最近了解到一家德国nanofaktur公司的纳米位移台[url=http://www.nanofaktur.com]www.nanofaktur.com[/url]大家有谁使用过?给点建议啊
近日,欧盟提议,将纳米材料划入欧盟的“REACH”系统(负责化学物质的注册、评估、批准、限制)中,并要求在纳米产品的使用标签上,标明其含有纳米材料。比利时消费者保护和环境保护的部长PaUL Magnette在本周举行的关于纳米材料的可追溯性会议上称,消费者日常生活中使用的纳米材料的数量正在呈上涨的趋势,但消费者对纳米材料并不了解。当前的法律法规中,并没有关于纳米材料的使用标签要求以及它可能会给消费者带来的潜在危险,这一点是不能被民众接受的。此外,Magnette表示,使纳米材料被人们普遍接受和认可的唯一途径是,减少其使用功效中的不确定因素。据了解,到目前为止,全球并未有任何国家制定出关于纳米科技的详细法规。
[B][center]什么是纳米技术 [/center][/B] 纳米是长度单位,原称"毫微米",就是10-9(10亿分之一米)。纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在1至100纳米范围内材料的性质和应用。 从具体的物质说来,人们往往用"细如发丝"来形容纤细的东西,其实人的头发一般直径为20-50微米,并不细。单个细菌用肉眼看不出来,用显微镜测出直径为5微米,也不算细。极而言之,1纳米大体上相当于4个原子的直径。 纳米技术包含下列四个主要方面: 第一方面是纳米材料,包括制备和表征。在纳米尺度下,物质中电子的放性(量子力学学性质)和原子的相互作用将受到尺度大小的影响,如能得到纳米尺度的结构,就可能控制材料的基本性质如熔点、磁性、电容甚至颜色。而不改变物质的化学成份。用超微粒子烧成的陶瓷硬度可以更高,但不舱裂:无机的超微粒子灰分在加入橡胶后,将粘在聚合物分子的端点上,所做成的轮胎将大大减小磨损和处长寿命。 第二方面是纳米动力学,主要是微机械和微电机,或总称为微型电动机械系统(MEMS),用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等。MEMS用的是一种类似于集成电器设计和制造的新工艺。特点是部件很小,刻蚀的深度往往要求数十至数百微米,而宽度误差很小。这种工艺还可用于制作三相电动机,用于超快速离心机或陀螺仪等。在研究方面还要相应地检测准原子尺度的微变形和微摩擦等。虽然它们目前尚未真正进入纳米尺度,但有很大的潜在科学价值和经济价值。 第三方面是纳米生物学和纳米药物学,如在云母表面用纳米微粒度的胶体金固定 DNA的粒子,在二氧化硅表面的叉指形电极做生物分子间互作用的试验,磷脂和脂肪酸双层平面生物膜,DNA的精细结构等。有了纳米技术,还可用自组装方法在细胞内放入零件或组件使构成新的材料。新的药物,即使是微米粒子的细粉,也大约有半数不溶于水;但如粒子为纳米尺度(即超微粒子),则可溶于水。 第四方面是纳米电子学,包括基于量子效应的纳米电子器件、纳米结构的光/电性质、纳米电子材料的表征,以及原子操纵和原子组装等。当前电子技术的趋势要求器件和系统更小、更快、更冷。"更小"是指响应速度要快。"更冷"是指单个器件的功耗要小。但是"更小"并非没有限度。 纳米技术是建设者的最后疆界,它的影响将是巨大的 在1998年的四月,总统科学技术顾问,Neal Lane 博士评论到,如果有人问我哪个科学和工程领域将会对未来产生突破性的影响,我会说该个启动计划建立一个名为纳米科技。"大挑战"机构,资助进行跨学科研究和教育的队伍,包括为长远目标而建立的中心和网络。一些潜在的可能实现的突破包括: 把整个美国国会图书馆的资料压缩到一块像方糖一样大小的设备中,这通过提高单位表面储存能力1000倍使大存储电子设备储存能力扩大到几兆兆字节的水平来实现。 由自小到大的方法制造材料和产品,即从一个原子、一个分子开始制造它们。这种方法将节约原材料和降低污染。 生产出比钢强度大10倍,而重量只有其几分之一的材料来制造各种更轻便,更省燃料的陆上、水上和航空用的交通工具。 通过极小的晶体管和记忆芯片几百万倍的提高电脑速度和效率,使今天的奔腾Ⅲ 处理器已经显得十分慢了。 运用基因和药物传送纳米级的MRI对照剂来发现癌细胞或定位人体组织器官 去除在水和空气中最细微的污染物,得到更清洁的环境和可以饮用的水。 提高太阳能电池能量效率两倍。
一、 研究意义和目的 人类正面临着环境污染的巨大压力。污水中成分复杂,浓度亦不相同,利用光催化技术可将多种有机污染物完全矿化为二氧化碳、水及其他无机小分子或离子;将高毒性的CN-氧化为CNO-,CrO42-还原为Cr3+,来降低它们的毒性;还能将[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]体系中的氮氧化物分解并将有机污染物氧化。如何提高光催化反应的光量子产率,是光催化大规模应用面临的主要难题之一。晶粒尺寸减小到一定程度后,光能隙蓝移,对应于更高的氧化-还原电位,因而有更强的氧化-还原能力;另外晶粒尺寸减小后光生载流子迁移到晶粒表面的时间大大缩短,有效地减少了光生电子和光生空穴的体相复合。因此,制备高比表面积的超细二氧化钛纳米颗粒有望能显著地提高其光催化活性。 我们课题组的研究目标是利用价廉的含钛无机物为主要原料,制备锐钛矿相、金红石相、两相的混晶等多种结构的二氧化钛纳米晶、高比表面积的无定形二氧化钛和由介孔与二氧化钛纳米晶构筑的团聚体。利用苯酚的光催化氧化反应和铬酸根的光催化还原反应为模型,来考察不同结构的纳米二氧化钛的光催化活性。这些研究成果对光催化的基础研究、金红石相二氧化钛纳米晶的应用和高性能的光催化制备有重要的指导意义和借鉴作用。 1.不同结构纳米二氧化钛的制备与性能 以钛醇盐为前驱体,用沉淀法或溶胶-凝胶法都能制备出无定形或结晶度较差的锐钛矿相(anatase)二氧化钛。要获得金红石相(rutile)需经高温煅烧,大约在500t开始锐钛矿相?金红石相转变(具体温度与制备条件有关),要获得纯金红石相需在8000C左右煅烧2h。实际上,金红石相是常温下的稳定相,但在通常条件下难以合成。国内生产的钛醇盐主要是钛酸丁酯,含钛量不高且价格贵,文献中的数据表明,用钛醇盐为原料难以获得高比表面积(大于200m2/g)和超细尺寸的二氧化钛纳米晶(小于10nm)。而且,这种方法得到的粉体往往含有较多的有机物,这些有机物会降低二氧化钛的催化活性。因此,用醇盐得到的二氧化钛需用煅烧的方法来改善结晶度和除掉有机物。我们课题组找到了用廉价原料制备不同晶相的高性能二氧化钛纳米粉体的方法。高温条件下金红石相二氧化钛纳米晶的生长速度快,高温[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]反应(如氯化法)也难以获得金红石相二氧化钛纳米晶。二氧化钛纳米晶在液相介质中,很难分离和回收。文献曾报道用模板剂来合成介孔二氧化钛,但墙体二氧化钛是无定形的,且3500C煅烧介孔开始坍塌,尚不能完全烧掉模板剂。因此,这种介孔并不适合作光催化剂。 我们用四氯化钛为主要原料,通过控制水解条件可以得到锐钛矿相、金红石相以及混晶等多种结构的二氧化钛纳米晶、高比表面积的无定形二氧化钛和三维无序结构的介孔二氧化钛。图1和图2分别为它们的x射线衍射图(XRD)和透射电镜照片(TEM)。 纳米粉体有着更高的光催化活性,但在应用中面临的主要问题是它们难以分离和回收。为了解决这一难题,可将二氧化钛负载在分子筛或介孔材料上,Ying曾制备了二氧化钛介孔材料,但350℃煅烧后孔开始坍塌。这样低的煅烧温度尚不能烧掉孔内的模板剂剂,作为墙体的二氧化钛是非晶的,并不适合于用作光催化剂。我们通过溶胶-凝胶法制备了含少量二氧化硅的钛硅复合氧化物,利用二氧化硅网络阻止煅烧过程中二氧化钛的传质过程从而抑制品粒长大和相变。钛硅复合粉体中二氧化钛晶化后,用化学法洗去二氧化硅,可以得到高比表面积的介孔二氧化钛。与现有文献相比,这种介孔材料的突出特点是:①墙体为锐钛矿相,适合作光催化剂;留颗粒尺寸为10mm级,是一次粒径为1nm的锐钛矿相和介孔构筑的团聚体,既保留了纳米晶高比表面积的特点又可用过滤的方法来分离和回收;③可用光还原的方法在孔壁沉积出贵金属岛,来实现电子和空穴的分离和氧化过程和还原过程的分隔。我们知道铂的密度是锐钛矿相二氧化钛的5.6倍,使用过程中铂原子簇会从颗粒表面脱落。沉积在孔壁上的铂位于孔构筑的笼中,能延长负载珀的光催化剂的使用寿命。 2.发现了不同结构纳米二氧化钛的光催化活性中的一些新现象 苯酚是常见的有机污染物,汽提法不过是将有机污染物由一种介质转移到另一种介质,没有真正降解;利用光催化技术可将苯酚等污染物降解(为二氧化碳和水,实现完全矿化。铬(VI)有致癌作用,并且不易被吸附剂吸附,因而难以固定。利用光催化技术,可以把铬(VI) 还原为毒性较低的铬(Ⅲ),在中性或弱碱性介质中,铬(Ⅲ)可以转化为Cr(OH)3沉淀,能够从溶液中分离出来。选择这两种最常见的污染物来考察二氧化钛纳米晶的光催化活性,发现了一些新现象并得到了有重要意义的结果。 我们首次在国际上报道了超细锐钛矿相二氧化钛纳米晶在苯酚的光催化降解反应中对其深度矿化有更高的选择性。不往反应体系中通人氧气,利用搅拌时空气中的溶解氧来促进苯酚的光催化氧化,发现粒径为3.8nm的锐钛矿相二氧化钛对苯酚的深度矿化的选择性最高,而混晶和金红石相的超细纳米晶的选择性较低。这一发现表明用超细锐钛矿相二氧化钛纳米晶作为光催化剂时,生成的有机中间产物少,不会造成降解产物对水体的二次污染。图3为不通氧条件下,主要的几种二氧化钛纳米晶使苯酚深度矿化的选择性差异3.8nm(A) 6.8nm(A) 14.1nm(A) mixed-1 rdxexl-2 7.2nm(R)Photo0Zcatalysts不同晶相的纳米二氧化钛对苯酚深度矿化的选择性mixed-l=混晶,4.4nm(R)+5.9nm(A);mixed-2=混晶,14.2nm(R)+10.7mm(A).不论是否往反应体系中通人氧气,合成的混晶均表现出最高的催化活性。总有机碳(TOC)含量的结果表明,不通人氧气,用合成的混晶、6.8nm的锐钛矿和7.2nm的金红石相二氧化钛纳米晶作为光催化剂,反应4h后反应体系中TOC分别下降61.2%、50.5%和47.1%。通入氧气后,反应速率迅速提高,反应1.5h后,使用这三种催化剂后,反应体系中的TOC分别下降97.6%、84.5%、91.5%;作为对比,我们选择商品二氧化钛(锐钛矿相,比表面积等于9m2/g)进行光催化实验,同样条件下其TOC含量仅下降21.2%。由此可见纳米晶的高催化活性。紫外-可见光谱表明混晶的漫反射吸收谱不同于两相的机械混合物:它们在可见光区有一较弱的吸收带,高分辨电镜照片表明混晶中不同形貌的纳米颗粒在晶面尺度上形成毗连结构,这种晶面毗连形成了过渡能态,有利于提高其光催化活性。优化混晶中两相的比例、并设计和制备出更多不同相的毗连晶面的高活性光催化剂的工作正在进行之中。 铬酸根的降解反应中,锐钛矿相超细纳米品表现出很高的光催化活性,催化活性随着粒径的减小而大幅度提高。在酸性条件下,纳米晶显示更高的光催化活性,半小时铬酸根的除去率超过90%。从不同晶粒尺寸的锐钛矿相二氧化钛的UV-vis吸收谱来看,其尺寸效应不如金红石相二氧化钛明显。也就是说,锐钛矿相晶粒细化后,光能隙的蔬移并不明显。二氧化钛纳米晶中光生电子由晶粒内部迁移到晶粒表面所需的时间(t)可由下列公式来估算:t=r2/p2D (1)r为二氧化钛纳米晶的半径,D为载流子的扩散系数。电子的扩散系数(De)为2×10-2cm2/s,由此算得粒径为6.8nm、lOnm和lOOnm的二氧化钛中电子由晶粒内部迁移到晶粒表面所需的时间约为0.58ps(皮秒)、1.25ps和125ps。可见粒径细化后,光生电子迁移到晶粒表面所需的时间大大减少。这样可有效地减少了光生电子和光生空穴在体相内的复合,有更多的光生电子参加氧化-还原反应,因而有更高的光催化活性。因此,在铬酸根的光催化还原反应中,晶粒细化后,光生电子迁移到纳米晶表面的时间大大缩短,减少了光生载流子的体相复合是其光催化活性有显著尺寸效应的主要原因。 需要强调指出的是无论在苯酚的光氧化反应还是铬酸根的光还原反应中,介孔二氧化钛的光催化活性大大高于钛硅复合粉体,负载0.22 wt%的Pt后,光催化活性大幅度提高。
请各位高手指教,我想分析纳米二氧化钛的光催化性能,所以想做个光催化降解实验,因为希望可以发文章,所以得有图表之类的,因此想找个有分光光度计的地方做这个实验,不知道哪里可以做啊谢谢各位啦
12月15日报道,台湾“国研院”纳米(台称:“奈米”)组件实验室领先全球,开发出全球最小的9纳米功能性电阻式内存(R-RAM)数组晶胞;这个新内存在几乎不需耗电的情况下,1平方厘米面积内可储存1个图书馆的文字数据,将让信息电子产品的轻薄短小化有无限发挥的可能性,这项技术预计在5到10年内进入量产。 台湾“国研院”院长陈文华,以及负责“9纳米超节能内存”开发的何家骅博士14日召开记者会,公布这项重大研究成果。 何家骅指出,随着可携式3C产品对体积越来越小以及容量越来越大的需求日益增加,如何能研发出体积更小、记忆量更大的内存,是全球研究人员努力的目标。 如今台湾开发出最小的9纳米功能性电阻式内存(R-RAM)数组晶胞,容量比现比的闪存增大20倍,但耗电量却降低了200倍,应用这个技术在1平方厘米面积下,可以储存1个图书馆的文字数据,而且可再借立体堆栈设计,进一步提升容量,让信息电子产品的轻薄短小化有无限发挥的可能性。 这项重要开发成果已于12月8日在美国旧金山举行的国际电子组件会议(IEDM)正式发表,引起国际微电子产学研界高度重视。 何家骅预料,这项新技术5到10年内量产,届时将可对全球新台币1兆元的传统闪存产生重大贡献,也希望这项技术能在2025年时有机会协助台湾于全球闪存的市场占有率提升至10%以上的产值。
纳米二氧化钛在光催化作用下使细菌分解而达到抗菌效果的。由于纳米二氧化钛的电子结构特点为一个满 TiO2的价带和一个空的导带,在水和空气的体系中,纳米二氧化钛在阳光尤其是在紫外线的照射下,当电子能量达到或超过其带隙能时。电子就可从价带激发到导带,同时在价带产生相应的空穴,即生成电子、空穴对,在电场的作用下,电子与空穴发生分离,迁移到粒子表面的不同位置,发生一系列反应,吸附溶解在 TiO2 表面的氧俘获电子形成O2 ·,生成的超氧化物阴离子自由基与多数有机物反应(氧化) 。同时能与细菌内的有机物反应,生成 CO2和 H2O;而空穴则将吸附在TiO2表面的 OH和H2O氧化成·OH,·OH有很强的氧化能力,攻击有机物的不饱和键或抽取H原子产生新自由基,激发链式反应,最终致使细菌分解。TiO2 的杀菌作用在于它的量子尺寸效应,虽然钛白粉(普通 TiO2)也有光催化作用,也能够产生电子、空穴对,但其到达材料表面的时间在微秒级以上,极易发生复合,很难发挥抗菌效果,而达到纳米级分散程度的TiO2,受光激发的电子、空穴从体内迁移到表面。只需纳秒、皮秒、甚至飞秒的时间,光生电子与空穴的复合则在纳秒量级,能很快迁移到表面,攻击细菌有机体,起到相应的抗菌作用。在紫外线作用下,以0.1mg/cm3浓度的超细TiO2可彻底地杀死恶性海拉细胞,而且随着超氧化物歧化酶(SOD)添加量的增多,TiO2光催化杀死癌细胞的效率也提高;用TiO2光催化氧化深度处理自来水,可大大减少水中的细菌数,饮用后无致突变作用,达到安全饮用水的标准。在涂料中添加纳米二氧化钛可以制造出杀菌、防污、除臭、自洁的抗菌防污涂料,可应用于医院病房、手术室及家庭卫生间等细菌密集、易繁殖的场所,可有效杀死大肠杆菌、黄色葡萄糖菌等有害细菌,防止感染。因此,纳米纳米二氧化钛能净化空气,具有除臭功能。 纳米二氧化钛抗菌特点:对人体安全无毒,对皮肤无刺激性;抗菌能力强,抗菌范围广;无臭味、怪味,气味小;耐水洗,储存期长;热稳定性好,高温下不变色,不分解,不挥发,不变质;即时性好,纳米二氧化钛抗菌剂仅需1h就能发挥效果,而其他银系抗菌剂效果则需约24h;纳米二氧化钛是一种永久性维持抗菌效果的抗菌剂;具有很好的安全性,科用于食品添加剂等,与皮肤接触无不良影响。
纳米医学畅想 纳米医学的研究内容十分广泛,最引人注目的是扫描隧道显微镜(STM)。这一非凡的仪器于80年代初研制成功,可以在纳米尺度上获取生命信息,研究者相继得到了左旋DNA、双螺旋DNA的碱基对、平行双螺旋DNA的STM图像。我国科学家利用STM成功的拍摄到表现DNA复制过程中一瞬间的照片。目前,研究已涉及到氨基酸、人工合成多肽、结构蛋白和功能蛋白等领域。 纳米使单位体积物质储存和处理信息的能力提高百万倍以上,人类有可能将存储了全部知识的纳米计算机安放在人脑中,或许有一天,图书馆就在我们的头脑内,每一个人都可能成为爱因斯坦、牛顿,老年性痴呆、记忆丧失等病症将会得到彻底治愈。纳米计算机可能用来读出人脑内的内容及品性,将一个脑内的信息转录到另一个脑内,这个脑可以是人脑,也可以是电脑。纳米医学也有可能改变人类自身,让人类成为能在天上飞、水中游,能进行光合作用或能在恶劣环境下生存的“超人”。将来,掌握纳米医学技术的医生,不仅能够“修理人”——治病,而且能够“改造人”——使其具有特殊功能。虽然这些设想有些离奇,但决非是毫无科学根据的幻想。即将进入临床应用的有:利用纳米传感器获取各种生化信息和电化学信息。已经取得重大成果的还有DNA纳米技术,主要应用于分子的组装。 已经在医药领域得到成功的应用。人们已经能够直接利用原子、分子制备出包含几十个到几百万个原子的单个粒径为1-100纳米的微粒。最引人注目的是作为药物载体,或制作人体生物医学材料,如人工肾脏、人工关节等。在纳米铁微粒表面覆一层聚合物后,可以固定蛋白质或酶,以控制生物反应。由于纳米微粒比血红细胞还小许多,可以在血液中自由运行,因而可以在疾病的诊断和治疗中发挥独特作用。 当把二氧化肽做到粒径为几十纳米时,在它的表面会产生一种叫自由基的离子,能破坏细菌细胞中的蛋白质,从而把细菌杀死。例如用二氧化肽处理过的毛巾,只要有可见光照射,上面的细菌就会被纳米二氧化肽释放出的自由基离子杀死,具有抗菌除臭功能。 将药物粉末或溶液包埋在直径为纳米级的微粒中,将会大大提高疗效、减少副作用。纳米粒可跨越血脑屏障,实现脑位靶向。另外,纳米粒脉管给药,可降低肝内蓄积,从而有利于导向治疗。纳米粒中加入磁性物质,通过外加磁场对其导向定位,对于浅表部位病灶治疗具有一定的可行性。在影像学诊断中,纳米氧化铁在病灶与正常组织的磁共振图像上,会有较大的对比度。 纳米粒用作药物载体具有下述显著优点:(1)可到达网状内皮系统分布集中的肝、脾、肺、骨髓、淋巴等靶部位;(2)具有不同的释药速度。(3)提高口服吸收药物的生物利用度。(4)提高药物在胃肠道中的稳定性。(5)有利于透皮吸收及细胞内药效发挥。如:载有抗肿瘤药物阿霉素的纳米粒,可使药效比阿霉素水针剂增加10倍。目前已在临床应用的有免疫纳米粒、磁性纳米粒、磷脂纳米粒以及光敏纳米粒等。 医用纳米机械或纳米微型机器人可潜入人体的血管和器官,进行检查和治疗,使原来需要进行大型切开的手术成为微型切开或非手术方式,并使手术局部化。纳米医用机器甚至可以进入毛细血管以及器官的细胞内,进行治疗和处理。这类机器可以将对人体的伤害减小到最低程度。含有纳米计算机的、可人机对话的、有自身复杂能力的纳米机器人一旦制成,能在一秒钟内完成数十亿个操作动作。如果数量足够多,就可以在几秒或几分钟内完成现今需几天或几个月甚至几年、几十年才能完成的工作。 和细胞一样,作业中坏了的微型机械可以随时被更换或修理。微型机械发展的顶峰,或许是可以自己增殖繁衍的纳米机器人。别以为以上设想不可思议。纳米科学家们相信这种愿望能够实现。 不难想象,倘若人类能直接利用原子、分子进行生产活动,这将是一个“质”的飞跃,将改变人类的生产方式和空前地提高生产能力,并有可能从根本上解决人类面临的诸多困难和危机,开创医学新纪元。
如题,用什么方法能知道油漆液体中是否有加入纳米钛材料呢,还请专家指导!
欧洲食品纳米成分标记将写入立法来源: WTO检验检疫信息网 时间:2011-06-29 6 月25 日消息,欧洲议会上周通过一条有关食品标签纳米材料成分标记的临时协定。条约要求所有以纳米材料形式存在的食品成分必须清楚列入产品成分之内,并在材料前加标记号。 这条欧盟成员国协议将 engineered nanomaterial (纳米材料)定义为: “任何有意生产的一边或多变维度尺寸在 100纳米左右的物质,或由离散的功能部件组成,不论内部还是表面离散,具有约 100 纳米的一边或多变维度尺寸,包括100纳米尺寸以上但保留纳米级特征属性的的结构、团聚体或聚集物。 ” 协议认定,纳米级特征属性包含以下两种情况: • 涉及特定大表面积材料的属性 • 特定理化属性,有别于非纳米形式的相同材料 该协议将在 7 月通过欧洲议会全体会议投票表决,并在随后正式通过欧盟成员国同意。如果该临时协议最后通过立法,食品生产企业可获得 3 年缓冲期时间以适应新法。
[url=http://www.f-lab.cn/micromanipulators/liftout-shuttle.html][b]Kleindiek纳米操纵仪[/b][/url]是为外部电子显微学制备样品而设计的超精密[b]样品拾取装卸[/b]系统,它在纳米尺度灵活[b]微操纵样品[/b]。[b]Kleindiek纳米操纵仪安装[/b]安装有一根微夹钳,一个四轴辅台,在表面有一个允许快速接近的小型CCD摄像头。Kleindiek纳米操纵仪是由安装在一个超小型平台上的一个四轴辅台构成。在辅台上安装了一个微夹钳,促进提取。操作该辅台将预切样品放置在微夹钳下。在这之后,微夹钳夹住样品并轻轻地固定住样品,固定要足够牢固,只要使辅台向旁边下落,就可以将样品从大量材料提取出。一旦分离,在TEM网格上,将样品与SEM兼容胶水接触,并且用离子束固化。[img=纳米操纵仪]http://www.f-lab.cn/Upload/SY-LOS-L_.jpg[/img][url=http://www.f-lab.cn/micromanipulators/liftout-shuttle.html][b]Kleindiek纳米操纵仪[/b][/url]规格:[list][*]取样室兼容平台上的辅台[*]最大样品尺寸:30mm[*]行程:X和Y =10mm[*]行程:Z轴为3mm[*]行程:R =360°(无限)[*]速度:可达1mm/秒[*]分辨率:0.5nm[*]笛卡尔运动[*]没有反弹或翻转[*]是大多数SEM和FIB工具的简单取样室装置[*]几乎不受震动影响[*]微夹钳[*]运输和组装微型物体的高分辨率夹持器[*]抓握区域:(5至10 µ m)[*]分辨率:20nm[*]夹持力:5至5000μN(变量)[*]最大跨度范围:20〜 40 µ m[*]SemCam[*]样品表层的小相机[*]允许快速接近[*]包括显示器和LED照明[/list]
RT:求推荐一台看微纳米材料形貌的性价比高的光学显微镜。平时做一些微纳米材料,求各位老师推荐一款性价比高点的光学显微镜,目前预算1W多。
欧洲食品纳米成分标记将写入立法来源: WTO 检验检疫信息网 时间:2011-06-296 月25 日消息,欧洲议会上周通过一条有关食品标签纳米材料成分标记的临时协定。条约要求所有以纳米材料形式存在的食品成分必须清楚列入产品成分之内,并在材料前加标记号。这条欧盟成员国协议将engineered nanomaterial (纳米材料)定义为:“任何有意生产的一边或多变维度尺寸在100纳米左右的物质,或由离散的功能部件组成,不论内部还是表面离散,具有约100 纳米的一边或多变维度尺寸,包括100 纳米尺寸以上但保留纳米级特征属性的的结构、团聚体或聚集物。”协议认定,纳米级特征属性包含以下两种情况:• 涉及特定大表面积材料的属性• 特定理化属性,有别于非纳米形式的相同材料该协议将在7 月通过欧洲议会全体会议投票表决,并在随后正式通过欧盟成员国同意。如果该临时协议最后通过立法,食品生产企业可获得3 年缓冲期时间以适应新法。
以下是我写的综述的部分内容,望得到大家的指教4 纳米体系化学发光4.1纳米材料参与的电致化学发光广义的化学发光也包括电致化学发光(ECL),电致化学发光是指对电极施加一定的电压进行电化学反应,电极反应的产物之间或与体系中的某种组分发生化学反应,产生激发态物质,激发态物质回到基态时产生的发光[42,43]。它不但具有化学发光分析的许多优点,还具有电化学方法的一些特点,如电发光反应过程控制性强,选择性好等优点[44,45]。近年来,将纳米材料引入分析化学研究中已成为分析化学的一个研究热点,并取得许多创新性研究成果[46,47]。4.1.1半导体纳米粒子电致化学发光机理4.1.1.1半导体纳米粒子直接接受电极提供的能量生成激发态传统ECL是利用电极原位(in situ)产生试剂,这些试剂在溶液中反应,完成较高能量的电子转移而生成激发态的分子,不稳定的激发态分子回到基态过程中以光辐射形式释放能量[48-50]。同理,当电极施加双阶跃正负脉冲(或电位循环)时,半导体纳米粒子(A)在正电位阶跃时被氧化为A+,接着在负电位阶跃时被还原为 A-,A+ 与 A- 反应生成激发态的 A*,激发态的 A* 回到基态过程中时产生了化学发光[24,51-55]。对应的反应过程可以用(4.1)—(4.3)式表示。值得注意的是通过该机理产生发光的必要条件是:产生的还原态 A- 或氧化态 A+ 在溶液中,要能够稳定存在一定时间,从而使得A+ 能够与 A- 相遇、碰撞并产生激发态的 A*[24]。 A → A+ + e- (4.1) A + e- → A- (4.2) A+ + A- → A* (4.3) A* → A + hv (4.4)较典型的例子是He气氛下,在含有0.1mol/L THAP乙腈溶液中,对Pt电极施加双阶跃正负脉冲电位,并在 +2.7 V 和 -2.1 V循环阶跃,在正电位阶跃时,粒径为2-4nm的Si纳米半导体被氧化成稳定的 Si(NCs)+,接着电位阶跃负方向产生Si(NCs)-,并与Si(NCs)+ 碰撞产生激发态的Si(NCs)*,Si(NCs)* 回到基态时产生640nm的光发射[24]。4.1.1.2 半导体纳米粒子电化学产物与共反应物(coreactant)发生ECL反应若体系中含有共反应物(还原性或氧化性物质)时,仅在工作电极上施加正或负电压,即可生成激发态的A*而发光[24,53,56-58]。其反应过程可以用(4.1)—(4.3)式表示。产生的还原态 A- 或氧化态 A+也要能够稳定存在于溶液中一定时间,才能发生发光[24]。 A → A+ + e- (4.1)A+ + Re → A* + Ox (4.5)A* → A + hv (4.4)或 A + e- → A- (4.2)A- + Ox → A* + Re (4.6) 其中较为典型的例子是Zou[56]等将纳米CdSe沉积在石墨充蜡电极表面上并成膜,纳米CdSe膜在循环伏安下产生两个ECL通道(ECL-1和ECL-2)。并用ECL-1,在事先通N2 25min 含有0.1mol/L KNO3 pH 9.3 磷酸缓冲溶液中,扫描速率为0.06V/S 下,对H2O2进行了测定,线性范围: 2.5×10-7 ~ 6×10-5 mol/L,检测限: 1.0×10-7 mol/L。他们也提出了ECL的机理(式4.7—4.11)。CdSe NCs + ne → nR• - (4.7)O2 + H2O2 + 2e → OOH- + OH- (4.8)2R• - + OOH- +H2O → 3OH- + 2R* (4.9)or2R• - + H2O2 → 2OH- + 2R* (4.10) nR* → CdSe NCs + hv (4.11) 4.1.2 纳米金粒子对电致化学发光体系的催化作用 因纳米具良好的“生物相容性”和高的催化特性,近来人们对纳米金催化等特性的研究进展迅速[59]。崔华[60]研究小组,已将纳米金用于化学发光体系研究,报道了纳米金粒子的催化作用对液相电致化学发光的影响,发现纳米金的催化作用和电化学活性既可以增强两个阳极ECL发光通道,又导致了两个新的阴极ECL发光通道的产生。最近,Liu[61]等发现纳米金可以催化Ru(bpy)32+- pentoxyverine (喷托维林)体系的电致化学发光,将电致化学发光分析法与毛细电泳技术联用,在毛细电泳柱端成功测定了喷托维林,检测限为:6nmol/L;并将该方法用于喷托维林和人血清白蛋白结合常数的测定,测定值为:1.8×103 L/mol。4.1.3 纳米材料作为化学发光试剂的固载。钱柯君[62]等用反胶束法水解正硅酸乙酯(TEOS)合成球形luminol/ SiO2复合纳米微粒;再用壳聚糖修饰已合成的纳米微粒并标记DNA作为DNA探针,构建的DNA探针与固定在聚吡咯修饰电极上的靶DNA杂交。用ECL法对DNA杂交情况进行评估,仅互补序列DNA才可以与DNA探针形成双链DNA(dsDNA)并产生强的ECL。发现3个碱基错配互补靶序列和非互补靶序列产生的ECL可以被忽略,ECL强度与互补序列DNA的浓度在5.0×10-12~1.0×10-9 mol/L范围内呈线性关系,对互补序列DNA的检测限为:2.0×10-12 mol/L。4.2 纳米材料参与的化学发光传统的化学发光研究一般仅限于分子和离子体系。最近,纳米粒子在化学发光中的行为研究已经引起了人们的重视:无论是半导体纳米粒子还是金属纳米粒子在[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]和液相化学发光反应中都表现出特殊的活性。4.2.1纳米金参与的液相化学发光4.2.1.1 纳米金作为化学发光反应的微尺度平台Cui[26]等首次报道了,粒径为68-nm 的纳米金与KIO4—NaOH—Na2CO3之间的反应能够产生化学发光现象,该化学发光的光谱具有三个明显的发射带,分别位于380—390 nm, 430—450 nm和490—500 nm;该体系的化学发光强度随着溶液中
[font=Verdana]我在进行粒径分析时,使用无水乙醇作分散剂,浓度0.025mg/ml,温度25℃,超声震荡20min。测量了几次结果粒径都偏差很大,如100nm的锐钛纳米二氧化钛,虽然PDI为0.289,但平均粒径达到了1285nm,且出现双峰;同样100nm金虹纳米二氧化钛虽然是单峰,但平均粒径高达826nm,PDI:0.146;0.2-0.4微米钛白分析结果平均粒径650nm,PDI[/font][font=Verdana]:0.184[/font][font=Verdana]。这是什么原因导致的外购商品参数与测试结果不符,是不是分散剂不对,或者使用有误?望各位大佬解惑。[img=三种纳米二氧化钛的强度分布,690,573]https://ng1.17img.cn/bbsfiles/images/2022/07/202207111807266875_4002_5322665_3.png!w690x573.jpg[/img][/font]
6月25日消息,欧洲议会上周通过一条有关食品标签纳米材料成分标记的临时协定。条约要求所有以纳米材料形式存在的食品成分必须清楚列入产品成分之内,并在材料前加标记号。这条欧盟成员国协议将engineered nanomaterial (纳米材料)定义为:“任何有意生产的一边或多变维度尺寸在100纳米左右的物质,或由离散的功能部件组成,不论内部还是表面离散,具有约100纳米的一边或多变维度尺寸,包括100纳米尺寸以上但保留纳米级特征属性的的结构、团聚体或聚集物。”协议认定,纳米级特征属性包含以下两种情况:• 涉及特定大表面积材料的属性• 特定理化属性,有别于非纳米形式的相同材料该协议将在7月通过欧洲议会全体会议投票表决,并在随后正式通过欧盟成员国同意。如果该临时协议最后通过立法,食品生产企业可获得3年缓冲期时间以适应新法。
许多材料的室温蠕变能力很低,用传统的拉伸方法很难准确测量蠕变应力指数(与蠕变机制密切相关)纳米压痕仪具有极高的载荷和位移分辨率,能够方便的用于微小载荷的性能测量,为研究材料的室温压痕蠕变提供了一种有效的测试手段。纳米压痕仪具有很高的位移和载荷的分辨率,它为考察材料的局部蠕变行为提供了一种新的手段。用该法测量蠕变应力指数,不但方法简单,对样品尺寸要求不高,而且测量精度高。 压痕蠕变时,材料受到的是三维的复杂应力,变形区形状由材料的硬度、模量和加工硬化能力决定,蠕变过程与材料中弹塑性区边界向材料内部扩展的速率有关。压痕测量研究的是衡载荷下的应力弛豫过程,通过单次测量就可得到应变速率敏感指数。 本文以单晶Cu做为实验材料,通过瑞士CSM公司纳米压痕仪进行蠕变测试。测试条件:最大载荷20mN,加卸载速率40mN/min,保载时间600s图1http://ng1.17img.cn/bbsfiles/images/2014/09/201409301557_516567_2224533_3.jpg基于纳米压痕数据,有效压痕应变速率和应力可从下列公式计算http://ng1.17img.cn/bbsfiles/images/2014/09/201409301558_516568_2224533_3.jpg其中ε应变率,σ应变,hi瞬间压痕深度,Ac接触面积,R压头半径基于实验所得纳米压痕数据作图图2(a)t-Pd曲线http://ng1.17img.cn/bbsfiles/images/2014/09/201409301601_516569_2224533_3.jpg图2(b)t-strain rate曲线http://ng1.17img.cn/bbsfiles/images/2014/09/201409301603_516571_2224533_3.jpg图2(c)stress-strain rate 曲线http://ng1.17img.cn/bbsfiles/images/2014/09/201409301606_516580_2224533_3.jpg[/font
2005年度国家自然科学基金委员会专项“纳米科技平台上纳米材料和器件的若干基础研究”研究课题申请指南 一、总体目标本专项的设立旨在充分利用国家纳米科技平台,实现数据和研究设备的共享;强化国家自然科学基金委员会(以下简称自然科学基金会)“纳米科技基础研究”重大研究计划整体布局的集成,推动学科交叉和合作研究;促进纳米科技的稳定健康发展,提升我国在纳米材料和纳米器件基础研究领域的国际竞争能力。本专项的依托单位是国家纳米科学中心。 二、基本原则本专项将根据自然科学基金会“纳米科技基础研究”重大研究计划申请指南以及其他与纳米科技密切相关的研究课题的总体要求,充分利用国家纳米科学中心各协作实验室相关仪器设备,在纳米科学与技术的关键研究领域开展原创性基础研究。 三、研究领域 1、纳米尺度的相关检测和表征 (1)纳米材料的表面物理化学过程和自组装方法研究 (2)纳米尺度内物理、化学性质的检测和表征 (3)分子纳米结构和单分子检测 2、纳米结构、纳米器件的设计和应用探索 (1) 准一维纳米材料的基本理论和工艺技术研究 (2) 基于新原理的纳米电子器件和纳米光子器件 (3) 纳米材料及器件的设计和数学建模 3、纳米生物和医学器件研究 (1) 用于疾病早期诊断和治疗的纳米材料及相关器件技术 (2) 探索靶向治疗的纳米药物及其载体的定向输送和缓释体系 (3) 单分子和单细胞的探测、表征和传感技术 四、申请本专项研究课题注意事项 1、申请人资格本专项各研究课题申请人必须符合自然科学基金会面上项目申请者资格,承担过或正承担着自然科学基金会“纳米科技基础研究”重大研究计划资助项目以及基金会与纳米科技密切相关的项目。研究课题申请不受自然科学基金会基金申请限项规定的制约。 2、申请者可根据拟解决的具体科学问题,自由确定项目名称、研究目标、研究内容、技术路线。每个课题资助金额原则上不超过10万元,执行期限为2年。 3、本专项经费原则上应使用在国家纳米科学中心协作实验室的大型仪器上开展相关的学术研究和测试等方面的工作,在课题申请书上应明确表示使用大型仪器所在的协作实验室名称。课题经费按照申请内容和使用设备的情况划拨至相关的协作实验室。 4、申请者请于2006年1月10日前提交课题申请。使用统一电子版面上基金项目申请书,申请者可自行在基金会网站上下载,然后安装在个人计算机中,按照帮助文档的说明操作即可。基本信息表中的资助类别选择“专项基金项目”、亚类说明选择“其他”,附注说明填写“纳米科技平台上纳米材料和器件的若干基础研究”,报告正文按照面上项目撰写提纲撰写。一式5份报送国家纳米科学中心。 5、为避免重复资助,项目申请书应明确论述该项申请与其它相关研究项目的联系与不同。 6、自然科学基金会委托“纳米科技基础研究”重大研究计划专家指导组成员、协调工作组成员、本专项负责人和部分特邀专家组成本专项管理领导小组,负责项目评审等工作。评审中坚持择优和重点支持的原则,以到会评审专家投票的方式确定资助课题(赞成票须超过到会专家半数)。 7、在课题执行过程中,各课题负责人和课题组成员应保持稳定,确需变更的,课题负责人须及时提交变更申请及相应变更材料,经专项负责人签署意见后报管理领导小组审定。 8、本专项资助的课题研究所形成的论文、专利和数据库等须标注: “由国家自然科学基金资助,项目批准号90406024”等相关字样。 五、联系方式 联 系 人: 汲志华 王荷蕾 联系电话: 010-82613928,62652123 传 真: 010-62652116Email: jizh@iccas.ac.cn wanghl@nanoctr.cn 通讯地址: 北京中关村北一街2号国家纳米科学中心 邮 编: 100080
使用仪器:S-4800测试条件:加速电压5KV 引出电流5UA 工作距离 8.5MM样品制作:将生长有二氧化钛纳米管的钛片折叠后固定在样品台上。说明:伪彩色相对简单些,弄复杂了反而不好。http://ng1.17img.cn/bbsfiles/images/2011/09/201109200826_317931_1760999_3.jpg
[font=宋体][b]什么是纳米抗体?[/b][/font][font=宋体][font=宋体][url=https://cn.sinobiological.com/resource/antibody-technical/nanobody][b]纳米抗体[/b][/url]([/font][font=Calibri]nanobody, Nb[/font][font=宋体])是一种人工设计的抗体分子,又称为单域抗体([/font][font=Calibri]single-domain antibodies, sdAbs[/font][font=宋体])、[/font][font=Calibri]VHH[/font][font=宋体]抗体或[/font][font=Calibri]camelid[/font][font=宋体]抗体,是发现于羊驼、单峰驼等驼科以及鲨鱼、鳐鱼等软骨鱼中的一种天然缺失轻链的重链抗体([/font][font=Calibri]heavy-chain antibodies, HCAbs)[/font][font=宋体]。[/font][font=Calibri]1993[/font][font=宋体]年,比利时的科学家在骆驼的血清中发现了一种天然轻链缺失的重链抗体,分子量约[/font][font=Calibri]95 kDa[/font][font=宋体],其中包括两个恒定区([/font][font=Calibri]CH2[/font][font=宋体]和[/font][font=Calibri]CH3[/font][font=宋体])、一个铰链区和一个重链可变区([/font][font=Calibri]variable heavy chain domain, VHH[/font][font=宋体]),接着克隆得到只包含一个重链可变区的单域抗体,即[/font][font=Calibri]VHH[/font][font=宋体]抗体。[/font][font=Calibri]VHH[/font][font=宋体]抗体的晶体结构为[/font][font=Calibri]4 nm[/font][font=宋体]×[/font][font=Calibri]2.5 nm[/font][font=宋体]×[/font][font=Calibri]3 nm[/font][font=宋体]的椭圆形,分子量大小仅普通抗体的[/font][font=Calibri]1/10[/font][font=宋体],约[/font][font=Calibri]12-14 kDa[/font][font=宋体],是最小的完整抗原结合片段,因此又被称为纳米抗体。纳米抗体可用于肿瘤等疾病的治疗、疾病的检测、疫苗的研发等。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][b]纳米抗体特性:[/b][/font][font=宋体] [/font][font=宋体][font=Calibri]1.[/font][font=宋体]高耐热性和稳定性[/font][/font][font=宋体] [/font][font=宋体][font=宋体]将不同的纳米抗体在[/font][font=Calibri]37[/font][font=宋体]℃放置[/font][font=Calibri]1[/font][font=宋体]周,结果其抗原结合活性均在[/font][font=Calibri]80%[/font][font=宋体]以上,表明纳米抗体在室温下保存相当稳定,这使其比常规抗体更易于储藏和运输。[/font][/font][font=宋体][font=宋体]比较了鼠单抗和纳米抗体在高达[/font][font=Calibri]90[/font][font=宋体]℃高温长时间处理的抗原结合活性,发现纳米抗体都保持了较高的活性仍能重新获得抗原结合能力,而所有常规抗体在[/font][font=Calibri]90[/font][font=宋体]℃处理后都丧失了活性,发生了不可逆的聚合。[/font][/font][font=宋体][font=宋体]在恶劣条件,如在高热、离液剂、存在蛋白酶和极度[/font][font=Calibri]pH[/font][font=宋体]值变性的条件下(如胃液和内脏中),正常抗体会失效或分解,而纳米抗体仍具有高度的稳定性。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2.[/font][font=宋体]高抗原结合性:[/font][/font][font=宋体] [/font][font=宋体][font=宋体]纳米抗体独特的结构决定了其高抗原结合特性:纳米抗体较长的[/font][font=Calibri]CDR3[/font][font=宋体],可形成一稳定的暴露的凸环结构(凸环中具有稳定结构的二硫键),能够深入抗原内部以更好的结合抗原从而提高了其抗原特异性和亲和力。[/font][/font][font=宋体][font=宋体]而传统抗体[/font][font=Calibri]Fab[/font][font=宋体]片段及单链抗体[/font][font=Calibri]scFv[/font][font=宋体]的抗原结合表面常形成凹形拓扑结构[/font][font=Calibri], [/font][font=宋体]通常只能识别位于抗原表面的位点,因此纳米抗体[/font][font=Calibri]VHH[/font][font=宋体]单域具有更加广泛的抗原结合力,甚至当靶蛋白紧密包裹隐藏了普通抗体识别的位点时[/font][font=Calibri],[/font][font=宋体]纳米抗体也可以对其进行表位识别。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]3.[/font][font=宋体]较强的组织穿透力:[/font][/font][font=宋体] [/font][font=宋体]纳米抗体具有强而快的组织穿透能力,可以进入致密的组织如实体瘤发挥作用;并且多余未结合的纳米抗体能够很快的被清除,这相对于单克隆抗体组织穿透力差,不易被清除的不足,更有利于疾病的诊断。另外,纳米抗体能够有效的穿透血脑屏障,这样的特性为脑部给药提供了新方法,有望成为治疗老年痴呆症的新药。[/font][font=宋体] [/font][font=宋体][font=Calibri]4.[/font][font=宋体]高水溶性、高表达性[/font][/font][font=宋体] [/font][font=宋体][font=宋体]正常抗体[/font][font=Calibri]VH[/font][font=宋体]结构域单独表达时通常形成包涵体,或者暴露的疏水域相互黏附;而纳米抗体[/font][font=Calibri]VHH[/font][font=宋体]由于其[/font][font=Calibri]FR2[/font][font=宋体]中的疏水残基被亲水残基所取代,使得纳米抗体的水溶性增加,聚合性减少;而且即使以包涵体形式表达,也很容易复性,这样可以大大提高作为药物的利用率。[/font][/font][font=宋体][font=宋体]因纳米抗体分子量小、结构简单,由单一的基因编码,所以它很容易在微生物中合成,能在噬菌体、酵母等微生物中大量的表达,而且其相对价格低廉、可进行大规模生产,易于普及和应用。有报道,可通过酵母反应器酿造将纳米抗体的产量提高,每公升可达[/font][font=Calibri]1[/font][font=宋体]克的产量。[/font][/font][font=宋体] [/font][font=宋体][b]纳米抗体的应用优势[/b][/font][font=宋体] [/font][font=宋体][font=宋体]①用于生物医药研发(基因工程药物研发、[/font][font=Calibri]ADC[/font][font=宋体]药物研发);[/font][/font][font=宋体]②用于临床体外诊断(胶体金法、酶联免疫吸附法、电化学发光法);[/font][font=宋体]③用于肿瘤研究、免疫学研究等基础研究;申请具有自主知识产权的发明专利及科研奖项;[/font][font=宋体]④拓展研究思路、发表国际知名学术刊物。[/font][font=宋体] [/font][font=宋体][font=宋体]纳米抗体是一种非常有前景的下一代治疗性抗体技术,受到越来越多的研究机构和制药公司的关注。为支持纳米抗体药物的早期发现,义翘神州利用噬菌体抗体库技术自主研发了纳米抗体开发平台,已成功开发了多个纳米抗体候选分子。另外,我们的高通量纳米抗体表达平台,已成功表达和生产了多种纳米抗体形式,包括单价、多价或多特异性[/font][font=Calibri]VHH[/font][font=宋体],满足客户的各种定制需求。[/font][/font][font=宋体][font=宋体]更多详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/resource/antibody-technical/nanobody[/font][/font][font=Calibri] [/font]
http://ng1.17img.cn/bbsfiles/images/2014/12/201412191620_527962_2972800_3.jpg 1873年,显微学家厄恩斯特•阿贝提出“传统光学显微镜分辨率为不会超过0.2微米”的物理限制。大约一个半世纪之后,来自美国的埃里克•白兹格(Eric Betzig)和威廉姆•莫尔纳尔(William Moerner)以及德国的斯特凡•赫尔(Stefan Hell)成功突破了这一限制,他们利用荧光分子,发明了一种超级分辨率荧光显微镜,从此开启了光学显微镜的纳米时代,正因如此,三人荣获2014年诺贝尔化学奖。 该显微镜融合了另外两种显微镜的成像原理,其一是2000年斯特凡•赫尔发明的受激发射损耗(STED)显微镜,其原理是利用两条激光束,一条激发荧光分子使其发出荧光,另一条抵消除纳米级荧光外的所有荧光;这样一纳米一纳米地扫描样品,所得图像的分辨率突破了阿贝的物理限制。其二是2006年埃里克•白兹格和威廉姆•莫尔纳尔发明的单分子显微镜,其工作原理是开关单分子荧光,科学家们反复多次对扫描同一样品,每次只让几个分子发出荧光,叠加所有图像后得到的致密图像就有纳米级分辨率。如今,纳米显微学已经广泛用于全世界,深入人们生活的各个方面,科学家们从此能了解更多活细胞中分子的细节,从而为改善人类生存环境做出更大贡献。
信息产业科技、生物科技和纳米技术是现在世界上前沿科学领域的三大主要方向。 纳米是一个长度计量单位,它是一米的十亿分之一。纳米材料就是在纳米量级范围内调控物质结构研制而成的新材料。纳米技术就是 指在纳米尺度范围内,通过操纵原子、分子、原子团和分子团,使 其重新排列组合成新物质的技术。其最终目标是直接以原子、分子的变化,使物质在纳米尺度上表现出新颖的物理、化学和生物学特性,制造出具有特定功能的产品。因为纳米材料的粒度非常微小,一般的显微镜是不能观察到的,所以纳米技术是在扫描隧道显微镜发明之后,才出现以0.1至100纳米尺度为研究对象的前沿科学。这可能改变几乎所有产品的设计和制造方式,实现生产方式的飞跃, 是新工业革命的核心。纳米技术也是信息和生命科学技术能够进一步发展的共同基础,将对人类产生深远的影响,甚至改变人们的思维方式和生活方式。有人曾经预言说,七十年代搞微米技术的国 家,现在已成为发达国家;现在从事纳米技术研究的国家,将是二 十一世纪的先进国家。 纳米材料粒度非常微小,具有良好的表面效应,一克纳米材料的表 面积达到几百平方米,因此用纳米材料制成的产品,其强度、柔韧 度、延展性都十分优越,就象一种有成千上万对脚的毛毛虫,当它 吸附在光滑的玻璃面上时,由于接触面积大,12级台风也吹不掉 它。因此,在化纤中加入少量的金属纳米颗粒,就可摆脱磨擦引起的静电现象;在食品中采用纳米技术,可提高肠胃的吸收功能;在 涂料中运用纳米技术,可使外墙涂料的耐洗刷性从一千多次提高到一万多次,老化时间延长两倍多;许多化妆品因为加入纳米微粒, 而具备防紫外线功能;利用纳米技术可生产出色彩鲜艳、抗折性极 高的彩色轮胎;利用纳米粉末,可使废水变清。另外,纳米在医药 保健、计算机、化学和航天等领域都会引起新的、技术性革命。 作为纳米技术重要方面的碳纳米管,是1991年被人类发现的。它是由石墨碳原子层卷曲而成的碳管,管的直径一般为几个纳米到几十纳米,管壁厚度仅几个纳米,象铁丝网卷成的空心圆柱状的“笼形 管”。5万个“笼形管”排列起来,才有人的一根头发丝那么宽,长度和直径比非常高的纤维小。作为石墨、金刚石等碳晶体家族的新成员,碳纳米管的韧性很高,导电性极强,场发射性能优良,兼具 金属性和半导体性。其强度比钢高100倍,比重只有钢的1/6,称之 为未来的超级纤维,成为国际研究的热点。碳纳米管的用途十分诱 人。它可制成极好的微细探针和导线、加强材料及储氢材料。它使壁挂电视成为可能,并在将来可替代硅芯片。纳米芯片体积更小、 容量更大、重量更轻,将在纳米电子学中扮演极重要角色,并引发计算机行业的革命。不久前我国研制出的碳纳米管显示器样本,不但体积小,重量轻,而且显示质量好,从-45℃~80℃皆能正常工 作,而耗电只有现在的显示器的1%。 另外,作为纳米技术的应用之一,在我国西安已研制出的“纳米服 装”,不仅能阻隔95%以上的紫外线,还能阻隔同量的电磁波,且无毒、无刺激,不受洗涤、着色、磨损的影响,能有效地保护人体皮 肤不受辐射的影响。还有小鸭集团研制出的纳米洗衣机,就是利用 纳米抗菌材料研制出的自我清洁的洗衣机。它能够有效地抑制细菌 滋生,无论使用多长时间,都能够保持“净水洗涤”的状态。 目前,纳米技术在电线电缆中的应用已在开始。有人曾设想,能否运用纳米技术来提高绝缘材料的性能,从而提高电缆的绝缘、耐热 和抗老化等性能,减少电缆的外径,减轻电缆的重量。另外能否利 用碳纳米管的韧性高、导电性强的特点,制成超细电磁线,使微型 电机的体积象米粒那样大,甚至更小。 现在“纳米热”已遍及全球,从大西洋到太平洋,从日本到欧洲,各国都把它作为重要的未来发展战略。美国总统克林顿曾经发表过 一篇关于前沿科学技术的前瞻性的讲话,提出了美国今后要大力发 展纳米技术。美国已于2000年10月1日启动“国家纳米计划”,投资1997年的1.16亿美元增加到4.97亿美元。目前全球纳米技术的年 产值已达到500亿美元,预计到2010年,市场容量将达到14400亿美 元。我国已建立了10多条纳米材料和技术的生产线,以此为基础的企业已达100多家。预计在今后二、三十年内,它将远远超过计算机工业,并成为未来信息时代的核心。纳米技术导致的微形化趋势从根本上改变人类的处境,从而引起二十一世纪的又一次产业革命。
据台湾媒体报道,病菌检测是治疗许多疾病的基础,但检测时间往往费时。近日台湾大学今天发表重大突破新技术,以纳米科技研发的新型检验晶片,相较于传统技术,能使细菌筛检增快百倍。 此项研究的名称为"捕捉与侦测细菌双功能快速检验晶片",研究成果于11月15日刊登在知名国际期刊"自然通讯"(NatureCommunications)。该研究的负责人刘定宇说,就像每种乐器都有特定音色一样,每个分子都有特定的"分子拉曼光谱指纹",因此科学家可藉此光谱来区分细菌种类。"捕捉与侦测细菌双功能快速检验晶片"就是利用表面增强拉曼光谱为基础,晶片表层"万古霉素"可从血液中直接捕捉细菌,再由第2层"银纳米粒子阵列",放大细菌表面分子的拉曼光谱讯号。 "捕捉与侦测细菌双功能快速检验晶片"使用纳米科技新技术,具有超高敏感度,几秒钟内就能取得单只细胞光谱,刘定宇指出,过去要筛检败血症病人血液中细菌,需费时2至5天,如今这样的新技术,可在短短30分钟内就能筛检出败血症病人的血液中细菌,速度增快约百倍。 刘定宇还表示,此技术潜在效益可观,不仅能针对血液临床检体使用,也可推广至环境污染(水质检测)、食品药品微生物(大肠杆菌和塑化剂)甚至病毒、癌症筛检等检测。台湾大学医院创伤医学部主治医师韩吟宜认为,这项新技术相较于传统细菌培养方法,能缩短血液检验时间,增加检测准确率,盼能尽快在临床应用,进而提升疾病治愈率,减少抗生素滥用。
8月29日,中国国际纳米科学技术会议(ChinaNANO 2017)在北京召开,中国科学院院长白春礼院士为大会主席并代表会议组委会致开幕欢迎词。泰州石墨烯研究检测平台执行主任、全国纳米技术标准化技术委员会低维纳米结构与性能工作组(下简称“全国低维工作组”)、中国国际石墨烯资源产业联盟国际标准工作委员会(下简称“中烯盟国际标委会”)秘书长梁铮博士参加了ChinaNANO 2017标准及计量分会的专家交流和讨论。国际标准化组织纳米技术标委会(下简称“国际纳米标委会”)ISO/TC229主席Koltsov博士受邀作“全球纳米材料产业标准化进展”、韩国标准科学研究所纳米安全计量中心Nam Woong Song院长受邀作“纳米安全评价标准化进展”的主旨发言,中国食品药品检定研究院徐丽明主任等其他专家分别就纳米材料安全、检测、计量以及标准物质研制作专题报告。Koltsov主席介绍了全球纳米产业的近况及前景,对国际纳米标委会的标准化工作作了说明和总结,并指出国际纳米标委会将对全球整个纳米产业提供标准化支持,推动其健康有序发展。梁铮博士向Koltsov主席汇报了我国低维纳米技术领域标准化的最新进展。8月21日,在国家纳米科学中心、全国纳米技术标准化技术委员会的大力支持和指导下,全国低维工作组在江苏泰州正式成立,编号为SAC/TC279/WG9,南京大学长江学者、国家杰出青年基金获得者王欣然教授任组长,秘书处设在泰州石墨烯研究检测平台,该工作组将全面负责组织协调全国低维纳米技术领域标准化工作。当天,中烯盟国际标委会亦同时举行揭牌仪式并召开了第一次全体工作会议。梁铮博士向Koltsov主席进一步提到,以石墨烯为代表的低维纳米材料和相关纳米技术领域目前在中国已逐步从实验室研究阶段进入到产业化阶段,具有广泛和迫切的标准化需求,需要在前期国际国内纳米技术标准化工作的基础上,充分考虑石墨烯等低维纳米材料的特殊结构与性能,研究开发准确、有效、稳定的标准方法。Koltsov主席表示,国际纳米标委会将积极探讨与中国国家标准、联盟标准等各级标准化工作组织的合作机制,推动我国低维纳米技术领域各级标准的制定,为中国乃至国际纳米材料产业的健康发展提供有力支撑。测量方法的标准化、标准物质研制和计量技术的发展是确保纳米科学研究及产业化过程中各种技术指标一致性、准确性、可靠性的重要手段。此次ChinaNANO 2017标准及计量分会专门讨论了国际国内纳米技术标准化最新工作进展、发展路线图、研究热点,纳米测量不确定度评价、标准物质研制、纳米计量等领域所面临的技术挑战等,对我国石墨烯等新兴低维纳米材料的标准化具有重要的指导意义。[align=center][img=,450,337]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311359_01_2047_3.jpg[/img][/align][align=center]全国低维工作组秘书长梁铮博士参加ChinaNano2017国际会议[/align][align=center][img=,450,337]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311400_01_2047_3.jpg[/img][/align][align=center]全国低维工作组秘书长梁铮博士认真听取报告[/align][align=center][img=,450,337]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311400_02_2047_3.jpg[/img][/align][align=center]全国低维工作组秘书长梁铮博士与国际标准化组织纳米技术标委会ISO/TC229主席Koltsov博士亲切交谈[/align]
http://ng1.17img.cn/bbsfiles/images/2011/05/201105211729_295325_2193245_3.jpg这种纳米等级的勘测卫星计划于2012年发射,其唯一的用途功能是发现太阳系外类似地球可能支持生命体存活的星体。
——国家863计划纳米生物技术主题专家张阳德教授访谈录编者按:岁末年初,我国纳米生物领域出现了几件大事:2007年12月31日,中国医药生物技术协会纳米生物技术分会在深圳宣告成立。工程院院士何继善、科学院院士姚开泰等全国近百名专家参加。2008年2月,中国纳米生物技术分会在北京举行第一届委员大会,卫生部纳米生物技术重点实验室主任、卫生部肝胆肠外科研究中心主任、中南大学生物医学工程研究院院长张阳德教授,选举为首届主任委员。大会选举了中国工程院陈志南院士、中国科学院曾益新、魏于全、姚开泰院士、江雷教授5位专家为副主任委员。郭应禄院士等35名业内专家为常务委员。这个汇集我国纳米生物领域的医学、化学、微电子、精密机械加工的专家组成的强大团队,将整合科技界、产业界纳米生物技术的资源,开展国家“863计划”纳米生物技术研究的攻关和实施。为此,我们邀请张阳德教授阐述了我国开发纳米生物技术尤其是在医学应用的战略和关键问题。先发制人,后发制于人记者:科学的交叉与融合,产生了一些新兴的领域。其中纳米生物技术与医用材料,就属于这样的领域。作为国家863计划纳米生物技术的主题专家,你如何看待当今纳米生物技术的发展现状?张阳德:即使你比刘翔跑得还要快,你也得与对手站在同一条起跑线上。我们在现代科技与产业的一些方面,落后于西方发达国家,这并不是我们跑得不够快,而是因为没能站在同一个起点。纳米生物技术是纳米科技与当代生物医学多学科结合的产物,是当代生物技术的前沿和热点。尤其在医药卫生领域有着广泛的应用和巨大的产业化前景。当今国际,由纳米药物载体,纳米生物传感器,纳米生物临床检测诊疗手段引发的新技术革命方兴未艾。据预测,到2010年,纳米生物技术对美国GDP的贡献将达到万亿美元,在日本的市场规模也将达到30万亿日元。在中国这样的人口大国,市场前景更加不可限量。纳米生物技术在医学临床应用,将成为我国重要的战略高技术领域,直接影响着国民经济和社会发展,关系到国家安全和人民健康。记者:目前这一领域中各国的竞争趋势如何?张阳德:先发制人,后发制于人。抢占战略制高点,向来是发达国家发展战略高技术的一个原则。从2000年开始的美国国家纳米技术行动计划,将纳米生物医疗列为突破重点。美国国家卫生研究院(NIH)2001年专门组织了“纳米科技与生物医学”的研讨会,提出了“纳米科技将导致新的生物学和生物工程”的结论。美国NIH在2002年度科研项目计划中,超过50%%的经费是针对生物反恐怖的,其中多数项目的完成希望借助纳米科学技术。美国国家癌症研究所(NIC)的计划是希望借助纳米科学技术,主要包括纳米颗粒材料技术以及纳米传感器技术,形成一些新的、针对恶性肿瘤的早期诊断与治疗技术。欧盟2002年正式推出了第6框架计划(2002~2006年),旨在将科学发展的成果转化为产业界的实际竞争优势。纳米生物技术的研究重点包括先进的药物传递方式、具有生物实体的纳米电子学、生物实体的界面、生物实体的电子探测、生物分子或复合物的处理操纵和探测。
创新科技公司欢迎您参加2011年纳米科技大会2011 年 10 月 23-26日,创新科技(中国)有限公司将参加由国家外国专家局国外人才研究中心、中国医药生物技术协会主办,百奥泰国际会议(大连)有限公司承办的第一届纳米科技大会。地点在大连世界博览广场。本次大会的主题是“专业纳米科技盛会”。已邀请到来自中国、美国、加拿大、德国、英国、法国、日本、韩国、澳大利亚等 30 多个国家的院士、知名学者及企业家出席大会并做主题报告。大会瞄准前沿科技和国际热点,设置了十六大分会,包括:纳米科学与纳米技术的最新突破;量子纳米电子学与半导体技术;纳米材料与纳米结构;纳米能源;纳米涂层与胶粘剂;纳米印刷及包装;汽车工业中的纳米技术;纳米制造;纳米清洁技术,纳米环境等议题,将有400多位演讲人登台报告最新的研究进展。同时,创新科技(中国)有限公司将在2011年纳米科技大会上展出有机溶剂纯化系统,小型有机溶剂纯化系统,惰性气体手套箱和色谱仪等产品。届时,我们真诚的邀请您前来参观我们的产品。详情可登录网站:http://www.expo-china.com/pages/exhi/201106/43195/exhi_detail_gaikuang.shtml
一项由澳大利亚墨尔本大学(University of Melbourne)William Ducker和张学华(Xuehua Zhang,音译)进行的最新研究,直接证实了纳米气泡(nanobubble)的存在。这篇名为“一种纳米尺度的气体状态”(A Nanoscale Gas State)的研究论文,发表在近期的《物理评论快报》(Physical Review Letters)上。长期以来,许多科学家怀疑在气体和液体的分界面上存在一种特殊的气体状态——纳米气泡,但一直没有直接的证据来证实这一推测。此外,许多理论证据甚至表明,这种气体状态并不存在。即使存在,这些纳米气泡也会在一秒钟内消失,不会有实际应用价值。因此,当澳大利亚墨尔本大学教授William Ducker开始对纳米气泡进行研究时,他想到的结果也只有这两个:直接证明纳米气泡不存在,要么存在但很不稳定。然而,结果却让人大吃一惊,以致于Ducker甚至要承认他的实验是“错误”的。纳米气泡不但存在,而且还比之前想象的稳定得多,可以持续数天。Ducker表示,实验证据如此确凿,他不得不改变之前的观点。Ducker和张学华是利用红外光谱技术,测定了分子的旋转运动状态,证实了其符合气体的运动规律。除此之外,研究小组还测定了纳米气泡的内部压力。Ducker表示,之前的理论认为纳米气泡内压很大,足以使其瞬间破裂消失。但是此次的研究表明,纳米气泡的内部压力并没有想象的那么大,大概与大气压相当,因此,气泡能够维持几天的时间。对于纳米气泡未来的应用,Ducker认为,在工业上,纳米气泡将节省利用管道抽水时的能量消耗。将同样的纳米气泡布满水管的内壁,将可以减少抽水时的摩擦,从而节省能量和成本。同时,纳米气泡可以被用于日常生活中。Ducker解释说,许多人造产品和自然资源是物质混合形成的,一些情况下我们希望这些物质保持混合,还有些情况我们需要分开它们。这时,我们就可以利用纳米气泡使油性物质和水融合稳定的时间更长。此外,纳米气泡还可以使从油砂中分离出油更加经济和有效率。Ducker表示,下一步将制造更多统一、密集、持久的纳米气泡覆层材料,从而能够找到一些更有价值的应用
生物传感器能够将各种生化反应转换成可测量的电学、光学等信号,属于典型的多学科交叉领域。在生物传感器研究中,器件设计与传感策略一直成为该领域的研究热点,开发具有高灵敏度、时效性兼具可制造性的生物传感器具有重要的科学价值和应用前景。 中科院苏州纳米技术与纳米仿生研究所生物医学部程国胜研究员课题组采用CMOS兼容“自上而下”加工工艺,以SOI(silicon-on-insulator)硅片为衬底,加工出尺寸可控的一维Si纳米线场效应管。在生物传感器研发过程中,纳米材料表面的功能化修饰是其中一项重要环节,该团队在前期工作中已探索了半导体纳米材料的表面修饰基本方法(Langmuir 26, 4514–4522, 2010;Langmuir 27, 13220–13225, 2011)。在此基础上,通过共价结合方法选择性地在Si纳米线表面修饰急性心肌梗死标志物——心肌肌钙蛋白I(cTnI)的单克隆抗体,制备了面向心肌梗死诊断的生物传感器。测试结果表明,生物传感器对cTnI的响应时间小于2 min,其动态线性响应范围92 pg/mL~46 ng/mL,相关工作发表于Biosensors and Bioelectronics(34, 267-272, 2012)。 进一步通过分析器件电流响应中的低频噪声谱,发现当器件工作于反型区时,相较于空气中的响应,液相环境下噪声谱幅度的倒数受栅极电压的调控作用更加明显。基于此,研究人员以血清体系为研究对象,对比了传统电流响应与噪声谱分析方法,在电流响应无法区分待测cTnI蛋白的情况下,噪声谱分析能够实现2个数量级的信号差别。 部分结果发表于Applied Physics Letters(101, 093704, 2012),为实现新型、高灵敏度生物传感器的设计提供了思路。 上述研究工作得到了中科院“百人计划”项目、国家自然科学基金、国家重大科学研究计划(973项目)经费支持,同时得到了苏州纳米所纳米加工平台及分析测试平台的技术支持。http://www.cas.cn/ky/kyjz/201209/W020120911317688421684.jpg图1 器件阵列形貌(A),Si纳米线扫描电镜图片(B)以及典型的cTnI传感结果(C)。http://www.cas.cn/ky/kyjz/201209/W020120911317688424476.jpg图2 噪声幅度倒数与栅极电压之间的关联(A),电流模式下(B)及噪声谱分析方法下的cTnI响应(C)。
纳米TiO2(优锆纳米)具有十分宝贵的光学性质,在汽车工业及诸多领域都显示出美好的发展前景。纳米二氧化钛还具有很高的化学稳定性、热稳定性、无毒性、超亲水性、非迁移性,且完全可以与食品接触,所以被广泛应用于抗紫外材料、纺织、光催化触媒、自洁玻璃、防晒霜、涂料、油墨、食品包装材料、造纸工业、航天工业中1.杀菌功能在紫外线作用下,以0.1mg/cm3浓度的超细TiO2可彻底地杀死恶性海拉细胞,而且随着超氧化物歧化酶(SOD)添加量的增多,TiO2光催化杀死癌细胞的效率也提高;用TiO2光催化氧化深度处理自来水,可大大减少水中的细菌数,饮用后无致突变作用,达到安全饮用水的标准。在涂料中添加纳米二氧化钛(TG01)可以制造出杀菌、防污、除臭、自洁的抗菌防污涂料,可应用于医院病房、手术室及家庭卫生间等细菌密集、易繁殖的场所,可有效杀死大肠杆菌、黄色葡萄糖菌等有害细菌,防止感染。因此,纳米纳米二氧化钛(TG01)能净化空气,具有除臭功能。苏州优锆纳米二氧化钛具有很高的表面活性,抗菌能力强,产品易于分散。经试验证明该产品对大肠杆菌、金黄色葡萄球菌、沙门氏菌和曲霉菌等具有很强的杀菌能力,已广泛应用于纺织、陶瓷、橡胶、医药等领域的抗菌产品,深受广大用户的欢迎。2.防紫外线功能纳米氧化钛(同VK-T25)的强抗紫外线能力是由于其具有高折光性和高光活性。其抗紫外线能力及其机理与其粒径有关:当粒径较大时,对紫外线的阻隔是以反射、散射为主,且对中波区和长波区紫外线均有效。防晒机理是简单的遮盖,属一般的物理防晒,防晒能力较弱;随着粒径的减小,光线能透过纳米二氧化钛的粒子面,对长波区紫外线的反射、散射性不明显,而对中波区紫外线的吸收性明显增强。其防晒机理是吸收紫外线,主要吸收中波区紫外线。苏州优锆纳米二氧化钛由于粒径小,活性大,既能反射、散射紫外线,又能吸收紫外线,从而对紫外线有更强的阻隔能力。与同样剂量的一些有机紫外线防护剂相比,万景牌纳米氧化钛在紫外区的吸收峰更高,更可贵的是它还是广谱屏蔽剂,不象有机紫外线防护剂那样只单一对UVA或UVB有吸收。它还能透过可见光,加入到化妆品使用时皮肤白度自然,不象颜料级TiO2,不能透过可见光,造成使用者脸上出现不自然的苍白颜色。3.光催化功能---清洁空气,PM2.5分解环境有害气体可分为室内有害气体和大气污染气体。室内有害气体主要有装饰材料等放出的甲醛及生活环境中产生的甲硫醇、硫化氢及氨气等。纳米二氧化钛通过光催化作用可将吸附于其表面的这些物质分解氧化,从而使空气中这些物质的浓度降低,减轻或消除环境不适感。苏州优锆纳米二氧化钛因粒径非常小,而且不团聚,分散性能好,没有任何沉淀,不含任何添加剂(香精),催化活性高:本款纳米光触媒的催化活性经过测试,比目前市场所有的催化性能最好的纳米二氧化钛的催化活性还高20-50倍。可以迅速的捕捉并分解室内的甲醛,苯,氨等有害气体,除味效果好。对PM2.5的分解清除有良好的效果。