当前位置: 仪器信息网 > 行业主题 > >

纳米粒径检测仪

仪器信息网纳米粒径检测仪专题为您提供2024年最新纳米粒径检测仪价格报价、厂家品牌的相关信息, 包括纳米粒径检测仪参数、型号等,不管是国产,还是进口品牌的纳米粒径检测仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纳米粒径检测仪相关的耗材配件、试剂标物,还有纳米粒径检测仪相关的最新资讯、资料,以及纳米粒径检测仪相关的解决方案。

纳米粒径检测仪相关的论坛

  • 【每日分享一篇解决方案】BeNano 180 检测脂质纳米粒LNP的粒径

    【每日分享一篇解决方案】BeNano 180 检测脂质纳米粒LNP的粒径

    [align=center][font='arial'][size=21px][color=#548dd4]#[/color][/size][/font][font='arial'][size=21px][color=#548dd4]每日一篇分享一篇解决方案:[/color][/size][/font][/align][align=center][font='arial'][size=21px][color=#548dd4]今日行业领域:[/color][/size][/font][font='arial'][size=21px][color=#548dd4]制药[/color][/size][/font][/align][align=center][font='等线 light'][size=13px][color=#548dd4]BeNano[/color][/size][/font][font='等线 light'][size=13px][color=#548dd4] 180 [/color][/size][/font][font='等线 light'][size=13px][color=#548dd4]检测脂质纳米粒[/color][/size][/font][font='等线 light'][size=13px][color=#548dd4]LNP[/color][/size][/font][font='等线 light'][size=13px][color=#548dd4]的粒径[/color][/size][/font][/align][align=center]关键词:粒径、LNP、药物输送体系[/align]脂质纳米粒(Lipid Nanoparticles,LNP)是使用脂质形成纳米微粒的一种,作为一种高效、安全的药物递送体系,被广泛研究和应用,成为近年来发展最为迅速的制剂剂型之一,由于其制备过程需要进行特殊的工艺化定制,故而脂质纳米粒类制剂也被称为“高端复杂注射剂”。 在基因治疗领域,已经开始使用脂质纳米粒包裹核酸,如mRNA、siRNA、pDNA等,称为核酸脂质纳米粒。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310201333444187_1210_5996718_3.jpeg[/img][/align]在这篇应用报告中,我们使用丹东百特仪器公司最新推出的BeNano 180纳米粒度电位仪检测了分散在水性环境中的LNP的粒径。原理 [size=13px] [/size][size=13px] [/size][size=13px]我们[/size]采用丹东百特公司的BeNano 180纳米粒度仪进行测试。仪器使用波长671 nm,功率50 mW激光器作为光源,设置在173[font='arial']°[/font]角的背向检测器进行散射光信号采集,测试过程中,BeNano 180根据样品的散射特点自动确认检测点位置。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310201333446515_3271_5996718_3.jpeg[/img][/align]样品制备和测试条件该应用中检测了两个LNP采用微流控混合技术来制备核酸脂质纳米粒,该方法相对简便快速,条件温和,同时容易实现生产放大。1#和2#均为悬浮液,通过[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url]注入样品池后直接进行检测。通过BeNano 180内置的温度控制系统开机默认测试温度控制为25℃[font='宋体']±[/font]0.1℃,测试样品的光强、检测点位置、测试时间均通过预测试程序自动进行调节。每一个样品在放入样品池后进行至少三次测试,以检测结果的重复性和得到结果的标准偏差。测试结果和讨论表1. 动态光散射检测脂质体样品结果[table][tr][td]样品[/td][td]Z-均粒径[/td][td]PDI[/td][/tr][tr][td]1#[/td][td]215.9 [font='宋体']± [/font]3.54 nm[/td][td]0.303[/td][/tr][tr][td]2#[/td][td]144.6 [font='宋体']± [/font]0.43 nm[/td][td]0.129[/td][/tr][/table][align=center][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310201333450955_6423_5996718_3.png[/img][/align]图1. 1#样品和2#样品多次测试的粒径分布曲线通过使用动态光散射技术,得到了样品的粒径和粒径分布信息。通过表1中结果可以看到所有样品的粒径都在100-250 nm范围内,粒径结果重复性良好。PDI均在0.1-0.7范围内,说明两个样品均为适中分布。1#样品明显粒径更高,PDI更大,检测的标准偏差也相对较高,说明1#样品的均匀度不如2#样品。[font='宋体'][size=20px][color=#4f5862]产品配置单:[/color][/size][/font][align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310201333451551_79_5996718_3.jpeg[/img][/align][align=center][url=https://www.instrument.com.cn/show/C476061.html]百特纳米 粒度仪BeNano 180[/url]([url=https://www.instrument.com.cn/netshow/SH100350/]丹东百特仪器有限公司[/url])[/align][align=center][/align][url=https://www.instrument.com.cn/application/Solution-949709.html][font='宋体'][size=16px]点击这里[/size][/font][/url][font='宋体'][size=16px][color=#000000]浏览[/color][/size][/font][font='宋体'][size=16px][color=#000000]或[/color][/size][/font][font='宋体'][size=16px][color=#000000]下载原[/color][/size][/font][font='宋体'][size=16px][color=#000000]文档,更多解决方案内容请浏览[/color][/size][/font][url=http://www.instrument.com.cn/application/][font='宋体'][size=16px][color=#0081d7]行业应用[/color][/size][/font][/url][font='宋体'][size=16px][color=#000000]栏目:[/color][/size][/font][align=left][url=http://www.instrument.com.cn/application/][font='宋体'][size=13px][color=#0081d7]http://www.instrument.com.cn/application/[/color][/size][/font][/url][font='宋体'][size=13px][color=#000000]行业应用栏目简介:[/color][/size][/font][font='宋体'][size=13px][color=#000000] [/color][/size][/font][font='宋体'][size=13px][color=#000000] [/color][/size][/font][font='宋体'][size=13px][color=#000000]【行业应用】[/color][/size][/font][size=13px][color=#333333]是仪器信息网[/color][/size][size=13px]专业的行业导购平台。汇聚了行业内国内外主流厂商的优质解决方案及相应的仪器设备。建立了兼顾国家相关规定和用户习惯的专业分类,涉及食品、药品、环境、石化等二十余个使用仪器相对集中的行业领域。并以样品和标准为主线,为用户查找仪器提供一个独特的维度,也为仪器产品提供一个全新的展示渠道。[/size][/align]

  • 求助!!!!纳米粒度测不了电位和粒径

    马尔的ZEN3700纳米粒度及zeta电位测试仪,突然测不出粒径和电位,时好时坏,测粒径就提示这个错误,有没有大神知道是啥问题[img]https://ng1.17img.cn/bbsfiles/images/2023/03/202303132043101126_9770_3570445_3.jpeg[/img]

  • 【原创】动态光散射测定生物大分子粒径,纳米粒径和均一性

    【原创】动态光散射测定生物大分子粒径,纳米粒径和均一性

    下午培训的另一台仪器是动态光散射,主要用于测定生物大分子的粒径和均一性。仪器推荐50nm一下,但是目前,我们有时测试样品可以接近100nm。虽然是生命科学仪器,但是测纳米粒子子相当不错。做蛋白结晶时会经常考虑到蛋白在某种条件下是否聚集,这个就可以通过动态光散射来检测,是单体,二聚 ,还是多聚等等。此仪器同样可以检测pH,盐离子,温度对蛋白质的影响。蛋白的某个参数吧。仪器为Dynapro-99-E [img]http://ng1.17img.cn/bbsfiles/images/2008/09/200809251019_110100_1613111_3.jpg[/img]

  • Zeta电位与纳米粒度仪NANOPLUS

    NanoPlus是一款新型的、具有极宽测试范围的多用途分析仪,它采用光子相关光谱法、电泳光散射以及最新的FST技术来分析纳米粒度仪和zeta电位,并可测定固体以及高浓度悬浮液的zeta电位,符合ISO标准。该仪器采用了高灵敏度测量技术,可同时满足低浓度和高浓度样品纳米粒度与zeta电位分析的要求,浓度范围由0.001%到40%,可检测粒径从0.6nm到10μm,浓度从0.00001%到40%的样品的粒径。该款仪器具有以下技术特点:可测定颗粒在高浓度溶液中的zeta电位可测定固体zeta电位宽粒径范围(0.6nm~10μm),宽浓度范围(粒径测试:0.00001%~40%可精确测量各种浓度的悬浮液用户友好的软件多种样品池选择可选择一次性样品池结合线性相关器和对数相关器相结合的技术对各种样品进行表征可选择自动滴定装置控制悬浮液pH值再有广告链接,直接删除,扣分,加举报——jackcong

  • 粒径和zeta电位检测标准粒子,mRNA纳米脂质颗粒zeta电位检测稀释剂

    刚接触这个检测项目,用的马尔文的仪器,请问大家符合药典规定的粒径和zeta电位检测标准粒子用什么,大家购买的什么品牌的,标准粒径和电位是多少?做mRNA纳米脂质颗粒zeta电位检测大家用什么稀释剂,因为没有测物理常数的仪器,所以用不了较优的产品背景溶液,有什么别的稀释剂可以代替,使检测结果与真实值偏差较小。

  • 【转帖】无机纳米粒子复合乳液的研究进展!

    无机纳米粒子复合乳液的研究进展 王玉玲,邓宝祥 (天津工业大学材料科学与化学工程学院,天津300160) 摘要:对纳米SiO2复合乳液的合成制备作了详细的综述,介绍了共混法、插层法、溶胶-凝胶法和原位分散聚合法,概述了纳米SiO2对复合材料性能的影响及其特性和发展。 关键词:纳米粒子 SiO2 聚丙烯酸 复合乳液 0引言 乳液型复合材料具有价廉、安全无污染及使用方便等特点,在胶粘剂、涂料、皮革、纸张、纤维、纺织等领域已得到广泛应用。但是乳胶膜在某些性能上存在缺点,例如,耐候性差、硬度低、胶膜冷脆热粘等,这样其应用性就会受到限制。如果在聚合物乳液中加入无机纳米粒子制成无机纳米粒子复合乳液,利用纳米材料的特性制备性能优异的复合乳液,则在乳液性能上会有很大的提高,使这种复合乳液比单纯的有机乳液具有更好的应用前景。 这种复合乳液属于有机-无机复合材料,它并非是无机相与有机相的简单加合,而是由无机相与有机相在纳米范围内结合而成,在这两相的界面上有着或强或弱的各种物理键和作用(范德华力、氢键等),这种作用赋予材料各种优异的特性。纳米级材料本身具有的特性效应,SiO2表面具有不饱和的残键及不同键合状态的—OH,促使分子呈现出三维结构形态。同时,也是由于这种三维硅石结构,庞大的比表面积和纳米效应,表面严重的配位不足,表现出极强的活性,所以,对色素粒子的吸附力很强,紧紧包裹在色素粒子的表面,形成屏蔽作用,大大降低了因紫外光的照射而造成的色素衰减,这样就能大大提高涂料的附着力与耐候性。 1纳米粒子的分散方法 纳米粒子由于颗粒小,其表面原子比率很高,比表面积大,所以颗粒间往往会通过范德华力、氢键以及一些共价键的作用而互相吸引,形成二次粒径,三次粒径,即团聚体。这种团聚现象就会使纳米粒子失去其独特性,因此合理经济的分散方法十分重要。 1.1物理机械分散法 利用机械搅拌或超声波的方式使纳米粒子均匀分散。 1.2化学试剂添加法 通过加入表面活性剂等化学试剂降低界面之间的张力,添加吸附稳定剂形成界面膜包覆纳米颗粒,即立体保护作用。 2纳米粒子复合乳液的合成方法 有关纳米复合乳液的制备方法,文献报道最多的有:共混法、插层法、溶胶-凝胶法和原位分散聚合法。 2.1共混法 这种方法是先制备出各种形态的纳米粒子,再通过各种方法(例如机械搅拌、超声波等)将其与制备好的乳液直接共混,是制备纳米杂化材料最简单的方法。为防止纳米粒子团聚,需对其表面进行处理。张宝华等通过超声分散仪将纳米SiO2直接与制备好的PUA离聚物乳液共混制得了复合乳液。用激光粒度分布仪检测表明SiO2在复合乳液中呈现纳米尺寸分布,且发现共混法制得的复合乳液能显著改善涂膜的紫外光吸收性能、热学性能及机械性能。曾丽娟等以无机系硅溶胶为主,有机高分子乳液为辅,二者共混改性硅溶胶苯丙复合涂料,所得的涂料具有无机涂料和有机涂料的特性,又弥补了两者的不足,是非常有前途的环保涂料。并在这篇文章中介绍了最佳共混条件的优化选择,以及颜填料、助剂的选用对涂料性能的影响。 2.2插层法 插层复合法是制备聚合物基无机杂化材料的一种重要方法。利用层状无机物(如硅酸盐类粘土、石墨、V2O5、Mn2O3、二硫化物等)作为无机相主体,将单体或聚合物作为客体插入主体的层间,制得插层型杂化材料。用这种方法制备无机纳米粒子复合乳液主要又分为下面3种。 2.2.1嵌入原位聚合方法 先将高分子单体和层状无机物分别溶解到某一种溶剂中,然后单体在外加条件(如氧化剂、光、热、电、引发剂等)下发生原位聚合,利用聚合时放出的热量克服硅酸盐片层间的库伦力而使其剥离,从而使纳米尺度硅酸盐片层与高分子物基体以化学键的方式结合。王一中、李同年分别以此法制备了聚甲基丙烯酸甲酯(PMMA)/蒙脱土(MMT)和聚苯乙烯(PS)/蒙脱土(MMT)嵌入混杂材料 LeewookJang和范宏制备了苯乙烯-丙烯腈(SAN)/MMT纳米复合材料 官同华等合成了聚甲基丙烯酸甲酯(PMMA)/蒙脱土(MMT)纳米材料,并对其性能进行了表征 金星等采用双-苯基二甲基十八烷基溴化铵(TBDO)作为有机插层剂对钠基蒙脱土进行了有机化处理,该有机化的蒙脱土粒子在苯乙烯单体中很容易地分散并形成稳定的胶体溶液。通过对分散由蒙脱土的苯乙烯进行自由基聚和制备了聚苯乙烯-蒙脱土纳米复合材料,X衍射和透射电镜研究表明形成了原位插层型和部分插层部分剥离型纳米复合材料。且其与纯聚苯乙烯相比,具有更高的相对分子质量,较低的玻璃化转变温度(Tg)和优良的热稳定性。

  • 【原创大赛】Zetasizer Nano系列纳米粒度仪如何看粒度结果

    【原创大赛】Zetasizer Nano系列纳米粒度仪如何看粒度结果

    马尔文公司Zetasizer Nano系列纳米粒度仪的Nano S/ S90,Nano ZS /ZS90是用于测量纳米级的颗粒粒径,其软件的标准报告中提供了多种粒度结果,包括Z-average,PDI,Intensity PSD,Volume PSD,Number PSD等。这些结果具体含义是什么?哪个比较准确?我们在报告实验数据时给哪个数据更有说服力呢?首先我们从仪器的测量原理和计算方法来理解各种粒度结果的含义。Nano系列纳米粒度仪测量粒度大小采用的是动态光散射的原理,简单来说是通过监测纳米颗粒的布朗运动速度来计算粒度大小,监测布朗运动速度实际上是通过监测由于运动带来的颗粒散射光的波动来实现的,关系是:散射光波动快——布朗运动速度快——小颗粒;散射光波动慢——布朗运动速度慢——大颗粒。散射光的波动是通过仪器内的相关器记录的,从而得到随时间变化的相关方程,然后通过不同的方式来解析相关方程从而得到各项结果。Z-average是粒径平均值,PDI是多扩散系数(分布宽度参数),这两个值是通过累积量分析相关方程得到,Z-average是动态光散射技术中得到的最重要、最稳定的数据。而Intensity PSD(光强分布)则是通过另一种方式,即多指数分析得到的。Intensity PSD是由相关方程得到的基础粒径分布,通过Mie理论,可以将其转化为Volume PSD(体积分布),并可以进一步将这种体积分布转化为Number PSD(数量分布)。根据以上的理论基础,我们可以推导出仪器测量和结果理解的一些结论。一、动态光散射对样品的要求。由于仪器检测的直接信号是样品颗粒的散射光信号,散射光的强度遵循瑞利散射定律,与颗粒直径的六次方成正比,这就是说同样数量的大小相差10倍的两种颗粒,大颗粒的光信号是小颗粒的1000000倍。所以用动态光散射来测量粒径就要求所测样品的分布尽量窄,否则小颗粒的信号就极容易被大颗粒覆盖,这也是PDI参数那么重要的原因,理论上样品的PDI大于0.7时,软件就会提示说样品分布太宽,可能不适合用动态光散射的方法测量。二、Z-average平均粒径与Intensity PSD,Volume PSD,Number PSD各类分布粒径的关系。可以说没有直接的关系,它们的唯一关系是都从同一相关方程计算的,但因为是两套完全独立的分析方法——一个是累积量分析,一个是多指数分析——而不像常规那样平均粒径由分布粒径计算出来,这也是为什么很多使用者有时候会发现Z-average和分布图上的峰值相差很远,尤其是PDI比较大的时候(0.3~1)。三、哪种粒径更准确。如果样品符合动态光散射的要求,而且是单峰分布,那么多数情况下还是Z-average更有报道的价值,因为上面说过它是该技术最重要的数据,同时ISO13321(1996) 对动态光散射法的累积量法作了定义。但是,如果样品中有多个组分的颗粒,表现为Intensity PSD中有“稳定”的多峰分布,这种情况报道平均粒径就不能说明真实存在的颗粒的状态了,此时软件的质量报告也会提示说“样品多分散,累积距拟和误差大,建议看分布结果”,建议可以报道Intensity PSD中各个峰的峰值粒径。四、Intensity PSD,Volume PSD,Number PSD哪个更准确。很多纳米材料的研究者会通过电镜观察样品的大小,然后与动态光散射的结果比较,常常会发现动态光散射的Z-average和Intensity PSD都大很多,只有Number PSD结果最小,所以喜欢采用Number PSD的结果,这样看数据有问题吗?从原理上我们已经了解,Intensity PSD才是仪器得到的原始的、基础的分布,Volume PSD,Number PSD都是以它为基础进一步计算而来的,而且计算需要用到所测颗粒的准确的光学参数,才能保证Volume和Number分布的准确性。而这三种分布为什么差异会那么大呢?举例来说,如果把60nm 和 220nm 聚苯乙烯乳液标样1:1 体积混合,那么在三种分布中各自的比例变化如下方图表。由此看出,如果样品的分布是非常窄的单峰,那么三种分布不会有非常大的差异;但是样品的分布宽或者是多峰,在转化过程中体积和数量分布会非常不同,小颗粒的比例会大大的增加。http://ng1.17img.cn/bbsfiles/images/2012/11/201211081641_402490_2597779_3.jpg当与电镜结果做比较时,我们必须认识到两种仪器的原理是完全不同的,电镜的测量是以数量为基础的,动态光散射则是以光强为基础,两者在大小颗粒贡献上的敏感度相差很大,在电镜的视野中就算只有极少量的大颗粒甚至是团聚颗粒,那这些极少的大颗粒在动态光散射中也会有很大的光强贡献。如果要把动态光散射的结果与电镜结果相比,确实要用Number PSD才有可比性,但也要意识到,在使用Number PSD时,分布本身就可能有较大的误差,只能做参考而已。尤其对于分布比较宽的样品,用动态光散射测量时Intensity PSD本身就有变化,这部分变化在转化为Volume PSD,Number PSD时会进一步夸大,造成Volume PSD,Number PSD的重复性很差。Zetasizer Nano系列纳米粒度仪用动态光散射的原理测量纳米材料的粒径,具有准确、简便、快速等优点,同时提供了丰富的结果信息。充分了解这些结果的含义对于正确使用有重要的意义。一般而言,对于单峰的样品,通常用Z-average来报道样品结果;而多峰分布的样品,则要注意根据“质量报告”提示,有时提供Intensity PSD中的峰值大小更有意义。Volume PSD,Number PSD的准确性依赖于用户输入的光学参数,在多数情况下仅供参考。不管报道哪种结果,用户都要注意:每个样品取样后都需要进行3~5次的重复测量,以确保结果的可靠性。

  • 磁性纳米粒子在生物医学方面的应用

    磁性纳米粒子/磁性纳米颗粒(Magnetic Nanoparticles, MNPs)是近年来发展迅速且极具应用价值的新型材料,在现代科学的众多领域如生物医药、磁流体、催化作用、核磁共振成像、数据储存和环境保护等得到越来越广泛的应用。 在科学家、工程师、化学家和物理学家的共同努力下,纳米技术使得生命科学和健康医疗领域在分子和细胞水平上取得很大的进展。磁性纳米粒子是纳米级的颗粒,一般由铁、钴、镍等金属氧化物组成的磁性内核及包裹在磁性内核外的高分子聚合物/硅/羟基磷灰石壳层组成。最常见的核层由具有超顺磁或铁磁性质的Fe3O4或γ-Fe2O3制成,具有磁导向性(靶向性),在外加磁场作用下,可实现定向移动,方便定位和与介质分离。最常见的壳层由高分子聚合物组成,壳层上偶联的活性基团可与多种生物分子结合,如蛋白质、酶、抗原、抗体、核酸等,从而实现其功能化。因此磁性纳米粒子兼具磁性粒子和高分子粒子的特性,具备磁导向性、生物兼容性、小尺寸效应、表面效应、活性基团和一定的生物医学功能。 由于其独特的物理、化学特性,磁性纳米粒子可以简化繁琐复杂的传统实验方法,缩短实验时间,是一种新型的高效率的试剂。目前,磁性纳米粒子在生物医药方面主要应用在磁性分离、磁性转染、核酸/蛋白质/病毒/细菌等的检测、免疫分析、磁性药物靶向、肿瘤热疗、核磁共振成像和传感器等。下文将具体介绍磁性纳米粒子的性质及在生物医学领域的主要应用, 并列出对应于不同应用的具体产品。 磁性纳米粒子的性质 磁性纳米粒子有一系列独特而优越的物理和化学性质。随着合成技术的发展,已成功生产出一系列形状可控、稳定性好、单分散的磁性纳米粒子。磁性纳米粒子具有的磁性使其易于进行富集和分离,或进行定向移动定位。磁效应由具有质量和电荷的颗粒运动形成。这些颗粒包括电子、质子、带正电和负电的离子等。带电颗粒旋转产生磁偶极,即磁子。磁畴指一个体积的铁磁材料中所有磁子在交换力的作用下以同一方向排列。这个概念将铁磁与顺磁区别开来。铁磁性材料有自发磁化强度,在无外加磁场时,也具有磁性。铁磁材料的磁畴结构决定磁性行为对尺寸大小的依赖性。当铁磁材料的体积低于某个临界值时,即成为单磁畴。这个临界值与材料的本征属性有关,一般在几十纳米左右。极小颗粒的磁性来源于基于铁磁材料磁畴结构的尺寸效应。这个结论的假设是铁磁颗粒在具有最低自由能的状态对小于某个临界值的颗粒有均匀的磁性,而对较大颗粒的磁性不均匀。前者较小颗粒称为单磁畴颗粒,后者较大的颗粒称为多磁畴颗粒。当单磁畴颗粒的直径比临界值更进一步降低,矫顽力变成零,这样的颗粒即成为超顺磁。超顺磁由热效应造成。超顺磁纳米粒子在外加磁场作用下具有磁性,而在外加磁场移除后不具有磁性。在生物体内,超顺磁颗粒只在有外加磁场时具有磁性,这使得它们在生物体内环境中具有独特优点。铁、钴、镍等晶体材料都有铁磁性,但由于氧化铁磁铁(Fe3O4)是地球上天然矿物中最具磁性的,且生物安全性高(钴和镍等材料具有生物毒性),因而在多种生物医学应用中,超顺磁形式的氧化铁磁性纳米粒子最常见。 铁磁流体(磁流体)是在外加磁场作用下变得具有很强磁性的液体,它是既具有磁性又具有流动性的新型功能材料。铁磁流体是由纳米级的铁磁或亚铁磁构成的胶体溶液,颗粒悬浮于载体溶液中,载体溶液通常为有机溶剂或水。纳米颗粒完全被表面活性剂包裹以防止聚合成团。铁磁流体通常在无外加磁场时不保持磁性,因而被归类为超顺磁。铁磁流体中的纳米粒子在正常条件下由于热运动不发生沉降。 球形颗粒的磁性纳米粒子的比表面积(表面积与体积之比)与直径成反比。对于直径小于0.1um的颗粒,其表面原子的百分数急剧增大,此时表面效应显著。颗粒直径减小,比表面积显著增大,同时表面原子数迅速增加。当粒径为1nm时表面原子数为完整晶粒原子总数的99%,此时构成纳米粒子的几乎所有原子都分布在表面上,在表面原子周围形成很多悬空键,具有不饱和性,易与其他原子结合形成稳定结构,表现出高化学活性。因此,固定目标分子/原子效率高。[font='

  • 【求助】Malvern3000不能测溶于正己烷中Fe3O4纳米粒子的粒径吗?(粒径10nm左右)

    我是新手,对仪器不熟悉,只是最近要测试样品,样品是Fe3O4@油酸 纳米颗粒,粒径很小,10nm左右,由于是溶于正己烷中的,所以分散剂就选用正己烷。我用了三台仪器测过,两台是马尔文3000的,其中一个,测试的老师帮我设置了参数,像正己烷的折射率,粘度,还有Fe3O4的折射率,但没做成,说那个检测光强度(不知道是不是这么叫的)不够,只有十几,检测的老师说一般要好几百才行;另外一台马尔文的,是学生帮我测得,参数什么的也没设置,自动检测的时候要3000多秒,肯定测不下去了嘛……还有一台仪器是日本产的,具体什么牌子没记住,反正也是没测起来,好像也是那个光强不行。每次不同浓度的样品都试过了,就是不行。 请高手指点呀。是不是这个马尔文粒径仪不能进行正己烷这个体系的检测呀?

  • 纳米碳粉中位粒径的激光粒度检验方法研究

    纳米碳粉中位粒径的激光粒度检验方法研究

    抽空看看我的未发文中还有些啥,发现了这篇文章,发一下供大家试验中参考!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[align=center]纳米碳粉中位粒径的激光粒度检验方法研究[/align][align=center][b]李学哲[sup]1*[/sup],廖杰[sup]2[/sup],马彩云[sup]2[/sup][/b][/align][align=center][b]1 山西省产品质量监督检验研究院 山西太原030012[/b][/align][align=center][b]2 哈尔滨工大集团山西华农纳米科技有限公司 山西长治 047500[/b][/align][b]【摘要】[/b]应用激光粒度分析仪检测纳米碳粉的中位粒径范围是纳米材料粒度检验的方法之一。由于纳米碳粉在生产过程及存放期间,存在纳米粒子的团聚效应,电子显微镜镜检纳米碳粉可以明显看到纳米团聚粒子,用纳米激光分析仪检验直接溶解后的纳米碳粉已不可能。实验选择6种表面活性剂,消除溶解过程中粒子间的表面张力;用三个不同类型的小型搅拌机,搅拌中高速剪切团聚粒子,其结果:表面活性剂K12和一种双向内切式搅拌的搅拌机两种条件进行样品前处理,可以满足用激光粒度分析仪检测纳米碳粉的中位粒径范围的目的。 纳米碳粉作为纳米材料的一类,广泛应用于医药医疗、材料改性、提高肥效等不同行业领域[sup][/sup]。纳米碳粉生产工艺主要有石墨电解法、常压微波等离子射流脱碳法,激光辐照溶液中固体靶法等[sup][/sup]。其中,石墨电解法已基本实现工业化生产。不同材料的粒度检验方法,根据粒度大小、检验的目的等有很多方法。常见的粒度检验方法有筛分法、沉降法、超声波法、图像法、光散射法等。纳米材料由于粒径为纳米级,一般多用图像法的电子显微镜法和激光动态光散射法的激光粒度分析仪法。纳米碳粉产品有溶胶、粉剂、复配等产品已投放市场。纳米碳粉无论团聚与否,均可用电子显微镜分析纳米碳粉。但电子显微镜本体成本高、运行成本高等原因,会出现无法日常控制系列纳米碳粉产品的质量的情况;由于纳米碳粉在存放期间的团聚效应,用较为经济的、直接复溶的方法样品制备,再用激光粒度分析仪测定粒度指标的中位粒径已不可能。若想用激光粒度分析仪检测粒径,较为简单的办法就是采用样品前处理技术,减弱、破坏已团聚的纳米颗粒的团聚力,使其尽可能恢复到原来的未团聚的状态,实际也就是找出一种复原纳米胶液的一种方法,以此证明所检验的纳米碳粉产品来源于纳米材料,是纳米类产品。1 实验1.1材料及仪器1.1.1 材料1.1.1.1纳米碳粉 [img=,482,486]https://ng1.17img.cn/bbsfiles/images/2018/12/201812101554198802_1138_2345874_3.jpg!w482x486.jpg[/img]图1 团聚纳米碳粉的电子显微镜扫描图[img=,690,436]https://ng1.17img.cn/bbsfiles/images/2018/12/201812101554499432_2417_2345874_3.jpg!w690x436.jpg[/img] 图2 碳纳米粉胶液团聚的激光粒子分析过渡图碳纳米粉胶液在生产储存过程中会有团聚伴生,生产之初纳米颗粒范围小于25纳米,放置10天左右已有部分接近50纳米,再过20天左右可以看到部分团聚颗粒粒度已超过100纳米。此后,会形成一定的稳定期,团聚速度放缓。纳米碳粉则不同,团聚分子较稳定,储存过程中团聚的现象变化不大。1.1.1.2表面活性剂种类 表1 不同类型的六种表面活性剂 [table][tr][td] [align=center]序号[/align] [/td][td] [align=center]名称[/align] [/td][td] [align=center]代号[/align] [/td][td] [align=center]类型[/align] [/td][td] [align=center]形态[/align] [/td][/tr][tr][td] [align=center]1[/align] [/td][td]十二烷基硫酸钠[/td][td] [align=center]K12[/align] [/td][td]阴离子表面活性剂[/td][td] [align=center]固体[/align] [/td][/tr][tr][td] [align=center]2[/align] [/td][td]椰油酰胺丙基羟磺基甜菜碱[/td][td] [align=center]CHSB[/align] [/td][td]两性离子表面活性剂[/td][td] [align=center]液体[/align] [/td][/tr][tr][td] [align=center]3[/align] [/td][td]十二烷基苯磺酸[/td][td] [align=center]AS[/align] [/td][td]阴离子表面活性剂[/td][td] [align=center]液体[/align] [/td][/tr][tr][td] [align=center]4[/align] [/td][td]a-烯基磺酸钠[/td][td] [align=center]AOS[/align] [/td][td]阴离子表面活性剂[/td][td] [align=center]液体[/align] [/td][/tr][tr][td] [align=center]5[/align] [/td][td]烷基醇聚氧乙烯醚硫酸钠[/td][td] [align=center]AES[/align] [/td][td]碱性阴离子表面活性剂[/td][td] [align=center]液体[/align] [/td][/tr][tr][td] [align=center]6[/align] [/td][td]烷基醇聚氧乙烯醚[/td][td] [align=center]AEO-9[/align] [/td][td]非离子表面活性剂[/td][td] [align=center]液体[/align] [/td][/tr][/table]1.1.2 仪器1.1.2.1搅拌机 [img=,690,296]https://ng1.17img.cn/bbsfiles/images/2018/12/201812101555201839_4663_2345874_3.jpg!w690x296.jpg[/img] 打蛋机:转速 500~1000转/分钟;料理机:转速≥20000转/分钟;豆浆机:转速≥10000转/分钟。1.1.2.2马尔文激光粒度分析仪(nano 90S 绿标型型号ZEN1590)1.1.3 其他离心机:转速 ≥10000 转/分钟。(使用时转速为6000 转/分钟);电子称:感量0.01克,最大称量不限;量 筒:1000mL;其他玻璃器皿1套。1.2检验方法1.2.1 样品初溶样品称量(0.1~1克) → 加少量水预溶 → 称量表面活性剂 → 加约300 mL水溶解 →溶解后加水至1000 mL→ 备用样品11.2.2 搅拌互溶备用样品1 → 倒入搅拌池搅拌 → 搅拌中若气泡过多自然消泡 → 继续搅拌10分钟→ 放置自然消泡 → 备用样品2互溶是指样品在机械搅拌的外力作用下,实现水、样品和表面活性剂的互溶。1.2.3 样品制备分析备用样品2→ 离心分离6000/rpm/10分钟 → 取上清液 → 激光粒度分析仪分析2 结果与讨论2.1 达不到激光粒度分析仪测试条件的情况 当粒度大于2000 nm时,激光粒度分析仪不能正常分析。这一情况是0.3 % 样品浓度,不加表面活性剂时的测试情况。2.2 选择表面活性剂的分析结果2.2.1样品浓度相同,不同浓度的表面活性剂的分析结果选择的表面活性剂是十二烷基硫酸钠(K12)。样品浓度0.3%;K12浓度范围:0.1%、0.2%和0.5%。未离心分离,直接取静止10min的上清液,测试结果见图4不同浓度的表面活性剂对测试结果的影响。从图中观察无影响。[img=,690,460]https://ng1.17img.cn/bbsfiles/images/2018/12/201812101556184757_9033_2345874_3.jpg!w690x460.jpg[/img]2.2.2样品浓度不同,表面活性剂浓度相同的分析结果 样品浓度0.1%,0.2%,0.3%,0.5%;表面活性剂浓度0.2%,分析结果见图5 。选择的表面活性剂是十二烷基硫酸钠(K12)浓度为0.2%。样品浓度范围:0.1%、0.2%、0.3%和0.5%。未离心分离,直接取静止10min 的上清液,测试结果见图5不同浓度的表面活性剂对测试结果的影响。从图中观察几乎无影响。[img=,690,481]https://ng1.17img.cn/bbsfiles/images/2018/12/201812101557091515_2005_2345874_3.jpg!w690x481.jpg[/img]2.2.3 不同搅拌机、不同表面活性剂的影响 不同搅拌机见下图6的上面2个图;不同表面活性剂见图6。不同搅拌机发现打蛋机的处理结果较为理想,基本可以判定在纳米范围(图6 最上方的左图)。不同表面活性剂影响不大,从测试结果,使用上看,以及K12是固体,倾向于选择K12较为理想。[img=,583,582]https://ng1.17img.cn/bbsfiles/images/2018/12/201812101558527759_2242_2345874_3.jpg!w583x582.jpg[/img]3 结论 碳纳米粉的粒径检测,简单的办法就是采用样品前处理技术,减弱、破坏已团聚的纳米颗粒的团聚力,使其尽可能恢复到原来的未团聚的状态,以此证明所检验的纳米碳粉产品来源于纳米材料,是纳米类产品。本实验选择6种表面活性剂,消除溶解过程中粒子间的表面张力;用三个不同类型的小型搅拌机,搅拌中高速剪切团聚粒子,其结果:选择表面活性剂K12和一种双向内切式搅拌的搅拌机打蛋机的两个样品前处理条件进行样品处理,可以满足用激光粒度分析仪检测纳米碳粉的中位粒径范围的目的。参考文献(略)

  • 纳米颗粒的粒径问题

    一直在做Au的纳米颗粒方面的东西,有个问题一直比较困扰。我的颗粒理论是0.8-1 nm的,粒径分布比较均匀,但是观察时有这么一个问题:如果简单分散到碳膜上(普通碳膜,非超薄),那么颗粒在1.0 -1.1nm左右,但如果分散到纳米线上,悬空观察,则是0.9 nm左右。后者应该比较可信,因为纳米线有特征晶格条纹做内标。前者应该也可以,是用金标样做过校正的。那么是不是碳膜的厚度影响了纳米颗粒的粒径测量?还是说在分散到纳米线上和分散到碳膜上,颗粒发生了一定的形变?多谢!

  • 【资料】DelsaNano C 纳米级激光粒径仪

    我们公司新买台DelsaNano C 纳米级激光粒径仪,不知各位有没有用过引仪器,我们交流下注意、关键点:1,测粒径时,与稀释用的纯水,溶剂的粘度,屈折率有很大的关系,2,最好把稀释用的纯水,溶剂温度调整到所需的温度,如25度,更能检测出准确的结果,3,样品光强调到蓝色标,如果各位有更好的、更多的心得,希望能大家交流下,

  • 【求助】请教各位,有没有人知道用什么仪器可以测定纳米粒子的成分!

    【求助】请教各位,有没有人知道用什么仪器可以测定纳米粒子的成分!

    实验中发现样品表面附着有很多纳米粒子,粒径大概在10-30纳米左右,能谱测定区域太大,成分不准确,高分辨俄歇也做过,好象也没有做出它和周围区域成分上的差别来,请教各位,有没有人做过这方面的东西,能不能给点意见!万分感谢了![color=red]【由于该附件或图片违规,已被版主删除】[/color][img]http://ng1.17img.cn/bbsfiles/images/2007/06/200706282342_56649_1472541_3.jpg[/img]

  • 用于光子相关纳米粒度仪的数字相关器

    用于光子相关纳米粒度仪的数字相关器

    用于光子相关纳米粒度仪的数字相关器动态光散射原理(光子相关普法PCS和光子交叉相关普法pccs)的纳米激光粒度仪的关键技术是提取悬浮液在溶液中的纳米颗粒的散射光的自相关函数或互相关函数,计算纳米颗粒的扩散系数,从而分析颗粒粒度。数字相关器是基于动态光的散射原理(光子相关光谱法PCS和光子交叉相关普法pccs)的粒度测试技术中提取散射光信号的自相关函数和互相关函数的装置。目前,国内应用较多此类装置主要是进口美国Brookhaven公司BI-9000AT、BI-9010AT和Turbocorr数字相关器,这些装置只能完成自相关运算而无法进行互相关运算,因此只适合用于pcs法测试纳米颗粒粒度,而无法适用于PCCS法测试纳米颗粒粒度,从而对测试环境、所测样品浓度以及测试稳定性等方面具有较大的局限性,只有制作专用大规模集成电路(ASIC),或基于DSP技术,或多片芯片及联组成,不但有很大的局限性,而且价格昂贵。另外,国内有人尝试采用软件的方式实现数字相关器,即先用光子计数器将散射光光子计数并储存在存储器中,然后根据计算计算机软件将其数据从存储器中读出进而进行相关运算,虽然这样能计算出散射光强的相关函数,但由于软件所需的处理时间内的光子丢失造成计算的相关函数偏差较大。因此,采用软件的数字相关器实时性很差,不能满足颗粒粒度分析的要求。微纳专利的用于光子相关纳米激光粒度仪的数字相关器,是一种基于动态光散射原理测试纳米及亚微米颗粒粒度测试技术中用于获得散射光信号自相关函数和互相关函数的数字相关器。本专利发明实现了光子脉冲技术、自相关运算、互相关运算以及与计算机通讯功能,具有采样速度快、延迟时间范围广、相关通道多的特点,完全满足纳米颗粒粒度测试中获取高速变化的动态散射光信号的自相关函数和互相关函数的高难度需求。 winner802 纳米激光粒度仪http://ng1.17img.cn/bbsfiles/images/2015/12/201512030937_576113_3050076_3.jpg产品简介:Winner802是我公司最新推出的基于动态光散射原理的纳米激光粒度仪,同时也是国内首款采用数字相关器的纳米激光粒度仪。本款仪器采用我公司自主研制的高速数字相关器和高性能光电倍增管为核心部件,具有操作简便、测试快捷、分辨率高等特点。适用范围:Winner802适用于各种纳米级、亚微米级固体颗粒与乳液。技术参数:规格型号Winner802执行标准 GB/T 19627-2005/ISO 13321:1996 GB/T 29022-2012/ISO 22412:2008测试范围1-10000nm(与样品有关)浓度范围0.1mg/ml--100mg/ml(与样品有关)准确度误差1%(国家标准样品D50值)重复性误差1%(国家标准样品D50值)激光光源光纤半导体激光器,λ= 532nm, 探测器光电倍增管(PMT)散射角90o样品池体积4mL温控范围5-40 ℃(精确到0.1℃)测试速度5 Min体积480mm×270mm×170mm重量12Kg数字相关器主要参数自相关通道:256 基线通道:4最小分辨时间:6ns 延迟时间:100ns-10ms(可调) 运算速度:162M/S产品特点和优势:先进的测试原理采用动态光散射原理和光子相关光谱技术,根据颗粒在液体中的布朗运动速度测定颗粒大小。大小颗粒运动速度不同,激光照射这些颗粒,不同大小的颗粒将使散射光发生快慢不同的涨落起伏。光子相关光谱法就根据特定方向的光子涨落起伏分析其颗粒大小。 极高的分辨能力使用PCS技术测定纳米级颗粒大小,必须能够分辨纳秒级信号起伏。本仪器的核心部件采用我公司研制的CR256数字相关器,具有识别8ns的极高分辨能力和极高的信号处理速度。 高灵敏度和信噪比采用专业级高性能光电倍增管(PMT),对光子信号具有极高的灵敏度和信噪比。 超强的运算能力采用自行研制的高速数字相关器CR256进行数据采集与实时相关运算,其数据处理速度高达162M,从而实时有效地反映颗粒的动态光散射信息。Winner802光子相关纳米激光粒度仪是国家科技型中小企业创新基金的项目成果,也是过内首款采用动态光散射原理的纳米粒度仪。其测量原理建立在液体颗粒布朗运动基础之上,颗粒越小,运动速度越大,运动速度越慢。它采用HAMAMATSU高性能光电倍增管和由微纳自主研发的高速数字相关器作为核心部件,通过测试某一角度的散射光的变化并求出自相关函数(即扩散系数),根据Stokes-Einstein方程计算出颗粒粒径及分布,它具有快速、高分辨率、重复及准确等特点,同时还是纳米颗粒粒度测试的首先产品。

  • 【求助】纳米粒子能进GCMS吗

    请问大家 我的样品是用一种纳米粒子催化剂催化而来 纳米粒子经离心后大部分已除去 但因离心机达不到那么高的转速 还有一定量的残留 而且这种纳米粒子会团聚 我这样的样品可以进GCMS吗

  • 美首次获得纳米粒子内单原子三维图像

    科技日报 2012年03月24日 星期六 本报讯 据美国物理学家组织网3月21日报道,美国科学家在3月22日出版的《自然》杂志上表示,他们发明了一种直接测量纳米材料原子结构的新方法,让他们首次得以看见纳米粒子内部的情况,并获得其单个原子及原子排列的三维图像。最新研究有望大大改进医学和生物学等领域广泛使用的X射线断层照相术获得图像的清晰度和质量。 加州大学洛杉矶分校物理学和天文学教授兼加州纳米系统研究所研究员苗建伟(音译)领导的团队使用一个扫描透射电子显微镜,在一个直径仅为10纳米的微小金粒子上方扫射了一束狭窄的高能电子。这个金纳米粒子由成千上万个金原子组成,每个金原子的大小仅为人头发丝宽度的百万分之一,它们与通过其上的电子相互作用,产生的阴影包含有金纳米粒子内部结构的信息,这些阴影被投射到扫描镜下方的一个探测器上。 研究小组从69个不同的角度进行测量,将每个阴影产生的数据聚集在一起,形成了一个纳米粒子内部的三维结构图。使用这种名为电子断层摄影术的方法,他们能直接看到单个原子的情况以及单个原子在特定的金纳米粒子内的位置。 目前,X射线晶体照相术是让分子结构内的原子三维可视化的主要方法。然而,这一方法需要测量很多几乎完全一样的样本,然后再将得到的结果平均。苗建伟说:“一般平均需要扫描数万亿个分子,这会导致很多信息丢失。而且,自然界中的大部分物质都是结构不如晶体结构那么有序的非晶体。”他表示:“现有技术主要针对晶体结构,目前还没有直接观察非晶体结构内部原子的三维情况的技术。探索非晶体材料的内部情况非常重要,因为结构上一点小小的变化都会大大改变材料的电学属性。例如,半导体内部隐藏的瑕疵会影响其性能,而新方法会让这些瑕疵无所遁形。” 苗建伟和他的同事已经证明,他们能为一个并非完美的晶体结构(比如金纳米粒子)摄像,晶体可小至0.24纳米,一个金原子的平均大小为0.28纳米。实验中的金纳米粒子由几个不同的晶粒组成,每个晶粒形成一块拼图,其中的原子采用些许不同的模式排列。纳米结构具有隐藏的晶体断片和边界,同由单一晶体结构组成的物质不同,新方法首次在三维层面实现了纳米粒子的内部可视化。 (刘霞)

  • 纳米粒子递送药物技术有新进展

    蛋白质“通行证”让纳米粒子通过免疫系统2013年02月25日 来源: 中国科技网 作者: 常丽君 中国科技网 讯人体免疫系统能识别并摧毁外来物。除了细菌、病毒,递送药物的纳米粒子、植入的起搏器和人工关节等也是外来物,同样会引发免疫反应,导致药物失效、排斥或发炎。据物理学家组织网2月21日报道,美国宾夕法尼亚大学科学家开发出一种新方法,给这些治疗设备贴上蛋白质“通行证”,让它们能顺利通过人体的防御系统。相关论文发表在最近的《科学》杂志上。 “身体对入侵的外来物会一视同仁地加以排斥。”论文第一作者、宾夕法尼亚大学分子与细胞生物物理学实验室研究生派尔·罗德里格斯说,这是由身体天然免疫系统所引发的。这一过程涉及多种细胞,如巨噬细胞能发现、吞掉并破坏入侵者;血清蛋白会黏在目标物上,引起巨噬细胞注意,一旦巨噬细胞确定黏住的是外来物就会吞掉它,或发信号召集其他巨噬细胞一起来包围它。 为避免纳米粒子引发天然免疫反应,早期的办法是给它们涂一层高分子的“刷子外衣”,这些“刷子”从纳米粒子中伸出来,阻止各种血清蛋白黏在它表面。但这只能暂缓一时而不能最终解决问题。宾夕法尼亚大学工程与应用科学学院化学与生物分子工程教授丹尼斯·迪斯科和研究小组另辟蹊径:让巨噬细胞相信纳米粒子是“自己人”而放过它们。 早在2008年,迪斯科小组发现人体细胞膜上有一种叫做CD47的蛋白,它能与巨噬细胞受体SIRPa结合。就像巡警检查人们的通行证,CD47蛋白会告诉巨噬细胞是“自己人,别吃我”。随后有其他研究人员破解了CD47和SIRPa的连接结构。 利用这些信息,迪斯科小组绘制出了执行类似CD47蛋白功能所需的最小氨基酸序列,并将这种“小肽”折叠起来作为固体“通行证”。他们用化学方法合成了这种小肽,将其黏附在抗癌药物递送粒子上,然后注射到小鼠体内检验其功效。这些小鼠经过基因改造,其巨噬细胞具有和人类相同的SIRPa受体。 研究人员给小鼠注射了两种纳米粒子:一种携带小肽通行证,另一种没有,然后检测小鼠免疫系统要多久能识别出来。“我们每10分钟抽一次血,检测两种纳米粒子各剩下多少。”罗德里格斯说,“最初注射两种粒子的比例是1∶1,20分钟到30分钟后,有小肽的粒子数是没有小肽的4倍。” “这证明小肽确实抑制了巨噬细胞的反应。我们引起它们之间的互动,然后又克服了它。”迪斯科说。对治疗用的纳米粒子而言,它们只需活到发现目标,不必无限期地留在体内,即使多出半小时时间已能带来很大利益;而对起搏器之类的长久植入体内的设备来说,则需要另外的表面蛋白结合物,让它们能和免疫系统长期和平共处。 研究人员还指出,这些小肽在进入实际应用前,还需进一步研究,将其减少到只有几个氨基酸。这一步很关键,通行证分子越简单,就越容易合成。如果能在一台机器上统一制造,并能方便地修改以适应多种植入物和注射剂,就能粘黏在多种药物递送工具上,也能黏在专门抗体上瞄准癌细胞或其他疾病组织。(常丽君) 《科技日报》 2013-02-25 (二版)

  • 【求助】透射电镜测纳米粒形态!

    哪位高手能帮我解决这个问题,小女子这厢有礼了!我做的时一种高分子物质为载体的纳米粒,高分子物质在PH大于7时会溶解,我用3%磷钨酸染色,观察时视野里都是黑色的不规则圆球,我查看相关文献,发现磷钨酸是负染,粒子的颜色应该是白色的,而磷钨酸应该是黑色的,我不知道我的问题出在哪里,有没有哪位大侠帮帮忙,多谢了!!!

  • 【分享】粒径检测仪

    与大家共享粒径检测仪[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=36098]超细微粒粒径检测仪[/url]

  • 【资料】纳米粒子在生物检测方面的应用综述专集

    半导体纳米粒子,金纳米粒子在生物检测方面的应用综述专集.[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=103910]Quantum Dots in Biological and Biomedical[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=103911]Quantum dots in biological and biomedical research- Recent progress and present challenges [/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=103912]Monolayer-protected nanoparticle–protein interactions[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=103913]Review in Nano-protein-DNA[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=103914]Nanoparticles in biomolecular detection[/url]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制