当前位置: 仪器信息网 > 行业主题 > >

离子束刻蚀系统

仪器信息网离子束刻蚀系统专题为您提供2024年最新离子束刻蚀系统价格报价、厂家品牌的相关信息, 包括离子束刻蚀系统参数、型号等,不管是国产,还是进口品牌的离子束刻蚀系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合离子束刻蚀系统相关的耗材配件、试剂标物,还有离子束刻蚀系统相关的最新资讯、资料,以及离子束刻蚀系统相关的解决方案。

离子束刻蚀系统相关的论坛

  • 离子束切割制样技术的基本原理及其新应用

    离子束切割制样技术是近年来出现的新型、普适性的制样技术,具有应力小、污染少、定位准确、操作简单等特点,广泛应用在材料、生命、地质科学等领域。微课第一节介绍了离子束切割技术的原理、加工模式、工作特点。

  • 急!!四极杆粗细对束缚离子束的影响

    如题,四极杆直径的大小对束缚离子束质量的大小有什么影响。我看的文献上说直径越大,越不利于束缚大质量的离子束。那为什么我们实验室买的四极杆很粗,却能束缚大质量的离子束呢?

  • 【求助】关于离子减薄的离子束

    最近要买离子减薄仪,有些公司说他们的离子束是平行的,有些说是聚焦离子束,这两种有什么区别呢?难道只在减薄的效率上有区别吗?请大家指教!

  • FIB 聚焦离子束分析

    [b]FIB介绍[/b][font=inherit]聚焦离子束技术[/font](Focused Ion beam,FIB)是利用电透镜将离子束聚焦成非常小尺寸的离子束轰击材料表面,实现材料的剥离、沉积、注入、切割和改性。随着纳米科技的发展,纳米尺度制造业发展迅速,而纳米加工就是纳米制造业的核心部分,纳米加工的代表性方法就是聚焦离子束。近年来发展起来的[font=inherit]聚焦离子束技术[/font](FIB)利用高强度聚焦离子束对材料进行纳米加工,配合扫描电镜(SEM)等高倍数电子显微镜实时观察,成为了纳米级分析、制造的主要方法。目前已广泛应用于半导体集成电路修改、离子注入、切割和故障分析等。、[b]应用领域[/b](1)线路修改-在IC生产工艺中,发现微区电路蚀刻有错误,可利用FIB的切割,断开原来的电路,再使用定区域喷金,搭接到其他电路上,实现电路修改,最高精度可达5nm。(2)产品表面存在微纳米级缺陷,如异物、腐蚀、氧化等问题,需观察缺陷与基材的界面情况,利用FIB就可以准确定位切割,制备缺陷位置截面样品,再利用SEM观察界面情况。(3)微米级尺寸的样品,经过表面处理形成薄膜,需要观察薄膜的结构、与基材的结合程度,可利用FIB切割制样,再使用SEM观察。[align=center][img=FEI V400,227,227]http://www.zenh.com/wp-content/uploads/2017/05/%E5%9B%BE%E7%89%8711.png[/img]FEI V400[/align]使用设备:FEI V400可以针对14nm,16nm,28nm, 40nm, 45nm, 65nm, .13um, .18um, .25um, .35um 制程进行线路改造。适用的封装形式BGA, QFN, CSP, WLBGA, Die and board Level, 8” wafer, packaged “flip-chip”[table][tr][td=2,1,568]FIB典型照片[/td][/tr][tr][td=1,1,279]观测[/td][td=1,1,288]线路修改[/td][/tr][tr][td=1,1,279][img=,227,209]http://www.zenh.com/wp-content/uploads/2017/05/%E5%9B%BE%E7%89%8712.png[/img][/td][td=1,1,288][img=,240,218]http://www.zenh.com/wp-content/uploads/2017/05/%E5%9B%BE%E7%89%8713.png[/img][/td][/tr][tr][td=2,1,568]FIB配合TEM进行复杂操作[/td][/tr][tr][td=2,1,568] [img=,554,254]http://www.zenh.com/wp-content/uploads/2017/05/%E5%9B%BE%E7%89%8714.png[/img][/td][/tr][/table]文章引用自正衡检测官网欢迎各位莅临正衡检测网站讨论咨询[url]http://www.zenh.com/[/url]

  • 我国新一代“人造太阳”实验装置首获兆瓦级强流离子束

    新华社合肥1月14日电 记者14日从中科院合肥物质研究院了解到,我国新一代“人造太阳”实验装置EAST中性束注入系统(NBI)测试台近日在进行大功率离子束引出实验过程中,首次成功获得兆瓦级强流离子束。 负责这项研究工作的胡纯栋研究员介绍说,EAST中性束注入系统(NBI)测试台在实验过程中,成功获得束能量50千伏,束流22安培,束脉宽106毫秒的引出束流,离子束功率达到1.1兆瓦。测试结果圆满达到了EAST-NBI兆瓦级强流离子源研制的阶段性计划目标。这表明我国自主研制的第一台兆瓦级强流离子源以及大功率中性束注入器实验装置,完成了具有里程碑意义的阶段性实验成果。 据介绍,“EAST装置辅助加热系统”是国家“十二五”大科学工程,2010年7月正式立项,它是使EAST具有运行高参数等离子体的能力,从而可以开展与国际热核聚变反应堆密切相关的最前沿性研究的重要系统。其主要包括低杂波电流驱动系统、中性束注入系统这两大系统。 中性束注入系统广泛涉及等离子体物理、强流离子束、精密机械制造、高真空、低温制冷以及辐射防护等多学科技术领域。中科院合肥物质研究院NBI工程团队的科研人员2011年下半年,夜以继日地对基于NBI综合测试平台的强流离子源装置进行放电测试、老化锻炼、子系统联调等逐项实验,在首先获得离子源100秒长脉冲等离子体放电的基础上,终于首次达到了兆瓦级强流离子束研制的阶段性计划目标。 胡纯栋介绍,此次实验结果将为下一阶段长脉冲高能量的离子束调试打下坚实基础,并为EAST辅助加热系统最终目标——2至4兆瓦中性束注入系统的研制提供强有力的可靠支持。 中国是国际热核聚变实验堆(ITER计划)的参与国之一。EAST是由中国独立设计制造的世界首个全超导核聚变实验装置,2007年3月通过国家验收,并在近年来取得了一系列处于国际领先地位的实验成果。其科学目标是为ITER计划和中国未来独立设计建设运行核聚变堆奠定坚实的科学和技术基础。(记者 蔡敏)

  • 【求购】二手聚焦离子束(FIB)!

    国内(大陆)哪家公司或单位有二手最好是废弃的聚焦离子束(FIB)系统出售呢?单双束不限。使用年限不限。价钱越便宜越好。请发信给我afibers@gmail.com.非常感谢!

  • 离子束抛光仪推荐

    大家使用的离子束抛光仪是哪家的,有推荐么。目前用的品牌确实很烦心。我们所20年底安装了一台进口某知名品牌的离子束抛光仪,才使用两年多毛病不断,使用一年多就更换了一个平面旋转样品台(3万多,经沟通还好给免费更换),同类型的另一台也是用了没多久,也换了一台样品台;22年底设备又出现故障,经厂家排查需更换隔膜泵(感觉质量太差,工作十几年没遇到过,用两年就坏的),需要费用6万多,花费确实有点大;总共没正常使用多长时间。希望大家也引以为戒啊!

  • FIB 和 SEM+离子束抛光设备

    FIB用于截面观察的优势是能够对特定微区进行分析,但是缺点是观察区域较小,最大不超过10μm。用离子束抛光+SEM进行观察是不是在很大程度上可以替代FIB的功能呢。

  • MEMS湿法刻蚀和干法刻蚀的比较

    MEMS湿法刻蚀和干法刻蚀的比较

    湿法腐蚀是使用液态腐蚀剂系统化的有目的性的移除材料,在光刻掩膜涂覆后(一个曝光和显影过的光刻胶)或者一个硬掩膜(一个光刻过的抗腐蚀材料)后紧接该步腐蚀。这个腐蚀步骤之后,通常采用去离子水漂洗和随后的掩膜材料的移除工艺。http://ng1.17img.cn/bbsfiles/images/2016/12/201612130959_01_3091062_3.jpg干法刻蚀的刻蚀剂是等离子体,是利用等离子体和表面薄膜反应,形成挥发性物质,或直接轰击薄膜表面使之被腐蚀的工艺。http://www.whchip.com/upload/201612/1481592347583553.jpg湿法腐蚀可替换工艺包括干法刻蚀,即使用一种或多种低压力的反应气体,采用RF感应激励后进行反应,然后再将反应生成的气态物质抽出;非等离子干法刻蚀,例如双氟化疝或氢氟酸的酸性蒸气腐蚀,拥有各向同性湿法腐蚀的诸多特性,该腐蚀通常在一个有限的腔室内完成。很少有微机械化或集成化的器件是在没有进行一些湿法化学处理的情况下开发或制造的。不管器件是否是电气的,机械的,电子的,集成的,光学的,光电子学的,生物的,聚合的,微流控的传感器或执行器,有关这些器件的制造工艺或过程的替换决定将对最终的技术和商业成功有重要影响。这些器件通常在硅衬底、化合物半导体、玻璃、石英、陶瓷或塑性材料上制造,可能涉及在这些材料上淀积一层或多层薄膜并光刻和腐蚀。这些层和淀积顺序受工艺和用于开发和制造该器件的工艺单元限制,随着层数的增长变的越来越复杂和相互影响。 近乎所有IC,MEMS,MOEMS,MST和NEMS类的器件的产生都很可能与一些湿法腐蚀工艺有关。整个工艺流程可被描述为一系列步骤或者序列,这些湿法腐蚀常用于选择性的去除淀积薄膜的一部分,剥去诸如硬掩膜和光刻胶等特定的材料,为以后的加工清洗和准备衬底,去除牺牲层和部分衬底,以及形成三维结构。一个湿法腐蚀工序需要考虑如下一些因素,包括有效的腐蚀剂,腐蚀选择性,腐蚀速率,各向同性腐蚀,材料的兼容性,工艺的兼容性,花费,设备的可用性,操作人员的安全,技术支持和适当的废物处理。干法刻蚀能实现各向异性刻蚀,保证细小图形转移后的高保真性。器件设计者,工艺设计师,或者制造商在工艺允许的情况下可能偏向使用一个完整的干法处理流程,但是许多标准的处理步骤例如光刻胶的显影和圆片清洗仍然湿法的。与干法刻蚀相比,湿法腐蚀工序在成本,速度,性能发面更有优势。干法刻蚀的仿真还不可用,如常用的微结构的选择性钻蚀或与晶向相关的腐蚀仿真等。考虑到干法刻蚀要求在一个昂贵的等离子区或者RIE腐蚀系统里有长的腐蚀时间,湿法腐蚀变得特别有吸引力,需要同时处理整盒圆片(25片装圆片盒)或更多的圆片时,湿法腐蚀在成本和时间上的效益更突出。 不管选择干法还是湿法加工工艺,总是强烈受到在特定的加工环境下设备的可用性及对开发者有用的工艺限制。成功的设计者,开发者和制造商几乎总是使用或修改趁手的工艺。除非是必须开发新工艺,安装新设备,或者取得新的工艺技能,一般总是避免额外的需求。理解什么时候要应用干法和湿法这两个工艺并且在可能的情况下使用标准工艺是很重要的。下表总结比较湿法和干法刻蚀之间的一般注意事项。 http://ng1.17img.cn/bbsfiles/images/2016/12/201612130959_02_3091062_3.jpg

  • 扫描电镜聚焦离子束显微镜

    [font=mp-quote, -apple-system-font, BlinkMacSystemFont, &][size=17px][color=#353535]聚焦离子束显微镜FIB是将液态金属离子源产生的离子束经过离子枪加速,聚焦后照射于样品表面产生二次电子信号取得电子像,此功能与SEM相似,或用强电流离子束对表面原子进行剥离,以完成微、纳米级表面形貌加工。[/color][/size][/font][font=mp-quote, -apple-system-font, BlinkMacSystemFont, &][size=17px][color=#353535]服务内容:切点分析[/color][/size][/font][font=mp-quote, -apple-system-font, BlinkMacSystemFont, &][size=17px][color=#353535]FIB/SEM/EDX[/color][/size][/font][font=mp-quote, -apple-system-font, BlinkMacSystemFont, &][size=17px][color=#353535]服务内容:1.材料表面形貌分析,微区形貌观察 [/color][/size][/font][font=mp-quote, -apple-system-font, BlinkMacSystemFont, &][size=17px][color=#353535]2.材料形状、大小、表面、断面、粒径分布分析 [/color][/size][/font][font=mp-quote, -apple-system-font, BlinkMacSystemFont, &][size=17px][color=#353535]3.薄膜样品表面形貌观察、薄膜粗糙度及膜厚分析[/color][/size][/font][font=mp-quote, -apple-system-font, BlinkMacSystemFont, &][size=17px][color=#353535]4.纳米尺寸量测及标示[/color][/size][/font][font=mp-quote, -apple-system-font, BlinkMacSystemFont, &][size=17px][color=#353535]5.微区成分定性及定量分析[/color][/size][/font]

  • 【求助】等离子刻蚀参数对实验结果的影响

    各位做过等离子刻蚀的同行们: 我是一个新手,在刻蚀聚苯乙烯小球的时候自己设置了几个参数,但是具体每个参数对实验结果的影响还不是很清楚,先列出来Icp(w);RF(w);Pressure(mT)等。希望大家给予指点,不胜感激

  • 【原创大赛】聚焦离子束制备透射电镜样品的详细流程及参数

    【原创大赛】聚焦离子束制备透射电镜样品的详细流程及参数

    去年原创大赛发过[url=https://bbs.instrument.com.cn/topic/7004993]一篇文章[/url],以视频的形式展示了利用聚焦离子束(Focused Ion Beam, FIB)切割制备透射电镜(Transmission Electron Microscope, TEM)样品的整个流程。值此一周年之际,再发一篇图文版的文章,更详细的介绍各个步骤的参数,给大家作参考。[align=center][img=,690,304]https://ng1.17img.cn/bbsfiles/images/2018/10/201810312348388838_9210_2193245_3.jpg!w690x304.jpg[/img][/align][align=left][/align][align=left]论坛不太方便发表格数据,所以我在word里编辑好了,以截图的形式发出来。[/align][align=center][img=,690,448]https://ng1.17img.cn/bbsfiles/images/2019/10/201910172129453873_794_2193245_3.png!w690x448.jpg[/img][img=,690,225]https://ng1.17img.cn/bbsfiles/images/2019/10/201910172129483226_702_2193245_3.png!w690x225.jpg[/img][/align]表格中的一些缩写代表的含义如下:T:Tilt,R:Rotation,S R:ScanRotation;Regular:RegularCross-Section ,Cleaning:CleaningCross-Section;E:Easylift。另外还有一些其他的注意事项:1. 装样品和取样前,样品台的位置设置:X:60mm(靠门的最外)、Z:0、T:0;2. 每次改变束流值后要刷图并调一下聚焦;离子束观察时用30kv、7.7pA,可长开;其他束流太强,只能Snapshot刷图;3. 基本不用滚轮移动样品位置,而是移电子束/离子束使画面居中;4. 第2、4、7、9、12和14步等与“镀Pt”有关的步骤需要插、拔GIS的Pt dep;5. 第2、4、7步中保护层的XY取决于最终要保留的切片大小,表格中只是个示例,参考值;6. 本表所列参数适合切陶瓷(硬)材料,且焊在铜网爪侧边;不同材料或焊铜网爪顶端的相关参数都需做相应改变。注:本文只列出了一些关键的信息,对于熟悉或有一定了解FIB仪器的朋友,应该有很大的帮助,但是不了解FIB的人,可能面对这些介绍无法想象出来应该点软件界面的哪个位置。

  • Ar离子刻蚀制备EBSD样品

    想用离子刻蚀制备EBSD样品,材料是碳含量为0.5%左右的珠光体钢。但是不知离子刻蚀的具体参数,所以想请了解这方面的给些建议。

  • 光刻工艺与刻蚀技术的研究

    光刻工艺光刻是用光刻胶、掩模和紫外光进行微制造 ,工艺如下 :(a)仔细地将基片洗净;(b)在干净的基片表面镀上一层阻挡层 ,例如铬、二氧化硅、氮化硅等;(c) 再用甩胶机在阻挡层上均匀地甩上一层几百 A厚的光敏材料——光刻胶。光刻胶的实际厚度与它的粘度有关 ,并与甩胶机的旋转速度的平方根成反比;(d) 在光掩模上制备所需的通道图案。将光掩模复盖在基片上,用紫外光照射涂有光刻胶的基片,光刻胶发生光化学反应;(e)用光刻胶配套显影液通过显影的化学方法除去经曝光的光刻胶。这样,可用制版的方法将底片上的二维几何图形精确地复制到光刻胶层上;(f) 烘干后 ,利用未曝光的光刻胶的保护作用 ,采用化学腐蚀的方法在阻挡层上精确腐蚀出底片上平面二维图形。掩模制备用光刻的方法加工微流控芯片时 ,必须首先制造光刻掩模。对掩模有如下要求:a.掩模的图形区和非图形区对光线的吸收或透射的反差要尽量大;b.掩模的缺陷如针孔、断条、桥连、脏点和线条的凹凸等要尽量少;c.掩模的图形精度要高。通常用于大规模集成电路的光刻掩模材料有涂有光胶的镀铬玻璃板或石英板。用计算机制图系统将掩模图形转化为数据文件,再通过专用接口电路控制图形发生器中的爆光光源、可变光阑、工作台和镜头,在掩模材料上刻出所需的图形。但由于设备昂贵,国内一般科研单位需通过外协解决,延迟了研究周期。由于微流控芯片的分辨率远低于大规模集成电路的要求,近来有报道使用简单的方法和设备制备掩模,用微机通过CAD软件将设计微通道的结构图转化为图象文件后,用高分辨率的打印机将图象打印到透明薄膜上,此透明薄膜可作为光刻用的掩模,基本能满足微流控分析芯片对掩模的要求。湿法刻蚀在光刻过的基片上可通过湿刻和干刻等方法将阻挡层上的平面二维图形加工成具有一定深度的立体结构。近年来,使用湿法刻蚀微细加工的报道较多,适用于硅、玻璃和石英等可被化学试剂腐蚀的基片。已广泛地用于电泳和色谱分离。湿法刻蚀的程序为 :(a) 利用阻挡层的保护作用,使用适当的蚀刻剂在基片上刻蚀所需的通道 ;(b) 刻蚀结束后 ,除去光胶和阻挡层,即可在基片上得到所需构型的微通道;(c)在基片的适当位置(一般为微通道的端头处)打孔,作为试剂、试样及缓冲液蓄池。刻有微通道的基片和相同材质的盖片清洗后,在适当的条件下键合在一起就得到微流控分析芯片。玻璃和石英湿法刻蚀时,只有含氢氟酸的蚀刻剂可用,如HF/HNO3,HF/ NH4。由于刻蚀发生在暴露的玻璃表面上,因此,通道刻的越深,通道二壁的不平行度越大 ,导至通道上宽下窄。这一现象限制了用湿法在玻璃上刻蚀高深宽比的通道。等离子体刻蚀等离子体刻蚀是一种以化学反应为主的干法刻蚀工艺,刻蚀气体分子在高频电场作用下,产生等离子体。等离子体中的游离基化学性质十分活泼,利用它和被刻蚀材料之间的化学反应,达到刻蚀微流控芯片的目的。等离子体刻蚀已应用于玻璃、石英和硅材料上加工微流控芯片 , 如石英毛细管电泳和色谱微芯片。先在石英基片上涂上一层正光胶 (爆光后脱落的光胶),低温烘干后,放置好掩模,用紫外光照射后显影,在光胶上会产生微结构的图象。然后用活性CHF3等离子体刻蚀石英基片 ,基片上无光胶处会产生一定的深度通道或微结构。这样可产生高深宽比的微结构。近来,也有将等离子体刻蚀用于加工聚合物上的微通道的报道。http://www.whchip.com/upload/201610/1477271936108203.jpg

  • 质谱的离子源系统

    离子源系统的作用就是将中性原子或分子转换成具有一定能量和一定形状的正或负的聚焦良好的离子束。根据被分析物质的状态,它的物理化学性质,选择合适的电离方式。并随着电离方式的不同(例如:电子轰击、离子轰击、场致电离、光致电离、化学电离等),配置必要的组件,组成相应的离子源系统。在离子源电离区域形成的离子,经离子源透镜公聚成品质良好的、合乎需要的离子束。整个离子源的由中性原子或分子到离子的转换效率,取决于离子源的电离效率和离子光学系统的离子传输效率。这对那些要求实现高灵敏度质谱分析的课题,是十分重要的。

  • 【原创】束流提取系统

    【原创】束流提取系统

    [center]提取系统[/center] 提取系统主要包括剥离碳膜、装载碳膜的多叶转动器、马达等装置,其中剥离膜(stripping foil)是该系统的主要元件。在PETtrace回旋加速器中,有二个多叶转动器,分别载有6个碳膜;MINItrace回旋加速器的单束流提取器中有2个碳膜,双束流提取器中仅装1个碳膜;而IBA的CYCLONE系列回旋加速器中共有8个多叶转动器,分别位于8个束流出口处,每个多叶转动器各有2个碳膜。 PETtrace回旋加速器的每个多叶转动器分别司服3个靶位,可以进行双束流引出以同时轰击另一个司服靶位中的靶材料;MINItrace回旋加速器的一个多叶转动器司服5个靶位,无双束流引出功能,而另一个则是在双束流引出时,司服第6号靶位。PETtrace和MINItrace回旋加速器提取系统的组成见图14和图15所示。[center][img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911021243_179837_1623423_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911021244_179838_1623423_3.jpg[/img][/center] 提取系统中的提取碳膜(Carbon Foil)位于加速粒子运行轨道上,在该处被加速粒子达到最终的能量,所有出现在提取碳膜区域的阴离子束均穿过碳膜,穿过碳膜后,被加速的负离子被脱去二个电子,变为带正电荷的阳离子(图16所示),此时,在磁场中离子的运行轨道将发生逆向偏转,直接将且具有最大能量的带电粒子从真空室中引出,通过调整提取膜的位置使引出的束流进入所确定的生产靶。[center][img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911021246_179839_1623423_3.jpg[/img][/center] 提取系统最主要的基础是剥离膜(stripping foil)。被加速的负离子通过剥离膜后被脱去二个电子由阴离子转变为阳离子。剥离膜的位置直接确定束流的退出,并能够调整引出的束流引导进入任意的同位素生产靶。该系统有二种提取模式:(1)单束流提取,引出一束离子束流并引导其进入到一个出口;(2)双束流提取,引出二束相同离子流而被同时引导进入到二个出口(如图17所示各靶位束流的引出)。因此,该提取模式能够同时生产两种不同的正电子核素或在两个相同的靶上加倍生产同种正电子核素。这种功能允许在生产较长半衰期核素(如18F)的同时可继续生产短半衰期核素如11C、13N或15O等。[center][img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911021247_179840_1623423_3.jpg[/img][/center]

  • 质谱的离子检测器系统

    离子检测器系统是由各种不同类型的离子敏感器件(从最简单的法拉第筒到倍增器和各种电荷敏感元件等)组成。在这里,按质荷比分开的离子束被收集、放大,并经数据处理系统把它们加工、处理而得到所需要的信息。

  • 【原创】离子源系统

    【原创】离子源系统

    [center]离子源系统[/center]离子源是产生被加速的带电粒子的装置,它为加速器提供带电离子束,是加速器关键部件之一。加速器所能达到的性能指标在许多方面(如束流强度、发射度、能散度、离子种类等)都取决于离子源系统的类型和功能状态等。该系统由离子源(IS),离子源电源和气体控制系统组成(如图10)。图11为PETtrace和MINItrace回旋加速器离子源体。[center][img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911021232_179824_1623423_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911021232_179825_1623423_3.jpg[/img][/center]在回旋加速器中多用冷阴极的潘宁(Penning)电离型离子源,又称PIG(Penning ionization gauge)型离子源。对加速双粒子束流的回旋加速器,配备了两个冷阴极PIG离子源,一个产生H-而另一个产生D-。其结构见图12。[center][img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911021235_179830_1623423_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911021236_179833_1623423_3.jpg[/img][/center]

  • 为刻蚀终点探测进行原位测量

    作者:泛林集团 Semiverse Solutions 部门软件应用工程师 Pradeep Nanja介绍半导体行业一直专注于使用先进的刻蚀设备和技术来实现图形的微缩与先进技术的开发。随着半导体器件尺寸缩减、工艺复杂程度提升,制造工艺中刻蚀工艺波动的影响将变得明显。刻蚀终点探测用于确定刻蚀工艺是否完成、且没有剩余材料可供刻蚀。这类终点探测有助于最大限度地减少刻蚀速率波动的影响。刻蚀终点探测需要在刻蚀工艺中进行传感器和计量学测量。当出现特定的传感器测量结果或阈值时,可指示刻蚀设备停止刻蚀操作。如果已无材料可供刻蚀,底层材料(甚至整个器件或晶圆)就会遭受损坏,从而极大影响良率[1],因此可靠的终点探测在刻蚀工艺中十分重要。半导体行业需要可以在刻蚀工艺中为工艺监测和控制提供关键信息的测量设备。目前,为了提升良率,晶圆刻蚀工艺使用独立测量设备和原位(内置)传感器测量。相比独立测量,原位测量可对刻蚀相关工艺(如刻蚀终点探测)进行实时监测和控制。使用 SEMulator3D工艺步骤进行刻蚀终点探测通过构建一系列包含虚拟刻蚀步骤、变量、流程和循环的“虚拟”工艺,可使用 SEMulator3D 模拟原位刻蚀终点探测。流程循环用于在固定时间内重复工艺步骤,加强工艺流程控制(如自动工艺控制)的灵活性[2]。为模拟控制流程,可使用 "For Loop" 或 "Until Loop"(就像计算机编程)设置一定数量的循环。在刻蚀终点探测中,可使用 "Until Loop",因为它满足“已无材料可供刻蚀”的条件。在循环中,用户可以在循环索引的帮助下确认完成的循环数量。此外,SEMulator3D 能进行“虚拟测量”,帮助追踪并实时更新刻蚀工艺循环中的材料厚度。通过结合虚拟测量薄膜厚度估测和流程循环索引,用户可以在每个循环后准确获取原位材料刻蚀深度的测量结果。用 SEMulator3D 模拟刻蚀终点探测的示例初始设定在一个简单示例中,我们的布局图像显示处于密集区的四个鳍片和密集区右侧的隔离区(见图1)。我们想测量隔离区的材料完成刻蚀时密集区的刻蚀深度。我们将用于建模的区域用蓝框显示,其中有四个鳍片(红色显示)需要制造。此外,我们框出了黄色和绿色的测量区域,将在其中分别测量隔离区的薄膜厚度 (MEA_ISO_FT) 和沟槽区的刻蚀深度 (MEA_TRENCH_FT)。工艺流程的第一步是使用 20nm 厚的硅晶体层(红色)、30nm 的氧化物(浅蓝色)和 10nm 的光刻胶(紫色)进行晶圆设定(图2)。我们曝光鳍片图形,并对使用基本模型刻蚀对光刻胶进行刻蚀,使用特定等离子体角度分布的可视性刻蚀对氧化物材料进行刻蚀。氧化物对光刻胶的选择比是100比1。我们在 SEMulator3D 中使用可视性刻蚀模型来观察隔离区和有鳍片的密集区之间是否有厚度上的差异。[img]https://img1.17img.cn/17img/images/202401/uepic/a41bec0f-535e-420a-8a19-ed4282cd5c66.jpg[/img]图1:模型边界区域(蓝色),其中包含四个鳍片(红色)和用于测量隔离区(黄色)和沟槽区(绿色)薄膜厚度的两个测量区域[img]https://img1.17img.cn/17img/images/202401/uepic/630f2367-a619-4bc9-8608-09c532bef68f.jpg[/img]图2:SEMulator3D 模型,硅晶体(红色)、氧化物(浅蓝色)和在光刻胶中显影的四个鳍片(紫色)SEMulator3D 刻蚀终点探测循环SEMulator3D 的工艺流程使用 Until Loop 循环流程。我们将测量隔离区的材料厚度,并在隔离氧化物薄膜耗尽、即厚度为0时 (MEA_ISO_FT==0) 停止该工艺。在这个循环中,每个循环我们每隔 1nm 对氧化物材料进行1秒的刻蚀,并同时测量此时隔离区氧化物薄膜厚度。此外,我们将在每次循环后追踪两个鳍片间沟槽区的刻蚀深度。这个循环索引有助于追踪刻蚀循环的重复次数(图3)。[img]https://img1.17img.cn/17img/images/202401/uepic/5041079a-7da3-459f-907c-f62f1b6ac8c1.jpg[/img]图3:SEMulator3D 刻蚀终点探测模拟中的循环流程结果对隔离薄膜进行刻蚀,直至其剩余 20nm、10nm 和 0nm 深度的模拟结果如图4所示。模型中计算出隔离薄膜厚度的测量结果,以及两个鳍片间沟槽区的刻蚀深度。[img]https://img1.17img.cn/17img/images/202401/uepic/b5d9d13c-68e2-4389-80d1-b974c07afe99.jpg[/img]图4:隔离区薄膜厚度剩余 20nm、10nm 和 0nm 的工艺模拟流程,及相应从光刻胶底部开始的沟槽刻蚀深度我们对循环模型进行近30次重复后,观察到隔离区的薄膜厚度已经达到0,并能追踪到沟槽区氧化物的刻蚀深度(当隔离区被完全刻蚀时,密集区 30nm 的氧化物已被刻蚀 28.4nm)。结论SEMulator3D 可用来创建刻蚀终点探测工艺的虚拟模型。这项技术可用来确定哪些材料在刻蚀工艺中被完全去除,也可测量刻蚀后剩下的材料(取决于刻蚀类型)。使用这一方法可成功模拟原位刻蚀深度控制。使用类似方法,也可以进行其他类型的自动工艺控制,例如深度反应离子刻蚀 (DRIE) 或高密度等离子体化学[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]沉积 (HDP-CVD) 工艺控制。参考资料:[1] Derbyshire, Katherine. In Situ Metrology for Real-Time Process Control, Semiconductor Online, 10 July 1998, https://www.semiconductoronline.com/doc/in-situ-metrology-for-real-time-process-contr-0001.[2] SEMulator3D V10 Documentation: Sequences, Loops, Variables, etc.[来源:大半导体产业网][align=right][/align]

  • 质谱的质量分析器系统

    质量分析器系统由各种不同类型的电磁场组合而成,具有一定能量并聚焦良好的离子束经质量分析器后,可按质荷比的大小而分开。根据离子束的特点和分析工作的要求,质量分析器系统应具有足够的离子传输效率和分辨本领。通常,这两者是相互矛盾的。完善质量分析器离子光学系统的设计,就是要保证足够分辨本领的条件下,达到最高的离子传输效率。目前,设计良好的质量分析器系统的离子传输效率已接近100%。

  • AFM电刻蚀

    在用AFM进行电刻蚀时,用导电铂针进行刻蚀。但是每次刻蚀完之后用半接触模式很难扫描出清晰的图像。。。。。有没有什么方法能用铂针搜出清晰图像。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制