绿光氦氖激光器

仪器信息网绿光氦氖激光器专题为您提供2024年最新绿光氦氖激光器价格报价、厂家品牌的相关信息, 包括绿光氦氖激光器参数、型号等,不管是国产,还是进口品牌的绿光氦氖激光器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合绿光氦氖激光器相关的耗材配件、试剂标物,还有绿光氦氖激光器相关的最新资讯、资料,以及绿光氦氖激光器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

绿光氦氖激光器相关的厂商

  • 华日激光坚持以市场需求引领新产品的研发,为客户提供纳秒、皮秒、飞秒等多种脉冲宽度,红外、绿光、紫外、深紫外等多种波长的激光器产品,所有产品均具备自主产权,同时产品通过欧盟CE质量安全认证,完全满足严苛条件下的工业加工要求,是超精细加工领域的理想光源。同时通过与全球高端激光设备制造商在电子电路、硬脆材料、半导体、新能源、生命科学等领域开展紧密合作,为用户提供全面的激光技术解决方案。
    留言咨询
  • 本公司是一家专业从事激光产品研发的高科技公司,拥有雄厚的技术设计和生产能力,终身致力于为国内外客户提供品质优良、性能出众、价格有竞争力之产品。目前已开发出多种半导体激光产品,其中激光标线器是一种方便实用的标线工具。可广泛用于作服装钉钮点光源定位、裁布机裁布辅助标线、缝纫机/裁剪机/钉钮机/自动手动断布机辅助标线定位、裁床裁剪对格与对条、电脑开袋机标线等等。方便快捷、直观实用。。  产品主要包括:半导体激光器、激光准直光源、激光平行光管、激光标线仪、光学透镜、实验室教学光源、激光功率计等。  半导体激光器主要包括绿光(532nm)系列激光器、红光(635nm、650nm、780nm)系列激光器和红外(808nm、850nm、980nm)系列激光器。  激光准直光源主要包括:D-系列(点状光斑)激光器、L-系列(一字线)激光器、S-系列(十字线)激光器、T1-系列(功率可调)激光器、T2-系列(频率调制)激光器,P-系列(平行光管)激光器,B-系列激光标线仪。其中D-系列激光器光束发散度可达0.1mrad;L-系列激光器线宽最小可达0.3mm;调制(T2)激光器调制范围0-10KHz。P-系列激光平行光管口径可达40mm,光束发散度可达0.02mrad。  激光功率计可标定532nm、635nm、650nm、780nm、808nm、850nm、980nm、1100nm各波段,工作同时可监测电流。  我公司激光产品及光学产品可广泛应用于科研、工业、勘探、测量及医疗等领域。可以根据用户的特殊要求设计加工专用激光器及光学系统,也可以提供激光系统应用和特殊用途的批量供应。“团结、自信、坚韧、进取”是我们的企业宗旨,我们将一如既往地为用户提供高品质的产品。
    留言咨询
  • 杭州新势力光电技术有限公司2011年公司创建,主要从事光电产品及项目开发,包括氦氖激光器、半导体激光器,应用领域包括激光医疗、生物光子学、精密测量。基于长期稳定的项目合作与本地化支持,我们提供标准化激光器、OEM项目、ODM项目、激光器维修,以及光电设备的进出口服务。 联系方式名称:杭州新势力光电技术有限公司地址:浙江省杭州市西湖区西溪世纪中心2号楼828室邮编:310030电话:0571-85152711手机:18857115252邮箱:Sales@NewOpto.comQQ:1390164554
    留言咨询

绿光氦氖激光器相关的仪器

  • ■ 氦氖(HeNe)激光器 美国Melles Griot公司是世界上最大的氦氖(HeNe)激光器生产厂商,提供632.8nm、543nm、594.1nm、611.9nm等多种波长的HeNe激光器,功率范围涵盖0.5mW-35mW,同时提供高稳频激光器(632.8nm),可达1MHz线宽。 产品选型表:型号波长(nm)输出功率(mW)光束直径(1/e2)(mm)发散角(1/e2)(mrad)偏振态尺寸(L× D)(mm)25 LHR 213-230632.80.50.461.77Random177.8 × 31.825 LHP 213-230632.80.50.461.77Linear, 500:1177.8 × 31.825 LHR 111-230632.810.591.35Random271.8 × 44.525 LHP 111-230632.810.591.35Linear, 500:1271.8 × 44.525 LHR 073-230632.820.761.06Random279.9 × 35.125 LHP 073-230632.820.791.06Linear, 500:1279.9 × 35.125 LHR 121-230632.820.591.35Random271.8 × 44.525 LHP 121-230632.820.591.35Linear, 500:1271.8 × 44.525 LHR 691-230632.82.50.521.53Random224.8 × 31.825 LHP 691-230632.82.50.521.53Linear, 500:1224.8 × 31.825 LHR 151-230632.850.81Random396.2 × 44.525 LHP 151-230632.850.81Linear, 500:1396.2 × 44.525 LHR 171-230632.871.020.79Random455.9 × 44.525 LHP 171-230632.871.020.79Linear, 500:1455.9 × 44.525 LHR 991-230632.8100.651.24Random483.9 × 44.525 LHP 991-230632.8100.651.24Linear, 500:1483.9 × 44.525 LHP 828-230632.8251.230.66Linear, 500:1637.3 × 44.525 LHP 928-230632.8351.230.66Linear, 500:1637.3 × 44.5■ 稳频氦氖(HeNe) 激光器 们为您提供美国Melles Griot公司高稳频氦氖(HeNe)激光器,波长:632.8nm,频率稳定性达到± 1.0MHz。型号波长(nm)输出功率(mW)光束直径(mm)发散角(mrad)频率稳定性(1 min/1 hr/8 hrs)25 STP 910-230632.80.5&ndash 0.950.481.7± 1.0/± 2.0/± 3.0 MHz25 STP 910-249632.80.5&ndash 0.950.481.7± 1.0/± 2.0/± 3.0 MHz25 STP 912-230632.80.6&ndash 1.40.541.5± 1.0/± 2.0/± 3.0 MHz25 STP 912-249632.80.6&ndash 1.40.541.5± 1.0/± 2.0/± 3.0 MHz
    留言咨询
  • 小型氦氖激光器 400-860-5168转1980
    小型HeNe激光器—美国Pacific Lasertec 原Melles Griot品牌氦氖激光器在业界久负盛名,全系列具备TEM00模式输出、紧凑体积和高度稳定性,尤为有特色的是稳频氦氖激光器、绿光氦氖激光器以及高功率氦氖激光器。Pacific Lasertec公司2018年成立于美国,全面继承Melles Griot的生产设备、技术和生产团队及其逾40年氦氖激光器生产经验,为全球客户继续提供高品质HeNe激光器。 小型HeNe激光器 型号输出功率(mW)输出波长(nm)偏振度光束口径(mm, ±5%)发散角(mrad, ±5%)纵模间距(MHz)05-LHP-2130.5632.8500:10.461.77106305-LLR-811*0.5632.8随机0.471.70107805-LHP-2110.84632.8500:10.461.77106305-LHP-1111.0632.8500:10.591.3568705-LHP-1212.0632.8500:10.591.3568705-LHP-6912.5632.8500:10.521.5382205-LHB-294****632.8500:1N/AN/AN/A*一体式设计**05-LHB-294为双布儒斯特角氦氖激光器,双1.0mW输出。
    留言咨询
  • 氦氖激光器 400-860-5168转1980
    美国Melles Griot公司的氦氖激光器HeNe laser 一向以长寿命,高稳定性著称于世。632.8nm红光输出有0.5mW到35mW;偏振或非偏振输出可选,广泛应用于光路准直,全息实验,光谱激发等应用。 中小功率红光氦氖激光器 功率(mW)光斑直径(mm)发散角(mrad)偏振光斑模式产品型号0.50.461.77自由偏振TEM0025 LHR 2130.50.461.77线偏振(500:1)TEM0025 LHP 2131.00.591.35自由偏振TEM0025 LHR 1111.00.591.35线偏振(500:1)TEM0025 LHP 1112.00.761.06自由偏振TEM0025 LHR 0732.00.791.06线偏振(500:1)TEM0025 LHP 0732.00.591.35自由偏振TEM0025 LHR 1212.00.591.35线偏振(500:1)TEM0025 LHP 1212.50.521.53自由偏振TEM0025 LHR 6912.50.521.53线偏振(500:1)TEM0025 LHP 6915.00.801.00自由偏振TEM0025 LHR 1515.00.801.00线偏振(500:1)TEM0025 LHP 1517.01.020.79自由偏振TEM0025 LHR 1717.01.020.79线偏振(500:1)TEM0025 LHP 17110.00.651.24自由偏振TEM0025 LHR 99110.00.651.24线偏振(500:1)TEM0025 LHP 991我们还可以向您提供激光管架等光具座产品方便您搭建并调节光路,网址请点击 高功率氦氖激光器功率(mW)光斑直径(mm)发散角(mrad)偏振光斑模式产品型号17.00.960.84自由偏振TEM0025 LHR 92517.00.960.84线偏振(500:1)TEM0025 LHP 92525.01.230.66线偏振(500:1)TEM0025 LHP 82835.01.230.66线偏振(500:1)TEM0025 LHP 928集成了电源的小型方形氦氖激光器由于将激光电源集成在激光头内而且做成方形,节省空间且无需再另外搭配激光管架。适合简单搭建准直光路等应用 功率(mW)光斑直径(mm)发散角(mrad)偏振光斑模式产品型号0.500.471.70自由偏振TEM0005 SRR 8100.500.471.70线偏振(500:1)TEM0005 SRP 8100.800.471.70自由偏振TEM0005 SRR 8120.800.471.70线偏振(500:1)TEM0005 SRP 8121.00.471.70自由偏振TEM0005 SRR 813 MG提供543.5nm绿光,599.1nm黄光,611.9nm橙光,1523nm近红外光氦氖激光器,因其稳定性,长寿命,单横模TEM00 mode等特点,成为诸如共聚焦显微镜等应用设备的典型配套激光器632.8nm频氦氖激光器 预热时间短,10分钟内达到频率锁定;频率稳定性:±1.0MHz@1min, ±2.0MHz@1hr, ±3.0MHz@8hrs;功率稳定性:±0.2%;频率调节(Blue Side):50-600MHz@25 STP 910, 400-600MHz@25 STP 912
    留言咨询

绿光氦氖激光器相关的资讯

  • 可伐-玻璃组装式(无吹制)氦氖激光器研制成功并批产
    据悉,镭测科技公司经过7年的研发,在国内首次研究成功可伐-玻璃组装式的氦氖激光器,并实现批量生产。这一成果终结了我国50年靠玻璃吹制氦氖激光器的历史,有力推动我国高端激光仪器的发展。  清华大学教授、镭测科技公司顾问张书练表示,氦氖激光器是气体激光器的一种,是气体激光器中最先研发问世的产品类型。氦氖激光器是以中性原子气体氦和氖为工作物质、由放电管和光学谐振腔构成的激光器,可输出连续激光。氦氖激光器工作在可见光与红外光频段,可输出绿光543.5nm、红光632.8nm、红外光1.15μm和3.39μm等多种波长。其中,红色波长632.8nm在氦氖激光器家族中有独一无二的品质,应用最广泛。波长632.8nm氦氖激光束质量高、光束横截面上光强度非常接近完美的高斯分布,非常小的发散角,传播百米后光斑直径还保有几毫米大小;输出功率稳定,噪声非常低;有天然的频率(波长)稳定点,波长稳定性可以非常高,可以做到1小时时间内632.8nm仅漂移百万甚至亿分之一;造价低,可靠性高,一致性好互换性强等。  张书练指出,氦氖激光器在仪器仪表、精密测量方面应用广泛,无可替代。国内外的单频干涉仪,双频干涉仪,面型干涉仪,测振仪,椭偏仪,激光陀螺仪等都采用氦氖激光器做光源,这些仪器是精密机床、光刻机、航空、航天、机械和光学加工,薄膜技术等领域精度的保证。我国这些产业向高端发展的速度加快,市场对相关仪器的需求将持续增长,将会拉动我国对可伐-玻璃组装式的氦氖激光器需求规模不断扩大。  根据某研究中心发布的《2022-2026年氦氖激光器行业深度市场调研及投资策略建议报告》显示,2021年,全球氦氖激光器市场规模约为0.74亿元;预计2021-2026年,全球氦氖激光器市场将以4.2%左右的年均复合增速增长,到2026年市场规模将达到0.91亿元左右。在全球市场中,氦氖激光器生产商主要有美国Lumentum Operations、美国Melles Griot(被Pacific Lasertec收购)、美国Thorlabs、美国Excelitas Technologies、德国Lasos、德国Phywe、日本Neoark。  张书练表示,多年来,我国依赖玻璃吹制技术生产氦氖激光器(管),激光器之间一致性较差,稳定性不佳,不能达到各类激光仪器的应用要求。过去几十年,虽然国内也有对可伐-玻璃组装式(无吹制)氦氖激光器进行了研究,但没有坚持下来,也曾引进了一条国外(装配)生产线,运行几年,终因没有自己元器件供应链,没有自己的工艺被迫停产。激光仪器仪表仪器装配的氦氖激光器都从国外购买,因为容易频率突跳或不出双频振荡,淘汰率很高。  镭测科技自主研发的可伐-玻璃组装式的氦氖激光器用已成批用于双频激光干涉仪上和光刻机的失效激光器替换。用作双频激光器时,激光功率可以达到1.3mW以上,激光频率差可选定3MHz、7MHz、10 MHz、20 MHz,或更大,这是国内外以前没有实现的。此外,之前,不论是单频还是双频激光干涉仪,国产还是国外购买,各型号都有几纳米甚至十几纳米的非线性误差,可伐-玻璃组装式的氦氖激光器作光源的双频激光干涉仪非线性误差不大于1纳米。
  • 40年坚持,打通双折射双频激光器及干涉仪全技术链条
    双频激光干涉仪是先进制造业、半导体芯片制造等行业不可或缺的纳米精度的尺子,应用广泛。张书练教授团队(先清华大学精密测试技术及仪器国家重点实验室,后镭测科技有限公司),以解决双频激光干涉仪关键技术为线,经近40年坚韧攀登,研究完成了“可伐-玻璃组装式单频氦氖激光器→双折射双频激光器→双折射双频激光干涉仪”的全链条技术,并批产。该技术开国内可伐-玻璃组装式氦氖激光器之先,吹制工艺或成历史。开国内外应力激光腔镜产生双频激光之先,解大频差和高功率不可得兼之难,频率差可以在1~40 MHZ范围选择而功率大于1 mW。双折射双频激光干涉仪测量70 m长度误差小于5 μm,非线性误差小于1 nm,测量速度高于3 m。1 研究背景激光干涉仪是当今纳米时代的长度基准,也是先进制造业(机床、光刻机,航空、航天等)制造的精度保证。制造精度和生产效率越来越高,对激光干涉仪的测量精度和测量速度提出了更高的要求。激光干涉仪的“激光”是(HeNe)氦氖激光器,至今无可替代。传统HeNe双频激光干涉仪存两个难点,成为瓶颈:1)国内外,我们之前,双频激光器靠塞曼效应产生两个频率,频率之差小(在3 ~ 5 MHz之间),频差越大激光功率越小,不能满足光刻机等应用的更大频率差要求(如10、20、40 MHz),频率差大,测量速度高,效率高;2)不论是单频还是双频激光干涉仪,国产还是外购,各型号都有几纳米甚至十几纳米的非线性误差,一直没有找到解决办法。通常,在单频激光器的光增益路径上加磁场后(塞曼效应)就变成双频激光器。可是,相当长的期间,购买到的大部分单频激光器因为常出现跳模,用于单频激光干涉仪时淘汰率很高,此外,加上磁场后单频并不呈现双频,双频激光干涉仪难有好的光源。经近40年坚持,研究打通了单频氦氖激光器→双折射双频激光器→双频激光干涉仪的全技术链条,批产,获得了广泛应用和认可。2 双折射双频激光器及干涉仪的关键和全链条技术2.1 双折射双频激光器置晶体石英片(图1a中的Q双面增透)或有内应力的玻璃元件(图1b中的M2右表面镀反射膜)于激光器谐振腔内,这些元件的双折射使激光频率分裂,一个频率分裂成两个频率,两个频率的偏振方向互相垂直(正交偏振)。反复实验证明,激光器可输出频率差大于但不能小于40 MHz两个频率。如果频率差稍大于40 MHz,在改变(调谐)激光频率谐振腔长(即用压电陶瓷1纳米一步“距”的推动M2改变激光谐振腔长)过程中看到的是一个频率振荡会陡然变成两个频率振荡,而前者功率陡然下降一半,刚升起的频率则获得同样的功率。继续调谐腔长,最早振荡的频率会陡然消失,而后起振的频率功率升高到最大。如果频率差小于40 MHz,两频率则有你无我。图2示出了频率差20 MHz时o光和e光的光强度此长彼消得过程。理论和实验一致。图1 激光频率分裂原理图。(a)晶体石英片Q于激光谐振腔内,(b)激光输出镜为M2右表面,对M2加力使激光反射镜内产生应力图2 频差20 MHz时的强烈模竞争。激光强度随腔长调谐(改变)的实验曲线。理论和实验一致图3给出了两个频率的频率差多大时,在频率轴上两个频率的共存区的宽度,也即两个频率差大小对应的共存频域宽度。曲线最左侧可见,在约40 MHz时,共存宽度迅速下降趋于0 Hz,也即小于40 MHz时,两频率之一熄灭,频率差消失。图3 实验测得的两个频率共存的频域宽度和激光频率差的关系2.2 双折射-塞曼双频激光器塞曼双频激光器的频率差一般在5 MHz以下,功率随频率差增大而减小,7 MHz时的激光功率仅0.2 mW以下。作者团队研发的双折射双频激光器频率差大于40 MHz,研制成的双折射-塞曼双频激光器可以输出百KHz到几十MHz的频率差,而功率不因频率差增大而改变,可以达到1.5 mW。双折射-塞曼双频激光器包括两项关键技术,先由双折射造成激光器频率分裂,决定了激光器输出为两个偏振正交频率以及它们的间隔(频率差)的大小。再因激光器上加了横向磁场,横向塞曼效应使增益原子分成两群——π群和σ群。π群和σ群光子的偏振对应双折射互相垂直的主方向,也即正交偏振的光“各吃各粮”,它们之间的相互竞争不存在了,无论频率差大小都能振荡。频率差可以是3、5、7、10、20、40 MHz或更大。2.3 内雕应力双折射-塞曼双频激光器提出了“内雕应力”的概念和产生双频的原理,即用窄脉冲激光器对激光腔镜表面或基片内部造孔(或穴),造成激光腔镜内的应力精确改变(图4所示),“雕刻”提高了频率差的控制精度。“内雕应力”双折射双频激光器不仅用于国产双频激光干涉仪,也用于运行中的光刻机的激光器替换。同时,提供了科研单位的科学研究。该激光器替换正在服役的光刻机的原有激光器,使光刻机机台误差由24 nm下降到6 nm。图4 内雕应力双折射-塞曼双频激光器。M2内部雕刻出的孔造成激光器的双频,磁条PMF1和PMF2消除激光器强模竞争2.4 可伐-玻璃组装式(无吹制)双频激光器国内,研制生产HeNe激光器历史很长,但我国一直靠吹制工艺制造氦氖激光器,而且不能制造可伐-玻璃组装式氦氖激光器。北京镭测科技有限公司研制成可伐-玻璃组装式单频氦氖激光器,功率大于1 mW,满足单频和双频激光器的需求。同时,这一技术将使整个国产氦氖激光器告别吹制,进入一个新的技术高度(如图5所示)。图5 可伐-玻璃组装内雕应力双频激光器(镭测科技提供)2.5 研制成的双频激光干涉仪技术指标作者强调的是,我们有了可伐-玻璃组装式激光器和双折射(内应力)-塞曼双频激光器,双频激光干涉仪有了强力的“心脏”,有了自主可控的基础。团队又全面设计干涉仪的光、机、电、算。时至今日,可伐-玻璃组装式双折射(-塞曼)双频激光器(非吹制)和干涉仪已批量生产,正在满足科学研究和产业的需求。中国计量科学院对双折射-塞曼双频激光干涉仪的测试结果:频率稳定度为10-8,分辨力为1 nm,非线性误差小于1 nm(图6所示),12小时漂移35 nm(图7所示),70 m长度测量误差小于5 μm。这些数据来自中国计量科学院测试证书:CDjx 2014-2352, CDjx 2018-4810, CDjx 2020-04463等。图6 双频激光干涉仪非线性误差图7 双折射-塞曼双频激光干涉仪12小时零点漂移3 展望在实现“可伐-玻璃组装式激光器”→“内雕应力双折射-塞曼双频激光器”→“双折射-塞曼双频激光干涉仪”全链条技术基础上,进一步发展各种规格的可伐-玻璃组装式激光器,以开拓双折射-塞曼双频激光干涉仪的应用深度和应用范围。
  • 3分钟了解激光干涉仪——最精密的尺子
    本文作者:清华大学张书练教授1. 激光干涉仪的发展史做衣量身、体检量高都由尺子完成,这些日常的尺子的刻度是毫米。机械零件加工和检验都要用尺子,在机械制造企业,卡尺、千分尺随处可见,其精确度是0.1 μm,1 μm。1887年迈克尔逊(Michelson)和莫雷(Morley)研究以太[1]是否存在,使用了光。他们以光波长作尺子刻度测量了水平面和垂直面的光速之差,第一次否定了以太的存在。他们利用的是光的干涉现象,这就是光学干涉仪的诞生。注[1]:根据古代和中世纪科学,以太被称为第五元素,是填充地球球体上方宇宙区域的物质。以太的概念在一些理论中被用来解释一些自然现象,例如光和重力的传播。19世纪末,物理学家假设以太渗透到整个空间,以太是光在真空中传播的介质,但是在迈克尔逊-莫利实验中没有发现这种介质存在的证据,这个结果被解释为没有光以太存在。1961年研究人员发明了氦氖激光器,开始用氦氖激光器作为迈克尔逊干涉仪的光源,从而诞生了激光干涉仪。图1是迈克尔逊干涉仪简图。迈克尔逊干涉仪是普通物理的基本实验之一。但今天在科学研究和工业中应用的激光干涉仪出于迈克尔逊,但性能远远胜于迈克尔逊。图1 迈克尔逊干涉仪简图基本上,激光干涉仪都使用氦氖激光器的632.8 nm波长的光,橙红灿烂的光束射向远方,发散角可以小到0.1 mrad,光束截面的光斑均匀。氦氖激光器还可输出绿光、黄光、红外光,但只有632.8 nm波长的光适合作激光干涉仪的光源。其它类型的激光器,如半导体(LD)、固体激光器等的相干等性能都远不及氦氖激光器,研究人员多有尝试,但都没有成功。激光干涉仪有很多应用,但本质都是测量中学课本讲的“位移”,诸多应用都是“位移”的延伸和转化。激光干涉仪有两个主流类型:单频激光干涉仪和双频激光干涉仪。单频干涉仪能做的双频激光干涉仪都能做,但双频干涉仪能做的单频干涉仪不见得能做。由于历史、技术和商业原因,两种干涉仪都有着广泛应用。但在光刻机上,双频激光干涉仪独占市场。单频干涉仪不需要对市场上的氦氖激光器进行改造,直接可用。但双频激光干涉仪用的激光器需要附加技术使其产生双频(两个频率)。历史上,双频激光干涉仪测量位移的速度不及单频激光干涉仪,自发明了双折射-塞曼双频激光器,双频激光干涉仪的测量速度也达到每秒几米,与单频激光器看齐了。按产生双频的方法,双频激光干涉仪分为塞曼双频激光(国外)干涉仪和双折射-塞曼双频激光(国内)干涉仪。现在干涉仪的指标:最小可感知1 nm(十亿分之1 m),可以测量百米长的零件,且测量70 m长的导轨误差仅为几微米。2. 测量位移的干涉仪和测量表面的干涉仪?有几个概念的定义比较混乱(特别是有些研究发展趋势的报告),需要注意。一是“激光测距”和“激光测位移”没有界定,资料往往鹿马不分。二是不少资料所说“激光干涉仪”实际上包含两种不同的仪器,一种是测量面型(元件表面)的激光干涉仪,一种是测量位移(长度)的激光干涉仪。如海关的统计和一些年度报告往往混在一起。激光测距机发出的激光束是一个持续时间纳秒的光脉冲,利用光脉冲达到目标和返回的时间之半乘以光速得到距离,完全和光的干涉无关。尽管激光波面干涉仪和测量位移(长度)的干涉仪都是利用光干涉现象,但仪器的设计、光路结构、探测方式、应用场合几乎没有共同之处。激光波面干涉仪能够测量光学元件表面的形貌,光束直径要覆盖被测零件,在整个零件表面形成系列干涉条纹,根据测量条纹的亮度(也即相位)算出表面的形貌,其光束口径、零件直径可达百毫米;另一种则是测量位移(长度)干涉仪,光干涉发生在直径几毫米光路上,表现为只有光电探测器(眼睛)正对着射来的光线才能“看”到光强度的波动,由波动的整次数和(不足半波长的)小数算出被测件的位移。 3. 双频激光干涉仪的原理和构成当图1的可动反射镜有位移时,光电探测器光敏面会感受到的光强度正弦变化,动镜移动半个波长,光强变化一个周期。光电探测器将光强变化转化为电信号。如探测到电信号变化了一个周期,我们就知道动镜移动了半个波长。计出总周期数测得动镜的位移。 (1)式中:λ为激光波长,N 为电脉冲总数。今天的激光干涉仪使用632.8 nm波长的激光束,半波长即316.4 nm。动镜安装在被测目标上与目标一起位移,如光刻机的机台,机床的动板上。为了提高分辨力,半波长的正弦信号被细分,变成1 nm甚至0.1 nm的电脉冲,可逆计数器计算出总脉冲数,再由计算机计算出位移量S。也常用下式表示动镜的位移, (2)其中∆f为目标运动速度为V时的多普勒频移。式(1)和(2)是等价的,可以互相推导推出来,仅是表方式的不同。图2是今天的双频激光干涉仪框图。它由7个部分构成。图2 双频激光干涉仪原理框图(1) 双频氦氖激光器氦氖激光器上有磁体。磁体为筒形,激光器上加的是纵向磁场,称为纵向塞曼双频激光器。四分之一波长(λ/4)片把激光器输出的左旋和右旋光变成偏振态互相垂直的线偏振光。前文所说的双折射-塞曼双频激光器则是在激光器内置入双折射元件(图内未画出),并加图2所示的磁条。双折射元件使激光器形成双频,横向磁场消除两个频率之间的耦合。双折射-塞曼双频激光干涉仪不需使用四分之一波长片。双频激光器是双频激光干涉仪的核心,很大程度上,它的性能决定激光干涉仪的性能,要求波长(频率)精度高,功率大,寿命长,双频间隔(频差)大且稳定,偏振状态稳定,两频率之间不偏振耦合。这一问题的解决是作者较突出的贡献之一。(2) 频率稳定单元它的作用是保证波长(频率)这把尺子的精确性,达到10-8甚至10-9,即4.74×1014的激光频率长期的变化仅1 MHz左右。(3) 扩束准直器实际上是一个倒装的望远镜,防止光束发散。要求激光出射80 m,光束光斑直径仍然在10 mm之内。(4) 测量干涉光路测量干涉光路包括:从分光镜向右直到可动反射镜(实际是个角锥棱镜),向下到光电探测器2。可动反射镜装在被测目标上(如光刻机工作台上的反射镜),目标的移动产生激光束的频移Δf,Δf和目标速度成正比,积分就是目标走过的距离(位移或长度)。积分由信号处理单元完成。(5) 参考光路参考光路由分光镜-偏振片-光电探测器1实现,参考光路中没有任何元件移动,它测得的位移是“假位移”真噪声。噪声来自环境的扰动。信号处理单元从干涉光路的位移中扣除这一噪声。(6) 温度和空气折射率补偿单元干涉仪测量的目标位移可能长达百米,空气折射率(及改变)和长度的乘积成为激光干涉仪的最主要误差来源之一。用传感器测出温度、气压、湿度,信号处理单元计算出空气折射率引入的假位移,并从结果中扣除。(7)信号处理单元光电探测器1和2,分别把信号f1-(f2±∆f)和f1-f2的光束转化为电信号,±∆f是可动反射镜位移时因多普勒效应产生的附加频率,正负号表示位移的方向。电信号经放大器、整形器后进入减法器相减,输出成为仅含有±Δf的电脉冲信号。经可逆计数器计数后,由电子计算机进行当量换算即可得出可动反射镜的位移量。环境温度,气压,湿度引入的折射率变化(假位移)送入计算机计算,扣除他们的影响。最后显示。相当多的应用要求计算机和应用系统通讯,实现对加工过程的闭环控制。4. 激光干涉仪的应用一般说来,激光干涉仪的主要用途是测量目标的运动状态,即目标的线性位移大小、旋转角度(滚转、俯仰和偏摆)、直线度、垂直度、两个目标在运动的平行性(度)、平面度等。无论光刻机的机台,还是数控机床的导轨(包括激光加工机床),不论是飞行物,还是静止物的热膨胀、变形,一旦需要高精度,都要用激光干涉仪测量,得到目标的运动状态。运动状态用由多个参数给出。以光刻机两维运动中的一个方向运动时为例,位移(走过的长度)、机台位移过程中的偏 转( 角 )、俯仰 ( 角 )和滚转(角)都需要测出。很多类型的设备需要测量,如各类机床、三坐标测量机、机器人、3D打印设备、自动化设备、线性位移平台、精密机械设备、精密检测仪器等领域的线性测量。图3(a)(b)(c)(d)(e)是几个应用的例子。美国LIGO激光干涉仪实验室宣称首次直接测量到了引力波(2016),使用的仪器是激光干涉仪,单程臂长4 km。见图4。图3 激光干涉仪几个应用的例子来源:(a)(b)(c)由北京镭测科技有限公司提供,(d)(e)来自深圳市中图仪器股份有限公司网页图4 LIGO激光干涉仪来源:https://www.ligo.caltech.edu/image/ligo20150731c 5. 双频激光干涉仪发展存在的问题(1)国内外单频和双频激光干涉仪的进展及问题多年来,国内外在单频和双频激光干涉仪方面进步不大,特例是双折射-塞曼双频激光器的发明。由于从国外购买的激光器不能产生大间隔的双频光,原有国内双频激光干涉仪的供应商基本停产。以前作为基础研究的双折射-塞曼双频激光器被推到前台。双频激光器是干涉仪的核心技术,走在了世界前端,也解决了国内无源的重大难题。北京镭测科技有限公司的开发、纠错,终于使双折射-塞曼双频激光干涉仪实现产品化,进入先进制造全行业,特别是光刻机。北京镭测科技有限公司双折射-塞曼双频激光器达到指标:频率间隔可在1 ~ 30 MHz之间选择,功率可达1 mW。 频率差与激光功率之间没有相互影响,没有塞曼效应的双频激光器高功率和大频率差不能兼得的缺点。尽管取得进展,但氦氖激光器的制造工艺等是个系统性技术问题,需要全面改善。特别是,国外双频激光干涉仪的几家企业的激光器都是自产自用,不对外销售,因此,我们必须自己解决问题。(2)业界往往忽略干涉仪的非线性误差很长时期以来,业界认为单频干涉仪没有非线性误差。德国联邦物理技术研究院(PTB) 经严格测试发现,单频干涉仪也存在几纳米的非线性误差,甚至大于10 nm。塞曼效应的双频干涉仪也有非线性误差,也是无法消除。对此干涉仪测量误差,大多使用者是不知情的。到目前,中国计量科学院的测试得出,北京镭测科技生产的双频激光干涉仪的非线性误差在1 nm以下。建议把中国计量科学院的仪器批准为国家标准,并和德国、美国计量院作比对。非线性误差发生在半个波长的位移内,即使量程很小也照样存在。图5 中国计量科学研究院:镭测LH3000双频激光干涉仪在进行测长比对6. 双频激光干涉仪的未来挑战本文作者从事研究双折射-塞曼双频激光器起步到成批生产双折射-塞曼双频激光干涉仪,历经近40年,建议加强以下研究。(1)高测速制造业的发展很快,精密数控机床运动速度已达几m/s,有特殊应用提出达到10 m/s的要求。目前单频激光的测量速度还没有超过5 m/s。双折射-塞曼双频激光干涉仪的测速也处于这一水平,但其频率差的实验已经达到几十MHz,有待信号处理技术的跟进发展,实现10 m/s以上的测量速度。(2)皮米干涉仪市场上的干涉仪基本都标称分辨力1 nm,也有0.1 nm的广告。需要发展皮米分辨力的激光干涉仪以满足对原子、病毒尺度上的观测要求。(3)溯源前文已经提到,小于半波长的位移是把正弦波动信号电子细分得到标称的1 nm,和真实的1 nm相差多少?没有人知道,所以需要建立纳米、皮米的标准。作者曾做过初步努力,达到10 nm的纯光学信号,还需做长期艰苦的研究。(4)提高氦氖激光器寿命在未来很长一段时间,氦氖激光器仍然是激光干涉仪最好的光源,但其漏气的特点导致其使用寿命有限,替换寿命终结的氦氖激光器导致光刻机停机,会带来巨大经济损失。因此,延长氦氖激光器寿命十分有必要。没有测量就没有科学技术,没有精密测量就没有当今的先进制造,为此作者最近出版了题名《不创新我何用,不应用我何为:你所没有见过的激光精密测量仪器》的书籍,书的主标题似是铭志抒怀,而实际内容是一本地道的学术专著,书籍内容为作者的课题组近40年做出的创新成果总结。作者简介张书练,清华大学教授,博导。曾任清华大学精密测试技术及仪器国家重点实验室主任,清华大学光学工程研究所所长,主要研究方向为激光技术与精密测量,致力于激光器特性的研究和把这些特性应用于精密测量,是国内外正交偏振激光精密测量领域的的主要创始人。

绿光氦氖激光器相关的方案

绿光氦氖激光器相关的资料

绿光氦氖激光器相关的论坛

  • 氦氖激光器与半导体激光器的性能有何差异?

    [font=宋体]同样作为激光器,氦氖激光器稳定性比普通半导体激光器的稳定性更高,主要原因在于激光器受温度影响,激光波长会发生偏移,氦氖激光器的温度稳定度相比半导体激光器更稳定,受环境影响更小。[/font]

  • 氦氖激光器波长如何校准?

    正常情况下,FT-IR的氦氖激光器波长632.8nm是不变的,无需校准。但是在出现波数偏移时,是否需要通过校准激光器的波长来修正呢?如何校准?

绿光氦氖激光器相关的耗材

  • 632.8nm氦氖激光器 1.2mw
    筱晓光子1.2mW的红色(632.8 nm)柱形氦氖激光器采用管式设计,使其能方便地安装到几乎所有光学系统中。这些激光器的激光为线(200:1)的线偏振光或者随机偏振态。线性偏振光相对于激光器外壳后部的电缆在竖直方向偏振,附带外部供电电源和电源线。B型内腔式氦氖激光器的激光器与电源分离,拨动激光电源开关,不会影响已调好的光路,激光器用表面喷塑的合金铝筒做外套。使得激光器坚固、美观。电源采用开关电源、金属外壳,电源外壳接地,激光器与电源用硅高压线连接。我们的HeNe激光器适用于中国大陆地区,配备国内市电插座,插电即用。中心波长632.8nm输出功率1.2mW光发散角≤1.8mrad技术参数型号HENE005BHENE010BHENE016BHENE016B-P工作波长632.8nm632.8nm632.8nm632.8nm输出功率≥0.5mW≥1mW≥1.6mW≥1.6mW输出功率稳定性≤±5%/hr偏振(注)随机200:1横向模式TEM00光束直径≤0.9mm光发散角≤1.8mrad激光器电源开关电路激光电源(非二极管与电容构成的220V直接倍压整流的低档激光电源)激光器 重量(kg)0.20.220.260.3电源尺寸(mm)220×75×45最大起始电压10KVDC操作电流6.5mA电源重量(kg)0.8电源功耗30W抗震能力25 g for 11 ms 100 g for 1 ms激光等级IIIa/3R运行时间可每天24小时常年连续运行备注:某些实验(如激光干涉、全息照相等),需把一束激光分成两束激光,如选择随机偏振的激光分光,侧分光后两束激光的光强是不稳定的。如选择线偏振的激光分光,分光后两束激光的光强侧稳定 得多。偏振的消光比越大,分光后两束激光的光强越稳定。实验的效果就越好。
  • 飞秒激光器 飞秒光纤激光器
    运用先进的激光技术,ALPHALASGmbH开发了崭新的飞秒激光器。掺镱的激光介质直接由半导体激光器泵浦,取缔了钛宝石激光器中昂贵的绿光激光器泵浦源。这不仅降低了价格,而且增加了可靠性和寿命。非线形镜锁模技术提供了可靠的自启动操作。新的飞秒激光器可应用于如下领域:-时间分辨的荧光光谱-光学相干成像-双光子显微镜-组织消融-非线形光学研究-激光物质相互作用技术参数:FEMTOLAS-200是一种紧凑结构的半导体泵浦飞秒激光器:波长:1020-1050nm输出功率:200mW脉宽:重复频率:100MHz光束质量:M2FEMTOLAS-1000是半导体泵浦飞秒激光器的高功率型号:波长:1020-1050nm输出功率:1W脉宽:重复频率:100MHz光束质量:M2ALPHALAS主要集中于短脉冲(亚纳秒、皮秒、飞秒)和微片设计,也提供普通类型的DPSS,其效率高,结构紧凑。同时,可提供DPSS装配件以便科研和开发。其他飞秒激光器:1、IMRA飞秒激光器
  • 532nm单频激光器
    532nm单频激光器是欧盟原装进口的532nm单频激光器,也是一款性能卓著的连续输出的半导体泵浦固体激光器,DPSS激光器,532nm单频激光器是雷尼绍拉曼 光谱仪,Renishaw拉曼光谱仪或Horiba JY拉曼光谱仪最为理想的532nm绿光激光器和532nm激光器。532nm单频激光器特点真正单纵模工作全球高标准的功率稳定性相关长度高达100m, 适合更广泛应用高斯光束,衍射极限级别的光斑直径全球领先的热消散技术,超高光束定位稳定性超低功耗,超高效率,不需要风扇散热科研拉曼光谱仪最佳紫外激光器配件能够输出50-2000mW多个激光功率数值供用户选择具有超级紧凑的结构,是实验室的理想单频激光器532nm单频激光器参数激光波长:532nm激光类型:单纵模激光器,单频激光器,DPSSL激光器,连续激光器,固体激光器,SLM激光器适合场所:高校,研究院所,企业等单位输出功率:50-150mW, 300-2000mW可调光斑直径:0.8-1.0mm光束质量:M^2光束发散角:光束定位稳定性:纵模结构:SLM单纵模线宽:线宽光谱定位稳定性:+/-50MHz(pm)@4小时连续不停的连续激光输出相干长度:100m偏振性能:线偏振,垂直偏振,=200:1输出功率噪音:输出功率稳定性:工作环境要求:工作温度:15-35摄氏度存储温度:-20~50摄氏度湿度:5-95%预热时间:功耗:供电要求:实验室通用220VAC供电激光头尺寸:80x75x198mm激光器电源尺寸:170x53.5x223mm
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制