠自主创新研发的专业医疗诊断设备、家庭医疗器械和实验室仪器三大系列产品支撑的高新技术企业,政府支持并直接投资,由清华大学、斯坦福大学和中国科学院的6位博士联合创立。公司拥有全球领先创新科技,已拥有数十项国内外专利和发明。6D是公司的注册商标。为什么要选择6D 4合1液体加样系统?精准度准确度为99%。使用6D加样系统进行标准序列液稀释,绘制的标准曲线拟合度可达0.999以上。操作简单向导式的任务建立模式,轻点鼠标即可完成建立,点击&ldquo 执行&rdquo 即可开始操作。人性化的设计具有实时任务进展和操作提示,方便用户随时查阅 任务建立自动保存,方便用户调用。优化方案,省时省力优化实验步骤,使传统繁琐的液体操作工作变为简单操作,用户仅需点击按键即可完成不同浓度/体积的实验操作。稀释一个样品仅需45秒左右,一分钟可完成14次左右的不同体积的样品分配工作。依托中国科学院强大的技术背景,五洲东方公司宗旨是引进全球最先进的产品,提供最优良的服务,促进中国科学技术进步。北京五洲东方科技发展有限公司作为清研公司紧密合作伙伴,下辖的三个分公司、十三个办事处,全面提供6D 4合1自动液体加样系统产品,为中国科研用户提供最专业的产品、最专业的服务。
  • “新一代液体加样设备——6D 4合1自动液体加样系统”——五洲东方公司系列有奖问
    五洲东方公司系列有奖问答十六&mdash &mdash &ldquo 新一代液体加样设备&mdash &mdash 6D 4合1自动液体加样系统&rdquo 活动开始啦!全部回答正确者即可获得由五洲东方公司提供的精美奖品一份。熟悉实验方法的网友不要犹豫了,快来参加吧!活动开始时间:2012年12月10日。活动奖励:全部答全答对的网友将获得&mdash &mdash 30元联通电子充值卡,此卡可以充值手机,可以充值固话也可以充值网费。答题规则如下:我们会提供参考文章,您可以阅读完文章后答题。本次试题共5题,1-5题都必须答全。点击下载试题6D 4合1自动液体加样系统问题.doc,填写完整后,您可以:1)将问卷邮件至g.y_liu@ostc.com.cn。2)将问卷邮寄至北京五洲东方公司(&ldquo 北京市海淀区北四环中路265号中汽大厦7层&rdquo ,邮编:100083,刘广宇收)。3)将问卷发送至QQ:179260946。奖品发放:收到问卷经审核后,将发放精美奖品。为了保证奖品能顺利发送到您的手中,请将您的所有联系方式全部填写全面。活动咨询电话:400-011-3699活动详情:&ldquo 新一代液体加样设备&mdash &mdash 6D 4合1自动液体加样系统&rdquo &mdash &mdash 五洲东方公司系列有奖问答十六请关注下期有奖问答活动:五洲东方公司系列有奖问答十七所有活动信息请关注五洲东方官方网站www.ostc.com.cn首页公告栏。感谢您的参与!
  • 热烈祝贺“新一代全自动液体处理平台” 新品发布会圆满成功
    8月6日,北京莱伯泰科仪器股份有限公司联合仪器学习网共同举办了“新一代全自动液体处理平台”新品发布会,重磅推出莱伯泰科新品:MiniLab3000全自动液体处理平台。期间,莱伯泰科有机事业部高级产品经理刘雪和高级应用工程师田鑫为大家详细讲解了产品功能特点,并进行了仪器现场实操演练,受到了在线观众的热烈关注和积极互动,共有652位用户在线观看直播。现场直播画面首先,主持人公布了上周举办的朋友圈海报“集赞赢奖”活动中奖用户名单,共收集到106位用户的点赞截图,十分感谢他们的积极参与,从中我们选取了点赞数排名前20名的朋友,赠送活动奖品。我们已开始添加各位中奖用户的微信,并邮寄礼品。尚未领取奖品的用户,请扫码下方二维码,添加我们工作人员微信,中奖名单如下:此外,在刘雪和田鑫进行仪器实操演练环节,在线观众提出了许多问题,他们都做出了详细解答。如若需要了解仪器更多内容,朋友们可以关注我们莱伯泰科公众号,或者直接与我们联系:400-070-8778。直播过程中,我们总共进行了两轮抽奖活动,第一轮抽奖送出了20分精美礼品,分别是10个全自动高级雨伞和10个精美U盘;第二轮抽奖,根据用户在公屏上打出的“莱伯泰科 yyds”字幕顺序,总共抽取20名幸运观众,赠送乐扣水杯。请还未添加工作人员微信的中奖用户,在此及时添加,以便邮寄礼品。两份中奖名单详情如下:最后,热烈祝贺我们莱伯泰科首次线上新品发布会直播圆满成功,我们莱伯泰科将继续秉承着“全心全意为客户服务”的理念,保证所有客户都能开心、放心、安心。也感谢在本场直播中陪伴了我们一上午的观众朋友们,后续莱伯泰科也会推出更多在线直播活动和仪器新品,好礼送不停。有兴趣的朋友,可以多多关注! 关于莱伯泰科北京莱伯泰科仪器股份有限公司(股票代码:688056.SH)成立于2002年,公司自成立之初便专注于科学仪器设备的研发,立志为环境检测、食品安全、医疗卫生、疾病控制、材料研究等众多基础科学及行业应用提供实用可靠的实验室设备和整体解决方案。公司发展至今已拥有各类专利及软件著作权100余项,持续通过高新技术企业认证,连续多年被业内媒体评为中国仪器仪表行业“最具影响力企业”。产品服务涵盖实验室分析仪器、样品前处理仪器、实验室设备、医疗设备、实验室耗材和实验室工程建设等。 公司拥有LabTech、CDS、Empore等行业知名品牌,在中国和美国设有研发和生产基地,并在中国北京、中国香港、美国波士顿等地设有产品营销和服务中心。公司产品服务立足本土面向全球,可为全球多种类型用户提供从实验室建设到样品分析的一站式解决方案。目前,公司产品已销往全球90多个国家,共计服务客户3万余家。如需了解莱伯泰科的详细信息,请访问http://www.labtechgroup.com/。
  • “好仪器”免费试用用户体验报告之ALSP-01全自动液体样品处理平台
    p 由“国产科学仪器腾飞行动”项目组联合a title="" href="http://www.yph.cn" target="_blank"仪品汇电商平台/a举办的大规模“好仪器”免费试用活动自2016年11月启动以来受到了众多国产厂商和仪器用户的关注,至活动截止共收到400余份用户的免费试用申请,最终成功进行“好仪器”免费试用的用户共40位。/pp  在本次活动中,参与免费试用的仪器均为“第二届国产好仪器”入选产品,由12家国产科学仪器厂商倾情提供,总价值高达276万元。/pp  值此活动结束之际,项目组特地整理了“好仪器”免费试用用户所提交的试用报告,将最真实的仪器用户反馈一一展现出来,为广大用户选购真正“好用、耐用”的国产好仪器提供参考。/ppstrong  span style="color: rgb(0, 112, 192) "试用仪器:a href="http://www.instrument.com.cn/netshow/C223671.htm" target="_blank" title=""北京同信天博ALSP-01全自动液体样品处理平台/a/span/strong/pp style="text-align: center "a href="http://www.instrument.com.cn/netshow/C223671.htm" target="_blank" title=""strongimg title="ae992dbe-b942-4775-b8f7-05ab7d983eeb.jpg" src="http://img1.17img.cn/17img/images/201703/noimg/ca96bb68-f602-4866-8ca1-5117ed0fd4a7.jpg"//strong/a/ppstrong  用户单位:山东嘉源检测技术有限公司/strong/ppstrong  仪器用途:镁标准贮备液的配制、铅标准贮备液的配制/strong/ppstrong  试用反馈:/strong通过该仪器使用,绘制出金属镁、铅的标准曲线R值均达到0.999以上。这款仪器外观精简,操作简单,功能齐全;自动化程度高,在配制出的标准曲线和溶液的稀释方面比较精准;所配套软件使用起来也比较简单明确,且远程操作仪器可以使仪器管理轻松简便。同时,平台工作区域采用一体式透明设计,防止化学物质的飞溅或挥发对操作人员带来伤害。然而,该液体样品处理平台每次配制的溶液体积较小,由于使用溶液比较频繁,需要多次配制,较消耗时间。希望仪器公司能够在原有优点上继续改进,让该液体样品处理平台应用更为广泛。/pp style="text-align: center "a title="" href="http://www.instrument.com.cn/activity/goodcn/gchyq/Experpoint?id=782" target="_blank"img title="600_300_20160411_goodcn.gif" src="http://img1.17img.cn/17img/images/201703/insimg/6483c646-e426-4e64-8154-f066bf38e15f.jpg"//a/p
  • 新品研发|全自动运动粘度测定仪测定液体,石油产品的运动粘度
    全自动运动粘度测定仪在石油检测中具有广泛的应用和显著的优势。这种仪器能够直接显示石油产品的粘度数据,无需进行复杂的计算,使数据更加直观易懂。 首先,运动粘度测定仪能够帮助石油企业优化生产流程。通过检测石油产品的粘度,企业可以更好地了解产品的性质,从而调整生产工艺,提高产品质量和能源利用效率。 产品链接https://www.instrument.com.cn/netshow/SH104275/C310796.htm 其次,运动粘度测定仪具有精度高、操作简便、数据直观等优点。在石油产品的生产和研究中,粘度是一个重要的指标。通过使用全自动运动粘度测定仪,企业可以快速、准确地获得粘度数据,为石油产品的质量控制和研究提供有力支持。 此外,运动粘度测定仪的使用还有助于提高石油企业的竞争力。随着市场对石油产品质量要求的不断提高,企业需要具备先进的分析仪器来保证产品质量。运动粘度测定仪作为一种高效、准确的检测设备,能够帮助企业提高生产效率和产品质量,从而在市场竞争中占据优势。 综上所述,全自动运动粘度测定仪在石油检测中具有显著的优势和广泛的应用。通过对石油产品进行粘度检测,企业可以优化生产流程、提高产品质量和能源利用效率,同时为产品研发和市场竞争力提升提供有力支持。
  • 【新品|New Star】Agilent prepFAST M5全自动在线稀释进样系统强力推出!
    近日,美国Elemental Scientific 公司强力推出一款新品prepFAST系统——Agilent prepFAST M5全自动在线稀释进样系统。Agilent prepFAST M5全自动在线稀释进样系统的出现,使其成为prepFAST家族中一颗最耀眼的明星!精密、*的全自动高效在线稀释进样功能既继承了prepFAST系统高效精准的特点,更可完美配套Agilent ICPMS,使其与Agilent ICPMS仪器天然混为一体。Agilent prepFAST M5全自动在线稀释进样系统的触发控制器内置于Agilent MassHunter软件,与Agilent ICPMS完美连接,可以实现自动仪器调谐,确保您的仪器始终在性能*的条件下进行样品测试。Agilent prepFAST M5全自动在线稀释进样系统可以实现全自动高通量液体样品在线稀释及校准,多种倍数自动稀释,自动定量稀释,自动洗脱。该系统精密、*、精准的核心是拥有多个注射泵,Agilent prepFAST M5全自动在线稀释进样系统有5个注射泵(prepFAST家族中的顶级配置),可以在各种流速下(1-500μL/min)实现更精密(<0.05%)、更准确(±0.2%)、更流畅、更平衡的液体传输,确保在线稀释的高效性及可靠性。Agilent prepFAST M5全自动在线稀释进样系统是ICPMS实验室不可缺少的高效产能工具!更多关于prepFAST 及新品prepFAST M5,请联系上海凯来。关于prepFAST全自动在线稀释进样系统-实时稀释-减少试剂消耗-无需额外管路或试剂-自动稀释-快速加样和清洗-低污染风险-样品基于时间常数分析,独立于稀释倍数 关于美国Elemental Scientific公司美国ESI公司致力于ICP/ICPMS样品自动化、精密化、高效率引入系统的设计与开发,为主流ICP/ICPMS厂家如Agilent/Thermo/PE等提供专业的配套产品和解决方案。细分市场的隐形冠军——上海凯来实验设备有限公司上海凯来实验设备有限公司成立于2004年,专业代理国际先进分析仪器,聚焦细分市场。总部位于上海张江高科技园区,在北京,广州,成都,杭州,南京,青岛等地设有办事处。公司成立十多年来,一直保持着稳健的业务增长,目前已经成为多个细分市场的领导者。凯来定位明确,专注服务细分高端市场,提倡精英文化,“只有精英才能生存”是公司的基本理念。 目前公司立足于3个细分市场,并都已成为各细分市场的行业领导者。无机元素分析技术配套产品:& 美国NewWave/esi激光剥蚀系列固体直接分析技术产品& 美国TSI ChemReveal激光诱导击穿光谱仪& 美国Elemental Scientific ICP/ICPMS液体进样技术系列解决方案& 澳大利亚XRF Scientific X荧光分析前处理熔样分析技术解决方案 制药行业细分市场产品:& 英国Cobalt Light 空间位移拉曼及透射拉曼& 美国pion药物溶解/通透性分析解决方案& 德国Hosokawa Alpine气流喷射筛分仪 消费品行业细分市场产品:& 美国TSI PolyMax塑料专用分析仪& 美国Agilent 4500 增塑剂检测专用分析仪更多信息请登录凯来官方网站:www.chemlabcorp.com扫一扫,关注凯来官方微信:SHChemLab
  • 机器人做流变测试!安东帕全自动高通量流变测试系统带您体验人工智能
    今天要给大家介绍一款神操作——由机器人指挥并操作的流变测量系统在涂料行业中的应用。什么?机器人做流变测试?是的,你没听错。安东帕的自动化与机器人解决方案部门 (A&R)已经在一家世界500强的涂料公司部署HTR502全自动高通量流变测试系统(Rheometer automation for high sample throughput and complex sample handling),用于飞机和船舶涂料的研发和质量控制。有了安东帕流变仪机器人解决方案,客户可以在24小时内完全自动分析多达120个样品。 整套解决方案除了MCR502流变仪之外,它还包含一个多轴机器人,以及样品装载和样品清洗模块。如果装满120个样品瓶,自动机器人会首先取出第一个样品并进行扫描以进行产品监测,然后机器人将小瓶放入混合器中,确保样品均匀混合;下一步是打开样品瓶并测量pH值;最后,机器人使用一次性塑料移液管将适量样品注入流变仪中。在进行流变测量时,机器人会关闭样品容器并放回样品台,然后开始清洁pH系统。测量完成后,机器人会自动取下流变测量转子,送到清洁模块中进行清洗干燥,并准备进行下一个样品的分析。 此“高通量样品(HTX)平台”不仅适用于流变测量,也适用于其他全自动的样品制备和常规分析,例如黏度或密度测量。HTR自动化高通量流变仪 安东帕的全自动高通量流变测试系统-HTR是流变测量领域一个创新的里程碑:基本的MCR流变仪设置仍然像以前一样模块化和可定制 - 不同之处在于HTR现在可以自动执行所有测量步骤,并由机器人操作。在其标准设置中,它可以在一次运行中处理96个样品 - 每天24小时连续工作,实验室工作人员几乎可以在整个工作日内无需手动操作,只需在实验完成后收回样品。HTR可以使用同圆筒、锥板、平行板夹具进行测量 - 这是自动HTR系统的绝对新颖之处。此外,此系统还可以集成pH计,用于自动测量pH值。安东帕的高通量流变仪听起来像未来世界的事物 - 因为它确实如此。HTR设计用于承受连续运行的需求,在您的投资得到回报后的很长时间它仍然处于完美状态。紧凑型HTR自动化高通量流变仪紧凑型 HTR 102/302 基于台式仪器设计,为流变样品的持续自动化测量铺就了道路。已安装的安东帕 MCR 102 或 MCR 302 流变仪可测量旋转和振荡模式下的液体和糊状样品。每天最多可分析 250 个样品,同时,自动封口/开封设备可保护样品不受环境影响。紧凑型 HTR 102/302 可测量食品、聚合物、油漆、涂料等各种流变样品。- 托盘可存放36个样品 - 可在操作过程中添加样品瓶 - 流变仪和样品台并行独立运行-由于流变仪和自动化装置的机械分离,实现了实验室高精度测量- 使用作业列表轻松管理样品 - LIMS集成(文件传输,数据库,以太网) - 可以随时引入优先测量样品
  • 盘一盘,那些年,三德科技建设的全自动制样系统
    2014年9月,三德科技正式对外发布SDIPS1000全自动制样系统(第一代),迄今已6年有余,期间,公司产品迭代升级,先后推出了1.5代智能制样系统、2代SDPS全通制样系统,及目前在售的SDRPS机器人制样系统。新技术不断发展,新产品不断涌现,那么最早实施的第一代制样系统,现在都还在运行吗?抑或早已搁浅了?今天,请大家与小编一起,来看看三德科技早期为原国电集团建设的2个SDIPS1000全自动制样系统,它们在用户那里,“过得”怎么样?1. 华能靖远发电有限公司(原国电靖远发电有限公司,以下简称“华能靖远”)用户素描:位于甘肃省白银市(距国电集团燃料智能化建设标杆电厂——国电兰州范坪不到100公里),隶属原国电集团,是一座坑口电厂,在役机组容量4×220MW,年需燃煤量约200余万吨,来煤运输方式为汽车、火车。建设内容:SDIPS1000全自动制样系统、采制对接系统特 殊 性:该公司需用的样品自动制备方案需要与采样系统无缝对接,且实现采样到0.2mm分析试样装瓶的全过程无人操作。在调研其他同类发电企业的产品应用情况、并比较三德科技与其他友商提供的自动制样解决方案,经先后3次组织专人到三德科技以及用户单位进行现场考察与体验后,最终确定使用三德科技的SDIPS1000自动制样系统。运行情况:2015年12月验收,2016年2月通过性能鉴定,目前设备运行正常,投运率大于98%,平均一天4个样,现场无人驻守运维,至今已完成制样7500余次(数据截至2021年4月15日)。项目实拍:2.国电宝鸡第二发电有限责任公司(以下简称“国电宝鸡”)用户素描:位于陕西宝鸡,隶属原国电集团,是西北750kV电网和西北与川渝电网直流联网的重要电源支撑点、陕西省规划的500万千瓦级电力能源基地之一,装机容量(4×300+2×660)MW,年需燃煤量约340万吨,来煤运输方式以火车煤为主、汽车煤为辅。建设内容:SDIPS1000全自动制样系统(含编码、封装以及与采样系统的连接)特 殊 性:2014年启动燃料智能化建设项目,在考察三德科技实施的国电靖远发电有限公司自动制样系统项目后,客户决定采用三德科技的自动制样系统。运行情况:2016年10月通过鉴定,11月以“优秀”的综合评价通过集团组织的专家组验收,目前设备运行正常,投运率大于98%,平均一天5个样左右,现场无人驻守运维,至今已完成制样7000余次(数据截至2021年4月15日)。项目实拍:真金不怕火炼,时间是最好的见证。面对燃料智能化管理这一新兴事物,在行业不成熟/产品不稳定/没有实施经验的情况下,诸多厂商蜂拥而上、跑马圈地之际,三德科技选择了“先技术,后市场”的发展路径,现如今,时间已经给出答案,厚积薄发的三德科技通过了实践的检验,做到了长期的投运,获得了市场的认可,真所谓“路遥知马力,步稳方致远”。
  • 『新品力荐』NanoView 全自动外泌体荧光检测分析系统重磅来袭!
    近年来,随着肿瘤研究持续走热、液体活检技术不断成熟,外泌体被众多科研工作者所青睐,成为热点。但外泌体分析的难度却使很多研究者望而却步,尤其是单个外泌体水平的表征分析方面更具挑战。作为外泌体表征分析的倡导者,美国NanoView Biosciences于2018年推出了全自动外泌体荧光检测分析系统,该系统一经推出,便引起了外泌体领域科研工作者的广泛关注,短短两年已有50多个实验室采用该技术,发表重要文献近百篇。2020年12月,作为美国NanoView公司在中国的代理,Quantum Design 中国正式把全自动外泌体荧光检测分析系统引入中国,助力广大科研工作者顺利开展相关研究! 美国NanoView 全自动外泌体荧光检测分析系统提供了一种无须纯化即可直接对血浆、血清、尿液、培养基中的外泌体进行表征分析的新方法。能够提供单个外泌体水平下的外泌体表征信息,包括粒径大小、分布、计数、携带蛋白表达与生物标志物(CD9,CD81,CD63等)共定位等,提供多层次和全方面的外泌体测量解决方案。 美国NanoView 全自动外泌体荧光检测分析系统基于免疫捕获和分析技术,允许研究者直接分析特定群体外泌体的特定表面蛋白、载物的表达情况。通过全自动外泌体荧光检测分析系统的芯片,客户一次性能够分析多达9个不同的样本,并且为每个样本可以同时提供多三色荧光成像。节省成本、时间,并减少纯化所带来的偏差。全自动外泌体荧光检测分析系统的优势:☛ 样品无需纯化,仅需35ul即可检测☛ 可对单个外泌体(囊泡)进行粒径分析☛ 可对表达特定抗原的外泌体(囊泡)进行分析☛ 可对单个外泌体(囊泡)携带的生物分子进行分析无须纯化对血液、尿液、恶性肿瘤、腹水中的外泌体直接分析。计数分析无需提纯,直接从样品中计算抗原阳性外泌体的数量。粒径分析高精度统计外泌体的颗粒大小及分布。荧光检测具备3个荧光通道,能够探测单个蛋白的结合。检测外泌体内容物配套试剂盒可探测外泌体内部核酸的装载情况,分析装载率。生物标记物共定位多可量化4种标记物的表达情况。2020年发表文章列举: 全自动外泌体荧光检测分析系统推出短短两年时间,备受广大科研用户的推崇,相关文献发表于Cell, Cell Biology, Journal of Extracellular Vesicles等期刊,如下摘引了2020年三篇具有代表性的文献和大家分享,我们将陆续把这些先进的科研成果,用快报新闻的方式和大家进一步分享。★ Annexin A1–dependent tethering promotes extracellular vesicle aggregation revealed with single–extracellular vesicle analysis, Rogers MA, Buffolo F, et al, Cell Biology 2020.★ Targeting tumor-derived exosomes using a lectin affinity hemofiltration device, Marleau AM, Jacobs MT, et al, Cancer Research 2020.★ Extracellular Vesicle and Particle Biomarkers DefineMultiple Human Cancers. Hoshino A, Kim HS, Bojmar L, et al, Cell 2020.为了更好的服务中国科研工作者,Quantum Design 中国也建立了样机演示实验室,将为大家提供专业的售前、销售、售后技术支持。
  • 高效构建hiPSC系的全自动化神器,单细胞可视化分选培养系统,让单细胞培养不再复杂!
    人类诱导多能干细胞 (hiPSC) 是一类通过基因编辑技术(如 CRISPR-Cas9)对已经高度分化的人体细胞重新逆分化得到的多能性干细胞。hiPSC的出现为科学家构建复杂的疾病模型和推进药物发现提供了有利的工具。 然而,传统的hiPSC细胞系的构建与培养过程往往操作复杂且耗时耗力。特别是从异质编辑细胞池中构建的克隆hiPSC系的培养受到了传统细胞培养方法的桎梏,很难构建一个高效的hiPSC构建与培养工作流程。此外,现有的单细胞分离和培养方法通常对细胞的处理条件苛刻,操作步骤繁琐,不能充分保证单克隆性。 为应对hiPSC细胞系构建与培养过程中的诸多挑战,IotaSicences公司采用了以GRID技术为核心的高度自动化的单细胞可视化分选培养系统isoCell来构建 hiPSC系的分选与培养平台,并在不同培养基条件下对hiPSC进行了单细胞分选与培养研究。图1 单细胞可视化分选培养系统isoCell实物图 以isoCell为核心的hiPSC细胞分选与培养平台 isoCell是一款基于GRID技术的高度自动化细胞分选与培养平台。GRID是指在细胞培养基上采用FC40液体分隔出的网格小室,体积小,光学透明度高,可以容纳细胞在内生长,且各个小室之间物质不流通。isoCell系统配备了荧光和成像系统,用于在整个克隆工作流程中记录 GRID 小室的图像(见下图)。isoCell 可自动执行所有液体处理步骤,包括构建 GRID、将单细胞注射到GRID小室中以及交换培养基和收获单克隆集落。并且,isoCell可在整个工作流程中自动检测每一个 GRID 小室,并确保每一个单克隆hiPSC细胞系来源于单个细胞。 图2 GRID实物图 材料与方法 在分别铺了Laminin-521、Vitronectin-N和iMatrix 细胞培养基质的60毫米培养皿上制备的GRID网格以待使用。制备hiPSC的单细胞悬浮液,并使用 isoCell全自动地将细胞铺在GRID上(种植)。 使用isoCell自带的显微镜鉴定每个GRID室并标记每个包含单个细胞(第 0 天)的室,将该培养皿放入培养箱培养。在第3天,将标记的含有单个细胞的GRID小室加满600 nl培养基。从第5天开始,每天观察标记单细胞的GRID小室,并对选中的GRID小室补充培养基。最后,使用isoCell观察并标记构成了hiPSC单细胞群落的GRID小室,使用isoCell全自动收获标记的GRID小室中的hiPSC细胞(通常在 6-8 天之间)。 图3 以isoCell为核心的hiPSC细胞分选与培养平台工作流程图 高效的hiPSCS细胞分选与培养平台 按照上述的工作流程,利用三种不同的培养基质(包括 VTN-N、LMN-521 和 iMatrix)构建并培养了两个独立的hiPSC细胞系,并评估所得细胞的克隆效率。如图4所示,两个不同的hiPSC测试系在不同培养基质条件下,均在GRID室中显示出非常高的克隆效率,这表明采用GRID小室低容量培养方法和细胞的自动化温和处理可产生非常适合单细胞高效生长的培养环境。 图4 GRID中的单细胞 hiPSC 克隆效率(克隆效率表示培养第5天时单细胞长成细胞群落数占第0天单细胞数的百分比) 结论 以isoCell构建的hiPSC细胞分选与培养平台可以对hiPSC细胞进行全自动化且温和地单细胞分选与培养。通过isoCell特有的GRID小室网格技术与可视化分选相结合,可以确保每一个单克隆hiPSC细胞系均来自单个细胞,且isoCell的分选与培养条件温和,hiPSC单克隆细胞系成活率高。 单细胞可视化分选系统isoCell的优势:- 全自动化流程- 操作条件温和,对单细胞无损伤- 全培养、分析流程可追踪- 单细胞分离效率高达100%- 单克隆细胞系构建成活率高- 直接转移到PCR管或96孔板- 结构紧凑,体积小 单细胞可视化分选培养系统-isoCell已在Cell、Advanced Science、Small Methods、Nature Communications等知名期刊发表多篇文章,如下摘引了近年五篇具有代表性的文献和大家分享。 Soitu C, Stovall‐Kurtz N, Deroy C, et al. Jet‐Printing Microfluidic Devices on Demand[J]. Advanced Science, 2020, 7(23): 2001854.Gangoso E, Southgate B, Bradley L, et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion[J]. Cell, 2021, 184(9): 2454-2470. e26.Deroy C, Nebuloni F, Cook P R, et al. Microfluidics on Standard Petri Dishes for Bioscientists[J]. Small Methods, 2021, 5(11): 2100724.Deroy C, Wheeler J H R, Rumianek A N, et al. Reconfigurable microfluidic circuits for isolating and retrieving cells of interest[J]. ACS Applied Materials & Interfaces, 2022, 14(22): 25209-25219.Oliveira N M, Wheeler J H R, Deroy C, et al. Suicidal chemotaxis in bacteria[J]. Nature Communications, 2022, 13(1): 7608. 样机体验 为更好地服务中国科研工作者,Quantum Design 中国也建立了样机演示实验室,将为大家提供为专业的售前、销售、售后技术支持,欢迎各位老师垂询! 用户名单 用户评价 路易莎埃姆斯,研究科学家:The Native Antigen Company(LGC 临床诊断集团旗下公司) “使用 isoCell 进行单细胞克隆工作从一开始就简单可靠,并且已无缝地融入我们的流程中。 该程序对细胞很温和,我们看到非常好的存活率,可以筛选大量克隆。 我们收到的客户服务是优质的。”
  • 施启乐带您了解VIDI 3860全自动可见异物检测系统
    施启乐VIDI3860全自动可见异物检测系统符合中国药典2020“0904可见异物检测法”要求应用于注射剂、眼用液体制剂等可见异物的检测可见异物是指存在于注射剂、眼用液体制剂和无菌原料药中,在规定条件下可以观测到的不溶性物质,其粒径或长度通常大于50µm。试想,如此大的异物进入人的血管中,势必会引起不适。因此在所有相关的制剂类型的药品标准中均规定了可见异物检查,以保证人的用药安全。传统的人工灯检存在人眼视力要求高,易疲劳,易误检漏检等问题,所以大家都在寻求自动化程度更高、准确度更高的解决方案。施启乐VIDI3860全自动可见异物检测系统应运而生。专业研发团队拥有数十年的图像分析处理经验,结合精密机械制造、现代光学技术、序列图像处理技术,开发出第三代全自动可见异物检测系统。施启乐VIDI3860全自动可见异物检测系统实现进样系统、检测系统、操作系统一体化,只需一台机器即可完成检测,节省占地,美观大方。系统通过首创的“轨迹追踪”算法,实现了可见异物的准确计数和定量。同时整合机械手自动抓取样品进样,操作简单,检测过程无需人工看守,工作效率高。系统对所记录的每一颗粒子进行持续追踪记录,形成粒子运动轨迹。轨迹追踪等同于微细可见异物的数量,对粒子运动时所产生的轨迹路线记录并加以计算,准确算出异物和颗粒数量。样品检测过程中,一分钟拍摄75幅图片合成视频,视频图像资料可回放及导出,展现样品真实状况。施启乐VIDI3860全自动可见异物检测系统符合数据完整性要求,具备权限分级功能。可根据软件内的权限种类自定义各层级和账户的权限,实现多用户、多层级权限管理,具备审计追踪功能,用户登录或产生、修改、删除电子数据的记录及其时间,系统都可以以审计追踪记录。针对纤维、细毛等质量轻、易漂浮在液面的异物,以及金属屑、玻璃屑等质量较重、在旋瓶过程中很快停止运动的异物,施启乐研发团队进行了算法上的优化,使得各种可见异物无所遁形。施启乐VIDI3860全自动可见异物检测系统可准确区分50μm以上颗粒,避免产生假阳性,能完美区分单独一颗的40μm与60μm标准粒子,40μm在仪器当中呈现阴性,60μm在仪器中呈现阳性。施启乐VIDI3860全自动可见异物检测系统,节约人力成本、避免人眼检测造成的误差,检测结果一目了然,使注射剂、眼用液体制剂等可见异物检测变得更简单、更轻松、更规范。为药品安全保驾护航,施启乐一直在努力!
  • PCR动态|鲲鹏基因发布自动化PCR液体处理系统
    仪器信息网讯 2023年3月,鲲鹏基因发布RocStation自动化PCR液体处理系统,主打高精度、全自动,分液封膜一体化,上机实验更轻松的特点。RocStation是一款专为PCR反应体系构建而设计的自动化液体处理系统,通过内置操控系统可以控制自动装/退吸头、吸/放液、PCR孔板封膜等操作,预置基本移液、连续分液、梯度稀释等移液模式。移液精确快速,减少人工干预带来的误差,保证结果重复性和稳定性,广泛应用于PCR体系构建、细胞培养、化合物筛选等各种样品制备项目。除自动化分液功能外,为进一步简化PCR上机前的操作流程,RocStation 96S同时配置了自动封膜功能,是目前市场上首款自动化分液/封膜一体机。仅需一台仪器,便可帮助使用者完成PCR上机前的反应体系配制及耗材制备,使得PCR上机实验更轻松。
  • 捷诚同创发布全自动固液一体吹扫捕集仪新品
    技术参数:■吹扫管采样头温度控制范围室温-100 控温精度:±1°C■六通阀进样系统温度及控制范围室温-220°C,控温精度:±1°C■样品传输管温度及控制范围室温-22CTC,控温精度:±1°C■捕集管温度控制范围-40°C-450°C,升温速率>4200°C/min.冷阱温度控制范围-"C-室温,采用电子制冷缉 控温精度:±1°C■除水器温度控制范围0°C-200°C■清洗蒸馋水温度控制范围室温-90C控温精度:±1°C?固体样品瓶温控范围室温-100 控温精度:±1°C■样品位56位/86位/106位■吹扫流量10~150ml/min(连续可调)■时间控制范围0.0min~999.9min■功率800W■电源220V 50Hz.仪器尺寸650x880x530(mm)■仪器重量约40kg仪器特点和主要功能:■全自动一键式启动,自动完成样品的进样分析,无需人员值守?可对土壤饮、饮用水和废水等多种类型固体、液体样品进行吹扫捕集?液体样品支持U型管异位或原位对样品进行吹扫捕集?固体样品支持加热和连续可调的磁珠搅拌下进行吹扫捕集.自动检漏和故障报警功能■进样系统的取样臂移动平稳、 ,噪音低?触摸屏控制,界面信息丰富、齐全,操作简单■方法参数设置、实时显示工作状态、运行时间■所有温控环节和器件均可单独控制温度■[。种方法供编辑、存储和随时调用,按下运行键自动完成样品分析.同步启动GC/GCMS,也可用外来事件程序启动本装置,提 率,减少样品浪费■捕集阱与吹扫管拥有独立的反吹系统,减少样品间的交叉污染。■全流程情性管线连接传输,减少污染残留■六通阀与传输管线的连接点处于加热保温箱内,无传输冷点,保证了样品的完整性?除水阱在吹扫端去除水汽,大大地减少水蒸气对GC和GC/MS的影响HJ 639-2012水质挥发性有机物的测定吹扫捕集/气相色谱-质谱法HJ 686-2014水质挥发性有机物的测定吹扫捕集/气相色谱-质谱法HJ 866-2017水质松节油的测定吹扫捕集/气相色谱-质谱法HJ 735-2015 土壤和沉积物挥发性卤代炷的测定吹扫捕集/气相色谱-质谱法HJ 806-2016水质丙烯睛和丙烯醛的测定吹扫捕集/气相色谱法HJ 788-2016水质乙睛的测定吹扫捕集/气相色谱法HJ 713-2014固体废物挥发性卤代炷的测定吹扫捕集/气相色谱-质谱法创新点:捕集管温度控制范围:-40° C-450° C,升温速率>4200° C/min可对土壤饮、饮用水和废水等多种类型固体、液体样品进行吹扫捕集?液体样品支持U型管异位或原位对样品进行吹扫捕集?固体样品支持加热和连续可调的磁珠搅拌下进行吹扫捕集.自动检漏和故障报警功能全自动固液一体吹扫捕集仪
  • 上海兰博发布全自动气体进样器新品
    Labhands公司的全自动气体进样器是针对气体样品从样品采集,样品信息管理,进样,以及后续数据处理提供一整套解决方案。主要功能如下:1、根据日常检测样品数量选择合适的自动进样器位数,我们提供15位(预留15位日后可升级到30位);30位(预留30位日后可升级到60位);60位标准配置。2、样品加热箱,气袋或者注射器进样配套加热箱,可加热到120度,控温精度1度。3、标气自动稀释功能,软件设置自动化配制标准曲线,优于手工配制线性。4、样品稀释功能,高浓度样品自动在线稀释并进样,最大稀释倍数100倍。5、全自动气体进样器主要技术指标:1)软件:具有数据库功能,可以添加样品信息,如采样地址,时间,采样人员,分析人员等。并且对所编辑的信息自动保存,自动检索。2)进样方式:双通道定量环进样。3)配套的采样装置:注射器或者采气袋,注射器进样时保持水平状态。4)进样体积:1ml样品定量管或其它体积可选。5)全自动气体进样系统具备管路反吹功能,反吹气体必须从连接气袋的接口流出,来达到冲洗进样口以及其连接管路的目的。6)气体取样阀、样品选择阀等所有阀系统必须电子驱动控制,不接受气动阀。7)定量环填充采用负压模式,样品流经定量环的过程中必须通过质量流量计控制采样流速,控制范围:5%-100% F.S.,控制精度:1.5%F.S.。8)管路材料:钝化处理过的不锈钢材质和特氟龙9)进样精度:RSD2%。创新点:1、气体自动进样器具有多种样品位数可供选择,并且现在采购30位以后可以升级到60位。 2、自动在线稀释,既可以自动配制标准气体也可以自动稀释样品气体。3、采气袋加热功能,外配加热箱可以加热到120度,控温精度1度。全自动气体进样器
  • 天津兰博发布兰博Series 8000全自动液相色谱系统新品
    LB8700单元/LB8800高压二元/LB8900低压四元液相色谱系统液相色谱领域高端性能的体现高标准完全符合并超过国家标准规定的液相色谱生产与检验标准每套系统在出厂前都经过了严格的测试,具有出厂检验报告分析至半制备系统满足分析兼半制备级色谱分析应用先进的液体输送技术紧凑的溶剂托盘大容量恒温柱温箱多位数自动进样器多种高性能检测器选择全反控色谱工作站高度灵活的选择性硬件选择丰富,成套性高。可根据需要选择手动进样器或自动进样器、以及示差折光、荧光或蒸发光散射检测器等任意检测器,满足任何液相色谱仪检测需要。 低压四元动态混合梯度泵溶剂输送系统的内部设计,实现洗脱液的精确混合,减少死体积,低噪声。 经久耐用,稳定性好故障率低,维护简单,是LABA液相色谱仪用户的一致感受,高品质的部件确保了仪器长期运行时的安全可靠。 具有高性能检测器精度高、可靠性好,满足日常应用。UV/Vis全波长检测器,覆盖所有常规检测项目,自动光源开启/关闭功能,延长了光源的使用寿命,并缩短了预热时间。创新点:1、洗脱液的流动方向更符合流体力学原理,内置式溶剂脱气机,脱气机与溶剂托盘为一体,降低了流路死体机,脱气效果有很大提升。一体式大容量恒温柱温箱,加热制冷一体化设计,配置大位数自动进样器,多种高性能检测器选择,具有数据追踪、层级管理、网路化全反控色谱工作站,高度灵活的选择性。 2、低压四元动态混合梯度泵;溶剂输送系统的内部设计,实现洗脱液的精确混合,减少死体积,低噪声;经久耐用,稳定性好;故障率低,维护简单,是美国兰博液相色谱仪用户的一致感受,高品质的部件确保了仪器长期运行时的安全可靠。具有高性能检测器,精度高、可靠性好,满足复杂体系的分析以及日常应用。UV/Vis全波长检测器,覆盖所有常规检测项目,自动光源开启/关闭功能,延长了光源的使用寿命,并缩短了预热时间。兰博Series 8000全自动液相色谱系统
  • 核酸检测日检5000份提升到1万份的超级利器!Vitae 100全自动PCR体系构建系统
    新冠疫情再度来袭,全国各地迎来核酸检测高峰。在此次大规模检测行动中,睿科积极投身抗疫一线,为实现核酸检测样品前处理的高通量全自动化而努力奋斗。在整个检测环节中,PCR反应体系构建的流程占据了大量时间,限制了核酸检测能力的提升,睿科Vitae 100全自动PCR体系构建系统的出现完美的解决了这一难题。可以使核酸检测的日通量从5000份提升到1万份。更适合应急情况下的疫情防控需求。01Vitae 100全自动PCR体系构建系统Vitae 100全自动PCR体系构建系统是一款基于液体处理平台设计的高精度自动化设备,适用于各种PCR反应的体系构建以及其他体系构建(例如:NGS文库构建),广泛应用于新冠检测体系构建、病原微生物检测体系构建及各种利用PCR技术的检测项目。由于其优秀的移液精度,更加适合384孔板的密集型分液和加样,可有效避免人工加样出现的误加、漏加的现象,节省人力。02产品优势1.移液精准模块式机械臂,定位精准到0.05mm;移液精确度可以达到CV≤2%2.高效快速5min即可完成384孔板分装;96孔板的PCR体系构建流程仅需10min3.盘位灵活具备10个盘位,支持各种离心管(0.2mL 到 50 mL)及孔位数高达384孔的各种孔板,盘位功能可根据客户需求进行规划4.模块化配置可选配加热、制冷、震荡功能模块,根据应用需求灵活定制5.兼容性好兼容国内外任意品牌核酸提取的耗材和PCR板6.污染控制配备HEPA过滤系统及紫外消毒模块,有效避免交叉污染睿科新冠病毒核酸检测自动化操作流程
  • 理加LI-2100全自动真空抽提系统的海外之旅
    不同水体的氢氧稳定同位素可用于植物水分利用来源、水汽输送、土壤水运移和补给机制、补给源和地下水机制、水体蒸发、植物蒸腾和土壤蒸发的区分、径流的形成和汇合、重建古气候等方面的研究。因而引起了水文学家,生态学家以及气候学家等的广泛关注。但问题是:在进行水稳定同位素测试之前如何将植物木质部和土壤中的水分无分馏的提取出来?LI-2100是LICA自主研发的一款全自动真空冷凝抽提系统,且已通过CE认证。从根本上解决了植物和土壤水分提取的难题,克服了传统液氮冷却的繁琐,不仅可以防止同位素分馏,而且安全高效,不会对植物和土壤造成破坏。可与LGR水同位素分析仪和质谱仪配套使用。许多科学家已经结合LI-2100和LGR的水同位素分析仪进行了诸多研究。从研发生产至今,LI-2100在国内已经销售了近百台,国内的科研工作者利用这台仪器发表了诸多文献,得到了用户的众多好评。随着LI-2100在国内的广泛应用及众多文献的发表,国外的一些科学家也开始关注理加公司研发生产的LI-2100,理加公司也积极在海外推广该产品,由此拉开了LI-2100走出国门、走向海外的序幕。LI-2100在海外的安装案例1. 巴西国家空间研究所(INPE)应用:利用LI-2100抽提土壤、植物中的水,进行同位素相关研究。科学家简介:Laura De Simone Borma (劳拉德西蒙娜博尔玛)1988 年毕业于欧鲁普雷图联邦大学土木工程专业,1991 年获得里约热内卢联邦大学土木工程硕士学位,以及里约热内卢联邦大学土木工程-环境岩土工程博士学位(1998)。自 2009 年起在 INPE(国家空间研究所)担任研究员,从事生态水文学和土壤物理学领域的工作,重点是实地观察陆地和极端天气事件对土壤-植物-大气相互作用以及气候变化、土地利用和覆盖变化的影响。她目前是 INPE 的 PGCST(地球系统科学研究生)和 PGSER(遥感研究生)的教授。协调 CCST/INPE 的生态水文学 (LabEcoh) 和生物地球化学 (LapBio) 实验室。她是 ISMC(国际土壤建模联盟)的成员。她对巴西不同生物群落中土壤-植物-大气相互作用、生态水文学以及水和气候调节的生态系统服务领域的研究感兴趣。LI-2100在海外的安装案例2. 澳大利亚Flinders大学 College of Science and Engineering应用:利用LI-2100抽提土壤、植物中的水,进行同位素相关研究。 LI-2100在国内的部分安装案例1、沈阳气象局2、中国林业科学研究院亚热带林业研究所3、广西植物园4、中国科学院西双版纳热带植物园...发表文献1. Qiu X, Zhang MJ, Wang SJ. 2016. Preliminary research on hydrogen and oxygen stable isotope characteristics of different water bodies in the Qilian Mountains, northwestern Tibetan Plateau. Environmental Earth Sciences, 75(23):1491.2. Wang J, Fu BJ, Lu N et al. 2017. Seasonal variation in water uptake patterns of three plant species based on stable isotopes in the semi-arid Loess Plateau. Science of the Total Environment, 609: 27-37.3. Huang XY, Meyers PA. 2018. Assessing paleohydrologic controls on the hydrogen isotope compositions of leaf wax n-alkanes in Chinese peat deposits. Palaeogeography, Palaeoclimatology, Palaeoecology, doi: 10.1016/j.palaeo.2018.12.017. 4. Sun L, Yang L, Chen LD et al. 2018. Short-term changing patterns of stem water isotopes in shallow soils underlain by fractured bedrock. Hydrology Research, doi: 10.2166/nh.2018.086. 5. Zhang YG, YU XX, Chen LH. 2018. Comparison of the partitioning of evapotranspiration –numerical modeling with different isotopic models using various kinetic fractionation coefficients. Plant and Soil, 430: 307-328, https://doi.org/10.1007/s11104-018-3737-z. 6. Zhao X, Li FD, Ai ZP et al. 2018. Stable isotope evidences for identifying crop water uptake in a typical winter wheat–summer maize rotation field in the North China Plain. Science of the Total Environment, 121-131.7. Zhu G, Guo H, Qin, D et al. 2018. Contribution of recycled moisture to precipitation in the monsoon marginal zone: estimate based on stable isotope data. Journal of Hydrology, doi: 10.1016/j.jhydrol.2018.12.014. 8. Che CW, Zhang MJ, Argiriou AA et al. 2019. The stable isotopic composition of different water bodies at the Soil–Plant–Atmosphere Continuum (SPAC) of the western Loess Plateau, China, Water, doi:10.3390/w11091742.9. Li EG, Tong YQ, Huang YM et al. 2019. Responses of two desert riparian species to fluctuation groundwater depths in hyperarid areas of Northwest China. Ecohydrology, 1-12. 10. Liu JC, Shen LC, Wang ZX et al. 2019. Response of plants water uptake patterns to tunnels excavation based on stable isotopes in a karst trough valley. Journal of Hydrology, 571: 485-493.11. Liu Y, Zhang XM, Zhao S et al. 2019. The depth of water taken up by walnut trees during different phenological stages in an irrigated arid hilly area in the Taihang Mountains. Forests, doi:10.3390/f10020121. 12. Liu Z, Ma FY, Hu TX et al. 2019. Using stable isotopes to quantify water uptake from different soil layers and water use efficiency of wheat under long-term tillage and straw return practices. Agricultural Water Management, https://doi.org/10.1016/j.agwat.2019.105933.13. Luo ZD, Guan HD, Zhang XP et al. 2019. Examination of the ecohydrological separation hypothesis in a humid subtropical area: Comparison of three methods. Journal of Hydrology, 571, 642-650. 14. Qiu X, Zhang MJ, Wang SJ et al. 2019. The test of the ecohydrological separation hypothesis in a dry zone of the northeastern Tibetan Plateau. Ecohydrology, https://doi.org/10.1002/eco.2077.15. Qiu X, Zhang MJ, Wang SJ et al. 2019. Water stable isotopes in an Alpine setting of the northeastern Tibetan Plateau. Water, doi:10.3390/w11040770.16. Wang J, Fu BJ, Lu N et al. 2019. Water use characteristics of native and exotic shrub species in the semi-arid Loess Plateau using an isotope technique. Agriculture, Ecosystems and Environment, 276: 55-63. 17. Wang J, Lu N, Fu BJ. 2019. Inter-comparison of stable isotope mixing models for determining plant water source partitioning. Science of the Total Environment, 666: 685-693. 18. Wu X, Zheng XJ, Li Y, Xu GQ. 2019. Varying responses of two Haloxylon species to extreme drought and groundwater depth. Environmental and Experimental Botany, 158, 63-72.19. Xu YY, Yi Y, Yang X, Dou YB. 2019. Using stable hydrogen and oxygen isotopes to distinguish the sources of plant leaf surface moisture in an urban environment. Water, doi:10.3390/w11112287. 20. Dai JJ, Zhang XP, Luo ZD et al. 2020. Variation of the stable isotopes of water in the soil-plant-atmosphere continuum of a Cinnamomum camphora woodland in the East Asian monsoon region. Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2020.125199. 21. Jiang PP, Wang HM, Meinzer FC et al. 2020. Linking reliance on deep soil water to resource economy strategies and abundance among coexisting understorey shrub species in subtropical pine plantations. New Phytologist, doi: 10.1111/nph.16027. 22. Liu L, Bai YX, She WW et al. 2020. A nurse shrub species helps associated herbaceous plants by preventing shade‐induced evaporation in a desert ecosystem. Land Degradation and Development, https://doi.org/10.1002/ldr.3831. 23. Liu Z, Ma FY, Hu TX. 2020. Using stable isotopes to quantify water uptake from different soil layers and water use efficiency of wheat under long-term tillage and straw return practices. Agricultural Water Management, https://doi.org/10.1016/j.agwat.2019.105933. 24. Pan YX, Wang XP, Ma XZ et al. 2020. The stable isotopic composition variation characteristics of desert plants and water sources in an artificial revegetation ecosystem in Northwest China. Catena, https://doi.org/10.1016/j.catena.2020.104499. 25. Su PY, Zhang MJ, Qu DY et al. 2020. Contrasting water use strategies of Tamarix ramosissima in different habitats in the Northwest of Loess Plateau, China. Water, 12, 2791 doi:10.3390/w12102791. 26. Wang J, Fu BJ, Wang LX et al. 2020. Water use characteristics of the common tree species in different plantation types in the Loess Plateau of China. Agricultural and Forest Meteorology, https://doi.org/10.1016/j.agrformet.2020.108020. 27. Xiang W, Evaristo J, Li Z. 2020. Recharge mechanisms of deep soil water revealed by water isotopes in deep loess deposits. Geoderma, https://doi.org/10.1016/j.geoderma.2020.114321. 28. Xiao X, Zhang F, Li XY et al. 2020. Hydrological functioning of thawing soil water in a permafrost-influenced alpine meadow hillslope. Vadose Zone Journal, doi: 10.1002/vzj2.20022.29. Yang B, Meng XJ, Singh AK et al. 2020. Intercrops improve surface water availability in rubber-based agroforestry systems. Agriculture, Ecosystems and Environment, 298, 106937.30. Yang B, Zhang WJ, Meng XJ et al. 2020. Effects of a funnel-shaped canopy on rainfall redistribution and plant water acquisition in a banana (Musa spp.) plantation. Soil, Tillage Research, https://doi.org/10.1016/j.still.2020.104686.31. Yong LL, Zhu GF, Wan QZ et al. 2020. The soil water evaporation process frommountains based on the stable isotope composition in a headwater basin and northwest China. Water, 12, 2711 doi:10.3390/w12102711. 32. Zhang Y, Zhang MJ, Qu DY et al. 2020. Water use strategies of dominant species (Caragana korshinskii and Reaumuria soongorica) in natural shrubs based on stable isotopes in the Loess Hill, China. Water, doi:10.3390/w12071923. 33. Zhang YG, Wang DD, Liu ZQ et al. 2020. Assessment of leaf water enrichment of Platycladus orientalis using numerical modeling with different isotopic models. Ecological Indicators, https://doi.org/10.1016/j.ecolind.2019.105995. 34. Li Y, Ma Y, Song XF et al. 2021. A δ2H offset correction method for quantifying root water uptake of riparian trees. Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2020.125811. 35. Yang B, Meng XJ, Zhu XA et al. 2021. Coffee performs better than amomum as a candidate in the rubber agroforestry system: Insights from water relations. Agricultural Water Management, doi.org/10.1016/j.agwat.2020.106593. 36. Qiu X, Zhang MJ, Dong ZW et al. 2021. Contribution of recycled moisture to precipitation in northeastern Tibetan Plateau: A case study based on Bayesian estimation. Atmosphere, 12, 731. https://doi.org/10.3390/ atmos12060731. 37. Zhao Y, Wang L. 2021. Insights into the isotopic mismatch between bulk soil water and Salix matsudana Koidz xylem water from root water stable isotope measurements. Hydrology and Earth System Sciences, 25, 3975-3989.38. Shi PJ, Huang YN, Yang CY et al. 2021. Quantitative estimation of groundwater recharge in the thick loess deposits using multiple environmental tracers and methods. Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2021.126895.39. Zhu GF, Yong LL, Zhang ZX et al. 2021. Infiltration process of irrigation water in oasis farmland and its enlightenment to optimization of irrigation mode: Based on stable isotope data. Agricultural Water Management, https://doi.org/10.1016/j.agwat.2021.107173.40. Fang FL, Li YJ, Yuan DP et al. 2021. Distinguishing N2O and N2 ratio and their microbial source in soil fertilized for vegetable production using a stable isotope method. Science of the Total Environment, https://doi.org/10.1016/j.scitotenv.2021.149694.41. Wang JX, Zhang MJ, Argiriou AA et al. 2021. Recharge and infiltration mechanisms of soil water in the floodplain revealed by water-stable isotopes in the upper Yellow River. Sustainability, 13, 9369.42. Zhu G F, Yong L L, Xi Z et al. 2021. Evaporation, infiltration and storage of soil water in different vegetation zones in Qilian mountains: From a perspective of stable isotopes. Hydrology and Earth System Sciences, https://doi.org/10.5194/hess-2021-376.43. Qiu GY, Wang B, Li T et al. 2021. Estimation of the transpiration of urban shrubs using the modified three-dimensional three-temperature model and infrared remote sensing. Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2020.125940.44. Tang YK, Wang LN, Yu YQ et al. 2021. Differential response of plant water consumption to rainwater uptake for dominant tree species in the semiarid Loess Plateau. Hydrology and Earth System Sciences, https://doi.org/10.5194/hess-2021-351.45. Lin W, Ding JJ, Li YJ et al. 2021. Determination of N2O reduction to N2 from manure-amended soil based on isotopocule mapping and acetylene inhibition. Atmospheric Environment, https://doi.org/10.1016/j.atmosenv.2020.117913.46. Liu JZ, Wu HW, Zhang HW et al. 2021. Controls of seasonality and altitude on generation of leaf water isotopes. Hydrology and Earth System Sciences, https://doi.org/10.5194/hess-2021-289.47. Qin WY, Chen G, Wang P et al. 2021. Climatic and biotic influences on isotopic differences among topsoil waters in typical alpine vegetation types. Catena, https://doi.org/10.1016/j.catena.2021.105375.48. Zhang X, Zhang QL, Xu ZH et al. 2021. Mechanism of environmental factors regulating water consumption of Larix gmelinii forests. Journal of Soils and Sediments, https://doi.org/10.1007/s11368-021-03025-7.49. Zhu WR, Li WH, Shi PL et al. 2021. Intensified interspecific competition for water after afforestation with Robinia pseudoacacia into a native shrubland in the Taihang Mountains, northern China. Sustainability, 13(2), 807 https://doi.org/10.3390/su13020807.50. Liu ZH, Jia GD, Yu XX et al. 2021. Morphological trait as a determining factor for Populus simonii Carr. to survive from drought in semi-arid region. Agricultural Water Management, https://doi.org/10.1016/j.agwat.2021.106943.51. Zhu GF, Yong LL, Zhang ZX et al. 2021. Effects of plastic mulch on soil water migration in arid oasis farmland: Evidence of stable isotopes. Catena, https://doi.org/10.1016/j.catena.2021.105580.52. Zhao Y, Wang L, Knighton J et al. 2021. Contrasting adaptive strategies by Caragana korshinskii and Salix psammophila in a semiarid revegetated ecosystem. Agricultural and Forest Meteorology, https://doi.org/10.1016/j.agrformet.2021.108323.53. Shi Y, Jia WX, Zhu GF et al. 2021. Hydrogen and oxygen isotope characteristics of water and the recharge sources in subalpine of Qilian Mountains, China. Polish Journal of Environmental Studies, 30, 3, 2325-2339.54. Wu A, Behzad HM, He QF et al. 2021. Seasonal transpiration dynamics of evergreen Ligustrum lucidum linked with water source and water-use strategy in a limestone karst area, southwest China. Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2021.126199.55. 周盼盼, 张明军, 王圣杰等. 2016. 兰州城区绿化植物稳定氢氧同位素特征. 生态学杂志, 35(11): 2942-2951.56. 李亚飞, 于静洁, 陆凯等. 2017. 额济纳三角洲胡杨和多枝柽柳水分来源解析. 植物生态学报, 41(5): 519-528.57. 李桐, 邱国玉. 2018. 基于稳定氢氧同位素的盐水与纯水蒸发差异分析. 热带地理, 38 (6): 857-865.58. 霍伟杰, 蒲俊兵, 李建鸿等. 2019. 断陷盆地高原面典型岩溶洼地旱季土壤水氢氧同位素时空差异特征.中国岩溶,38(3): 307-317.59. 戴军杰, 章新平, 罗紫东等. 2019. 长沙地区樟树林土壤水稳定同位素特征及其对土壤水分运动的指示. 环境科学研究,32(6): 974-983.60. 胡士可和叶茂. 2020. 基于氢氧稳定同位素的柽柳水分来源分析. 广东农业科学, 47(2):54-60.61. 李盼根, 王震洪, 李赫等. 2020. 基于稳定氢氧同位素的黄土高原不同生长年限油用牡丹水分来源研究. 水土保持通报, 40(1): 108-115.62. 史佳美, 余新晓, 贾国栋等. 2020. 不同动力学分馏系数对北京山区侧柏叶片水δ18O的模拟. 应用生态学报, 31(6): 1827-1834.63. 苏鹏燕, 张明军, 王圣杰等. 2020. 基于氢氧稳定同位素的黄河兰州段河岸植物水分来源. 应用生态学报, 31(6): 1835-1843.64. 孜尔蝶巴合提, 贾国栋, 余新晓. 2020. 基于稳定同位素分析不同退化程度小叶杨水分来源. 应用生态学报, 31(6): 1807-181665. 王露霞, 梁杏, 李静. 2020. 基于典型钻孔的江汉平原地下水成因分析. 地球科学, 45(2): 701-710.66. 王锐, 章新平, 戴军杰等. 2020. 亚热带地区不同林分下植物水分利用的季节差异. 生态环境学报, 29(4): 665-675.67. 王锐, 章新平, 戴军杰等. 2020. 亚热带典型植物水分利用来源变化的水稳定同位素分析. 水土保持学报, 34(1): 202-209.68. 王锐, 章新平, 戴军杰等. 2020. 亚热带湿润区樟树吸水的土层来源及研究方法对比. 水土保持学报, 34(5): 267-276.69. 郝帅和李发东. 2021. 艾比湖流域典型荒漠植被水分利用来源研究. 地理学报, 76(7): 1649-1661.70. 李雨芊, 孟玉川, 宋泓苇等. 2021. 典型林区水分氢氧稳定同位素在土壤-植物-大气连续体中的分布特征. 应用生态学报, 32(6): 1928-1934.71. 刘秀强, 陈喜, 刘琴等. 2021. 西北干旱区尾闾湖过渡带陆面蒸发和潜水对土壤水影响的同位素分析. 干旱区资源与环境, 35(6): 52-59.72. 王家鑫, 张明军, 张宇等. 2021. 基于稳定同位素示踪的黄河兰州段河漫滩土壤水特征分析. 干旱区地理, 44(5): 1449-1458.73. 王锐, 章新平, 戴军杰等. 2021. 亚热带针阔混交林土壤-植物-大气连续体(SPAC)中水稳定同位素特征. 生态环境学报, 30(6): 1148-1157.74. 王欣, 贾国栋, 邓文平等. 2021. 季节性干旱地区典型树种长期水分利用特征与模式. 应用生态学报, 32(6): 1943-1950.75. 武昱鑫, 张永娥, 贾国栋. 2021. 基于多种同位素模型的侧柏林生态系统蒸散组分定量拆分应用生态学报, 32(6): 1971-1979.76. 张泽, 孙贺阳, 李陶珂等. 2021. 拆分典型草原群落蒸散组分方法研究. 中国草地学报, 43(4): 87-95.LI-2100特点1. 沿用传统经典的真空蒸馏冷冻方法,数据可靠2. 无需液氮:压缩机制冷,提高安全性3. 快速高效:一次可同时提取14个样品4. 全自动抽提:全过程无人值守5. 安全便捷:自我断电与自我保护功能6. 质量控制:故障提示与自动报警7. 全球首创:专利技术8. 氢氧稳定同位素前处理 性能指标提取速度>110 个/天可同时提取样品数14 个系统真空度<1000 Pa系统漏率<1 Pa/s抽提率>98%回收率99%-101%真空泵5 L/min, 24 V, 最大压力, 0.3bar制冷无需液氮,压缩机与冷阱结合,最低制冷温度可达 -95℃制热电磁制热,最高制热温度可达 130℃显示与操作TFT LCD (7寸, 800*480 65536). 触摸式人机友好交互界面自动保护温度过高或超出设定温度值,加热系统自动关闭自动报警制冷系统故障提示并报警与真空泄露故障报警尺寸90 cm (H)×74 cm (W)×110 cm (D)重量120 KgLI-2100是国际上第一款全自动植物土壤真空抽提系统,也是国内全自动植物土壤真空抽提系统的领导品牌。LI-2100为客户取得更为准确的数据提供了有利的方法和保障。理加公司专注国产生态仪器的研发和生产,是国内生态领域自主研发比较早、国产化比较好的一家公司。相信随着加大研发的投入和市场及时间的积累,理加公司一定会生产出更多、更好的生态仪器,给更多的国内外客户提供更有价值的产品。海外市场的拓展不是一条容易走的路,但理加会坚定地走出去。
  • 捷诚同创发布JCTC-106全自动固液一体吹扫捕集仪新品
    技术参数:吹扫管采样头温度控制范围:室温-100℃,控温精度:±1℃六通阀进样系统温度及控制范围:室温-220℃,控温精度:±1℃样品传输管温度及控制范围:室温-220℃,控温精度:±1℃捕集管温度控制范围:-40℃-450℃,升温速率4200℃/min冷阱温度控制范围:-40℃-室温,采用电子制冷装置,控温精度:±1℃除水器温度控制范围:0℃-200℃清洗蒸馏水温度控制范围:室温-90℃,控温精度:±1℃固体样品瓶温控范围:室温-100℃,控温精度:±1℃样品位:106位吹扫流量:10~150ml/min(连续可调)时间控制范围:0.0min~999.9min功率:800W电源:220V 50Hz仪器尺寸:650×880×530(mm)仪器重量:约40kg 仪器特点和主要功能:全自动一键式启动,自动完成样品的进样分析,无需人员值守可对土壤、饮用水和废水等多种类型固体、液体样品进行吹扫捕集液体样品支持U型管异位吹扫或原位吹扫固体样品支持加热和连续可调的磁珠搅拌下进行吹扫捕集自动检漏和故障报警功能进样系统的取样臂移动平稳、精确,噪音低进样系统上部抓瓶,牢固稳健,方便放瓶后样品位底部加热触摸屏控制,界面信息丰富、齐全,操作简单方法参数设置、实时显示工作状态、运行时间所有温控环节和器件均可单独控制温度10种方法供编辑、存储和随时调用,按下运行键自动完成样品分析同步启动GC/GCMS,也可用外来事件程序启动本装置,提高效率,减少样品浪费捕集阱与吹扫管拥有独立的反吹系统,减少样品间的交叉污染。全流程惰性管线连接传输,减少污染残留六通阀与传输管线的连接点处于加热保温箱内,无传输冷点,保证了样品的完整性低温除水阱在吹扫端去除水汽,大大地减少水蒸气对GC和GC/MS的影响12个月保修期:零部件、电子和软件,不包括易损件 选购件:自动添加内标创新点:全自动完成固、液吹扫捕集JCTC-106全自动固液一体吹扫捕集仪
  • 【新品推荐】FlowCam ALH全自动进样系统
    Yokogawa Fluiding Imaging Technology Inc.公司最新推出的新型FlowCam™ ALH全自动进样系统能与FlowCam 8000系列、FlowCam LO和FlowCam Cyano无缝连接,实现了样品制备和分析的自动化。 通过运用最先进的机器人系统,可大大提高实验室工作效率、分析重复性和流式颗粒成像系统的数据质量。FlowCam™ ALH 优势:• 完全自动,可实现无人化操作,可同批次处理多达384个样品 • 通过自动化提高生产率和数据的可重现性 • 一个可配置的样本甲板,灵活的样本排队和准备 • 软件功能强大,易于使用,并与VisualSpreadsheet高度集成 • 具备HEPA过滤功能,保证样品在洁净环境下进行检测 FlowCam™ ALH• 功能单元布置图• 10个Well Plate单元• 保温(加热/冷却)单元• 定轨摇床单元技术规格:实验器具位置数量:10个单批次样品处理量:最高可至384个保温:是 / 2-90摄氏度取样体积控制精度(CV%):± 3%
  • 莱伯泰科发布GPC 1000全自动凝胶净化系统新品
    AutoClean系列全自动凝胶净化系统,由净化主机及液体工作站组成,一体式设计,布局紧凑协调,可以自动化完成样品进样、分离净化、目标组分收集系列操作,控制软件执行数据采集、保存和管理功能;设备外观具有工作状态指示灯,清楚显示各步骤工作状况,远距离可视;可升级与全自动定量浓缩系统,单通道或多通道全自动固相萃取系统在线联机使用。 功能特点:凝胶净化原理凝胶净化系统是根据凝胶渗透色谱原理对复杂样品按照分子体积的大小进行分离和收集,能有效去除样品中的大分子基质和小分子干扰物质,提高后续分析的灵敏度和准确度,延长分析仪器的使用寿命。可变波长紫外检测器多种规格可变波长及固定波长检测器可选,满足各种实验室前处理需求。内置4nm GPC专用检测器样池,减少样品吸光度过载现象 AutoClean系列凝胶净化系统可提供不同波段紫外检测器,检测器作为整套系统的眼睛,起到检测谱图,实时掌握实验动态的作用。标配可变波长紫外检测器,可以选择在待测物质最大吸收波长处进行 检测,提高样品分辨率及检测准确度。可根据使用需要有多种规格检测器选择。阀组控制系统阀组系统是关系到整套设备的流路及控制是否顺畅的关键部分,整套阀组具有对样品无吸附、无本地干扰,耐压性能强,精度高及使用寿命长等优点。管路均经过钝处理,防止本底塑化剂干扰定量缓冲管,采用不锈钢材质,耐压性能强,无塑化剂干扰具有在线柱切换阀,运行完毕后自动将柱子锁死,防止柱子变干具备干净溶剂回收功能,保护环境,节约溶剂灵活多变的净化程序适合多种应用,定时、分段、判峰、判电压等六种收集模式可自由编辑具有满环及任意体积定量进样方式,多种规格注射可选多种规格定量环可选高精度双柱塞输液泵泵的性能指标体现了仪器系统的整体性能,关系到整套系统的使用寿命。性能良好的双柱塞串联输液泵能有效保证系统的稳定性及可靠性,对于回收率的重现性具有重要作用,避免了廉价单柱塞输液泵的流量及压力不稳情况。并配有隔膜阻尼器,进一步减小流动相脉动。全自动液体处理器自动液体处理器具有自动进样和自动收集功能。承载样品量大、性能稳定,支持多种规格样品瓶,XYZ三维运动模式,可搭载四个样品盘,任意组合设置进样和收集位置,多种盘架组合及多种规格样品瓶可选,满足实验需求;隔膜穿刺功能及进样针追随液面功能,有效降低样品交叉污染及挥发,进样针采用浸入式清洗,内外壁清洗最大程度减少交叉污染。机械臂不受外力干扰,全自动校准位置;可选配样品盘冷却装置,减少样品挥发。专利不锈钢凝胶净化柱凝胶净化柱的好坏直接关系到样品净化的好坏,众多标准方法中规定使用柱填料为Bio-beads S-X3凝胶,粒径为200-400目,根据样品基质不同,填充溶剂分为二氯甲烷和1:1乙酸乙酯:环己烷等溶剂。参考US EPA SW-845(方法3640A)净化能力验证,凝胶净化柱需要70g Bio-beads S-X3凝胶填料填充,同时分离校准溶液玉米油、邻苯二甲酸酯、甲氧滴滴涕、二萘嵌苯及硫,其色谱峰分离度应为85%以上。 传统净化方法通常选用玻璃净化柱,净化一个样品所需溶剂大于400ml,耗时大于一个小时。同时,优于采用大的玻璃柱,在凝胶装柱时不能采用较大压力,只能在重力作用或者低气压下慢慢装柱,导致装柱过程缓慢,装柱效率低,凝胶柱的重现性差。实验过程中样品流出曲线不固定,受实验条件、人员等外在因素影响交大,实验结果平行性和重现性相对较差。 LabTech不锈钢凝胶净化柱,采用中压一次成型技术进行装填。该种净化柱能彻底解决以上传统玻璃柱带来的诸多问题,具有净化速度快,柱效高,柱间平行性好,较小规格即可满足实验需求,极大的节省试验时间和有机溶剂等优点。采用此种净化柱,分离EPA校准溶液仅需22分钟,大大缩短了样品处理时间,节省溶剂。在食品检测、农产品检测、粮油及环境检测等应用领域显现突出优势。 显著优势:推荐用户使用专利不锈钢净化柱,耐压性能强,安全可靠采用中压匀浆法机械装柱,净化柱一次成型,批次重现性好,利于方法固定净化效率高,节省大量时间和溶剂,提高工作效率填充无需人工参与,减少有机溶剂对实验员的伤害受外界因素干扰少,通用接口,使用简单内置过滤片,有效降低杂质对净化柱的干扰,可自行更换,延长使用寿命杜绝传统玻璃净化柱受压塌陷,需调整柱长的问题多种规格不锈钢净化柱及玻璃净化柱可选,玻璃净化柱具有螺旋口设计,方便调整柱长创新点:1、采用完全上样模式,上样体积位0.1-10mL2、收集平台可靠扩展,最多扩展到4个收集平台3、样品通量大,最多可支持130位样品连续凝胶净化,无需其他手动操作4、上样和收集平台适配多种体积的样品瓶,软件开放,可根据不同的瓶子设计上样架和收集架,满足不同客户的需求5、采用高效不锈钢凝胶净化柱,在满足方法要求的前提下,缩短收集时间,减少溶剂浪费GPC 1000全自动凝胶净化系统
  • 天设发布全自动焦炭反应性制样系统BM100新品
    A6-BM100全自动焦炭制球机我公司研发的全自动焦炭颗粒制球机实现了自动化、机械化制球,出球效率高,无人为干预,对于该种设备所制试样,完全符合国家标准GB/T4000-2017焦炭反应性及反应后强度测定试样要求。1、特点能将不规则大块焦炭直接制成适用于焦炭反应性及反应后强度试验的球形焦炭。设备采用PLC控制技术和液晶屏显示操作模式,配合全中文操作按钮,能轻松完成制样工作。焦炭制样系统一体机能快速完成制样,并集制样、磨样、筛分与一体,设计有外接除尘口,可完全清除试验过程中的焦炭粉末。该设备具有成品率高、使用便捷、省时省力环保安全、制样速度快等优点。此设备“集破碎、制球、磨球、筛分、除尘于一体,就是此设备只需要一套系统设备组成,只需一个操作步骤, 能“一键快速完成焦炭反应性试样制备”,焦炭制样时只需按启动按钮,将取来的大块焦炭倒进进料口,操作员工可去作别的工作,无需看守,到试样制好后自动停机,操作便捷、省时省力环保安全、制样速度快。在制样过程中,没有人为接触试样,排除了在制样过程中人为误差,作假等人为因素的影响,从而保证了焦炭试样的真实可靠性。2、工作原理该设备有三组活动切刀、带圆孔的切刀仓、振动装置、筛分装置和控制单元组成,并设计有断相与相序保护、热过载保护。采用冲击切样原理,设备切刀在电机带动下高速旋转,使焦炭在切刀仑内不断被切割、摩擦将大块焦炭直接制成表面平整的球形焦炭,碎焦炭和球形焦炭通过切刀仓壁的孔落在下面的两层筛板上,该筛板装有振动装置,始终处于振动状态,经过筛分后碎焦炭和球形焦炭会自动落入不同的试样框内。3、技术指标项目参数进料粒度<100mm装料重量﹥5kg出料粒度23-25mm最终出料比例10公斤焦炭满足要求的试样1.5千克电压三相五线380V总功率约5.85kW 创新点:制球自动化程度高,出球效率高,噪音低全自动焦炭反应性制样系统BM100
  • LabTech推出全自动四联机样品前处理系统工作平台
    莱伯泰科经过多年在样品前处理领域的大力开拓,再次推出全新概念样品前处理产品:全自动样品前处理四联机系统工作平台,平台由四部分组成(预浓缩-GPC净化-浓缩-SPE分离),可连续和自动工作,可同时处理多达120个样品。 样品前处理过程是一个非常耗时,繁琐且容易引入分析测定误差的过程。随着科学技术的进步,分析技术和分析仪器不断发展,对分析的灵敏度、精密度和自动化程度要求越来越高,而耗时、费力和效率低的样品前处理已成为整个分析过程的瓶颈。 针对这种市场需求,我们公司推出样品前处理四联机整体解决方案,使用该套系统,只需将提取液放置在液体处理器上,即可全自动实现样品预浓缩-GPC净化-浓缩-SPE一体化处理过程。 整个过程无需人为干预,极大的简化了样品前处理的繁琐过程,同时系统密闭环保。技术特点:&bull 该套系统可全自动完成样品预浓缩-GPC净化-浓缩-SPE四联机过程。&bull GPC凝胶净化系统采用双柱塞串联输液泵,可变波长紫外检测器,高效不锈钢凝胶净化柱,具有性能可靠,净化效率高等优点。&bull 浓缩系统采用真空-氮吹-加热三位一体浓缩方式,可实现温和条件下快速浓缩。&bull SPE采用正压萃取模式,独特的低压密封技术,保证固相萃取各步骤间无溶剂混合,流速稳定,回收率可靠。&bull 全自动液体处理器采用XYZ三维处理模式,具有隔垫穿刺功能。&bull 整套系统全密闭。 该套系统各部分性能优越,整体性能稳定可靠,既可单独使用,也可在线联用,**限度满足不同实验室的使用需求。 LabTech 致力于为广大全球实验室用户提供先进的样品前处理设备,一如既往实现我们的口号:Your Lab ,Our Tech,让分析工作者工作更安全、更环保、更容易、更方便、更自动。
  • 发布全自动反应控制系统新品
    传统化学反应的挑战: 1. 操作步骤由手工记录,时间久了过程容易遗漏,或者数据不清晰; 2. 不一致的控制,比如循环液需要手动输入,操作需要计时,还要核对记录册,繁琐且没有存根; 3. 很多手工动作,比如到一定时间的升温或者降温,使得操作者需要一直记住该时间,一旦犯错,可能会导致物料损坏,或者得率降低; 4. 由于反应的热量主要来自于加液反应产生,所以控制反应加液速度尤为重要。这使得操作者需要实时关注反应的加液速度和温度变化,使得操作者不能开多个反应,或者分心做别的工作。 5. 温度,加液体积,pH值等数据没有记录,这使得后续对反应的条件的改进失去依据。 6. 人员容易误操作,而且长期待在实验室闻刺鼻的气味,简直反人类。 这种污染人体的,有一些危险性的,最好的方式就是让机器自动化操作! 7. 人类的理想是,重复枯燥的工作交给机器去看,我们只要告诉机器如何去干。 最好是,可以坐在办公室吹着空调,计算着反应的步骤和物料添加质量,让反应自动进行,最多间隔几个小时看一眼,了解一下进展而已。 这一步已经可以实现! 最常规 玻璃夹套反应釜 滴加反应的模型: 常规步骤如下: 1. 先抽真空通氮气,可以反复多次; 2. 将循环液温度降低到某一温度,以反应液温度为准。 3. 保持在一定温度下,开始滴加某种反应液(或者固体反应料)。如果温度超过设定温度,那么加液速度则需要降低;如果温度低于某一温度,加液速度可以加快,具体幅度可以自行设置。当温度达到某个上限时,可以设置为加液速度极小。 4.如果需要,可以切换加入另一种反应液,设置基本同上。 5. 加液完成后,可以在某个温度下恒温一段时间; 6. 可以设置多段的恒温,以及恒温时间。 7. 可是实时显示当前的温度,并一直采集温度数据; 8. 可以显示当前已经加入的液体体积,并采集加液量数据。 创新点:(1)新品;(2)液体自动滴加,固体自动加料;全自动反应控制系统
  • 浙江泛泰仪器有限公司全自动进样器产品全面上市
    浙江泛泰仪器有限公司经过一年多的不断开发研制,全新一代全自动进样器FINEFAS-2100在2012年成功上市。并在上市之初就取得了骄人的销售成绩,并在市场上取得了普遍的认可。FINEFAS-2100全自动进样器适用于所有各主要机型的气象色谱,在重复性和精确度方面有很好的表现。独特的设计,升级便利。FINEFAS-2100目前拥有100位样品瓶的进样能力,可以实现同时对两个进样口进行进样操作。并拥有优先进样、手动进样等的灵活进样操作。FAS-2100目前有十种进样方法,其中物种是预定义方法,如:标准分流/不分流,标准柱上,粘稠样品,高纯样品,易挥发样品,这些方法是优化好的可以适用大多数具有共性的样品。自定义方法允许操作者编辑所有的方法参数。FINEFAS-2100是一款全自动多功能的专业的气相色谱液体进样器;采用大尺寸全触摸式友好人机交互界面,操作人性化;可直接从屏幕上监视进样器的实时运行情况进行;采用运行安全稳定的WCE操作系统构架、高精密进口步进电机及驱动,保证了样品分析的高稳定性、高精密性和高效性;兼容国内外多种型号气相色谱的控制信号,轻松实现从进样到数据采集的全过程自动控制;与传统手动进样模式相比,FINEFAS-2100有效地避免人为因素造成的时间上、进样量上的误差,同时又极大的提高了分析效率;FINEFAS-2100是辅助科研人员科学研究的一把利器。欢迎广大新老客户选购。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制