甲醚化双环醇双环醇杂质

仪器信息网甲醚化双环醇双环醇杂质专题为您提供2024年最新甲醚化双环醇双环醇杂质价格报价、厂家品牌的相关信息, 包括甲醚化双环醇双环醇杂质参数、型号等,不管是国产,还是进口品牌的甲醚化双环醇双环醇杂质您都可以在这里找到。 除此之外,仪器信息网还免费为您整合甲醚化双环醇双环醇杂质相关的耗材配件、试剂标物,还有甲醚化双环醇双环醇杂质相关的最新资讯、资料,以及甲醚化双环醇双环醇杂质相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

甲醚化双环醇双环醇杂质相关的资料

甲醚化双环醇双环醇杂质相关的论坛

  • 【求助】求成品二甲醚含量的分析方法,杂质主要有水分和甲醇

    用粗甲醇合成二甲醚,主要杂质有水分和甲醇,水分用卡尔费休做,甲醇用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]做,我担心用钢瓶取样分析甲醇不准确,因为[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]和液相中的甲醇含量应该是不一样的,怎样才能把甲醇分析准确?或者给提供一个完整的方法。谢谢大侠了

  • CATO独家 | 双氯芬酸钠杂质标准品

    CATO独家 | 双氯芬酸钠杂质标准品

    ◇双氯芬酸钠杂质在双氯芬酸钠的生产和储存过程中,可能会产生一些杂质,双氯芬酸钠的杂质有多种,包括但不限于以下几种:双氯芬酸钠杂质A:这是一种具有特定CAS号(15362-40-0)和分子式(C14H9Cl2NO2)的杂质。其分子量为278.13,密度为1.4±0.1 g/cm3,沸点为488.6±45.0°C at 760 mmhg,熔点为115-119°C;双氯芬酸钠杂质(1-(2,6-DICHLOROPHENYL)INDOLIN-2,3-DIONE):这是一种具有CAS号的杂质,其化学式为C14H7Cl2NO2。双氯芬酸钠的其他杂质:除了上述两种杂质外,双氯芬酸钠还可能存在其他杂质,如乙酰氯芬酸杂质、醋氯芬酸杂质等。CATO标准品提供的双氯芬酸钠全套的杂质,这些杂质对于药物的纯度和稳定性研究至关重要,也是药物研发过程中不可或缺的一部分。[img=,607,518]https://ng1.17img.cn/bbsfiles/images/2024/02/202402192056045756_8062_6381607_3.png!w607x518.jpg[/img]广州佳途科技股份有限公司深知药物研发与质量控制的重要性,CATO标准品厂家,提供双氯芬酸钠全套的杂质,为客户提供更加精准、可靠的分析标准品,助力药物研发事业的快速发展,以满足客户在药物研发和质量控制方面的需求。

甲醚化双环醇双环醇杂质相关的方案

  • 双环醇在3μm的ChromCore120C18上的分离(中国药典)
    采用纳谱分析ChromCore 120 C18色谱柱对双环醇中有效成分进行分离和检测, 主峰峰形良好, 周围无干扰杂峰, 该方法操作简单, 灵敏度高, 重复性好, 符合药典要求, 可用于双环醇中有效成分的分离和测定, 为该药物的质量保证提供检测依据。
  • 在线二维-双三元分析功能饮料中的肌醇
    肌醇又称环己六醇,是一种水溶性维生素,可促进肝脏及其他组织中的脂肪代谢。肌醇作为一种营养加强剂,在很多的保健食品及一些婴儿食品中都有添加。当前国内外对肌醇的分析方法主要有,有微生物法、高碘酸法、光谱法、HPLC 法、离子分配色谱法和毛细管气相色谱法等。本方法采用双三元在线二维—液相色谱法可以实现功能饮料中肌醇的直接检测,避免了样品中的大量杂质干扰。水样只需简单过滤,即可进样。
  • 苯磺酸二甲双胍及其杂质的液相分析
    近日接到资生堂色谱柱用户的依赖实验,希望提供能够把羟苯磺酸、二甲双胍以及杂质三者同时保留的液相分析方法。 在考虑到二甲双胍使用SCX色谱柱分析的前提下,我们使用了资生堂CAPCELL PAK CR 1:4 S5 4.6mm i.d.×150mm色谱柱,在pH为2的酸性缓冲盐条件下,尝试对苯磺酸二甲双胍进行分析,结果客户所关注的杂质峰在较强酸性流动相下依然未能得到保留。 之后,我们又尝试使用资生堂高表面极性CAPCELL PAK ADME S5 4.6mm i.d.×250mm色谱柱,同样在酸性缓冲盐条件下进行分析,多方调整盐浓度后,得到图2结果。在反相机理下,二甲双胍和羟苯磺酸二者出峰顺序翻转,同时所关注的杂质得到保留。 综上所述,使用CAPCELL PAK ADME S5 4.6mm i.d.×250mm色谱柱可得到羟苯磺酸、二甲双胍以及杂质三者的同时保留,完成实验目标。

甲醚化双环醇双环醇杂质相关的资讯

  • 【ISCO】手动与自动化 Flash 色谱法: 合成(2S-3S)-环氧香叶醇的纯化
    01 摘要通过使用手性催化剂对烯丙醇香叶醇进行环氧化反应,可以通过夏普莱斯不对称合成法选择性地制备出(2S,3S)-环氧香叶醇。合成后的(2S,3S)-环氧香叶醇通过自动化 Flash 色谱法和手动玻璃柱色谱法进行了纯化。为了确定哪种纯化方法对化学家在专业和教学环境中更有益处,我们对每种纯化方法的成功率、效率、质量和经济性进行了分析和比较。结果发现,使用 Teledyne ISCO CombiFlash NextGen 300+ 系统的自动化色谱法在成功率、效率和成本效益方面均优于传统的手动玻璃柱色谱法。02 背景 Flash 色谱法通常作为本科生实验室实验的一部分而被广泛使用。在研究生研究中,由于需要对合成化合物进行纯化,它也是常规使用的技术。Flash 色谱法是一种简单、低成本的色谱技术入门方法,它在纯化化合物方面非常有效。 开放柱的优点开放柱的缺点 尽管自动化 Flash 色谱系统的出现,开放柱在大学中仍然非常流行。它们的初始资金成本很低,因此可以同时使用多个。它们还提供了一种直观的感受,展示了 Flash 色谱是如何进行的。 开放柱由易碎的玻璃制成,一旦破损,需要清理尖锐的碎片和松散的硅胶。在实验结束时,需要对玻璃柱进行填充和拆卸,这会使学生们接触到硅胶粉尘、溶剂以及柱子上残留的任何化合物。开放柱只能使用等度或阶梯梯度。柱子运行需要更多时间,并且需要持续监控,管理溶剂和组分。由于缺乏任何检测器,需要大量的 TLC 板来识别感兴趣的组分。 自动化 Flash 柱的优点自动化 Flash 柱的缺点自动化 Flash 柱是自成一体的,因此在实验完成后,不会接触到硅胶或柱子上残留的任何产品或溶剂。这些柱子填充得当,提高了分辨率,减少了共洗脱峰的可能性。尽管这些柱子是用塑料包装的,但由于检测器可以显示哪些组分应该合并,而不是使用薄层色谱(TLC)板来观察化合物何时被洗脱,因此减少了固体废物。自动化系统允许对梯度进行实验(以梯度冲洗进行纯化测试),并且比开放柱更好地展示了梯度改变与分辨率之间的关系。由于无需填充或清洁柱子,而且纯化过程更快,所以在给定时间内可以处理更多样本,开放柱可同时运行的优势因此被抵消了。 自动化系统的主要缺点是 Flash 色谱设备的初始投资较高,因此与开放的玻璃柱相比,可用的色谱系统数量更少。此外,还需要持续投资预装填的柱子,以及与设备相关的任何维护成本。 03 结果与讨论测试编号 手动(管柱)纯化回收率或产率(%)自动(管柱)纯化回收率或产率(%)#429.0452.85#549.7356.14产率和时间分析成功合成了(2S,3S)-环氧香叶醇,并通过手动与自动化 Flash 色谱法进行了纯化。为了评估两种方法的优劣,我们对比了它们的成功率、效率、产物质量和成本。 通过分析产率,我们发现自动化纯化的产率较高,实验显示分别为 52.85% 和 56.14%,而手动纯化产率仅为 29.04% 和 49.73%。自动化纯化使用预装填柱,紧实充填的硅胶提高了分离效率,减少了样品在柱中的停留时间,避免了环氧环的潜在不稳定。 从纯化质量来看,自动化纯化也表现更佳。NMR 谱图显示,自动化纯化的产物杂质和溶剂残留较少。尽管两种方法都去除了大部分杂质,但自动化技术在纯化效果上更为出色。 在时间效率方面,自动化纯化显著优于手动纯化。自动化过程仅需 26 分钟,而手动纯化需 135 分钟,大大节省了时间和劳力,并减少了操作错误的风险。自动化系统还提供用户友好的操作界面,减少了人为错误并提高了重现性。 经济效益分析表明,自动化纯化的总成本低于手动纯化,为教学实验室提供了一种经济有效的解决方案。此外,自动化纯化减少了对环境的负担,使用了更少的一次性材料,更易于处理废物,并且更安全,因为操作人员无需直接接触硅胶。 综上所述,自动化 Flash 色谱法不仅提高了纯化效率和产物质量,而且更加经济和环保,是化学家们在专业及教育环境中的理想选择。 04 经济分析 平均来说,每个手动玻璃柱纯化所需的材料如表 1-3 所示,用量一致。而自动 Flash 色谱纯化的溶剂用量则根据所选参数和柱子大小(在本例中为 12 克和 4 克柱子)而定。以下是每次纯化所用的材料和溶剂详情。需要注意的是,初始需要的可重复使用设备未包含在价格明细和比较中,如手动纯化用的玻璃器皿和自动纯化用的 Teledyne ISCO CombiFlash NextGen 300+,未包含在价格明细和比较中。 以下比较中使用的化学产品供应商是 Sigma Aldrich;因此,列出的所有价格都基于这家供应商。 表 1:一次手动玻璃柱纯化所用材料的价格细目Materials UsedPrice per quantity used (£ ) 70% hexane/30% EtOAc (600 mL)49.59230-400 mesh Silica Gel (100 g)10.90Dust mask2.37Sand (5 g)0.39TLC plates (7 total)11.48Pipette tips (26 total)0.39KMnO4 (100 mL) (TLC plate detection)4.39一次纯化的总材料成本:79.51£ 表 2:使用 4 克柱进行一次自动 Flash 纯化所用材料的价格细目Materials UsedPrice per quantity used (£ ) Hexane (100 mL)9.80EtOAc (100 mL)4.694 g RediSep Gold silica column5.00Hexane chaser (1 mL)0.0981 mL Syringe (2 total)0.22一次纯化的总材料成本:19.81£ 表3:使用12克柱进行一次自动 Flash 纯化所用材料的价格细目Materials UsedPrice per quantity used(£ )Hexane (300 mL)29.40EtOAc (200 mL)9.3812 g RediSep Gold silica column500Hexane chaser (3 mL)0.291 mL Syringe (1 total)0.1110 mL Syringe (1 total)0.52一次纯化的总材料成本:44.70£ 05 实验步骤 将粉末状分子筛(0.28克)和无水二氯甲烷(15毫升)一起加入并混合,同时冷却至 -10°C。然后在前述混合物中加入 L-(+)-二乙基酒石酸酯(0.13毫升)和钛(IV)异丙醇盐(0.15毫升),随后再加入叔丁基氢氧化物的癸烷溶液(5.5 M,约3毫升)。混合物在 -10°C 下搅拌 10 分钟,然后冷却至 -20°C。将香叶醇(1.54克)溶解在无水二氯甲烷(1毫升)中,并确保温度不超过 -15°C 的情况下加入到混合物中。加入后,混合物在 -15 至 -20°C 下搅拌 60 分钟。然后将混合物升温至 0°C,并加入水(3毫升)。当溶液升温至室温时,加入饱和氯化钠的氢氧化钠溶液(30%,0.7毫升)。混合物搅拌 10 分钟。然后用二氯甲烷(2 × 10毫升)萃取水层。合并的有机层用 MgSO4 干燥,并在减压下浓缩以得到粗制的(2S,3S)-环氧香叶醇。 表4:实验 4(使用4克柱)的固定参数项目所用参数 Wavelengths254 nm (red)280 nm (purple)Mobile phasesSolvent A: HexaneSolvent B: Ethyl acetateFlow Rate13 mL/minEquilibration Volume7.0 CVGradient% Solvent B0.00.0100.0100.0100.0MinuteInitial0.510.03.52.8Run Length11.4 min, not includingequilibration timeNotesELSD used表5:实验 5(使用12克柱)的固定参数项目所用参数Wavelengths254 nm (red)280 nm (purple)Mobile phasesSolvent A: HexaneSolvent B: Ethyl acetateFlow Rate30 mL/minEquilibration Volume6.0 CVGradient% Solvent B0.00.0100.0100.0MinuteInitial0.510.03.5Run Length8.3 min, not includingequilibration timeNotesELSD used 06 结论 通过手动和自动 Flash 色谱法纯化了合成的(2S-3S)-环氧香叶醇。研究发现,与手动纯化相比,自动 Flash 纯化在纯化合成的粗产品方面更为成功,因为它能从产品中去除更多的杂质和残留溶剂峰。这一点通过分析获得的 NMR 光谱得以证实。此外,通过分析获得的产量比较了每种纯化技术的效率。结果表明,自动纯化的产量更高。此外,自动柱纯化比手动柱纯化耗时少得多,从而蕞大化了实验室的时间利用。这消除了采用手动玻璃柱纯化所需的劳动力投入,并避免了可能发生的高风险错误。与自动纯化相比,手动纯化成本更高、对环境更不友好,并且对用户的危险更大。因此,可以得出结论,自动纯化仪器(如Teledyne ISCO CombiFlash NextGen 300+)是一项值得投资的设备,因为它效率更高,能更成功地纯化合成产品,并且是一种更经济、对环境更有意识的投资。这一结论适用于专业环境中的化学家,如研究或工业领域,以及本科化学教学设施中的化学家。07 补充信息 实验4 手动纯化使用的粗产品 = 1.000 g获得的纯手动纯化产品 = 0.2933 g产率 = 0.2933/1.000 × 100 = 29.33 %自动纯化使用的粗产品 = 0.4 g获得的纯自动纯化产品 = 0.2114 g产率 = 0.2114/0.4 × 100 = 52.85 % 实验5 手动纯化使用的粗产品 = 1.0441 g获得的纯手动纯化产品 = 0.2855 g产率 = 0.2855/1.0441 × 100 = 49.73 %自动纯化使用的粗产品 = 1.0 g获得的纯自动纯化产品 = 0.5614 g产率 = 0.5614/1.000 × 100 = 56.14 % 自动 Flash 管柱纯化结果:实验4(上图,4克柱)和实验5(下图,12克柱)参考文献1. Purification of Delicate Compounds with RediSep Gold Diol and Cyano Columns Retrieved 19 Nov 2021
  • 又是杂质?岛津药物杂质综合分析方案来了!
    导读NDMA杂质超标下架雷尼替丁?因叠氮杂质召回厄贝沙坦?包材有溶剂残留导致生产企业被监管部门处罚数万元?药用辅料不当导致患者死亡?近几年连续发生多起因药物含有不合规杂质,而被要求市场召回的案例。因药物杂质超标而导致不合格问题,时刻触碰着分析行业老师们的神经:又是杂质?不同杂质参照哪种法规进行检测?杂质如何控制限度?使用哪种仪器进行检测?有没有成熟的方案可参考?药物杂质种类多:包括有机杂质、无机杂质、残留溶剂,涉及到仪器种类广、分析方法和前处理技术复杂多样。今天,我们带来了岛津药物杂质综合分析方案《药物杂质分析综合应用文集》,涵盖色谱、质谱、光谱产品仪器方面的杂质分析案例,快来一起随小编看看吧。药物杂质分析法规指南药物杂质一直是药品研发生产中风险控制的重要内容,药物杂质影响到药物的质量和临床疗效。人用药品注册技术要求国际协调会(ICH)按照杂质理化性质将其分为三大类:有机杂质、无机杂质及残留溶剂。不同杂质参考法规不同,具体如下表所示。杂质类型及法规参考依据《药物杂质分析综合应用文集》密切关注相关药典、法规、标准的更新和发布,聚焦时事热点,如沙坦类物质中亚硝胺类基因毒性杂质事件、溶剂残留检测要求、元素杂质分析国际标准等。针对药物杂质不同理化性质,开发契合标准和法规的药物杂质分析应用报告。形成一份包含多种类型杂质分析的综合应用文集,为相关科研和分析工作人员提供一定的参考。更多应用详情,请关注岛津官网,下载《药物杂质分析综合应用文集 》。典型案例分享案例分享1在线体积排阻反相液相色谱-飞行时间质谱鉴定注射用头孢哌酮钠舒巴坦钠中聚合物杂质建立在线体积排阻-反相液相色谱-飞行时间质谱法(SEC-RPLC-QTOFMS)用于注射用头孢哌酮钠舒巴坦钠中的聚合物杂质的鉴定。一维采用SEC分离条件,将头孢哌酮和聚合物杂质进行分离,分离所得聚合物杂质通过中心切割技术收集到二维RPLC中脱盐和进一步分离,采用Q-TOF为检测器,采集分离所得杂质一级和二级质谱信息后对其进行结构鉴定。推测出9个杂质的结构,其中有4个为闭环二聚物。二维SEC-RPLC-QTOFMS杂质鉴定系统流路图头孢哌酮聚合物峰液相色谱图及空白溶剂二维色谱图案例分享2超临界流体色谱系统在原料药杂质分析中的应用二乙酰鸟嘌呤是重要的医药中间体,杂质检测是其质量控制的关键。该化合物在常用溶剂中溶解性差,并且遇水分解,使得常规的RP-HPLC分析不能实现。使用的岛津Nexera UC SFC-UV系统,对药物中间体二乙酰鸟嘌呤中的杂质进行分析,有效避免使用反相色谱分析中该药物不稳定遇水分解的可能,并且SFC系统分析速度快、重现性好、灵敏度高。甲醇和乙醇作为改性剂时分离效果对比(检测波长:264 nm)1.OD-H-甲醇,2.OD-H-乙醇,3.SFC-A-甲醇,4.SFC-A-乙醇案例分享3电感耦合等离子体质谱法测定喷雾剂中的元素杂质含量参考美国药典USP232对元素杂质的限量要求及USP233对元素杂质的测定方法,利用电感耦合等离子体质谱法(ICP-MS)测定了吸附给药样品中的重金属元素和其它元素杂质的含量。结果全符合USP233规定每种目标元素的线性、加标回收率的要求,该方法操作简便、快速,样品前处理简单,可以满足美国药典对口服药中杂质元素限量值的测定要求。样品分析结果及加标回收率《药物杂质分析综合应用文集》目录有机杂质分析1、工艺及降解杂质高效液相色谱法分析盐酸多西环素中的有关物质高效液相色谱法结合Co-injection功能测定双氯芬酸钠肠溶片有关物质采用加校正因子主成分自身对照法测定马来酸依那普利片有关物质二维液相色谱法用于碘帕醇对映异构体杂质的定量分析液相色谱-四极杆飞行时间质谱联用分析头孢替唑钠及其杂质在线体积排阻反相液相色谱-飞行时间质谱鉴定注射用头孢哌酮钠舒巴坦钠中2、聚合物杂质在线二维液相色谱-四极杆飞行时间质谱法鉴定盐酸氟西汀的杂质超临界流体色谱系统在原料药杂质分析中的应用3、遗传毒性杂质三重四极杆气质联用法同时测定药品中八种磺酸酯类基因毒性杂质三重四极杆气质联用法测定沙坦类药物中六种N-亚硝胺含量高效液相色谱应用于沙坦类原料药中NDMA和NDEA的检测三重四极杆液质联用法检测缬沙坦原料药中六种亚硝胺类杂质厄贝沙坦原料中叠氮类遗传毒性杂质AZBC的分析厄贝沙坦原料中叠氮基遗传毒性杂质MB-X的分析三重四极杆气质联用法测定丁酸氯维地平中基因毒性杂质丁酸氯甲酯和2,3-二氯苯甲醛含量三重四极杆液质联用系统测定甲磺酸伊马替尼中芳香胺类遗传毒性杂质含量药品中无机(元素)杂质分析ICH Q3D X-射线荧光光谱法分析原料药的元素杂质电感耦合等离子体光谱法测定原料药样品中的元素杂质含量利用电感耦合等离子体质谱测定药物中间体中Pd催化剂残留量电感耦合等离子体质谱法测定喷雾剂中的元素杂质含量利用电感耦合等离子体质谱测定葡萄糖注射液中重金属元素含量残留溶剂检测气相色谱结合顶空进样器测定药品中微量环氧氯丙烷残留顶空-气相色谱法测定化学药品中三种溶剂残留气相色谱法测定药用辅料聚山梨酯80中六种杂质含量气质联用仪结合顶空进样器测定药品中溶剂残留顶空-气质联用法测定药物中水合肼含量了解更多应用,敬请下载《药物杂质分析综合应用文集》撰稿人:孟海涛本文内容非商业广告,仅供专业人士参考。
  • “双碳”目标下再看太阳能光伏电池—硅料、硅片杂质元素分析技术
    材料是社会进步的重要物质条件,半导体产业近年来已成为材料产业中备受瞩目的焦点。从沙子到晶片直至元器件的制造和创新,都需要应用不同的表征与检测方法去了解其特殊的物理化学性能,从而为生产工艺的改进提供科学依据。仪器信息网策划了“半导体检测”专题,特别邀请到布鲁克光谱中国区总经理赵跃就此专题发表看法。布鲁克光谱中国区总经理 赵跃赵跃先生拥有超过20年科学分析仪器领域丰富的从业经历,先后服务于四家跨国企业,对于科学分析仪器以及材料研发行业具有深刻理解,促进了快速引进国外先进技术服务于中国的科研创新和产业升级。2020年9月,习近平主席在第75届联合国大会上,明确提出中国力争在2030年前实现“碳达峰”,2060年前实现“碳中和”的目标。“双碳”目标的直接指向是改变能源结构,即从主要依靠化石能源的能源体系,向零碳的风力、光伏和水电转换。加快能源结构调整,大力发展光伏等新能源是实现“碳达峰、碳中和”目标的必然选择。目前,光伏产业已成为我国少有的形成国际竞争优势、并有望率先成为高质量发展典范的战略性新兴产业,也是推动我国能源变革的重要引擎。太阳能光伏是通过光生伏特效应直接利用太阳能的绿色能源技术。2021年,全球晶硅光伏电池产能达到423.5GW,同比增长69.8%;总产量达到223.9GW,同比增长37%。中国大陆电池产能继续领跑全球,达到360.6GW,占全球产能的85.1%;总产量达到197.9GW,占全球总产量的88.4%。截止到2021年底,我国光伏装机量为3.1亿千瓦时。据全球能源互联网发展合作组织预测,到2030、2050、2060年我国光伏装机量将分别达到10、32.7、35.51亿千瓦时,到2060年光伏的装机量将是今天的10倍以上。从发电量来看,虽然其发电容量仍只占人类用电总量的很小一部分,不过,从2004年开始,接入电网的光伏发电量以年均60%的速度增长,是当前发展速度最快的能源。2021年我国光伏发电量3259亿千瓦时,同比增长25.1%,全年光伏发电量占总发电量比重达4%。预计到2030年,我国火力发电将从目前的49%下降至28%,光伏发电将上升至27%。预计2030年之后,光伏将超越火电成为所有能源发电中最重要的能源,光伏新能源作为一种可持续能源替代方式,经过几十年发展已经形成相对成熟且有竞争力的产业链。在整个光伏产业链中,上游以晶体硅原料的采集和硅棒、硅锭、硅片的加工制作为主;产业链中游是光伏电池和光伏组件的制作,包括电池片、封装EVA胶膜、玻璃、背板、接线盒、逆变器、太阳能边框及其组合而成的太阳能电池组件、安装系统支架;产业链下游则是光伏电站系统的集成和运营。硅料是光伏行业中最上游的产业,是光伏电池组件所使用硅片的原材料,其市场占有率在90%以上,而且在今后相当长一段时期也依然是光伏电池的主流材料。在2011年以前,多晶硅料制备技术一直掌握在美、德、日、韩等国外厂商手中,国内企业主要依赖进口。近几年随着国内多晶硅料厂商在技术及工艺上取得突破,国外厂商对多晶硅料的垄断局面被打破。我国多晶硅料生产能力不断提高,综合能耗不断下降,生产管理和成本控制已达全球领先水平。2021年,全球多晶硅总产量64.2万吨,其中中国多晶硅产量50.5万吨,约占全球总产品的79%。全球前十硅料生产企业中中国有7家,世界多晶硅料生产中心已移至中国,我国多晶硅料自给率大幅提升。与此同时,在多晶硅直接下游硅片生产中,因单晶硅片纯度更高,转化效率更高, 消费占比也不断走高,至 2020 年,单晶硅片占比已达 90%的水平。用于光伏生产的太阳能级多晶硅料一般纯度在6N~9N之间。无论对于上游的硅料生产,还是单晶硅片、多晶硅片生产,硅中氧含量、碳含量、III族、V族施主、受主元素含量、氮含量测量是硅材料界非常重要的课题,直接影响硅片电学性能。故准确测试上游硅料、单晶硅片中相应杂质元素含量显得尤为必要、重要。在过去的十几年中,ASTM International(前身为美国材料与试验协会)已经对上述杂质元素的定量分析方法提出了国际普遍通行的标准,其中,分子振动光谱学方法因其相对低廉的设备成本、快速、无损、高灵敏度的测试过程,以及较低的检测下限,倍受业内从事品质控制的机构和组织的青睐。值得一提的是,我国也在近几年陆续制定和出台了多个以分子振动光谱学为品控方法的相关行业标准 (见附录)。这标志着我国硅料生产与品控规范进入了更成熟、更完善、更科学、更自主的新阶段。德国布鲁克集团,作为分子振动光谱仪器领域的领军企业,几十年来坚持为工业生产和科学研究提供先进方法学的助力。由布鲁克光谱(Bruker Optics)研发制造的CryoSAS全自动、高灵敏度低温硅分析系统,基于傅立叶变换红外光谱技术,专为工业环境使用而设计。顺应ASTM及我国相关标准中的测试要求,此系统可以室温和低温下(<15K)工作,通过测试中/远红外波段(1250-250cm-1)硅单晶红外吸收光谱(此波段红外吸光光谱涵盖了硅晶体中间隙氧,代位碳,III-V族施主、受主元素以及氮氧复合体吸收谱带。),可以直接或间接计算出相应杂质元素含量值。检测下限可低至ppta(施主,受主杂质)和ppba量级(代位碳,间隙氧),很好地满足了上游硅料品控的要求,为中游光伏电池和光伏组件的制作打下了扎实的原料品质基础。随着硅晶原料产能的逐年提高,布鲁克公司的 CryoSAS仪器作为光伏产业链上游的重要品控工具之一,已在全球硅料制造业中达到了极高的保有量。随着需求的提升,电子级硅的生产需求也在持续增加。布鲁克公司红外光谱技术也有成熟的方案和设备,目前国内已有多个用户采用并取得了良好的效果。低温下(~12 K),硅中碳测试结果(上图),硅中硼、磷测试结果(下图)附录:产品国家标准:《GB/T 25074 太阳能级多晶硅》《GB/T 25076 太阳能电池用硅单晶》测试方法国家标准:《GB/T 1557 硅晶体中间隙氧含量的红外吸收测量方法》《GB/T 1558 硅中代位碳原子含量红外吸收测量方法》《GB/T 35306 硅单晶中碳、氧含量的测定 低温傅立叶变换红外光谱法》《GB/T 24581 硅单晶中III、V族杂质含量的测定 低温傅立叶变换红外光谱法》(布鲁克光谱 供稿)

甲醚化双环醇双环醇杂质相关的仪器

  • SD-1 纯化系统 400-629-8889
    Agilent SD-1 纯化系统在无可比拟的流速范围内具有公认的梯度准确度和重现性,是全球化学家和工艺工程师的首选系统。采用一套配置您即可进行筛选运行,并放大至克或数百克。标准系统非常适用于从 1 mL/min 放大到 200 mL/min,可轻松升级到 500 mL/min 流速。将 SD-1 溶剂输送模块与 Agilent 410 自动进样器、325 UV-Vis 双波长检测器和 440 馏分收集器组合使用,可纯化更复杂的样品。分析和制备应用均使用 OpenLAB CDS ChemStation 软件。产品特点:● 使用各种体积定量环进行手动进样或自动进样(最多 10 mL 样品体积)● 准确的流速控制、高压混合和独立的活塞控制实现了卓越的重现性● 带可更换泵头的精确溶剂输送(高达 200 mL/min、500 mL/min 或 800 mL/min),可以充分发挥出高效预装柱或 Agilent Load & Lock 柱的潜能● 双波长 UV-Vis 检测器配备独特的双光程流通池,动态范围比常规检测器高 40 倍● 精确、可重现的馏分收集,既可以日复一日地基于时间,也可以基于实时 UV 峰检测运算 — 带开床式 Agilent 440 馏分收集器● 易于使用的软件与液相色谱分析所熟知的 Agilent OpenLab CDS 软件配合使用,可对纯化过程进行无人值守地运行或交互式控制
    留言咨询
  • 关于岩征仪器双环戊二烯DCPD热解反应装置:环戊二烯(CPD)是C5馏分中主要的三个双烯烃之一,它含有一个双键和一个亚甲基,因此性质非常活泼,可进行聚合、氧化、加成、缩合和还原等系列反应,广泛应用于农药、塑料、石油树脂、合成橡胶、茂化合物以及新型高分子材料等方面。所以对环戊二烯,物别是较高纯度的环戊二烯需求不断增加,而环戊二烯的来源是离不开优质的二聚体双环戊二烯(DCPD)的。 环戊二烯在常温下可聚合成双环戊二烯,受热以后分解为环戊二烯,利用这一特点可以将环戊二烯从乙烯裂解的C5馏分中分离出来。而要获得环戊二烯可将分离出的双环戊二烯再进行分解即可。由于环戊二烯在常温下能自发地二聚为双环戊二烯,一般需在-20℃下贮存或即刻用掉,工业上以其稳定的双环戊二烯的形态贮存和运输,然而,化学反应总是利用单体(如果反应是在DCPD解聚为单体的温度下进行,则可以用双环戊二烯DCPD。)
    留言咨询
  • 液化气二甲醚分析专用气相色谱仪,微机控制,可调试液晶显示屏中文键盘操作,设定参数及操作非常方便,同类产品中首创断气保护及提示功能,六通阀气体进样,配备热导检测器,36种故障自我诊断功能,随时显示故障原因及处理方法。专用分析液化气中二甲醚的色谱柱,不仅可检测到液化气中二甲醚的含量,还可检测其它成分的含量,操作简单,使用方便。 主要技术指标:1. 柱箱温度:室温+5~400℃ 精度±0.1℃2. 热导检测器(TCD)①灵敏度:s≥3000mv.ml/mg(苯) ②基本漂移:满刻度的3%/h液化气中二甲醚分析技术方案一、方法原理 液化气分析包括液化气组分分析和液化气中二甲醚,甲醇分析,不包括炔烃,用带有热导检测器的气相色谱仪,由色谱柱将试样中各组分分离,面积归一法或校正面积归一法,外标法定量各组分百分含量。二、仪器成套性 1.气相色谱 (标准三厢主机): 热导检测器(TCD) 2.气源:氢气作载气,氢气纯度≥99.99%(氢气发生器) 3.数据处理:N2000双通道色谱工作站 4.进样器:六通阀,定量管1ml 5.色谱柱:¢3*6米液化气中二甲醚分析柱 6.取样器:采样袋2L 7.电脑:自备 三、液化气中二甲醚分析谱图:(¢3*6m) 液化气中二甲醚分析柱色谱分析条件色谱柱:¢3mm*6m不锈钢柱 桥 流:100mA柱 温:室温-45℃ 载 气:氢气检 测: 100℃ 流 速:30 ml/min(0.08MP)气 化: 100℃ 进样量:1ml(注射器进样)检测器:TCD
    留言咨询

甲醚化双环醇双环醇杂质相关的耗材

  • 特殊气体纯化管和杂质捕集管
    VICI Metronics气体纯化器 特殊气体纯化管和杂质捕集管◇安捷伦质谱和液质联用仪原装配备◇ 提供氦气、氢气、甲烷、氮气、二氧化碳和空气的纯化设备◇ 将气体的杂质降低至PPM和PPB级之间◇ 降低基线噪音、增加GC/MS的灵敏度◇一个纯化管能代替三个捕集管对于GC而言气体的纯化是至关重要的。几种类型的污染物如水、碳氢化合物和氧气都是非常有害的。VICI Metronics气体纯化产品被设计并安装在载气或检测器气源前端,能在杂质进入GC前将其去除。气体在优化的多层次结构中净化,每经过一个层次的净化,污染物都会有相应的降低,整个污染物在气体纯化器行进的越远,被净化的效果越好。与其他产品的纯化器相比,VICI Metronics能吸收更多的污染物,并能将污染物更好的去除。纯化器采用先进的材料和独特的工艺,可使得气瓶中99.995%的气体经过纯化,达到99.9999%色谱纯以上的等级,纯度提高一个数量级以上。而两种不同等级气体价格差异,远远高于使用气体纯化器的成本。 在气路系统中,所有连接都有漏气的可能,每增加一个连接,就多一分泄漏的可能性。使用VICI Metronics纯化管或捕集管(A),能尽可能地减少接头的数量,这一点区别于典型的多重系统(B)或多个化合物组份的捕集阱(C)。◇22.5"长 x 1.5"直径(在表中带*号的纯化器的长度为12")◇ 最大的入口压力为1000psi(6895kPa)◇ 推荐流速为500ml/min 特殊气体纯化管和杂质捕集管描述1/8"接头1/4"接头氦气纯化管P100-1P100-2氢气纯化管P200-1P200-2氮气纯化管P300-1P300-2LC/MS用氮气纯化管P310-1P310-2氮气发生器用纯化管P350-1P350-2空气纯化管P400-1P400-2甲烷纯化管*P500-1P500-2二氧化碳(气体)纯化器P600-1P600-2二氧化碳(液体)纯化器P700-1P700-2脱水管T100-1T100-2脱烃管T200-1T200-2脱氧管T300-1T300-2脱硫管*T400-1T400-2脱硫管T401-1T401-2脱汞管*T700-1T700-2* 长度为12"。 纯化结果PPB (基于50 ppm入口浓度水平)描述COCO2O2H2O含硫化合物非甲烷烃类氦气纯化管111113氢气纯化管111113空气纯化管———1—3甲烷纯化管111113氮气纯化管111113LC/MS用氮———252525气纯化管——————氮气发生器———252525用纯化管——————脱水管———1—脱烃管—————3脱氧管——11——脱硫管———11—
  • 2ML纯化柱核酸检测
    纯化柱填充了大量的玻璃纤维膜,这是基于玻璃光纤提取方法快速提取核酸的技术。可以被用来纯化在含有盐、溶剂、酶或蛋白等杂质中的单链或双链DNA或RNA。核酸在高盐浓度下吸附在玻璃纤维上,盐和杂质在清洗步骤中被清除。纯DNA / RNA用水或TE缓冲液从膜上洗涤下来 纯化柱填充了大量的玻璃纤维膜,这是基于玻璃光纤提取方法快速提取核酸的技术。可以被用来纯化在含有盐、溶剂、酶或蛋白等杂质中的单链或双链DNA或RNA。核酸在高盐浓度下吸附在 玻璃纤维上,盐和杂质在清洗步骤中被清除。纯DNA / RNA用水或TE缓冲液从膜上洗涤下来。 产品特征DNA / RNA的微型纯化柱与Qiagen和Invitrogen的缓冲液兼容结合能力为 45~50μg片段大小为65bp~10kbp缓冲液配方适用于质粒小量制备、凝胶萃取和PCR清除 产品用途PCR扩增产物的快速纯化从琼脂糖凝胶中恢复DNA链质粒DNA提取基因组DNA提取RNA纯化反应混合物中特定DNA 的分离 产品分类质粒DNA 2ml 数量100个/袋基因组DNA 2ml 数量100个/袋RNA 2ml 数量100个/袋
  • 邻氨基苯甲醚纯度分析 其他气相专用柱
    邻氨基苯甲醚纯度分析特点:检测邻氨基苯甲醚的纯度,对周边相关杂质分离效果好色谱柱:30m*0.32mm*0.5um柱温度:初始温度100℃ 保持6min 速率3℃ /min 升至120℃ 保持0min 速率10℃ /min 升至260℃ 保持8min进样器:300℃检测器:300℃其它条件:载气压力0.07MPa色谱柱货号:ZWG1-3305

甲醚化双环醇双环醇杂质相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制