当前位置: 仪器信息网 > 行业主题 > >

数显塑料密度仪

仪器信息网数显塑料密度仪专题为您提供2024年最新数显塑料密度仪价格报价、厂家品牌的相关信息, 包括数显塑料密度仪参数、型号等,不管是国产,还是进口品牌的数显塑料密度仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合数显塑料密度仪相关的耗材配件、试剂标物,还有数显塑料密度仪相关的最新资讯、资料,以及数显塑料密度仪相关的解决方案。

数显塑料密度仪相关的资讯

  • 密度测定三步曲(压轴曲) | 塑料成品检测还可以这样操作?奥豪斯AX分析天平一步到位!
    密度测定三步曲(压轴曲)| 塑料成品检测还可以这样操作?奥豪斯AX分析天平一步到位! 一、你真的了解塑料吗?塑料——这毁誉参半的新型高分子材料,在我们的生活中无处不见。看看你手边的物品,塑料制品已经占据半壁江山。1. 可口可乐瓶2. 各种规格的食品包装袋3. 印制了精美图案的手机外壳4. 会变色的太阳镜片 在我们不常接触的高科技领域,塑料也无处不在。如人造卫星上使用的多层绝缘材料中,就含有厚度约6微米的聚酰亚胺或聚酯膜。二、塑料的命运密码——密度同样都是塑料,怎么命运如此不同?原来,这里面学问可大着呢! 塑料有很多不同品种,不同品种的塑料在耐疲劳性、耐热性、抗冲击性、耐腐蚀性等特性上各有优劣势。 塑料的品种不同,密度也因之不同。 例如,可以制造汽车灯罩等的PS是一种无色透明的塑料,密度为1.03~1.07 g/cm3;而具有自阻燃的特性、常用于防火应用的PVC,密度为1.35~1.45g/cm3。 塑料的密度不仅取决于其加工工艺,还与其成分有关。 调整塑料的成分比例,就可以改变其性能,以适应不同应用要求。 例如,ABS塑料由丙烯腈(A)-丁二烯(B)-苯乙烯(S)三组分构成,密度为1.04~1.06 g/cm3。当三组分以不同比例混合时,其密度也随之改变,同时性能也发生变化,由普通ABS变为高抗ABS、耐热ABS、高光泽ABS等。 因此,相比于用热解实验和燃烧试验来鉴别塑料品种,或鉴别塑料厂生产的产品是否达标,利用密度测定的方法真的非常省时省力! 三、塑料的密度,不难测啦!某知名生产塑料制品厂商的QC部门,需要对生产的产品进行抽样检测,以鉴别其产品批次是否达标。 该检测试验共有五批塑料成品的样品,均为密度小于1g/cm3 的某种塑料,其在颜色、大小、形状上都极其相似,凭经验很难判别哪个样品是合格产品。(因此我们先给样品做了编号标记以加区分) 经过严格的检测实验及评估,最终该企业选用了奥豪斯带有密度直读功能的Adventurer AX 系列分析天平,进行塑料密度测定。只用两步,就能得到塑料的密度啦! 实验器材:奥豪斯 Adventurer AX 124 密度组件测定步骤:塑料的密度测定方法与上期玻璃密度的测试方法类似。首先分别在空气中和水中称量样品,得出重量,再由天平内部计算公式得出密度结果,直接在显示屏上读取即可。在空气中称重在水中称重(-0.3906g)密度结果直读显示用AX天平测试密度,非常简单,但是也有很多小细节要注意,才能确保结果完美哦! 注意:1. 用于测试密度小于水的样品,我们需选用漂浮固体挂篮。篮网向上凸起,可以覆盖住浮起的样品。如样品未完全浸没,可使用外加砝码帮助样品保持完全浸没于水中的状态。 2. 在水中称量塑料时,我们需要用镊子轻压塑料,小心将其挪至漂浮固体挂篮下方的中心位置。 四、小奥解惑时间:测试结果不理想,到底是什么原因?有用户反应,完全按照以上步骤进行测量,但测试结果并不理想,结果的重复性很差: 无论是在空气中的重量还是在液体中的重量,每次的称重读数都不相同。明明是浮于水的样品,密度结果却大1g/cm3。这到底是什么原因呢?让小奥帮你揭开谜底! 看,是气泡在作怪!不信,你凑近仔细观察观察。原来浸入水中的挂篮上还有塑料样品上都附着肉眼难以察觉的气泡——个子小小,力气很大。要知道,直径1mm气泡会产生0.5mg的气泡,而直径2mm气泡产生的浮力可以高达4mg!每次称量时,塑料样品上附着的气泡的数量和大小也时有变化,影响称量结果,重复性自然不佳。 那怎么解决这个问题呢?其实很简单。 你只需拿细毛刷扫一扫,再轻轻抖动挂篮,即可去除影响称量效果的小小气泡们。去除气泡后,再看密度结果——可靠又稳定!塑料的密度测定之旅,就完成啦。 快拿着测量结果去看看哪款塑料才是合格产品吧! 参考文献:本文章中摘录文献出自百度百科——塑料(高分子聚合物)百度百科——ABS塑料 如果您想了解更多奥豪斯的电子天平及实验室称量产品,请访问奥豪斯官方网站,我们的专业工程师将竭诚为您服务!
  • 微塑料研究最前沿丨微塑料监测遇难题,我们该何去何从?
    近年来,塑料污染在水环境(海洋和淡水)中的问题日益严重,得到广泛报道和关注。据《Science》杂志研究报告,2010 年全球192 个沿海和地区共制造2.75 亿吨塑料垃圾,其中约有800 万吨排入海洋,并且塑料垃圾数量不断增多,到2015 年已有超过900 万吨塑料垃圾排入海洋。如果不加以控制,科学家预计到2050年海洋中的塑料垃圾排放量将会是2010年的两倍。这些污染物正在持续威胁海洋生物和人类自身的安全与健康。近期,科学家再次发现塑料会在机械作用、生物降解、光降解、光氧化降解等过程的共同作用下逐渐被分解成碎片,形成微塑料,被海洋生物吞食,在生物体内不断积累,随着生物链,造成更广泛的危害。这一发现引起科学家的广泛关注,同时,也引起了各国政府的高度重视。近期,生态环境部发布的《生态环境监测规划纲要(2020-2035年)》也着重强调应加强海洋微塑料监测,加快形成相关领域监测支撑能力,为国际履约谈判和全球新兴环境问题治理提供支撑。在微塑料监测中,由于微塑料的物理特性(大小、形状、密度、颜色)以及化学组分等差异,不同类型微塑料在不同环境中流动过程(输入、输出和存留)的时间均不相同,使微塑料监测变成一大难题。目前,对微塑料的分析方法主要有目视分析法、光谱法 (如傅立叶变换红外光谱法和拉曼光谱法)、热分析法以及其他分析方法等 (如质谱法以及扫描电子显微镜-能谱仪联用法)。其中,红外光谱及Raman光谱分析,由于具有无破坏性、低样品量测试、高通量筛选以及所获取的结构信息互补等特点,成为检测和鉴别微塑料的主要分析技术;而在实际操作中上述技术仅可对几微米颗粒物进行检测(FT-IR为10~20μm、Raman 低仅为1 μm),使微塑料的研究仍处于起步阶段。作为先进仪器平台,Quantum Design中国时刻关注重大科研发展方向,并致力于引进先进表征技术及设备,为我国科研搭建先进科技平台。聚焦于微塑料监测难题,Quantum Design中国表面光谱部门认为需要考虑三个关键因素:尺寸、微观形貌以及聚合物类型。理论上可用于测量两者的方法均适用于微塑料分析,但是由于疑似微塑料样品的干扰,使得仅用一种分析方法难以准确的识别微塑料,为了提高准确度以及检测效率,需要采用多组合分析测试方法对其进行监测。目前,我司主要有Neaspec纳米傅里叶红外光谱仪(nano-FTIR)、IRsweep微秒时间分辨超灵敏红外光谱仪和PSC非接触式亚微米分辨触红外拉曼同步测量系统mIRage三款先进光谱表征设备。其中,非接触式亚微米分辨触红外拉曼同步测量系统mIRage采用的光学光热红外技术(O-PTIR),将光学显微与微区红外结合,一举突破了传统傅里叶红外光谱(FT-IR)及衰减全反射红外光谱(ATR-IR)的分辨局限,实现了500 nm的空间分辨率。不仅如此,该设备将显微成像、红外及Raman测试集成于一体,多测试方法同步测量有效提高检测效率及准确度。同时,它具有更简单,更快速的测量模式,无需复杂的样品制备过程等优势,让更快、更准确地进行微塑料追踪、监测和研究成为可能,正成为下一代标准的方法。为更好的服务国内科研用户,Quantum Design中国北京样机实验室引进了非接触式亚微米分辨触红外拉曼同步测量系统mIRage,为国内科研用户开放,以期为微塑料监测技术的发展做出一定的贡献。 Quantum Design中国非接触亚微米红外光谱系统mIRage样机操作过程示意 精选案例:目前,mIRage在塑料领域的研究中大放异彩,助力美国特拉华大学Isao Noda教授课题组对PLA和PHA的复合薄片塑料结合方式及内在机理的研究,向我们展示了mIRage在微塑料领域研究中的潜力。该工作中,作者先对PHA和PLA的结合面进行了固定波数下的红外成像(图1)。通过对比发现,在约330 nm的范围内(空气/PHA界面)1725 cm-1处的红外信号出现了急剧的下降,而在PHA/PLA界面处几微米范围内1760 cm-1处的变化较为平缓,且无清晰的边界,表明PHA和PLA可能有某种程度的分子混合。由于使用光学光热红外技术,不存在困扰传统红外成像设备的米氏散射效应,因此能够确定这一模糊的边界是来自于两种材料间的相互渗透而非光学伪影。图1. PLA和PHA在固定波数下的红外成像。(A)红外成像图(红色1725 cm-1为PHA;绿色1760 cm-1 为PLA);(B)A图中黑色线性区域PHA/PLA红外吸收强度分布对比 为了进一步研究PHA/PLA界面处的化学成分变化,作者对这大概2 μm左右交界面的红外图谱进行了间隔200 nm的线性红外扫描分析(图2)。从羰基(C=O)伸缩振动区和指纹区(图2 A和B)的线性扫描红外谱图可以清晰的区分PHA(1720和1740 cm-1)和PLA分子(1750-1760 cm-1)。区别于理想的简单二元系统(不互溶或无分子相互作用),PHA/PLA薄片羰基伸缩振动红外叠加图谱(图2C)并不存在一个明显的等吸收点,反映了在界面区域存在着复杂的组分变化及两种以上不同物种的分布。图2. PHA/PLA界面区域每200 nm间隔的羰基伸缩振动区域(A)和指纹图谱区域 (B) 以及羰基区域伸缩振动的叠合图谱(C) 为获取更详细的界面处PHA/PLA组分的空间分布规律,采用同步和异步二维相关光谱(2D-COS,two-dimensional correlation spectroscopy)来分析羰基拉伸区域采集到的红外谱图(图3A和3B),并以等高线的图形式展现,详细的分析方法可以参考相关信息(Combined Use of KnowItAll and 2D-COS, https://www.youtube.com/watch?v=0UCcD3irVtE)。结果显示,在主要为PHA的混合界面区域同时观测到来源于PLA的1760 cm-1红峰外,表明部分PLA渗透到PHA层,且与PHA层的其余部分相比,界面附近的PHA结晶度明显降低。在对指纹图谱区域进行2D PHA/PLA相关光谱同步和异步对比时,也得到了同样的结果(可参照发表文章,在此不再显示), 即PLA向PHA渗透,且PHA的晶型有所改变。另外,作者还通过非接触式亚微米分辨触红外拉曼同步测量系统对该区域进行了同步红外和拉曼分析(图3C),两者选择性和灵敏度不同却可以很好的互补,进一步验证了这一发现的可靠性。结果证实,即使是表面上不混相的PHA和PLA聚合物对,也存在一定程度的分子混合,这种混合可能发生在界面只有几百纳米的空间水平上,很好的解释了这两种生物塑料之间的高度相容性。 图3. PHA/PLA羰基伸缩振动区域二维同步(A)和异步(B)相关光谱(2D-COS)分析以及交界区域红外和拉曼光谱分析(左为红外,右为拉曼)。 参考文献:[1] Two-dimensional correlation analysis of highly spatially resolved simultaneous IR and Raman spectral imaging of bioplastics composite using optical photothermal Infrared and Raman spectroscopy,Journal of Molecular Structure,DOI: 10.1016/j.molstruc.2020.128045.
  • 最严限塑令下,慧眼识别各种塑料制品
    细心的你可能已经注意到,超市的塑料袋变成了柔软的可降解塑料袋,外卖的吸管变成了厚实的纸吸管。这是由于塑料已经成为当今社会严重的污染问题。2020年1月,国家发改委、生态环境部发布《关于进一步加强塑料污染治理的意见》,各地都积极出台塑料污染治理方案。如今我国“限塑令”升级,上海、海南等地已经全面实施“禁塑”,监管监督齐发力,未来还将在全国范围内普及。塑料已经造成了环境的严重污染:不可降解的塑料袋,如焚烧会产生二噁英等持久性有机污染物,如填埋则会加速土壤板结,也会让其他垃圾的降解速度变慢。全球每年塑料总消费量为4亿吨,中国消费6000万吨以上。塑料垃圾中9%会被回收利用,12%被焚烧,剩下的79%将进入垃圾填埋场或自然环境中,需要200年到500年才会被分解。在积极寻找适合替代品减少塑料污染的同时,应该同步推广循环回收的理念,摒弃一次性消费文化。日本是世界上塑料循环利用最成功的国家之一,2010年,77%废塑料被回收利用,超过英国的两倍,美国目前达到20%。为了成功地循环再利用,需要准确的鉴定并分类塑料样品。PerkinElmer的Spectrum Two红外光谱仪、DSC 4000差示扫描量热仪与TGA 4000热重分析仪,可为塑料回收利用领域提供快速可靠的鉴定结果。表1 聚合物识别代码(PIC)配有金刚石ATR附件的Spectrum Two红外光谱仪不同PIC类型塑料的ATR红外光谱图DSC 4000差示扫描量热仪红外光谱基本相同的高密度聚乙烯(HDPE)和低密度聚乙烯(LDPE),DSC 4000可测试出明显的差异TGA 4000热重分析仪TGA 4000可用于分析塑料内部填充物,如玻璃纤维、碳酸钙、滑石粉等。了解更多详情,请扫描二维码下载完整技术资料。
  • 福州大学通过代理商与汇美科签订1台LABULK 0335振实密度仪(堆密度仪)采购合同
    福州大学通过代理商与汇美科签订1台LABULK 0335振实密度仪(堆密度仪)采购合同振实密度仪产品简介LABULK 0335振实密度仪是用来测量粉体振实密度(堆密度)的仪器。该仪器由触屏操作面板、振动组件、电机、打印机、电子天平及量筒组成。根据国际及国内的标准研发的LABULK 0335振实密度仪按照设定好的转速及振实高度进行工作,使振动组件上面安放的盛装干粉样品量筒上下振动,从而测量出该粉体的振实密度。该仪器可以随意设定测量参数,并可以用户名登录、自动测量,数据库存储及查询、自动打印,除振实密度外,还可以自动测出粉体的流动性等指数。广泛用于金属、医药、食品、塑料、矿物等领域。仪器生产厂家与供应商为丹东汇美科仪器有限公司。型号为LABULK0335的振实密度仪采用国际先进的振实密度测试技术设计制造,仪器的主要参数性能超过外国进口设备,而且该仪器价格合理,生产商汇美科已经成为实验室振实密度分析及仪器采购的SHOU选品牌。汇美科LABULK 0335智能振实密度仪完全符合GB/T 5162金属粉末振实密度的测定(ISO 3953) GB/T 21354粉末产品振实密度测定通用方法(ISO 3953) GB/T 23652塑料氯乙烯均聚和共聚树脂振实表观密度的测定(ISO 1068)的要求。同时还符合ASTM B527、D4164、D4781、IDF 134、ISO 787-11、3953、8460、8967、9161、JIS K5101-12-2、Z 2512、GB/T5211.4、MPIF 46、USPPart II、BSIB527、GB/T 21354、5162、14853、GB/T5162-2006/ISO3953:1993、GB/T5162-2006/ISO3953:1993中的各项指标技术参数测量特性:振实密度及流动性等装样量:5-250 mL(用户可以随意设定)计时范围:0-99999秒(用户可以随意设定)计数范围:0-99999次(用户可以随意设定)振动高度:3或14 mm振动频率:250或300转/分(用户可以随意设定)仪器尺寸:33x31x18cm(量筒高度未计)电压:220V/50Hz重量:16公斤产品特点新一代智能触屏,通过7英寸LCD显示屏精确控制操作。主机与配件通讯自检功能,让操作者一目了然。测量模式二选一,振实时间或振动次数随意设置测量过程中实时显示操作状态。通过RS-232与电子称相连,实时显示电子称数值。轻轻一触,详细的打印报告呈现眼前应用领域汽CHE与航空航天生物及药品研发能源及环境食品矿物与金属塑料及聚合物化学品等所有粉末或以颗粒状态存在的物质福州大学是国家“双一流”建设高校、国家“211工程”重点建设大学、福建省人民政府与国家教育部共建高校、福建省人民政府与国家国防科技工业局共建高校。学校创建于1958年,现已发展成为一所以工为主、理工结合,理、工、经、管、文、法、艺等多学科协调发展的重点大学。建校以来,一代代福大人秉承“明德至诚,博学远志”校训,践行以张孤梅同志为代表的艰苦奋斗的创业精神、以卢嘉锡先生为代表的严谨求实的治学精神、以魏可镁院士为代表的勇于拼搏的奉献精神等“三种精神”,积累了丰富的办学经验,形成了鲜明的办学特色,已为国家培养了全日制毕业生25余万人。
  • 吃顿外卖=千亿个塑料颗粒下肚!每人每周摄入的5g「微塑料」
    每人每周吃下5g微塑料相当于一张银行卡 微塑料(Microplastic),是指直径小于5毫米的塑料碎片和颗粒,在塑料制品使用过程中释放,特别是食物用途的塑料制品。纳米塑料(Nanoplastics)则是目前已知最小的微塑料,尺寸在1μm以下,体积小到可以穿过细胞膜。虽然不会有人直接吃塑料,但食物的包装——塑料袋、塑料瓶、塑料盒等,则会将大量的微塑料直接送入人们的口中。微塑料对人的影响往往是温水煮青蛙式的,容易被忽视,但对健康的危害却是积年累月的。 去年4月20日,来自美国国家标准与技术研究院(NIST)的化学家Christopher Zangmeister团队开展的一项新研究,以食品级尼龙袋和低密度聚乙烯(LDPE)成分的产品作为样本,探究微塑料的来源及释放情况。事实上,以这两种成分为主的塑料用品在日常生活中很普遍,比如烘焙衬垫和一次性外带咖啡杯的内衬塑料薄膜。 结果显示,在普通的外带咖啡杯中放一杯100℃的水,静置20min后,研究者在每升水中能检测到万亿个塑料纳米颗粒。也就是说,当你享用喝一杯500ml的热咖啡或热奶茶时,将有5千亿个塑料纳米颗粒进入你的身体内! DOI: 10.1021/acs.est.1c06768 不仅如此,其实早在婴儿时期,人们就已经开始摄入微塑料。据Nature Food上刊登的研究Microplastic release from the degradation of polypropylene feeding bottles during infant formula preparation估计,在使用聚丙烯塑料瓶制备的每升婴儿配方奶粉中,婴儿可能摄入多达1600万个微塑料颗粒。 该研究中,研究人员按照世界卫生组织制备婴儿配方奶粉的标准,将聚丙烯婴儿奶瓶消毒、风干,然后倒入加热到70℃的水。在摇晃瓶子一分钟后,他们过滤了液体并在显微镜下进行分析,发现了数以百万计的微塑料颗粒。仅装瓶1分钟就能检测到,证实了微塑料产生的即时性。 此外,研究者还发现,冲奶粉使用的水温会极大地影响释放的污染颗粒的数量。当水温从25℃上升到95℃,每升释放的微塑料颗粒从60万增加到5500万个。也就是说,水温越高,释放的量就会越多。 https://doi.org/10.1038/s43016-020-00171-y 由于人们不断地吃外卖、喝咖啡、吨瓶装饮料,微塑料自然也不停地被摄入进人体内。 加拿大的Kieran D. Cox教授和他的团队以美国人饮食为基础,根据食物消费种类以及不同种类食物所含有的微塑料数量,估算出每人每年会吃掉5万个微塑料颗粒,如果算上漂浮在空气中、被呼吸吸入的微塑料,那么每人每年吃掉的微塑料颗粒数量在7.4万-12.1万之间。按照重量计算的话,每人每周大约吃掉5g微塑料,相当于一张银行卡的重量。 还真是活到老,吃塑料到老呢。以每周5g塑料颗粒计算,人这一辈子估计要吃下一个乐高玩具,想想还有点小刺激(bushi)。 人类血液中首次发现微塑料的存在! 2019年,《Annals of Internal Medicine》在线发表的一项研究显示,健康志愿者的粪便样本中检测到了微塑料。研究人员发现,所有粪便样本都检测出微塑料呈阳性,每10克人类粪便中平均有20个微塑料颗粒。 如果光是“吃下去,拉出来”的简单关系,微塑料倒不值得担心。然而,实际并非如此。随着大量研究的开展,科学家们陆续在人类切除的结肠标本,甚至胎盘组织中发现微塑料的存在。 更令人担忧的是,来自荷兰阿姆斯特丹自由大学的科学家首次在人类血液中发现了微塑料的存在。这表明微塑料可能随着血液流经全身,对各器官造成影响! DOI: 10.1016/j.envint.2022.107199 研究者在22名健康志愿者的静脉血中检测到了5种最常见的塑料成分,分别是PET、PS、PE、PMMA和PP。 5种最常见的塑料成分及其来源 在严格控制了采样、样品准备及分析过程中的可能存在的塑料污染后,研究者在近8成志愿者的血液里检测到了微塑料的存在(77%,17/22),平均下来,每个志愿者每毫升血样里有1.6ug的微塑料。 测出比例最高的为PET,在50%的志愿者血液中都检测到这种物质的存在,血液浓度最高为2.4ug/ml,提示大部分人体内都含有瓶装水释放的微塑料。 其次为:PS(36%)、PE(23%),最高血液浓度分别为4.8ug/ml及7.1ug/ml,这两类塑料主要应用在保鲜膜、一次性泡沫饭盒、塑料杯等,表明来自食物包装的微塑料也会进入人体血液循环中,并且进入的量不容小觑。 最后是PMMA,仅在5%的志愿者血液中发现,在所有志愿者血液中均未检测到PP的存在。 这项研究首次在人体血液中发现微塑料的存在,考虑到血液循环在体内四通八达,为各器官供给氧气和营养物质,带走代谢废物,不难想象微塑料也随着血流流经全身。“在血液样本中发现微塑料存在”的事实,也说明了人体清除微塑料的速度是低于从外界摄入的速度。 进入血液的微塑料可能通过肾脏过滤或胆汁排泄的方式排出体外,也可能通过有孔的毛细血管沉积在肝脏、脾脏等器官。换句话说,微塑料早已无孔不入,甚至遍布全身。 肠道疾病患者粪便中含有的微塑料颗粒是健康的1.5倍 微塑料究竟会对健康造成什么样的危害呢?这才是人们更为关心的话题。 此前,已有动物实验证明,微塑料可以扰乱内分泌系统,导致出生缺陷,减少精子的产生,引发胰岛素抵抗,并损害学习和记忆。此外,科学家们还观察到了由于微粒刺破和摩擦器官壁而引起的物理损伤迹象,例如炎症。 DOI: 10.1098/rstb.2008.0281 为了进一步探究微塑料对人类的影响,来自美国哈佛大学和罗格斯大学的科学家们还构建了模拟消化道的体外系统,探究微塑料颗粒是否会干扰营养物质的消化和吸收。 结果显示,微塑料的存在会对脂肪吸收带来健康上的负面影响,即当脂肪与微塑料颗粒一起摄入时,脂肪的生物利用度会随之增加,导致更多的脂肪进入血液(这可能就是外卖越吃越胖的原因之一)。此外,该研究中还显示微塑料会影响微量营养素吸收、增加小肠渗透性,以及促进某些细菌繁殖等。 现阶段,有关微塑料对人体健康影响的试验有限,但已初见端倪。2021年12月,发表在《Environmental Science & Technology Letters》期刊上的一项学术研究显示,炎症性肠病(IBD)(包括克罗恩病和溃疡性结肠炎)患者的粪便中的微塑料比健康对照组多,表明这些微塑料可能与疾病的发展过程存在相关性。 研究团队从不同地区的50名健康人和52名IBD患者中获取了粪便样本。分析结果表明,IBD 患者的粪便中含有的微塑料颗粒是健康受试者粪便的1.5倍。患者体内的微塑料含量越高,疾病相关的腹泻、直肠出血和腹部绞痛症状就越明显。 具体结果为: ①IBD患者和健康人粪便中微塑料的浓度分别为41.8和28.0个/g dm,IBD患者的粪便中每克的微塑料颗粒比健康人的多1.5倍左右。 ②该研究共检测到15种微塑料,以PET(用于瓶子和食品容器)和PA(聚酰胺;用于食品包装和纺织品)为主,主要形态分别为片状和纤维状。 ③通过问卷调查,研究人员发现,喝瓶装水、吃外卖食品、并且经常暴露在灰尘中的患者,其粪便中含有更多的微塑料。 该研究首次表明 IBD 患者粪便中微塑料(MPs)的浓度与健康人存在显著差异,且IBD患者粪便中微塑料水平显著高于健康人。这一结果提醒人们,微塑料对人体健康的损害可能不容小觑。 然而,“微塑料”是否对人类健康构成重大风险仍存在巨大未知,亟需更多相关学术领域的探究,以应对其未知风险。 众所周知,塑料降解速度很慢,通常会持续数百年甚至数千年,这也增加了微塑料被摄入并累积在许多生物体和组织中的可能性。为了避免人类的五脏六腑变成“塑料制品”,最简单的办法就是——尽量在生活中减少塑料制品的使用并及时治理塑料污染,别让地球被塑料“攻陷”之后再追悔莫及。
  • 微塑料惊现海拔8000米珠峰死亡带!
    珠峰峰顶发现微塑料!?人类的地球被污染的程度极其严重,甚至已经污染到了海拔超过8000米的珠峰峰顶!据英国《新科学家》周刊网站报道,这是首次在珠峰上发现这种直径不足5mm的塑料微粒。来自英国普利茅斯大学的Imogen Napper博士研究小组从珠穆朗玛峰多个地点采集了八个900毫升的溪水样本以及十一个300毫升的积雪样本。该研究小组发现,在所有积雪样本和3个溪水样本中都发现了微塑料。污染最严重的样本来自位于尼泊尔境内的珠峰大本营,那里是珠峰上人类活动最集中的地方。每公升积雪含有79个微粒。最高取样地点位于海拔8440米处,即位于珠峰峰顶下方408米处,该样本中每公升积雪含有12个塑料微粒。在珠穆朗玛峰上发现的微塑料大都源自合成纤维,包括聚酯纤维和丙烯酸纤维,系制作登山者衣服和装备所用的材料。只要徒步时间达到20分钟左右,洗洗衣服或打开一个塑料瓶就能向环境中释放出微塑料。过去几年中,Imogen Napper博士研究小组搜寻了世界各地微塑料的身影。至今为止,他们已经在全球各地的海洋、沙滩和溪流中找到了大量微塑料污染的证据。他们的探索也吸引了其他实验室对微塑料污染问题进行跟进和研究。HYPERION傅立叶红外显微镜参与了本次重要检测项目微塑料污染的监控十分困难。这些从几微米到几毫米不等的污染物,能从大块塑料制品上脱落下来,轻易排入外界环境中,污染水体、土壤和植被。来自布鲁克的HYPERION傅立叶变换红外显微镜也参与了珠峰峰顶的微塑料检测项目,从而提高人们对生态系统中巨大的微塑料污染的认识。mogen Napper博士在普利茅斯大学的实验室HYPERION傅立叶变换红外显微镜采样灵活。此外,红外显微镜的应用可能性几乎是无限的,包括分析颗粒、涂层、塑料微粒、层压板、复合材料、组织样品、纤维、涂料、色素、药物,甚至食品安全分析等。无论是对未知污染物的识别、层厚的测定,还是药物中API分布的分析,HYPERION红外显微镜都能表现出色。
  • 焦塑料——经过火焚烧转变而来的一种新型塑料污染
    p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201909/uepic/1400f8bf-32a9-4176-aba4-1392bd6a7d02.jpg" title=" 塑料垃圾.jpg" alt=" 塑料垃圾.jpg" / /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 人们在康沃尔海滩上收集的塑料垃圾& nbsp 图片来源:ROB ARNOLD /span /p p   在环绕英国西南部海岸线的沙湾上,人们可以找到各种各样的石头,从小鹅卵石到厚重的镇纸石,散落在漂浮物中。它们的颜色是深浅不一的灰色,表面平滑、没有棱角,看起来很不起眼。 /p p   但如果你拿起它们看时,很快就会发现,这些看起来毫不起眼的“石块”其实根本不是岩石。 /p p   这是焦塑料——经过火焚烧转变而来的一种新型塑料污染。地质学家甚至也对它们的外表感到困惑。英国普利茅斯大学环境科学家Andrew Turner最近在《全环境科学》上发表的一篇论文中对这种物质进行了描述。他认为,这种污染可能隐藏在世界各地。 /p p   “因为它们看起来像地质变化形成的,这让很多人经过时都不会留意到它们。”Turner说。 /p p   几年前,康沃尔塑料污染联盟志愿者联系到Turner时,他第一次听说了这种奇怪的新垃圾。 /p p   海滩拾荒者发现了一些奇怪的鹅卵石和石块的塑料仿制品,它们非常轻,可以漂浮在水面上。Turner说,一些志愿者已经收集了数千块。环境艺术家Rob Arnold甚至为当地一家博物馆设计了一个展览,让游客在塑料中找真正的石块。很少有人能够分辨出来。 /p p   “这个活动非常成功,但也令人震惊。”Arnold说,“人们很惊讶他们居然完全没有注意到这些污染。” /p p   一年前,Turner决定更系统地研究这一现象。在社交媒体上发出呼吁后,他收到了从苏格兰到英属哥伦比亚等地的垃圾样本,他的分析最终集中在从惠特桑德湾附近收集的垃圾上。这是一个受保护的大海湾,其中包括康沃尔郡一部分最好的海滩。在进行大小和密度测量后,该团队用X射线和红外光谱检测了塑料的化学成分。 /p p   他们了解到,这些“石头”是由聚乙烯和聚丙烯构成的,这是两种最常见的塑料。它们还含有大量的化学添加剂,但最让研究人员吃惊的是它经常和铅、铬一起出现。 /p p   Turner认为,这些是铬酸铅的痕迹。几十年前,制造商将这种化合物添加到塑料中,使其呈现出鲜艳的黄色或红色。而这些颜色可能由于燃烧而变暗。该团队在实验室里熔化了一些颜色鲜艳的塑料,验证了这个想法。果然,它们变成了深灰色。 /p p   与此同时,多年的风和水的侵蚀可以让这些经过高温的塑料形成光滑的边缘和风化的外观。 /p p   “想象一下,如果一块卵石在地质学上发生这样的变化,它会需要几十万年的时间。”Turner说,“我们在这些塑料上看到了同样的情况,但它发生的速度要快得多。” /p p   康沃尔热塑性塑料的确切起源仍然是个谜。Turner认为可能有很多来源,从篝火到旧的垃圾填埋场,篝火与夏威夷塑料—岩石混合物“塑小球”的形成就存在关联。他认为,其中一些塑料垃圾可能是从萨克岛漂到英吉利海峡对岸,因为最近的报告显示,萨克岛的垃圾在焚烧后被倾倒在海里 另一种可能是从加勒比海岸一路漂到英吉利海峡对岸。 /p p   无论如何,高温塑料已经在世界上出现了,Turner想知道它们会对环境造成什么样的危害。他发现几个蠕虫样本中似乎富含铅,这表明这些生物可以摄取塑料,并将重金属引入食物链。 /p p   Turner与美国的一位合作者分享了一些样本。这位合作者正在做进一步分析,以确定这些样本中是否也含有有害的有机化合物。“在不受控制的环境下燃烧塑料,会产生各种有害物质。”他说。 /p p   除了直接的生态效应,热塑性塑料的出现还表明环境中的塑料无处不在。英国莱斯特大学古生物学教授Jan Zalasiewicz想知道,这些东西最终是否会在岩石记录中留下痕迹。 /p p   无论高温塑料的最终命运如何,Zalasiewicz说,很清楚的是,塑料正在“成为地质循环的一部分”。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201909/uepic/60eaff85-f756-497e-837e-d605b32afed6.jpg" title=" 绿· 仪社.jpg" alt=" 绿· 仪社.jpg" / /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 扫二维码加“绿· 仪社”为好友 了解更多对科学仪器市场的分析评论! /span br/ /p
  • Science重磅综述:二十年的微塑料污染研究——我们学到什么?
    2024年9月19日,在首次使用“微塑料”一词发表二十年后,普利茅斯大学Richard C. Thompson教授在《Science》上发表综述文章“Twenty years of microplastics pollution research—what have we learned?”,回顾了当前对微塑料的理解,完善了定义并考虑了未来的前景。摘要微塑料有多种来源,包括轮胎、纺织品、化妆品、油漆和较大物品的碎片。它们广泛分布在整个自然环境中,有证据表明它们对生物组织的多个层面都有危害。它们普遍存在于食物和饮料中,并已在人体各处被发现,并有新的负面影响证据。到 2040 年,环境污染可能会增加一倍,预计会造成大规模危害。公众的关注日益增加,国际谈判中正在考虑采取多种措施来解决微塑料污染问题。现在需要明确的证据来证明潜在解决方案的有效性,以解决该问题并最大限度地减少意外后果的风险。前言目前,微塑料现在被广泛定义为尺寸≤5mm的固体塑料颗粒,由聚合物以及功能添加剂以及其他有意和无意添加的化学物质组成。这一定义源于NOAA的会议,并被欧盟采用。因为有证据表明直径达到5mm的颗粒可能会被生物轻易摄入,并且日益关注它们可能造成与已知会引起伤害的较大物品不同的风险。欧盟随后在其海洋战略框架指令中采纳这一5mm的上限。大多数研究中,下限尺寸通常受到方法限制的约束,难以检测到小于1μm的颗粒,但纳米塑料已被确认存在。微塑料研究中使用了“初级微塑料”和“次级微塑料”的分类,但并不统一。初级微塑料指制造时尺寸≤5mm的塑料颗粒,而次级微塑料指通过磨损或碎片化产生的较大物品的微粒。为了减少混淆,提出了统一的分类方案,并在政策中使用类似术语,例如《联合国塑料污染条约》草案中的“有意添加的微塑料”和“无意释放或降解产生的微塑料”(图1)。▲图1 微塑料的分类和来源。(A)根据来源和尺寸提出的微塑料分类的方案图,以及潜在的干预措施。(B-E)各种微塑料类别的图像:来自化妆品的微塑料微珠,原生微塑料的一个例子(B);来自汽车轮胎的颗粒物(C);从纺织品释放的纤维(D),这两者都是由磨损产生的二次微塑料,以及在环境中碎裂产生的微塑料(E)。(E)中的比例尺与微(微塑料的来源、运输、分布和环境浓度在过去的二十年中,数百篇论文专门关注微塑料在环境中的积累,包括在海岸线上、深海中、水柱(水体表面和水底之间的垂直水域)和海冰中以及跨越生物分类的生物体中,从食物链底部的无脊椎动物到顶级捕食者,最近还包括在河流、湖泊和溪流中,在土壤中,在珠穆朗玛峰的附近,在大气层中,这表明微塑料污染已遍布全球(图2C)。最初的研究确定几个关键来源,包括纺织纤维(图1D),化妆品清洁产品(图1B),生产前颗粒的溢出(基于5mm的定义)和较大物品的碎片化,而油漆、轮胎磨损(图1C),建筑和生产前的薄片和粉末后来也被添加。环境中较大物品的碎片化似乎是最大的来源,但在所有情况下,根本驱动因素是人类活动。新兴来源包括在农业中使用的塑料包覆肥料和地膜、海事行业中绳索和渔网的降解、机械回收和运动场地填充物的使用。在使用过程中,塑料制品的耐用性是一个重要的属性,但在寿命结束时,塑料对降解的抵抗力是导致塑料在废弃物流和环境中广泛堆积的原因。降解和生物降解都是受塑料材料及其受环境影响的系统属性;暴露于紫外线、热量、湿度和好氧条件会普遍增加化学恶化,同时还有风力或波浪能导致碎裂。然而,在矿化发生之前需要大幅降低分子量。宏观塑料碎裂为微塑料的速率尚不清楚,微塑料可能进一步碎裂为纳米塑料的程度也未知,塑料矿化需要的时间尺度也不明确。 对这些转化速率的更深入理解对风险评估将是极其宝贵的,然而,矿化速率似乎微乎其微,无法与塑料在环境中积累的速度相媲美。因此,有人提出,除已被焚烧的材料外,所有传统塑料仍以太大无法生物降解的形式存在于地球上。生产具有增强降解速率的塑料被提为潜在解决方案。然而,这些塑料的不完全降解长期以来一直被看作是微塑料的另一个潜在来源。最近一项专家小组综述得出结论,生物降解塑料在非常特定的应用领域,例如农业或渔业,或在闭环系统中可能会带来益处,但是它们并不能解决乱丢垃圾或从废物管理流中泄漏的问题,并且如果生物降解塑料最终进入回收废物流中,则会带来额外风险。近年来,有几项研究估计各种微塑料来源对海洋环境的相对贡献(图2A和B),包括在北欧国家进行的研究和IUCN 2020年全球评估,该评估估计总量在每年0.8-3百万吨之间。虽然尚未计算出碎片率,但我们还强调宏观塑料作为微塑料来源的重要性,通过将宏观塑料的年泄漏至海洋作为代表(图2B,7.6百万吨/年)。此外,最近的一份报告表明,进入陆地环境的泄漏量可能是进入海洋环境的3-10倍,年泄漏总量约为10-40百万吨。随着对潜在来源的认识增加,一个明显的矛盾出现,因为进入环境的塑料数量似乎远远超过基于经验的建模推断环境中数量的数量;《The Missing Plastic》一文中强调这一点。最近的研究通过量化以前被忽视的位置中的微塑料来解决这个问题,比如悬浮在水柱中的位置;还有最近对更小尺寸(≥10μm)中存在的塑料量进行的调查,这些更难以检测。进入环境的方式包括直接释放到空气中,例如作为纺织品纤维或轮胎磨损产生的灰尘,通过道路和污水系统排放到水生栖息地,直接引入农业土壤,如通过传播受污染的污泥以及在环境中的碎裂间接来源。进入环境后,微塑料可以远离其入口点(图2C),并不受国界约束,凸显在全球层面采取行动的重要性。河流被认为是连接内陆源头与海洋环境的主要路径,并且较细的空气中微塑料通过风的重新分布可能是主要的路径之一,例如在遥远地区积累,但其重要性尚未完全掌握。在水生环境中,微塑料颗粒通过水流作用进行运输、沉积和再悬浮,这与自然颗粒相同的过程。因此,与溶解的污染物不同,随着扩散,微塑料颗粒有可能在低能量地点积累,包括相对偏远地区,如深海或北极地区。虽然我们对微塑料的运输的理解可以从对自然颗粒的研究中获得启发,但微塑料形状、大小和密度的多样性引入独特差异,与自然颗粒相比,使得推断变得具有挑战性。随着新的污染源、途径和热点环境污染的识别,重要的是要强调,尽管每项新研究影响污染源之间的“相对”贡献重要性,但环境中的“绝对”数量在增加。例如,轮胎磨损颗粒的重要性直到2015年左右才显现出来,但这并没有减少其他来源(如纤维和颗粒)在那个时间已经有充分文献记录的数量。考虑到多个来源、途径和广泛的环境分布,采取源头控制对于处理微塑料至关重要。为强调紧迫性,预测模型表明,在按常规方式行事的情况下,到2040年微塑料泄漏到环境中的数量可能增加1.5-2.5倍。即使有可能停止所有新的塑料释放到环境中,由于已经存在的较大塑料物品的碎片化,微塑料的数量在可预见的未来仍将继续增加。总体信息是清晰的,环境浓度和生物和人类的接触将增加。▲图2 微塑料在环境中积累的来源和途径。(A)导致六个关键微塑料来源的人类活动;(B)每个来源对海洋环境的相对贡献,以及(C)报告在各种环境区块中的数量。生态影响和风险塑料微粒对无脊椎动物滤食动物、沉积食物动物以及腐食动物、鸟类和鱼类的生物利用率已经被认识到一段时间,这很重要,因为塑料有吸附、运输和释放化学物质的潜力,以及微粒毒性的潜力。多个生态系统中塑料微粒积累的证据得到许多关于自然种群内塑料微粒摄入的报告的支持,以及沿着食物链传递的潜力(图3)。微塑料种类和丰度与摄入之间关系复杂多样。随着塑料分裂成越来越小的碎片,它们数量的增加导致对广泛生物的更多可获取性,从食物链底端的无脊椎动物到顶级捕食者(图3),其中一些将这些微粒误认为是食物。微塑料的大小、形状、颜色和化学成分的多样性,以及微生物表面定居,影响生物对有机物的有效利用率以及不良效应的潜力。微塑料已经在1300多种水生和陆生物种中检测到,包括鱼类、哺乳动物、鸟类和昆虫(图3),其影响在生物组织的各个层次都是显而易见的,从亚细胞水平到食物网的稳定性。食入微塑料可能导致物理上的伤害,如食物稀释、肠道阻塞或内部磨损,以及化学性的伤害,由于微塑料中有毒添加剂或吸附的污染物质(包括内分泌干扰化学品)的渗出。身体吸收最小颗粒可能导致通过迁移触发的毒性,其中微塑料的表面积被认为是毒理学相关剂量测定。影响根据生物体、摄入的微塑料的类型和数量而有很大变化,但在实验室实验证明,直接生态相关的终点,如生长减缓、生存和繁殖等,都已展示出来。颗粒和化学物质是否在自然暴露条件下显示出效应,强烈取决于具体情况,但在环境相关浓度下已经证实效应。对微塑料的环境影响的理解已成为一个迫切关注的问题,需要日益增长地在风险评估中量化影响。科学界在为微塑料开发测试和评估策略时面临挑战,因为微塑料具有复杂和异质的特性,其化学组成、年龄和环境老化存在变化。最初的实验室研究测试相对较高浓度的单分散塑料,提供有价值的见解和对微塑料的机制理解。尽管风险评估的考虑强调实验室实验和真实世界条件之间的差异,例如某些聚合物和物种的过度表征,并强调以环境相应浓度进行实验的重要性。研究人员越来越强调对微粒表征、相关对照和在粒径和化学组成方面考虑环境相关性的需要。对粒子的表征需求促使塑料颗粒的定义的制定和对微塑料环境转化重要性的认识。尽管取得一些进展,但数据可比性和我们对微塑料效应机制的理解仍存在挑战,例如所研究的塑料种类和物种之间存在明显不平衡,例如蚯蚓是陆地测试中最常用的物种,62%的毒性评估使用聚苯乙烯或聚乙烯颗粒。2020年,引入一种新的定量工具,用于评估研究的有效性,并揭示监管风险评估中相关性方面的重大差距。此外,还发表指南,以提高微塑料研究的可比性和可重复性。这些进展标志着解决微塑料污染复杂性的步骤,强调需要全面和现实的测试方法,以更好地掌握和减轻微塑料对环境的影响。现已发布完全一致且经过质量保证/质量控制(QA/QC)筛查的淡水、海洋水域、沉积物和土壤的生态风险评估框架,并已在监管环境中采用其中一些。与QA/QC评估工具一起,以尽量减少研究中可能存在的固有偏倚,这些框架是健壮的,并能够量化风险措施。应用这些框架的研究证实,在微塑料“热点”位置已检测到生态风险。随着微粒数量的增加,以及建模预测表明,如果自然环境的污染持续以当前速率进行,未来100年内可能出现大规模生态风险。存在一些关键的知识空白,例如,目前尚不清楚环境中纳米塑料的浓度是多少,或者我们应该如何测量和测试它们,以及它们对个体生物和群落的行为和影响是什么?微塑料和纳米塑料在自然界中形成的速率尚未被充分理解,但对于与未来塑料生产、废物管理和环境累积估计相关的情景分析具有重要意义。最后,我们强调,如果关于微塑料风险评估仍存在知识和数据空白,政策行动不必等待,而应根据现有证据采取预防原则来加以证明。▲图3 塑料和微塑料的生物利用率,根据尺寸和主要来源。随着塑料制品分解成越来越小的碎片,它们变得可以被更广泛的生物(水平行向下)利用,并且沿着食物链传递的潜力也增加(对角箭头)。理解微塑料对人类健康的风险塑料微粒普遍存在,在我们饮用的水中、呼吸的空气中以及我们食用的食物中都已被发现,包括海鲜、食盐、蜂蜜、糖、啤酒和茶等饮料。在某些情况下,食物的污染发生在自然环境中;然而,加工、包装和处理也可能进一步导致微塑料的污染。报告的浓度变化很大,直接影响全球个人的暴露水平。量化方法也各不相同,在暴露评估中引入不确定性。此外,关于陆生动物产品、谷物、水果、蔬菜、一些饮料、香料、调味品、婴儿食品以及食用油脂中的塑料微粒数据有限。现在可以确定,也许不足为奇的是,与许多其他有机体和其他类型的污染物一样,人类暴露于微塑料之中,有时估计的数量被严重高估,如每周与一张信用卡相当的重量。近年来,已有报道显示微塑料存在于各种人体组织、器官和体液中。它们已经被检测出现在人类血液、胎盘、肝脏和肾脏中,表明它们有能力在人体内传播。它们也通过粪便、尿液和呼吸排出体外。消除效率会根据微塑料的特征以及个体的状况和行为而有所不同;例如,与不吸烟者相比,吸烟者的肺部中报告更高浓度的微塑料。动物研究,特别是小鼠的研究,已初步揭示微塑料在体内如何被运输,以及它们在体内的积累和排出过程。定量体外-体内外推(QIVIVE)和药代动力学(PBK)模型可以帮助我们理解微塑料是如何被吸收、分布、代谢和排除的。这些将对将实验室研究成果转化为关于微塑料人类健康风险的预测至关重要。这些方法也可能会受到最近关于微塑料与心血管健康等多种疾病可能存在关联的报告的影响。微塑料的毒理学评估涉及量化暴露并评估潜在健康影响。微塑料的毒理学相关剂量指标(TRMs)旨在量化暴露并评估健康影响,涵盖生态系统和生物体,包括人类。这些指标考虑微塑料的暴露浓度、尺寸、形状、聚合物标识和与塑料相关化学物质的组成。重要的TRMs包括颗粒体积、表面积或比表面积,这些都会影响与生物系统的相互作用,而颗粒的大小和形状已被证明会影响在人体中的生物可利用性和生物可及性。流行病学效应评估需要评估生物学终点,如炎症、氧化应激、免疫反应和基因毒性,这些受到微塑料的物理化学特性影响,并且通常是剂量依赖的。已经证明纳米或微塑料对细胞或组织的影响在体外已被证实。然而,这些实验室实验通常使用相对高浓度的颗粒,这些浓度可能不足以类似于人类当前暴露的颗粒的数量和类型。因此,将实验结果转化为体内效应是困难的,特别是在长期慢性暴露下,这可能是最适用于人类暴露情景的。另一个挑战在于“生物包被”的复杂性和变异性—这是一层附着在微塑料表面的分子,如蛋白质、脂质或多糖,当它们与生物液体接触时会附着在微塑料表面。这可能包括毒素或抗原,可能会大幅改变微塑料颗粒的物理和化学性质,包括它们的有效大小、电荷、亲水性和因此它们的生物相互作用。我们目前进行人类暴露风险评估的能力受限于暴露和效应评估的片段性和不完整性。已经有可用的工具、框架和策略来实现一致的风险评估,并正在进行工作以获取必要的暴露数据和效应信息。因此,在未来5-10年内,我们预计会更清晰地掌握各种类型微塑料可能对人类健康造成影响的程度。与此同时,有明显证据显示公众对此类影响可能性的增长关切以及更广泛的人类健康和社会公正影响,鉴于微塑料的持久性以及一旦散布在环境中几乎不可能被清除的事实,应该更加强调采取预防性措施。▲图4 报告微塑料存在的人体部位。显示暴露途径(青绿色标签)和报告的数量(红色标签)。数量按照每项研究的报告,未进一步进行质量保证/质量控制筛选。应谨慎进行跨研究比较,因为各研究之间的报告方法和单位存在差异。由于一些方法未对个体颗粒进行特征化,因此按质量报告的数量可能涉及微塑料和/或纳米粒子。*报告的数量约为检测限。方法学的进步与对微塑料的类型、浓度和影响日益增长的认识相平行且相辅相成的是,微塑料的检测也有进展。最初一些从沉积物中分离微塑料的方法是基于使用氯化钠或氯化锌溶液进行密度分离。酸碱消化用于将微塑料从有机质丰富的基质中分离出来,包括生物体和污泥,随后出现不那么侵蚀性的酶法和Fenton试剂的应用。与此同时,对采集和处理过程中可能存在的样品污染或偏倚的潜在意识已经产生质量控制和保证措施,这对于强健的风险评估至关重要。例如,早期的海水采样使用网眼为333μm的网,但近年来更小的孔径和过滤已经揭示出远远多于最初估计的微塑料,包括纳米级塑料的存在。分析更小的颗粒尺寸还实现对来源更准确的量化;例如,最近的研究表明,5kg的涤纶衣物可能会释放多达600万个微纤维(≥5μm),相比使用25μm滤膜初步估计的数量多出大约10倍。聚合物鉴定长期以来一直利用傅立叶变换红外(FTIR)光谱学,最近也开始采用拉曼光谱学;并且已经提供开源光谱库和软件来促进数据处理。然而,FTIR也存在其局限性,因为对于降解塑料,光谱的分辨率会降低,而且很难识别小于20μm和黑色颗粒。最近,热解-气相色谱-质谱联用(py-GC-MS)极大地提高我们指示轮胎磨损颗粒的能力,这些颗粒无法通过光谱学来识别,因为它们大小较小且颜色较暗。Py-GC-MS可以通过质量定量,具有包括光谱方法无法处理的颗粒的能力,例如人体内的颗粒(图4),包括在血液中的颗粒以及纳米塑料。然而,它不提供颗粒的数目、大小或形状信息,所有这些因素都可能影响毒理效应。针对一系列聚合物的化学标记物已经开发用于和py-GC-MS一起使用,就像任何一个“标记物”一样,结果是指示物的存在量,并且不像直接计数那样,会受到其他标记物来源的影响。除从环境样品中改进检测,实验室实验也在使用有荧光、金属掺杂和放射性标记的颗粒来增进我们对植物和动物中在环境相关剂量下的吸收和滞留的理解。这种多样化的方法在最近几年中极大地推动这一领域的发展,人们越来越呼吁标准化方法和报告单位,以促进相互比较。虽然这显然很重要,但每种方法都有其局限性,方法应该受科学问题的指导。诸如py-GC-MS之类的新方法可以更详细地理解塑料微粒及相关化学物质的命运、行为和影响,但这些方法昂贵且耗时。相比之下,环境监测需要一致、快速、高通量的方法。目前没有适用于采样和表征微塑料的通用方法,必须小心地与相关问题对齐,并掌握沟通任何限制。迫切需要对监测方法进行协调,并应该根据我们对特定类型和来源的微塑料的危害的理解来指导这些方法,以评估采用的任何干预措施的有效性。人类的决策和行为作为微塑料污染的原因和解决方案科学出版物关于微塑料的来源以及对生态和人类健康的影响概述当前关于微塑料污染的证据,但通常不分析这些证据的传播和接受,或者塑料使用的更广泛社会驱动因素。微塑料污染是人类决策和行为的后果,理解这些社会动态对设计有效解决方案至关重要。科学证据会经过社会解读,并且决策者在政策和产业领域对公众感知及其对选举、声誉和形象的影响很敏感。人文、社会和行为科学在这方面可以发挥重要作用。为什么塑料材料和产品一开始会如此成功呢?19/20世纪由化学家开发,1930年代的作家推测这些新材料甚至可能减少全球冲突。20世纪50年代的大规模商业成功是由于批量生产推出众多轻便耐用的消费品。随后的文化评论大多是积极的,如1967年的电影《The Graduate》所示,如今塑料在日常生活中无处不在,从家居和服装到医疗保健和技术。当前塑料生产、使用和处理方式对环境和社会造成巨大的外部间接成本,这一点在环境浓度通过方法学进步一节中有所体现,然而塑料的成功是由于生产者和消费者需求和利益的融合驱动,使其具有便利和经济实惠的制造和使用优势。微塑料研究时代。时间线展示2004年论文《 Lost at sea: where is all the plastic?》之后直接或间接引发的关键背景和关键实证研究(浅褐色)、综述(橙色)、政策专家报告(浅蓝色)和立法(深蓝色)的示例。展望和证据需求经过超过二十年的专注于微塑料研究,有广泛的证据表明存在大规模环境积累(图2)。毒理学效应已在所有生物组织层次上得到确认(图3),有证据表明对人类健康可能产生影响(图4),同时伴随着日益增长的社会关注和初步的政策回应(图5)。环境浓度和生物可利用性将在未来增加,尽管当前对微塑料风险的研究还有一些知识空白,政策行动不必等待,而可以依据预防原则立即采取措施。比如,禁止不必要的塑料产品、更好的设计和供应链调整等都有助于减少排放。然而,若不考虑社会技术和地理背景,干预措施可能带来意外后果。科学在提供解决方案时和识别问题一样重要,联合国塑料污染条约为全球行动提供了一个宝贵的机会。本综述汇总的证据强调,尽管宏观塑料治理至关重要,但仅靠这些治理措施将无法解决以上列出的众多来源,必须对微塑料污染作出专门规定才能解决这一多源问题。
  • 每月可释放1.55万亿微塑料!亚微米红外拉曼同步测量系统,助力东南大学新成果
    导读:近日,东南大学苏宇老师团队和合作者利用非接触亚微米分辨红外拉曼同步测量系统—mIRage研究发现清洁海绵在擦除顽固污渍受磨损时,每月可释放1.55万亿微塑料,这些微塑料可能会污染环境进入食物链。该成果以“Mechanochemical Formation of Poly(melamine-formaldehyde) Microplastic Fibers During Abrasion of Cleaning Sponges”为题,发表于环境领域高水平期刊《Environmental science technology》上。 文中使用的非接触式亚微米红外拉曼同步光谱显微系统-mIRage,因其500 nm空间分辨率、不因颗粒尺寸变化而发生散射且无需接触测量对样品无污染等优势,为本研究提供了关键性技术支持。研究概述:微塑料(MPs)是指小于5 毫米的塑料颗粒,与常见的塑料袋和饮料瓶等塑料制品不同,微塑料常常难以用肉眼观察,而其一旦释放到环境中,就可能会进入食物链,对人体造成未知的健康风险。日常使用的清洁海绵由三聚氰胺和甲醛的聚合物制成,在使用过程中,会磨损产生环境微塑料纤维(MPFs)。苏宇老师和其合作者购买了三个知名品牌的清洁海绵,反复在不同粗糙度的金属表面摩擦,通过非接触亚微米分辨红外拉曼同步测量系统—mIRage等多种技术手段表征了海绵的结构组成和释放的MPF。结果发现,海绵的密度对微塑料释放有显著的影响,密度越大,微塑料纤维的释放量越少。 实验详情:研究团队使用基于O-PTIR基于光学光热红外全新技术的非接触亚微米分辨红外拉曼同步测量系统—mIRage观察了磨损海绵释放的MPF(直径为7.4 ± 1.2 μm)上的原始聚合物分子结构的变化。获得了亚微米尺度下聚合物的组成和微结构参数。O-PTIR光谱点1 - 4与未磨损海绵的O-PTIR光谱不同。海绵的碳氮双谱带(1558和1506 cm&minus 1)在MPFs(范围从1600到1456 cm&minus 1)中表现出增宽,相对强度略有变化。MPF上1340 cm&minus 1(芳基C-N带)与1558 cm&minus 1(C-N带)的吸收强度之比增加或减少。此外,在磨损海绵的洗涤沃茨中检测到较小的微塑料碎片(3 - 10 μm)(图e),其O-PTIR光谱(图d,点5和6)与长I型MPF(图d,点1)相似。摩擦热不会导致MPF上的聚合物分解,因为海绵磨损期间金属表面的温度升高(从21.5 ° C至24.9 °C)低于三聚氰胺热解引发的阈值(379&minus 387°C。然而,在海绵中存在水和甲醛残留物的情况下,机械能可能通过缩醛胺基团(&minus NH-CH2-NH-)和羟甲基基团(&minus NH-CH2-OH)之间的交替水解和缩合反应,诱导破坏或形成三聚氰胺-三聚氰胺交联。从磨损海绵中释放的微塑料图示。其中 (a)为沉积的海绵磨损颗粒的全景和局部投影图像。(b) 和(c)为S1-S3样品的放大图像(I、II和III型MPF),S4-S6的反射光图像。(d) c和e中位置1 - 6的归一化O-PTIR红外光热光谱。(e)从磨损海绵释放的小微塑料碎片(直径5.8和8.3 μm)的投影、反射光、可见激光和OPTIR光热红外光谱图(1340 cm&minus 1,芳基C-N吸收带)。 基于O-PTIR技术的mIRage产品: 非接触亚微米分辨红外拉曼同步测量系统—mIRage,采用光热诱导共振技术(O-PTIR),突破了传统红外光谱衍射极限,空间分辨率可达500 nm且无散射伪影。创新性的技术使其具备了以下优异的科研级别分析优势:☛ 500nm左右的空间分辨率,无散射伪影;☛ 基本无需样品前处理,样品即放即测;☛ 光源“探针”对样品无污染、无损伤;☛ 可分析固体、液体等多物态样品;☛ 同时、同位置红外、拉曼光谱共表征,提供相互佐证的分析结果;☛ 光谱表征、光学成像共表征,提供多维度科研分析信息;☛ 微塑料颗粒分析功能,自动搜索微塑料颗粒、自动测量微塑料颗粒尺寸、自动微塑料光谱表征。非接触亚微米分辨红外拉曼同步测量系统—mIRage 样机体验为满足国内日益增长的新型红外表征需求,更好的为国内科研工作者提供专业技术支持和服务,Quantum Design中国北京样机实验室引进了非接触亚微米分辨红外拉曼同步测量系统——mIRage,为您提供样品测试、样机体验等机会,期待与您的合作! 欢迎您通过电话:010-85120277/78、邮箱:info@qd-china.com或扫描下方二维码联系我们。扫描上方二维码,即刻咨询产品详情!参考文献[1]. Yu Su, Chenqi Yang, Songfeng Wang, Huimin Li, Yiyu Wu, Baoshan Xing,* and Rong Ji. Mechanochemical Formation of Poly(melamine-formaldehyde) Microplastic Fibers During Abrasion of Cleaning Sponges. Environ. Sci. Technol. 2024, 58, 10764&minus 10775
  • 塑料袋负压密封性测试仪的测试原理与应用
    塑料袋负压密封性测试仪的测试原理在现代包装行业中,塑料袋以其轻便、耐用、成本效益高等特点,广泛应用于食品、医药、日化、电子等多个领域,成为连接生产与消费不可或缺的桥梁。从超市中的生鲜果蔬包装到家庭中的垃圾收集袋,塑料袋的身影无处不在,其密封性能直接关系到产品的保质期、安全性及体验。因此,对塑料袋进行严格的密封性测试,不仅是行业规范的要求,更是保障产品质量、维护消费者权益的重要措施。塑料袋的使用用途及其重要性1.食品包装:在食品行业中,塑料袋作为直接接触食品的包装材料,其密封性直接关系到食品的新鲜度、口感及安全性。良好的密封性能可以有效防止氧气、水分及微生物的侵入,延长食品保质期。2.医药包装:医药产品对包装材料的密封性要求极高,以防止药品受潮、变质或污染。塑料袋作为药品初级包装或辅助包装材料,其密封性测试是确保药品质量与安全的关键环节。3.电子产品包装:在电子产品领域,塑料袋虽不直接参与产品功能实现,但其作为防尘、防潮的临时保护措施,密封性同样重要,以防止电子元件在运输和储存过程中受损。鉴于塑料袋密封性的重要性,采用科学、高效的测试方法至关重要。济南三泉中石的MFY-05S塑料袋负压密封性测试仪采用气泡法测试,是当前评估塑料袋密封性能的主流手段之一。三泉中石的塑料袋负压密封性测试仪,测试原理:在测试过程中,将真空室部分或全部浸没于水中,以放大观察效果。若试样存在密封缺陷(如孔洞、裂缝或密封不严),则内外压差会导致试样内的气体通过缺陷处逸出,形成气泡。通过观察气泡的产生位置、数量及持续时间,可以直观、准确地判断试样的密封性能。济南三泉中石的MFY-05S塑料袋负压密封性测试仪,以其科学、直观、高效的测试方式,为塑料包装行业提供了强有力的质量保障手段。通过严格的密封性测试,不仅能够筛选出存在质量隐患的产品,避免其流入市场造成不良影响,还能促进企业不断提升产品质量。济南三泉中石实验仪器紧跟国家标准的要求,也参与部分国家药包材标准的制定工作。利用自身在检测领域多年的技术积累和行业应用经验,为标准的制定工作提供数据和理论的支持,为国家标准体系的建立添砖加瓦。
  • 塑料工业少不了钛白粉 粒度分布影响关键指标
    p style=" text-indent: 2em " 近几年,塑料工业与钛白粉可谓焦不离孟。在世界范围内超过500家的钛白粉牌号中,专属于塑料用的就超过50个,而高达6%的年均增长率,也让塑料工业成为使用钛白粉增速最快的领域,并“荣膺”钛白粉的第二大用户。有材料应用的地方自然就有相配套的指标、参数考衡,粒径粒度分布和颗粒形状就显著影响着塑料用钛白粉的关键指标。而塑料用钛白粉的粒径恰好处于激光粒度仪大展身手的范围内,因此对于钛白粉在塑料工业中的应用,业内人士不妨给予更多的瞩目。 /p p style=" text-indent: 2em text-align: center " img src=" http://img1.17img.cn/17img/images/201805/insimg/5a1cc424-4105-479d-975f-1e95fbaa5764.jpg" title=" 激光粒度仪 钛白粉.jpg" / /p p style=" text-indent: 2em " 众所周知,钛白粉的学名是二氧化钛,具备优良的白色性能,高遮盖力和高消色力,被广泛应用油墨、造纸、涂料、油漆等行业,享有“白色之王”的美誉,这正是钛白粉在塑料制品中得以应用的重要原因,即钛白粉可以决定浅色或白色塑料制品的外观。当然钛白粉于塑料还有很多其他好处,比如提高塑料制品的耐热、耐光、耐候性能,使塑料制品免受UV光的侵袭,改善塑料制品的机械性能和电性能等。几乎所有热固性和热塑性的塑料中都会使用钛白粉,它们既可以与树脂干粉混合,也可以与含增塑剂的液体相混合,用量一般在3-5%左右,聚烯烃类(主要是低密度的聚乙烯)、聚苯乙烯、ABS、聚氯乙烯等莫不如是。 /p p style=" text-indent: 2em " 在塑料工业中衡量钛白粉的质量主要有四大指标——遮盖力、分散性、耐候性和白度。钛白的遮盖力越好,生产出的塑料制品就越轻薄;分散性则影响塑料制品生产成本,钛白粉的分散性越好,塑料制品的光滑度和光亮度就会越高;具备良好耐候性的钛白粉,则对室外使用的塑料制品以及塑料门窗是必不可少的。 /p p style=" text-indent: 2em " 最后一大指标就是白度了,所谓白度是指距离理想白色的程度。影响钛白粉白度因素主要有以下几点。第一点是杂质,在钛白粉工艺中,尤其是硫酸法钛白粉工艺,大部分的作业是为了除去产品中的杂质,因为杂质严重影响钛白粉的应用性能,特别是白度。显色金属氧化物杂质在极低的含量下就能影响白度,这些元素有铁、锰、铬、铜等,这些杂质本身就带有颜色,在白色的钛白粉中极易显色。 /p p style=" text-indent: 2em " 第二点就是粒径和粒度的分布了,他们主要是通过钛白粉颗粒对光的反射、散射等现象影响其白度的。钛白粉的粒径越小,白度值越高,这主要是由于钛白粉粒径越小,表面积增大,光的反射、漫反射增强。根据光波的特性,当颜料粒子的粒径小于光波的一半时可以获得对该波长的色光的最大散射,经分析,对波长蓝色光散射最好的粒径在0.2μm左右,波长较长的红色光散射最大的粒径在0.35μm左右,因此,小粒径的钛白粉的散射光呈蓝相,而透过光则为蓝色的补色红黄相,反之,大粒径的钛白粉散射光为红相,透过光为蓝相。通常涂料用钛白粉的粒径为0.2~0.4μm,而大多数塑料用钛白粉粒径都较细,粒径为0.15~0.3μm,因为这样可以获得兰色底相,对大多数带黄相的树脂或易泛黄的树脂有遮蔽作用。 /p p style=" text-indent: 2em " 此外,颗粒形状、钛含量、包膜剂对钛白粉的白度都有一定影响。其中,粒形对白度的影响比较小,一般来说,层状钛白粉的白度略低,球状和杆状的白度略高。而二氧化钛含量的升高,钛白粉白度值也升高,铝、硅、锆等包膜剂含量升高,钛白粉白度值下降。 /p p style=" text-indent: 2em " 值得一提的是,在塑料色母粒的生产工艺中,钛白粉的白度也是一项重要质量指标,塑料色母粒是一种高浓缩、高效能的颜色配置品,即颜料以超常浓度均匀分布在载体树脂中,并形成一定粒径的颗粒。它主要由核心层(颜料)、偶联层(偶联剂或表面活性剂)、分散层(润滑剂或分散剂)、增混层(载体树脂)等组成,在塑料中作为染色剂使用,广泛用于吹膜、注塑、热压、注塑等塑料制品的生产,色母粒着色效果优越,使用方便,节约能源,使用时无粉尘和污水,因此备受用户的青睐。色母粒是作为工业原料,性能优劣通常是在后续产品应用中表现出来(如吹膜或注塑),因此,钛白在色目粒中的性能也主要体现在色母粒的应用过程中。钛白的着色能力、分散性、加工性能、白度都会对色母粒的应用产生重大影响,顺理成章地,也少不了对钛白粉粒度分布的检测。 /p p style=" text-indent: 2em " strong 结语: /strong 激光粒度仪作为目前最流行的粒度测量仪器,已在粉体工艺中发挥着越来越重要的作用,随着米氏散射理论在各品牌激光粒度仪中的应用越来越广泛,已经对亚微米级的塑料用钛白粉有充足的适配性。随着钛白粉在塑料工业中的需求越来越大,对这一市场大蛋糕的进一步经营和开拓,或许值得激光粒度仪的厂商们好好思考。 /p
  • 奥影科普| 工业CT的密度/对比度分辨率
    在现代检测领域,精度是非常重要的技术指标。具体到工业CT设备,其精度通常指代的有三个指标:空间分辨率、密度分辨率、测量误差。关于空间分辨率的影响因素、计算方式在此前的推文中已经做了介绍,本篇,我们就来详细介绍工业CT的「密度分辨率」。一、密度分辨率密度分辨率(Contrast Resolution),又称对比度分辨率或低对比度分辨率,是CT系统区分不同物质密度差异的能力。它定量地表示为影像中能显示的最小密度差别,通常以百分比(%)表示。例如,当密度分辨率为2%时,意味着两种物质的密度差异达到或超过2%时,CT图像就能清晰地区分它们。二、工业CT密度分辨率的原理我们知道,当X射线穿过不同密度的物质时,会发生不同程度的衰减。CT系统正是通过收集测量这些衰减信号,并利用重建算法将其转换为图像。密度分辨率的高低取决于系统对这些微小衰减差异的敏感度和区分能力。在工业CT中,高质量的图像可达优于1%甚至更小的密度分辨率,使得工业CT能够发现更细微的缺陷,提高检测的准确性和可靠性。这意味着工业CT能够准确地区分材料内部的微小密度变化,如气孔、裂纹、夹杂等缺陷,为质量控制和缺陷检测提供强有力的支持。三、影响密度分辨率的因素密度分辨率的高低取决于多个因素,包括:噪声和信噪比噪声是扫描均匀物质时,其CT值的标准偏差。噪声使图像呈颗粒性,直接影响密度分辨率,尤其表现在低密度组织的可见度上。信噪比由探测器的效率和X射线剂量决定。效率越高、剂量越大,则信噪比越高,相对降低噪声,密度分辨率将提高。被检物体大小理论上,被检物体的尺寸大小并不会改变CT系统的密度分辨率(分辨能力),但是尺寸大小会影响到射线的衰减,这就在一定程度上会造成探测器在侦测信号方面存在差异,比如信噪比波动。当被检物体的几何尺寸较大时,这是因为较大的物体能够吸收更多的X射线光子,从而产生更明显的信号差异,使得不同密度的组织或物质更容易被区分开来。反之,如果被检物体较小,其吸收的X射线光子数相对较少,信号差异可能不够明显,导致图像在对比度上差异不明显。另外高密度物质对射线吸收后会造成射束硬化、金属伪影等干扰,同样也会影响设备的密度分辨力。探测器性能探测器的灵敏度、动态范围等性能参数对密度分辨率也有重要影响。高性能的探测器能够捕捉更多的细节信息,提高图像的密度分辨率。X射线剂量X射线源的能量直接影响其穿透能力和散射程度。选择合适的X射线源的剂量,可以在保证穿透深度的同时,减少散射和衍射对对比度分辨率的影响。四、密度分辨率测试密度分辨率的检测方法多种多样,在国标《GB/T 35386-2017 无损检测 工业计算机层析成像(CT)检测用密度分辨力测试卡》文件中,提供了空气间隙卡、固体密度差试样、液体密度差试样和圆盘卡四种测试卡。这些测试卡通过设计具有不同密度的材料组合,来模拟实际检测中可能遇到的密度差异。例如:固体密度差试样是在均制的圆柱形刚性基体材料(一般为钢、铝或塑料)的特定部位,按密度大小嵌入的一系列与基体不同的密度块。通过扫描这些试样,可以评估CT系统对固体材料密度差异的分辨能力。液体密度差试样在纯水的特定范围内加入可溶性介质(一般选用氯化钠),使介质溶液和纯水形成一定的密度差。
  • Ultrapyc系列固体真密度分析 | 一种新的水泥泥浆的固含和密度测定方法
    建筑行业水泥泥浆真密度测试方法 Density and Percent Solids of a Slurry钢筋混凝土铸就如今的高楼耸立,应用在不同工业方向上的泥浆差异很大,需要一种可靠的表征方法来测量这类混合物的密度。安东帕康塔的Ultrapyc系列固体真密度分析仪可以精准的测试泥浆的真实密度,而且还可以确定泥浆中固体含量的百分比。01介绍泥浆是一种混合物,由致密固体分散在液相中得到。其应用领域十分广泛:电池水泥、混凝土陶瓷其他领域密度是泥浆的重要性质,它受悬浮在液体中的固体量的影响。使用气体比重法可以简单精准地对泥浆的密度进行表征。安东帕康塔的Ultrapyc系列真密度测试仪,是理想的表征泥浆密度的分析仪器。在测试过程中,浆体内液体成分产生的蒸汽会影响测试结果的准确性。而Ultrapyc独有的粉末保护模式,即气体从参考池扩散到样品池,会最大限度地减少这种影响,从而提高测试的精准度。另外,通过对泥浆单个组分以及泥浆整体的密度测量,可以得到泥浆中固体含量百分比。02密度测量气体比重法一般用于固体骨架密度的测量,而本次实验对象是有一定蒸汽压的浆体/液体。对此我们将测试条件进行了优化。为了展示Ultrapyc仪器的测量过程,我们测试了蒸馏水的密度。因为水是浆体的主要液体成分,而且水的密度我们也非常熟悉。01测参数介绍02测试结果展示表2是Ultrapyc 5000系列的双向测试结果,测试温度为20℃。其中,参比池优先的扩散模式结果十分接近水在20℃下的密度值,0.9982 cm3/g。03泥浆中固体含量百分比如果泥浆中的固体及液体的密度是已知的,或者已经测量出来了,我们就可以用它们和泥浆的密度来计算其固体含量百分比。为了示范整个过程,我们制作一批已知成分含量(黏土/水)的泥浆,并且测量了一下其密度。所有样品的测量都是按照上面的测试条件进行测试。黏土的密度为2.6576 cm3/g,水的密度为0.9966 cm3/g,不同配比的泥浆密度如表3所示。计算泥浆中固体含量百分比的公式为:其中,ρS是固体密度,ρL是液体密度,ρY是泥浆密度。实际测试结果如下表所示。03测试计算固含结果展示从结果中可以看出,配方的理论值和计算的结果十分接近。这种双组分的百分比计算模式还可以进行扩展应用。基本要求是,轻组分和重组分的密度相差至少为10%,差别越大,分辨率越高。这种计算模式,可以用于塑料中的填料或者颜料、无水组分中的含水量(比如无水碳酸钠中水含量)、氢氧化物中的氧化物含量、焊料中的锡、液体中的固体含量的计算。如果蒸汽压相对较低,甚至可以测量液体混合物中液体的比例,比如乳剂中的油、水中的酒精。04结论Ultrapyc 5000系列非常适合测量泥浆的密度。仪器的粉末保护模式,扩散方向由参比池到样品池,降低了蒸汽压的影响。而且如果有泥浆中固体和液体的密度,再结合泥浆的密度,就可以得到泥浆中固体含量百分比。安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • 研究发现病毒通过微塑料“搭便车”在淡水中生存
    研究人员发现,危险的病毒可以通过在微塑料上“搭便车”而在淡水中保持长达三天的传染性。导致腹泻和胃部不适的肠道病毒,如轮状病毒,被发现通过附着在微塑料(长度小于5毫米的微小颗粒)上在水中生存。斯特灵大学的研究人员发现,它们仍然具有传染性,构成了潜在的健康风险。该项目的首席研究员,来自斯特灵大学Richard Quilliam教授说:“我们发现,病毒可以附着在微塑料上,这使它们可以在水中生存三天,甚至更长的时间。”该研究结果是自然环境研究委员会资助的185万英镑项目的一部分,该项目研究塑料如何运输细菌和病毒,结论是微塑料使病原体在环境中转移。这篇论文发表在《环境污染》杂志上。研究人员测试了两种类型的病毒:周围有包膜的病毒,“一种有脂质外壳”,如流感病毒;一种没有包膜的病毒--肠道病毒,如轮状病毒和诺瓦克病毒。研究发现,在那些有包膜的病毒中,包膜迅速溶解,病毒死亡,而那些没有包膜的病毒则成功地与微塑料结合并存活。
  • 北京理工大学阻燃材料检测中心配备我司NBS烟密度测试箱
    莫帝斯燃烧技术(中国)有限公司完成对北京理工大学阻燃测试中心的NBS烟密度箱的安装调试,该设备已移交北京理工大学阻燃测试中心使用。   莫帝斯燃烧技术(中国)有限公司,独立完成了NBS烟密度箱的设计及制造,该设备目前可符合ASTM E662、ISO 5659-2 以及 GB/T 8323等国内外最新标准,将对北京理工大学阻燃测试中心提供了强有力的研发工具。莫帝斯所研发的NBS烟密度箱,完全根据最新标准制造,其透光率指标可精确至0.00001%,在测试前,用户可自行校准透过率指标以及辐射通量数值,确保了测试过程中的试验数据的准确性,操作便捷,维护也非常简单,主要性能已能同国外同类产品相媲美。 用户介绍: 北京理工大学阻燃材料检测中心成立于2007年,2009年获得CNAS(中国合格评定国家认可委员会)、CMA(中国国家认证认可监督管理委员会)和DILAC(国防科技工业实验室认可委员会)的认证证书,具备了CNAS、CMA和DILAC检测资质,专门从事塑料、橡胶、纺织品及建筑材料等阻燃性能及力学性能的检测。 www.firetester.cn
  • 安东帕阐述“香精香料化妆品密度测定新国标”
    为了充分发挥在沪标委会对中小企业的引领和指导作用,帮助扶持上海市中小企业提高标准化水平,不断提升企业核心竞争力,由上海市质量技术监督局组织,上海香料研究所承办的“面向中小企业的标准化技术讲坛一—化妆品标准化讲座 ” 于 2013 年 12 月 9 日在上海应用技术学院召开。上海香料研究所所长肖作兵首先为此次讲座致辞,上海市质量技术监督局标准化处领导也为发表了讲话;作为GB/T 13531. 4一2013 《化妆品通用检验方法相对密度的测定》的主要起草者之一,奥地利安东帕公司的密度组专家曲晓敏女士对此次化妆品标准进行了详细解读,并阐述了这一标准将给广大用户带来的便利和收益。 讲座面向各生产或销售企业的技术、质检、标准化人员,着重宣讲了国内外化妆品标准现状和日用香精国外法规发展趋势,以及对 GB/T 27576-2011 《日用香精》的修改。同时,会上对新发布的GB/T 13531. 4一2013 《化妆品通用检验方法相对密度的测定》、GB/T 29665-2013 《护肤乳液》、GB/T 29678-2013 《烫发剂》、GB/T 29679一2013《洗发液、洗发膏》、GB/T 29680-20 13 《洗面奶、洗面膏》等化妆品国家标准进行了宣贯。 本标准代替GB/T 13531.4 —1995《化妆品通用检验方法相对密度的测定》,主要是增加了仪器法及其修改。其原理就是采用安东帕发明的数字式密度计U型管振动法,并采用具有自动黏度修正及温度热平衡功能的密度计。国标参考仪器是DMA 4100M。这意味着将有更多的中国用户像欧美等区域的客户一样,受益于安东帕卓越的密度测量优势:最高精度、控温迅速、自动进样检查及可视化、模块化多功能组合。 作为标准的起草单位之一,安东帕公司是数字式密度计的发明者,除了台式经典款高精度密度计DMA M系列,更有便捷式的密度计DMA 35、台式便携式两用的密度计DMA 500,配合安东帕Abbemat 200自动折光仪,可以为软饮料、香精香料、化妆品等多个行业提供专业的、且性价比最高的解决方案,符合国家行业标准。该方案具有操作简单、简化测量过程、节约成本等多种优势。 奥地利安东帕有限公司(ANTON PAAR GMBH)是工业及科研专用高品质测量和分析仪器的全球领导厂商。公司成立于1922年,总部设在奥地利格拉茨,在全球12个国家和地区设有分公司直接提供销售和售后服务,在其它主要地区设有代理销售、服务机构。作为为世界上第一台数字式密度计的发明者,安东帕公司的产品在浓度,密度测量仪器仪表行业占全球市场的70%。 安东帕公司的密度仪、黏度测量仪、流变仪、旋光仪、折光仪、固体表面Zeta电位分析仪、 SAXSess 小角X光散射仪、闪点与燃点测定仪、微波消解与合成设备等产品作为分析与质量检测工具,已广泛应用于饮料,石油,化工,商检,质检诸多领域和研究机构,并且已作为许多国家行业标准及计量校正仪器。我们的用户包括了一级方程式赛车队,炼油厂,和几乎所有的世界知名饮料制造商。
  • 《食品用塑料自粘保鲜膜》强制性新标准九月实施
    用保鲜膜把食品一包,然后放进微波炉加热或冰箱冷藏,这样的生活习惯已很平常。可保鲜膜分为哪几种?是不是所有的保鲜膜都可以在微波炉内加热?这些问题你注意过吗?9月1日起,由国家质检总局和国家标准委联合发布的国家强制性新标准GB 10457-2009《食品用塑料自粘保鲜膜》将正式实施。专家提醒,保鲜膜种类不同适用范围也不同,认清“真面目”,才能正确使用,使厨房生活安全又健康。   新国标扩大了原材料范围,将食品用保鲜膜分为聚乙烯 (PE)膜、聚氯乙烯(PVC)膜、聚偏二氯乙烯(PVDC)膜等三类。其中,PE材质的保鲜膜主要用于食品包装,在超市采购的半成品都用的这种包装,它的防潮性、透气性好,适于包装短期存放的花生、饼干、新鲜果蔬、冷冻食品等,但其阻气性较差,不宜用来包装对阻气性特别是阻氧要求较高的油脂类等食品 PVC材质的保鲜膜只能有限使用,可以用来包装蔬菜等,但不能直接包装肉食、熟食及油脂食品,且不得微波加热、不得高温使用 PVDC膜则用于包装熟食、火腿等,它的成本高,因此市面上较少见。   依据新标准,保鲜膜应标识产品的材质或种类、氧气透过率、二氧化碳透过率、透湿量及净卷重的公称值 保鲜膜应标有食品用字样 对于聚氯乙烯自粘保鲜膜(PVC)应标有“不能接触带油脂食品”、“不得微波炉加热”、“不得高温使用”等使用警示语 如保鲜膜宣称可微波炉加热使用时,应标志“可微波炉使用”、加热方式及最高耐温温度等。   目前大连市几家大型超市销售的部分品牌保鲜膜已更换了新包装,旧包装产品正逐步退出市场。市质监局标准化信息中心专家告诉记者,消费者在购买保鲜膜时,只要掌握一定方法,还是可以辨别其种类的。肉眼看:PE材质的透明性较差,颜色发白,被覆盖的食物看上去模糊不清 PVC材质的光泽度好,看上去清晰透彻,对光照有点淡黄色。用手拉:PE材质的较为柔软,但韧性较差,拉伸后可断裂 PVC材质的韧性强,能够大幅度拉宽拉长却不会折断,而且容易粘在手上。用火烧:PE保鲜膜点燃后,火焰呈黄色,迅速燃烧,有蜡烛燃烧的味道 而PVC保鲜膜用火点燃后火焰呈黄绿色,没有滴油现象,离开火源后会熄灭,而且有强烈刺鼻的异味。用水浸:由于两者的密度不同,PE保鲜膜浸入水中后会浮上来,而PVC保鲜膜浸入水中会沉下去。
  • 光谱在环境领域的应用 聚焦固废、微塑料等
    由仪器信息网主办,江苏省分析测试协会、中国仪器仪表学会近红外光谱分会和中国生物物理学会太赫兹生物物理分会协办的为期四天的“第十一届光谱网络会议(简称iCS2022)”正在召开,2022年7月21日下午会议主题为:光谱在环境领域的应用,内容涉及光谱在固废重金属、微塑料、纳米微塑料、大气污染、生活饮用水和土壤等环境领域内的应用,共有7位专家带来精彩分享。近几年,国家也在环境细分领域大气、水质、土壤、固废和新污染物等方面陆续布局新任务,大力推进环境治理进程,这也对环境监测提出了更高的要求。在固废重金属检测方面,江苏省地质调查研究院主任工程师张培新在报告中总结了现行固废重金属检测的标准和方法,提出单波长激发能量色散X射线荧光检测固废重金属检测方法,该方法检出限、准确度、精密度都能满足固废重金属检测要求,具操作简单、可现场分析和无损、快速、经济的特点。在新污染物检测方面,最近国务院出台的《新污染物治理行动方案》再次强调了微塑料、抗生素、农药、新化学品的识别、检测及监管,以及提出开展新污染物环境调查监测试点工作。在本次会议中,中国地质调查局南京地质调查中心高级工程师沈小明介绍了目前沉积物中微塑料主要的采样、提取、仪器测定技术及存在的主要问题,并以长江口海岸带沉积物为主要研究对象,优化并建立了样品中微塑料的激光共聚焦显微拉曼光谱分析方法,同时对研究区域内海岸带沉积物中的微塑料污染状况进行了评述。中国科学院烟台海岸带研究所研究员王运庆则是聚焦纳米塑料,介绍了研究团队在SERS标记纳米塑料上所取得的成果,其研究发展了表面增强拉曼散射(SERS)探针标记的纳米塑料模型粒子,具有信号灵敏度高、专属性强、具备多元标记能力等优点。借助拉曼光谱检测和成像技术,实时动态研究了纳米塑料在小鼠、斑马鱼、菲律宾蛤仔、白菜等多种模式生物体内的分布、蓄积和代谢行为。在大气污染监测方面,十四五期间强调从PM2.5治理转为PM2.5和O3协同控制,强调凸显VOCs 组分、温室气体等的监测。陕西科技大学教授陈庆彩在报告中介绍了三维荧光光谱法在大气污染形成机制和来源鉴定中的应用案例和理论技术、关键技术,以及应用范围,以及从检测设备的设计和搭建,到数据处理和实际应用整个过程,该项技术可以更好的服务于我国大气污染治理。在水质检测方面,安捷伦科技(中国)有限公司应用工程师付睿峰详细介绍了可以满足GB/T 5750无机元素测定的ICP-MS和HPLC-ICP-MS在生活饮用水元素分析中的解决方案,包括进样、水质污染应急处置等方面。在土壤环境检测方面,由于今年土壤三普的启动,土壤检测再次成为热点。在本次报告中,江苏省环境监测中心高级工程师王骏飞对土壤重金属污染、国家网土壤重金属分析方法进行了概述,重点对光谱分析法在土壤环境监测领域的应用进行了介绍。德国耶拿分析仪器有限公司产品经理吴奋国从提高ICP-OES光学分辨率的角度阐述在土壤、水质等环境样品实际分析中,如何改善分析的检出限、灵敏度、稳定性,如何更加简单、灵活、经济的完善相应标准中规定的分析工作。7月22日为第十一届光谱网络会议最后一天,上午和下午会议主题分别为:光谱新技术与新方法和光谱在材料领域的应用,将有12位专家带来精彩报告,欢迎大家报名参会》》》
  • 杜邦研发中心完成NBS烟密度箱安装调试
    2010年1月6日,莫提斯技术完成对杜邦研发中心的NBS烟密度箱的安装调试,该设备已移交杜邦研发中心使用。   莫帝斯技术(中国)有限公司,独立完成了NBS烟密度箱的设计及制造,该设备目前可符合ASTM E662、ISO 5659-2 以及 GB/T 8323等国内外最新标准,将对杜邦公司研发新型无卤阻燃制品提供了强有力的研发工具。莫帝斯所研发的NBS烟密度箱,完全根据最新标准制造,其透光率指标可精确至0.00001%,在测试前,用户可自行校准透过率指标以及辐射通量数值,确保了测试过程中的试验数据的准确性,操作便捷,维护也非常简单,主要性能已能同国外同类产品相媲美。   含卤阻燃剂指含有Cl、Br、F等元素的阻燃剂,无卤阻燃剂包括磷系列阻燃剂、无机阻燃剂氢氧化镁、氢氧化铝、硼酸锌等,此外无卤阻燃剂还包括膨胀型阻燃剂和一些特殊用途的阻燃剂。 含卤阻燃剂是目前塑料橡胶材料中阻燃应用最多的阻燃剂产品,主要是其为有机阻燃剂,化学性质呈惰性,与塑料的相容性比较好,阻燃效果好、使用成本低,诸多特征都是其它阻燃剂所不能替代的。欧盟的Rosh指令认为含卤阻燃剂中八溴联苯醚和五溴联苯醚燃烧产生二恶英(致癌物质),列入禁止使用目录,十溴联苯醚也因为具有争议作为不建议使用的阻燃剂。   杜邦研发中心是继瑞士、日本之后,杜邦公司在美国本土以外设立的第三大公司级、综合性研发中心。杜邦中国研发中心设有实验室、办公室和用于产品应用及开发的高层高实验区域,可容纳200名科学家,于2005年初启用。中国研发中心的设立正是要满足亚太区和中国日益增长的、对符合地区市场特点的杜邦新产品和新技术的需要。中心的主要功能将是技术营销,在中国和亚太地区市场进行现有产品的本地化,为杜邦在中国和亚太地区的进一步发展提供技术解决方案。
  • 微塑料“百问百答”整理回顾,“百家代表”首次公开!
    近年来,微塑料日益受到学术界和社会公众的关注。微塑料的痕迹已遍布世界上的各个角落,国内外的相关研究团队已经在淡水、深海、高山、土壤以及北极海冰,甚至婴儿胎盘内发现了微塑料的存在,并且数量还在不断增加。“微塑料”表面积,吸附污染物的能力强。自然界存在的有毒有害物质,如多环芳烃、双酚A等都有可能吸附在微塑料的表面。因此与不可降解的“白色污染”塑料相比,“微塑料”对环境的危害程度更深、更严重。为探讨微塑料最新研究成果,加深对微塑料的认知,6月30日,仪器信息网举办了“环境中微塑料检测与分析”主题网络研讨会,邀请微塑料领域专家及仪器厂商工程师,分享微塑料最新研究成果及最新仪器。 会议共邀请10位专家,就微塑料的分离分析、检测表征、监测防控等内容展开分享。会议现场共有百余条学术提问,报告专家分别做了现场语音答疑和文字答疑(提问情况与内容与样本人群的相关性、报告顺序等相关)。现对于会议报告人、视频回放、Q&A部分、参会用户部分单位节选等整理如下: 报告1题目:《环境中微纳塑料的分离测定方法研究》【报告人】于素娟,博士,中国科学院生态环境研究中心副研究员,主要研究方向为微纳颗粒物的分析方法与环境行为。主持基金委面上项目、青年基金项目及国家重点研发子课题等,参与多项基金委国家重大科研仪器研制项目、重点国际(地区)合作研究项目等,在本领域著名SCI期刊Environ. Sci. Technol.、Environ. Sci.: Nano、Environ. Pollut.等发表多篇综述及研究论文。【视频回放】因涉及未发表最新成果等内容,与专家沟通后,确定不予回放【问答摘取】Q1:老师,您好我想问一下环境水样中自来水、龙头水、污水处理厂的水样体积是多少? Ins_9764bb9b A1:不同方法用的水体体积是不同的,像浊点萃取一般10-几十毫升,膜过滤可以到几百毫升,而单颗粒ICPMS大概10毫升左右Q2:老师,您好我想问一下对于环境水样微塑料检测的形状、颜色等信息可以获取么?Ins_9764bb9b A2:我们的方法更多针对小粒径的,形状只能用电子显微镜来观察,而但粒径足够小时,颜色信息基本是得不到的Q3:老师您好,土壤中的微纳塑料如何定量?土壤的前处理如何处理m3017712A3:我们目前这些方法主要针对环境水体中微纳塑料的测定,土壤基质复杂,目前这些方法不太实用。我们课题组发表的综述文章综述过其他一些检测方法,可能会用到土壤中的定量,感兴趣可以看一下。土壤和底泥样品一般采用浮选方法,根据塑料跟基质密度的差异进行分离。也有一些方法例如加速溶剂萃取方法,但这种方法是破坏性的,不能追踪塑料的原始状态。Q4:老师您好,请问小颗粒的微塑料在分离过程中是否会出现凝聚结块难以分离的情况 Ins_0b77df4aA4:用浊点萃取的方法,分离过程不会改变形貌,但如果用膜过滤的方法过滤富集微塑料,塑料很难从滤膜上分离,是有可能凝聚的Q5:老师,消解用的是酸消解吗 Insp_5f5d4e20A5:因为有好几个工作,针对不同的干扰物,消解方法不同。环境水体中的有机质我们采用的是芬顿试剂消解,我们发展的单颗粒ICPMS,一些无机颗粒会进行干扰,我们先用酸消解消除无机颗粒物干扰。Q6:于老师,您好,微塑料为什么是带负电荷的?谢谢 189****0785A6:塑料在环境中经老化后,表面往往会带有羧基、羟基等,使其带负电Q7:最小检测的颗粒为0.5um,仅仅只是微塑料吧?不能说包含纳塑料?v3041647A7:纳塑料的分类一般认为小于1um,我们浊点萃取方法可以萃取几十个nm,单颗粒ICPMS考察时候也能用到几十个nmQ8:于老师,您好。您认为电镜+阴极荧光对微塑检测,有更好吗138****6145A8:我们没有用过阴极荧光的方法,因此不好直接推论。Q9:于老师,您好,在提取环境中的微塑料时怎么保证提取的都是微塑料,不是其他物质? Ins_0a4be34aA9:我们萃取的过程,不能保证只萃取到微塑料。但是最重要的是后面的定量识别的过程。用热裂解GCMS定量时,不同塑料有特征的裂解碎片,来识别进而定量Q10:于老师,请问,膜分离那一节,玻璃纤维滤膜碾磨后进PY-GC-MS,能进多少质量的样品? 环境样品浓度低的话能达到检出限吗? Ins_e6420099A10: 滤膜研磨后再转移,体积是很小的,因为量杯很小,也就80微升左右的容量,我们一般分步转移,先转移一部分液体,干燥,再转移。环境样品浓度低的话,我们采用的是加大样品体积,但每种方法都有检出限,膜过滤这个对微塑料和纳塑料的检出限都在ppb量级,再低可能是检测不到的Q11:于老师,请问回收率是如何得到的? Ins_b6dac33eA11: 浊点萃取,膜分离我们条件优化过程会添加标准品,萃取分离后,检测到的样品量与标准添加量对比能得到回收率 同样单颗ICPMS我们添加的塑料有标准粒径,通过质量可以折算出颗粒数,然后经检测以后的颗粒数对比原始颗粒数得到回收率Q12:于老师好,您讲的浊点萃取和膜分离方法提取出来的微纳米塑料可以使用拉曼仪器检测吗? Ins_d1d3bb13A12: 不是,用热裂解GC/MS进行测定Q13:于老师,您好,请问您实验室用的是哪种滤膜(粒径多大),分离实际水体的微米和纳米塑料 Insm_bb36572aA13: 玻璃纤维膜,用的1微米的Q14:于老师,您好!微纳塑料的粒径怎么表征? v3041647A14:我们研究中的粒径一般小一些,一般用透射电子显微镜或扫面电子显微镜来表征Q15:于老师,请问一下膜过滤的塑料如果发生凝聚结块有什么分离的办法吗?Ins_0b77df4aA15:因为膜过滤后,有些颗粒已经是嵌入到膜的结构中,我们尝试过用表面活性剂超声将它们洗脱下来,但回收率有限,只能部分洗脱下来Q16:于老师您好,请问浊点萃取的操作大概需要多长时间呢,谢谢老师Ins_d1d3bb13A16: 取样-加萃取剂、盐等(很快)-水浴(大约15分钟)-离心(大约5分钟)-分离(2分钟左右)Q17:于老师,微塑料能嵌入到0.45微米的滤膜吗?Ins_8b928ff1A17:如果单从滤膜的孔径大小出发,微塑料能够被0.45微米的膜截留,但是否被嵌入其中这个不好下结论。Q18:于老师,请问可以用spICPMS表征纳米塑料的粒径吗? v3041647A18:单颗粒ICPMS是间接通过测定表面生长Au的信号进行检测,只能给出颗粒数的浓度,不能给出纳塑料的粒径信息报告2题目:《安捷伦8700 LDIR激光红外成像在土壤微塑料定性定量测试中的应用》【报告人】2012 年加入安捷伦科技(中国)有限公司,担任分子光谱产品线应用工程师支持的产品包括红外、拉曼、紫外以及分子荧光等产品,主要负责售前/售后应用支持和应用方案开发。【视频回放】https://www.instrument.com.cn/webinar/video_115151.html 【问答摘取】Q19:张老师,用乙醇对样品进行处理,乙醇会不会溶解部分微塑料,有测过回收率吗? Insp_1bb81f77 A19:使用乙醇溶液的目的是将滤膜上的所有颗粒萃取出来,其易挥发且无毒,对聚合物不会有伤害。目前土壤样品的解决方案是与用户合作共同开发的,回收率大概在80%以上Q20:安捷伦张老师好,请问这个方法对生物样品可用吗? Ins_f0b8dbc4A20:关于生物样品前处理,请登陆安捷伦官网,查看 Agilent 8700 LDIR 激光红外成像系统微塑料定性/定量分析解决方案Q21:老师好,请问这个方法对生物样品可用吗? Ins_f0b8dbc4A21: 老师您好,请直接登陆网址下载吧,https://www.agilent.com.cn/cs/library/brochures/5994-2462ZHCN.pdfQ22:张老师,这台仪器主要是用于测微塑料么?还可以应用于其他什么样品?Insm_0fb1c2e8 A22: 老师您好,这台仪器可以应用的领域有很多,如制药行业内组分分布测试,材料行业多层膜分析等。它是一台红外成像设备。针对微塑料方向,我们是在仪器和软件的基础上,开发了专门的微塑料测试方法,测试微塑料样品时直接调用方法即可。Q23:请问工程师,最多可同时检测几种微塑料?种类间光谱重叠干扰情况如何?p3336596A23: 老师您好,目前安捷伦的微塑料谱库涵盖了最常见的聚合物,且谱库是对用户开放的,用户可以根据自己需求,不断的往谱库里面添加不同组成的聚合物进去。样品转移到乙醇溶液后,在转移至窗片前,会进行超声震荡,尽可能的让颗粒在溶液内分散开。转移至标准反射测试窗片前,我们会对样品进行一个评估,确认一下样品内颗粒含量的高低。如果浓度很高,会添加乙醇溶液进行稀释,然后转移至窗片后,随着乙醇溶液扩散,所有颗粒会比较混匀的分散在整个窗片上,尽可能的避免颗粒叠加。Q24:老师您好,想问问这个能不能应用于生物样本? Ins_a592db20A24: 老师您好,请您见问题21,登录安捷伦官网下载白皮书,里面有关于生物样品的前处理流程Q25:老师您好,想问问这个能不能应用于生物样本?因为生物样本通常含有油脂,会凝固包裹样品 Ins_a592db20A25: 老师,请登陆该网址直接下载吧Q26:接着上面,请问这个需要怎么进行处理呢 Ins_a592db20A26: https://www.agilent.com.cn/cs/library/brochures/5994-2462ZHCN.pdfQ27:张老师,请问红外成像与拉曼成像相比有哪些优势? p3081015A27:很多微塑料颗粒因为是带颜色的,所以是含有荧光的。拉曼光谱在测试荧光样品时会受到荧光干扰,谱图信号较差或仅有荧光信号,进而导致识别不出聚合物颗粒。Q28:张老师您好,请问前期的浮选的时候与浮选液密度相近的微塑料如何筛出?油分离是否可以作为另一种处理方法 Ins_0b77df4a A28:老师您好,目前浮选试剂使用最多的是氯化锌、氯化钠和碘化钠。氯化钠的优点是无毒,但是密度较低。氯化锌密度会大一些,但是低毒。所以用户可根据自己样品的实际情况来选择合适的浮选试剂。油分离的方法目前我们这边没有接触过,但油本身是有机材料,即使能成功浮选,后面进行油去除的工作,可能也是您需要考虑的问题。Q29:想问一下这个波束范围,能测到1000-4000左右的微塑料吗?Ins_abd8311eA29: 老师您好,激光红外成像技术目前使用的光源是量子级联激光光源,它的波长范围覆盖到整个指纹区间,而此区间对于区分不同的塑料样品是能够完全满足的。Q30:张老师,安捷伦能检测微塑料样品的颜色吗? 188****1870A30:老师您好,我们刚才报告中的数据来源就是真实的土壤样品的测试结果。红外对于测试带颜色的样品是没有任何问题的。Q31:张老师,请推送一下白皮书吧,谢谢 Ins_f0b8dbc4A31: https://www.agilent.com.cn/cs/library/brochures/5994-2462ZHCN.pdf 报告3题目:《雷尼绍拉曼光谱系统在微塑料领域的应用》【报告人】李兆芬,2007年毕业于东华大学,并获得硕士学位。现任雷尼绍拉曼事业部应用工程师,主要负责拉曼技术在各个领域的应用开发及使用。【视频回放】https://www.instrument.com.cn/webinar/video_115147.html 【问答摘取】Q32:李兆芬老师,您好,如果先用荧光染料定位塑料位置,然后再用拉曼进行点扫描,会影响定性识别么?如果影响,如何消除荧光影响 Ins_9764bb9bA32: 已在会议现场做语音答疑,该部分仅限参与直播的听众共享Q33:李老师您好,咱们这是有拉曼光谱的标准图谱库么?玩吗可以获取么Ins_80aa760eA33: 老师您好,雷尼绍拉曼光谱仪根据咱们测试的需求配备不同的数据库,常见的微塑料的谱图在聚合物数据库里面,您如果有需要,可以和我联系,181****7526李兆芬(后期已隐藏)Q34:李兆芬老师方便留下联系方式,想跟老师直接沟通一下Ins_80aa760eA34:181****7526李兆芬(后期已隐藏)Q35:请问 李老师,微塑料主要的材料类别是哪几种 高分子材料?谢谢!p3154711A35:微塑料目前的有聚乙烯,聚丙烯,聚对苯二甲酸乙二醇酯,聚氯乙烯,聚氨酯,聚苯乙烯等等Q36:李老师你好,我想问一下滤膜的干扰通常如何解决,除了用银膜,有其他滤膜的推荐吗?Insm_1c1f0b88 A36:对于拉曼光谱来说,目前咱们检测的时候,用的银膜比较多,但是也有用铝膜的,避免背底的干扰Q37:李老师,咱们的微塑料富集在膜上,咱们的拉曼光谱能够做到自动识别膜上微塑料么 Ins_80aa760eA37:正如咱们刚刚沟通的,如果颗粒直径可是,滤膜上的颗粒在白光图像上能够区分出来,这个时候可以借助颗粒分析软件自动定位颗粒,然后进行测试Q38:李老师好,请问拉曼检测时用聚碳酸酯膜会有很大影响吗 Ins_0b77df4aA38:您好,一般咱们不建议用聚合物膜,会有微塑料采集有一些影响,因为微塑料本身就是聚合物的碎片报告4题目:《Perkinelmer红外显微成像和多联机技术对微塑料的测试方案》【报告人】珀金埃尔默材料表征产品线技术工程师;主要负责分子光谱类仪器及其联机技术的应用方法开发及技术支持工作。【视频回放】https://www.instrument.com.cn/webinar/video_115149.html 【问答摘取】Q39:查老师您好,10um以下的 使用ATR模式进行测试,是挑选出来检测还是自动识别膜上的小于10um的微塑料 Ins_80aa760eA39:您好,不需要挑出来的,直接在滤膜上 通过自动聚焦到微塑料分布的区域,原位测试。Q40:请问查老师,ATR成像模式下如何解决ATR测试两个颗粒间的互相干扰?以及怎么识别哪些颗粒已经测了,哪些颗粒还没有测? m3303707A40:您好,如果两个颗粒成分不一样 的话,红外谱图就是不一样的,如果成分一样的话,主要是显微下的微观形状和分分的区域来区分。ATR成像压制完的区域和没压制过的区域是可以区分开的。Q41:查老师您好,请问红外成像是如何进行定位的,谢谢老师 Ins_d1d3bb13A41:您好,红外成像有显微镜的可见光放大聚焦定位功能,这套系统有可见光和红外光两种光的同轴光路,可见光定位后,红外光检测,都是软件实现的,无需手动切换光路。Q42:请问查老师,10um的分辨率下,滤膜面积2cm*2cm,透射模式和反射模式需要多长时间?m3303707A42: 您好,透射和反射膜模式下,需要大约5小时。Q43:査老师咱们在北有测试点嘛 Ins_80aa760eA43:您好,北京有用户体验实验室的,在酒仙桥兆维工业园,感兴趣欢迎来看看。Q44:查老师好,请问这些滤膜是在网上购买还是在您所在的公司购买?Ins_d1d3bb13A44:您好,可以从生产滤膜的公司购买,我们公司可以给您提供我们购买的滤膜的规格信息和购买途径。Q45:查老师好!请问ATR成像一次能测多少颗粒,或者是多大面积?谢谢songzhangA45:您好,一次性能测试 1.1厘米*1.1厘米的面积,颗粒的多少是根据选择的空间分辨了有关。这种测量模式对于10微米以下尺寸微塑料比较合适。Q46:查老师好,请问这些滤膜是在网上购买还是在您所在的公司购买?Ins_d1d3bb13A46:您好,可以从生产滤膜的公司购买,我们公司可以给您提供我们购买的滤膜的规格信息和购买途径。Q47:查老师,请问如何联系您呢?是在公司官网吗 Ins_d1d3bb13A47:您好,您可以通过仪器信息网的助教联系到我,谢谢报告5题目:《海岸带微塑料污染监测与防控》【报告人】目前就职于中国科学院烟台海岸带研究所,研究员,主要从事海洋生态与环境科学研究,关注近海微塑料污染及其生态风险。作为负责人先后主持国家重点研发计划课题,国家自然科学基金面上项目、青年项目,中国科学院装备研制项目、先导专项子课题等10余项。发表SCI论文60余篇,其中第一作者和通讯作者SCI论文30篇,论文总引用次数1500余次。入选中国科学院青年创新促进会,获得中国科学院“沈阳分院第五届优秀青年科技人才奖”,2017年度获得中国科学院科技促进发展奖(排名第3)。【视频回放】因涉及未发表最新成果等内容,与专家沟通后,确定不予回放【问答摘取】Q48:王老师您好,关于水体中加入聚合物使得微塑料加速沉积,这个方法有没有成熟应用的案例呢? Ins_78b98181A48:已在会议现场做语音答疑,该部分仅限参与直播的听众共享Q49:王老师,您好,您的报告很精彩,问问内陆河的微塑料的污染状况如何,国内分布如何?Ins_0a4be34aA49:已在会议现场做语音答疑,该部分仅限参与直播的听众共享Q50:王老师,您好,现在海洋微塑料的检测采用的方法是什么呢?现在是检测颗粒大小在多少的范围 185****5895A50:已在会议现场做语音答疑,该部分仅限参与直播的听众共享Q51:王老师好,海参等生物肠道中微塑料如何定性和定量的?谢谢!Insp_b3bb0338A51:已在会议现场做语音答疑,该部分仅限参与直播的听众共享Q52:王老师好,请问如果检测20微米以下的话,还可以用显微拉曼直接检测吗,谢谢老师 Ins_d1d3bb13A52:已在会议现场做语音答疑,该部分仅限参与直播的听众共享Q53:王老师,你们选择疑似颗粒的时候,有什么规则吗?一张膜上Insm_5b221eccA53:已在会议现场做语音答疑,该部分仅限参与直播的听众共享Q54:好的,谢谢王老师,看了一些文献,感觉没有一个标准去定义这个微塑料污染的状况,什么样算正常,什么样算严重,目前世界上有一些定义嘛?Ins_0a4be34aA54:已在会议现场做语音答疑,该部分仅限参与直播的听众共享Q55:王老师您好,国内主要微塑料检出鉴定机构有哪些?可以面向社会接受样本的 Ins_78b98181A55:已在会议现场做语音答疑,该部分仅限参与直播的听众共享Q56:老师好,请问图像分析和拉曼分析的过程中,微塑料是如何转移的呢,20微米以下的太小了,挑选不太现实,可以直接转移滤膜进行检测吗,谢谢老师Ins_d1d3bb13A56:已在会议现场做语音答疑,该部分仅限参与直播的听众共享
  • 微塑料:一场不知不觉的污染
    p   人类和塑料的关系可能比你想象得还要“亲密”。除了生活中接触到的各种塑料制品,塑料还会降解成直径从0.1到5000微米不等的塑料微粒。这些微粒在陆地上随处可见,也被发现存在于河流、海洋甚至北极。 /p p   本世纪初,人们首次在海洋中发现微塑料的存在,至今已有不少研究聚焦于这些小小颗粒的降解和迁移过程。 /p p   如今人们发现,它们不仅会走水路,还会“借东风”。 /p p   《自然—地球科学》本月发表了一项研究,法国国家科学研究中心的研究团队跑到人迹罕至的偏远山地,收集大气中的沉积物样本,发现其中含有大量塑料微粒。模拟实验表明,这些塑料微粒通过大气旅行,最初动身之地距离落脚处可达100公里。 /p p    strong 微塑料的前世今生 /strong /p p   粒径5毫米以下的塑料颗粒被称为微塑料,通常以碎片、纤维等形式存在。 /p p   中国科学院水生生物研究所助理研究员熊雄告诉《中国科学报》,微塑料的来源主要分为两种。一种是生产时体积就很小的原生微塑料,常见于带有磨砂成分的个人护理品,在人类使用过程中进入水体。另一种是原本体积较大的塑料,经过光照、氧化、机械磨损等作用,逐步降解为微塑料。 /p p   在此过程中,有些微塑料可进一步降解至微米甚至纳米级别,因而有更高风险进入到细胞或生物体内,甚至对整个食物链产生影响。 /p p   先前对微塑料的研究较多集中于水体环境。从马里亚纳海沟到南极圈冰冻层,都已发现微塑料的存在。在中国,一些较为偏远的水体如西藏、青海等地的湖泊,也已检测到不同浓度的微塑料。 /p p   有研究指出,河流是海洋中微塑料的重要输送来源。熊雄等人调查长江中下游水体的微塑料污染情况后发现,内陆水体不仅是微塑料从陆地到海洋的传输渠道,其本身也聚集了数量可观的微塑料。 /p p   研究结果显示,长江中下游的微塑料浓度均值约为每平方千米50万个微塑料颗粒。这一结果在采用相似方法的河流中处于中等偏高水平。 /p p   熊雄告诉《中国科学报》,继这一研究后,其课题组仍在继续进行内陆淡水水体的调查。 /p p   在课题组近期发表的一项研究中,他们对一年四季湖水中微塑料的表面生物膜生长情况进行了调查,发现微塑料在水体内的沉降不仅受生物膜生长影响,也受水中悬浮颗粒物影响。 /p p   虽然没有确凿证据可以追溯这些微塑料从何而来,“但可以推测人们日常生活生产中使用的塑料制品是微塑料污染的主要来源”。熊雄表示。 /p p    strong 乘风而来 /strong /p p   如果说前述研究探讨的是微塑料如何在水体中停留和沉积,那么接下来的研究则发现,一旦微塑料体积足够小,它们的旅程就可以走得足够远。这意味着除了潜入水底,微塑料占据的领土达到了前所未有的广度。 /p p   之前有科学家曾对城市周边的大气微塑料含量进行研究,确认了大气沉降是表层土壤微塑料污染的源头之一,但当时并没有观点认为微塑料会迁移到非常远的地方。 /p p   《自然—地球科学》此次发表的文章指出,微塑料可能会通过大气“长途旅行”。 /p p   为了搞清微塑料可以走多远,Deonie Allen等研究人员在法国西南部的比利牛斯山脉进行了长达5个月的追踪研究。离他们选取的研究点最近的城市在近百公里外。 /p p   科学家从灰尘、雨水和雪中提取沉积物,对从中获得的微塑料类型和大小进行区分,并计算了相应的个数和含量。科学家发现,单位平方米中存在不同比例、不同形态的微塑料,如碎片、薄膜和纤维。测量区域的微塑料日沉积率约为365个颗粒/平方米。 /p p   建立大气模型进行模拟后,科学家推测这些微塑料在到达偏远山区之前,最可能产生于周边的城市。塑料微粒在大气中游荡,最终降落在几十公里外的山区土壤中。 /p p   文章指出,微塑料的体积和重量足够小后便能在大气中漂浮。这也意味着,它们不可能被绝对清理干净。因此Allen等人建议,目前唯一可行的办法就是从源头控制塑料的使用。 /p p   “目前对于微塑料在大气中迁移和沉降的研究很少,特别是在人迹罕至的偏远地区。这项研究会为同领域的研究者带来更多启发。不同区域微塑料在大气中的污染状况及其影响因素、微塑料在大气中的迁移规律及机理、大气中微塑料对人体的健康风险,都是值得继续探讨的问题。”北京市农林科学院副研究员徐笠这样评价道。 /p p   “随大气迁移并沉降到地表是土壤中微塑料的一种来源途径。在一些自然保护区或未开发利用地区,这可能是主要途径。”浙江农林大学环境与资源学院教授章海波告诉《中国科学报》,“但在农田土壤中,微塑料的主要来源还是有机肥、污泥农用、灌溉等。” /p p    strong 研究瓶颈 /strong /p p   从难以察觉的细小微粒到海洋中体量庞大的“怪物”,人们研究塑料垃圾造成的污染由来已久,相对应的研究手段也各不相同。 /p p   熊雄等人在长江中下游进行调查时,将333微米孔径的拖网放置在水体中拖曳,进行样品收集。 /p p   英国海洋生物协会近日发表的一项针对塑料垃圾数量的调查,也采用在水体中拖曳的方式,利用一种名为浮游生物连续记录仪的采集器,拖曳距离累计超过1200万公里。 /p p   徐笠告诉《中国科学报》,采集水体样本后,在实验室中往往还需要经过一系列处理。过滤就是一种常见手段。研究者根据微塑料的体积大小选择有适合孔隙的过滤膜。硝酸纤维、醋酸纤维、尼龙等是常见的滤膜材质。 /p p   徐笠指出,“膜的选择应根据具体实验要求,其孔隙大小和材质是需要重点考虑的问题。样品过滤后,通常含有有机质、藻类等各种干扰杂质,这些干扰因素可以用双氧水等进行消解,再用消解液过滤一遍,留在滤膜上的就是微塑料了。” /p p   如果想测定土壤中的微塑料,在过滤之前还要经历一道浮选的过程。浮选的溶液有氯化钠、碘化钠、氯化锌等。利用不同浮选液密度,可将不同类型的微塑料从土壤中浮选出来。 /p p   “这也是为什么调查土壤中的微塑料更为困难,因为微塑料沉积在土壤中,较难浮选出来。目前通用的解决办法是多次浮选,增加微塑料的回收率。”徐笠说。 /p p   这之后,研究者会在显微镜下观察样品大小、形状、颜色等特征,并用红外光谱或拉曼光谱对所选样本的具体种类进行鉴定。 /p p   章海波表示,受技术条件影响,目前研究主要还是以野外调查与室内模拟相结合,标记示踪也是一种方法。“但技术上目前对土壤中微塑料的分离分析方法还不够完善,受土壤复杂介质的影响较大。” /p p   “目前微塑料相关研究还没有一个统一的标准方法,未来还应制定统一的采样和样品处理方法,让微塑料研究更规范、环境浓度数据可比性更强。”熊雄表示。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/4882a329-5b7b-49ce-accd-ca3aadad5ca8.jpg" title=" 绿· 仪社.jpg" alt=" 绿· 仪社.jpg" / /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 扫二维码加“绿· 仪社”为好友 了解更多对科学仪器市场的分析评论! /span br/ /p
  • 享受便捷与灵活,一机多用的电子密度天平提供卓越的实验室解决方案
    随着科学仪器在各领域内的应用越来越广泛,顾客对于科学仪器不单要求功能全面,也越来越讲求仪器的便捷与灵活使用。 上海舜宇恒平科学仪器有限公司通过对客户的回访及对市场不断进行调研,掌握市场需求信息,不断对仪器功能进行升级。此次,研发人员通过对程序功能的重新设计,增加密度测量装置,在保持原来电子天平的准确度等级、计量性能和操作习惯不变的基础上,新增密度模式功能,使之功能更加完备,操作更加方便与灵活。其特点为: 一、 一机多用 1、 同时具有物体称量和密度测定功能 2、 可实现固体密度和液体密度的测定,密度直读,大大减少人工换算的繁琐性和人为误差 3、 可实现物体称量,计数、百分比称重,克、盎司、克拉等单位转换 二、 使用方便 1、 预设8种标准固体:蜡,铝,铁/钢,铜,银,铅,金,锇,可自由选择不同标准物测定物质密度 2、 预设8种标准液体:汽油,酒精,煤油,水(20° C),水(4° C),蜂蜜,溴((0° C),水银,可自由选择不同标准物测定物质密度 3、 新增的密度装置外形美观,通用性强  (1)工作台采用流线形设计,外形美观、结构轻巧牢固,便于安装  (2) 铝合金C型架材质轻强度高,不锈钢秤盘防腐性好  (3)能在FA系列、JA系列及MP系列电子天平上统一使用 三、 操作简单 1、 向导式密度测量流程,便于用户操作 2、 便捷的终止处理,在密度测量的任意时刻,可直接重置当前操作,返回向导起始状态 电子密度天平适用于研究院、电子产业、橡胶行业、电线电缆制造业、食品业、化妆品行业、造纸业、机械加工业、粉末冶金业、汽车工业等行业及塑料颗粒、橡胶颗粒、塑胶复合材料、树脂、金属制品、石材、石墨材料、玻璃制品、各种合金、各种化学溶液等材料。用户可以根据自己常用的测量物质及对密度测量的要求选择适合的电子密度天平。 上海舜宇恒平科学仪器有限公司将不断进行技术创新,以优异的产品,过硬的质量,可靠的服务保证及富有竞争力的价格满足顾客的专业需求,提供卓越的实验室解决方案。 FA系列电子密度天平 JA系列电子密度天平 MP系列电子密度天平
  • Seper优质塑料容器产品目录2012
    Seper优质塑料容器产品目录2012 优质塑料容器;与国外品牌塑料容器品质一致;价格仅为进口价格的30%! 广口圆瓶 通用的液体或者固体保存瓶;广口设计,使盛装更加便捷; PP聚丙烯材质,可以耐受大部分酸,碱和醇类物质,可承受高达121度的高温灭菌; HDPE高密度聚乙烯材质,可以耐大部分酸、碱和醇类物质,长期使用温度:0-100度; 琥珀色瓶可用于保存光敏感性物质。 货号CatNo 类型 容量Capacity 描述Description 包装Packaging 单位Unit SB08-1008 PP广口 8ml 瓶身PP 瓶盖PP 96/pk 包 SB08-1015PP广口 15ml 瓶身PP 瓶盖PP 96/pk 包 SB08-1030 PP广口 30ml 瓶身PP 瓶盖PP 48/pk 包 SB08-1060 PP广口 60ml 瓶身PP 瓶盖PP 48/pk 包 SB08-11000 PP广口 1000ml 瓶身PP 瓶盖PP 6/pk 包 SB08-1125 PP广口 125ml 瓶身PP 瓶盖PP 24/pk 包 SB08-1250 PP广口 250ml 瓶身PP 瓶盖PP 12/pk 包 SB08-1500 PP广口 500ml 瓶身PP 瓶盖PP 12/pk 包 SB08-6008 HDPE广口 8ml 瓶身HDPE 瓶盖PP 96/pk 包 SB08-6015 HDPE广口 15ml 瓶身HDPE 瓶盖PP 96/pk 包 SB08-6030 HDPE广口 30ml 瓶身HDPE 瓶盖PP 48/pk 包 SB08-6060 HDPE广口 60ml 瓶身HDPE 瓶盖PP 48/pk 包 SB08-61000 HDPE广口 1000ml 瓶身HDPE 瓶盖PP 6/pk 包 SB08-6125 HDPE广口 125ml 瓶身HDPE 瓶盖PP 24/pk 包 SB08-6250 HDPE广口 250ml 瓶身HDPE 瓶盖PP 12/pk 包 SB08-6500 HDPE广口 500ml 瓶身HDPE 瓶盖PP 12/pk 包 SB08-7008 HDPE棕色广口 8ml HDPE瓶盖 瓶身 96/pk 包 SB08-7015 HDPE琥珀色广口 15ml HDPE瓶盖 瓶身 96/pk 包 SB08-7030 HDPE琥珀色广口 30ml HDPE瓶盖 瓶身 48/pk 包 SB08-7060 HDPE琥珀色广口 60ml HDPE瓶盖 瓶身 48/pk 包 SB08-71000 HDPE琥珀色广口 1000ml HDPE瓶盖 瓶身 6/pk 包 SB08-7125 HDPE琥珀色广口 125ml HDPE瓶盖 瓶身 24/pk 包 SB08-7250 HDPE琥珀色广口 250ml HDPE瓶盖 瓶身 12/pk 包 SB08-7500 HDPE琥珀色广口 500ml HDPE瓶盖 瓶身 12/pk 包 窄口圆瓶 通用的液体或者固体保存瓶; 窄口设计,较少易挥发物质的挥发; PP聚丙烯材质,可以耐受大部分酸,碱和醇类物质,可承受高达121度的高温灭菌; HDPE高密度聚乙烯材质,可以耐大部分酸、碱和醇类物质,长期使用温度:0-100度; 琥珀色瓶可用于保存光敏感性物质。 货号CatNo 类型 容量Capacity 描述Description 包装Packaging 单位Unit SB08-2008 PP窄口 8ml 瓶身PP 瓶盖PP 96/pk 包 SB08-2015 PP窄口 15ml 瓶身PP 瓶盖PP 96/pk 包 SB08-2030 PP窄口 30ml 瓶身PP 瓶盖PP 48/pk 包 SB08-2060 PP窄口 60ml 瓶身PP 瓶盖PP 48/pk 包 SB08-21000 PP窄口 1000ml 瓶身PP 瓶盖PP 6/pk 包 SB08-2125 PP窄口 125ml 瓶身PP 瓶盖PP 24/pk 包 SB08-2250 PP窄口 250ml 瓶身PP 瓶盖PP 12/pk 包 SB08-2500 PP窄口 500ml 瓶身PP 瓶盖PP 12/pk 包 SB08-5008 HDPE窄口 8ml 瓶身HDPE 瓶盖PP 96/pk 包 SB08-5015 HDPE窄口 15ml 瓶身HDPE 瓶盖PP 96/pk 包 SB08-5030 HDPE窄口 30ml 瓶身HDPE 瓶盖PP 48/pk 包 SB08-5060 HDPE窄口 60ml 瓶身HDPE 瓶盖PP 48/pk 包 SB08-51000 HDPE窄口 1000ml 瓶身HDPE 瓶盖PP 6/pk 包 SB08-5125 HDPE窄口 125ml 瓶身HDPE 瓶盖PP 24/pk 包 SB08-5250 HDPE窄口 250ml 瓶身HDPE 瓶盖PP 12/pk 包 SB08-5500 HDPE窄口 500ml 瓶身HDPE 瓶盖PP 12/pk 包 SB08-8008 HDPE棕色窄口 8ml HDPE瓶盖 瓶身 96/pk 包 SB08-8015 HDPE棕色窄口 15ml HDPE瓶盖 瓶身 96/pk 包 SB08-8030 HDPE棕色窄口 30ml HDPE瓶盖 瓶身 48/pk 包 SB08-8060 HDPE棕色窄口 60ml HDPE瓶盖 瓶身 48/pk 包 SB08-81000 HDPE棕色窄口 1000ml HDPE瓶盖 瓶身 6/pk 包 SB08-8125 HDPE棕色窄口 125ml HDPE瓶盖 瓶身 24/pk 包 SB08-8250 HDPE棕色窄口 250ml HDPE瓶盖 瓶身 12/pk 包 SB08-8500 HDPE棕色窄口 500ml HDPE瓶盖 瓶身 12/pk 包 方瓶 通用的液体或者固体保存瓶; 方形设计有效增加包装箱的包装数量; PP聚丙烯材质,可以耐受大部分酸,碱和醇类物质,可承受高达121度的高温灭菌; HDPE高密度聚乙烯材质,可以耐大部分酸、碱和醇类物质,长期使用温度:0-100度; 琥珀色瓶可用于保存光敏感性物质。 货号CatNo 容量Capacity 描述Description 包装Packaging 单位Unit SB08-4050 PP方瓶 50ml 瓶身PP 瓶盖PP 48/pk 包 SB08-4100 PP方瓶 100ml 瓶身PP 瓶盖PP 24/pk 包 SB08-41000 PP方瓶 1000ml 瓶身PP 瓶盖PP 6/pk 包 SB08-4250 PP方瓶 250ml 瓶身PP 瓶盖PP 12/pk包 SB08-4500 PP方瓶 500ml 瓶身PP 瓶盖PP 12/pk 包 SB08-3050 HDPE方瓶 50ml 瓶身HDPE 瓶盖PP 48/pk 包 SB08-3100 HDPE方瓶 100ml 瓶身HDPE 瓶盖PP 24/pk 包 SB08-31000 HDPE方瓶 1000ml 瓶身HDPE 瓶盖PP 6/pk 包 SB08-3250 HDPE方瓶 250ml 瓶身HDPE 瓶盖PP 12/pk 包 SB08-3500 HDPE方瓶 500ml 瓶身HDPE 瓶盖PP 12/pk 包 SB08-9050 HDPE棕色方瓶 50ml HDPE瓶盖 瓶身 48/pk 包 SB08-9100 HDPE棕色方瓶 100ml HDPE瓶盖 瓶身 24/pk 包 SB08-91000 HDPE棕色方瓶 1000ml HDPE瓶盖 瓶身 6/pk 包 SB08-9250 HDPE棕色方瓶 250ml HDPE瓶盖 瓶身 12/pk 包 SB08-9500 HDPE棕色方瓶500ml HDPE瓶盖 瓶身 12/pk 包 ETFE塑料瓶 ETFE 是最强韧的氟塑料,它在保持了PTFE 良好的耐热、耐化学性能和电绝缘性能的同时, 耐辐射和机械性能有很大程度的改善,拉伸强度可达到50MPa,接近聚四氟乙烯的2倍。 氟塑料来源于美国杜邦公司和日本旭硝子公司。 容量Capacity 货号CatNo 描述Description 包装Packaging 单位Unit 250ml SB08-0601 ETFE材质螺纹口盖 1/pk 支 500ml SB08-0602 ETFE材质螺纹口盖 1/pk 支 1000ml SB08-0603 ETFE材质螺纹口盖 1/pk 支 Seper塑料放水桶 放水口栓和封闭螺丝:PP聚丙烯, 瓶身:PP聚丙烯, 瓶盖:白色PP聚丙烯, TPE热塑性弹性体垫片, 用于存储培养基,蒸馏水等,无菌水存储的理想选择,可高压灭菌,抑制藻类或细菌的生长。 容量Capacity 货号CatNo 描述Description 包装Packaging 单位Unit 5L SB08-0501 5L 1/pk 支 10L SB08-0502 10L 1/pk 支 20L SB08-0503 20L 1/pk 支 Seper优质塑料分液漏斗 抗裂、透明、防粘易于清洁、防湿可完全排水,且密封可防止分液漏斗中的化学品渗透。 即使是无色液体亦可清晰观察到相界面。 活塞装置易于拆除,方便清洁。 瓶身和瓶盖为PP材质,阀门为PTFE材质,漏斗嘴部采用PMP材质,可以拆卸,并可以耐受180度高温,可以灭菌使用。 容量Capacity 货号CatNo 包装Packaging 单位Unit 125ml SA08-0101 1/pk 包 250ml SA08-0102 1/pk 包 500ml SA08-0103 1/pk 包 1000ml SA08-0104 1/pk 包 Seper优质塑料滴定管 PMP材质的塑料滴定管透明度高,耐酸碱,膨胀收缩率小, 阀体采用PTFE材质,让其几乎可以完成您所有样品的滴定工作。 容量Capacity 货号CatNo 描述Description 包装Packaging 单位Unit 10ml SA08-0201 PMP+PTFE 1/pk 包 25ml SA08-0202 PMP+PTFE 1/pk 包 50mlSA08-0203 PP+PTFE 1/pk 包 100ml SA08-0204 PP+PTFE 1/pk 包 Seper印字溶剂专用安全洗瓶LDPE 容量Capacity 货号CatNo 描述Description 包装Packaging 单位Unit 500ml SB08-0101 蒸馏水专用 6/pk 包 500ml SB08-0102 丙酮专用 6/pk 包500ml SB08-0103 乙醇专用 6/pk 包 500ml SB08-0104 甲醇专用 6/pk 包 500ml SB08-0105 异丙醇专用 6/pk 包 500ml SB08-0106 次氯酸钠专用 6/pk 包 PP HDPE化学相容性表   冰醋酸 丙酮 乙腈 苯甲酸 氢氧化钠 饱和的硫酸铵 乙酸戊酸 戊醇 苯 HDPE R R R NR R R R R NR PP TST R NR NR TST R TST R NR 硝酸 氯化钠 0.1M硫基乙醇 乙酸甲酯 甲醇 二氯甲烷 乙醇 溶剂油 6N硝酸 HDPE NR R ND TST R LTD R NR R PP NR R ND TST R NR R NR TST 1N盐酸 6N盐酸 盐酸(ConC) 氢氟酸 氢 3%过氧化氢 30%过氧化氢 90过氧化氢 低钠 HDPE R R R R R R R NR R PP GR TST NR NR R R TST R R 臭氧 中醛 戊烷 石油醚 苯酚 3N氢氧化钾 吡啶 硅油 碳酸钠 HDPE TST R LTD LTD NR R R R R PP NR TST NR ND NR R R R R 四氯化碳 溶纤剂(乙基) 乙酸乙酯 氯仿 环己酮 二恶烷 二甲亚砜 二甲基乙酰胺 二甲基甲酰胺 HDPE NR R R LTD R R R R R PP NR R TST NR NR R R R R   3N氢氧化钠 硫酸(Conc) 四氢呋喃 甲苯 三氯乙酸 三氯乙烷 三氯乙烯 土温20 8M尿素 HDPE R R R LTD R LTD NR TST R PP R NR NR NR R NR NR ND R 亚乙基二醇 甲醛 50%甲酸 二甲苯 汽油 甘油 6M氯酸胍 5MI硫氰酸胍 乙烷 HDPE R R R LTD LTD R GR GR LTD PP R R R NR NR R ND ND NR 硼酸 乙酸丁酯 丁醇 硝基苯 氮 乙基苯基聚二乙醇 乙酸异丙酯 异丙酯 煤油 HDPE R R R R ND TST R R LTD PP R TST R NR ND ND TST R TST R=表示推荐.仅用来表示在公开发表的相容性表中显示最高等级的聚合物与溶剂组合。 GR=表示一般推荐。这一组合中没有特别提到有聚合物与溶剂组合,但是也述及能基本与一类溶剂相容,例如PES便可与乙醇相容 TD=表示有限推荐。不锈钢仅能在有限的时间内接触化学品,接触时间延长便会产生腐蚀。换膜过滤器使用这种物质后一定要彻底地冲洗。 NR=表示不推荐。用来表示在公开发表的相容性表中呈现比最高等级低的聚合物与溶剂组合。 GNR=表示一般不推荐。这一组虽没有特别提到有聚合物与溶剂组合,但是也述及一般不能与溶剂相容,例如PMMA不能与脂族酯相容。 TST=用来表示这样一组聚合物与溶剂组合,他们在公开发表的相容性表中在一些表中呈现出最高等级,而在另一些表中却显示低于最高级的相容性,建议用户预先进行测试。可能出现应力裂缝或膨胀的组件材料会影响过滤效果。 ND=目前没有数据,在现有资料中没有相关信息。
  • 莫帝斯中标浙江省电缆料产品质量检验中心NBS烟密度测试箱
    日前,莫帝斯燃烧技术(中国)有限公司,中标浙江省电缆料产品质量检验中心塑料烟密度箱项目。 该烟密度测试箱,完全基于莫帝斯自行研发和制造,在生产过程中吸收了国外同类产品的先进技术,其检测过程自动化程度高,高度同国内外测试标标准相吻合,如ASTM E662、ISO 5659-2、GB/T 8323 以及 NES 711 。国内目前用户已经有 北京理工大学、中国铁道科学研究院、桂林电器科学研究院、深圳计量检测研究院等知名用户。 www.firetester.cn
  • 微塑料检测标准盘点:多项团标在进程中
    微塑料(Microplastic),是指直径小于5毫米的塑料碎片和颗粒,在塑料制品使用过程中释放,特别是食物用途的塑料制品。纳米塑料(Nanoplastics)则是目前已知最小的微塑料,尺寸在1μm以下,体积小到可以穿过细胞膜。早在2004年,英国普利茅斯大学Thompson等在《科学》杂志上就首次提出了“微塑料”的概念。作为一类重要的新污染物,微塑料近年来多次引起业界的热议。据发表在《冰冻圈》杂志上的一篇论文称,新西兰坎特伯雷大学研究人员在南极洲的新降雪中首次发现了微塑料 ;发表在《整体环境科学》上研究显示,德国研究人员在城市收集的蜘蛛网中检测出了微塑料颗粒,并且蜘蛛网“捕获”的微塑料颗粒占整个蜘蛛网重量的10%,由多种不同的种类组成;一项发表在环境科学领域权威期刊《环境国际》上的研究披露,科学家首次在人类血液中发现微塑料,引发微塑料对人体健康长期影响的担忧;今年,来自美国国家标准与技术研究院 (NIST) 的化学家Christopher Zangmeister团队开展的一项新研究,带有防水涂层——低密度聚乙烯(LDPE)内衬的一次性纸杯,在接触 100 ℃ 热水短短 20 分钟后,释放的微塑料颗粒密度可达 1012/L。这意味着喝下一杯 300 ml 的外带热咖啡,将有上千亿微塑料颗粒进入体内,研究人员推算,这意味着平均每 7 个身体细胞就会吸收一个微塑料颗粒… … 不得不说,以上研究让大家细思极恐,与“白色污染”塑料相比,微塑料的危害体现在其颗粒直径微小上,这是其与一般的不可降解塑料相比,对于环境的危害程度更深的原因,其治理迫在眉睫!(更多阅读:南极雪中惊现微塑料 新污染物治理迫在眉睫)作为一种新型环境污染物,目前微塑料相关研究如火如荼,但是对其科学客观评判迫切需要建立标准化的分析测试方法和生态健康风险评估技术。由于微塑料物理特性以及化学组分等的差异,不同类型微塑料在不同环境中流动过程的时间均不相同,使微塑料检测变成一大难题。近年来发展的微塑料检测方法主要有傅立叶红外光谱法(FT-IR)、拉曼光谱法、热裂解气质联用法(Pyr-GCMS),以及其他方法等,大大提高了微塑料定量分析的准确性。(更多阅读:微塑料治理持续加码 这些仪器采购正当时)同时,相关标准也在完善过程中,据不完全统计,现行的地方标准有两项:DB21/T 2751-2017海水中微塑料的测定 傅立叶变换显微红外光谱法 ;DB37/T 4323-2021海水增养殖区环境微塑料监测技术规范 ;作为标准体系的一个重要部分,团体标准越来越吸引大家的关注。近年来,一系列微塑料相关的团体标准也在陆续立项或者发布中。其中,2020年6月,上海市环境科学学会批准立项了上海锐浦环境技术发展有限公司申报的《环境水体中微塑料的测定傅里叶变换显微红外光谱法》团体标准;2020年12月,中国材料与试验团体标准委员会批准CSTM标准《景观水中微塑料的测定 显微红外光谱法》立项;2021年5月,中国纺联标准化技术委员会发布关于下达21项团体标准计划项目的通知(中国纺联标委函[2021]3号),其中包括《纤维微塑料术语、定义和分类》、《纤维微塑料鉴别试验方法》、《地表水环境纤维微塑料分析测试方法》。序号项目编号标准项目名称标准类别制定/修订完成年限申报单位1202102-CNTAC001纤维微塑料术语、定义和分类基础制定2022东华大学2202102-CNTAC002纤维微塑料鉴别试验方法方法制定2022东华大学3202102-CNTAC003地表水环境纤维微塑料分析测试方法管理制定2022东华大学其中,《T/CSTM 00563—2022 景观环境用水中微塑料的测定 傅里叶变换显微红外光谱法》已经于2022年2月21日公布,2022年05月21日实施。该文件规定了傅里叶变换显微红外光谱法测定景观环境用水中微塑料的术语和定义、方法原理、仪器设备与试剂、测试样品制备、测定步骤、结果分析与计算等,适用于景观环境用水中尺寸范围在50 μm-5 mm之间的微塑料的形状、颜色、尺寸、数量和聚合物种类的测定。其他水环境中微塑料的测定可参考本方法。此外,2021年4月13日,中国水利企业协会发布通知,对《地表水中微塑料的测定(征求意见稿)》征求意见,标准中涉及了显微拉曼成像光谱法、傅立叶变换显微红外光谱法、傅立叶变换红外光谱法等。2022年初,“中国材料试验团体标准委员会/基础与共性技术领域委员会/微塑料及其环保试验技术委员会(CSTM/FC00/TC03)成立暨专题报告会”召开期间,CSTM 标准委员会批准同意在基础与共性技术领域委员会(CSTM/FC00)下设立微塑料及其环保试验技术委员会。与会专家、委员组成评审组召开团体标准立项答辩会,对《饮用水中微塑料的测定 傅里叶变换显微红外光谱法》、《地下水中微塑料的测定 傅里叶变换显微红外光谱法》、《污水中微塑料的测定 傅里叶变换显微红外光谱法》、《海产品中微塑料的测定 傅里叶变换显微红外光谱法》、《土壤中微塑料的测定 傅里叶变换显微红外光谱法》等5项CSTM团体标准进行立项评审,经全面论证后一致同意立项。2022年7月19-22日,仪器信息网联合江苏省分析测试协会、中国仪器仪表学会近红外光谱分会、中国生物物理学会太赫兹生物物理分会等共同举办“第十一届光谱网络会议(简称iCS2022) ”。其中,针对微塑料的热点话题,特别邀请了中国地质调查局南京地质调查中心沈小明高级工程师和中国科学院烟台海岸带研究所王运庆研究员,分别就《激光共聚焦显微拉幔光谱分析技术在海岸带沉积物微塑料检测中的应用》、《SERS标记纳米塑料及其在典型模式生物体内分布研究》主题发表演讲。立即报名》》》
  • 科学仪器小知识:冷却循环水机在塑料,电子工业领域的应用和指导
    冷却循环水机在塑料、电子、超声波清洗、电镀、机械以及其他行业有哪些应用,本篇文章将为您详细陈述:  分析仪器:控制原子吸收石墨炉及石墨管及ICP(ICP-MX)X光管温度,使仪器连续长时间运行,提高分析测试效率;   塑料工业:准确的控制各种塑料加工之模温,缩短啤塑周期,保证产品质量的稳定。用于塑料加工机械成型模具冷却,能够大大提高塑料制品表面光洁度,减少塑料制品表面纹痕和内应力,使产品不缩水、不变形,便于塑料制品的脱模,加速产品定型,从而极大地提高塑料成型机的生产效率   电子工业:稳定电子元件内部在生产线上的分子结构,提高电子元件的合格率   超声波清洗行业,有效地防止昂贵的清洗剂挥发和挥发给人带来的伤害   电镀行业:控制电镀温度,增加镀件的密度和平滑,缩短电镀周期,提高生产效率,改善产品质量   机械工业:控制油压系统压力油温度,稳定油温油压,延长油质使用时间,提高机械润滑的效率,减少磨损   建筑工业:供给混凝土用之冷冻水,使混凝土分子结构适合建筑用途要求,有效地增强混凝土的硬度与韧性   真空镀膜:控制真空镀膜机的温度,以保证镀件的高质量   食品工业:用于食品加工后的高速冷却,使之适应包装要求。另外还有控制发酵食品的温度等   化纤工业: 冷冻干燥空气,保证产品质量   制药工业:主要用于生产车间温度、湿度的控制及生产原料药过程中反应热的带出   化工工业:主要用于化工反应釜(化工换热器)的降温冷却,及时带走因化学反应而产生的巨大热量从而达到降温(冷却)的目的,用以提高产品质量   机床行业:应用于数控机床、坐标镗床、磨床、加工中心、组合机床以及各类精密机床主轴润滑和液压系统传动媒的冷却,能够精确地控制油温,有效地减少机床的热变形,提高机床的加工精度。
  • 【微塑料】人类一手栽培的催命符 海洋中的“PM2.5”
    p   日前,澳大利亚塔斯马尼亚大学海洋和南极科学研究学院发布的一项报告再次引爆了“微塑料”这个议题。报告称,在澳东南部海域海底的沉积物中发现高浓度塑料微粒,很可能污染整个食物链。 /p p   微塑料,直径小于5微米,细小到用肉眼难以发现它。也正因如此,它对海洋生物乃至人类皆产生了巨大的危害。联合国专家组(GESAMP)已将其列为海洋生物的“温柔杀手”,并指出其危害程度等同于大型海洋垃圾。 /p p   但这一强大的劲敌确是人类一手栽培喂饱的,这些塑料微粒或来源于我们日常使用的化妆品、清洁用品中,或来源于纤维类衣物脱离出的细小颗粒,又或者来源于环境中的塑料垃圾,它们经过催化分解最终形成了塑料颗粒??可以说,海洋中的微塑料来源非常复杂,既有陆地河流、工业和生活污水、塑料垃圾等陆源输入,也有船舶运输、海上钻井平台等海源输入。 /p p   微塑料逐渐为大众所知 /p p   早在上世纪70年代,海洋微塑料污染的相关研究已经开展。 /p p   2001年,一位国外科学家报道了其研究海域水体中,微塑料的密度每立方米约有上亿个,才逐步引起各国政府、媒体和研究者的广泛关注。 /p p   2004年,英国科研人员在美国《科学》杂志上发表了关于海洋水体和沉积物中塑料碎片的研究论文,首次提出微塑料(Microplastic)这个概念。 /p p   2014年,英美研究人员联合在《科学》杂志上发表的观点文章指出:微塑料已遍布整个海洋,而生物体中微塑料的污染状况以及造成的生态效应和健康风险是当前微塑料研究应着重关注的问题。 /p p   2014年6月,联合国环境大会上提出了海洋废弃物和微塑料问题,并最终达成了“海洋塑料废弃物和微塑料决议”,提出开展有关海洋塑料废弃物和微塑料的研究。 /p p   2015年,微塑料污染被列入环境与生态科学研究领域的第二大科学问题,并成为与全球气候变化、臭氧耗竭和海洋酸化并列的重大全球环境问题。 /p p   微塑料的危害 /p p   科学研究已经证实,海洋中的微塑料污染对海洋生物的生长、发育、躲避天敌和繁殖的能力皆有不同程度的影响。微塑料除了对海洋生物造成一定的危害,还通过食物链进入到更高等级的生物体内,并最终为人类所食用。 /p p   威胁海洋生态 /p p   中国一份关于海洋鱼类的调查显示,在20多种经济价值较高的常见鱼类中,90%的鱼类样本中都发现了微塑料。 /p p   前不久,科学家首次拍摄了浮游生物摄入微塑料的一小段视频,视频形象地揭示了微塑料对海洋生物的影响,而不仅仅是停留在宣告阶段,它向全人类证实了,废弃的塑料确实可以进入海洋生物体内,并沿着食物链进行传递。 /p p   威胁人类健康 /p p   经过食物链的传递,那些“被微塑料”了的海洋生物,如鱼类、贝类等,最终流向人类的餐桌,而微塑料也因此而进入了人体。 /p p   另外,研究专家已经证实,人类摄入微塑料也不仅仅是通过食用海洋生物。一个由墨西哥和荷兰科学家组成的研究小组通过在墨西哥洛斯佩泰尼斯生物圈保护区的实地研究首次证实,微塑料已经进入陆地食物链。 /p p   他们表示,由于缺乏塑料回收和处理系统,洛斯佩泰尼斯的居民通常在焚烧塑料后将其掩埋到果园的地下,这就增加了这些塑料废弃物分裂为微塑料的风险。为了评估这种情况,研究人员对保护区中10个果园的土壤以及生活在土壤中的蚯蚓、居民饲养在果园里的母鸡的粪便和胃脏进行了分析,结果显示,在土壤里、蚯蚓体内、母鸡粪便和胃里都存在微塑料。不管是海洋生物还是陆地生物,如果人类长期摄入微塑料,很可能对身体健康构成威胁。 /p p   微塑料延伸到哪了? /p p   北极 /p p   研究人员发现,数以万亿计的微塑料颗粒出现在了北极的海冰中,每立方米的海冰中含有多达240个微塑料颗粒,这一分布密度是大太平洋垃圾漂浮带微塑料颗粒的2000倍。 /p p   达特茅斯大学的材料学家兼工程师RachelObbard和她的同事通过样本估算指出,如果北极海冰全部融化,将会释放出7万亿多个微塑料片。 /p p   南极海 /p p   日本九州大学与东京海洋大学公布的调查结果显示,南极海也漂浮着“微塑料”。微塑料常见于人口密集的全球沿海地区,而在南极海发现被认为尚属首次。 /p p   该项调查在澳大利亚与南极大陆间的5个地点实施。通过拉密孔网采集海面附近浮游生物的样本,在距离南极较近的2个地点发现大量塑料粒子,平均每吨海水中有0.05个至0.1个,经换算每平方公里约有14万至29万个,与北半球海洋平均10万个的数量不相上下。 /p p   澳大利亚东南海域 /p p   澳大利亚塔斯马尼亚大学海洋和南极科学研究学院发布报告称,在澳东南部海域海底沉积物中发现高浓度塑料微粒,很可能污染整个食物链。 /p p   2015年,研究小组从新南威尔士州、维多利亚州、塔斯马尼亚州及南澳大利亚州共计42处地点采集海底沉积物样本,并发现平均每毫升沉积物中含超过3个塑料纤维或颗粒。 /p p   日本海洋 /p p   日本环境省发布消息称,在距本州和九州沿岸100公里至200公里海域发现了细微塑料漂浮物,可能会对生态系统造成不良影响。 /p p   2014年,东京海洋大学和九州大学受环境省委托进行了调查。他们在本州和九州近海的45处地点采集了漂浮物,每1立方米海水中平均发现2.4个微塑料。环境省2010年至2012年在濑户内海实施调查时平均仅为0.4个,此次有22个地点超过了这一数值。此外,调查人员还对较大的漂浮垃圾进行了调查,结果发现其中有56%是可能会变成微塑料的石油化工制品。 /p p   中国海域 /p p   微塑料污染问题不仅仅存在于国外海域中,我国海域同样存在这一问题。中国国家海洋局调查显示,中国37个海域的海面漂浮垃圾和海滩垃圾中,塑料类占77%,并且86%—91%来自陆地。事实上,我国科学家早已证实在三亚海滩和南海浮游动物体内发现了大量微塑料。只不过,我国尚未对南海微塑料开展全面的调查研究。 /p p   各国纷纷呼吁应对微塑料污染 /p p   随着微塑料的危害性逐渐加剧升级,并为大众所熟知,各国政府也开始对此事备加关注。除了出台系列政策应对塑料垃圾之外,也出台了直接针对微塑料的系列措施,而报道最多的当属“呼吁禁止在化妆品等洗护用品中添加微塑料”。 /p p   其中,美国政府已立法宣布禁止在化妆品和洗护用品中使用微塑料,成为全球第一个宣布此项禁令的国家。 /p p   欧盟也已开始着手制定禁止在化妆品中使用微塑料的提案。 /p p   2017年起,英国也禁止在化妆品以及洗护用品中使用微塑料。 /p p   2017年3月份,瑞典环境大臣卡罗利娜· 斯科格在首届“波罗的海未来大会”上呼吁,波罗的海地区应该禁止化妆品中微塑料的使用,以减轻其对环境与人类的负面影响。 /p p   在我国,国家重点研发计划“海洋微塑料监测和生态环境效应评估技术研究”已于2016年底启动,中国科学家也开始呼吁禁止在个人护理品中添加用于深度清洁的微塑料颗粒。 /p p   微塑料危害之大想必已不必多说,对于海洋生物而言,微塑料犹如海洋中的PM2.5,而对于人类而言,微塑料则犹如一道隐性催命符。因此,及早有效应对微塑料污染已迫在眉睫。而各国在解决微塑料问题上,应该抱团协作,共同努力。据了解,新成立的“西太平洋区域海洋微塑料研究项目”就将在建立机构和专家网络的基础上,发挥区域作用,引领这一主题的研究,从制定统一采样和分析方法学的角度出发,分析海洋微塑料的分布、来源、归趋,评估其对海洋生态系统的影响。 /p
  • 药品塑料瓶包装密封性能检测方案解析
    在药品包装领域,塑料瓶因其轻便、耐腐蚀、成本低等优点而被广泛使用。然而,塑料瓶的密封性能直接关系到药品的保存质量和安全性。因此,对药品塑料瓶包装的密封性进行检测是确保药品安全的关键环节。本文将解析药品塑料瓶包装密封性的检测方案。首先,药品塑料瓶包装密封性检测的基本原理是通过检测瓶内外压力差或真空度变化来判断瓶体的密封性能。常用的检测方法包括水检法、压力差法、真空衰减法等。这些方法各有优缺点,选择合适的检测方法需要根据实际需求和生产条件来确定。水检法是一种简便易行的检测方法,通过将塑料瓶完全浸入水中,观察是否有气泡产生来判断瓶体的密封性。这种方法适用于初步筛选和现场检测,但无法定量分析密封性能。压力差法是通过在塑料瓶内外施加不同的压力,检测瓶体是否漏气来判断密封性。这种方法可以定量分析密封性能,但需要专门的设备和技术人员操作。真空衰减法是通过在塑料瓶内部形成真空,检测真空度的变化来判断密封性。这种方法具有较高的灵敏度和准确性,但需要专门的真空衰减仪和熟练的操作技巧。在实际应用中,可以根据生产规模和检测要求选择合适的检测方法。对于小规模生产或现场检测,可以选择水检法;对于大规模生产或要求较高的检测,可以选择压力差法或真空衰减法。其次,药品塑料瓶包装密封性检测的设备选择也非常重要。不同的检测方法需要不同的检测设备,如LEAK-01负压法密封性测试仪,LSST-01泄漏与密封强度测试仪等。在选择设备时,需要考虑设备的精度、稳定性、操作简便性等因素。最后,药品塑料瓶包装密封性检测的操作流程也需要严格控制。无论是哪种检测方法,都需要进行标准化操作,以确保检测结果的准确性和可重复性。同时,还需要定期对检测设备进行校准和维护,以保证设备的正常运行和检测结果的准确性。综上所述,药品塑料瓶包装密封性检测是确保药品安全的关键环节。选择合适的检测方法和设备,严格控制操作流程,才能确保检测结果的准确性和可靠性。
  • 近红外应用 | 塑料上的这些编号你都知道吗?
    塑料在我们日常生活中几乎无处不在。随着大众环保意识的增强和政策的影响,塑料的回收和利用也引起了更多的关注。 今天,我们来探讨一下在塑料回收领域中,如何运用光谱学技术对各种塑料进行鉴定和分类?一些塑料的合成使用大分子材料(如聚合物),这些聚合物通常在低温下通过注塑成型制造,回收利用很简单。然而,不同塑料使用的聚合物不同。因此很有必要在回收流中分离不同的聚合物。在近红外波段,不同聚合物因其成分不同,具有独特的光谱特征,印在塑料上的回收代码(图1)也与此密切关。此外,使用近红外光谱测试技术几乎无需样品制备,测试灵活简单。图1.大多数编码塑料在NIR中有明显特征光谱使用Flame-NIR + 进行漫反射测试为证明Flame-NIR+光谱仪在塑料识别方面的有效性,海洋光学测试了几个样品的漫反射率:PETE(聚对苯二甲酸乙二醇酯)、热塑性LDPE(低密度聚乙烯)、PP(聚丙烯)和 PS(聚苯乙烯)。测试使用 Flame-NIR+光谱仪、高功率卤钨灯光源HL-3P、600 µm纤芯的反射探头和WS-1漫反射标准板。同时采用OceanView软件设置参数,积分时间为6 ms ,多次扫描平均为50。在OceanView的反射率模式下采集数据,得到样品的反射率R。根据反射率可绘制log(1/R)VS Wavelength的图表。从化学分析角度讲,这是一种更直观的显示反射光谱的方法,因为从中可反映出浓度随信号强度的变化。图2.使用Flame-NIR+测试塑料样品的漫反射率在没有采用基线校正的情况下,采用 Flame-NIR+ 进行光谱测试(图2)。为更容易辨别光谱特征,我们从光谱中的每个数据点中减去 1303 nm 处的反射率来进行基线校正。这是一个数据处理的步骤,有助于消除光纤移动或其他问题可能导致的强度偏移,更容易查看谱形差异(图3)。图3.基线校正后使用Flame-NIR+测试的漫反射光谱使用NirQuest+光谱仪进行漫反射测试与使用Flame-NIR+测试时一致,使用高功率卤钨灯光源HL2000、600 µm 芯径的反射探头和漫反射标准板WS-1来测量塑料聚丙烯样品PP。在 OceanView 软件中将积分时间设置为5 ms,多次扫描平均为25。测试结果如图4所示。图4 使用 NIRQuest+1.7测试聚丙烯的漫反射率。如何处理近红外测试数据?通过采集的近红外光谱数据,可构建强大的数学模型,但不同物质的数学模型不同。近红外光谱提供了丰富的样本信息,前提是拥有分析这些数据的“工具”。例如,主成分分析是一种化学计量分析方法,可根据样品的光谱特征进行分组和分类。随着塑料品的消费量不断增大,废旧塑料品也不断增多,给生态平衡带来了很大影响。基于光谱学技术,回收商可简化塑料分拣流程,提高运营成本效益,为环境可持续发展做出贡献。本文来源:海洋光学
  • GB/T 8323 烟密度试验方法标准修订说明
    GB/T 8323标准,适用于测试塑料燃烧所产生烟雾的比光密度,并以最大比光密度为测试结果。我国标准GB/T 8323标准初始版本为1987年颁布,历时20余年,其标准仿效为美国ASTM E662标准,所测试指标为比光密度、最大烟密度,采用的热辐射源为辐射炉装置,试样为悬挂式安装方式,辐射炉所产生热辐射值为25KW/m2,通过有焰及无焰燃烧方式,配合相应的光路,测定材料的比光密度及最大烟密度。 2008年12月30日,新版GB/T 8323标准颁布,所采纳标准为ISO 5659-2标准,其加热装置更改为辐射锥,所产生的热辐射值为50KW/m2,试样安装方式为水平状态。其修改目的主要适用于热膨胀性试样,同时在光路中对于接受传感器指定使用光电倍增管。 我们可试看以下标准修订后的区别 标准 GB/T 8323-1987 GB/T 8323-2008 对应标准 ASTM E662 ISO 5659-2 试样安装方式 悬挂式 水平放置 加热方式 辐射炉 加热锥 热辐射通量 25 KW/m2 50 KW/m2 明燃火焰 6头燃烧器 单头燃烧器 测试指标 比光密度、最大烟密度 比光密度、最大烟密度、质量烟密度 光电器件 光电倍增管或硅光电池 光电倍增管 透过率精度 0.0001% 0.00001% 从以上比较可以看出,新版的GB/T 8323标准对光路以及加热装置提出了更高的要求,同时对于易产生融滴、热变形产品更能准确的进行测试,同时增加了质量光密度的测试指标。 www.motis-tech.com
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制