当前位置: 仪器信息网 > 行业主题 > >

热红外光谱仪

仪器信息网热红外光谱仪专题为您提供2024年最新热红外光谱仪价格报价、厂家品牌的相关信息, 包括热红外光谱仪参数、型号等,不管是国产,还是进口品牌的热红外光谱仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合热红外光谱仪相关的耗材配件、试剂标物,还有热红外光谱仪相关的最新资讯、资料,以及热红外光谱仪相关的解决方案。

热红外光谱仪相关的论坛

  • 【原创大赛】热重/红外光谱联用的实验条件设定

    【原创大赛】热重/红外光谱联用的实验条件设定

    [size=24px][/size][size=18px][color=#ff0000][b]说明:本文最初发布于“热分析与吸附”公众号([url=http://mp.weixin.qq.com/s?__biz=MzI5MjUzMzQ0OA==&mid=2247484448&idx=1&sn=8310254a77bf263915c9d16289f5e77a&chksm=ec7ea187db0928915648270dbcbbe4ef2f90ae26bfd0a94471946f77d02e7bf8a5186502549d&token=52155117&lang=zh_CN#rd]链接[/url]),欢迎关注公众号了解更多的热分析与吸附内容。[/b][/color][/size][font=华文楷体][size=14.0pt]概括来说 ,热重/光谱联用的实验条件设定主要包括热重仪实验条件设定、红外光谱仪实验条件设定以及传输管线和气体池的实验条件设定三部分内容。[/size][/font][font=华文楷体][size=14.0pt]1. [/size][/font][font=华文楷体][size=14.0pt]热重仪实验条件设定[/size][/font][font=华文楷体][size=14.0pt]在之前的《热分析/质谱联用的实验条件设定》中详细阐述了热重仪的实验条件设定方法,为了便于阅读并保持内容的完整性,在本部分对热重仪实验条件设定内容的描述基本与该文中的这部分内容相似。在下文叙述的内容中将这部分内容中的质谱改为了红外光谱,并增加了一些需要注意的问题。[/size][/font][font=华文楷体][size=14.0pt]实验时应根据实验需要选择实验时的实验气氛种类及流速、温度控制程序(主要包括加热/降温速率、温度范围、等温条件等)、坩埚类型、样品制备等方面的内容。[/size][/font][font=华文楷体][size=14.0pt](1)气氛种类及流速选择[/size][/font][font=华文楷体][size=14.0pt]为了便于实验时样品产生的气体产物能够实时地被红外光谱检测,在实验时通常使用动态的实验气氛。如果需要考察样品在设定的温度程序下的热裂解行为(试样不与动态气氛发生反应,气氛的作用只是将热重仪产生的气体产物传送给红外光谱进行检测),此时需要使用惰性气氛(如Ar、He等气体)。氮气虽然对于大多数实验而言是惰性气氛,但其对于对于一些反应是反应性气氛,在选择氮气作为实验气氛时应充分考虑在实验过程中产物是否与其发生反应。如果在实验时需要考察样品与气氛的氧化、还原等反应过程,此时应根据需要选择特定的气氛,常用的气氛有O[sub]2[/sub]、CO[sub]2[/sub]与惰性气体的混合气体。[color=red]注意:与热分析/质谱联用技术在选择气氛时应充分考虑质谱检测时需要考察的质量数不同,而在进行热分析/红外光谱联用实验时不需要尽可能选择分子量较小的气体,如He。[/color]由于红外光谱检测不到一些非极性分子如N[sub]2[/sub]、H[sub]2[/sub]、Ar、He、O[sub]2[/sub]等气体的信息,因此可以方便地采用以上这些气体作为载气。但是,红外光谱对于空气中含有的微量H[sub]2[/sub]O和CO[sub]2[/sub]等小分子十分敏感,在实验时通常通过扣除空白背景的方法来消除这些小分子的影响。如果在实验时采用了CO[sub]2[/sub]作为气氛,虽然在实验前可以通过背景扣除来消除CO2的信息,但由于在红外气体池中气流的影响,造成气体分布不均匀仍会得到CO2的信息。在实验得到的红外光谱图中将会看到明显的CO[sub]2[/sub]的吸收峰,有时甚至会出现由于背景扣除引起的负峰现象(图1)。[/size][/font][align=center][img=,564,242]https://ng1.17img.cn/bbsfiles/images/2020/06/202006151731511640_5037_1879291_3.png!w564x242.jpg[/img][/align][align=center][b][font=华文楷体][size=14.0pt]图1 实验中使用CO[sub]2[/sub]气氛得到的气体红外光谱图[/size][/font][/b][/align][b][font=华文楷体][size=14.0pt]在选择合适的气体种类后,还应选择合适的气氛流速。气氛流速的大小决定着气体产物由热重仪经传输管线到达红外光谱仪检测器的时间,选择不同的流速时,应使用已知产物的样品(如一水草酸钙或碳酸钙)来确定这个时间延迟,以使红外光谱仪检测产物与热重仪质量减少保持同步。[/size][/font][font=华文楷体][size=14.0pt](2)温度控制程序设定[/size][/font][font=华文楷体][size=14.0pt]实验时应根据需要选择合适的温度控制程序,主要包括加热/降温速率、温度范围、等温条件等。常用的温度程序为在一定的温度范围内一定的加热速率进行加热样品,例如,在室温~800摄氏度范围内以20℃/min的加热速率进行实验。实验时,还可根据实验需要选择较为复杂的加热/等温/降温的加热速率(如图2)。[/size][/font][font=华文楷体][size=14.0pt]需要特别指出,在较慢的加热速率或者等温条件下,样品的质量变化过程较慢,由此得到的气体产物的浓度较低。如果需要检测含量较低的气体产物,此时应选择较快的加热速率。另外,也可通过加大样品量的方法来提高气体产物的浓度。[/size][/font][/b][align=center][img=,564,477]https://ng1.17img.cn/bbsfiles/images/2020/06/202006151732063171_3368_1879291_3.png!w564x477.jpg[/img][/align][align=center][b][font=华文楷体][size=14.0pt]图2 较复杂的温度控制程序[/size][/font][/b][/align][b][font=华文楷体][size=14.0pt](3)坩埚类型的选择[/size][/font][font=华文楷体][size=14.0pt]坩埚在实验过程为盛载样品的容器,在实验过程中不能与样品发生任何形式的反应,也不能对分解过程起加速或减速的作用。常用的坩埚材质为氧化铝和铂,铝坩埚由于其自身化学性质较活泼而易与产物发生反应,在热重实验时较少使用。[/size][/font][font=华文楷体][size=14.0pt]另外,应根据热重仪的样品支架的形状选择合适尺寸的坩埚。由于气体产物需要及时由载气经传输管线传输至红外光谱仪,通常不在坩埚上方加盖(扎孔)。[/size][/font][font=华文楷体][size=14.0pt](4)样品制备[/size][/font][font=华文楷体][size=14.0pt]样品量、样品状态等因素对于实验结果有着较大的影响,实验时应根据需要选择合适的样品量和样品状态。通常使用的样品量为所使用的坩埚体积的三分之一到二分之一。对于一些分解较为快速的样品,样品量加至覆盖坩埚底部即可。对于一些在实验过程中可能会发生剧烈分解的含能材料,样品用量还应进一步减少。[/size][/font][font=华文楷体][size=14.0pt]对于一些容易挥发的样品而言,在制样时应快速,以免由于实验时间过长引起其组成的变化。[/size][/font][font=华文楷体][size=14.0pt]2. [/size][/font][font=华文楷体][size=14.0pt]红外光谱仪实验条件设定[/size][/font][font=华文楷体][size=14.0pt]红外光谱仪的实验条件设定取决于所使用的仪器,通常设定的实验条件包括检测时间、叠加次数和光谱分辨率。理论上,对于一些结构较复杂的气体分子和气体混合物应使用较高的光谱分别率,但是光谱分辨率越高,检测时间也越长,基线的噪声也越大。[/size][/font][font=华文楷体][size=14.0pt]大多数红外光谱仪常用的检测器是利用硫酸三甘肽晶体(简称TGS)极化随温度改变的特性制成的一种红外检测器,经氘化处理后称为DTGS(Deuterated Triglycine Sulfate)。DTGS热释电型检测器,其工作原理是由于温度的变化,热释电晶体会出现结构上的电荷中心相对位移,使它们的自发极化强度发生变化,从而在它们的两端产生异号的束缚电荷。对于常用的DTGS检测器而言,在8cm[sup]-1[/sup]的光谱分辨率下,得到一张红外光谱的时间约为1秒钟。在4cm[sup]-1[/sup]的光谱分辨率下,则约需要5秒钟左右。在1cm[sup]-1[/sup]下,约需要几十秒的时间才可以得到一张红外光谱图。[/size][/font][font=华文楷体][size=14.0pt]有时为了提高分析复杂的气体分子和气体混合物的能力,在红外光谱仪上还配置了MCT检测器。MCT检测器的灵敏度很高,至少比DTGS大10倍。其由宽频带的半导体碲化镉和半金属化合物碲化汞混合形成,其组成为Hg1-xCdx Te ,x≈0.2,改变x值,可获得测量波段不同灵敏度各异的各种MCT检测器。MCT属于光电导型检测器,其工作原理为在光线作用下,对于半导体材料吸收了入射光子能量, 若光子能量大于或等于半导体材料的禁带宽度,就激发出电子-空穴对,使载流子浓度增加,半导体的导电性增加,阻值降低,这种现象称为光电导效应。MCT检测器在液氮温度下工作。对于常用的MCT检测器而言,在1cm[sup]-1[/sup]的光谱分辨率下,得到一张红外光谱的时间约为1秒钟。[/size][/font][font=华文楷体][size=14.0pt]在实验时,为了提高检测信号的灵敏度通常会采用多次叠加的方法。实际上,在热分解过程中由于气体分子的浓度在时刻发生变化,采用这种叠加有时会得到异常的结果。对于一些变化较为缓慢的过程,可以采用叠加的方法来提高检测的灵敏度。[/size][/font][font=华文楷体][size=14.0pt]对于TG/IR实验,红外光谱仪的检测时间应与热重仪的温度控制程序所需的时间保持一致。[/size][/font][font=华文楷体][size=14.0pt]3. [/size][/font][font=华文楷体][size=14.0pt]传输管线和红外光谱气体池的实验条件设定[/size][/font][font=华文楷体][size=14.0pt]传输管线的作用是防止气体产物在由热重仪传输到红外光谱仪气体池以及在流经红外光谱气体池过程的冷凝现象,通常通过改变传输管线和气体池的温度的方法来尽可能地避免这种冷凝现象。[/size][/font][font=华文楷体][size=14.0pt]实验时,需要设定合适的温度条件来得到理想的结果。传输管线和红外气体池的温度过高会引起热稳定性不高的产物分子发生二次分解,温度过低则会造成产物的冷凝。不同的热重/红外光谱联用仪的传输管线和气体池的最高温度范围差别较大。应根据实验需要选择合适的传输管线和气体池的工作温度,一般来说红外气体池的温度应大于等于传输管线的温度。[/size][/font][/b]

  • 中红外光谱仪光源问题

    小弟刚接触红外光谱仪,最近在搞一个中红外项目。使用的检测器是热释电红外检测阵列,光源为卤素灯。由于刚接触,所以对现在市场上的红外光谱仪使用的光源不是特别了解。所以想请问一下现在市场上的红外光谱仪(特别是进口仪器)所使用的光源大多数都是什么?不知道现在市场上有用热释电红外检测阵列做检测期间的么,如果有的话有什么品牌可以推荐么?谢谢!~~~~注:我现在的项目为便携式一起,故体积太大,重量太大的光源就不适合了

  • 近红外光谱仪、红外光谱仪有什么区别?

    近红外光谱仪、红外光谱仪有什么区别?咱们常规使用的紫外可见分光光度计,似乎只可以液体测量?而我见到过近红外光谱可以液体测量,也可以固体直接扫描测量,红外光谱是不是像近红外一样的测量样品呢?

  • 【红外光谱专家系列讲座】:8月4日 红外光谱联用技术

    【专家讲座】:红外光谱联用技术【讲座时间】:2015年08月04日 10:00【主讲人】:周群 (多年来一直从事红外、拉曼光谱的研究工作。主要研究领域为二维相关光谱,分子光谱法与文物鉴定,中药及食品的宏观质量控制。)【会议简介】第四讲:红外光谱联用技术内容提要:红外光谱显微成像技术的原理与应用,原子力显微镜-红外光谱联用技术的原理与应用,飞秒激光二维红外光谱的原理与应用,拉曼光谱-红外光谱联用技术的原理与应用,气相色谱-红外光谱联用技术的原理与应用,热重分析-红外光谱联用技术的原理与应用,流变仪-红外光谱联用技术的原理与应用。。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名截止时间:2015年08月04日 9:303、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/15664、报名及参会咨询:QQ群—379196738

  • 红外光谱仪与傅立叶变换红外光谱仪的区别

    大侠们,您们好: 红外光谱仪与傅立叶变换红外光谱仪的区别是什么啊,傅立叶红外是不是一种先进的红外啊,能够代替做中药检测用的红外啊。 做空气中的游离二氧化硅检测必须用傅立叶红外吗 谢谢。。

  • 精品新书推荐——傅里叶变换红外光谱仪

    此书系统地介绍了红外光谱的基本概念、傅里叶变换红外光谱仪学的基本原理、傅里叶变换红外光谱仪的结构、红外光谱样品的制备和测试技术、红外光谱数据处理技术、红外附件原理和使用技术、基团的振动频率分析、红外光谱的定量分析和未知物的剖析以及红外光谱仪的保养和维护技术。[color=red]附件已不存在,麻烦重新上传[/color]

  • 红外光谱仪的应用

    红外光谱仪是利用物质对不同波长的红外辐射的吸收特性,进行分子结构和化学组成分析的仪器。红外光谱仪通常由光源,单色器,探测器和计算机处理信息系统组成。根据分光装置的不同,分为色散型和干涉型。对色散型双光路光学零位平衡红外分光光度计而言,当样品吸收了一定频率的红外辐射后,分子的振动能级发生跃迁,透过的光束中相应频率的光被减弱,造成参比光路与样品光路相应辐射的强度差,从而得到所测样品的红外光谱。红外光谱仪的特点如下:1、 只需三个分束器即可覆盖从紫外到远红外的区段;2、 专利干涉仪,连续动态调整,稳定性极高;3、 可实现LC/FTIR、TGA/FTIR、GC/FTIR等技术联用;4、 智能附件即插即用,自动识别,仪器参数自动调整;5、 光学台一体化设计,主部件对针定位,无需调整。红外光谱可以研究分子的结构和化学键,如力常数的测定和分子对称性等,利用红外光谱方法可测定分子的键长和键角,并由此推测分子的立体构型。根据所得的力常数可推知化学键的强弱,由简正频率计算热力学函数等。分子中的某些基团或化学键在不同化合物中所对应的谱带波数基本上是固定的或只在小波段范围内变化,因此许多有机官能团例如甲基、亚甲基、羰基,氰基,羟基,胺基等等在红外光谱中都有特征吸收,通过红外光谱测定,人们就可以判定未知样品中存在哪些有机官能团,这为最终确定未知物的化学结构奠定了基础。红外光谱仪还应用于染织工业、环境科学、生物学、材料科学、高分子化学、催化、煤结构研究、石油工业、生物医学、生物化学、药学、无机和配位化学基础研究、半导体材料、日用化工等研究领域。(选自网络)

  • [讨论]有关红外光谱仪的校验问题

    大家好, 请问各位熟悉红外光谱仪的同行们,有没有曾经操作或者熟悉红外光谱仪的校验过程。在下如今出现一个问题,我们公司的FT-IR红外光谱仪近期需要公司内部的校验,是第一次,以往都是计量所派员来校验的。现在发现一个问题:我们使用的是傅立叶交换红外光谱仪(FT-IR),但国家颁布的计量规程只有色散型红外光谱仪的校验规程(以往到我公司计量的计量所人员也是依据这一规程实施校验的),而众所周知,傅立叶交换红外光谱仪与色散型红外光谱仪两者的工作原理是大不一样的,请问我应该怎样来开展我的校验过程。1.是与计量所人员一样用色散型红外光谱仪的校验规程来校验我的傅立叶交换红外光谱仪;2.还是寻找更适合傅立叶交换红外光谱仪的法定的校验文件进行校验,这样的文件是否存在;3.还是联系红外光谱仪的生产销售商,要求她提供相关型号光谱仪的校验规程,按照这样的规程来进行校验?这样的校验是否合法? 谢谢各位的浏览,并希望大家来帮帮我这个新手,感激不尽!

  • 红外光谱基线向上漂移?

    我用红外光谱分析硬脂酸甘油酯,这种物质溶于热的乙醇溶液,冷却后又会析出,因此我的制样方法是:先做一个溴化钾片,然后在中心位置涂抹一点热的硬脂酸甘油酯的乙醇溶液,待冷却后甘油酯析出,乙醇挥发,然后放在红外下扫描,但基线向上漂移的很厉害,是为什么呢?我也刚开始做红外,不怎么懂,红外光谱基线漂移有哪些因素引起的呢?还有ATR法做出来的谱图与压片法、液膜法和溴化钾片涂抹的这种方法有什么不同?请高手赐教啊!!!

  • 如何选择近红外光谱仪

    如何选择近红外光谱仪

    初从事[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析的人员常常会提出这样的问题:什么样的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器最好?如何选择一台合适的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器?实际上,“最好”仪器的定义是很难确定的,“最好”的仪器也是不存在的。因为对某一特定的仪器所提出的各项要求是随着所需要解决的具体问题的不同而有所差异的。 为了使[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]获得可靠的分析结果,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器必须按照详细的技术规格设计生产。下表反映的就是现在[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器的规范。当然也是使用者选择仪器时的主要依据。[img]http://ng1.17img.cn/bbsfiles/images/2006/01/200601120941_12974_1638147_3.jpg[/img]以上摘自:陆婉珍,袁洪福,徐广通,强冬梅.《现代[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术》.46页

  • 红外光谱

    红外光谱系研究化合物分子结构的有力工具之一,它可广泛应用于化学、皮革、造纸、医学、硅酸盐、食品发酵、生物代谢、石油化工等领域。 红外光谱水仅对单组份进行定性、定量分析,亦可对测定化学反应速度和研究化学反应机理,还可测定分析的键长、键岗、以及推定出分子的立体构型,可根据它的力常数知道化学的强弱。红外光谱可区分由不同原子和化学键所组成的物质以及识别各种同分异构体。可对无机化合物,金属有机化合物组合物进行鉴定。 红外光谱不受样品相态的限制,无论是固态、液态以及气态均可直接测定,甚至对一些表面涂层和不溶、不熔融的弹性体也可直接获得其光谱。

  • 【原创】红外光谱仪

    【原创】红外光谱仪

    http://ng1.17img.cn/bbsfiles/images/2010/09/201009071646_242182_1632831_3.jpg 红外吸收光谱(Infrared absorption spectroscopy, IR)又称为分子振动—转动光谱。当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射,并由其振动或转动运动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。记录红外光的百分透射比与波数或波长关系的曲线,就得到红外光谱。

  • 近红外光谱仪的选购

    初从事近红外光谱分析的人员常常会提出这样的问题:什么样的近红外光谱仪器最好?如何选择一台合适的近红外光谱仪器?实际上,“最好”仪器的定义是很难确定的,“最好”的仪器也是不存在的。因为对某一特定的仪器所提出的各项要求是随着所需要解决的具体问题的不同而有所差异的。为了帮助使用者根据特定的需要选择合适的仪器,本文将根据不同类型、不同设计方式近红外光谱仪器的特点向选用者作简要介绍,以供参考。   为了使近红外光谱获得可靠的分析结果,近红外光谱必须按照详细的技术规格设计生产。下面反应的就是现近红外光谱仪器的规范。当然也是使用者选择仪器时的主要依据。  对现代近红外光谱仪器的要求性能要求: 系统特点及对仪器的要求可靠性: 波长准确,光谱稳定性好多样性: 提供多种测样方式,波长范围宽快速性: 快速扫描系统,多功能计量学软件灵敏性: 信噪比高可分辨性: 分辨率高在线持久性: 可靠性样品导入系统,仪器无运动部件模型可转换性: 波长准确,光谱稳定  近红外光谱仪器不管按何种方式设计,一般由光源、分光系统、测样器件、检测器、数据处理系统和记录仪(或打印机)等六部分构成。  近红外光谱仪的分类比较多,但市场上分类主要还是按照仪器的分光器件不同来分,一般可分为四种主要类型:滤光片型、光栅色散型、博立叶变换型和声光调制滤光器型。其中光栅色散型又有光栅扫描单通道和非扫描固定光路多通道检测之分了。  滤光片型近红外光谱仪可分为固定滤光片和可调滤光片两种形式。固定滤光片型光谱仪是近红外光谱仪器的最早设计形式,这种仪器首先要根据测定样品的光谱特征选择适当波长的滤光片。该类型仪器的特点是设计简单、成本低、光通量大、信号记录快、坚固耐用。但这类仪器只能在单一波长下测定,灵活性较差,如样品的基体发生变化,往往会引起较大的测量误差。可调滤光片型光谱仪采用滤光轮,可以根据需要比较方便地在一个或几个波长下进行测定。这种仪器一般作专用分析,如粮食水分测定仪。由于滤光片数量有限,很难分析复杂体系的样品。  扫描型仪器通过光栅的转动,使单色光按波长高低依次通过测样器件,与样品作用后,进入检测器检测。与滤光片型的近红外光谱仪器相比,色散型近红外光谱仪器具有可实现全谱扫描、分辨率较高、仪器价位适中和便以维护等优点,其最大的弱点是光栅或反光镜的机械轴承长时间连续使用容易磨损,影响波长的精度和重现性,抗震性较差,一般不适合作为过程分析仪器使用。  博立叶变换光谱技术是利用干涩图和光谱图之间的对应关系,通过测量干涩图和对干涩图进行博立叶积分变换的方法来测定和研究光谱的技术。与传统的色散型光谱仪相比,博立叶变换光谱仪能同时测量、记录所有波长的信号,并以更高的效率采集来自光源的辐射能量,具有更高的波长精度、分辨率和信噪比。但由于干涉仪中动镜的存在,仪器的在线长久可靠性受到一定的限制,另外对仪器的使用和放置环境也有较高的要求。  声光可调滤光器(缩写AOTF)是利用超声波与特定的晶体作用而产生分光的光电器件。用AOTF作为分光系统,被认为是90年代近红外光谱仪器最突出的进展。与传统的单色器相比,采用声光调制产生单色光,即通过超声射频的变化实现光谱扫描。光学系统无移动部件,波长切换快、重现性好,程序化的波长控制使这类仪器的应用具有更大的灵活性。声光可调滤光器近红外光谱仪器的这些优点使今年来在工业在线中得到越来越多的应用。但目前这类仪器的分辨率相对较低,价格也较贵。  非扫描固定光路多通道近红外光谱仪器是因为仪器的检测器采用多通道光敏器件而得名。这类仪器的色散系统一般采用平面光栅或全息光栅,与光栅扫描型相比,光栅不需要转动即可实现确定波长范围的扫描。多通道检测器的类型主要有两种:二极管阵列(缩写PDA)和电荷耦合器件(缩写CCD)。该类型仪器测量的波长范围取决于检测器光敏元件的材料(波长范围受到一定限制),如硅基光敏元件的影响范围在短波近红外区域,由于该波i段检测到的主要是样品三级和四级倍频,样品的摩尔吸收系数较低,因而需要的光程往往教长。这类仪器的最大特点是仪器内部无可移动部件,仪器的稳定性和抗干扰性能好;另一个特点是扫描速度快,一般单张光谱的扫描速度只有几十毫秒。这两特点的结合,使该类仪器特别适合作为现场或在线分析仪器使用。多通道型仪器的分辨率取决于光栅性能、检测器的像素以及狭缝的尺寸。在确定波长的范围内,检测器的像素越高,所检测道的样品信息越丰富,但一般像素越高的检测器价格也越高。(选自网络,侵删)

  • 红外光谱仪

    关于红外光谱的图谱解析问题。大家是直接检索还是直接根据谱图自己去解析?公司最近刚买了红外光谱仪+红外显微镜。主要用来分析电子行业的异物,本来得到图谱检索也可以满足公司的要求了,但是领导要求要学会图谱解析。关键整个公司就我一个化学专业,以前也没用过这个,也没学过这方面的知识,我感觉难度相当大,但是领导他们不懂其中的难度在哪里,说也说不明白。我该怎么办呢?

  • 高压红外光谱仪的光程问题

    请教各位师傅一个红外测量问题。我用IR不多,记得以前做IR时都是压片,也见过别人涂液膜来测。现在我想设计一个高压光学池,然后用光纤探头测紫外用的。能不能用光纤探头测红外呢?常压下,紫外和红外仪的光程差的很多,红外只是压片,或是一层膜。而紫外的光程可以到1CM级别。我在想,能不能将普通红外光谱仪接上光纤探头,然后测红外呢?(见到近红外有光纤的仪器买的)在浓度很高或光程太大时,还能得到可用的红外光谱吗?

  • 红外光谱仪在中国的自传

    红外光谱仪在国际上有着悠久的历史,有谁能说说红外光谱仪(红外分光光度计)在中国的发展历程,越具体越好!!!

  • 【分享】红外光谱技术群组分类整理第1期

    原帖网址:http://bbs.antpedia.com/viewthread.php?tid=14049&extra=page%3D1(可直接连接全文资料)一、基本概念及原理1. 红外光谱特征吸收峰的峰高和峰强问题2.红外出峰强弱怎么来定义,什么样的出峰是S,VS,M,W3.二氧化碳是对称的直线分子,怎么会有红外吸收呢4.[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器的主要性能指标5.傅里叶变换红外光谱仪最新进展6.色散型与傅里叶变换红外(FTIR)光谱仪比较7.红外光谱仪视频讲解8.迈克尔逊干涉仪工作视频9.红外分析 1.0IR-Tutor10.FTIR原理及谱图解析二、操作技巧及维护1. SO2气体红外特征峰有哪些?2. 用红外怎么进行定量分析?3.红外光谱吸收峰蓝移该如何分析处理...4.山梨醇红外鉴定疑问5.红外用的溴化钾窗片用什么清洗...6.红外吸收光谱仪的日常维护7.使用KBr压片法时,压片过程中应注意的问题。...8.一个清洗晶片的小细节9.布鲁克红外培训资料——中红外仪器的日常维护.ppt10.布鲁克TENSOR 27 FTIR基本操作规程和日常维护资料11.Nicolet-6700傅立叶变换红外光谱仪作业指导书三、谱图分析软件及网站1.推荐一个下载nicloet omnic 8.0的网址...2.分享一个谱图解析网站,比较不错!...3.哪有红外光谱软件分析软件4.红外谱图库四、红外光谱相关标准及书籍1. 复杂分子的红外光谱2.JJF1054-1999测量不确定度评定与表示3.SNT2003.2-2006 电子电气产品中多溴联苯和多溴联苯醚4.红外光谱在宝石鉴定中的应用5.ADVANCES IN TWO-DIMENSIONAL CORRELATION SPECTROSCOPY6.Sadtler谱图手册7. 聚合物红外光谱分析和鉴定8.红外光谱分析教程9.红外光谱分析100例10.红外光谱的定量分析11.几篇红外光谱文献12.红外光谱在有机化学和药物化学中的应用13.红外光谱分析与新技术五、分析技术及软件技巧1.坐标图数字化2.JJF1054-1999测量不确定度评定与表示3.测量误差及数据处理4. 实验室认可及计量术语资料5.缓冲液配制软件6.科研工作中不可或缺的软件技术7.国家标准编写模版8.好资料当然要大家共享

  • 【分享】红外光谱发展史

    红外光谱发展史雨后天空出现的彩虹,是人类经常观测到的自然光谱。而真正意义上对光谱的研究是从英国科学家牛顿(Newton) 开始的。1666 年牛顿证明一束白光可分为一系列不同颜色的可见光,而这一系列的光投影到一个屏幕上出现了一条从紫色到红色的光带。牛顿导入“光谱”(spectrum)一词来描述这一现象。牛顿的研究是光谱科学开端的标志。从牛顿之后人类对光的认识逐渐从可见光区扩展到红外和紫外区。1800 年英国科学家W. Herschel 将来自太阳的辐射构成一副与牛顿大致相同的光谱,然后将一支温度计通过不同颜色的光,并且用另外一支不在光谱中的温度计作为参考。他发现当温度计从光谱的紫色末端向红色末端移动时,温度计的读数逐渐上升。特别令人吃惊的是当温度计移动到红色末端之外的区域时,温度计上的读数达到最高。这个试验的结果有两重含义,首先是可见光区域红色末端之外还有看不见的其他辐射区域存在,其次是这种辐射能够产生热。由于这种射线存在的区域在可见光区末端以外而被称为红外线。(1801 年德国科学家J.W. Ritter 考察太阳光谱的另外一端,即紫色端时发现超出紫色端的区域内有某种能量存在并且能使AgCl 产生化学反应,该试验导致了紫外线的发现。1881年Abney 和Festing 第一次将红外线用于分子结构的研究。他们Hilger光谱仪拍下了46个有机液体的从0.7到1.2微米区域的红外吸收光谱。由于这种仪器检测器的限制,所能够记录下的光谱波长范围十分有限。随后的重大突破是测辐射热仪的发明。1880年天文学家Langley在研究太阳和其他星球发出的热辐射时发明一种检测装置。该装置由一根细导线和一个线圈相连,当热辐射抵达导线时能够引起导线电阻非常微小的变化。而这种变化的大小与抵达辐射的大小成正比。这就是测辐射热仪的核心部分。用该仪器突破了照相的限制,能够在更宽的波长范围检测分子的红外光谱。采用NaCl作棱镜和测辐射热仪作检测器,瑞典科学家Angstrem第一次记录了分子的基本振动(从基态到第一激发态)频率。1889年Angstrem首次证实尽管CO和CO2都是由碳原子和氧原子组成,但因为是不同的气体分子而具有不同的红外光谱图。这个试验最根本的意义在于它表明了红外吸收产生的根源是分子而不是原子。而整个分子光谱学科就是建立在这个基础上的。不久Julius发表了20个有机液体的红外光谱图,并且将在3000cm-1的吸收带指认为甲基的特征吸收峰。这是科学家们第一次将分子的结构特征和光谱吸收峰的位置直接联系起来。图1是液体水和重水部分红外光谱图,主要为近红外部分。图中可观察到水分子在739和970nm处有吸收峰存在,这些峰都处在可见光区红色一端之外。由于氢键作用,液体水的红外光谱图比气态水的谱图要复杂得多。红外光谱仪的研制可追溯的20 世纪初期。1908 年Coblentz 制备和应用了用氯化钠晶体为棱镜的红外光谱议;1910 年Wood 和Trowbridge6 研制了小阶梯光栅红外光谱议;1918 年Sleator 和Randall 研制出高分辨仪器。20 世纪40 年代开始研究双光束红外光谱议。1950 年由美国PE 公司开始商业化生产名为Perkin-Elmer 21 的双光束红外光谱议。与单光束光谱仪相比,双光束红外光谱议不需要由经过专门训练的光谱学家进行操作,能够很快的得到光谱图。因此Perkin-Elmer 21 很快在美国畅销。Perkin-Elmer 21 的问世大大的促进了红外光谱仪的普及。现代红外光谱议是以傅立叶变换为基础的仪器。该类仪器不用棱镜或者光栅分光,而是用干涉仪得到干涉图,采用傅立叶变换将以时间为变量的干涉图变换为以频率为变量的光谱图。傅立叶红外光谱仪的产生是一次革命性的飞跃。与传统的仪器相比,傅立叶红外光谱仪具有快速、高信噪比和高分辨率等特点。更重要的是傅立叶变换催生了许多新技术,例如步进扫描、时间分辨和红外成像等。这些新技术大大的拓宽了红外的应用领域,使得红外技术的发展产生了质的飞跃。如果采用分光的办法,这些技术是不可能实现的。这些技术的产生,大大的拓宽了红外技术的应用领域。 是用红外成像技术得到的地球表面温度分布和地球大气层中水蒸气含量图。没有傅立叶变换技术,不可能得到这样的图像。图1.2 Perkin-Elmer 21 双光束红外光谱议。该仪器是由美国Perkin-Elmer 公司1950 开始制造,是最早期商业化生产的双光束红外光谱议。红外光谱的理论解释是建立在量子力学和群论的基础上的。1900 年Plank在研究黑体辐射问题时,给出了著名的Plank 常数h, 表示能量的不连续性。量子力学从此走上历史舞台。1911 年W Nernst 指出分子振动和转动的运动形态的不连续性是量子理论的必然结果。1912 年丹麦物理化学家Niels Bjerrum 提出HCl 分子的振动是带负电的Cl 原子核带正电的H 原子之间的相对位移。分子的能量由平动、转动和振动组成,并且转动能量量子化的理论,该理论被称为旧量子理论或者半经典量子理论。后来矩阵、群论等数学和物理方法被应用于分子光谱理论。随着现代科学的不断发展,分子光谱的理论也在不断的发展和完善。分子光谱理论和应用的研究还在发展之中。多维分子光谱的理论和应用就是研究方向之一。

  • 德国布鲁克的红外光谱仪性能如何?

    我们单位现在使用的是德国布鲁克的红外光谱仪,感觉性能、操作等各方面还好。明年计划再买一台红外光谱仪,作为使用者,不知大家对德国布鲁克的红外光谱仪是怎样评价的?我们的第二台红外光谱仪是否可以考虑德国布鲁克的,或者其它的品牌?请大家给出建议,谢谢!

  • 【求助】求石棉的红外光谱图

    现单位要用红外光谱仪检测石棉,目前我只有温石棉的红外光谱图,闪石石棉的五种石棉的红外光谱图都没有。请有闪石石棉红外光谱图的朋友能够慷慨共享,小弟万分感激!

  • 求助~~~~~测试红外光谱

    有几个问题向各位请教:1 测试红外光谱时使用的氯化钠和溴化钾使用的波数范围各为多少???2 为什么红外光谱时连续的曲线图谱??3 压片太厚,红外光谱有何变化???

  • 红外光谱仪的种类和工作原理

    一、红外光谱仪的种类  红外光谱仪的种类有:  ①棱镜和光栅光谱仪。属于色散型,它的单色器为棱镜或光栅,属单通道测量。  ②傅里叶变换红外光谱仪。它是非色散型的,其核心部分是一台双光束干涉仪。  当仪器中的动镜移动时,经过干涉仪的两束相干光间的光程差就改变,探测器所测得的光强也随之变化,从而得到干涉图。经过傅里叶变换的数学运算后,就可得到入射光的光谱。这种仪器的优点:  ①多通道测量,使信噪比提高。  ②光通量高,提高了仪器的灵敏度。  ③波数值的精确度可达0.01厘米-1。  ④增加动镜移动距离,可使分辨本领提高。  ⑤工作波段可从可见区延伸到毫米区,可以实现远红外光谱的测定。  近红外光谱仪种类繁多,根据不用的角度有多种分类方法。  从应用的角度分类,可以分为在线过程监测仪器、专用仪器和通用仪器。从仪器获得的光谱信息来看,有只测定几个波长的专用仪器,也有可以测定整个近红外谱区的研究型仪器;有的专用于测定短波段的近红外光谱,也有的适用于测定长波段的近红外光谱。较为常用的分类模式是依据仪器的分光形式进行的分类,可分为滤光片型、色散型(光栅、棱镜)、傅里叶变换型等类型。红外光谱仪的原理在下面分别加以叙述。  二、滤光片型近红外光谱仪器:  滤光片型近红外光谱仪器以滤光片作为分光系统,即采用滤光片作为单色光器件。滤光片型近红外光谱仪器可分为固定式滤光片和可调式滤光片两种形式,其中固定滤光片型的仪器时近红外光谱仪最早的设计形式。  仪器工作时,由光源发出的光通过滤光片后得到一宽带的单色光,与样品作用后到达检测器。  该类型仪器优点是:仪器的体积小,可以作为专用的便携仪器;制造成本低,适于大面积推广。  该类型仪器缺点是:单色光的谱带较宽,波长分辨率差;对温湿度较为敏感;得不到连续光谱;不能对谱图进行预处理,得到的信息量少。故只能作为较低档的专用仪器。  三、色散型近红外光谱仪器:  色散型近红外光谱仪器的分光元件可以是棱镜或光栅。为获得较高分辨率,现代色散型仪器中多采用全息光栅作为分光元件,扫描型仪器通过光栅的转动,使单色光按照波长的高低依次通过样品,进入检测器检测。根据样品的物态特性,可以选择不同的测样器件进行投射或反射分析。  该类型仪器的优点:是使用扫描型近红外光谱仪可对样品进行全谱扫描,扫描的重复性和分辨率叫滤光片型仪器有很大程度的提高,个别高端的色散型近红外光谱仪还可以作为研究级的仪器使用。化学计量学在近红外中的应用时现代近红外分析的特征之一。采用全谱分析,可以从近红外谱图中提取大量的有用信息;通过合理的计量学方法将光谱数据与训练集样品的性质(组成、特性数据)相关联可得到相应的校正模型;进而预测未知样品的性质。  该类型仪器的缺点:是光栅或反光镜的机械轴承长时间连续使用容易磨损,影响波长的精度和重现性;由于机械部件较多,仪器的抗震性能较差;图谱容易受到杂散光的干扰;扫描速度较慢,扩展性能差。由于使用外部标准样品校正仪器,其分辨率、信噪比等指标虽然比滤光片型仪器有了很大的提高,但与傅里叶型仪器相比仍有质的区别。  四、傅里叶变换型近红外光谱仪器:  傅里叶变换近红外分光光度计简称为傅里叶变换光谱仪,它利用干涉图与光谱图之间的对应关系,通过测量干涉图并对干涉图进行傅里叶积分变换的方法来测定和研究近红外光谱。其基本组成包括五部分:①分析光发生系统,由光源、分束器、样品等组成,用以产生负载了样品 信息的分析光;②以传统的麦克尔逊干涉仪为代表的干涉仪,以及以后的各类改进型干涉仪,其作用是使光源发出的光分为两束后,造成一定的光程差,用以产生空间(时间)域中表达的分析光,即干涉光;③检测器,用以检测干涉光;④采样系统,通过数模转换器把检测器检测到的干涉光数字化,并导入计算机系统;⑤计算机系统和显示器,将样品干涉光函数和光源干涉光函数分别经傅里叶变换为强度俺频率分布图,二者的比值即样品的近红外图谱,并在显示器中显示。  在傅里叶变换近红外光谱仪器中,干涉仪是仪器的心脏,它的好坏直接影响到仪器的心梗,因此有必要了解传统的麦克尔逊干涉仪以及改进后的干涉仪的工作原理。  ⑴ 传统的麦克尔逊(Michelson)干涉仪:传统的麦克尔逊干涉仪系统包括两个互成90度角的平面镜、光学分束器、光源和检测器。平面镜中一个固定不动的为定镜,一个沿图示方向平行移动的为动镜。动镜在运动过程中应时刻与定镜保持90度角。为了减小摩擦,防止振动,通常把动镜固定在空气轴承上移动。光学分束器具有半透明性质,放于动镜和定镜之间并和它们成45度角,使入射的单色光50%透过,50%反射,使得从光源射出的一束光在分束器被分成两束:反射光A和透射光B。A光束垂直射到定镜上;在那儿被反射,沿原光路返回分束器;其中一半透过分束器射向检测器,而另一半则被反射回光源。B光束以相同的方式穿过分束器射到动镜上;在那儿同样被反射,沿原光路返回分束器;再被分束器反射,与A光束一样射向检测器,而以另一半则透过分束器返回原光路。A、B两束光在此会合,形成为具有干涉光特性的相干光;当动镜移动到不同位置时,即能得到不同光程差的干涉光强。  ⑵改进的干涉仪:干涉仪是傅里叶光谱仪最重要的部件,它的性能好坏决定了傅里叶光谱仪的质量,在经典的麦克尔逊干涉仪的基础上,近年来在提高光通量、增加稳定性和抗震性、简化仪器结构等方面有不少改进。  五、传统的麦克尔逊干涉仪工作过程中,当动镜移动时,难免会存在一定程度上的摆动,使得两个平面镜互不垂直,导致入射光不能直射入动镜或反射光线偏离原入射光的方向,从而得不到与入射光平行的反射光,影响干涉光的质量。外界的振动也会产生相同的影响。因此经典的干涉仪除需经十分精确的调整外,还要在使用过程中避免振动,以保持动镜精确的垂直定镜,获得良好的光谱图。为提高仪器的抗振能力,Bruker公司开发出三维立体平面角镜干涉仪,采用两个三维立体平面角镜作为动镜,通过安装在一个双摆动装置质量中心处的无摩擦轴承,将两个立体平面角镜连接。  三维立体平面角镜干涉仪的实质是用立体平面角镜代替了传统干涉仪两干臂上的平面反光镜。由立体角镜的光学原理可知,当其反射面之间有微小的垂直度误差及立体角镜沿轴方向发生较小的摆动时,反射光的方向不会发生改变,仍能够严格地按与入射光线平行的方向射出。由此可以看出,采用三维立体角镜后,可以有效地消除动镜在运动过程中因摆动、外部振动或倾斜等因素引起的附加光程差,从而提高了一起的抗振能力

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制