当前位置: 仪器信息网 > 行业主题 > >

摄影生物显微镜

仪器信息网摄影生物显微镜专题为您提供2024年最新摄影生物显微镜价格报价、厂家品牌的相关信息, 包括摄影生物显微镜参数、型号等,不管是国产,还是进口品牌的摄影生物显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合摄影生物显微镜相关的耗材配件、试剂标物,还有摄影生物显微镜相关的最新资讯、资料,以及摄影生物显微镜相关的解决方案。

摄影生物显微镜相关的论坛

  • 显微镜摄像的新用途

    生物摄影师,也为医学或生物医学摄影师,是与某些科学领域的详细的知识熟练的摄影师。 他们利用高质量的设备,在医学,生物学和化学等领域的照片。 生物摄影师医疗学校,医院, 出版公司,药品生产企业和其他组织的工作。 插图 生物摄影师拍照提供科学出版物,医学期刊,教材,教具和研究报告的插图。记录医疗程序 一种生物摄影师的职位描述可能包括采取外科手术或尸体解剖图片或视频。显微摄影 生物摄影师可能需要使用显微摄影,采取微观物体的全面详细的照片,人们可以不用显微镜。解剖照片 生物显微镜摄影师还可以创建在不同的个体不同解剖区的照片,以便研究人员和学生,可以增加他们的知识。取证 一些生物摄影师在取证工作,在刑事和民事诉讼证据的照片。

  • 显微摄影技术二

    第二章 进行显微摄影一. 显微摄影的基础知识1. 显微摄影装置的放大倍率照片的放大倍率,决定于照相目镜的型号和显微摄影装置的投影长度。如前所述,目前光学显微镜的光路系统是万能无限远光学校正系统,与以前的有限远光学校正系统有了很大的改进。所以两种系统的照片放大倍率计算方法不同。(1) 有限远光学校正系统: 照片总放大倍率=物镜放大倍率X照相目镜放大倍率(没有中间附件时)或 照片总放大倍率=物镜放大倍率X照相目镜放大倍率X中间附件系数(连接有中间附件时)。(2) 万能无限远光学校正系统: 照片总放大倍率=物镜放大倍率X照相目镜放大倍率(中间附件不影响放大倍率)。(3) 大版照相:照片总放大倍率=物镜放大倍率X照相目镜放大倍率X 3。照片的总放大倍率是指底片上图象的放大倍率,而不是指底片冲洗到相纸后的放大倍率。2. 物镜与目镜的不同组合,得到的分辨率不同即使照片的总放大倍率相同,它的分辨率是根据物镜、目镜的不同组合而不同的。在显微摄影时应尽量使用低倍照相目镜与高倍物镜组合,这样能改进底片平面象的分辨率。3. 标本画面的构图显微摄影时,视场中的标本往往不适合摄影构图,克服这个问题的办法是转动照相机,以使标本成比例得适合构图的要求。但这时要进行操作显微镜来适合摄影构图就更困难了。一般人们乐用的方法是转动载物台,将标本调到画幅理想的构图中。 二. 显微摄影技术1. 工作前的准备(1) 光路系统的清洁  显微摄影必须保证光路系统的清洁,任何光学部件有了污垢及灰尘,均会影响照片的质量。物镜、目镜及聚光镜等部件,如污垢长期得不到清理,还会引起霉菌的生长,致使不能应用。各部件在擦拭时,只能清理表面,而不应任意拆卸。(2) 光轴中心的调整  显微摄影时光轴中心的调整是绝对不可忽视的,否则拍出的图象,各部分的感光不匀。关于调整的方法前已述及,这里不予重复。(3) 其它准备工作  检查镜体与照相系统的安装是否正确;根据被检物体的情况选用何种感光片;如为半自动和全自动照相系统,需调节好相应的按钮。拍摄前需用观察目镜观察,先调好两眼的瞳距,使两个视场的象合而为一,再调节好两眼的屈光度以适应观察者的视力。 2. 视场光阑与孔径光阑的应用[color=#3333

  • 显微摄影技术的体验

    在形态学研究中,最终取得的照片质量,将是决定实验结果的最终依据。学术期刊编辑和审稿专家对论文的评价,也十分注重照片质量。获得一张好的照片,既取决于组织制备技术,也与显微摄影以及暗室技术有关。本文仅就显微摄影技术,以Olympus New Vanox型万能显微镜配套装置为例简要介绍如下。1显微摄像前的准备工作   组织切片的选择:根据论文需要选择组织切片。一类为保存实验原始资料而挑选的切片,由于组织切片年久后易于褪色,所以拍成胶片代替切片,目的是便于长期保存;另一类为入选论文的核心切片,也是显微摄影的重点。在选择组织切片时,应选择切片厚度均一,展片平整,背景反差明显,透明度良好,染色质量较好的切片,不要忘记以记号笔在入选切片周围打上记号,以便于及时而准确地重复找到欲摄部位。在拍摄范围内,不应有任何污尘、组织碎片、气泡及人工假象存在,拍摄时无妨将物镜与目镜不同组合,多拍摄一些帧幅,以便选优,不与前一类切片平均使用胶卷。 选购胶卷:目前新式显微摄影装置多采用氦灯,其光路系统已由旧式钨丝照明转变成近似日光。所以选购胶卷时应为日光型者,即感光速度(ISO/ASA)为100的胶卷。其次,在挑选胶卷商品厂家时,最好对同一实验组织切片,选用同一厂家胶卷,这有利于摸索暗室洗像技术。再者,对黑白负片、彩色负片及彩色反转片(幻灯片),购买与拍摄要有计划;若以黑白片与彩色片相比,应先拍彩色片,以防组织切片放置过长褪色。如果单纯为发表论文拍摄,则只需拍摄黑白片,如果既要彩色负片又要彩色反转片,应先拍反转片。彩色反转胶卷冲洗后,一般能如实反映组织切片的真实色调,因此除可作幻灯片使用外,还可作彩卷扩印时色彩还原的标准参照。通常情况下,彩色照片扩印往往颜色失真,相同的彩卷多次扩印时色调也多不一致,而且背景常有蓝色或绿色。到照像馆扩印彩照时,应以彩色反转片或原有的相同组织相同染色方法的彩照作为参照,并建议用彩色补偿滤片(CC滤片)消掉背影杂色,使无色的背景调为纯白色。通过实践,证明经过这种处理的彩色照片质量明显提高。正确安装胶卷:向照相机内装卷时,常出现的失误是胶卷没有挂上,致使按下自动曝光装置上的“曝光键”后,胶卷并未转动,胶片并未感光,且因一般情况下,自动曝光装置并未因胶卷未挂上有任何异常的警示,故浪费大量精力与时间。正确的装卷方法如下:打开照相机背壳,将胶卷药膜面朝内装在倒卷轴上,拉动片头至摄取卷轴端,因后者上有数条纵沟,有时须将片头剪窄,以确保片头能够插入纵沟,并且不能使片头从另一纵沟伸出来,以手指将胶片边孔套按在摄取卷轴下端的齿轮齿上,按动自动曝光装置上的“曝光”键,确实见到胶片向前卷动到摄取卷轴时,才关闭照相机背,再按动一次“曝光”键,注意倒卷轴应随着转动。核查显微镜及其摄相装置各键钮状态:Olympus New Vanox上的键钮颇多。这里仅指出几点:①依据胶卷上的ISO/ASA值设定胶卷速度(film speed)。②依据胶卷品牌及型号设定倒易失效补偿值(reciprocity failure compensation),此值一般在胶卷盒上没有标明,但在各种摄相装置说明书上均可查到知名胶卷品牌的此值。③核查摄相光路与相关各个键钮接通状态,当接通后,自动曝光装置控制面板上的“安全”灯将亮起来。2常用显微摄影技术细节摄影者对显微摄影装置的调整:包括两目镜瞳孔间距的调整和个人屈光不正的校正。前者指将两目镜的距离按个人的瞳孔间距进行调整,拉动目镜或捻转瞳孔间距调节螺旋。校正屈光时应转动目镜筒上的屈光度调节环,使物镜视野中心的“十”字由单线调成双线,达到完全清晰,并且左右眼应分别调整。每个拍摄者都不宜省略这一步。物镜与摄相目镜不同组合的选择:摄影目镜除放大功能外,并不具备空间分辨功能,只有物镜才具有空间分辨力。在一般条件下,对组织切片厚度在20 μm以下者,应尽量选择较高倍物镜,例如欲放大实物50倍时,选择“20×”物镜配以“

  • 生物显微镜有哪几种类型

    生物显微镜主要用在生物医学方面,可按不同方法进行分类。按标准分类:GB/T 2985-2008中表述,生物显微镜分为三类:①普及显微镜适用于一般明场观察;②实验室显微镜兼有明场、暗场、相差和荧光显微术和显微摄影术;③研究用显微镜除能够实现实验室显微镜功能外,还具有偏光、微分干涉显微术和激光共聚焦显微镜。按结构分类:按照光路结构显微镜可以分为正置显微镜和倒置显微镜。

  • 【转帖】近30年微观摄影最佳照片

    【转帖】近30年微观摄影最佳照片

    据美国媒体报道,尼康公司(Nikon Instruments)于上个世纪七十年代中期开始举办一年一度的微观世界显微镜照相比赛( Small World Photomicrography Competition),目的是为了从全世界募集在生命科学、生物研究、材料科学等领域做出重要贡献的优秀显微镜摄影家的作品。此项竞赛旨在展现“通过光学显微镜看到生命的美丽和复杂性”。 10月8日,2009年度尼康微观世界显微镜照相比赛圆满结束,在入围的2000多幅作品中,由爱沙尼亚塔林理工大学的摄影师、植物学家海蒂-帕维斯拍摄的“雄株植物生殖器官”脱颖而出,拔得头筹。照片作者帕维斯表示这张照片是自己数千张照片中最具艺术性的作品。 微观摄影照片所表达的思想完全源于另一个世界,微妙而美丽。这种感觉并不好表达出来,有时候微距拍摄比一般拍摄要难很多。以下是历年来获得尼康微观摄影大赛最佳照片的优秀作品,让我们在领略摄影师们高度的拍摄技巧和艺术品鉴力的同时,能够初步了解显微镜照相技术30多年来的发展进步。 1、2009年最佳图片:植物生殖器官[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910231046_177364_1601358_3.jpg[/img]2009年最佳图片:植物生殖器官 这是一幅雄株芥末类植物拟南芥(Arabidopsis thaliana)的生殖器官图片。科学家通过显微镜,将其放大了20倍,人们才得以看到它的真面目。拟南芥是第一种完成全部基因组序列测定的高等植物,常常被科研人员当做模板来研究。  2、2009年另一幅获奖图片:发光的动物肌蛋白丝[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910231047_177365_1601358_3.jpg[/img]2009年另一幅获奖图片:发光的动物肌蛋白丝 德国汉诺威医学院生物物理化学研究院的摄影师丹尼斯-布雷茨普莱切拍摄。肉眼无法看到的肌肉蛋白经过放大后,发出炫目的金光,简直美仑美奂。 3、2008年最佳图片:硅藻彩虹[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910231049_177366_1601358_3.jpg[/img]2008年最佳图片:硅藻彩虹 英国显微镜学家迈克尔-斯特林格拍摄。在显微镜下才能看到的硅藻,是藻类的一种,其内部是扭曲的强壮有力的纤维。通过偏振光过滤拍摄,纤维被人工着以彩虹般的夺目颜色。  4、2007年最佳图片:转基因老鼠胚胎[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910231051_177368_1601358_3.jpg[/img]2007年最佳图片:转基因老鼠胚胎 美国纽约斯隆-凯特琳记忆研究所摄影师格洛里亚-科万拍摄的生长了18.5天的双转基因老鼠胚胎赢得2007年头名。他所拍摄的是双重转基因小鼠胚胎,放大17倍。图像荧光物质是蛋白质,其中还包括深红色的胎盘。胚胎本身显现荧光红色。除此作品之外,格洛里亚-科万还有一个青蛙胚胎的作品获得第七名。

  • 【转帖】国产显微镜报价

    想采购一台显微镜,但是外行,对这个没有一点概念,搜了很久,都是要一家一家询价,今天终于搜到一个报价,可供与我有同样想法者参考,各位有买了的,也可以比较一下,看这个报价是否与实际复合.[B]注意这个帖子是2006年12月发布的了[/B].一、生物类显微镜 (单位:台/元) 序号 产 品 名 称 出厂价 序号 产 品 名 称 出厂价1 XSP-12型500倍单目生物显微镜 360 27 XSP-24N-101型单目生物显微镜 8102 XSP-15型640倍单目生物显微镜 370 28 XSP-24N-102型单目生物显微镜 9003 XSP-13A型1250倍单目生物显微镜 660 29 XSP-24N-103型单目生物显微镜 11804 XSP-16A型1600倍单目生物显微镜 670 30 XSP-24N-201型双目生物显微镜 85005 XS-011型200倍单目生物显微镜 200 31 XSP-24N-111型示教显微镜 16006 ESM100型生物显微镜(全塑) 98 32 Nikon YS100型双目生物显微镜 92007 XS-100型200倍学生用显微镜(全塑) 75 33 Nikon YS50型单目生物显微镜(自然光源) 85008 XS-212-201型双目生物显微镜 2600 34 Nikon YS50型单目生物显微镜(电光源) 88009 XS-212-202型双目生物显微镜 2550 35 Nikon YS100型三目摄影生物显微镜(相机选购) 1690010 XS-212-103型双目生物显微镜 1580 36 Nikon E200(MCA74401C)临床实验室 用双目生物显微镜     1590011 XS-212-104型双目生物显微镜(自然光源) 1460 12 XS-212-105型双目生物显微镜 1790 37 Nikon E200(MCA74411C)临床实验室 用双目生物显微镜(视场光栏) 1661013 XS-212-301型双目生物显微镜 3100 14 XS-200型双目生物显微镜 2780 38 Nikon E200(MCA74402C)临床实验室 用三目生物显微镜 1905015 XS-200型双目平场生物显微镜 4150 16 XS-201型双目生物显微镜 2880 39 Nikon E200(MCA74412C)临床实验室 用三目生物显微镜(视场光栏) 1976017 XS-201型双目平场生物显微镜 4250 18 XS-402型实验室用双目生物显微镜 6500 40 GAILEM型单目生物显微镜 300019 XS-402型实验室用荧光双目生物显微镜(二波段) 17500 41 GAILEM型单目生物显微镜(自然光源) 280020 XS-402型实验室用荧光三目生物显微镜(二波段) 19000 42 GAILEM型双目生物显微镜 380021 XS-402型实验室用荧光三目生物显微镜(四波段) 25000 43 GAILEM型双目平场生物显微镜 540022 XS-213-201型双目生物显微镜 4200 44 GAILEM型双目相衬生物显微镜 660023 XS-213-202型双目平场生物显微镜 5200 45 GAILEM型双目暗场生物显微镜 485024 XS-213-301型单目生物显微镜 4700 46 GAILEM型摄影生物显微镜(相机选购) 510025 XSP-24S-106型单目生物显微镜 1150 47 XD-101型倒置式生物显微镜(相机选购) 995026 XSP-24S-206型单目生物显微镜 1800 48 XD-101改型倒置式生物显微镜(相机选购) 17500二、体视类显微镜 序号 产 品 名 称 出厂价 序号 产 品 名 称 出厂价1 XTX-2型40倍小型体视显微镜 470 6 JSZ4(1:7)连续变倍体视显微镜(无光源) 42002 XTB-1型160倍连续变倍体视显微镜 2350 7 JSZ4(1:7)连续变倍体视显微镜(上下光源) 47003 XTL-1型200倍摄影体视显微镜(相机选购) 3650 8 JSZ4(1:8)连续变倍体视显微镜(无光源) 48004 JSZ4(1:4.3)连续变倍体视显微镜(无光源) 2850 9 JSZ4(1:8)连续变倍体视显微镜(上下光源) 53005 JSZ4(1:4.3)连续变倍体视显微镜(上下光源) 3350      三、偏光类显微镜 序号 产 品 名 称 出厂价 序号 产 品 名 称 出厂价1 XPT-7型偏光显微镜(附光源) 3600 4 XP-201型双目偏光显微镜 99502 XPT-8型偏光显微镜(附光源及摄影仪DP相机) 5880 5 Nikon YS2型双目偏光显微镜 230003 XP-201型单目偏光显微镜 8000 6 Nikon YS2型三目偏光显微镜(相机选购) 25500四、金相类显微镜 序号 产 品 名 称 出厂价 序号 产 品 名 称 出厂价1 XJX-1型单目正置式金相显微镜 3250 6 XJL-03型立式金相显微镜 320002 XJX-2型双目正置式金相显微镜 4100 7 XJG-05型卧式大型金相显微镜 415003 XJP-100型倒置单目金相显微镜 3400 8 XJZ-6型正置透反两用金相显微镜(相机选购) 230004 XJP-200型倒置双目金相显微镜 4250 9 XJZ-6A型立式金相显微镜 185005 XJL-5型立式金相显微镜 22000      五、大型仪器设备 序号 产 品 名 称 出厂价 序号 产 品 名 称 出厂价1 DLT2000多媒体显微实验• 示教系统 待询 5 XQF-2000型半自动金相图像分析仪 980002 DXT-100G型透射电子显微镜 285000 6 XQF-2000型全自动金相图像分析仪 1800003 H-600A-2型透射电子显微镜(进口组装) 880000 7 MIAS2000型图像分析通用软件(含图像卡) 280004 DXS-2B扫描电子显微镜 168000 8 HS88/23航空摄影仪 545000六、电视显微镜 序号 产 品 名 称 出厂价 序号 产 品 名 称 出厂价1 XS-213型电视生物显微镜(配25寸国产彩电) 18500 3 NikonYS2-TV型电视生物显微镜(配25寸国产彩电) 260002 GAILEM/TV型电视生物显微镜(配25寸国产彩电) 18500 4 XTL-1/TV型电视生物显微镜(配26寸国产彩电) 18500七、附件(选购) 序号 产 品 名 称 出厂价 序号 产 品 名 称 出厂价1 X11-3型体视透射光源 280 16 JSZ7体视 2X大物镜 4002 环形体视光源 340 17 JSZ7体视 10X目镜 1803 X11-5型斜照光源 280 18 JSZ7体视 20X目镜 2004 偏光光源 280 19 JSZ7体视 25X目镜 2505 冷光源 2650 20 JSZ8体视 2X大物镜 5306 X17-1型压平机 345 21 JSZ8体视 10X目镜 3007 显微镜修理工具 280 22 JSZ8体视 16X目镜 3508 移动尺(黑漆) 77 23 JSZ8体视 25X目镜 4009 移动尺(镀铬) 88 24 JSZ8体视 摄影附件(摄影目镜 2.5X,MD 卡口) 280010 NIDS-光标发生器(手动) 2800 25 数码相机附件 待询11 05型金相135摄影仪(配DF-300相机) 3800 26 XS-212、XS-213摄影装置(不含相机) 120012 JSZ4体视 2X大物镜 480 27 XS-212、XS-213相衬装置 280013 JSZ4体视 10X目镜 180 28 XS-212、XS-213偏光附件 600元14 JSZ4体视 15X目镜 200 29 XS-212、XS-213暗场聚光镜(干、油各一只) 105015 JSZ4体视 20X目镜 200 30 XS-212、XS-213暗场聚光镜(干、油各一只) 650元/套来源:中国教育装备采购网(来源:中国生物仪器网)

  • 【转帖】2009世界显微摄影大赛前十作品:微观世界的奇迹(图)

    【转帖】2009世界显微摄影大赛前十作品:微观世界的奇迹(图)

    国际在线专稿:据美国《国家地理》杂志10月8日报道,2009年2009世界显微摄影大赛获奖名单现已揭晓,数码技术和新微观技术的应用,让微观爱好者和科学家看到最难以置信的美丽和奇迹。以下是获得该大奖的前十名图片:  1.植物生殖器官[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910100959_175055_2961690_3.jpg[/img]  这是一张被显微镜放大了20倍的雄株芥末类植物的生殖器官,摘走了2009年尼康微观世界摄影大赛的桂冠。拟南芥是第一种完成全部基因组序列测定的高等植物,也是最常用于科学研究的植物,但这种植物此前却从未展示过艺术美感。2.续断菊花茎[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910100959_175056_2961690_3.jpg[/img]  这是一张续断菊花茎部的横截面图片,续断菊是乡间最常见的一种黄色野花。摄影师格雷德冈瑟说:“续断菊毛状物的红帽与绿白相间花茎之间的强烈对比,令我感到战栗。”这张图片是在被放大150倍拍摄的,显示出自然界的神奇。3.光刻胶[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910100959_175057_2961690_3.jpg[/img]  光刻胶是工业生产中常用的感光材料。在200倍显微镜下,看起来非常美丽,就像太阳用其庞大热能温暖着地球。4.卵巢螺旋[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910100959_175058_2961690_3.jpg[/img]  这是一个发育中的卵子,在琵琶鱼的卵巢中做螺旋式移动。摄影师在卵巢壁上加了颜色,看起来特别明显。这幅图既有其艺术美感,又具有科学价值,可以证明卵巢和卵子的结构。5.可爱的海星[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910100959_175059_2961690_3.jpg[/img]  这幅图是一只饥饿的小海星正张开嘴,用透明的管状肢体抓住微生物吃。这张图片是在放大40倍情况下拍摄的,小海星刚刚进入青年期。颜色对比和管状肢体的动感是这幅图入选的主要因素。6.鱼鳞[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101000_175060_2961690_3.jpg[/img]  在参加以色列兽医协会实践时,兽医哈维萨尔法拍摄到了一条七彩神仙鱼的鱼鳞。这幅图是在20倍显微镜下拍摄的,可以看到鱼鳞的美丽结构和颜色。7.香毛簇[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101000_175061_2961690_3.jpg[/img]  放大了450倍的头发,就像长发绺飘扬。这种结构被称为香毛簇,人类肉眼看不见。8.彩色纤维[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101000_175062_2961690_3.jpg[/img]  这是在200倍显微镜下的彩色棉花纤维,不仅可以看到其大小、形状,还能检验出棉花的质量。9.美丽岩石[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101000_175063_2961690_3.jpg[/img]  意大利帕多瓦大学地质学者伯纳多凯撒晃动滤光器、瞄准镜以及不断变换方向,才拍摄到这张辉长岩的微观图片。这些岩石没有特别的科学意义,但里面有很多微小的橄榄石,看起来非常美丽。10.藻类共存[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101000_175064_2961690_3.jpg[/img]  在这张硅藻和红藻的照片中,有机体与健康生态系统之间的联系被以微观形式表现出来,各种生命形态需要互相依赖才能生存。

  • 【求助】请问用胶卷的摄影显微镜改装成数码显微镜的问题

    在生物实验室工作,常常为显微图像不能及时拍照保存遗憾,有几个问题请教大家: 1 原先的用胶卷的照相显微镜能改装成数码显微镜吗,如能需要填些什么装置。 2 如果买一个有拍照功能的显微镜需要多少钱,是不是数码显微镜都带计算机? 谢谢,期待您的帮助!

  • 显微摄像知识一

    第一章 显微摄影的准备和观察一. 显微摄影装置1. 适合显微摄影的显微镜(1) 照相目镜筒要能承受住显微摄影装置的重量。(2) 通过双目镜筒,能对图象进行对焦。(3) 使用光路选择移动杆(Optical Path Selector),能将光亮调到适合标本需要的强度。(4) 物镜要有高分辨率和良好的平场性(整个圆形视场图象都在一个平面上)。(5) 载物台能够移动。(6) 聚光镜带有孔径光阑和调节光轴中心的机构。(7) 显微镜要有视场光阑。(8) 光源要保证有足够的亮度,可以按照观察和 摄影的需要来调节光亮强度。物镜从低倍到高倍变化时,要求光亮度都能均匀。(9) 要能够安装滤色镜 。2. 适合显微摄影的显微摄影装置(1)显微摄影装置一般有:A. 手控曝光显微摄影装置:包括专为显微摄影用的不带镜头的镜箱。需要目测或测光表,测出光值后,先推出正确的曝光时间,再进行手控曝光。如OLYMPUS 老型号的PM-6,PM-10-35和测光表EMM-7。B. 单镜头反光镜箱显微摄影装置。如OLYMPUS OM系列,镜箱内有内测光系统,可以自动曝光。C. 自动曝光显微摄影专用装置。具有自动卷片、自动测光、自动控制曝光以及测量色温和倒易律失效的补偿等功能。如OLYMPUS PM-10-AD系列,PM20/30系列。(2)显微感光记录的方式一般有:A. 35毫米卷片照相记录。B. 120卷片照相记录。C. 4X5英寸,大画面单页片照相记录。D. 31/4X41/4英寸、4X5英寸等尺寸规格的一步成象(Polaroid Film)的照相记录。E. 16毫米的电影摄影记录。需要注意的一点是:只要有合适的显微镜照相连接器(附有观察、取景装置),不论是生物显微镜、临床显微

  • 【原创】荧光显微摄影CCD相机

    【原创】荧光显微摄影CCD相机

    [img]http://ng1.17img.cn/bbsfiles/images/2008/08/200808291949_106417_1734324_3.jpg[/img]荧光显微摄影CCD相机(科学级),与荧光显微镜配合使用,可以实现数字化拍摄、保存、传输镜下图象,具体的功能和技术参数如下: Key Features:• Super quantum efficiency up to 65% (超级量子效率 超过65%) • Extremely low noise, down to 4e -rms (极低的噪音控制 小于4e -rms ) • 12bit dynamic range at the hardware level (动态范围硬件水平12Bit ) • Hardware High resolution ( 1376 x 1040pixel) (硬件素质 1376 x 1040像素) • Shutter / exposure times from 500ns -1000s (快门及曝光时间可控 500ns -1000s ) • Binning ( H & V) (像素叠加 2X2 4X4) • Region of interest ( ROI) • 10 frames per second at full CCD resolution (全桢速度 10fps) • Free software included Areas of Application: • laser induced fluorescence (激光激发荧光成像) • fluorescence microscopy (显微荧光学应用) • electron microscopy (电镜成像) • Red and [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url] fluorescence applications (近红外光及荧光) • bioluminescence / chemoluminescence (生物体辐射光/化学发光体研究) • spectroscopy (光谱学研究) • gel imaging (极弱光的凝胶成像) • ion imaging (离子影像学研究) • low light level imaging (弱光条件的影像研究) • semiconductor quality control (半导体制造中品质监控) • imaging of bio markers (e.g. green fluorescent protein, GFP) (蛋白质荧光标记)

  • 【猜猜看】昆虫怪异面部表情,用什么样的显微镜拍摄的?

    图片介绍:据英国《每日邮报》报道,这些难以置信的图片是摄影爱好者托马斯-瑞克(Tomas Rak)用显微镜拍摄照片合成的,托马斯先拍摄昆虫的一小部分,然后移动五百分之一毫米拍摄其他部分,合成一张最多需要687张照片。大家知道是用什么显微镜拍摄的吗?

  • 【分享】2009年奥林巴斯生物数字(Olympus BioScapes)显微摄影大赛十大获奖作品

    【分享】2009年奥林巴斯生物数字(Olympus BioScapes)显微摄影大赛十大获奖作品

    水蚤有像梳子一样的冠状物(头部位置绿色的尖刺状结构),看见它们,捕食者便没了胃口。尖刺冠状物直径约为200微米,出现于可感受鲎虫释放的化学信号的水蚤后代。德国基尔大学的詹米歇尔斯(Jan Michels)利用共焦激光扫描显微技术制作出这张照片。该作品获得了2009年奥林巴斯国际生物数字显微摄影大赛的一等奖。令外骨骼绿色荧光褪色的染料和水蚤自身一些内部组织(包括变成蓝色和红色的复眼)的荧光暴露在显微镜的激光光线下,生成了这样一幅光彩陆离的景象。[img]http://ng1.17img.cn/bbsfiles/images/2009/12/200912061509_188295_1623180_3.jpg[/img]美国加州大学伯克利分校的雷切尔王(Rachel Wang)博士利用三维结构照明显微技术,制作出联会复合体(synaptonemal complex)部分片段的高清图像:两个蛋白质链平行排列,相隔不到200纳米,在减数分裂期间为染色体提供结构支持。这项新技术共揭示了10个这样的反常螺旋结构,技术人员采用数字手段对每一个着色,以便将它们一个个区分开来。玉米芯出现在这张正经受减数分裂(细胞分裂的一种)的植物细胞核的特写中。[img]http://ng1.17img.cn/bbsfiles/images/2009/12/200912061511_188296_1623180_3.jpg[/img]

  • 显微摄影操作的重要注意事项

    1. 摄影者对显微摄影装置的调整:包括两目镜瞳孔间距的调整和个人屈光不正的校正。前者指将两目镜的距离按个人的瞳孔间距进行调整,拉动目镜或捻转瞳孔间距调节螺旋。校正屈光时应转动目镜筒上的屈光度调节环,使物镜视野中心的“十”字由单线调成双线,达到完全清晰,并且左右眼应分别调整。每个拍摄者都不宜省略这一步。   2. 物镜与摄相目镜不同组合的选择:摄影目镜除放大功能外,并不具备空间分辨功能,只有物镜才具有空间分辨力。在一般条件下,对组织切片厚度在20 μm以下者,应尽量选择较高倍物镜,例如欲放大实物50倍时,选择“20×”物镜配以“2.5×”目镜的组合方式,其清晰度比“10×”物镜及“5×”目镜的组合方式要高些。但是也要考虑切片薄厚和观察标本的特异性的问题,例如在厚度为30 μm以上的冰冻切片上,观察蜿蜒走行的神经纤维或血管时,由于较低倍物镜的焦点深度较长,有利于从不同深度、层次或角度,连续观察分析不在同一平面上走行的神经或血管影像。在这种情况下,还可将物镜与目镜不同组合多次拍摄,最终择其效果最佳者。   3. 聚光器的调控使用问题:经验较少的摄影者往往缺少对聚光器高度的调节,也不知光源是否偏离视野中心。不少人只进行了物镜与组织切片间的所谓“上聚焦”,而没有进行聚光器与组织切片间的“下聚焦”,这当然也无法获得最佳清晰度的成像底片。 Kohler 照明法操做步骤如下:①将视场光阑缩至最小,使光阑叶片的通孔呈现其八角形影像;②两手分别捻转载片台下的左右定心螺丝,使光阑影像与视场中心圆圈重合,以校正光路;③调节聚光器高度,使八角形光阑影像由模糊变清晰,即“下聚焦”;④散大该光阑至135帧幅边框(指常规135型负片画幅,24 mm×36 mm)影像外周。再次微调聚光器高度,使光阑象最清晰为止。每变换一次放大倍率时,都要重复进行如上调整步骤。   4. 提高摄影反差:组织结构对比反差的好坏,当然取决于组织制备技术的质量。这是提高显微摄影质量的重要环节。但是一般情况下,为了弥补切片中对比反差的不足,常可采用如下的补救措施:①按照物镜上的数值孔径值即NA值,相应地进行聚光器孔径光阑的匹配调节。一般质量优良的物镜镜头上,除标有放大倍率外,同时还标有NA值,NA值越大者空间分辨率相对越高。②如果按此法调节NA值转盘后,若由于组织制备欠佳致使影像反差仍然不足时,则可将物镜孔径光阑的NA值再适当缩小,例如10x物镜可调至0.19等。③如经过上述措施影像反差仍不好,则可将视场光阑从135(指常规135照片画幅24 mm×36 mm)边框外缩至边框内,然后在暗室扩放时,再将视场光阑影像除去。当然,上述的后两种措施,只不过是一种稍作修正的补救办法而已。   5. 低倍摄影难度大:低倍摄影有其特殊优点,例如在1(物)×2.5(目)放大倍率下,可拍摄大鼠脑切片一侧全貌,对总览特异性标记物的分布有一目了然之效果,但是低倍物镜分辨力低,焦深较长,利用微调螺旋进行精确聚焦有一定难度。为避免视力的个体差异,应采取欠焦、过焦、正焦3步,聚焦不宜反复进行。   6. 油浸镜头的使用:100×的物镜多为油浸镜头,然而,使用后常因镜头擦不净而使镜头受损。替代的办法是滴加超纯水或双蒸水,观察效果与香柏油差别不大。由于100×物镜镜头与切片距离极近,极易碰损镜头,必须先以40×物镜聚焦,再转至100×物镜,轻轻转动聚焦微调螺旋至焦点。为避免镜头损伤,新型100×物镜常有弹簧装置,可使镜头微动伸缩而避免其损伤。   7. 其它注意事项: ①按照常规,彩色胶卷应加LBD(色温变换)滤片,黑白胶卷应加IF550(绿色)滤片。LBD滤片可使日光型彩卷获得最佳色温补偿,IF550 滤片则可使黑白卷分光感度与人眼者接近。尽管有人认为不一定需要滤光处理,但因为摄影取决于胶片的化学感光度,并不取决于人们眼睛对视野的直观感受,还是加滤光片为好。②曝光时间的选定,也是一个必需注意的问题。已知在光强与曝光时间两个参数之间,有许多不同的组合,均在曝光的“安全”范围内,但所谓的“安全”范围,并不等于最佳条件,所以作者认为限定曝光时间还是十分必要的,其道理在于胶卷化学感光度有一定限制,一个胶卷36个帧幅若随意变动曝光时间,在36张之间差异将很大,而冲洗胶卷是在同一条件下,难免有些帧幅显影不佳。依据作者的经验,曝光时间一般限定在0.5~1 s,底片的影像效果较佳。③要将重点拍摄的结构置于视场中心,因为自动曝光装置测得的曝光时间,是以视场中心区为标准,而偏离中心区越远越不准。有时为了兼顾结构局解关系,而重点结构又不在视场中心时,则可采取点(spot)曝光法。④若需将一张切片上的结构拍为几张,之后拼接时,可在New Vanox 显微摄影仪器上设有一个锁定键(lock),有利于解决这一问题,以使同一结构的几个帧幅曝光时间一致,然后在洗照片时将这组照片同时放入显影液与定影液。

  • 显微镜的使用方法,你造吗?

    传统显微镜的使用方法传统显微镜可用于生物学、细菌学、组织学、药物化学等研究工作以及临床度验之用。具有粗微动同轴的调焦机构,滚珠内定位转换器,亮度可调的照明装置,并带有摄影、摄像接口。传统显微镜具有以下特点:1、无限远光学系统,提供了卓越的光学性能2、创新的物体机构、清晰的标本观察,便捷的操作方式,专为细胞培养观察而量身设计,是常规检查的革新方案。3、无限远平场长工作距离物镜,使得观察标本视野更平坦、亮度更高、反差更强,且更容易观察活细胞的状态。4、配备标准相衬环板,中心可调 ,可观察低反差或透明标本的鲜明图像。使用传统显微镜要注意如何正确对光,正确对光方法如下:⑴转动粗准焦螺旋,使镜筒上升。⑵转动转换器,使低倍物镜对准通光孔⑶转动遮光器,使遮光器上最大的光圈对准通光孔。⑷左眼注视目镜(右眼睁开),转动反光镜,直到看到一个明亮的视野。文章转载于网络更多文章资讯:上海全耀仪器设备有限公司http://www.microimaging.com.cn/

  • 显微摄影操作的重要注意事项

    1. 摄影者对显微摄影装置的调整:包括两目镜瞳孔间距的调整和个人屈光不正的校正。前者指将两目镜的距离按个人的瞳孔间距进行调整,拉动目镜或捻转瞳孔间距调节螺旋。校正屈光时应转动目镜筒上的屈光度调节环,使物镜视野中心的“十”字由单线调成双线,达到完全清晰,并且左右眼应分别调整。每个拍摄者都不宜省略这一步。   2. 物镜与摄相目镜不同组合的选择:摄影目镜除放大功能外,并不具备空间分辨功能,只有物镜才具有空间分辨力。在一般条件下,对组织切片厚度在20 μm以下者,应尽量选择较高倍物镜,例如欲放大实物50倍时,选择“20×”物镜配以“2.5×”目镜的组合方式,其清晰度比“10×”物镜及“5×”目镜的组合方式要高些。但是也要考虑切片薄厚和观察标本的特异性的问题,例如在厚度为30 μm以上的冰冻切片上,观察蜿蜒走行的神经纤维或血管时,由于较低倍物镜的焦点深度较长,有利于从不同深度、层次或角度,连续观察分析不在同一平面上走行的神经或血管影像。在这种情况下,还可将物镜与目镜不同组合多次拍摄,最终择其效果最佳者。   3. 聚光器的调控使用问题:经验较少的摄影者往往缺少对聚光器高度的调节,也不知光源是否偏离视野中心。不少人只进行了物镜与组织切片间的所谓“上聚焦”,而没有进行聚光器与组织切片间的“下聚焦”,这当然也无法获得最佳清晰度的成像底片。 Kohler 照明法操做步骤如下:①将视场光阑缩至最小,使光阑叶片的通孔呈现其八角形影像;②两手分别捻转载片台下的左右定心螺丝,使光阑影像与视场中心圆圈重合,以校正光路;③调节聚光器高度,使八角形光阑影像由模糊变清晰,即“下聚焦”;④散大该光阑至135帧幅边框(指常规135型负片画幅,24 mm×36 mm)影像外周。再次微调聚光器高度,使光阑象最清晰为止。每变换一次放大倍率时,都要重复进行如上调整步骤。   4. 提高摄影反差:组织结构对比反差的好坏,当然取决于组织制备技术的质量。这是提高显微摄影质量的重要环节。但是一般情况下,为了弥补切片中对比反差的不足,常可采用如下的补救措施:①按照物镜上的数值孔径值即NA值,相应地进行聚光器孔径光阑的匹配调节。一般质量优良的物镜镜头上,除标有放大倍率外,同时还标有NA值,NA值越大者空间分辨率相对越高。②如果按此法调节NA值转盘后,若由于组织制备欠佳致使影像反差仍然不足时,则可将物镜孔径光阑的NA值再适当缩小,例如10x物镜可调至0.19等。③如经过上述措施影像反差仍不好,则可将视场光阑从135(指常规135照片画幅24 mm×36 mm)边框外缩至边框内,然后在暗室扩放时,再将视场光阑影像除去。当然,上述的后两种措施,只不过是一种稍作修正的补救办法而已。   5. 低倍摄影难度大:低倍摄影有其特殊优点,例如在1(物)×2.5(目)放大倍率下,可拍摄大鼠脑切片一侧全貌,对总览特异性标记物的分布有一目了然之效果,但是低倍物镜分辨力低,焦深较长,利用微调螺旋进行精确聚焦有一定难度。为避免视力的个体差异,应采取欠焦、过焦、正焦3步,聚焦不宜反复进行。   6. 油浸镜头的使用:100×的物镜多为油浸镜头,然而,使用后常因镜头擦不净而使镜头受损。替代的办法是滴加超纯水或双蒸水,观察效果与香柏油差别不大。由于100×物镜镜头与切片距离极近,极易碰损镜头,必须先以40×物镜聚焦,再转至100×物镜,轻轻转动聚焦微调螺旋至焦点。为避免镜头损伤,新型100×物镜常有弹簧装置,可使镜头微动伸缩而避免其损伤。   7. 其它注意事项: ①按照常规,彩色胶卷应加LBD(色温变换)滤片,黑白胶卷应加IF550(绿色)滤片。LBD滤片可使日光型彩卷获得最佳色温补偿,IF550 滤片则可使黑白卷分光感度与人眼者接近。尽管有人认为不一定需要滤光处理,但因为摄影取决于胶片的化学感光度,并不取决于人们眼睛对视野的直观感受,还是加滤光片为好。②曝光时间的选定,也是一个必需注意的问题。已知在光强与曝光时间两个参数之间,有许多不同的组合,均在曝光的“安全”范围内,但所谓的“安全”范围,并不等于最佳条件,所以作者认为限定曝光时间还是十分必要的,其道理在于胶卷化学感光度有一定限制,一个胶卷36个帧幅若随意变动曝光时间,在36张之间差异将很大,而冲洗胶卷是在同一条件下,难免有些帧幅显影不佳。依据作者的经验,曝光时间一般限定在0.5~1 s,底片的影像效果较佳。③要将重点拍摄的结构置于视场中心,因为自动曝光装置测得的曝光时间,是以视场中心区为标准,而偏离中心区越远越不准。有时为了兼顾结构局解关系,而重点结构又不在视场中心时,则可采取点(spot)曝光法。④若需将一张切片上的结构拍为几张,之后拼接时,可在New Vanox 显微摄影仪器上设有一个锁定键(lock),有利于解决这一问题,以使同一结构的几个帧幅曝光时间一致,然后在洗照片时将这组照片同时放入显影液与定影液。

  • 金相显微镜电子目镜介绍

    金相显微镜电子目镜是一种针对金相显微镜成像专门研制而成的光学电子仪器。该系列金相显微镜电子目镜作为一款新型光电装置,传输接口为USB2.0高速接口,金相显微镜电子目镜采用1/2″CMOS大面阵图像传感器及大口径光学镜头,使获取的图像具有极高的清晰度;单幅照相影像更佳。分辨率可达130-300万像素,并可以方便地应用于任何标准生物显微镜、体视显微镜及望远镜中。从而给观察、教学、科研、临床、家庭带来了极大的快捷和便利。 金相显微镜电子目镜是一种针对普通光学显微镜通用目镜筒而开发的一种能替代人眼观察视野,将镜下图像真实反映在电子图像显示及输出设备上的光电设备,从而实现了图像时时共享,资料数字化、电子存档化。 金相显微镜电子目镜采用高分辨率图像传感器、光学部分由国家光学重点实验室设计,性能优异、体积小巧,更适合教师教学和装备数字化实验室。 主要功能特点 1、安装简单,即插即用,计算机端采用USB2.0接口插拔方便。 2、操作简单。操作软件兼容性强,界面简洁。可自由调整曝光帧速率、对比度、亮度、锐度及影像尺寸等。拍摄软件有着优异的人机界面,使用者可轻易在计算机上进行摄像、摄影操作。 3、共享性强,可随时对图像进行编辑、处理、保存、传输数据等。金相显微镜电子目镜可配合投影机组成一个电子多媒体教学、演示系统,提高设备利用率、共享性,促进相互交流。

  • 资料 显微摄影知识

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=23610]显微摄影[/url]

  • 长期供应显微镜各种数码相机、CCD接口

    一、相机接口:显微数码摄影的必备工具,采用平像场摄像目镜,成像清晰。数码接口使用方便、设计美观、成像清晰、性价比高、是连接微观世界的高性能摄影摄像装置。二、种类较全:数码相机接口、单反数码相机转接口、CCD接口等,适用于尼康、佳能、奥林巴斯、索尼、蔡司等品牌相机。三、显微镜数码相机接口特点:1、适用性广:适用任何品牌的显微镜。2、中心对焦技术:使用中心对焦工艺和光学技术,使更快,更容易地对焦。3、图像质量高:使系统摄像更加固定,不会产生振动而影响图像质量。4、外型设计小巧:外型小巧、美观

  • 显微摄影操作的7点重要注意事项

    1. 摄影者对显微摄影装置的调整:包括两目镜瞳孔间距的调整和个人屈光不正的校正。前者指将两目镜的距离按个人的瞳孔间距进行调整,拉动目镜或捻转瞳孔间距调节螺旋。校正屈光时应转动目镜筒上的屈光度调节环,使物镜视野中心的“十”字由单线调成双线,达到完全清晰,并且左右眼应分别调整。每个拍摄者都不宜省略这一步。   2. 物镜与摄相目镜不同组合的选择:摄影目镜除放大功能外,并不具备空间分辨功能,只有物镜才具有空间分辨力。在一般条件下,对组织切片厚度在20 μm以下者,应尽量选择较高倍物镜,例如欲放大实物50倍时,选择“20×”物镜配以“2.5×”目镜的组合方式,其清晰度比“10×”物镜及“5×”目镜的组合方式要高些。但是也要考虑切片薄厚和观察标本的特异性的问题,例如在厚度为30 μm以上的冰冻切片上,观察蜿蜒走行的神经纤维或血管时,由于较低倍物镜的焦点深度较长,有利于从不同深度、层次或角度,连续观察分析不在同一平面上走行的神经或血管影像。在这种情况下,还可将物镜与目镜不同组合多次拍摄,最终择其效果最佳者。   3. 聚光器的调控使用问题:经验较少的摄影者往往缺少对聚光器高度的调节,也不知光源是否偏离视野中心。不少人只进行了物镜与组织切片间的所谓“上聚焦”,而没有进行聚光器与组织切片间的“下聚焦”,这当然也无法获得最佳清晰度的成像底片。 Kohler 照明法操做步骤如下:①将视场光阑缩至最小,使光阑叶片的通孔呈现其八角形影像;②两手分别捻转载片台下的左右定心螺丝,使光阑影像与视场中心圆圈重合,以校正光路;③调节聚光器高度,使八角形光阑影像由模糊变清晰,即“下聚焦”;④散大该光阑至135帧幅边框(指常规135型负片画幅,24 mm×36 mm)影像外周。再次微调聚光器高度,使光阑象最清晰为止。每变换一次放大倍率时,都要重复进行如上调整步骤。   4. 提高摄影反差:组织结构对比反差的好坏,当然取决于组织制备技术的质量。这是提高显微摄影质量的重要环节。但是一般情况下,为了弥补切片中对比反差的不足,常可采用如下的补救措施:①按照物镜上的数值孔径值即NA值,相应地进行聚光器孔径光阑的匹配调节。一般质量优良的物镜镜头上,除标有放大倍率外,同时还标有NA值,NA值越大者空间分辨率相对越高。②如果按此法调节NA值转盘后,若由于组织制备欠佳致使影像反差仍然不足时,则可将物镜孔径光阑的NA值再适当缩小,例如10x物镜可调至0.19等。③如经过上述措施影像反差仍不好,则可将视场光阑从135(指常规135照片画幅24 mm×36 mm)边框外缩至边框内,然后在暗室扩放时,再将视场光阑影像除去。当然,上述的后两种措施,只不过是一种稍作修正的补救办法而已。   5. 低倍摄影难度大:低倍摄影有其特殊优点,例如在1(物)×2.5(目)放大倍率下,可拍摄大鼠脑切片一侧全貌,对总览特异性标记物的分布有一目了然之效果,但是低倍物镜分辨力低,焦深较长,利用微调螺旋进行精确聚焦有一定难度。为避免视力的个体差异,应采取欠焦、过焦、正焦3步,聚焦不宜反复进行。   6. 油浸镜头的使用:100×的物镜多为油浸镜头,然而,使用后常因镜头擦不净而使镜头受损。替代的办法是滴加超纯水或双蒸水,观察效果与香柏油差别不大。由于100×物镜镜头与切片距离极近,极易碰损镜头,必须先以40×物镜聚焦,再转至100×物镜,轻轻转动聚焦微调螺旋至焦点。为避免镜头损伤,新型100×物镜常有弹簧装置,可使镜头微动伸缩而避免其损伤。   7. 其它注意事项: ①按照常规,彩色胶卷应加LBD(色温变换)滤片,黑白胶卷应加IF550(绿色)滤片。LBD滤片可使日光型彩卷获得最佳色温补偿,IF550 滤片则可使黑白卷分光感度与人眼者接近。尽管有人认为不一定需要滤光处理,但因为摄影取决于胶片的化学感光度,并不取决于人们眼睛对视野的直观感受,还是加滤光片为好。②曝光时间的选定,也是一个必需注意的问题。已知在光强与曝光时间两个参数之间,有许多不同的组合,均在曝光的“安全”范围内,但所谓的“安全”范围,并不等于最佳条件,所以作者认为限定曝光时间还是十分必要的,其道理在于胶卷化学感光度有一定限制,一个胶卷36个帧幅若随意变动曝光时间,在36张之间差异将很大,而冲洗胶卷是在同一条件下,难免有些帧幅显影不佳。依据作者的经验,曝光时间一般限定在0.5~1 s,底片的影像效果较佳。③要将重点拍摄的结构置于视场中心,因为自动曝光装置测得的曝光时间,是以视场中心区为标准,而偏离中心区越远越不准。有时为了兼顾结构局解关系,而重点结构又不在视场中心时,则可采取点(spot)曝光法。④若需将一张切片上的结构拍为几张,之后拼接时,可在New Vanox 显微摄影仪器上设有一个锁定键(lock),有利于解决这一问题,以使同一结构的几个帧幅曝光时间一致,然后在洗照片时将这组照片同时放入显影液与定影液。

  • 【转帖】无目镜显微镜-显微镜发展的一种新趋势

    无目镜显微镜-显微镜发展的一种新趋势http://www.zgny17.com/Upload/UploadPic/20103311102770.gif 列文虎克发明显微镜至今已经历了三百多年,光学显微镜随着人类科技的发展不断演化进步,功能不断增强。显微镜的放大倍率由初始的300倍左右到现在放大1000倍左右;从最初简单的明场观察方式发展出包括明场、暗场、偏振、荧光、相差、微分干涉差等多种观察方式;由简单的手动目视观察仪器演变为整合了拍照、摄像等多种功能的强大光学系统。 最近10年,随着数码摄影技术、信息技术和自动化技术的飞速进步,显微镜的演进除了在功能上的革新与发展之外,在外观、操作舒适性、操作自动化程度以及方便性方面也都有很大发展,显微镜的外观上出现了一些革命性的变化,性能上有了进一步的提高。其中,无目镜显微镜由于其人性化的设计特点,为用户提供舒适的观察姿势和完美的成像效果,日益为成为显微镜发展的一种新趋势。 目前,中国市场上的高端无目镜倒置显微镜以AMG EVOS系列产品为代表,包括 Nikon公司Coolscope 显微镜,Olympus公司的“智能生物导航仪”FSX100,leica推出的DMD108等,均采用无目镜设计,同时出现了英国VISION公司 LYNX无目镜体视显微镜及Mantis Elite体视显微镜等,AMG并于09年第三季度推出了荧光型无目镜显微镜,极大推动了无目镜显微镜的技术发展和应用空间。

  • 显微镜的景深!

    大多数使用过显微镜的人都应该知道景深是什么意思。是指在摄影机镜头或其他成像器前沿着能够取得清晰图像的成像景深相机器轴线所测定的物体距离范围。在聚焦完成后,在焦点前后的范围内都能形成清晰的像,这一前一后的距离范围,便叫做景深。 通俗的讲就是在这段空间内的被照的物体,呈现在底片面的影象模糊度,都在容许弥散圆的限定范围内,这段空间的长度就是景深。那又是什么影响着景深的大小呢? 首先是显微镜头的光圈 其次是显微镜头的焦距 再次是拍摄的距离 那有时怎么的一种关系呢? 光圈越大 (数值越小,例如f2.8的光圈大于f5.6),景深越小;光圈越小(数值越大,例如f16的光圈比f11的光圈小),景深越大 显微镜里的光圈应该就是数值孔径NA镜头焦距越长,景深越小;焦距越短,景深越大 距离越远,景深越大;距离越近,景深越小

  • 三头显微镜特点

    [url=http://www.f-lab.cn/biomicroscopes/ba410e-three.html][b]三头显微镜[/b][/url]是采用Motic麦克奥迪BA410E显微镜为主体的[b]三人共享共用显微镜[/b]和三人观察显微镜,非常适合大学,医学,研究院所等单位日常使用,是三头显微镜品牌中三头显微镜价格合理的多头显微镜。[b]三头显微镜[/b]具有生命科学或医疗应用所需要的光学性能,采用Motic麦克奥迪颜色校正的无限光学技术和消色差透镜,提供良好的光学视图。[b][b]三头显微镜[/b]特点[b]三头显微镜[/b]主体采用采用Motic麦克奥迪新型BA410E显微镜,[/b]每处细节都经过Motic的精心优化设计。30W卤素灯为操作者提供充足亮度以满足各种情况下的样本观察。即使是染色较弱的切片,柯拉照明也能保证出色的成像效果。全新的Motic无限远色差校正系统(CCIS)及宽带镀膜EF-N平场消色差物镜,保证了显微图像的高对比度。同时,全新概念的管镜设计消除了放大倍率色差,使三目镜筒观察的显微图像与目镜观察的一样清晰。另外,BA310还拥有满足DIN/ISO标准的摄影摄像连接筒。BA410E显微镜载物台面积大、防腐、耐磨,行程76*50mm,并装有锁紧螺钉防滑设计的改进片夹,即使频繁地拆装和使用,也能确保方便、安全。[img=三头显微镜]http://www.f-lab.cn/Upload/BA410E-three.jpg[/img]生物显微镜官网:[url]http://www.f-lab.cn/biomicroscopes.html[/url]

  • 双人并排观察显微镜

    [url=http://www.f-lab.cn/biomicroscopes/motic-1.html][b]双人并排观察显微镜[/b][/url]是采用Motic麦克奥迪新型BA310显微镜为主体,专门设计的[b]两人共用共享显微镜[/b],两个人员可面对面同时观测,非常适合大学,医学,研究院所等单位日常使用,是双人显微镜品牌中双人显微镜价格合理的多头显微镜。[b][b]双人并排观察显微镜[/b][/b]具有生命科学或医疗应用所需要的光学性能,采用Motic麦克奥迪颜色校正的无限光学技术和消色差透镜,提供良好的光学视图。[b][b]双人并排观察显微镜[/b]主体特点[/b]双人并排观察显微镜主体采用采用Motic麦克奥迪新型BA310显微镜[b],[/b]每处细节都经过Motic的精心优化设计。30W卤素灯为操作者提供充足亮度以满足各种情况下的样本观察。即使是染色较弱的切片,柯拉照明也能保证出色的成像效果。全新的Motic无限远色差校正系统(CCIS)及宽带镀膜EF-N平场消色差物镜,保证了显微图像的高对比度。同时,全新概念的管镜设计消除了放大倍率色差,使三目镜筒观察的显微图像与目镜观察的一样清晰。另外,BA310还拥有满足DIN/ISO标准的摄影摄像连接筒。BA310载物台面积大、防腐、耐磨,行程76*50mm,并装有锁紧螺钉防滑设计的改进片夹,即使频繁地拆装和使用,也能确保方便、安全。[img=双人并排观察显微镜]http://www.f-lab.cn/Upload/BAT-BA310E-MVH2.jpg[/img]更多生物显微镜请浏览官网:[url]http://www.f-lab.cn/biomicroscopes.html[/url]

  • 双人对面观察显微镜特点

    [b][url=http://www.f-lab.cn/biomicroscopes/bat310-mvh2.html]双人对面观察显微镜[/url]主体特点[/b]每处细节都经过Motic的精心优化设计。30W卤素灯为操作者提供充足亮度以满足各种情况下的样本观察。即使是染色较弱的切片,柯拉照明也能保证出色的成像效果。全新的Motic无限远色差校正系统(CCIS)及宽带镀膜EF-N平场消色差物镜,保证了显微图像的高对比度。同时,全新概念的管镜设计消除了放大倍率色差,使三目镜筒观察的显微图像与目镜观察的一样清晰。另外,BA310还拥有满足DIN/ISO标准的摄影摄像连接筒。BA310载物台面积大、防腐、耐磨,行程76*50mm,并装有锁紧螺钉防滑设计的改进片夹,即使频繁地拆装和使用,也能确保方便、安全。[img=双人对面观察显微镜]http://www.f-lab.cn/Upload/BAT310-MVH2.jpg[/img][b]麦克奥迪BA310生物显微镜[/b]特点:无限远色差校正系统[img=双人对面观察显微镜]http://imgeditor.chem17.com/MTEditor/20120724/634787348717812500.png[/img]为了提高BA310的光学性能,Motic采用最新设计的平场消色差物镜,即CCISEF-NPLAN。此物镜的宽带镀膜大大提高了图像对比度,即使是观察染色较弱的切片也无需担心成像质量。目镜[img=双人对面观察显微镜]http://imgeditor.chem17.com/MTEditor/20120724/634787348926875000.png[/img]标准配置的高眼点设计、带可折叠橡胶眼罩的N-WF10X/20目镜,双目视度可调,使双目观察更加容易,还可安装测量和计算用的分划板。另外,目镜筒上的卡槽设计可将目镜锁紧定位,避免掉出,方便学生操作。观察筒[img=双人对面观察显微镜]http://imgeditor.chem17.com/MTEditor/20120724/634787349032968750.png[/img]30°倾斜的铰链式镜筒。瞳距调节范围为55~75mm。即使长时间观察,也能确保使用者操作舒适,无疲劳感。超大视场(20mm)使搜索更迅速、更便捷。三目镜筒可轻松安装显微摄影摄像装置,并有20:80、0:100两种分光比供选择。照明[img=双人对面观察显微镜]http://imgeditor.chem17.com/MTEditor/20120724/634787349144062500.png[/img]集光镜装有螺纹旋入的滤色片盖,能将滤色片盖,能将滤色片固定,防止滑落。两种照明方式供选择:6V/30W卤素灯及3WLED聚光镜[img=双人对面观察显微镜]http://imgeditor.chem17.com/MTEditor/20120724/634787349278906250.png[/img]全柯拉照明的BA310聚光镜高度可自由调节,即使是对较厚的计数板也能进行观察,保证您获得最好的照明质量。机械移动载物台[img=双人对面观察显微镜]http://imgeditor.chem17.com/MTEditor/20120724/634787349630937500.png[/img]长行程(76*50mm)、大面积(175*140mm)、防腐、X、Y向转动手轮松紧度可调、耐磨等设计增强了载物台的实用性,并有左/右操作两种载物台可供选择。防霉设计防霉结构设计及加工过程的防霉处理,确保高温高湿环境下产品使用性能的稳定性,并延长显微镜及其物镜的使用寿命。更多生物显微镜请浏览官网:[url]http://www.f-lab.cn/biomicroscopes.html[/url]

  • 生物显微镜和工具显微镜的原理

    生物显微镜和工具显微镜又称工具制造用显微镜,是一种工具制造时所用高精度的二次元坐标测量仪。生物显微镜工具显微镜是利用光学原理将工件成像经物镜投射至目镜,即借着光线将工件放大成虚像,再利用装物台与目镜网线(eyepiece reticle)等辅助,以作为尺寸、角度和形状等测量工作,可作为检验非金属光泽的工件表面。生物显微镜工具显微镜仪器在立柱上装有一显微镜,放大倍率从10倍至100倍间等数种倍率,工具显微镜的测量系统光源( 灯炮 ) 通电后,光线依次经过二个透镜滤热镜 ( 片)、镜径薄膜、透镜、反射镜、装物台、物镜、反射镜、目镜等,工件与物镜间的距离,随着放大倍率和工件厚薄,可利用对焦旋钮调至理想位置。1、 生物显微镜工具显微镜将人眼瞄准,采集元素的个别点坐标,改为CCD摄像机自动采集元素图像,采集信息量增大,减少人工干预,操作效率提高。 2、生物显微镜工具显微镜软件数据处理结果除以数据表示外,增加了图形信息窗,处理的点、线、图、弧等元素展现在屏幕上,形象直观,条理清晰,避免出错,并且可以输出到AUTOCAD形成工程图。3、引进先进的英国RENISHAW钢带反射光栅系统代替原有的玻璃光栅系统,该系统信号优良,安装间隙大,外形小巧,发热量小,安装调试简单,抗污染,抗腐蚀能力强,耐震性好等众多优点,大大提高了系统的可靠性,是当今国际最先进的光栅系统之一。4、 生物显微镜和工具显微镜生物显微镜工具显微镜除X、Y坐标数字显示外,将测高坐标和分度头角度坐标也改成数显,实现了四坐标全数显化,这一改进对凸轮轴测量十分有益。5、用半导体激光器作为指向器,红色光点打在工件表面,用于快速确定测量部位,避免了因CCD视场面积小带来的找象困难,解决了目前图像系统的通病。引用:www.bsdgx.com

  • 快来看呀~~显微镜的发展历史

    早在公元前一世纪,人们就已发现通过球形透明物体去观察微小物体时,可以使其放大成像。后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。  1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。1610年前后,意大利的伽利略和德国的开普勒在研究望远镜的同时,改变物镜和目镜之间的距离,得出合理的显微镜光路结构,当时的光学工匠遂纷纷从事显微镜的制造、推广和改进。  17世纪中叶,英国的胡克和荷兰的列文胡克,都对显微镜的发展作出了卓越的贡献。1665年前后,胡克在显微镜中加入粗动和微动调焦机构、照明系统和承载标本片的工作台。这些部件经过不断改进,成为现代显微镜的基本组成部分。  1673~1677年期间,列文胡克制成单组元放大镜式的高倍显微镜,其中九台保存至今。胡克和列文胡克利用自制的显微镜,在动、植物机体微观结构的研究方面取得了杰出成就。  19世纪,高质量消色差浸液物镜的出现,使显微镜观察微细结构的能力大为提高。1827年阿米奇第一个采用了浸液物镜。19世纪70年代,德国人阿贝奠定了显微镜成像的古典理论基础。这些都促进了显微镜制造和显微观察技术的迅速发展,并为19世纪后半叶包括科赫、巴斯德等在内的生物学家和医学家发现细菌和微生物提供了有力的工具。  在显微镜本身结构发展的同时,显微观察技术也在不断创新:1850年出现了偏光显微术;1893年出现了干涉显微术;1935年荷兰物理学家泽尔尼克创造了相衬显微术,他为此在1953年获得了诺贝尔物理学奖。  古典的光学显微镜只是光学元件和精密机械元件的组合,它以人眼作为接收器来观察放大的像。后来在显微镜中加入了摄影装置,以感光胶片作为可以记录和存储的接收器。现代又普遍采用光电元件、电视摄像管和电荷耦合器等作为显微镜的接收器,配以微型电子计算机后构成完整的图像信息采集和处理系统。[em44]

  • 【转帖】光学显微镜

    光学显微镜是利用光学原理,把人眼所不能分辨的微小物体放大成像,以供人们提取微细结构信息的光学仪器。  早在公元前一世纪,人们就已发现通过球形透明物体去观察微小物体时,可以使其放大成像。后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。  1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。1610年前后,意大利的伽利略和德国的开普勒在研究望远镜的同时,改变物镜和目镜之间的距离,得出合理的显微镜光路结构,当时的光学工匠遂纷纷从事显微镜的制造、推广和改进。  17世纪中叶,英国的胡克和荷兰的列文胡克,都对显微镜的发展作出了卓越的贡献。1665年前后,胡克在显微镜中加入粗动和微动调焦机构、照明系统和承载标本片的工作台。这些部 件经过不断改进,成为现代显微镜的基本组成部分。  1673~1677年期间,列文胡克制成单组元放大镜式的高倍显微镜,其中九台保存至今。胡克和列文胡克利用自制的显微镜,在动、植物机体微观结构的研究方面取得了杰出的成就。  19世纪,高质量消色差浸液物镜的出现,使显微镜观察微细结构的能力大为提高。1827年阿米奇第一个采用了浸液物镜。19世纪70年代,德国人阿贝奠定了显微镜成像的古典理论基础。这些都促进了显微镜制造和显微观察技术的迅速发展,并为19世纪后半叶包括科赫、巴斯德等在内的生物学家和医学家发现细菌和微生物提供了有力的工具。  在显微镜本身结构发展的同时,显微观察技术也在不断创新:1850年出现了偏光显微术;1893年出现了干涉显微术;1935年荷兰物理学家泽尔尼克创造了相衬显微术,他为此在1953年获得了诺贝尔物理学奖。  古典的光学显微镜只是光学元件和精密机械元件的组合,它以人眼作为接收器来观察放大的像。后来在显微镜中加入了摄影装置,以感光胶片作为可以记录和存储的接收器。现代又普遍采用光电元件、电视摄象管和电荷耦合器等作为显微镜的接收器,配以微型电子计算机后构成完整的图象信息采集和处理系统。  表面为曲面的玻璃或其他透明材料制成的光学透镜可以使物体放大成像,光学显微镜就是利用这一原理把微小物体放大到人眼足以观察的尺寸。近代的光学显微镜通常采用两级放大,分别由物镜和目镜完成。被观察物体位于物镜的前方,被物镜作第一级放大后成一倒立的实象,然后此实像再被目镜作第二级放大,成一虚象,人眼看到的就是虚像。而显微镜的总放大倍率就是物镜放大倍率和目镜放大倍率的乘积。放大倍率是指直线尺寸的放大比,而不是面积比。  光学显微镜的组成结构  光学显微镜一般由载物台、聚光照明系统、物镜,目镜和调焦机构组成。载物台用于承放被观察的物体。利用调焦旋钮可以驱动调焦机构,使载物台作粗调和微调的升降运动,使被观察物体调焦清晰成象。它的上层可以在水平面内沿作精密移动和转动,一般都把被观察的部位调放到视场中心。  聚光照明系统由灯源和聚光镜构成,聚光镜的功能是使更多的光能集中到被观察的部位。照明灯的光谱特性必须与显微镜的接收器的工作波段相适应。  物镜位于被观察物体附近,是实现第一级放大的镜头。在物镜转换器上同时装着几个不同放大倍率的物镜,转动转换器就可让不同倍率的物镜进入工作光路,物镜的放大倍率通常为5~100倍。  物镜是显微镜中对成象质量优劣起决定性作用的光学元件。常用的有能对两种颜色的光线校正色差的消色差物镜;质量更高的还有能对三种色光校正色差的复消色差物镜;能保证物镜的整个像面为平面,以提高视场边缘成像质量的平像场物镜。高倍物镜中多采用浸液物镜,即在物镜的下表面和标本片的上表面之间填充折射率为1.5左右的液体,它能显著的提高显微观察的分辨率。  目镜是位于人眼附近实现第二级放大的镜头,镜放大倍率通常为5~20倍。按照所能看到的视场大小,目镜可分为视场较小的普通目镜,和视场较大的大视场目镜(或称广角目镜)两类。  载物台和物镜两者必须能沿物镜光轴方向作相对运动以实现调焦,获得清晰的图像。用高倍物镜工作时,容许的调焦范围往往小于微米,所以显微镜必须具备极为精密的微动调焦机构。  显微镜放大倍率的极限即有效放大倍率,显微镜的分辨率是指能被显微镜清晰区分的两个物点的最小间距。分辨率和放大倍率是两个不同的但又互有联系的概念。  当选用的物镜数值孔径不够大,即分辨率不够高时,显微镜不能分清物体的微细结构,此时即使过度地增大放大倍率,得到的也只能是一个轮廓虽大但细节不清的图像,称为无效放大倍率。反之如果分辨率已满足要求而放大倍率不足,则显微镜虽已具备分辨的能力,但因图像太小而仍然不能被人眼清晰视见。所以为了充分发挥显微镜的分辨能力,应使数值孔径与显微镜总放大倍率合理匹配。  聚光照明系统是对显微镜成像性能有较大影响,但又是易于被使用者忽视的环节。它的功能是提供亮度足够且均匀的物面照明。聚光镜发来的光束应能保证充满物镜孔径角,否则就不能充分利用物镜所能达到的最高分辨率。为此目的,在聚光镜中设有类似照相物镜中的,可以调节开孔大小的可变孔径光阑,用来调节照明光束孔径,以与物镜孔径角匹配。  改变照明方式,可以获得亮背景上的暗物点(称亮视场照明)或暗背景上的亮物点(称暗视场照明)等不同的观察方式,以便在不同情况下更好地发现和观察微细结构。  光学显微镜的分类  光学显微镜有多种分类方法:按使用目镜的数目可分为双目和单目显微镜;按图像是否有立体  感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理可分为偏光,相衬和微差干涉对比显微镜等;按光源类型可分为普通光、荧光、红外光和激光显微镜等;按接收器类型可分为目视、摄影和电视显微镜等。常用的显微镜有双目体视显微镜、金相显微镜、偏光显微镜、紫外荧光显微镜等。  双目体视显微镜是利用双通道光路,为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。双目体视显微镜在生物、医学领域广泛用于切片操作和显微外 科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。  金相显微镜是专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。这种反射照明方式也广泛用于集成电路硅片的检测工作。  紫外荧光显微镜是用紫外光激发荧光来进行观察的显微镜。某些标本在可见光中觉察不到结构细节,但经过染色处理,以紫外光照射时可因荧光作用而发射可见光,形成可见的图像。这类显微镜常用于生物学和医学中。  电视显微镜和电荷耦合器显微镜是以电视摄像靶或电荷耦合器作为接收元件的显微镜。在显微镜的实像面处装入电视摄像靶或电荷耦合器取代人眼作为接收器,通过这些光电器件把光学图像转换成电信号的图像,然后对之进行尺寸检测、颗粒计数等工作。这类显微镜的可以与计算机联用,这便于实现检测和信息处理的自动化,多应用于需要进行大量繁琐检测工作的场合。  扫描显微镜是成像光束能相对于物面作扫描运动的显微镜 。在扫描显微镜中依靠缩小视场来保证物镜达到最高的分辨率,同时用光学或机械扫描的方法,使成像光束相对于物面在较大视场范围内进行扫描,并用信息处理技术来获得合成的大面积图像信息。这类显微镜适用于需要高分辨率的大视场图像的观测。

  • 【分享】2010年度最佳生物显微照片揭晓 盲蜘蛛眼睛照夺冠

    北京时间11月18日消息,2010年度奥林巴斯国际生物数字显微摄影大赛获奖名单揭晓,德国慕尼黑马克斯-普朗克神经生物学研究所的伊格尔·希瓦诺维茨 (Igor Siwanowicz) 博士以一张盲蜘蛛 (学名Phalangium opilio) 眼睛前端照片摘得桂冠。这幅作品清楚地展现了盲蜘蛛眼睛前端结构,不仅在视觉上颇具冲击力,也具有相当重要的科学价值。 第一名 盲蜘蛛眼睛前端http://microimage.com.cn/uploadfile/article/uploadfile/201011/20101126044231127.jpg盲蜘蛛眼睛前端 作者:伊格尔·希瓦诺维茨(Igor Siwanowicz)博士 工作地点:德国慕尼黑马克斯-普朗克神经生物学研究所 标本:盲蜘蛛(学名Phalangium opilio)眼睛前端摄影手法:共聚焦 特别值得欣喜的是,获得本届大赛第九名的是来自中国的选手——王燕平。 第九名 野花种子http://microimage.com.cn/uploadfile/article/uploadfile/201011/20101126044309478.jpg野花种子 作者:王燕平 工作地点:中国北京天文馆标本:野花种子 摄影手法:明视场反射光 奥林巴斯国际生物数字显微摄影大赛的作品向我们展示了现在世界显微摄影的最高水平,能在这样的国际大赛中获奖,是对选手显微成像技术、创意等各方面的极大肯定。 在中国,奥林巴斯也在和科学网联手举办的全国显微图像大赛。现在,全国第二届显微图像大赛已经接近尾声,评奖结果将在12月底的颁奖典礼上最终揭晓。下一届大赛已在筹备之中。 奥林巴斯作为世界显微镜行业的领导者,一直致力于推动显微技术的发展与进步。我们希望借助举办图像大赛这样的活动,为科学家们提供交流平台,促进中国显微成像技术与世界的交流,促进中国科研人员高端显微成像技术的不断提高,诞生越来越多的显微成像高手,到世界舞台上角逐大奖。

  • 生物显微镜应用技术基础知识

    本 文从普及角度概述 了使用生 物显微 镜的工 作条件、操作步骤和各主要部件的调整及使 用方法,介绍 了各种照 明方 法和 有关 注意事项,业甘相 衬显微术、荧光显微术及显微摄影的 基本棍念、操作技术作了说明。

  • 光学显微镜概述

    早在公元前一世纪,人们就已发现通过球形透明物体去观察微小物体时,可以使其放大成像。后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。 1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。1610年前后,意大利的伽利略和德国的开普勒在研究望远镜的同时,改变物镜和目镜之间的距离,得出合理的显微镜光路结构,当时的光学工匠遂纷纷从事显微镜的制造、推广和改进。 17世纪中叶,英国的胡克和荷兰的列文胡克,都对显微镜的发展作出了卓越的贡献。1665年前后,胡克在显微镜中加入粗动和微动调焦机构、照明系统和承载标本片的工作台。这些部件经过不断改进,成为现代显微镜的基本组成部分。 1673~1677年期间,列文胡克制成单组元放大镜式的高倍显微镜,其中九台保存至今。胡克和列文胡克利用自制的显微镜,在动、植物机体微观结构的研究方面取得了杰出成就。 19世纪,高质量消色差浸液物镜的出现,使显微镜观察微细结构的能力大为提高。1827年阿米奇第一个采用了浸液物镜。19世纪70年代,德国人阿贝奠定了显微镜成像的古典理论基础。这些都促进了显微镜制造和显微观察技术的迅速发展,并为19世纪后半叶包括科赫、巴斯德等在内的生物学家和医学家发现细菌和微生物提供了有力的工具。 在显微镜本身结构发展的同时,显微观察技术也在不断创新:1850年出现了偏光显微术;1893年出现了干涉显微术;1935年荷兰物理学家泽尔尼克创造了相衬显微术,他为此在1953年获得了诺贝尔物理学奖。 古典的光学显微镜只是光学元件和精密机械元件的组合,它以人眼作为接收器来观察放大的像。后来在显微镜中加入了摄影装置,以感光胶片作为可以记录和存储的接收器。现代又普遍采用光电元件、电视摄像管和电荷耦合器等作为显微镜的接收器,配以微型电子计算机后构成完整的图像信息采集和处理系统。 目前全世界最主要的显微镜厂家主要有:奥林巴斯、蔡司、徕卡、尼康。国内厂家主要有:江南、麦克奥迪等。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制