包覆位于金纳米棒

仪器信息网包覆位于金纳米棒专题为您提供2024年最新包覆位于金纳米棒价格报价、厂家品牌的相关信息, 包括包覆位于金纳米棒参数、型号等,不管是国产,还是进口品牌的包覆位于金纳米棒您都可以在这里找到。 除此之外,仪器信息网还免费为您整合包覆位于金纳米棒相关的耗材配件、试剂标物,还有包覆位于金纳米棒相关的最新资讯、资料,以及包覆位于金纳米棒相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

包覆位于金纳米棒相关的资料

包覆位于金纳米棒相关的论坛

  • 包覆纳米金属颗粒的中空碳纳米管

    包覆纳米金属颗粒的中空碳纳米管

    两个问题,大家讨论:仪器:Zeiss场发射扫描电镜Merlin(1)如图所示为包覆纳米Fe的中空碳纳米管,5kV加速电压下SE检测器下能看到包覆的纳米Fe,In-lens检测器为什么含有Fe的部位呈现暗黑色?http://ng1.17img.cn/bbsfiles/images/2014/08/201408032120_508940_1872735_3.jpg http://ng1.17img.cn/bbsfiles/images/2014/08/201408032120_508941_1872735_3.jpg(2)提高加速电压后,In-lens检测器下能很好的分辨出Fe在纳米管中的包覆情况。 http://ng1.17img.cn/bbsfiles/images/2014/08/201408032122_508943_1872735_3.jpg http://ng1.17img.cn/bbsfiles/images/2014/08/201408032122_508942_1872735_3.jpg(3)SE检测器和ESB检测器的效果比较http://ng1.17img.cn/bbsfiles/images/2014/08/201408032129_508944_1872735_3.jpg http://ng1.17img.cn/bbsfiles/images/2014/08/201408032129_508945_1872735_3.jpg

  • 请大家帮忙分析一下金纳米棒的HRTEM图像,谢谢,谢谢!

    请大家帮忙分析一下金纳米棒的HRTEM图像,谢谢,谢谢!

    本人最近做了一次金纳米棒的高分辨透射电镜,进行了傅里叶变换,尝试着标记了一下晶面,但是,不知道对否,而且,标定好花样之后怎么确定生长方向还有周围暴露的晶面呢,想了很久始终想不明白,请高人指点一下,谢谢,谢谢!http://ng1.17img.cn/bbsfiles/images/2016/12/201612061431_01_1606080_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/12/201612061431_02_1606080_3.jpg

  • 【求助】为什么用SEM看不到金纳米棒的图象啊?

    金棒是用普通的合成方法,CTAB包被的金种调制合成,将其直接滴在乙醇浸泡过的铝箔上,室温晾干,放在场发射SEM(Hitachi S-4800),却看不到一个金纳米棒啊?怎么回事?急啊,请各位支招!感激涕零!

包覆位于金纳米棒相关的方案

  • 天津兰力科:PbSe 纳米棒的模板合成及其性质
    在表面活性剂十六烷基三甲基溴化铵(CTAB) 存在下,利用N2H4 H2O 还原H2SeO3 合成出单质硒纳米管,然后以硒纳米管为模板,与Pb(NO3 ) 2 和N2H4 H2O 在常压低温下反应,制备了PbSe 纳米棒。采用电子透射电镜、X射线衍射等方法对产物进行了表征。探讨了PbSe 纳米棒的形成机理和制备反应的影响因素。测定了产物的荧光性质,并利用电位扫描伏安法研究了所得PbSe 纳米棒的电化学性质。结果表明,所得产物在碱性介质中电化学活性较高,在循环伏安曲线上出现明显的氧化峰和还原峰。
  • 天津兰力科:盐酸和磺基水杨酸共掺杂聚苯胺/凹凸棒黏土纳米复合材料的制备与表征
    用快速原位聚合工艺制备了盐酸(HCl)和磺基水杨酸(sulfosalicylic acid,SSA)共掺杂聚苯胺(polyaniline,PANI)/凹凸棒黏土(attapulgite,ATP)纳米复合材料(HCl–SSA–PANI/ATP),用热重–差热分析、X 射线衍射、Fourier 红外光谱、紫外–可见光谱、透射电镜、循环伏安法和Raman 光谱等对所得的复合材料进行了表征。结果表明:HCl 和SSA 所组成的混合酸溶液能快速促进苯胺聚合和PANI 掺杂反应。反应15 min,所制得的纳米复合材料的体积电阻率可达2 Ω· cm。HCl–SSA–PANI 以晶态形式包覆在ATP 表面,形成核壳棒状纳米结构,包覆层厚度在3 nm 左右。纳米复合材料中HCl–SSA–PANI 的包覆率约为27.79%,与纯HCl–SSA–PANI 相比,其耐热性得到了提高,且具有较高的电化学活性。纳米复合材料中由对位聚合生成的HCl–SSA–PANI 为翠绿亚胺结构,其与ATP 之间存在物理作用。
  • 细胞表面增强拉曼散射信号与LA-ICP-MS测得的金纳米粒子聚集的关联研究(英文原文)
    细胞对暴露的纳米颗粒反应在各种环境中都是必不可少的,尤其是在纳米毒性和纳米医学中。这里,14纳米金纳米粒子在3T3成纤维细胞在一系列脉冲追踪实验研究了30分钟孵化脉冲和追逐时间从15分钟到48小时。里面的金纳米粒子及其聚合量化细胞超微结构的激光烧蚀电感耦合等离子体质谱法,可以用于评估表面增强拉曼散射(SERS)信号。通过这种方法,可以分别获得它们在微米尺度上的定位信息和它们的分子纳米环境,并且可以将它们联系起来。因此,纳米颗粒从细胞内摄取、细胞内加工到细胞分裂的路径是可以遵循的。结果表明,细胞内纳米粒子及其积聚和聚集支持高SERS信号的能力与纳米粒子的数量和高局部纳米粒子密度没有直接关系。SERS数据表明,细胞内聚集的几何形状和粒间距离必须在内体成熟过程中发生变化,并对特定的金纳米粒子类型起关键作用,才能成为高效的SERS纳米探针。这一发现得到了TEM图像的支持,它只显示了一小部分具有小颗粒间距的团聚体。经过不同的捕集时间后得到的SERS光谱显示,金纳米粒子内体加工后,其生物分子电晕的组成和/或结构发生了变化。

包覆位于金纳米棒相关的资讯

  • 国家纳米中心非形状依赖对称性纳米棒组装研究获进展
    style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style p   微纳加工方法分为“自上而下”和“自下而上”两种基本类型。前者是目前广泛应用于微纳加工领域的主流技术,但其由于受到物理极限的制约,一般加工分辨率在几十纳米量级上。后者则可在更小的尺度(包括分子尺度)上实现加工,被认为是一种突破物理限制的有效途径。然而,“自下而上”的组装方法由于科学认知和实验技术的不足,导致其在低缺陷、大面积、组装过程、组装结构等四个方面存在持续的挑战。相对而言,组装结构面临的障碍最大。这其中最重要问题是如何实现组装对称性的可调控,组装对称性可调控对于组装结构多样性和组装体功能的丰富至关重要。一般而言,由于形状互补性,组装结构对称性受到组装单元的形貌限制,四方单元易于形成四方密排结构,而球型则形成六方密排对称结构。由于在组装动力学过程中组装单元间的复杂力平衡和热力学最小原理的要求,打破形状依赖的组装结构对称性或是难以实现的目标。 /p p   中国科学院国家纳米科学中心和中科院纳米科学卓越中心刘前课题组与吴晓春课题组、邓珂课题组,以及美国科罗拉多大学Ivan I. Smalyukh课题组合作,通过引入一种新概念的主导控制力,首次实现了纳米金棒的四方对称性组装,一举突破了一直以来八面体金棒只能是形状依赖的六方对称结构的实验结果。这一结果在八面体银和钯纳米棒上也得到了实现,展示了这种方法的普适性。多尺度模拟计算进一步揭示这种控制力主导了非形状依赖的组装过程,并解释了四方对称比六方对称具有更高的热力学稳定性的实验结果。这一方法开辟了打破形状依赖组装对称性的新途径,为组装结构的多样性和纳米材料组装结构的可设计、可控提供了有力工具,将为推动纳米组装技术的进步提供助力。 /p p   该项工作是刘前课题组前期研究的进一步拓展,相关研究结果在线发表在《自然· 通讯》上,研究工作获得了国家重点研发计划纳米科技重点专项、中科院战略性先导科技专项A、国家基金委和欧盟项目的支持。 /p p br/ /p p style=" text-align:center " img alt=" " oldsrc=" W020171116335815903956.jpg" src=" http://img1.17img.cn/17img/images/201711/uepic/363e43be-098e-40e6-9983-f0fef4b2e479.jpg" uploadpic=" W020171116335815903956.jpg" / /p p style=" text-align: center " 多尺度模拟计算揭示四方对称的主导控制力和更小的热力学势能 /p
  • 银纳米棒簇有序阵列构筑及SERS检测水中农药残留研究获进展
    近期,中国科学院合肥物质科学研究院固体物理研究所研究员孟国文小组与美国西弗吉尼亚大学教授吴年强小组及技术生物与农业工程研究所研究员黄青小组合作,在银纳米棒簇有序阵列构筑及基于其表面增强拉曼散射(SERS)效应检测水中农药残留方面取得进展,相关成果以卷首插画论文发表在《先进材料》(Adv. Mater. 2016, 28, 4871-4876)上。  拉曼散射光谱能够提供分子振动的指纹信息,是化学、生物、环境等领域中最具应用前景的分析技术之一。然而拉曼散射效应非常微弱,拉曼散射光强度约为入射光强度的10-6~10-9,所以需要利用贵金属纳米结构SERS基底来大幅度增强拉曼散射信号。对于理想的SERS基底,首先应具有高密度的“热点”(一般位于  该团队副研究员朱储红利用多孔阳极氧化铝和单层胶体球构成的复合模板,采用电沉积法成功构筑了银纳米棒簇有序阵列。这种分级有序纳米结构阵列的SERS增强因子高达108,并具有较好的信号均匀性和重现性,其信号特征峰强度的相对标准偏差小于10%。时域有限差分法模拟结果表明,相邻纳米棒顶端之间约2纳米宽的间隙内,具有强电磁场耦合产生的“热点” 该有序阵列的高增强因子正是源于这些密集分布的“热点”。采用该SERS基底能够同时检测水中多种痕量农药,例如甲基对硫磷和2,4-二氯苯氧乙酸等。该工作为大面积、可重复制备高度有序的纳米棒簇阵列提供了一种低成本的简便方法。相关研究结果表明银纳米棒簇有序阵列在基于SERS效应检测水中农药残留方面具有重要的应用前景。  相关工作得到国家重点基础研究发展计划、“中国科学院、国家外国专家局创新团队国际合作伙伴计划”和国家自然科学基金等项目的支持。  文章链接  图1. 卷首插画  图2. 银纳米棒簇有序阵列同时检测水中的甲基对硫磷和2,4-二氯苯氧乙酸得到的SERS光谱。曲线I:水中0.3μ M甲基对硫磷和2μ M的2,4-二氯苯氧乙酸混合农药的SERS光谱 曲线II:0.3μ M甲基对硫磷的SERS光谱 曲线III:2μ M的2,4-二氯苯氧乙酸的SERS光谱。
  • 纳米孔测序技术有望颠覆DNA测序市场
    p /p p style=" TEXT-ALIGN: center" img src=" http://img1.17img.cn/17img/images/201711/uepic/1912aaae-6c47-454e-9f5f-1d6a5c9540a3.jpg" / /p p style=" TEXT-ALIGN: center TEXT-INDENT: 2em" Scott Tighe(左)等研究人员利用MinION设备在南极泰勒谷测序微生物DNA。 /p p style=" TEXT-ALIGN: center TEXT-INDENT: 2em" 图片来源:Sarah Johnson /p p style=" TEXT-INDENT: 2em" Christopher Mason有一个喜欢在会议上展示的技巧。通过从志愿者手机上收集的化验样本获取DNA,他和同事能在一个小时内现场进行谱系分析,甚至详细描述出捐赠者一天的生活细节。“我们能从手机上的残留物预言谁刚吃了一个橘子或者谁吃了猪肉。”美国纽约威尔康奈尔医学院计算生物学家Mason表示。 /p p style=" TEXT-INDENT: 2em" 他通过利用一种由英国牛津纳米孔技术公司(ONT)研发、名为MinION的手持测序设备实现了这种快速分析。MinION会让DNA长链穿过被称为纳米孔的小孔,并且探测由DNA的4个核苷酸组件引发的电流微小变化,从而阅读序列信息。虽然Mason的展示是对该设备性能的轻松说明,但早期用户也积累了一些引人注目的科学成就。MinION在监控2015年埃博拉病毒爆发上扮演了举足轻重的角色,乘船到达过南极甚至进入了太空轨道。 /p p style=" TEXT-INDENT: 2em" 不过,大小和一幅扑克牌相当的MinION仅在全球测序市场上占据了一小部分份额。这个市场仍由位于加州圣地亚哥的启迪公司主导。虽然启迪领先了近10年,但ONT及其用户也正在努力克服技术挑战——最突出的挑战是较高的出错率。与此同时,竞争的企业希望对这种概念上很简单但技术上很复杂的测序策略稍加创新,从而超越ONT。 /p p style=" TEXT-INDENT: 2em" strong 在传染病研究人员中最受欢迎 /strong /p p style=" TEXT-INDENT: 2em" 事实证明,MinION在传染病研究人员中尤其受欢迎。例如,伯明翰大学微生物基因学家、MinION早期采用者Nicholas Loman同全球病毒“热点区域”的同行合作,共同监控埃博拉在西非以及寨卡在巴西的传播。“他们基本上能在48小时内建立一个测序实验室并使其运行,并且可以把设备打包装到能携带的行李箱里。”加州大学生物物理学家Mark Akeson表示。Akeson开展了纳米孔测序法方面的一些基础性研究,并且是ONT咨询委员会成员。Loman表示,这种可携带性是一种巨大的优势,但大量的数据输出可能会难以掌控。“我们在巴西几乎要成功了,但因为设备过热,我的苹果电脑崩溃了。” /p p style=" TEXT-INDENT: 2em" 一些团队正在探寻临床微生物学应用。澳大利亚昆士兰大学生物信息学家Lachlan Coin开发了实时数据分析算法,以便检测血液样本中的耐药细菌。在利用培养细菌开展的早期测试中,Coin团队能在10个小时内辨别出一个样本中的所有抗药基因。Coin介绍说,现在的技术能让这一时间减半,但利用真实样本(人类DNA会将细菌DNA淹没)的做法正在令这一过程复杂化。“我认为,再过一年左右,我们将能在6个小时内辨别出病人样本中的抗药基因。” /p p style=" TEXT-INDENT: 2em" 其他研究人员正在探寻宏基因组学,目标是全面描述样本中的所有生物体。原则上,流动细胞中的每个纳米孔都能被用于同时检测不同的基因组。“你可以获得存在的任何物种——细菌、病毒和人类DNA的完整基因图谱。”Mason介绍说。他利用纳米孔测序对因肮脏出名的纽约地铁系统开展了宏基因组学调查,并且雄心勃勃地计划对更加荒凉的环境——包括火星进行分析。Mason同美国宇航局的科学家合作证实,MinION在国际空间站零重力条件下表现良好。他和同事希望,有一天能将该技术用于研究火星,并且为正在进行的寻找地外生命提供帮助。 /p p style=" TEXT-INDENT: 2em" 回到地球,佛蒙特大学遗传学家Scott Tighe在南极麦克默多干河谷运行了MinION。在那里,他的团队用了两个多小时对微生物样本进行了测序。“设备停止运行的原因在于外面太冷了:电池到最后没电了。”同Tighe就若干项目有过合作的Mason解释说。 /p p style=" TEXT-INDENT: 2em" strong 瞄准哺乳动物基因组 /strong /p p style=" TEXT-INDENT: 2em" 诸如美国国家人类基因组研究所所长Adam Phillippy等纳米孔方面的资深专家将微生物基因组组装视为“一个已经解决的问题”。如今,他们有了更高远的目标:含有数十亿个而非几百万个核苷酸的哺乳动物基因组。今年,一个包括Phillippy、Loman和加拿大安大略癌症研究所生物信息学家Simpson在内的研究团队报告称,他们仅利用达到很高准确度的MinION数据便组装了完整的人类基因组。Simpson介绍说,平均的重叠群大小达到百万碱基级别,精度值最高为99.44%。搭配使用启迪公司的短序列技术,该团队将准确度提升至99.96%,尽管这仍落后于99.99%的金标准准确度。 /p p style=" TEXT-INDENT: 2em" 不过,在人类基因组分析的其他方面,纳米孔要更加擅长。例如,目前的人类基因组组装仍不完整,因为高度重复的区域对短序列分析“并不感冒”。一个由加州大学基因组学研究人员Karen Miga领导的团队证实,纳米孔能帮助研究人员填补这些空白。Miga团队利用150千碱基对序列重构了人类着丝点,即真核生物染色体上高度重复的基因组。对该领域的研究此前是一片空白。同Miga开展合作的Akeson预测,离组装出真正完整的基因组序列可能仅有几年时间。 /p p style=" TEXT-INDENT: 2em" 纳米孔分析还非常适合绘制外基因标记——对单个核苷酸进行的微小化学修饰,会影响基因表达。大多数测序平台利用的是清除这些标记的样品制备方法,但纳米孔平台可直接分析修饰的DNA。Simpson和来自约翰斯· 霍普金斯大学的Winston Timp证实,他们能训练软件区分甲基化胞苷酸和正常胞嘧啶的电信号,准确度约为90%。Akeson也实现了类似的成功。“我们能探测到任何试图看到的修饰。”Akeson表示,“它甚至能区分两个氢原子之间的差别。” /p p style=" TEXT-INDENT: 2em" strong 更多期待 /strong /p p style=" TEXT-INDENT: 2em" 不过,一些用户发现,纳米孔样本准备工具具有不可预知性。例如,一些DNA样本需要广泛的优化。“一些人做得非常好并且获得了惊人的成果,但其他人仍在挣扎。”位于马萨诸塞州的药物研发公司Warp Drive Bio首席科学家Keith Robison 表示。在去年12月的一次演讲中,ONT首席科技官Clive Brown宣称:“公司正在投入很多努力,为人们提供针对特定样本类型的调试协议,从而帮助他们优化获得的样本。” /p p style=" TEXT-INDENT: 2em" 诸多问题为竞争者带来了机遇。跟得最紧的是位于瑞士的罗氏公司。2014年,该公司并购了总部位于加州的纳米孔初创企业——珍妮亚技术公司。虽然罗氏公司对它的系统秘而不宣,但珍妮亚公司在2016年公开的一份文件中描述了“通过合成开展纳米孔测序”的策略。该技术将DNA合成酶同蛋白纳米孔配对。这种酶会读取目标DNA,并且利用带有化学标签的核苷酸建立互补序列。在每个碱基被包括进不断延长的DNA链时,它的标签被释放并穿过纳米孔,从而产生不同的电信号。 /p p style=" TEXT-INDENT: 2em" 不过,ONT并未止步不前。和此前的模型相比,其两个最新的桌上型系统能传送大很多的数据量。在今年3月发布的GridION基本上可并行运行多个MinION设备。相比之下,PromethION利用的是一种完全不同的流动细胞,并且面向的是人类基因组规模的项目。“很明显,他们想让该系统在输出量方面同启迪公司的平台相媲美。”Loman表示。 /p p style=" TEXT-INDENT: 2em" 虽然该领域取得了很多进展,但不容否认,纳米孔测序占据了支配地位。其低成本、可靠测序的前景令研究人员兴奋不已。“作为计算机科学家,我总是非常渴望数据。”Phillippy表示,“所有微生物学实验室和大学课堂都能产生测序数据的想法非常诱人。”& nbsp /p

包覆位于金纳米棒相关的仪器

  • 微纳米气泡曝气技术是指将微纳米气泡发生技术应用于水处理中曝气,是近年来发展的一种高效环保水处理技术。相较于普通大气泡,微纳米气泡具有独特的物理化学特性,如比表面积大、表面带电荷、水体中存在时间长、气液传质率高、界面点位高、能自发产生自由基等。在水处理中常应用于悬浮物的吸附去除、难降解有机污染物的氧化分解、向水体复氧促进生物活性以及减少底泥内源污染等方面微纳米曝气技术在黑臭河道治理中改善水质的作用包括:(1)污水中悬浮物的吸附去除,由于微纳米气泡表面带电荷且ζ电位高,对污水中的油类以及悬浮物就有优越的吸附效果,对于COD、氨氮及TP也具有较好的去除效果,从而减少水中有机质,使水体透明度明显提高,改善水色。(2)促进生物净化功能,向污染的缺氧水域中进行微纳米气泡曝气时,随着气泡内溶解氧的消耗不断向水中补充活性氧,可增强水中好氧微生物、浮游生物以及水生动物的生物活性,加速其对水体及底泥中污染物的生物降解过程,实现水质净化目的。(3)难降解有机污染物的强化分解,微纳米气泡破裂时能释放出的大量的羟基自由基,具有氧化性,可分解很多有机污染物,为了促使微气泡在水中能够产生更多的羟基自由基,常采用其它强氧化手段进行协同作用,如紫外线、纯氧以及臭氧等强氧化手段,以更好地发挥对废水中有机污染物的氧化分解作用。(4)减少底泥内源污染,微纳米气泡曝气使得河湖底质表层含氧量增加,好氧微生物代谢活动趋强,有效抑制湖底厌氧菌的有机质分解过程,减少水底氮、磷营养盐的释放量,阻断内源污染。
    留言咨询
  • 棒销卧式砂磨机从字面上理解,首先从外形上来说是一款卧式砂磨机(相对于立式砂磨机而言)。其次,从内部结构上来看,其内部结构为棒销式结构(相对盘式结构而言)。相对于其他砂磨机而言棒销式砂磨机在于,它更适用于中低黏度、流动性较好的微米级和纳米级粒径需求的物料的工业级生产,新型棒销砂磨机在分散棒销材质,棒销/棒销排布,筛网过滤面积等方面有所改进,相比于传统砂磨机更加适用于工业级大生产环境下的纳米级研磨要求,研磨效率及成品产量均有显著提升。 要是单独说棒销式砂磨机的优势,就是他的研磨精度更细,因为它采用的转子结构是棒销形式的,能够使研磨介质和物料充分接触,并产生强劲的摩擦力和剪切力,能够将物料充分研磨和分散,达到纳米级的细度要求,常应用于油墨、喷墨、油漆、染料、颜料、填料、药品、化妆品等行业。 鹏翼机械BS棒销式高效纳米砂磨机采用先进的研磨技术对高粘度产品进行超精细研磨,具有研磨效率高、产量大、能耗低等特点,广泛应用于涂料,油漆,油墨等化工行业。 棒销式砂磨机工作原理棒销式砂磨机原理介绍,首先利用料泵将经过搅拌机与分散润湿处理后的固-液相混合物料输入筒体内,物料和筒体内的研磨介质一起被高速旋转的分散器搅动,从而使物料中的固体威力和研磨介质相互间产生更加强烈的碰撞、摩擦、剪切作用,达到加快磨细微粒和分散聚集体的目的。研磨分散后的物料经过动态分离器分离研磨介质,从出料管流出。鹏翼机械BS棒销式高效纳米砂磨机主要特点紧凑的结构设计,操作便捷,实用美观;棒销式结构设计,转子棒销对研磨介质产生强烈的撞击作用于物料,对物料进行强行的研磨和分散达到对物料的快速精细研磨。先进的大流量分离筛结构,保证高效生产,不发生堵塞;集成式双端面机械密封,可根据物料特性选择润滑剂;高端研磨膜内筒及分散器可方便更换,材质有合金钢、陶瓷、高分子、不锈钢等多种选择;螺旋式水循环通道、多部位冷却水设置,散热性能好;全防爆按钮操控和科学化的PLC触屏操控可选择;进料压力、出料温度、机封润滑油箱液位等多部位安全控制。 各种规格型号的设备都有,还可以根据客户要求进行定制生产。型号Model项目ItemBS-5BS-10BS-20BS-30BS-60BS-100筒体有效容积率Tank effective volume (L)4.89.220295898主电机功率Main Motor Power (KW)5.57.5303745-5575主轴转速 Main shaft Speed (r/min)144012731120838694533物料粘度Product Viscosity (Pa.s)≤30≤30≤30≤30≤30≤30研磨介质装入量Grinding Media Quantity (L)2.7-3.33.9-5.510-13.514.4-20.523-32.644.7-63.37研磨珠粒径范围Grinding Media Diameter (mm)0.6-1.50.8-2.50.8-2.50.8-2.50.8-2.50.8-2.5生产量Product Capacity (kg)10-10030-30040-40050-50070-700120-1200空气消耗量Air Consumption (m3/h)0-0.30-0.40-0.50-0.60-0.60-1.5耗水量 Water Consumption (m3/h)0.50.81.21.522.5进料管径Feed tube diameterG3/4,,G3/4,,G1,,G1,,G1,,1/2G1 1/2,,出料管径Discharge tube diameterG1,,G1,,G1,,G1 1/2,,G2,,G2,,冷却水管径 cooling tube G3/8,,G3/8,,G1/2,,G1/2,,G1/2,,G1/2,,整机重量Weight (T)约1约1.2约1.3约2约2.6约3外形尺寸 Measurement (L*W*H,mm)900×700×9501250×800×13501460×860×15801560×900×14201620×1000×15502000×1200×1850 设备材质种类齐全,根据物料特性以及色度,纯度要求,配备相应的部件。 (■标配/◎可选)(■Standard/◎Optional)全防爆Full Ex-proof■筒体材质outer Grinding chamber304◎A3■筒体内胆材质 Inner Grinding chamber聚氨酯polyurethane◎碳化硅silicon carbide◎合金钢■泵Pump齿轮泵 Gear pump◎隔膜泵Pneumatic diaphragm pump■PLC西门子Siemens◎国产Domestic■ 鹏翼机械BS棒销式高效纳米砂磨机广泛应用于各种行业,如电池行业:磷酸铁锂电池正极材料等。数码耗材:数码喷墨墨水等。陶瓷材料:氧化铝、氧化锆、碳化硅等。矿物颜料:钛白粉、碳酸钙、氧化铁等。医药制剂行业等。
    留言咨询
  • 一、砂磨机介绍①什么是砂磨机?湿磨砂磨机是一种将粉末精制到纳米级的机器。通过在研磨机中与研磨珠一起搅拌来粉碎分解分散液体中的粉体(浆料)。 ②使用砂磨机来使颗粒更细,到底会有什么样的作用呢? ③可使用到砂磨机的产品: ④砂磨机中发生了什么? ⑤砂磨机和球磨机的比较 ⑥单桶循环彩图/双桶循环彩图 ⑦砂磨机的工作原理:砂磨机属于湿法超细研磨设备,,是从球磨机发展而来,广泛应用于超细粉体(亚微米、纳米级粉体)的生产过程中。砂磨机有不同的分类方式:根据搅拌轴的结构形状可分为盘式、涡轮式、棒销式 根据研磨筒的布置形式可以分为立式,卧式 也可根据筒体容积大小区分。 ⑧砂磨机的发展历程砂磨机发展大概经历了以下几个阶段:第一阶段:立式搅拌磨〔棒式+底部筛网分离器)第二阶段:立式盘式砂磨机(盘式+顶部筛网分离器)第三阶段:立式棒销砂磨机(棒式+顶部缝隙分离器)第四阶段:卧式盘式砂磨机(盘式+动态间隙分离器)〔棒式+大过滤面积分离器)第五阶段:立式棒销砂磨机(棒式+无晒网离心分离)适用于小批量生产卧式棒销砂磨机(棒式+大过滤面积分离器)(棒式+无晒网离心分离)适用于大批量生产 ⑨砂磨机的主要指示A、砂磨机的流量:影响产品细度,产量以及粒度分布。B、搅拌轴线速度:影响研磨效率,物料细度及磨损。线速度大小影响研磨介质施加给物料颗粒的动能强度,一般为8-16m/s。C、介质尺寸:影响研磨效率,产品细度。介质径越小,磨球之间接触点多和接触间隙越小,理论上研磨物料粒径越小,但是还要取决于物料进料粒径等多方面因素,总之合适尺寸的研磨介质,研磨合适粒径的物料。D、介质填充率:影响研磨效率,产品细度。研磨介质装填率高,研磨效率高,但是过高装填率会引起砂磨机温升过高或者出口堵塞。研磨介质装填率过低,研磨效率低,磨损加剧,研磨时间延长 合适的装填率质量计算法=砂磨机有效容积×装填率(70-85%)×介质堆积密度)。E、介质比重:影响研磨效率。产品细度。介质比重越大,动能越大,研磨效率越高。F、分离间隙尺寸:分离器的结构及缝隙宽度决定研磨介质尺寸大小。一般情况下研磨介质直径为砂磨机分离器缝隙宽度的2-4倍。 二、产品说明MQ-B10~B60高效棒销式纳米砂磨机是一款新型大流量循环砂磨机,是目前超细研磨设备的精华。采用循环砂磨工艺或多次研磨工艺能提高产能,产品颗粒级配分布得以优化。稍加一些控制功能,可保证产品的可复制性及节约成本.大尺寸转子加上筒状缝隙式分离器,使该型设备可使用不同材质小粒径磨介。对于有避免金属污染要求的物料,可采用陶瓷(碳化硅、氮化硅、氧化锆) 及聚氨酯结构材料。主要适用于锂电材料(磷酸铁锂、硅碳负极等)、硅微粉、氧化锆、氧化铝、硅酸锆、电子陶瓷、农药悬浮剂、磁性材料、墨水涂料、医药食品、生物化工及其他纳米级材料领域。 三、主要特点满足相关行业的湿法纳米研磨,清洗方便,维护简单,效率高、产量大、能耗低,控制简单。 四、主要技术参数 ◆适合细度:1um-50nm◆磨介尺寸:≥0.1mm
    留言咨询

包覆位于金纳米棒相关的耗材

  • 纳米单晶硅衬底2D线性纳米棒LIGHTSMYTH
    纳米单晶硅衬底2D线性纳米棒LIGHTSMYTH屹持光电提供各种纳米单晶硅衬底2D线性纳米棒,为工业和科研提供低成本的纳米光子学研究。基板可用于光学、生物学、化学、物理学(例如中子散射)、聚合物研究、纳米压印、微流体等各种应用。如果需要,可以用金属或介电涂层涂覆基底。大多数表面特征具有略微梯形的横截面轮廓,具有直平行台面和沟槽。也可以使用格状结构。提供多种特征尺寸和沟槽深度。可以在发货之前拍摄基板的SEM图像以验证确切的轮廓。表中显示的尺寸代表目标值。周期的精度优于0.5%,而沟槽深度和线和空间的宽度可能与目标值相差15%。SEM用于说明目的。可定制更精确尺寸信息。 纳米单晶硅衬底2D线性纳米棒LIGHTSMYTH规格描述值 基材宽度和高度公差标准公差±0.2 mm通光孔径(CA)距基板边缘0.5 mm(图案可延伸至基板边缘)基材厚度0.675±0.050mmCA表面质量P / N “-P”:60/40,最高20/10CA表面质量P / N “-S” :80/100CA外表面质量无要求材料单晶硅,反应离子蚀刻 1、线性纳米棒(线+间隔)P/N周期(nm)凹槽深度(nm)工作周期1线宽度2(nm尺寸3(mm)SNS-C72-1212-50-P1395050%69.512.5×12.5×0.7SNS-C72-2525-50-P13950 50%69.525×25×0.7 5SNS-C36-1212-110-P27811050%13912.5×12.5×0.7SNS-C24-1212-110-P416.611050%20812.5×12.5×0.7SNS-C20-0808-150-D45-P50015044%2208×8.3×0.7SNS-C20-0808-350-D45-P50035044%2208×8.3×0.7SNS-C20-0808-150-D60-P50015060%3008×8.3×0.7 SNS-C20-0808-350-D60-P50035060%3008×8.3×0.7SNS-C18-2009-110-D50-P555.511050%27820×9×0.7SNS-C18-2009-140-D50-P555.514050%27820×9×0.7SNS-C18-2009-110-D29-P555.511029%15820×9×0.7SNS-C18-2009-140-D29-P555.514029%15820×9×0.7SNS-C16.7-0808-150-D45-P60015043%2608×8.3×0.7SNS-C16.7-0808-350-D45-P60035043%2608×8.3×0.7SNS-C16.7-0808-150-D55-P60015055%3308×8.3×0.7SNS-C16.7-0808-350-D55-P60035055%3308×8.3×0.7SNS-C16.5-2912-190-P60619050%30329×12×0.7SNS-C16.5-2912-190-S 460619050%30329×12×0.7SNS-C16.5-2924-190-P60619050%30329×24.2×0.7 5SNS-C14.8-2410-170-P67517032%21824×10×0.7SNS-C14.8-2430-170-P67517032%21824×30.4×0.7 5SNS-C14.3-0808-150-D45-P70015047%3308×8.3×0.7SNS-C14.3-0808-350-D45-P70035047%3308×8.3×0.7SNS-C14.3-0808-150-D55-P70015055%3758×8.3×0.7SNS-C14.3-0808-150-D55-P70015055%3758×8.3×0.7SNS-C12-1212-200-P833.320050%41612.5×12.5×0.7SNS-C12-2525-200-P833.320050%41625×25×0.7 5SNS-C11.7-1212-200-P85520050%42812.5×12.5×0.7SNS-C11.7-2525-200-P85520050%42825×25×0.7 5纳米单晶硅衬底2D线性纳米棒LIGHTSMYTH1 占空比表示线(台面)宽度与周期的比率。2 表示台面的宽度值。3 第二维对应于凹槽长度。4 以“-S”结尾的是“科研”等级。它至少有80%的可用面积。可能存在高达80/100表面质量值。5 可提供更大的自定义尺寸 2、2D纳米图案(矩形和六边形网格)P/N周期(nm)格子类型凹槽深度特征宽度(nm)尺寸(mm)S2D-24B3-0808-150-P700矩形1502608×8.3×0.7S2D-24B3-0808-350-P700矩形3502608×8.3×0.7S2D-18B3-0808-150-P700矩形1503508×8.3×0.7S2D-18B3-0808-350-P700矩形3503508×8.3×0.7S2D-24C2-0808-150-P600六角1501658×8.3×0.7S2D-24C2-0808-350-P600六角3501658×8.3×0.7S2D-18C2-0808-150-P600六角1502408×8.3×0.7S2D-18C2-0808-350-P600六角3502408×8.3×0.7S2D-24C3-0808-150-P700六角1502208×8.3×0.7S2D-24C3-0808-350-P700 六角3502208×8.3×0.7S2D-18C3-0808-150-P700 六角1502908×8.3×0.7S2D-18C3-0808-350-P700六角3502908×8.3×0.7S2D-24D2-0808-150-P600六角孔1501808×8.3×0.7S2D-24D2-0808-350-P600六角孔3501808×8.3×0.7S2D-18D3-0808-150-P700六角孔1502008×8.3×0.7S2D-18D3-0808-350-P700六角孔3502008×8.3×0.7S2D-24D3-0808-150-P700六角孔1502908×8.3×0.7S2D-24D3-0808-350-P700六角孔3502908×8.3×0.7 rect post hex post hex hole 相关产品: 脉冲压缩透射光栅高功率光束组合光谱衍射光栅 光通信透射衍射光栅 纳米单晶硅衬底2D线性纳米棒
  • 纳米位移平台
    纳米位移平台,真空纳米位移台由中国领先的进口光学精密仪器旗舰型服务商-孚光精仪进口销售,先后为北京大学,中科院上海光机所,中国工程物理研究院,航天3院,哈工大,南开,山东大学等单位提供优质进口的纳米位移平台,真空纳米位移台,纳米位移台.这款纳米位移平台是美国进口的高速高精度真空纳米位移台,它采用先进技术设计, 具有单轴或精密的双轴配置两种选择, 适合高真空环境和非磁性定位应用.美国进口高精度低价格系列纳米定位台,采用了陶瓷伺服电机驱动,非常适合要求精度达到纳米或压纳米的高精度和高重复精度的应用,例如:精密生命科学仪器、显微成像、纳米准直、微纳加工、光学精确定位等。X-TRIM 系列纳米位移台特色 10nm分辨率非接触线性编码系统双驱动任选:线性伺服或压电驱动高密度滚珠传导增加稳定性超紧凑的单轴或双轴纳米位移台紧凑型封装可真空使用超强工作能力,大吞吐量采用无铁芯直接驱动直线电机,驱动轴位于纳米位移台的中心线, 这种设计消除了非中心驱动导致的偏航,空回等问题.纳米位移台集成了一个高分辨率(12.5nm)非接触式线性编码器,它为闭环的伺服系统工作操作提供了精密反馈, 它的标准配置就可以提供纳米精度的定位.纳米位移平台使用能够了精密的滚珠导向系统确保了位移平台高精度性能和严格的轨迹控制。纳米位移平台也适合OEM使用,它具有较低抛面和较小尺寸,采用模块化设计,用户可堆叠使用创建多轴多部件系统。这款纳米位移平台使用了非接触式直接驱动技术,提供坚固,精确,高速的定位,满足高频率大工作量的需要。纳米定位平台使用了先进的无铁直线电机直接确定技术,确保最优异的纳米级定位性能。这款纳米定位台提供了高速度,高精度,高分辨率,高性能的卓越表现。它与传统的丝杠驱动或压电驱动相比,具有更大的工作效率和吞吐量。参数行程(mm): 25和50mm(单轴或双轴)驱动系统: 无铁芯直线电机或陶瓷伺服电机最大加速度: 由负载决定最大速度: 200mm/s (无负载时)最大推力: 24N最大负载: 2Kg精度: +/-1um/25mmTTL分辨率: 1-100nm/脉冲构造材料: 铝合金主体, 灰色氧化镀膜重复精度: 5倍精度 XT 25 XT 50 XT 2525 XT 5050 Travel Length (mm) 25 mm 50 mm 25 x 25 mm 50x 50 mm Trajectory Control Accuracy Linear Encoder ± 1.0 &mu m ± 2.0 &mu m ± 2.0 &mu m ± 4.0 &mu m Straightness/Flatness ± 1.0 &mu m ± 1.0 &mu m ± 2.0 &mu m ± 2.0 &mu m Yaw/Pitch/Roll 5 arc-sec 5 arc-sec 10 arc-sec 10 arc-sec 2 axis system Orthogonality Standard Grade NA NA 5 arc-sec 5 arc-sec High Precision NA NA 2 arc-sec 2 arc-sec Extra High Precision NA NA 1 arc-sec 1 arc-sec
  • 电镜纳米螺旋标尺
    产品特点:金纳米螺旋标尺(L,R)是手性的纳米标记物,尤其适合于3D断层扫描,电子显微镜(EM)或冷冻电镜。我们的手性标记物显示纯手性(L或R),由于高对比度和金纳米颗粒的精准排列,可以很容易地被电镜检测到。金纳米螺旋标尺(L,R)是用DNA折纸技术制备,金纳米颗粒(10nm)被排列成纳米螺旋(螺距57nm 长110nm 直径34nm)。纳米标尺,AFM纳米标尺,原子力显微镜纳米标尺,共聚焦显微镜纳米标尺,超高分辨显微镜纳米标尺,SIM纳米标尺,STED纳米标尺,STORM纳米标尺,电镜纳米螺旋标尺,金纳米螺旋标尺,显微镜亮度灵敏度标尺,显微镜纳米标尺技术参数:在透射电镜载网中:样品放在干燥的透射电镜载网上使用,以提高由银增强放大了的螺旋效果。样本存储在石蜡膜覆盖的塑料孔中进行运输。保质期是6个月。在缓冲液中:该纳米螺旋储存在缓冲液(1X TE,11mM MgCl2)中运输。样本量约为30μL,这个量足以用于10个以上的TEM。样品保存于低温的保温盒中进行运输。适当的储存条件下(避光,4℃),保质期为3个月。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制