当前位置: 仪器信息网 > 行业主题 > >

润滑脂滚筒安定性测定器

仪器信息网润滑脂滚筒安定性测定器专题为您提供2024年最新润滑脂滚筒安定性测定器价格报价、厂家品牌的相关信息, 包括润滑脂滚筒安定性测定器参数、型号等,不管是国产,还是进口品牌的润滑脂滚筒安定性测定器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合润滑脂滚筒安定性测定器相关的耗材配件、试剂标物,还有润滑脂滚筒安定性测定器相关的最新资讯、资料,以及润滑脂滚筒安定性测定器相关的解决方案。

润滑脂滚筒安定性测定器相关的论坛

  • 润滑油常用检测指标及测定意义-胶体安定性(钢网分油)

    润滑脂在贮存中能避免胶体分解、防止液体润滑油从润滑脂中析出的能力,通常称为润滑脂的胶体安定性。但是,分油是润滑脂的一种特性,任何一种润滑脂都有分油现象。胶体安定性差的润滑脂容易析出润滑油,即皂油容易分离。润滑脂的胶体安定性取决于很多因数,诸如皂—油之间的溶解度、皂的再结晶速度、体系内部的化学变化、外界压力、环境温度和胶溶剂的发挥等等。  皂-油分离直接导致润滑脂稠度的改变和它的流失。润滑脂的胶体安定性与其组成和加工工艺有关,润滑脂的稠化剂含量较多或润滑脂基础油粘度较大时,析出的油就较少;而润滑脂的稠化剂含量较少或润滑脂基础油粘度较小时,析出的油就较多。  测定润滑脂胶体安定性有好几个方法,其中SH/T 0324润滑脂钢网分油测定法是其中之一。润滑脂在规定的试验条件下,试样装在60目的金属丝钢网中,在规定温度和静止的状态下,经30h后,测定经过钢网流出油的质量分数。

  • 润滑油氧化安定性测定方法解析(氧化安定性测定仪)

    润滑油氧化安定性测定方法有多种,其原理基本相同,一般都是向试样中直接通入氧气或净化干燥的空气。在金属等催化剂的作用下,在规定温度下经历规定的时间观察试样的沉淀或测定沉淀值、测定试样的酸值、粘度等指标的变化。试验条件因油品而异,氧化设备也因油品而不同,尽量模拟油品使用的状况。我国对航空涡轮发动机润滑油的抗氧化安定性按两种方法GJB499-88和SHT 0450-92进行氧化试验,前者称为大氧化管法,后者称为小氧化管法﹔对内燃机油的测定方法有SHTO299-92和SHT0192-92标准进行﹔汽轮机油SH/T 0193-92旋转氧弹法来测定其抗氧化性能﹔变压器油的氧化特性按SH/T 0206-92即国际电工委员会标准EC74-1974标准方法进行﹔高中档润滑油氧化安定性测定主要有GB/T12581加yi制剂矿物油氧化特性测定法、GB/T 12709润滑油老化特性测定法(康氏残炭法)、SHT 0123极压润滑油氧化安定性测定法进行。氧化安定性测定仪的国产生产厂家北京得利特的就符合多种标准,型号也比较多。他们主要产品仪器有开口闪点测定仪,闭口闪点测定仪,运动粘度测定仪,微量水分测定仪,颗粒计数器,酸值测定仪、界面张力测定仪、石油密度测定仪,自然点测定仪,空气释放值测定仪、馏程测定仪等多种润滑油分析仪器、燃料油分析仪器、绝缘油分析仪器,水质分析检测仪器、气体检测仪器。

  • 润滑油氧化安定性测定仪工作原理

    什么是润滑油氧化安定性  润滑油抵抗氧化变质的能力叫做润滑油的安定性。润滑油安定性分抗氧化安定性和热氧化安定性两种。一是抗氧化安定性,是厚层润滑油(油层厚度大于200μm)在高温和空气中氧的作用下,抵抗氧化的能力,润滑油在常温下很安定,但是在高温下,很短时间油色变黑,粘度改变,酸值增大,产生沉淀。一般在30°C以下润滑油不易氧化,但在150°C以上氧化剧烈地进行。例如在内燃机油、齿轮箱、变压器或输油管中的润滑油的氧化就属于这种情况。所以要求润滑油抗氧化性好。有的润滑油中加入抗氧剂提高抗氧化安定性。二是热氧化安定性,是薄层润滑油(油层厚度小于200μm)在高温下空气中氧的作用下抵抗氧化的能力。例如在内燃机的活塞与气缸之间工作的润滑油、在蒸气透平的轴瓦之间的润滑油都是属于这种情况。此时润滑油的工作温度较高(200-300°C),金属对润滑油的催化氧化作用也较强。氧化结果会生成一层粘附性很强的胶膜,覆盖在金属机件上,使磨损增加,功率降低、热传导困难,严重时会导致机件烧毁。  评定润滑油安定性有何意义  润滑油在储存和使用过程中,受到光照或受热,在空气中的氧以及金属的催化作用下,发生氧化变质,使颜色变深,粘度增大,生产酸性化合物、胶质和沉渣。由许多不同结构的烃类混合组成的润滑油,其氧化过程是十分复杂的。因为润滑油的组成成分不同。属于酸性氧化产物的有羟酸、酚等,深度氧化还会生成低分子酸,这些产物会使酸值增大,生成的酸性物质会腐蚀金属机件。但有时氧化仅能形成少部分酸性物质,大部分则形成中性产物。属于中性氧化产物的有醇类、酮类,脂类、胶质及沥青质等。这些产物和它们之间的缩合物,能生成深色沉淀。这些胶质和沉渣能堵塞润滑系统的过滤器网及导油管,会引起气缸内活塞环粘接,以至造成不良后果。往往有些油当氧化很深时,酸值反而降低,这是由于生成不溶于油的高分子酸沉淀物。润滑油抗氧化安定性差,则氧化后生成的氧化产物多,使用时造成的危害也大。如生成的有机酸类(特别是当有水分存在时)能腐蚀金属,缩短金属设备的使用期限,酸与金属作用生成的皂化产物,更能加速油的氧化。此外,对于绝缘油来讲,酸性产物能使浸入油中的纤维质绝缘材料变坏、污染油质、降低油的绝缘强度。能溶于油的中性胶质和沥青质,可加深油的颜色,增大粘度,影响正常的润滑和散热作用。不溶于油的氧化产物,在汽轮机油系统中,特别是在冷油器温度较低的地方,析出较多的沉淀,使传热效率降低。如沉淀物过多时,会堵塞油路,威胁安全运转。在变压器中沉淀物沉积在变压器线圈表面,堵塞线圈冷却通路,易造成过热,甚至烧坏设备。如果沉淀物在变压器的散热管中析出,还会影响油的对流散热作用。内燃机润滑油不仅使用的温度高,而且是循环使用,不断与含氧的气体接触,所以很容易因氧化而变质。只有设法提高润滑油的氧化安定性,才能延长润滑油在内燃机中的使用寿命。所以润滑油的使用期限常取决于其安定性,润滑油氧化安定性是评定润滑油质量的重要指标之一。

  • 润滑油氧化安定性

    石油产品[color=#333333]抵抗由于空气(或氧气)的作用而引起其性质发生永久性改变的能力,叫做油品的氧化安定性。润滑油的抗氧化安定性是反映润滑油在实际使用、贮存和运输中氧化变质或老化倾向的重要特性。[/color][color=#333333][/color][color=#333333]油品在贮存和使用过程中,经常与空气接触而起[/color]氧化作用[color=#333333],温度的升高和金属的催化会加深油品的氧化。润滑油品氧化的结果,使油品颜色变深,粘度增大,酸性物质增多,并产生沉淀。这些无疑对润滑油的使用会带来一系列不良影响,如腐蚀金属,堵塞油路等。对内燃机油来说,还会在活塞表面生成漆膜,粘结活塞环,导致汽缸的磨损或活塞的损坏。因此,这个项目是润滑油品必控质量指标之一,对长期循环使用的汽轮机油、变压器油、内燃机油以及与大量压缩空气接触的空气压缩机油等,更具重要意义。通常油品中均加有一定数量的抗氧剂,以增加其抗氧化能力,延长使用寿命。[/color][color=#333333][/color][color=#333333]润滑油氧化安定性测定方法有多种,其原理基本相同,一般都是向试样中直接通入氧气或净化干燥的空气。在金属等催化剂的作用下,在规定温度下经历规定的时间观察试样的沉淀或测定沉淀值、测定试样的酸值、粘度等指标的变化。试验条件因油品而异,氧化设备也因油品而不同,尽量模拟油品使用的状况。我国对航空涡轮发动机润滑油的抗氧化安定性按两种方法[/color][color=#333333]GJB499-88[/color][color=#333333]和[/color][color=#333333]SH/T0450-92[/color][color=#333333]进行氧化试验,前者称为大氧化管法,后者称为小氧化管法;对内燃机油的测定方法有[/color][color=#333333]SH/T0299-92[/color][color=#333333]和[/color][color=#333333]SH/T0192-92[/color][color=#333333]标准进行;汽轮机油[/color][color=#333333]SH/T0193-92[/color][color=#333333]旋转氧弹法来测定其抗氧化性能;变压器油的氧化特性按[/color][color=#333333]SH/T 0206-92[/color][color=#333333]即国际电工委员会标准[/color][color=#333333]IEC74-1974[/color][color=#333333]标准方法进行;中高档润滑油氧化安定性测定主要有[/color][color=#333333]GB/T 12581[/color][color=#333333]加抑制剂矿物油氧化特性测定法、[/color][color=#333333]GB/T 12709[/color][color=#333333]润滑油老化特性测定法[/color][color=#333333]([/color][color=#333333]康氏残炭法[/color][color=#333333])[/color][color=#333333]、[/color][color=#333333]SH/T 0123[/color][color=#333333]极压润滑油氧化安定性测定法进行。[/color][color=#333333] [/color][color=#333333] [/color][color=#333333] [/color]

  • 润滑油常用检测指标及测定意义-氧化安定性

    .氧化安定性  石油产品抵抗由于空气(或氧气)的作用而引起其性质发生性改变的能力,叫做油品的氧化安定性。润滑油的抗氧化安定性是反映润滑油在实际使用、贮存和运输中氧化变质或老化倾向的重要特性。  油品在贮存和使用过程中,经常与空气接触而起氧化作用,温度的升高和金属的催化会加深油品的氧化。润滑油品氧化的结果,使油品颜色变深,粘度增大,酸性物质增多,并产生沉淀。这些无疑对润滑油的使用会带来一系列不良影响,如腐蚀金属,堵塞油路等。对内燃机油来说,还会在活塞表面生成漆膜,粘结活塞环,导致汽缸的磨损或活塞的损坏。因此,这个项目是润滑油品必控质量指标之一,对长期循环使用的汽轮机油、变压器油、内燃机油以及与 压缩空气接触的空气压缩机油等,更具重要意义。通常油品中均加有一定数量的抗氧剂,以增加其抗氧化能力,延长使用寿命。  润滑油氧化安定性测定方法有多种,其原理基本相同,一般都是向试样中直接通入氧气或净化干燥的空气。在金属等催化剂的作用下,在规定温度下经历规定的时间观察试样的沉淀或测定沉淀值、测定试样的酸值、粘度等指标的变化。试验条件因油品而异,尽量模拟油品使用的状况。我国对内燃机油的氧化测定方法有SH/T0299-92和SH/T0192-92标准进行;汽轮机油SH/T 0193-92旋转氧弹法来测定其抗氧化性能;变压器油的氧化特性按SH/T 0206-92即电工委员会标准IEC74标准方法进行;中润滑油氧化安定性测定主要有GB/T 12581加抑制剂矿物油氧化特性测定法、GB/T 12709润滑油老化特性测定法(康氏残炭法)、SH/T 0123极压润滑油氧化安定性测定法进行

  • 润滑油常用检测指标及测定意义-抗剪切安定性

    抗剪切安定性  剪切安定性测定法:以油品的粘度下降率来评定其剪切安定性。主要用以评价含高分子聚合物润滑油(稠化油)的聚合物抗剪切能力,也是评定稠化油的性粘度下降的指标。我国的标准试验方法有SH/T 0505-92含聚合物油剪切安定性测定法(超声波剪切法)、SH/T 0200-92含聚合物润滑油剪切安定性测定法(齿轮机法)。国外标准试验方法有美国ASTM D 2603含聚合物润滑油超声剪切稳定性试验法

  • 润滑油剪切安定性

    [color=#333333]加入增粘剂的油品在使用过程中,由于机械剪切的作用,油品中的高分子聚合物被剪断,使油品粘度下降,影响正常润滑。因此剪切安定性是这类油品必测的特殊理化性能。测定剪切安定性的方法很多,有超声波剪切法、喷嘴剪切法、威克斯泵剪切法、FZG齿轮机剪切法,这些方法最终都是测定油品的粘度下降率。[/color][color=#333333][/color]

  • 润滑油热安定性

    [color=#333333]热安定性表示油品的耐高温能力,也就是润滑油对热分解的抵抗能力,即热分解温度。一些高质量的抗磨液压油、[/color]压缩机油[color=#333333]等都提出了热安定性的要求。油品的热安定性主要取决于基础油的组成,很多分解温度较低的添加剂往往对油品安定性有不利影响;抗氧剂也不能明显地改善油品的热安定性。[/color][color=#333333][/color]

  • 润滑脂的选择

    [color=#333333]选择[/color]润滑脂[color=#333333]时,主要应考虑摩擦副的工况(负荷、速度、温度)、工作状态(连续运转、断续运转、有无振动和冲击等)和工作环境(湿度、气温、空气污染程度等)。[/color][color=#333333]润滑脂有皂基润滑脂、无基润滑脂以及有机润滑脂三类。[/color][b][color=#333333]1[/color][color=#333333])皂基润滑脂[/color][/b][color=#333333]皂基润滑脂占润滑脂的产量[/color][color=#333333]90%[/color][color=#333333]左右.使用最广泛。最常使用的有钙基、钠基、锂基钙钠基、复合钙基等润滑脂。复合铝基、复合锂基润滑脂也占有一定的比例,这两种脂是有发展前景的品种。[/color][color=#333333](1)[/color][color=#333333]钙基润滑脂。是由天然脂肪或合成脂肪酸用氢氧化钙反应生成的钙皂稠化中等粘度石油润滑油制成。[/color][color=#333333]滴点在[/color][color=#333333]75[/color][color=#333333]~[/color][color=#333333]100[/color][color=#333333]℃[/color][color=#333333]之间,其使用温度不能超过[/color][color=#333333]60[/color][color=#333333]℃[/color][color=#333333],如超过这一温度,润滑脂会变软甚至结构破坏不能保证润滑。[/color][color=#333333]具有良好的抗水性,遇水不易乳化变质,适于潮湿环境或与水接触的各种机械部件的润滑。[/color][color=#333333]具有较短的纤维结构,有良好的剪断安定性和触变安定性,因此具有良好的润滑性能和防护性能。[/color][color=#333333](2)[/color][color=#333333]钠基润滑脂,是由天然或合成脂肪酸钠皂稠化中等粘度石油润滑油制成。[/color][color=#333333]具有较长纤维结构和良好的拉丝性,可以使用在振动较大、温度较高的滚动或滑动轴承上。尤其是适用于低速、高负荷机械的润滑。因其滴点较高,可在[/color][color=#333333]80%[/color][color=#333333]或高于此温度下较长时间内工作。[/color][color=#333333]钠基润滑脂可以吸收水蒸气,延缓了水蒸气向金属表面的渗透。因此它有一定的防护性。[/color][color=#333333](3)[/color][color=#333333]钙钠基润滑脂。具有钙基和钠基润滑脂的特点。[/color][color=#333333]有钙基脂的抗水性,又有钠基脂的耐温性,滴点在[/color][color=#333333]120[/color][color=#333333]℃[/color][color=#333333]左右,使用温度范围为[/color][color=#333333]90[/color][color=#333333]~[/color][color=#333333]100[/color][color=#333333]℃[/color][color=#333333]。[/color][color=#333333][/color][color=#333333]  具有良好的机械安全性和泵输送性,可用于不太潮湿条件下的滚动轴承上。[/color][color=#333333][/color][color=#333333]  最常应用的是轴承脂和压延机润滑脂,可用于润滑中等负荷的电机,鼓风机、汽车底盘、轮毂等部位滚动轴承。[/color][color=#333333](4)[/color][color=#333333]锂基润滑脂。是由天然脂肪酸[/color][color=#333333]([/color][color=#333333]硬脂酸或[/color][color=#333333]12-[/color][color=#333333]羟基硬脂酸[/color][color=#333333])[/color][color=#333333]锂皂稠化石油润滑油或合成润滑油制成。由合成脂肪酸锂皂稠化石油润滑油制成的,称为合成锂基润滑脂。[/color][color=#333333]因锂基润滑脂具有多种优良性能,被广泛地用于飞机、汽车、机床和各种机械设备的轴承润滑。滴点高于[/color][color=#333333]180[/color][color=#333333]℃[/color][color=#333333],能长期在[/color][color=#333333]120[/color][color=#333333]℃[/color][color=#333333]左右环境下使用。具有良好的机械安定性,化学安定性和低温性,可用在高转速的机械轴承上。具有优良的抗水性,可使用在潮湿和与水接触的机械部件上。锂皂稠化能力较强,在润滑脂中添加极压、防锈等添加剂后,制成多效长寿命润滑脂,具有广泛用途。[/color][color=#333333](5)[/color][color=#333333]复合钙基润滑脂。用脂肪酸钙皂和低分子酸钙盐制成的复合钙皂稠化中等粘度石油润滑油或合成润滑油制成。耐温性好,润滑脂滴点高于[/color][color=#333333]180[/color][color=#333333]℃[/color][color=#333333],使用温度可在[/color][color=#333333]150[/color][color=#333333]℃[/color][color=#333333]左右。[/color][color=#333333]具有良好的抗水性,机械安定性和胶体安定性。具有较好的极压性,适用于较高温度和负荷较大的机械轴承润滑。复合钙基润滑脂表面易吸水硬化,影响它的使用性能。[/color][color=#333333](6)[/color][color=#333333]复合铝基润滑脂。是山硬脂酸和低分子有机酸[/color][color=#333333]([/color][color=#333333]如苯甲酸[/color][color=#333333])[/color][color=#333333]的复合铝皂稠化不同粘度石油润滑油制成。固有良好的各种特性,适用于各种电机、交通运输、钢铁企业及其他各种工业机械设备的润滑。只有短的纤维结构,良好的机械安定性和泵送性.因其流动性好.适用于集中润滑系统。具有良好的抗水性,可以用于较潮湿或有水存在下的机械润滑。[/color][color=#333333](7)[/color][color=#333333]复合锂基润滑脂。是由脂肪酸锂皂和低分子酸锂盐[/color][color=#333333]([/color][color=#333333]如壬二酸,癸二酸,水杨酸和硼酸盐等[/color][color=#333333])[/color][color=#333333]两种或多种化合物共结晶.稠化不同粘度石油润滑油制成,广泛应用于轧钢厂炉前辊道轴承,汽车轮轴承、重型机械、各种高沮抗磨轴承以及齿轮、涡轮、蜗杆等润滑。具有高的滴点,具有耐高温性;复合皂的纤维结构强度高,在高温条件下具有良好的机械安定性,有长的使用寿命;有良好的抗水淋特性,适于潮湿环境工作机械的润滑,如轧钢机械等。[/color][b][color=#333333]2[/color][color=#333333])无机润滑脂[/color][/b][color=#333333]主要有膨润土润滑脂及硅胶润滑脂两类。表面改质的硅胶稠化甲基硅油制成的润滑脂,可用于电气绝缘及真空密封。膨润土润滑脂是由表面活性剂[/color][color=#333333]([/color][color=#333333]如二甲基十八烷基苄基氯化铵或氨基酰胺[/color][color=#333333])[/color][color=#333333]处理后的有机膨润土稠化不同粘度的石油润滑油或合成润滑油制成,适用于汽车底盘、轮轴承及高温部位轴承的润滑,它具有以下特点。[/color][color=#333333]膨润土润滑脂没有滴点,它的耐温性能决定于表面活性剂和基础油的高温性能,它的低温性能决定于选用的基础油类型。稠化剂的用量对脂的低温性能也有影响。[/color][color=#333333]具有较好的胶体安定性,润滑脂的机械安定性随表而活性剂的类型而异。[/color][color=#333333]对金属表面的防腐蚀性稍差。因此,润滑脂中要添加防锈剂以改善这个性能。[/color][b][color=#333333]3[/color][color=#333333])有机润滑脂[/color][/b][color=#333333]各种有机化合物稠化石油润滑油或合成润滑油,各具有不同的特性,这些润滑脂大都作特殊用途。如阴丹士林、酞菁恫稠化合成润滑油制成高温润滑脂可用于[/color][color=#333333]200[/color][color=#333333]~[/color][color=#333333]250[/color][color=#333333]℃[/color][color=#333333]工况;含氟稠化刑如聚四氟乙烯稠化氟碳化合物或全氟醚制成的润滑脂,可耐强氧化刑,作为特殊部件的润滑。又如聚脲润滑脂可用于抗辐射条件下的轴承润滑等。[/color][color=#333333]聚脲润滑脂是由聚脲稠化剂稠化石油润滑油或合成润滑油制成,耐高温性能好,在[/color][color=#333333]25[/color][color=#333333]~[/color][color=#333333]225[/color][color=#333333]℃[/color][color=#333333]宽温范围内脂的稠度变化不大,又由于稠化剂分子中不含金属离子,消除了高温下金属对润附油的催化作用,所以氧化安定性好;脲基脂在[/color][color=#333333]149[/color][color=#333333]℃[/color][color=#333333],[/color][color=#333333]10.000r/min[/color][color=#333333]条件下,轴承运转寿命超过[/color][color=#333333]4000[/color][color=#333333]小时。聚脲脂是近十年来迅速发展的[/color][color=#333333]—[/color][color=#333333]种广泛用途的产品,用于钢铁工业高洗部位的润滑,用于食品工业和电力、电子工业,以及长寿命的密封轴承的润滑。[/color]

  • 国标SH/T0325、ASTMD942测定润滑脂的防腐蚀性

    SH0325[url=http://www.st-test.net/cpzx/01/240.html][color=#354350]润滑脂氧化安定性试验[/color][color=#354350]仪[/color][/url]适用于按SH/T0325、ASTMD942测定润滑脂的防腐蚀性能。仪器采用数字式温控器控制温度,通过电机搅拌使浴槽达恒温。将连有压力表的氧弹放入恒温槽内,通入一定压力的氧气,经过一定的时间,根据氧弹内压力的变化情况,确定润滑脂的氧化安定性。性能特点: 1 结构特点仪器由数字控温器2 二孔恒温槽,配带压力计的氧弹及试样容器3 结构紧凑、包装运输方便技术参数1、适用标准:SH/T0325 ASTM D9422、输入电压:AC220V±10% 50Hz3、控温范围:室温-150℃4、加热功率:1.8KW5、控温精度:±0.1℃SH0325 半自动氧化安定性仪 手动充氧 肉眼观察氧弹压力情况SH0325B 全自动氧化安定性仪 自动充氧,自动彩屏液晶显示结果 自动打印

  • 国标按照GB/T269-91润滑脂和石油脂锥入度测定法

    SH269润滑脂剪切试验机按照GB/T269-91《润滑脂和石油脂锥入度测定法》试验标准的要求在规定的试验条件下,经机械剪切工作后的稠度变化来判断润滑脂的机械安定性,以延长工作锥入度或剪切安定性表示,单位为0.1mm。[b]性能特点:[/b]1 采用电动机带动减速器达到60次/分的剪切速率2 延长锥入度测试和剪切安定性可选择试验3 显示器可自行显示剪切次数4 计数器可自行计数5 整台仪器结构紧凑、完整6 电机后面带有专用散热风扇,可以确保整台仪器连续工作[b]技术参数:[/b] 1) 电动机:卧式单相电容起动电动机 转速:1400转/分2) 联轴器:梅花形弹性联轴器3) 蜗轮减速器:采用双出轴减速器,传动比25:1,在减速器两侧的蜗轮轴上安装一对偏心机构4) 剪切速率:60次/分5) 最大计数容量:999996) 温度计:采用双金属温度计,范围0~50℃,分度为0.5℃7) 润滑脂工作器 工作行程:67-71mm,孔板上各孔直径:Ф6.35[sup]+0.13[/sup]8) 电源:AC220、50Hz

  • 为什么润滑油必须具备良好的热氧化安定性?

    一、因为发动机在高温时润滑油本身的碳氢化合物与空气及NO、NO2和SO2发生氧化反应生成醇、醛、酮、酸含氧化合物,使润滑油性能下降。  二、气缸活塞工作条件恶劣,在其高温表面下油膜受往复运动,机械高载荷不均匀和爆发冲程时高剪切速率其承压面侧应力很大,油膜被破坏润滑油更易氧化。  三、润滑油在高温条件下氧化过程非常激烈,零件表面的薄层润滑油中,一部分轻馏分被蒸发,另一部分在金属催化下深度氧化,最后生成聚缩物,沉积在零件表面形成漆膜,漆膜降低活塞环的灵活程度,甚至造成粘环,使活塞环丧失密封作用,造成功率降低。漆膜导热性差,使活塞过热,产生拉缸。  四、曲轴箱中由于润滑油受到强烈的搅动和飞溅,与氧接触面很大,氧化作用相当激烈,使油内的可溶和不溶氧化物物增多,润滑效果下降。  五、氧化形成的油泥沉积在活塞槽内和吸附燃气中的碳化物进一步焦化,形成漆膜,漆膜有较大的危害,使气缸磨损加剧。  六、现代高性能的发动机,热负荷很高,如有的增压柴油机需向活塞内腔喷射润滑油来降低其温度,使润滑油更长时间处于高温状态,这就对润滑油氧化安定性提出了更高的要求。  综上所述,发动机润滑油必须具有良好的热氧化安定性才能保证换油周期内润滑油正常润滑保护保护发动机。   合成润滑油基础油的应用使润滑油的热氧化安定性性能大幅度提高,在抗氧化性能,润滑性能,低温性能,节能减排及换油周期各方面性能合成润滑油相比传统矿物基润滑油有了质的飞跃

  • 润滑油的抗氧化安定性和试验方法概述

    绝大部分润滑油工作中会与空气接触,并处于较高的环境温度中,因此油品成分难以避免地会与空气中氧发生化学反应,生成含有氧元素成分的氧化产物。对油品性能和机械的使用带来一系列危害。    为减少润滑油氧化造成的影响,目前所采取的措施除了在生产中通过精制加工除去不安定成分外,应用zui多的方法是在油品中加人抗氧添加剂和清净分散剂。加人抗氧剂以阻止和延缓油品的氧化变质 加入清净分散剂则是将已氧化变质的成分积炭、油泥等产物从机械部件上清除,减小对机械工作的影响。    一、润滑油工作中的氧化情况:    润滑油的氧化是一个复杂的化学反应过程。氧化中油品烃成分以活泼的自由基形式与氧作用,生成一系列含氧化合物。对于抗润滑油的氧化性能的检测,采取的主要仪器为羽通公司生产的润滑油氧化安定性测定仪和YT-0196润滑油抗氧化安定性测定仪。    (一)润滑油氧化与其产物    以8号涡轮喷气发动机润滑油在储存和试验条件下的氧化情况为例:8号涡轮喷气发动机润滑油在常温下是不容易氧化变质的,在高温下则容易氧化变质,而且温度愈高愈易氧化变质。这不仅是8号涡轮喷气发动机润滑油的氧化规律,而且也是所有矿物润滑油的氧化规律。常温代表储存条件下的温度,高温(150℃以上)代表使用条件下的温度。由此可见,润滑油的氧化主要是在使用条件下的氧化。    1.烃类的氧化:    润滑油所含的各类烃中,在高温条件下,相比较烷烃较易氧化,环烷烃氧化难度较大,而芳香烃则zui不易氧化。    烷烃的氧化过程首先是产生化学活性高的自由基。然后通过一系列自由基链反应,与氧作用生成相应分子结构的醇类化合物、醛类化合物、酮类化合物和有机酸等含氧非烃成分中间产物。    所生成的中间产物醇、醛、酮、酸还会进一步发生氧化,例如有机酸进一步氧化生成含有羟基的复杂分子羟基酸。另外,氧化中间产物中,醇成分和有机酸可发生酯化反应生成酯类化合物。    中间产物醇与酸的酯化反应是润滑油氧化的一个特征反应,这种由两个化合物之间官能团的结合或在一个分子内部两个官能团的结合,其结果使得化合物相对分子质量增大,结构变得复杂。随着氧化过程的进行,分子中氧元素含zui逐渐增多,相对分子质zui逐渐增大,zui终成为粘稠的液体或胶质、固体沉淀从油中沉积下来。    环烷烃一般比烷烃难以氧化,氧化主要发生在烷基侧链上,而环结构部分则性能较稳定,难以发生氧化反应,当温度较高氧化较为剧烈时才可能出现断环生成含氧化合物。因此,环烷烃中随烷基侧链成分增多,相对分子质量增大,其氧化安定性变差。    在芳香烃中,无侧链的芳香烃在[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]时氧化倾向极小。氧化的主要倾向是在碳和氢原子之间加人氧而生成酚及其大分子的胶状缩合物。    有侧链的芳香烃比无侧链的芳香烃易于氧化。侧链的数目和长度增加,氧化倾向也增大。带长链的芳香烃氧化时,氧和侧链作用生成过氧化物.并进一步分解为醇类、醛类、酸类等。生成的醇类和酸类之间也会发生酯化反应生成大分子胶状物。    2.zui终氧化产物:    润滑油在使用中的氧化,如内燃机油的氧化有两个方向:一个方向是生成酸性物质(如羧基酸、羟基酸、沥青质酸等)和酯类的中间产物,zui终产物是炭青质 另一个方向是生成胶质、沥青质等,zui终产物是半油焦质。    在氧化产物中,按其性质可分为三类:    ①过氧化物、羧基酸、胶质,这些成分可溶于润滑油中,其中过氧化物和羧基酸对金属有一定的腐蚀作用     ②羟基酸、半交酯、沥青质酸,这些成分微溶于润滑油中,沉淀部分为粘稠物质,易附着在金属表面,高温时会转化为漆状物。其中羟基酸对金属有较强的腐蚀作用     ③沥青质、半油焦质、炭青质,这些成分以深褐色或黑色的固体粉末状细小的微校悬浮在油中,当聚集成大颗拉时可从润滑油中沉淀下来。    因此可见,经过深度氧化的润滑油,内部化学成分氧元素增多,相对分子质量增大,由烃成分转变为含氧非烃物 外观上颜色变深,沉淀增多,腐蚀性增大。显然,这种变化对机械润滑会带来一系列不良影响。    (二)氧化机理分析:    前所讨论是从反应方向和产物的角度分析了润滑油的氧化情况。然而氧化过程中,油品中的烃成分经历了哪些步骤和环节,以及为阻止这些氧化的进行可采用何种方法尚不明了。因此,在此有必要对润滑油的氧化反应历程和机理进行进一步的分析讨论。    根据现代理论,烃类的氧化本质是一系列通过自由基的链反应过程。    1.自由基    自由基是指带自由电子的原子或原子团,例如烃自由基(R.),羟基自由基(.OH),氢的自由原子(H.)等。通常自由基系由分子受到热、光辐射、电等能量的作用,发生分解而产生的。    由于自由基的自由电子未形成饱和的电子对,是一种不稳定状态,因而具有很高的化学活性。为形成饱和电子对而争夺电子的倾向,使得自由基内部电子云的分布以及所接触的其他分子的电子云的分布发生了相应的变化,从而使得许多在饱和分子间难以发生的反应在此很容易进行。实验证明,自由基和分子之间发生化学反应所需的的活化能一般在40kJ以内,少数为41.8-83.6kJ。而当饱和分子之间发生反应的时候,所需活化能则达300-400kJ。二者之间的差别是明显的。    2.链反应历程    烃类氧化的链反应过程包括四个阶段,即链的开始、链的传递、链的分支、链的中断。    (1)链的开始    链的开始就是指从原料分子中生成zui初的自由基或自由原子。自由基的产生有赖于分子中键的断裂,因此它所需要的活化能就等于饱和价分子中所作用的键能。当分子中吸收了大于键破坏能的能量时,就可使共价链断裂,已成键的共价电子对被拆开,形成两个各带一个自由电子的自由基。通常在分子中键能较小的地方首先发生断裂而生成自由基。    在没有催化剂的条件下,产生自由基所需的能量较大(约300-400k//mol),链的引发是比较困难的。因而氧化开始时,zui初产生的白由基的数目总是很少的,所需的能zui来源于这样几种可能:较高温度时的热能、热辐射和光能、金属器壁的催化作用等。    (2)链的传递    链的传递即自由基与烃分子或空气中氧发生作用的过程。前已介绍,自由基具有很高的化学活性,是烃类链反应的活化质点(也称活性中心),其发生化学反应的活化能一般只有几千焦至几十千焦,远远小于饱和分子间反应的活化能。因此,在自由基出现后,非常容易发生自由基与烃分子或空气中氧的反应,反应结果是通过转变形成新的自由基,使烃成分结构发生改变。烃分子中不断加人氧元素。    链的传递是通过自由基引发的一系列氧化反应过程。其特点一是由于自由基的存在使得反应活化能降低,出现自由基后引起烃类氧化 二是链传递中,自由基的数量没有变化,链传递的过程是由一种自由基形式转变成另一种自由基形式。因此,仅仅是链传递过程,对氧化没有加速的作用。    (3)链的分支    链的分支是自由基增加的反应。研究表明,当烃类链反应中出现过氧化物时,由于过氧化物性质活泼,反应活化能低,因此很容易出现分解反应,由一个过氧化物成分生成两个自由基。    过氧化物ROOH是一类性质很活拨的化合物,根据氧化条件及其本身的特性,可以发生不同的反应,朝不同的方向变化。一个方向是分解成两个自由基,增加自由基的数zui,形成反应链分支。由于过氧化物中O-O键的键能较弱,约100-200kJ,远低于饱和价分子的键    能(300-400kJ),因此,当出现过氧化物后,将会加速油品氧化。    在某些条件和催化剂的作用下,过氧化物的分解还可以朝另一个方向生成醇、醛、酮等饱和价分子的方向分解,这种分解可减少过氧化物数量和降低氧化分支的可能。因此.实际应用中可通过加人某些添加剂与过氧化物作用增强此方向的反应,起到阻止氧化的作用。    (4)链的中断    链的中断即自由基的湮灭。链反应中,一方面有产生自由基的反应。另一方面,也存在着自由基被湮灭的过程。烃类链反应中自由基消失的途径可源自于自由基间的相互作用生成化合物,或与惰性分子作用失去活性两种途径。    两个自由基相互作用时,会结合生成饱和烃化合物而失去自由基的活性状态,同时释放出一定的能量。    自由基的湮灭使得氧化反应中的部分反应链发生中断,起到抑制链反应的作用。    自由基湮灭的另一途径是与惰性分子作用,如与抗氧化剂作用,或被反应器的容器壁吸附。由此形成活性不高的化合物。使自由基失去反应活性而起到中断反应链的作用。    在烃类氧化过程中,当自由基产生的速度高于湮灭的速度时,反应呈现出加速的特征,而当自由基湮灭的速度大于其产生的速度时.则会使氧化的过程受到抑制。    二润滑油抗氧化安定性的评定    这个方法是将30g润滑油放在玻瑞氧化管中,在125℃和金属的催化作用下,进行厚油层中的氧化。具体检测仪器为上海羽通仪器仪表厂生产的YT-0196润滑油抗氧化安定性测定仪。    测定条件和结果的表示方法有两种,一是在缓和氧化条件下以润滑油氧化所形成的水溶性酸(包括挥发和不挥发的)的含量表示,另一种是以润滑油在深度氧化条件下所形成的沉淀物含量和酸值表示。沉淀物的测定可以选择合适的离心机,酸值测定为羽通公司生产的YT-264系列酸值测定仪和YT-7304系列酸值测定仪    因为烃类不同,氧化中间产物的性质可能不同(中性和酸性),羧酸、酚等为酸性物 醇类、酮类、酯类等为中性物。若中性物多,缩合沉淀,但酸值不一定高。所以侧定润滑油的抗氧化安定性时,除了测定其酸值以外,还要测定其沉淀物的含量。    在缓和氧化条件下测定时,是在氧化管内的油样中,放人铜珠和钢珠各一个,然后放人预热到125℃的油浴中,用像皮管将氧化管的支管和装有20mL蒸馏水的吸收瓶连接起来,然后通人清洁空气(通气量5OmL/min),经过4h氧化后,测定油样氧化产生的水溶性酸(包括不挥发性酸和挥发性酸)的含量,以mg(KOH)/g表示。水溶性酸含量越大,表明抗氧化安定性越差。    在深度氧化条件下测定时,测定温度仍为125℃,氧化管内油样中放绕有钢丝的铜片作催化剂,通人氧气(流量200ml/min),经8h氧化后,测定生成的沉淀物,以质量分数表示,并测定氧化后润滑油的酸值。氧化后沉淀物含量越少,酸值越小,表示润滑油的抗氧化安定性越好

  • 润滑脂的那些事

    [color=#666666]一、润滑脂的主要性能指标[/color][color=#666666]滴 点:指在规定的条件下加热,达到一定流动性时的温度。它大体上可以决定润滑指的使用温度[/color][color=#666666]([/color][color=#666666]滴点比使用温弃高[/color][color=#666666]15~30[/color][color=#666666]度[/color][color=#666666])[/color][color=#666666]。[/color][color=#666666]锥入度:指在规定的温度和负荷下试验锥体在[/color][color=#666666]5s[/color][color=#666666]内自由垂直刺入油脂中的深度[/color][color=#666666]([/color][color=#666666]单位为[/color][color=#666666]1/10mm)[/color][color=#666666]。它是润滑指稠度和软硬程度的衡量指标。[/color][color=#666666]胶体安定性[/color][color=#666666]([/color][color=#666666]析油性[/color][color=#666666])[/color][color=#666666]:指在外力作用下润滑指能在其稠化剂的骨架中保存油的能力,用分油量来判定。当润滑脂的析油量超过[/color][color=#666666]5%-20%[/color][color=#666666]时,此润滑脂基本上不能使用。[/color][color=#666666]氧化安定性:指在储存和使用中抵抗氧化的能力。[/color][color=#666666]机械安定性:指在机械工作条件下抵抗稠度变化的能力。机械安定性差,易造成润滑脂的稠度下降。[/color][color=#666666]蒸发损失:指在规定条件下,其损失量所占总量的百分数。它是影响润滑脂使用寿命的一项重要因素。[/color][color=#666666]抗水性:指在水中不溶解、不从周围介质中吸收水分和不被水洗掉等的能力。[/color][color=#666666]相似粘度:指其非牛顿流体流动时的剪应力与剪速之比值。转速高时其粘度低,反之则粘度较大。[/color][color=#666666]二、润滑脂的失效分析[/color][color=#666666]物理因素引起的失效[/color][color=#666666]润滑脂在使用中会同时受到机械剪切和离心力的作用下润滑脂会被甩出摩擦界面而使其分油,导致润滑脂油分减少、锥入度减小而硬化,到一定程度后润滑脂将完全失效[/color][color=#666666] [/color][color=#666666]在机械剪切作用下,润滑脂结构爱到破坏[/color][color=#666666]([/color][color=#666666]如皂纤维脱开或取向[/color][color=#666666])[/color][color=#666666],引起其软化、稠度下降和析油量增加等,最终导致失效。通常情况下,润滑脂[/color][color=#666666]使用转递速增加[/color][color=#666666]2000r/min[/color][color=#666666],其寿命将减少一半左右。在高剪切应力下,转速增加一倍,使用寿命只相当于原寿命的[/color][color=#666666]1/10[/color][color=#666666]。[/color][color=#666666]化学因素引起的失效[/color][color=#666666]润滑脂与空气中的氧发生化学反庆产生酸性物质,它首先是消耗脂中的抗氧化添加剂,但到一定程度后,生成的有机酸会腐蚀金属元件并破坏脂的结构,使其滴点下降、基础油粘度增加和流动性变差等。大量试验表明,温度越高,润滑脂的寿命下降越明显。如温度在[/color][color=#666666]90~100[/color][color=#666666]度时,温度每升高[/color][color=#666666]19[/color][color=#666666]度,脂的寿命[/color][color=#666666]约降低一半,而在[/color][color=#666666]10~150[/color][color=#666666]度时,温度每升高[/color][color=#666666]15[/color][color=#666666]度,脂的寿命也将下降一半。[/color][color=#666666]此外,润滑脂使用环境中的水分、尘埃和有害气体等也是使其劣化的重要因素。例如:脂中混入铜、铁、铅和青铜等磨损微粒,会地脂的氧化起催化作用。总之,润滑脂的失效原因很多,有时可能由某一原因引起,但更多是多种因素其同作用的结果,或者以一种原因为突破口,然后其他原因共同作用。[/color]

  • 润滑脂铜片腐蚀的测定检测仪器

    SY7326润滑脂铜片腐蚀测定器适用于测定润滑脂对铜的腐蚀性。把一块准备好的铜片全部浸入到润滑脂试样中,在烘箱或液体浴中加热一定的时间。一般采用的条件是100℃,24h在试验期结束后,取出铜片,经洗涤后,甲法是将试验铜片与铜片腐蚀标准色板进行比较,确定腐蚀级别。乙法检查试验铜片有无变色。技术参数适用标准:GB/T7326 作样单元:四组样品控温方式:数显温控 作样温度:常温~100±0.5℃

  • 润滑油的抗氧化安定性和试验方法概述

    [font=&][size=18px]绝大部分润滑油工作中会与空气接触,并处于较高的环境温度中,因此油品成分难以避免地会与空气中氧发生化学反应,生成含有氧元素成分的氧化产物。对油品性能和机械的使用带来一系列危害。[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  为减少润滑油氧化造成的影响,目前所采取的措施除了在生产中通过精制加工除去不安定成分外,应用zui多的方法是在油品中加人抗氧添加剂和清净分散剂。加人抗氧剂以阻止和延缓油品的氧化变质 加入清净分散剂则是将已氧化变质的成分积炭、油泥等产物从机械部件上清除,减小对机械工作的影响。[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px] [/size][/font][b] 一、润滑油工作中的氧化情况:[/b][font=&][size=18px]  [/size][/font][font=&][size=18px]  润滑油的氧化是一个复杂的化学反应过程。氧化中油品烃成分以活泼的自由基形式与氧作用,生成一系列含氧化合物。对于抗润滑油的氧化性能的检测,采取的主要仪器为羽通公司生产的润滑油氧化安定性测定仪和YT-0196润滑油抗氧化安定性测定仪。[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  (一)润滑油氧化与其产物[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  以8号涡轮喷气发动机润滑油在储存和试验条件下的氧化情况为例:8号涡轮喷气发动机润滑油在常温下是不容易氧化变质的,在高温下则容易氧化变质,而且温度愈高愈易氧化变质。这不仅是8号涡轮喷气发动机润滑油的氧化规律,而且也是所有矿物润滑油的氧化规律。常温代表储存条件下的温度,高温(150℃以上)代表使用条件下的温度。由此可见,润滑油的氧化主要是在使用条件下的氧化。[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  1.烃类的氧化:[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  润滑油所含的各类烃中,在高温条件下,相比较烷烃较易氧化,环烷烃氧化难度较大,而芳香烃则zui不易氧化。[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  烷烃的氧化过程首先是产生化学活性高的自由基。然后通过一系列自由基链反应,与氧作用生成相应分子结构的醇类化合物、醛类化合物、酮类化合物和有机酸等含氧非烃成分中间产物。[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  所生成的中间产物醇、醛、酮、酸还会进一步发生氧化,例如有机酸进一步氧化生成含有羟基的复杂分子羟基酸。另外,氧化中间产物中,醇成分和有机酸可发生酯化反应生成酯类化合物。[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  中间产物醇与酸的酯化反应是润滑油氧化的一个特征反应,这种由两个化合物之间官能团的结合或在一个分子内部两个官能团的结合,其结果使得化合物相对分子质量增大,结构变得复杂。随着氧化过程的进行,分子中氧元素含zui逐渐增多,相对分子质zui逐渐增大,zui终成为粘稠的液体或胶质、固体沉淀从油中沉积下来。[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  环烷烃一般比烷烃难以氧化,氧化主要发生在烷基侧链上,而环结构部分则性能较稳定,难以发生氧化反应,当温度较高氧化较为剧烈时才可能出现断环生成含氧化合物。因此,环烷烃中随烷基侧链成分增多,相对分子质量增大,其氧化安定性变差。[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  在芳香烃中,无侧链的芳香烃在[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]时氧化倾向极小。氧化的主要倾向是在碳和氢原子之间加人氧而生成酚及其大分子的胶状缩合物。[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  有侧链的芳香烃比无侧链的芳香烃易于氧化。侧链的数目和长度增加,氧化倾向也增大。带长链的芳香烃氧化时,氧和侧链作用生成过氧化物.并进一步分解为醇类、醛类、酸类等。生成的醇类和酸类之间也会发生酯化反应生成大分子胶状物。[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  [/size][/font][b]2.zui终氧化产物:[/b][font=&][size=18px]  [/size][/font][font=&][size=18px]  润滑油在使用中的氧化,如内燃机油的氧化有两个方向:一个方向是生成酸性物质(如羧基酸、羟基酸、沥青质酸等)和酯类的中间产物,zui终产物是炭青质 另一个方向是生成胶质、沥青质等,zui终产物是半油焦质。[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  在氧化产物中,按其性质可分为三类:[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  ①过氧化物、羧基酸、胶质,这些成分可溶于润滑油中,其中过氧化物和羧基酸对金属有一定的腐蚀作用 [/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  ②羟基酸、半交酯、沥青质酸,这些成分微溶于润滑油中,沉淀部分为粘稠物质,易附着在金属表面,高温时会转化为漆状物。其中羟基酸对金属有较强的腐蚀作用 [/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  ③沥青质、半油焦质、炭青质,这些成分以深褐色或黑色的固体粉末状细小的微校悬浮在油中,当聚集成大颗拉时可从润滑油中沉淀下来。[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  因此可见,经过深度氧化的润滑油,内部化学成分氧元素增多,相对分子质量增大,由烃成分转变为含氧非烃物 外观上颜色变深,沉淀增多,腐蚀性增大。显然,这种变化对机械润滑会带来一系列不良影响。[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  [/size][/font][b](二)氧化机理分析:[/b][font=&][size=18px]  [/size][/font][font=&][size=18px]  前所讨论是从反应方向和产物的角度分析了润滑油的氧化情况。然而氧化过程中,油品中的烃成分经历了哪些步骤和环节,以及为阻止这些氧化的进行可采用何种方法尚不明了。因此,在此有必要对润滑油的氧化反应历程和机理进行进一步的分析讨论。[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  根据现代理论,烃类的氧化本质是一系列通过自由基的链反应过程。[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  1.自由基[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  自由基是指带自由电子的原子或原子团,例如烃自由基(R.),羟基自由基(.OH),氢的自由原子(H.)等。通常自由基系由分子受到热、光辐射、电等能量的作用,发生分解而产生的。[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  由于自由基的自由电子未形成饱和的电子对,是一种不稳定状态,因而具有很高的化学活性。为形成饱和电子对而争夺电子的倾向,使得自由基内部电子云的分布以及所接触的其他分子的电子云的分布发生了相应的变化,从而使得许多在饱和分子间难以发生的反应在此很容易进行。实验证明,自由基和分子之间发生化学反应所需的的活化能一般在40kJ以内,少数为41.8-83.6kJ。而当饱和分子之间发生反应的时候,所需活化能则达300-400kJ。二者之间的差别是明显的。[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  2.链反应历程[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  烃类氧化的链反应过程包括四个阶段,即链的开始、链的传递、链的分支、链的中断。[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  (1)链的开始[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  链的开始就是指从原料分子中生成zui初的自由基或自由原子。自由基的产生有赖于分子中键的断裂,因此它所需要的活化能就等于饱和价分子中所作用的键能。当分子中吸收了大于键破坏能的能量时,就可使共价链断裂,已成键的共价电子对被拆开,形成两个各带一个自由电子的自由基。通常在分子中键能较小的地方首先发生断裂而生成自由基。[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  在没有催化剂的条件下,产生自由基所需的能量较大(约300-400k//mol),链的引发是比较困难的。因而氧化开始时,zui初产生的白由基的数目总是很少的,所需的能zui来源于这样几种可能:较高温度时的热能、热辐射和光能、金属器壁的催化作用等。[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  (2)链的传递[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  链的传递即自由基与烃分子或空气中氧发生作用的过程。前已介绍,自由基具有很高的化学活性,是烃类链反应的活化质点(也称活性中心),其发生化学反应的活化能一般只有几千焦至几十千焦,远远小于饱和分子间反应的活化能。因此,在自由基出现后,非常容易发生自由基与烃分子或空气中氧的反应,反应结果是通过转变形成新的自由基,使烃成分结构发生改变。烃分子中不断加人氧元素。[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  链的传递是通过自由基引发的一系列氧化反应过程。其特点一是由于自由基的存在使得反应活化能降低,出现自由基后引起烃类氧化 二是链传递中,自由基的数量没有变化,链传递的过程是由一种自由基形式转变成另一种自由基形式。因此,仅仅是链传递过程,对氧化没有加速的作用。[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  (3)链的分支[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  链的分支是自由基增加的反应。研究表明,当烃类链反应中出现过氧化物时,由于过氧化物性质活泼,反应活化能低,因此很容易出现分解反应,由一个过氧化物成分生成两个自由基。[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  过氧化物ROOH是一类性质很活拨的化合物,根据氧化条件及其本身的特性,可以发生不同的反应,朝不同的方向变化。一个方向是分解成两个自由基,增加自由基的数zui,形成反应链分支。由于过氧化物中O-O键的键能较弱,约100-200kJ,远低于饱和价分子的键[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  能(300-400kJ),因此,当出现过氧化物后,将会加速油品氧化。[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  在某些条件和催化剂的作用下,过氧化物的分解还可以朝另一个方向生成醇、醛、酮等饱和价分子的方向分解,这种分解可减少过氧化物数量和降低氧化分支的可能。因此.实际应用中可通过加人某些添加剂与过氧化物作用增强此方向的反应,起到阻止氧化的作用。[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  (4)链的中断[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  链的中断即自由基的湮灭。链反应中,一方面有产生自由基的反应。另一方面,也存在着自由基被湮灭的过程。烃类链反应中自由基消失的途径可源自于自由基间的相互作用生成化合物,或与惰性分子作用失去活性两种途径。[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  两个自由基相互作用时,会结合生成饱和烃化合物而失去自由基的活性状态,同时释放出一定的能量。[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  自由基的湮灭使得氧化反应中的部分反应链发生中断,起到抑制链反应的作用。[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  自由基湮灭的另一途径是与惰性分子作用,如与抗氧化剂作用,或被反应器的容器壁吸附。由此形成活性不高的化合物。使自由基失去反应活性而起到中断反应链的作用。[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  在烃类氧化过程中,当自由基产生的速度高于湮灭的速度时,反应呈现出加速的特征,而当自由基湮灭的速度大于其产生的速度时.则会使氧化的过程受到抑制。[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  二润滑油抗氧化安定性的评定[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  这个方法是将30g润滑油放在玻瑞氧化管中,在125℃和金属的催化作用下,进行厚油层中的氧化。具体检测仪器为上海羽通仪器仪表厂生产的YT-0196润滑油抗氧化安定性测定仪。[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  测定条件和结果的表示方法有两种,一是在缓和氧化条件下以润滑油氧化所形成的水溶性酸(包括挥发和不挥发的)的含量表示,另一种是以润滑油在深度氧化条件下所形成的沉淀物含量和酸值表示。沉淀物的测定可以选择合适的离心机,酸值测定为羽通公司生产的YT-264系列酸值测定仪和YT-7304系列酸值测定仪[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  因为烃类不同,氧化中间产物的性质可能不同(中性和酸性),羧酸、酚等为酸性物 醇类、酮类、酯类等为中性物。若中性物多,缩合沉淀,但酸值不一定高。所以侧定润滑油的抗氧化安定性时,除了测定其酸值以外,还要测定其沉淀物的含量。[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  在缓和氧化条件下测定时,是在氧化管内的油样中,放人铜珠和钢珠各一个,然后放人预热到125℃的油浴中,用像皮管将氧化管的支管和装有20mL蒸馏水的吸收瓶连接起来,然后通人清洁空气(通气量5OmL/min),经过4h氧化后,测定油样氧化产生的水溶性酸(包括不挥发性酸和挥发性酸)的含量,以mg(KOH)/g表示。水溶性酸含量越大,表明抗氧化安定性越差。[/size][/font][font=&][size=18px]  [/size][/font][font=&][size=18px]  在深度氧化条件下测定时,测定温度仍为125℃,氧化管内油样中放绕有钢丝的铜片作催化剂,通人氧气(流量200ml/min),经8h氧化后,测定生成的沉淀物,以质量分数表示,并测定氧化后润滑油的酸值。氧化后沉淀物含量越少,酸值越小,表示润滑油的抗氧化安定性越好。[/size][/font]

  • 润滑脂的优缺点。

    [color=#666666]1[/color][color=#666666]钙基润滑脂[/color][color=#666666]钙基脂俗称[/color][color=#666666]“[/color][color=#666666]黄油[/color][color=#666666]”[/color][color=#666666],抗水性好,原料来源广泛,价格便宜;适用于潮湿环境或与水接触的各种机械部件的润滑。[/color][color=#666666]其缺点是:[/color][color=#666666]滴点低,使用温度不超过[/color][color=#666666]60[/color][color=#666666]℃[/color][color=#666666];使用寿命短;[/color][color=#666666]耐热性差[/color][color=#666666],[/color][color=#666666]在蒸汽中易硬化;高速条件下,抗剪切性差,不能用于高速。[/color][color=#666666]②[/color][color=#666666]复合钙基润滑脂[/color][color=#666666]高滴点,抗水,较好的机械安定性、极压性、胶体安定性及耐热性;适用于较高温度及潮湿条件下大负荷工作的机[/color][color=#666666]械部件润滑,使用温度可达[/color][color=#666666]150[/color][color=#666666]℃[/color][color=#666666]左右。[/color][color=#666666]③[/color][color=#666666]钡基润滑脂[/color][color=#666666]高滴点[/color][color=#666666],[/color][color=#666666]抗水[/color][color=#666666],[/color][color=#666666]机械安定性好[/color][color=#666666],[/color][color=#666666]不溶汽油和醇;常用于油泵[/color][color=#666666],[/color][color=#666666]水泵[/color][color=#666666],[/color][color=#666666]船推进器[/color][color=#666666],[/color][color=#666666]化工泵[/color][color=#666666]④[/color][color=#666666]钠基润滑脂[/color][color=#666666]耐热性好,使用温度可达[/color][color=#666666]120[/color][color=#666666]℃[/color][color=#666666],[/color][color=#666666]有较好的极压减磨性能;抗水性差[/color][color=#666666],[/color][color=#666666]遇水会乳化变稀流失;可用于振动较大、温度较高的轴承上,优其适用于低速高负荷机械部件的润滑,不能用在潮湿环境或水接触部位。[/color][color=#666666]⑤[/color][color=#666666]锂基润滑脂[/color][color=#666666]锂基脂滴点较高,使用温度范围:[/color][color=#666666]-20[/color][color=#666666]~[/color][color=#666666]120[/color][color=#666666]℃[/color][color=#666666],具有良[/color][color=#666666]好的抗水性、机械安定性、防锈性和氧化安定性;但钾基脂长期存在抗磨性能差的缺点,且不宜与其他润滑脂混合使用,贮存易析油,与非金属皂类润滑脂相比,使用温度范围小,抗水性也差,已不能满足现代工业越来越苛刻的要求。[/color][color=#666666]⑥[/color][color=#666666]极压复合锂基润滑脂[/color][color=#666666]高滴点,抗水性能良好[/color][color=#666666],[/color][color=#666666]有极高极压抗磨性[/color][color=#666666],[/color][color=#666666]适用于~[/color][color=#666666]20[/color][color=#666666]~[/color][color=#666666]120[/color][color=#666666]℃[/color][color=#666666]温度下高负荷机械设备的齿轮、涡轮、涡杆和轴承的润滑。[/color][color=#666666]⑦[/color][color=#666666]铝基润滑脂[/color][color=#666666]粘附性好,抗水,滴点低,一般在[/color][color=#666666]70[/color][color=#666666]℃[/color][color=#666666]左右。[/color][color=#666666]温度升高,铝基脂对金属的粘附能力下降,一般仅做光学仪器防护性润滑脂,不用于润滑设备,复合铝基脂的生产工艺复杂,能耗量大,而同磺基脂,复合锂基脂相比,轴承运转寿命短。[/color][color=#666666]⑧[/color][color=#666666]脲基润滑脂[/color][color=#666666]高滴点,憎水,耐高温,氧化安定性好;但价格昂贵,且抗剪切性能差,在高速.低速剪切条件下,稠度变化大,[/color][color=#666666]易变稀流失。而且其所用原料~异腈酸脂是一种剧毒,所以生产使用过程中防护要求严格,贮存运输困难,使用受到一定限制。[/color][color=#666666]⑨[/color][color=#666666]膨润土润滑脂:[/color][color=#666666]无滴点,使用温度高。但在高温下易结焦,严重影响润[/color][color=#666666]滑性能,[/color][color=#666666]且膨润土是一种矿物,其中很细的砂砾难以除去。因此,轴承的噪音大,使用受到一定限制。[/color][color=#666666]⑩[/color][color=#666666]磺基聚合脂:[/color][color=#666666]磺基聚合脂滴点高,耐高温性能优异,抗水性、机械安定性极为优异,可满足工业中的苛刻要求。[/color]

  • 汽车用润滑脂之轮毂轴承润滑脂

    汽车用润滑脂之轮毂轴承润滑脂

    [align=left]汽车使用润滑脂的部位主要有轮毂轴承、底盘、操纵系统、发动机、电器系统及车身附件等。根据汽车使用润滑脂部位的不同,润滑脂的种类又可以进一步细分。今天要与大家分享的是用在轮毂轴承部位的润滑脂需要具备哪些性能。[/align][align=center][font='calibri'][size=13px]轮毂轴承[/size][/font][/align]汽车轮毂轴承是汽车上使用润滑脂的主要部位。轮毂轴承是汽车行驶系的一个非常重要的元件,其主要作用是承重和为轮毂的转动提供精确引导。如果轮毂轴承出现润滑故障,可能会引起噪声、轴承发热等现象,容易导致方向失控等危险。在工作过程中,它既承受轴向载荷又承受径向载荷。随着汽车向前轮驱动、四轮驱动车型发展,为减少部件数量和小型轻量化,轮轴轴承正向组合型过渡。这使轮毂轴承负荷更大,温升更高,同时也为了保证单元中各部分具有尽量相同的寿命,对润滑脂提出了更高的要求。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2022/07/202207090949251357_6573_5650439_3.png[/img][/align][align=center][font='calibri'][size=13px]性能要求[/size][/font][/align][font='calibri'][size=13px]耐热性 [/size][/font]润滑脂分别填充到轴承和轮毂内,行驶时受到剪切或制动器发热等,引起温度升高,由此产生润滑脂软化、基础油分离、轮毂内的润滑脂泄漏或水、粉尘的混入等各种问题。汽车在一般的车速和路况下,轮毂轴承的负荷和温度都不高,但在山区下坡道或车速过快刹车时制动鼓的摩擦热会传到轴承,温度能达130~150℃,因此需要润滑脂具有优良的耐热性。[font='calibri'][size=13px]抗微动磨损性[/size][/font]抗微动磨损是轮毂轴承润滑脂的重要特性之一。两接触表面间没有宏观相对运动,但在外界变动负荷影响下有小振幅的相对振动,接触表面间产生大量的微小氧化物磨损粉末,因此造成的磨损称为微动磨损。微动磨损会造成轴承疲劳强度降低和产生噪声,有时非常严重甚至会造成轴承损坏,所以对于组合型轮毂轴承来说,润滑脂抗微动磨损性非常重要。从基础油的角度来说,一般合成油的抗微动磨损性比矿物油好。在合成油中,二烷基苯或聚α-烯烃的抗微动磨损性较好;而矿物油中,石蜡基油的抗微动磨损性优于环烷基油。另外,低黏度的基础油抗微动磨损性较好。[font='calibri'][size=13px]剪切安定性[/size][/font]汽车轮毂轴承用润滑脂在车轮的高速运转中遭受强烈的机械剪切,要求润滑脂长时间使用不软化流失,具有良好的触变性。[font='calibri'][size=13px]抗水性和防锈性[/size][/font]轮毂轴承的损坏大多是由于外界的污物、水等的进入导致润滑不畅所引起,其中水汽的进入是润滑失败的一个主要原因。另一方面,由于密封不严,润滑剂泄漏使制动系统失灵引起的事故也有发生。因此,为了避免润滑脂与水接触时出现软化,耐水性也很重要。汽车户外行驶受天气情况、路况影响,润滑脂不可避免与雨水、尘土接触,破坏润滑脂的胶体结构,同时造成轴承腐蚀,所以要求润滑脂具有良好的抗水性和胶体安定性和优良的防锈性。[font='calibri'][size=13px]低温性[/size][/font]汽车在严寒区行驶时,要求润滑脂具有理想的低温转矩,以满足低温润滑的需要。[font='calibri'][size=13px]极压抗磨性[/size][/font]汽车在行驶尤其是运输过程中受车速、路况和承载影响易产生摩擦、磨损,要求润滑脂具有一定的抗磨性。[font='calibri'][size=13px]使用寿命[/size][/font]长寿命是由于密封型轮毂轴承和组合型轮毂轴承终身不维修的要求。汽车速度不断提高和ABS制动盘的应用,轮毂轴承温度不断升高。如果润滑剂在高温的影响下造成泄漏,不但会降低润滑剂本身的寿命,而且会对环境和安全形成不利影响。汽车行驶或制动时产生的摩擦热使润滑脂较长时间处在一个较高的温度,会加速润滑脂的氧化变质,影响润滑脂和轴承的使用寿命。因此要求润滑脂抗氧化能力强、使用寿命长。[font='calibri'][size=13px]粘附性[/size][/font]汽车轮毂轴承润滑脂为适应车辆运行高速化需要,提高了脂的基础油黏度,并添加增黏剂以改善脂的粘附性。[font='calibri'][size=13px]橡胶适应性[/size][/font]为防止轮毂轴承进入污物、水等,造成润滑失败,采用橡胶圈密封。这对润滑脂与橡胶圈匹配性提出了更高的要求。[align=center][/align][align=center][font='calibri'][size=13px]汽车通用锂基酯[/size][/font][/align]本次以汽车通用锂基酯的各项技术标准为大家做参考。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2022/07/202207090949254971_7024_5650439_3.png[/img][img=,690,383]https://ng1.17img.cn/bbsfiles/images/2022/07/202207090949590552_1050_5650439_3.jpg!w690x383.jpg[/img][/align]

  • 高温润滑脂的应用与选择

    高温润滑脂的应用与选择

    [align=left]随着现代机械设备向小型化、高速度、高负荷方向发展,对润滑脂的高温性能提出了越来越高的要求。今天结合两个应用案例,与大家聊一聊高温润滑脂。[/align][align=center][font='等线'][size=13px]温度对润滑脂使用效果的影响[/size][/font][/align]高温润滑脂一般属于合成润滑脂,含有高浓度的聚四氟乙烯润滑颗粒,耐高温抗压能力强,适合高温重载设备,此氟素高温润滑脂专用于高温、高负载、化学腐蚀环境中的轴承以及要求终身润滑的部件,具有极佳的化学惰性、耐久性和低挥发性。轴承或摩擦部位的温度高低及变化的幅度对润滑脂的润滑作用和使用寿命有明显的影响。使用温度越高,润滑脂寿命越短,每当轴承温度升高10~15℃,脂的寿命降低1/2。因此在高温环境下使用的润滑脂,一定要考虑其耐温性能。[align=center]润滑脂最高使用温度[/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2022/06/202206291559045637_6376_5650439_3.png[/img][/align][align=center][font='等线'][size=13px]高温润滑脂的使用案例[/size][/font][/align][align=center][font='等线'][size=13px]在连铸机的应用[/size][/font][/align]为了加强大家对高温润滑脂在生活中应用的认识,以下高温润滑脂的应用案例由信友恒特别提供现在的炼钢企业,不论是长流程炼钢还是短流程炼钢,连铸机的配备几乎成为必然。那么连铸机和高温润滑脂存在什么联系呢?将高温钢水连续不断地浇注到一个或一组水冷铜制结晶器内,钢水沿结晶器周边逐渐凝固成坯壳,待钢液面上升到一定高度,坯壳凝固到一定厚度后拉矫机将坯拉出,并经二次冷却区喷水冷却使铸坯完全凝固,由切割装置根据轧钢要求切成定尺。这种使高温钢水直接浇注成钢坯的工艺过程称为连铸。然而连铸机中轴承的工作温度为180°C,最高可升至300°C。还面临重负荷,灰尘和冷却水中的蒸汽等复杂工况。这也决定了高温润滑脂存在的必要性。高温润滑脂能够解决这些严苛钢材环境中存在的摩擦,腐蚀,变质,极端温度和污染问题,提高工作效率,延长连铸机的使用寿命。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2022/06/202206291559048196_5240_5650439_3.png[/img][/align][align=center][font='等线'][size=13px]在轮胎活络模具的应用[/size][/font][/align]由于轮胎在成型时,需要高温硫化,所以在模具的圆锥面导向活络模具及斜平面导向滑块需要长期工作在180℃~200℃的温度范围,普通润滑脂在这复杂的工况中很容易稠度变小(表现为润滑脂变稀),随后油脂会从滑块缝隙中流出,剩余油脂在模具内部,在高温作用下,普通润滑脂的基础油很快挥发,变干,剩余残渣导致结焦积碳,同时轴承磨损加剧,严重时导致滑块卡死,影响生产。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2022/06/202206291559051711_5958_5650439_3.png[/img][/align][align=center][font='等线'][size=13px]高温润滑脂[/size][/font][font='等线'][size=13px]的品种[/size][/font][/align][font='等线'][size=13px]高温润滑脂[/size][/font]SYH 高温润滑脂由全合成基础油,采用特种聚合物为稠化剂以及防锈剂和抗磨性等多种添加剂精制而成的,采用最新生产工艺,不含任何固体添加剂,与同类产品相比,经济性更好。再润滑周期延长3-5倍以上。? 产品特性不固化、不结焦、高温环境下持久润滑;优异的极压、抗磨性能和承载能力;良好的氧化安定性、防锈性、抗水淋性和低温流动性;长使用寿命,相比其他同温度产品可延长3-5倍。? 适用范围适用于高温、中速重负荷情况下工作的各种滚动部位的润滑;高温操作环境下的设备的轴承润滑;石油化工、电子、纺织、印染、钢铁生产中的高温轴承;可作为多用途润滑脂适用。? 产品参数[align=center][img]https://ng1.17img.cn/bbsfiles/images/2022/06/202206291559054349_7538_5650439_3.png[/img][/align][font='等线'][size=13px]二硫化钼高温润滑脂[/size][/font]SYH二硫化钼高温润滑脂是由PAO合成油并且混合了多种亚微粒金属颗粒,使之成为一种胶质的悬浮液,然后使用最好的增稠剂形成固体润滑脂。在重负载的情况下提供优良的润滑和磨损保护及出色的保持和抗高温退化,而且不会形成硬质的碳积,并消除铁锈和抗腐蚀。? 产品特性具有稳定的抗剪切性能和出色的抗水和潮湿性能;在重负载的情况下提供优良的润滑和磨损保护;不变稀,不会熔化,仍保持粘性及停留在分布的位置;高温不会形成硬质的碳积,并消除铁锈和抗腐蚀;优良的热稳定性、氧化和机械安定性,极长的轴承寿命? 适用范围适用于高温中速重负荷情况下工作各种设备;窑车轮轴承、辊颈轴承、回转窑炉轴承;适用于高温蒸汽阀门,高温炉门齿轮的润滑;铸造、水泥制造、矿山机械、建筑机械的轴承、齿轮、螺纹组件的高温润滑? 产品参数[align=center][img]https://ng1.17img.cn/bbsfiles/images/2022/06/202206291559055735_8353_5650439_3.png[/img][/align][font='等线'][size=13px]氟素高温润滑脂[/size][/font]SYH氟素高温润滑脂采用全氟聚醚油作为基础油,具有直链结构,聚四氟乙烯(PTFE)稠化,并添加抗腐蚀剂配以特殊的聚合物精制而成的。它具有优良的热和化学稳定性和惰性。此氟素高温润滑脂专用于高温、高负载、化学腐蚀环境中以及要求终身润滑的部件,具有极强的化学惰性、耐久性和低挥发性。? 产品特性与强酸、强剂、燃料以及溶剂的物质经常接触不会反应;适应极端交变工作环境,从高温恢复到常温后仍能恢复到原来的润滑脂结构;不变稀,不熔化,分布位置稳定;不结焦,不积碳,润滑寿命长。? 适用范围适用于高真空、化学腐蚀环境中;汽车配件;食品和医药生产;极端交变条件下轴承润滑;使用温度范围:-40~280℃。? 产品参数[align=center][img]https://ng1.17img.cn/bbsfiles/images/2022/06/202206291559057112_2150_5650439_3.png[/img][/align]高温润滑脂的应用非常广泛,大家可以根据使用场景、产品特性、润滑脂的适用范围等多个角度,选购合适的润滑脂。那么如何选购一款好的润滑脂呢,可以参考一下信友润滑的另一篇文章《[url=https://bbs.instrument.com.cn/topic/8054746]什么是好的润滑脂[/url]》。

  • 汽车用润滑脂之等速万向节润滑

    汽车用润滑脂之等速万向节润滑

    [align=left]等速万向节,简称CVJ,作用是将轴间有夹角或相互位置有变化的两转轴连接起来,并使两轴以相同的角速度传递动力,它可以克服普通十字轴式万向节存在的不等速性问题,特别适合于转向驱动桥的使用。汽车等速万向节用脂要比其他部位用脂严格得多,良好的抗微动磨损性能和终身寿命要求是等速万向节用润滑脂追求的主要目标。[/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2022/07/202207090951580534_7012_5650439_3.jpeg[/img][/align][align=center][font='calibri'][size=13px]性能需求[/size][/font][/align][font='calibri'][size=13px]耐微动磨损和极压抗磨性[/size][/font]汽车行驶易产生轴向力,行走时引起振动和噪声。车体产生横摇,滚子球面与轨道的摩擦影响大。因此要求润滑脂的摩擦系数小,具有良好的耐微振磨损性。减小轴向力,防止由此引起的振动是滑动型CVJ需要解决的问题之一。滑动型CVJ的滚珠或滚锥与外轮环之间,保持架与外轮之间的摩擦都是产生轴向力的主要因素。车辆在行驶过程中,当循环产生的轴向力与发动机产生的振动形成共振时,就会产生噪声和振动。因此,要求润滑脂具有良好的耐微动磨损性和极压抗磨性。[font='calibri'][size=13px]耐高低温性 [/size][/font][font='calibri'][size=13px]在汽车行驶过程中,CVJ的滚动体和内外滚道相互运动形式为滚动和滑动混合存在,钢质保持架和滚动体的相互运动为纯的滑动摩擦,滑动摩擦导致CVJ温度上升。由于前轮驱动车和四轮驱动车的高力矩、CVJ的小型轻量化,运转中的CVJ内部摩擦产生热量不能及时散发。另外,受外界气温影响,在寒冷地区要求极低的起动性,保证低温时操纵灵活。一般使用温度在-40~150℃宽温度范围,所以,CVJ对润滑脂高低温性要求很高。[/size][/font][font='calibri'][size=13px]橡胶相容性[/size][/font][font='calibri'][size=13px]等速万向节采用橡胶套,因此对橡胶选择性很强,相容性差的润滑脂会造成橡胶套的膨胀、歪斜、挠曲甚至破损,要求润滑脂对不同的橡胶套通过橡胶相容性试验。[/size][/font][font='calibri'][size=13px]长寿命[/size][/font]等速万向节润滑脂要求具有与配件一致的寿命。轴承寿命试验表明,聚脲润滑脂可达锂基脂的9倍以上。在150℃下轴承寿命方面,聚脲基脂比复合锂基脂的寿命还长。在轴向力降低方面,脲基润滑脂比锂基润滑脂降低幅度更大,效果更为明显。而脲基润滑脂通过添加MoDTC和MoDDP又可显著降低摩擦系数和延长润滑寿命。此外,汽车等速万向节润滑脂还要求有优良的机械安定性、抗水性、防锈性等。[align=center][font='calibri'][size=13px]常用种类[/size][/font][/align][font='calibri'][size=13px]锂基润滑脂[/size][/font]球笼式CVJ一般使用含二硫化钼的极压锂基润滑脂。极压添加剂有硫化烯烃、硫化油脂、磷酸酯、亚磷酸酯、二硫代磷酸锌等。基础油为矿物油,稠度大多为1号或2号。[font='calibri'][size=13px]复合锂基[/size][/font][font='calibri'][size=13px]润滑[/size][/font][font='calibri'][size=13px]脂[/size][/font][font='calibri'][size=13px]由复合锂皂稠化精制矿物油并加入防锈、抗氧化、极压抗磨等多种高性能添加剂制得。可用于工作温度在-40~150℃范围各种车辆的万向节、方向盘十字架等的润滑。[/size][/font][font='calibri'][size=13px]聚脲[/size][/font][font='calibri'][size=13px]润滑[/size][/font][font='calibri'][size=13px]脂[/size][/font]这类润滑脂以合成烃、聚醚或精制矿物油为基础油,以脲化合物为稠化剂,加入油基钼化合物以及有机锌化合物等添加剂制成,可以降低摩擦磨损,防止振动。[align=center][img=,690,383]https://ng1.17img.cn/bbsfiles/images/2022/07/202207090952292318_7080_5650439_3.jpg!w690x383.jpg[/img][/align]

  • GB/T269润滑脂和石油脂锥入度测定仪适用范围

    自动锥入度测定仪根据标准GB/T269 《润滑脂和石油脂锥入度测定法》的要求设计制造的。主要适用于润滑脂(或石油脂)锥入度的测试。突出特点:1、自动检测锥入度值,采用德国进口激光传感器,使用激光做无接触检测,大大减轻了人为干扰。2、6寸彩色液晶触摸显示屏,自动检测,存储试验结果。3、电动升降系统,可电子调节升降速度。4、底座调解机构:底盘上设有微调地脚螺丝,面上镶有调平圆水泡。通过调节地脚螺丝可以方便的调节底座台面的水平。5、采用直流低压锁紧装置,安全可靠。得利特的锥入度测定仪性能稳定,其涉及产品[font=&]液相锈蚀测定仪、抗乳化测定仪、泡沫特性测定仪、空气释放值测定仪、氧化安定性测定仪、密度测定仪、自燃点测定仪、氯含量测定仪、微量残炭测定仪、表观粘度测定仪、机械杂质测定仪、石油产品灰分测定仪、浊点测定仪、四球机、PQ铁量仪、分析式铁谱仪、红外光谱仪等多种燃料油分析仪器、绝缘油分析仪器、润滑油分析仪器 ,水质分析检测仪器、气体检测仪器,型号多,质量保证,可定制。[/font]

  • 国标准GB/T 8018-87汽油氧化安定性测定法

    SH8018自动汽油氧化安定性仪是根据中华人民共和国标准GB/T 8018-87《汽油氧化安定性测定法(诱导期法)》所规定的要求设计制造的,适用于按照GB/T 8018标准测定加速氧化条件下汽油的氧化安定性,配有彩色液晶屏,屏幕可以实时显示试样的温度,压力的曲线,用户可以实时设置试样的压力,或修改仪器时间。采用嵌入式系统设计,用户可以查看历史数据,利用仪器上打印机将结果打印出来。本仪器也符合ASTM D525标准。[b]主要技术指标及参数[/b]1、工作电源: AC220V±5%,50Hz。2、加热管功率: 1800W3、氧弹压力变送器测量范围:(0~1600)kPa,精度:±2‰。4、水浴温度控制点: 100.0℃±0.1℃。5、温度计: 配备玻璃水银温度计,可以随时按需要校正系度。6、环境温度: ≤30℃。7、相对湿度: ≤85%。

  • 润滑脂变硬能加油调稀吗?

    [color=#666666]有客户问润滑脂一段时间储存后会变硬怎么办?大多数的润滑脂在储存了一段时间之后,稠度可能会出现增大的情况,也就是俗说的变[/color][color=#666666]“[/color][color=#666666]硬[/color][color=#666666]”[/color][color=#666666]了。其实,即便按润滑脂出现变硬的情况,在稠度增大不多的前提下,正常的使用是没有问题的。如果稠度的变化很大,就表明基础油分离出来的太多了,使用过程中会增加机械部件润滑时的摩擦阻力、增加机械动力的消耗,所以不能直接使用。[/color][color=#666666]有的用户在已经变硬的润滑脂中加入基础油调稀,有些修理工冬季使用润滑脂时,也喜欢在润滑脂中加入润滑油调稀。这种做法是错误的。因为润滑脂的结构由稠化剂和基础油构成的胶体结构体系,稠化剂形成结构网络,将基础油吸附在网络中形成稳定的结构体系,是稠化剂和基础油不会分离。若成脂以后再加入基础油的话吗,虽然经过搅拌,但因缺少必要的均化处理工序,润滑油不能均匀的分散到网络之中,润滑脂的胶体安定性变差,分油增大,会影响使用效果。[/color][color=#666666]已经变稠的润滑脂,其他理化性质变化不大时,在生产厂可以加入相同的基础油,再经过均化工序处理后并分析检测合格后,是可以正常使用的。[/color]

  • 如何正确使用润滑脂

    [color=#333333]1[/color][color=#333333])所加注的润滑量要适当  加脂量过大,会使摩擦力矩增大,温度升高,耗脂量增大;而加脂量过少,则不能获得可靠润滑而发生干摩擦。一般来讲,适宜的加脂量为轴承内总空隙体积的1/3~1/2。但根据具情况,有时则应在轴承边缘涂脂而实行空腔润滑。[/color][color=#333333]2[/color][color=#333333])注意防止不同种类、牌号及新旧润滑脂的混用  避免装脂容器和工具的交叉使用,否则,将对脂产生滴点下降,锥入度增大和机械安定性下降等不良影响。[/color][color=#333333]3[/color][color=#333333])重视更换新脂工作  由于润脂品种、质量都在不断地改进和变化,老设备改用新润滑脂时,应先经试验,试用后方可正式使用;在更换新脂时,应先清除废润滑脂,将部件清洗干净。在补加润滑脂时,应将废润脂挤出,在排脂口见到新润滑脂时为止。[/color][color=#333333](4)重视加注润滑脂过程的管理  在领取和加注润滑脂前,要严格注意容器和工具的清洁,设备上的供脂口应事先擦拭干净,严防机械杂质、尘埃和砂粒的混入。[/color][color=#333333](5)注意季节用脂的及时更换  如设备所处环境的冬季和夏李和温差变化较大,如果夏季用了冬季的脂或者相反,结果都将适得其反。[/color][color=#EEFFEE]6[/color][color=#333333](6)注意定期加换润滑脂  润滑脂的加换时间应根据具体使用情况而定,既要保证可靠的润滑又不至于引起脂的浪费。[/color][color=#333333](7)不要用木制或纸制容器包装润滑脂  防止失油变硬、混入水分或被污染变质,并且应存放于阴凉干燥的地方。[/color]

  • 润滑脂铜片腐蚀试验仪GBT7326

    SY7326润滑脂铜片腐蚀测定器适用于测定润滑脂对铜的腐蚀性。把一块准备好的铜片全部浸入到润滑脂试样中,在烘箱或液体浴中加热一定的时间。一般采用的条件是100℃,24h在试验期结束后,取出铜片,经洗涤后,甲法是将试验铜片与铜片腐蚀标准色板进行比较,确定腐蚀级别。乙法检查试验铜片有无变色。技术参数适用标准:GB/T7326 作样单元:四组样品控温方式:数显温控 作样温度:常温~100±0.5℃

  • 预防润滑脂变硬的危害r

    [color=#666666]大多数润滑脂在储存一段时间后,稠度(即指锥人度测定值)变大会发生变硬情况,若不超过[/color][color=#666666]1[/color][color=#666666]个稠度号,即可直接使用,不影响作一般润滑用。若稠度变化很大,即表明基础油分出过多,会慢慢变硬,可能会增大机械部件润滑时摩擦阻力、增加机械动力的消耗,不宜直接使用。有的人在已变硬的润滑脂中加入基础油调稀,使脂的调度变小(即变软)后使用,此办法建议不宜采用。因为缺少必要的均化处理工作,润滑脂胶体安定性变差。已变稠的润滑脂,其他理化性质变化不大时,在生产厂可以加入相同的基础油。再经过均化工作处理后并分析检测合格后,是可以使用的。[/color][color=#666666]润滑脂变硬,使用时变硬:[/color][color=#666666]润滑脂轴承之中产生硬块状物质的原因通常是由于脂中的油从稠化剂中分离出来了。正常情况下,随着时间的推移,会有一小部分油从脂中析出,而过早的大量析油会导致其明显变硬。在某些情况下,润滑脂的使用周期太长也会有变硬的情况发生,解决办法是缩短脂的使用周期,一般为[/color][color=#666666]6[/color][color=#666666]个月到一年左右。如果润滑脂中有一半的流失,也应该及时更换润滑脂。[/color][color=#666666]另外,设备过度使用而引起的高温,或其他原因引起的高热,也会使得润滑脂变硬。无论什么原因,热会导致油从稠化剂中过量流失,而且可以加速油的氧化,这些都会使得轴承之中的润滑脂变硬。半径大、速度高的轴承会产生很高的离心力,也可以使得润滑脂分油,从而导致润滑脂硬化。[/color][color=#666666]变硬的润滑脂有什么危害?[/color][color=#666666]润滑脂变硬后,会造成阻塞,引起系统润滑不良,机器运行过热,增大机械部件润滑时摩擦阻力、增加机械动力的消耗。[/color]

  • 国标SH/T0175馏分燃料油氧化安定性测定法

    [b]适用标准及适用范围SH0175馏分燃料油氧化安定性测定仪是根据中华人民共和国行业标准的SH/T0175《馏分燃料油氧化安定性测定法(加速法)》所规定的要求设计制造的。适用于按SH/T0175标准规定的方法,用加速氧化法测定中间馏分燃料油的固有安定性能。二、主要性能馏分燃料油氧化安定性测定仪,结构上为水浴,,我公司可以根据用户要求按照需求定做。该仪器数显控温,自动计时,报时,并 配有暗箱。三、主要技术指标1、工作电源:AC220V50Hz,功耗:≤2400W。2、控温方式:数显控温表自动控温。3、控温范围:室温~200℃,4、控温精度:设定温度±0.2℃。5、测温元件:热电阻。6、试样数量:4路,同时可以作4个试样。[/b][align=center] [/align]

  • 诱导期法测定仪检测汽油氧化安定性的意义体现在哪?

    诱导期法测定仪是依据GB/T 8018、 ASTM D525标准设计制造的。是用于测定在加速氧化条件下汽油的氧化安定性,汽油氧化安定性是维护汽油在储存中不致迅速变质生胶或增长酸度的指标,也是防止发动机气化器不致结胶、油门不致冻结、进气阀不致结焦积碳以及有关机件不受腐蚀的指标。

  • 影响汽油氧化安定性的因素

    汽油在常温和[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]时抵抗大气(或氧气)的作用而保持其性能不发生变化的能力,叫氧化安定性。汽油在贮存和使用过程中,常常发现汽油颜色变深,产生沉淀物,含铅汽油还会出现灰白色沉淀。这都是因为汽油中某些成分被空气中氧气氧化的结果。影响其汽油安定性的根本的原因在于汽油的化学组成部分。组成汽油的各种烃类的化学性质是不同的,芳香烃、环皖在常温下均不易和空气中氧气反应。所以,主要由上述三种怪组成的汽油的安定性较好,汽油也就在贮存和使用中不易变质。不饱和烃在常温[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]时,易与空气中氧气发生反应。所以,汽油中如含有较多的不饱和烃,安定性就差,生成胶质等而导致汽油变质。另外汽油中各种非烃类化合物也是引起汽油氧化变质的重要因素。直馏汽油中不含不饱和烃,其安定性很好;部分二次加工汽油中含有大量不饱和烃及非烃化合物,其安定性较差。汽油在贮存和使用中,易变质生胶或生成有机酸。特别是不饱和短中的二烯烃最不安定,很容易氧化。尽管汽油中有时含有的二烯烃量非常少,但却能使汽油的安定性显著变差。此外,汽油中的硫、氮、氧的非烃类化合物,对汽油安定性都有不同程度的影响。一般来说,上述三类非烃化合物含量越大,其汽油的变质速度越快。值得注意的是,汽油氧化以后生成胶质,胶质本身具有氧化催化作用。也就是说,胶质会加速汽油的氧化生胶。认识这一规律对汽油的使用有着重要意义,因为它告诉人们一旦发现汽油开始生胶,在肢质急剧增加前,就应及时安排使用以防止引起汽油严重变质。外部条件对汽油氧化安定性的影响外部条件包括强度、氧气、水分及金属催化等的影响。温度升高时,汽油氧化速度加快。当环境温度在c-or时,汽油氧化生胶的进程很慢;当环境温度高于15°e时,汽油氧化生胶的进程加快;如环境温度高于35°e时,汽油氧化生胶的进程将随着贮存时间的延长而成倍增加。空气与油面的接触量大小及液面上空气变换强度对汽油的安定性有着很大的影响。贮油容器中汽油装满的程度,决定着汽油与空气的接触量。贮油容器是否密封,决定着汽油液面空气的变换强度。如空气与汽油液面接触量大且变换强度大,则汽油的氧化变质速度就会增大。金属对汽油的氧化起着催化作用,不同的金属所起的催化作用有很大差别。其中铜的催化作用最强,其次是铅。据实验证明,铜能使汽油氧化生脏的速度增加6倍。在汽油发动机燃料供给系中,不仅有铜(如铜滤网等),而且有铅反如容器内壁镀铅层)。因而,宜在汽油箱长期贮存汽油。因此,贮存汽油时,应尽量使用大容器。少用或不用小油桶或油箱贮油。汽油中含有水分,也会使汽油氧化速度加快。故应尽量避免水分进入油中。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制