氯甲氧基苯基哒嗪

仪器信息网氯甲氧基苯基哒嗪专题为您提供2024年最新氯甲氧基苯基哒嗪价格报价、厂家品牌的相关信息, 包括氯甲氧基苯基哒嗪参数、型号等,不管是国产,还是进口品牌的氯甲氧基苯基哒嗪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氯甲氧基苯基哒嗪相关的耗材配件、试剂标物,还有氯甲氧基苯基哒嗪相关的最新资讯、资料,以及氯甲氧基苯基哒嗪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

氯甲氧基苯基哒嗪相关的资料

氯甲氧基苯基哒嗪相关的论坛

  • 【分享】关于征求拟批准“二甲氧基甲苯基-4-丙基间苯二酚”和“聚甲基丙烯酰基赖氨酸”作为化妆品原料意见的函

    有关单位:  经国家食品药品监督管理局化妆品审评专家委员会审核,拟批准“二甲氧基甲苯基-4-丙基间苯二酚”和“聚甲基丙烯酰基赖氨酸”作为化妆品原料使用。现公开征求意见,请于2011年6月27日前将反馈意见电子版发送至chenzh@sfda.gov.cn。  附件:1.“二甲氧基甲苯基-4-丙基间苯二酚”技术要求     2.“聚甲基丙烯酰基赖氨酸”技术要求                       国家食品药品监督管理局食品许可司                          二〇一一年六月十五日

  • 紫外线吸收剂2,4-二乙氧基-6-(2’,4’-二羟基苯基)-1,3,5-三嗪在涤纶织物上的应用

    [b][font=宋体]摘要:[/font][/b][font=宋体]本文采用高温高压上染方法将自制的三嗪类紫外线吸收剂[/font]2,4-[font=宋体]二乙氧基[/font]-6-(2’,4’-[font=宋体]二羟基苯基[/font])-1,3,5-[font=宋体]三嗪上染到涤纶织物上,考察了该紫外线吸收剂对涤纶织物的上染性能,以及在与分散染料同浴上染时的相互影响,也考察了紫外线吸收剂的上染对涤纶织物紫外线防护性能以及染色涤纶织物耐光色牢度的影响。实验证明该紫外线吸收剂可以明显改善涤纶织物的紫外线防护性能,并能够在一定程度上改善染色涤纶织物的耐光色牢度。[/font][b][font=宋体]关键词:[/font][/b]2,4-[font=宋体]二乙氧基[/font]-6-(2’,4’-[font=宋体]二羟基苯基[/font])-1,3,5-[font=宋体]三嗪,紫外线吸收剂,涤纶,紫外线防护性能,耐光色牢度[/font]0 [font=宋体]前言[/font] [font=宋体]近几十年来,随着氯氟烃类污染物的大量排放,大气层上方的臭氧层遭到越来越严重的破坏,使得照射到地球表面在紫外线量不断增加,其中波长更短、破坏性更大的短波长紫外线增加的更为迅速[/font][sup][1,2][/sup][font=宋体]。紫外线尤其是短波长紫外线的迅速增加,会导致很多皮肤疾病如色斑、老化甚至皮肤癌等的发生;也会对户外使用的一些高分子材料造成危害,导致高分子材料以及上染到其上的染料发生分解,引起光褪色现象,影响材料的使用性能[/font][sup][3,4][/sup][font=宋体]。对于纺织品而言,一方面要设法降低其紫外透过率,增强织物的紫外线防护性能;另一方面又要设法保护上染到织物上的染料,增进织物的耐光色牢度。而紫外线吸收剂的应用,即可同时达到这两个方面的要求,这是因为紫外线吸收剂在上染到织物上以后,能够有效地吸收照射到织物表面的紫外线,并能将所吸收能量以对材料危害性较小的热能、振动能、磷光或者荧光灯形式释放出去,而后回复到基态,继续吸收紫外线[/font][sup][5,6][/sup][font=宋体]。这样就可以减小紫外线照射到织物基质或基质内其它光敏性物质上的几率,从而降低了引发织物基质以及上染到织物上染料发生光化学反应的几率,实现了对织物和染料的保护作用,同时增强了织物的紫外线防护能力以及染色织物的耐光色牢度[/font][sup][7,8][/sup][font=宋体]。[/font] [font=宋体]三嗪类紫外线吸收剂是紫外线吸收剂中的一个新的类型,它具有紫外吸收能力强、吸收所覆盖的波长范围广、与高分子材料相容性好以及自身耐光稳定性高等优点,使得三嗪类紫外线吸收剂已经成为近年来研究的一个热点[/font][sup][9,10,11][/sup][font=宋体]。本文采用高温高压方法将实验室自制的一只三嗪紫外线吸收剂[/font]2,4-[font=宋体]二乙氧基[/font]-6-(2’,4’-[font=宋体]二羟基苯基[/font])-1,3,5-[font=宋体]三嗪(其结构式如图[/font]1[font=宋体]所示)上染到涤纶织物上,考察其对涤纶织物的上染性能以及在与分散染料同浴上染时的相互作用,同时也考察了其对涤纶织物紫外线防护性能以及染色涤纶织物耐光色牢度方面的增进作用。[/font][align=center][img=,144,]file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image002.gif[/img][/align][align=center][font=宋体]图[/font]1. [font=宋体]紫外线吸收剂[/font]2,4-[font=宋体]二乙氧基[/font]-6-(2’,4’-[font=宋体]二羟基苯基[/font])-1,3,5-[font=宋体]三嗪[/font][/align]1 [font=宋体]试验[/font]1.1 [font=宋体]试验材料、药品及仪器[/font]1.1.1[font=宋体]试验材料[/font][font=宋体]涤纶平纹织物(市售,使用前经去油除杂处理)。[/font]1.1.2[font=宋体]试验药品[/font] 2,4-[font=宋体]二乙氧基[/font]-6-(2’,4’-[font=宋体]二羟基苯基[/font])-1,3,5-[font=宋体]三嗪(实验室自制),[/font][font=宋体]分散红玉[/font]SE-GFL[font=宋体]([/font]C.I. Disperse Red 73[font=宋体])[/font][font=宋体]、分散黄[/font]E-3G[font=宋体]([/font]C.I. Disperse Yellow 54[font=宋体])[/font][font=宋体]、分散蓝[/font]HGL[font=宋体]([/font]C.I. Disperse Blue 79[font=宋体]),[/font][font=宋体]消泡剂、润湿分散剂、[/font][font=宋体]分散剂[/font]NNO[font=宋体]等[/font][font=宋体]皆为工业级。[/font]1.1.3[font=宋体]试验仪器[/font] QM-ISP04[font=宋体]行星式球磨仪(南京大学仪器厂),[/font]LB-550V[font=宋体]激光粒度仪(日本[/font]Horiba[font=宋体]公司)[/font][font=宋体],[/font]TBB100-A[font=宋体]红外染色机(杭州三锦科技有限公司),[/font]Lambda 900 [font=宋体]紫外[/font]/[font=宋体]可见[/font]/[font=宋体]近红外分光光度仪(美国[/font]Perkin Elmer[font=宋体]公司),[/font]XENOTEST 150S[sup]+[/sup][font=宋体]风冷式[/font][font=宋体]日晒牢度仪(美国[/font]Atlas[font=宋体]公司),[/font]SF600X DataColor[font=宋体]测色光谱仪(美国[/font]DataColor [font=宋体]公司)。[/font]1.2 [font=宋体]试验方法[/font]1.2.1[font=宋体]紫外线吸收剂的合成[/font][font=宋体]紫外线吸收剂[/font]2,4-[font=宋体]二乙氧基[/font]-6-(2’,4’-[font=宋体]二羟基苯基[/font])-1,3,5-[font=宋体]三嗪的合成路线如图[/font]2[font=宋体]所示。[/font][align=center][img=,273,]file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image004.gif[/img][/align][align=center][font=宋体]图[/font]2. [font=宋体]紫外线吸收剂[/font]2,4-[font=宋体]二乙氧基[/font]-6-(2’,4’-[font=宋体]二羟基苯基[/font])-1,3,5-[font=宋体]三嗪的合成路线[/font][/align][font=宋体]分两步合成[/font]2,4-[font=宋体]二乙氧基[/font]-6-(2’,4’-[font=宋体]二羟基苯基[/font])-1,3,5-[font=宋体]三嗪:首先是让三聚氯氰和乙醇反应,生成二取代的中间体[/font]2,4-[font=宋体]二乙氧基[/font]-6-[font=宋体]氯[/font]-1,3,5-[font=宋体]三嗪;然后是让该中间体与间苯二酚反应生成产物。紫外线吸收剂合成出来以后,采用熔点测试、红外、核磁等手段对其进行表征,待确定合成所得到物质就是目的产物后,测试其紫外吸收性能,以考察其是否是紫外线吸收剂。[/font]1.2.2[font=宋体]紫外线吸收剂分散液的制备[/font] [font=宋体]由于合成所得到的紫外线吸收剂是一种疏水性的固体物质,若想上染到涤纶织物上必须先采用一定方法将其制成分散均匀稳定分散液,只有当紫外线吸收剂固体颗粒小到一定程度时,才能将其添加到涤纶织物的染浴中,本试验采用砂磨的方法来制备紫外线吸收剂分散液,用激光粒度仪来检测分散液中颗粒粒径的大小,从而确定砂磨时间。当紫外线吸收剂颗粒粒径小于[/font]3[font=宋体]μ[/font]m[font=宋体]时才能将紫外线吸收剂分散液添加到涤纶织物染浴中。[/font] [font=宋体]本实验采用[color=black]机械[/color]研磨及高速搅拌分散法将自制紫外线吸收剂配成均匀的分散液:[/font][font=宋体]向球磨仪中加入[/font]3g[font=宋体]紫外线吸收剂,[/font]150g[font=宋体]磨球,及含[/font]3%[font=宋体]消泡剂、[/font]3%[font=宋体]润湿分散剂的水溶液[/font]10mL[font=宋体],室温下球磨[/font]6h[font=宋体],球磨完成后定容到[/font]100mL[font=宋体],然后高速搅拌([/font]10000r/min[font=宋体]),制得[/font]30g/L[font=宋体]的分散体系,使用时稀释成浓度为[/font]3g/L[font=宋体]的分散液。[/font]1.2.3[font=宋体]紫外线吸收剂和分散染料对涤纶织物的上染[/font][font=宋体]采用与分散染料上染涤纶织物相同的高温高压方法将紫外线吸收剂单独或与分散染料同浴上染到涤纶织物上。[/font] [font=宋体]染液中分散剂[/font]NNO[font=宋体]浓度为[/font]1g/L[font=宋体],分散染料用量为[/font]1.0%[font=宋体]([/font]owf[font=宋体]),[/font][font=宋体]紫外线吸收剂[/font][font=宋体]用量分别为[/font]0.5%[font=宋体]、[/font]1.0%[font=宋体]、[/font]1.5%[font=宋体]、[/font]2.0%[font=宋体]、[/font]3.0%[font=宋体]([/font]owf[font=宋体])。织物重[/font]2g[font=宋体],浴比[/font]1:25[font=宋体]。染色温度为[/font]130℃,[font=宋体]保温[/font]45min[font=宋体]。[/font][font=宋体]上染结束后用含[/font]2g/L209[font=宋体]净洗剂和[/font]1.5g/L[font=宋体]碳酸钠的混合溶液净洗及清水洗涤。将清洗后的织物熨平晾干,用于后续测试。[/font]1.3 [font=宋体]测试方法[/font]1.3.1[font=宋体]紫外线吸收剂的表征及其紫外吸收性能的测试[/font] [font=宋体]紫外线吸收剂的熔点在[/font]XT-4[font=宋体]型数字显示熔点测定仪上进行;红外光谱在[/font]Nicolet Avator170[font=宋体]型红外光谱仪上进行,采用[/font]KBr[font=宋体]压片法进行测试;核磁测试在[/font]Avance-Av400[font=宋体]型核磁共振仪上进行,以氘代[/font]DMSO[font=宋体]为溶剂。[/font][font=宋体]将合成所得到的[/font]2,4-[font=宋体]二乙氧基[/font]-6-(2’,4’-[font=宋体]二羟基苯基[/font])-1,3,5-[font=宋体]三嗪配制成浓度为[/font][font=宋体]1[/font][font=宋体]×10[sup]-5[/sup]mol/L的氯仿溶液,然后在[/font]Lambda 900 [font=宋体]紫外[/font]/[font=宋体]可见[/font]/[font=宋体]近红外分光光度仪上测试溶液在紫外区域的吸收曲线。[/font]1.3.2[font=宋体]紫外线吸收剂分散液中颗粒粒径的测试[/font] [font=宋体]在[/font]LB-550V[font=宋体]激光粒度仪上测试,测试温度[/font]20[font=宋体]℃[/font][font=宋体]。[/font]1.3.3[font=宋体]紫外线吸收剂及分散染料在涤纶织物上上染率的测试[/font] [font=宋体]实验中采用残液法测试紫外线吸收剂及染料对织物上的上染率,按公式([/font]1[font=宋体])计算紫外线吸收剂及染料的上染率。[/font][img=,175,]file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image006.gif[/img] [font=宋体]([/font]1[font=宋体])[/font][font=宋体]式中:[/font]A[sub]1[/sub][font=宋体]表示残液中紫外线吸收剂或染料在其最大吸收波长处的吸光度;[/font]A[sub]0[/sub][font=宋体]表示对照液中紫外线吸收剂或染料在其最大吸收波长处的吸光度。[/font][font=宋体]文中所测染料在最大吸收波长下的吸光度扣除在该染料最大吸收波长处紫外线吸收剂吸光度的影响;紫外线吸收剂在其最大吸收波长处的吸光度扣除在该波长下染料吸光度的影响,扣除方法是双波长分光光度法[/font][sup][12][/sup][font=宋体]。[/font]1.3.4[font=宋体]紫外线防护因子的测试[/font][font=宋体]用[/font]Lamada 900 [font=宋体]紫外[/font]/[font=宋体]可见[/font]/[font=宋体]近红外分光光度仪测试织物的紫外透过率,并依此数据为依据参照国标[/font]GB/T 18830-2002[font=宋体]计算出织物的紫外线防护因子(即[/font]UPF[font=宋体]值)[/font][sup][13][/sup][font=宋体],[/font][font=宋体]按公式[/font]2[font=宋体]计算。[/font][img=,203,]file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image008.gif[/img] [font=宋体]([/font]2[font=宋体])[/font][font=宋体]式中:[/font][i]E([font=宋体]λ[/font])[/i][font=宋体]—日光光谱辐照度[/font]([font=宋体]参见国家标准[/font]GB/T 18830-2002)[font=宋体],单位为瓦每平方米纳米[/font](W[font=宋体][/font]m[sup]-2[/sup][font=宋体][/font]n m[sup]-1[/sup]) [i][font=宋体]ε[/font]([font=宋体]λ[/font])[/i][font=宋体]—相对的红斑效应[/font]([font=宋体]参见国家标准[/font]GB/T 18830-2002) [i]T([font=宋体]λ[/font])[/i] [font=宋体]—试样在波长为λ时的光谱透射比[/font] [i][font=宋体]Δλ[/font][/i] [font=宋体]—波长间隔,单位为纳米[/font](nm)[b]1.3.5[font=宋体]涤纶织物耐光照变色及耐光色牢度的测试:[/font][/b][font=宋体]将织物制成日晒样卡,在[/font]XENOTEST 150S[sup]+[/sup][font=宋体]风冷式日晒试验机中晒[/font]200h[font=宋体],光照条件按照标准[/font]GB/T 8427-1998 [font=宋体]《纺织品色牢度实验耐人造光色牢度:氙弧》:黑板温度[/font]65[font=宋体]℃[/font][font=宋体],湿度[/font]80%[font=宋体],功率为[/font]2000W[font=宋体]×[/font]95%[font=宋体]。然后参照此标准评出各试样耐晒牢度。[/font]2 [font=宋体]结果与讨论[/font]2.1 [font=宋体]紫外线吸收剂的表征及其紫外吸收曲线[/font][font=宋体]采用两步法将目标产物[/font]2,4-[font=宋体]二乙氧基[/font]-6-(2’,4’-[font=宋体]二羟基苯基[/font])-1,3,5-[font=宋体]三嗪合成出来后,要对其结构进行表征,表征结果如下:[/font][font=宋体]熔点为[/font]231-233[font=宋体]℃[/font][font=宋体];[/font]FT-IR[font=宋体]:[/font]3444[font=宋体]、[/font]3125[font=宋体]、[/font]2984[font=宋体]、[/font]1723[font=宋体]、[/font]1636[font=宋体]、[/font]1603[font=宋体]、[/font]1557[font=宋体]、[/font]1429[font=宋体]、[/font]1342[font=宋体]、[/font]1300[font=宋体]、[/font]1230[font=宋体]、[/font]836[font=宋体]、[/font]782[font=宋体];([/font]DMSO-d[sub]6[/sub][font=宋体])δ:[/font]1.371(t,2×3H)[font=宋体]、[/font]4.470[font=宋体]([/font]q,2×2H[font=宋体])、[/font]6.296(d,1H)[font=宋体]、[/font] 6.436(d,1H)[font=宋体]、[/font]8.150(s,1H)[font=宋体]、[/font]10.366(s,1H)[font=宋体]、[/font]12.720(s,1H)[font=宋体]。[/font][font=宋体]经以上表征结果可知合成所得到的物质就是目标产物[/font]2,4-[font=宋体]二乙氧基[/font]-6-(2’,4’-[font=宋体]二羟基苯基[/font])-1,3,5-[font=宋体]三嗪。确定目标产物合成出来后,将其配制成浓度为[/font][font=宋体]1[/font][font=宋体]×10[sup]-5[/sup]mol/L的氯仿溶液,然后在[/font]Lambda 900 [font=宋体]紫外[/font]/[font=宋体]可见[/font]/[font=宋体]近红外分光光度仪上测试溶液在紫外区域的吸收曲线,其紫外吸收曲线如图[/font]3[font=宋体]所示。[/font][align=center][img=,164,]file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image010.gif[/img][/align][align=center][font=宋体]图[/font]3 [font=宋体]产物[/font]2,4-[font=宋体]二乙氧基[/font]-6-(2’,4’-[font=宋体]二羟基苯基[/font])-1,3,5-[font=宋体]三嗪的紫外吸收曲线[/font][/align][align=center][font=宋体]溶剂为氯仿,产物浓度为[/font]1[font=宋体]×[/font]10[sup]-5[/sup]mol/L[/align][font=宋体]从图中可以看出,该产物[/font]2,4-[font=宋体]二乙氧基[/font]-6-(2’,4’-[font=宋体]二羟基苯基[/font])-1,3,5-[font=宋体]三嗪在紫外区域有明显的吸收,吸收主波长为[/font]275nm[font=宋体],因而可以确定该产物就是一种紫外线吸收剂,可以将其添加到涤纶织物的染浴中,单独上染涤纶或者是与分散染料同浴上染涤纶织物。[/font]2.2 [font=宋体]研磨所得分散液中紫外线吸收剂颗粒粒径的测试[/font][font=宋体]测试研磨所得分散液中颗粒粒径,所得结果如图[/font]4[font=宋体]所示。[/font][align=center][img=,264,]file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image012.jpg[/img][/align][align=center][font=宋体]图[/font]4[font=宋体]分散液中紫外线吸收剂颗粒粒径[/font][/align][font=宋体]从图[/font]4[font=宋体]中可以看出:紫外线吸收剂经过研磨后,其分散液中颗粒粒径的中径值([/font]Median[font=宋体])为[/font]87.4nm[font=宋体],颗粒粒径的平均值([/font]Mean[font=宋体])为[/font]233.8nm[font=宋体],所得分散液中紫外线吸收剂颗粒粒径已经很小,可以将其直接添加到涤纶织物的染浴中对织物进行上染。[/font]2.3 [font=宋体]单独及与分散染料同浴上染时紫外线吸收剂对涤纶织物的上染性能[/font][font=宋体]试验中所用的紫外线吸收剂是一种疏水性的小分子化合物,其对涤纶织物的上染原理类似于分散染料的上染原理,也是采取自由体积模型上染的,在高温高压染浴中,当温度升高,涤纶大分子运动加剧,会在瞬时产生较大的空穴,此时溶解在水中的紫外线吸收剂就能够通过这些空穴进入到纤维内部,从而实现对涤纶织物的上染,当溶解在水中的紫外线吸收剂分子减少时,聚集在颗粒上的紫外线吸收剂分子又会溶解下来,直至颗粒上紫外线吸收剂分子溶解完全。[/font][font=宋体]图[/font]5[font=宋体]显示的是不同用量下紫外线吸收剂对涤纶织物的上染率结果。[/font][align=center][img=,193,]file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image014.gif[/img][/align][align=center][font=宋体]图[/font]5[font=宋体]紫外线吸收剂对涤纶织物的上染率[/font][/align][align=center]U[font=宋体]:紫外线吸收剂单独上染;[/font]U+R[font=宋体]:紫外线吸收剂与[/font][font=宋体]分散红玉[/font]SE-GFL[font=宋体]同浴上染;[/font]U+Y[font=宋体]:紫外线吸收剂与分散黄[/font]E-3G[font=宋体]同浴上染;[/font]U+B[font=宋体]:紫外线吸收剂与分散蓝[/font]HGL[font=宋体]同浴上染。其中分散染料用量都是[/font]1%[font=宋体]([/font]owf[font=宋体])。[/font][/align][font=宋体]从图[/font]5[font=宋体]中可以看出:紫外线吸收剂对涤纶织物的上染率不太高,实验所测得的上染率都小于[/font]20%[font=宋体]。单独上染时,随着用量的增加,其上染率是先有所增加,而后又有所下降。在用量不大时,其上染率是逐渐增加的,之所以会出现这种现象,可能是由于该紫外线吸收剂在水中有一定的溶解度所造成的,当紫外线吸收剂在水中的溶解性能比较好时,则其对于疏水性纤维的亲和能力就会有所下降,另外在水中的溶解性能较好,也会造成染色残液中所剩余的紫外线吸收剂比较多,从而也会在一定程度上降低吸收剂的上染率,当在一定程度内增加吸收剂用量,就能降低溶解在水中那部分吸收剂对其上染率的影响,所以在低浓度范围内紫外线吸收剂的上染率是随着紫外线吸收剂用量的增加而增加;但是当紫外线吸收剂用量达到一定的程度时,水中溶解部分对上染率的影响就会减轻,这时候涤纶对吸收剂的相容性对上染率的影响就比较明显,因织物对吸收剂能够容纳的总量是一定的,就会导致在紫外线吸收剂用量增加时上染率有所下降。[/font][font=宋体]分散染料的加入对紫外线吸收剂上染性能的影响也比较复杂,当紫外线吸收剂用量比较小时,分散染料的加入能够促进吸收剂的上染;当紫外线吸收剂用量增大时,分散染料使其上染率有所下降。分散染料的加入,会从两个方面影响吸收剂的上染率:一是商品分散染料中所含有的大量分散剂等染整助剂在增大分散染料上染率的同时也会在一定程度上提高紫外线吸收剂的上染率;另一方面由于分散染料和紫外线吸收剂的分子大小相近,上染机理类似,所以在同浴染色时会存在一定程度的竞染作用。一般来讲在上染紫外线吸收剂的染液中加入分散染料之后,两个方面的影响是同时存在的。在用紫外线吸收剂对涤纶织物进行上染,用量较小时,商品分散染料中所含的分散剂等染整助剂对紫外线吸收剂的助染作用就处于优势,因此在一定程度上能够提高紫外线吸收剂的上染率,但是随着紫外线吸收剂用量的增加,染料和紫外线吸收剂之间的竞染作用就逐渐占据优势,因此当紫外线吸收剂用量增加到一定程度后,同浴上染的分散染料会导致其上染率下降。[/font]2.4 [font=宋体]紫外线吸收剂对分散染料上染性能的影响[/font][font=宋体]紫外线吸收剂与分散染料分子大小相近、极性相似、对涤纶纤维上染时的上染机理相同,因而在二者同浴对涤纶织物进行上染时,必然会存在一定的竞染关系。如前所述,与分散染料同浴上染时紫外线吸收剂的上染率会有一定程度的下降。紫外线吸收剂的加入对分散染料上染率影响情况如图[/font]6[font=宋体]所示。[/font][align=center][img=,181,]file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image016.gif[/img][/align][align=center][font=宋体]图[/font]6[font=宋体]分散染料[/font][font=宋体]的上染率[/font][/align][align=center]R[font=宋体]:[/font][font=宋体]分散红玉[/font]SE-GFL[font=宋体];[/font]Y[font=宋体]:分散黄[/font]E-3G[font=宋体];[/font]B[font=宋体]:分散蓝[/font]HGL[font=宋体]。其中分散染料用量都是[/font]1%[font=宋体]([/font]owf[font=宋体])。[/font][/align][font=宋体]从图[/font]6[font=宋体]中可以看出,染浴中紫外线吸收剂的加入,会在一定程度上影响分散染料的上染率,其中紫外线吸收剂对分散黄[/font]E-3G[font=宋体]的影响稍微明显一些,随着紫外线吸收剂用量的增加,分散黄[/font]E-3G[font=宋体]的上染率有所下降,但下降程度并不大,而紫外线吸收剂的加入对分散红玉[/font]SE-GFL[font=宋体]和分散蓝[/font]HGL[font=宋体]的影响很小。[/font][font=宋体]对比紫外线吸收剂与分散染料在同浴上染时的相互影响时可以发现:分散染料对紫外线吸收剂上染性能的影响要明显高于紫外线吸收剂对分散染料上染性能的影响,这可能是由于分散染料与涤纶纤维的相容性明显要比紫外线吸收剂高,因而在竞染过程中处于优势。[/font]2.5 [font=宋体]紫外线吸收剂对涤纶织物紫外线防护性能([/font]UPF[font=宋体])的影响[/font][font=宋体]将紫外线吸收剂上染到涤纶纤维上后,由于紫外线吸收剂对紫外线强烈的吸收作用,使得透过织物的紫外线减少,从而增强了织物的紫外线防护能力,增大理论织物的[/font]UPF[font=宋体]值。本试验中紫外线吸收剂的上染对涤纶织物[/font]UPF[font=宋体]值增大情况如图[/font]7[font=宋体]所示。[/font][align=center][img=,205,]file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image018.gif[/img][/align][align=center][font=宋体]图[/font]7[font=宋体]紫外线吸收剂对涤纶织物[/font]UPF[font=宋体]值的影响[/font][/align][align=center]W[font=宋体]代表涤纶白织物;[/font]R[font=宋体]代表红色织物;[/font]Y[font=宋体]代表黄色织物;[/font]B[font=宋体]代表蓝色织物[/font][/align][font=宋体]从图[/font]7[font=宋体]中可以看出,紫外线吸收剂上染后了,无论是涤纶白织物还是染色的涤纶织物,其[/font]UPF[font=宋体]值都有一定程度的增加,说明紫外线吸收剂的上染都在一定程度上增强了涤纶织物的紫外线防护性能。[/font]2.6 [font=宋体]紫外线吸收剂对染色涤纶织物耐光色牢度的影响[/font][font=宋体]当紫外线吸收剂上染到染色涤纶织物后,能够吸收照射到织物上的紫外线,从而降低了紫外线照射到织物上光敏物质的几率,降低了引发织物基质和染料降解的光化学反应的发生几率,增进了织物的耐光色牢度。测试[/font][font=宋体]经过[/font]200h[font=宋体]光照前[/font][font=宋体]后涤纶白布和染色布样的色差[/font][font=宋体]△[/font][i]E[/i][font=宋体],并进行耐光色牢度的评级,如表[/font]1[font=宋体]所示。[/font][align=center][font=宋体]表[/font]1[font=宋体]涤纶织物光照前后色差[/font][font=宋体]△[/font][i]E[/i][font=宋体]和耐光色牢度[/font][/align] [table][tr][td=2,1] UV-Abs[font=宋体]([/font]%owf[font=宋体])[/font] [/td][td] [align=center][font=宋体]白织物[/font][/align] [/td][td] [align=center][font=宋体]红织物[/font][/align] [/td][td] [align=center][font=宋体]黄织物[/font][/align] [/td][td] [align=center][font=宋体]蓝织物[/font][/align] [/td][/tr][tr][td=1,2] [align=center]0.0[/align] [/td][td] [align=center][font=宋体]色差[/font][/align] [/td][td] [align=center]2.55[/align] [/td][td] [align=center]2.78[/align] [/td][td] [align=center]4.46[/align] [/td][td] [align=center]14.36[/align] [/td][/tr][tr][td] [align=center][font=宋体]牢度[/font][/align] [/td][td] [align=center]/[/align] [/td][td] [align=center]7-8[/align] [/td][td] [align=center]7[/align] [/td][td] [align=center]5[/align] [/td][/tr][tr][td=1,2] [align=center]0.5[/align] [/td][td] [align=center][font=宋体]色差[/font][/align] [/td][td] [align=center]1.56[/align] [/td][td] [align=center]2.97[/align] [/td][td] [align=center]3.72[/align] [/td][td] [align=center]12.92[/align] [/td][/tr][tr][td] [align=center][font=宋体]牢度[/font][/align] [/td][td] [align=center]/[/align] [/td][td] [align=center]7-8[/align] [/td][td] [align=center]7[/align] [/td][td] [align=center]5[/align] [/td][/tr][tr][td=1,2] [align=center]1.0[/align] [/td][td] [align=center][font=宋体]色差[/font][/align] [/td][td] [align=center]1.47[/align] [/td][td] [align=center]2.73[/align] [/td][td] [align=center]3.26[/align] [/td][td] [align=center]12.33[/align] [/td][/tr][tr][td] [align=center][font=宋体]牢度[/font][/align] [/td][td] [align=center]/[/align] [/td][td] [align=center]7-8[/align] [/td][td] [align=center]7-8[/align] [/td][td] [align=center]5[/align] [/td][/tr][tr][td=1,2] [align=center]1.5[/align] [/td][td] [align=center][font=宋体]色差[/font][/align] [/td][td] [align=center]1.21[/align] [/td][td] [align=center]2.61[/align] [/td][td] [align=center]4.43[/align] [/td][td] [align=center]12.10[/align] [/td][/tr][tr][td] [align=center][font=宋体]牢度[/font][/align] [/td][td] [align=center]/[/align] [/td][td] [align=center]7-8[/align] [/td][td] [align=center]7[/align] [/td][td] [align=center]5[/align] [/td][/tr][tr][td=1,2] [align=center]2.0[/align] [/td][td] [align=center][font=宋体]色差[/font][/align] [/td][td] [align=center]1.12[/align] [/td][td] [align=center]2.22[/align] [/td][td] [align=center]3.79[/align] [/td][td] [align=center]11.83[/align] [/td][/tr][tr][td] [align=center][font=宋体]牢度[/font][/align] [/td][td] [align=center]/[/align] [/td][td] [align=center]7-8[/align] [/td][td] [align=center]7-8[/align] [/td][td] [align=center]5[/align] [/td][/tr][tr][td=1,2] [align=center]3.0[/align] [/td][td] [align=center][font=宋体]色差[/font][/align] [/td][td] [align=center]0.97[/align] [/td][td] [align=center]2.71[/align] [/td][td] [align=center]3.87[/align] [/td][td] [align=center]10.76[/align] [/td][/tr][tr][td] [align=center][font=宋体]牢度[/font][/align] [/td][td] [align=center]/[/align] [/td][td] [align=center]7-8[/align] [/td][td] [align=center]7-8[/align] [/td][td] [align=center]5-6[/align] [/td][/tr][/table][align=center] [/align][font=宋体]从表中可以看出,无论是涤纶白布还是染色涤纶织物,无论是否上染了[/font][font=宋体]紫外线吸收剂[/font][font=宋体],经过紫外线照射后,都会发生一定的颜色变化,这是由于紫外线不仅能够使涤纶纤维发生光降解反应,生成有色物质,使涤纶白布出现泛黄;而且还能够造成上染到织物上的染料发生光致褪色。[/font][font=宋体]从表中还可以看出,无论是涤纶白布还是染色涤纶织物,[/font] [font=宋体]紫外线吸收剂[/font][font=宋体]上染都可以使其颜色变化有所降低,这是[/font][font=宋体]由于[/font][font=宋体]对涤纶织物本身和织物上的染料都产生了一定的光稳定效果,而且随着其用量的增加,光稳定效果会更好。[/font][font=宋体]试验中所用的三只分散染料中,分散红玉[/font]SE-GFL[font=宋体]和分散黄[/font]E-3G[font=宋体]都是耐光色牢度比较高的染料,单独使用时耐光色牢度已经达到[/font]7-8[font=宋体]级,紫外线吸收剂的上染,并不能提高染料的耐光色牢度等级,但仍然能够在一定程度上降低经过日晒后织物所产生的色差值,说明紫外线吸收剂对耐光色牢度较高的分散染料也能起到一定的光稳定作用;分散蓝[/font]HGL[font=宋体]是一只中等耐晒牢度的染料,单独使用时耐光色牢度是[/font]5[font=宋体]级,当紫外线吸收剂用量达到[/font]3%[font=宋体]([/font]owf[font=宋体]),能够使织物的耐光色牢度达到[/font]5-6[font=宋体]级,即使耐光色牢度提高[/font]0.5[font=宋体]级。[/font]3 [font=宋体]结论[/font][font=宋体]采用高温高压方法将自制的紫外线吸收剂[/font]2,4-[font=宋体]二乙氧基[/font]-6-(2’,4’-[font=宋体]二羟基苯基[/font])-1,3,5-[font=宋体]三嗪上染到涤纶织物上,考察了该紫外线吸收剂对涤纶织物的上染性能,实验发现该紫外线吸收剂可以上染到涤纶织物上;同时考察了在与分散染料同浴上染时,该紫外线吸收剂与分散染料上染性能之间的相互影响情况,发现分散染料可以在一定程度上降低紫外线吸收剂的上染率,但是紫外线吸收剂对分散染料上染率的影响较小。[/font][font=宋体]通过紫外线吸收剂上染后涤纶织物紫外线防护性能影响的测试发现,无论是涤纶白织物还是染色的涤纶织物,其紫外线防护性能都会随着紫外线吸收剂的上染而增强。[/font][font=宋体]紫外线吸收剂的上染,能够在一定程度上提高染色涤纶织物的耐光色牢度,其中对自身耐光色牢度较差的分散染料效果明显。[/font]

氯甲氧基苯基哒嗪相关的方案

  • 化妆品中双-乙基己氧苯酚甲氧苯基三嗪的快速分离
    防晒剂能够防止或减轻由于紫外线辐射而造成的皮肤损害,被广泛用于各类化妆品中。我国2015年版《化妆品安全技术规范》规定了防晒化妆品中能够添加的27项准用防晒剂。有机防晒剂的防晒能力大多强于无机防晒剂,但是对皮肤有刺激作用、导致皮肤过敏等。《化妆品安全技术规范》(2015年版)中明确规定了各类有机防晒剂的使用限值。国家食药总局发布的《化妆品安全技术规范》(2015年版)1中提供了同时检测苯基苯并咪唑磺酸等15种防晒剂的方法。但由于原方法中存在部分化合物分离度差等问题,如方法一中苯基苯并咪唑磺酸、二苯酮、对氨基苯甲酸的分离不好;方法二需要分组,检测效率较低。因此,为了改善这些方法中的不足,我们做了本方案的方法开发。本方案在Waters ACQUITY UPLC H-Class系统上,开发了2015版《化妆品安全 技术规范》中对应的15种防晒剂的分离度方案,15种防晒剂及标品中含有的同分异构体实现了完全分离,尤其是显著改善了苯基苯并咪唑磺酸、二苯酮、对氨基苯甲酸的分离。同时方法不再需要THF作为流动相,对液相系统更加友好,更加环保。重现性结果、加标回收率考察显示,绝大部分都在90-100%。
  • 化妆品中双-乙基己氧苯酚甲氧苯基三嗪的快速分离
    流动相体系简单,于液相系统更加友好。15种防晒剂实现了完全分离,尤其改善了在 传统HPLC方法上分离度不够的苯基苯并咪 唑磺酸、二苯酮、对氨基苯甲酸三种防晒剂 的分离。 Empower 3色谱管理软件,具有完美的法 规依从性,能够快速得到分离度的定量的标 准曲线。
  • 均三甲氧基苯在ChromCorePFP上的分离
    纳谱分析ChromCore PFP色谱柱对均三甲氧基苯进行分离和检测,主峰具有良好的峰形和分离度,主峰附近无杂质峰,该方法操作简单,灵敏度高,重复性好,可用于均三甲氧基苯的测定,为该药物的质量保证提供检测依据。

氯甲氧基苯基哒嗪相关的资讯

  • 【瑞士步琦】SFC应用——苯基吡啶的纯化
    SFC应用—苯基吡啶的纯化3-苯基吡啶与4-苯基吡啶都是生产高附加值精细化工产品的重要有机原料,随着农药、医药等精细化工行业的蓬勃发展,对两者的需求日益增高。两者的沸点接近(分别为 144.14℃ 和 145℃),性质相似。依靠传统的分离方法,如精馏、普通的溶剂萃取无法将其分离。而采取化学转化法则会有污水量大、产率低等缺点。虽然邻苯二甲酸法和铜盐法研究较多,但相对来说步骤比较繁琐。现如今通过 SFC 可以有效将两者进行分离,高效快速的同时也解决了有机溶剂污水处理量大等难题。1SFC 分离条件设备Sepiatec SFC-50色谱柱AS-HUV波长254nm改性剂MeOH,5%进样体积15 ul流速8 ml/min压力100bar温度40℃2实验结果▲图1.SFC 在 5% MeOH 等度条件下对 3-苯基吡啶与 4-苯基吡啶分离色谱图3叠加进样▲图2. 3-苯基吡啶与 4-苯基吡啶在 6 次叠加进样状态下的分离色谱图4结论与传统的分离方式相比,通过超临界流体色谱可以快速有效的将 3-苯基吡啶与 4-苯基吡啶进行分离,并将分离时间控制在 4min 之内,除此之外,较少的改性剂使用也为用户解决溶剂成本及后续废液处理等烦恼。通过叠加进行功能,在保证两者分离度的情况下可以更加快速的对样品进行制备,避免非必要的时间等待,叠加进样功能可将每次进样时间控制在 1.6min 以内。
  • 昆明理工大学在单分子内苯基迁移机理研究取得新进展
    日前,昆明理工大学材料科学与工程学院蔡金明教授团队研究成果以“Real-Space Imaging of a Phenyl Group Migration Reaction on Metal Surfaces”为题,发表在Nature Communications14, 970 (2023)上。该研究工作得到了国家自然科学基金项目、云南省科学基金项目、中科院战略先导项目等多个项目资助。据介绍,表面合成由于其精准性和易观测性,一直是化学合成领域的重要方向,然而目前表面合成只实现了少数已有的化学反应,探索表面合成过程中的新反应、新机理一直是国际上的研究热点,是精准制备低维纳米材料的关键所在。化学迁移反应是一类特殊的化学重排反应,会在分子中的某一位点产生自由基,随后高反应活性的自由基位点在分子内部转移,导致分子中基团位置的改变。与传统的亲核重排反应不同,芳香基自由基迁移反应的机理一直以来都存在争议。鉴于此,昆明理工大学材料科学与工程学院蔡金明教授团队系统研究了1,4-二甲基-2,3,5,6-四苯基苯(DMTPB)分子在Au(111)、Cu(111)和Ag(110)三种基底上不同反应活性和不同对称性的化学反应。利用具有原子分辨能力的扫描隧道显微镜(STM)和具有化学键分辨能力的非接触原子力显微镜(NC-AFM)精确识别了反应过程中的中间产物以及最终产物的精细结构,证实了在DMTPB分子内发生了新奇的苯基迁移反应,并结合第一性原理计算,揭示了DMTPB分子内苯基迁移反应的机制。该工作为简化化学反应路径、合成新的低维纳米材料提供了新的研究思路。
  • 沃特世隆重推出CORTECS C8以及苯基1.6和2.7 μm色谱柱
    这两款实心颗粒色谱柱产品系列的新成员将为突破分离效率和分析通量极限带来新的可能 美国马萨诸塞州米尔福德市,2016年2月2日 – 沃特世公司(纽约证券交易所代码:WAT)今日隆重推出两款采用新型填料的色谱柱产品,进一步壮大了CORTECS色谱柱产品系列。Waters CORTECS C8和CORTECS苯基分析柱采用沃特世成熟的实心颗粒技术,能够让科研人员在扩大色谱分离应用范围的同时,最大程度提升小分子HPLC、UHPLC或UPLC分离的分离速度、分离度和灵敏度。这两款色谱柱兼具高柱效、低柱压的优势,为科研人员带来更多的选择性的同时,能够有效缩短方法开发的时间,通过单次分析运行可获得的信息量也更大。CORTECS C8和CORTECS苯基填料有两种粒径可选(1.6和2.7 μm),可提供总共50种不同的色谱柱配置。 “沃特世推出的这些新型色谱柱产品为那些希望提高分离度、分析速度和灵敏度的实验室提供了更丰富的选择,”沃特世科技公司主管消耗品业务的副总裁Michael Yelle说道,“我们将努力拓宽CORTECS实心颗粒色谱柱产品系列的选择性范围,同时在产品批次间重现性、产品可靠性及产品品质方面保持一贯的市场领先地位,不辜负客户对沃特世的期望。” CORTECS C8色谱柱的疏水性比一般的C18键合相更弱,适用于分离强疏水性化合物。对于希望使用更稳定的色谱柱技术来转换或按比率缩放药典C8 HPLC方法的化学家而言,这类色谱柱也将成为他们的理想之选。 基于苯基键合相独特的选择性,CORTECS苯基色谱柱将成为常用C18键合相的最佳替代品,尤其是在分析芳香族化合物时。 CORTECS C8和CORTECS苯基色谱柱均具有全面的可扩展性,能够在1.6和2.7 μm两种粒径之间实现无缝的方法转换。 CORTECS UPLC 1.6 μm颗粒色谱柱经过专门设计,与超低扩散性Waters ACQUITY UPLC仪器平台联用时可实现最高柱效。在分离市场领域,它能够为科研人员提供前所未有的性能水平。 CORTECS 2.7 μm颗粒色谱柱用于UHPLC和HPLC仪器平台时,能够依靠其独特的设计展现出最大的灵活性。这款色谱柱能够在较低的柱压下高效运行,因此分析人员可以使用更长的色谱柱来提高分离度,或者采用更快的流速加快仪器分析速度和提高通量。 这两款新型色谱柱填料进一步扩充了沃特世的CORTECS产品系列,是对CORTECS C18+、C18和HILIC等现有填料的补充。 关于沃特世实心颗粒技术CORTECS色谱柱颗粒的特点是在多孔硅胶外层内有一个不能渗透的实心硅胶核,固定相和分析物之间的相互作用即在多孔硅胶外层中进行。凭借沃特世在键合和表面技术领域四十余年的知识积累以及在亚2 μm颗粒色谱柱合成与填充方面十余年的技术经验,新开发的CORTECS色谱柱系列充分体现了实心核颗粒技术的领先优势。 更多信息:www.waters.com/cortecs 关于沃特世公司(www.waters.com)50多年来,沃特世公司(纽约证券交易所代码:WAT)通过提供实用、可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2014年沃特世拥有19.9亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 ### Waters、UltraPerformance LC、UPLC、ACQUITY、ACQUITY UPLC和CORTECS是沃特世公司的商标。

氯甲氧基苯基哒嗪相关的仪器

  • 中文名称:1-(4-甲氧基苯酰基)-2-吡咯烷酮 L-(4-甲氧基苯甲酰基)-2-吡咯烷酮 1-(4-甲氧基苯甲酰基)-2-吡咯烷酮英文名称: AniracetamCAS:72432-10-1分子式:C12H13NO3分子量:219.23700含量:99%外观:白色粉末包装:25kg/桶用途:益智
    留言咨询
  • 产品名称: N-(2,6-二甲基苯基)-2-氧代-1-吡咯烷乙酰胺 N-(2,6-二甲苯基)-2-氯乙酰胺;英文名称:Nefiracetam英文别名 : N-(2,6-dimethylphenyl)-2-(2-oxopyrrolidin-1-yl)acetamide;[(2,6-dimethylphenyl)aminocarbonylmethyl]chloride代号: DM-9384;DMMPA;DZL-221CAS:77191-36-7分子式:C14H18N2O2分子量:246.3049纯度: 99%外观:白色粉末包装:25公斤/桶用途:益智
    留言咨询
  • 产品名称:N-(1-(苯基乙酰基)-L-脯氨酰)甘氨酸乙酯英文名称:Noopept,GVS-111英文别名: N-(1-(Phenylacetyl)-L-prolyl)glycine ethyl esterCAS:157115-85-0分子式:C17H22N2O4分子量:318.37含量:99.5%外观:白色粉末包装:25公斤/桶用途:益智
    留言咨询

氯甲氧基苯基哒嗪相关的耗材

  • 甲氧基测定装置成套玻璃7460
    甲氧基测定装置成套玻璃7460由上海书培实验设备有限公司提供,采用高硼硅玻璃材质,提供实验室整套玻璃器皿:玻璃烧杯,玻璃容量瓶,点样毛细管,冷凝管,称量瓶,培养皿,层析柱,比色管,玻璃比色皿,干燥器,漏斗(砂芯漏斗,分液漏斗,三角漏斗)等等产品名称:甲氧基测定装置成套玻璃7460规格:7460材质:高硼硅玻璃测定法: 取干燥的供试品(相当于甲氧基10mg),精密称定,置烧瓶中,加熔融的苯酚2.5ml与HI 5ml,连接上述装置 另在两个接受容器内,分别加入10%醋酸钾的冰醋酸溶液6.与4ml,再各加溴02ml 通过支管将C02或N2气流缓慢而均衡地(每秒钟1~2个气泡为宜)通入烧瓶,缓缓加热使温度控制在恰使沸腾液体的蒸气上升 50ml圆底烧瓶,侧部具一内径为1mm的支管供导入二氧化碳或氮气流用瓶颈垂直装有长约25cm、内径为9mm的直形空气冷凝管E,其上端弯曲成出口向下、并缩为内径2m的玻璃毛细管,浸入内盛水约2ml的洗气瓶B中,洗气瓶具出口为- -内径约7m的玻璃管,其末端为内径4m可拆卸的玻璃管,可浸入两个相连接的接受容器C、D中的第一个容器C内液面之下。
  • 甲氧苯基乙酸 Reag. Ph Eur
    甲氧苯基乙酸 Reag. Ph Eur
  • 玻璃羟丙氧基测定仪装置 带水浴支架
    玻璃羟丙氧基测定仪装置 带水浴支架由上海书培实验设备有限公司提供,适用于各大实验室、科研单位,产品质量优质,欢迎新老客户来电咨询选购。玻璃羟丙氧基测定仪装置 带水浴支架 产品介绍:图中D为25ml双颈蒸馏瓶,侧颈与外裹铝箱的长度为95mm的分馏柱E相连接:C为接流管,末端内径为0.25~1.25mm,插入蒸馏瓶内;B为蒸汽发生管(25mm×150mm),亦其末端内径为0.25~1.25mm的气体导入管,并与C相通;F为冷凝管,外管长100mm,与E连接。G为125ml具刻度的带浴A中,维持温度为155°C 测定法  取各药品项下规定量的供试品,精密称定,置蒸馏瓶D中,加30%(g/g)三氧化铬溶液10ml。于蒸汽发生管B中装入水至近接头处,连接蒸馏装置。将B与D均浸入油浴中(可为甘油),使油浴液面与D瓶中三氧化铬溶液的液面相一致。开启冷却水,必要时通入氮气流并控制其流速为每秒钟约1个气泡。于30分钟内将油浴升温至155℃,并维持此温度至收集馏液约50ml,将冷凝管自分馏柱上取下,用水冲洗,洗液并入收集液中加酚酞指示液2滴,用氢氧化钠滴定液(0.02mol/L)滴定至pH为6.9~7.1(用酸度计测定),记下消耗的容积V[1](ml),而后加碳酸氢钠0.5g与稀硫酸10ml,静置至不再产生二氧化碳为止,加碘化钾1.0g,密塞,摇匀,置暗处放置5分钟,加淀粉指示液1ml,用硫代硫酸钠滴定液(0.02mol/L)滴定至终点,记下消耗的容积V[2](ml)。另作空白试验,分别记下消耗的氢氧化钠滴定液(0.02mol/L)与硫代硫酸钠滴定液(0.02mol/L)的容积V[a]与V[b](ml),按下式计算,即得。  OCH2CHOHCH3 %=(V[1]M[1]-KV[2]M[2])×(0.0751/W)×100%  式中  K为空白校正系数M[1]V[a]/M[2]V[b];  V[1]为供试品消耗氢氧化钠滴定液(0.02mol/L)的容积,ml;  V[2]为供试品消耗硫代硫酸钠滴定液(0.02mol/L)的容积,ml;  V[a]为空白试验消耗氢氧化钠滴定液(0.02mol/L)的容积,ml;  V[b]为空白试验消耗硫代硫酸钠滴定液(0.02mol/L)的容积,ml;  W为供试品的重量,g;  M[1]为氢氧化钠滴定液的浓度;  M[2]为硫代硫酸钠滴定液的浓度。玻璃羟丙氧基测定仪装置 带水浴支架 产品配置:羟丙氧基测定仪:298元羟丙氧基测定仪+支架:489元羟丙氧基测定仪+支架+水浴:1200元单水浴:640元单支架:189元

氯甲氧基苯基哒嗪相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制