当前位置: 仪器信息网 > 行业主题 > >

微米单频激光器

仪器信息网微米单频激光器专题为您提供2024年最新微米单频激光器价格报价、厂家品牌的相关信息, 包括微米单频激光器参数、型号等,不管是国产,还是进口品牌的微米单频激光器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合微米单频激光器相关的耗材配件、试剂标物,还有微米单频激光器相关的最新资讯、资料,以及微米单频激光器相关的解决方案。

微米单频激光器相关的论坛

  • 3微米光纤激光器发展空间巨大

    目前, 3 μm 波段光纤激光器在高功率化、 降低成本化、 生产规模化等方面还有许多限制。无氧玻 璃在原料提纯、 大尺寸制备、 光纤拉制等方面的工艺 仍显不足, 这也是制约所有中红外发光稀土掺杂光 纤走向实用化的最大障碍。另外, 提高稀土离子浓度虽能提高光纤单位长 度增益, 但也会增加光纤的传输损耗或发生浓度淬 灭现象, 也制约了其发展。而 “级联” 掺 Er 3 + 光纤激 光器由于具有较低的掺杂浓度和纤芯温度具有十分 广阔的研究前景。同时, 掺 Ho 3 + 光纤激光器由于采 用 1150 nm 的抽运光, 斜效率更高, 也具有较好的应 用前景。

  • 【原创】激光粒度仪中亚微米及纳米的粒度检测

    在激光粒度仪的性能指标中测试下限标称为0.1甚至为0.02等,那么这部分粒度是怎么检测出来的呢?如果下限为0.1微米,那么探测器所能接收的前向角度至少要达到70度,或是有后向探测器.如果下限为0.02微米必须要应用后向散射技术,而且还要看后向激光器的波长,如果是普通的红光激光器,波长范围大概为600-800nm的激光器将无法区分纳米级颗粒后向的散射信号区别.所以必须采用波长更短的激光器,比如蓝光激光器,波长405nm等,这样纳米颗粒的后向信号区别会比较明显,但还要有特殊的采样与处理方式,否则测量下限0.02也是无法做到的.具体的方法不便说出,但用户可以采用纳米级颗粒去验证,最好中位径范围在0.05um以下的几种颗粒,比如中位径分别为0.02,0.03,0.04,0.05等几种接近单分散样品,确实在实际中这种验证比较困难,这里只是建议方法而已,希望用户能选择到一款性价比较高的仪器!尤其是检测中位径在0.2-0.02um的用户尤其要注意!

  • 激光器咨询

    激光粒度分析仪实验系统一般用什么型号的激光器?搭建个实验系统,测固体颗粒用的,比如:金刚石粉之类的,粒度范围在0.1微米到1000微米。

  • 【转帖】He-Ne激光器与半导体激光器

    半导体激光器又称激光二极管(LD),是二十世纪八十年代半导体物理发展的最新成果之一。导体激光器的优点是体积小、重量轻、可靠性高、使用寿命长、功耗低,此外半导体激光器是采用低电压恒流供电方式,电源故障率低、使用安全,维修成本低等。因此应用领域日益扩大。目前,半导体激光器的使用数量居所有激光器之首,某些重要的应用领域过去常用的其他激光器,已逐渐为半导体激光器所取代。它的应用领域包括光存储、激光打印、激光照排、激光测距、条码扫描、工业探测、测试测量仪器、激光显示、医疗仪器、军事、安防、野外探测、建筑类扫平及标线类仪器、激光水平尺及各种标线定位等。以前半导体激光器的缺点是激光性能受温度影响大,光束的发散角较大(一般在几度到20度之间),所以在方向性、单色性和相干性等方面较差.但随着科学技术的迅速发展,目前半导体激光器的的性能已经达到很高的水平,而且光束质量也有了很大的提高.以半导体激光器为核心的半导体光电子技术在21 世纪的信息社会中将取得更大的进展,发挥更大的作用。 在气体激光器中,最常见的是氦氖激光器。1960年在美国贝尔实验室里由伊朗物理学家贾万制成的。由于氦氖激光器发出的光束方向性和单色性好,光束发散角小,可以连续工作,所以这种激光器的应用领域也很广泛,是应用领域最多的激光器之一,主要用在全息照相的精密测量、准直定位上。He-Ne激光器的缺点是体积大,启动和运行电压高,电源复杂,维修成本高。

  • 氦氖激光器与半导体激光器的性能有何差异?

    [font=宋体]同样作为激光器,氦氖激光器稳定性比普通半导体激光器的稳定性更高,主要原因在于激光器受温度影响,激光波长会发生偏移,氦氖激光器的温度稳定度相比半导体激光器更稳定,受环境影响更小。[/font]

  • 安光所孙敦陆研究员团队在2.7~3微米中红外晶体制备及激光性能研究方面取得新进展

    近期,中国科学院合肥物质院安光所孙敦陆研究员课题组在2.7~3微米波段中红外晶体制备及激光性能研究方面取得一系列新进展,相关研究成果分别以《Ho,Pr:YAP晶体的热学、光谱及~3微米连续激光性能》、《Er:YGGAG晶体的结构、光谱与激光性能》和《LD侧面泵浦YSGG/Er:YSGG/YSGG晶体实现28.02瓦的2.8微米连续激光》为题发表在光学领域国际知名期刊Optics Express上,第一作者分别为乔阳博士研究生、陈玙威博士研究生和张会丽副研究员。[align=center][img=,600,259]https://img1.17img.cn/17img/images/202404/uepic/80f41813-1ef4-49a7-9a8a-43345007fd08.jpg[/img][/align][align=center][img=,600,257]https://img1.17img.cn/17img/images/202404/uepic/b4d989c0-7726-4f29-9a76-67fa44ebd245.jpg[/img][/align][align=center][img=,600,257]https://img1.17img.cn/17img/images/202404/uepic/dcd0a1e9-5af5-4265-993a-750d02e274e0.jpg[/img][/align]2.7~3微米中红外激光处于水分子的强吸收带,在生物医疗、光学遥感及非线性光学等领域有着广泛的应用前景。稀土离子Ho[font=等线][sup][size=13px]3+[/size][/sup][/font](钬离子)通过[font=等线][sup][size=13px]5[/size][/sup][/font]I[font=等线][sub][size=13px]6[/size][/sub][/font]至[font=等线][sup][size=13px]5[/size][/sup][/font]I[font=等线][sub][size=13px]7[/size][/sub][/font]的辐射跃迁,可产生3微米附近波段中红外激光。然而,Ho[font=等线][sup][size=13px]3+[/size][/sup][/font]的激光下能级[font=等线][sup][size=13px]5[/size][/sup][/font]I[font=等线][sub][size=13px]7[/size][/sub][/font]的荧光寿命较长,容易产生自终止效应,不利于实现激光上、下能级之间的粒子数反转。针对这一问题,我们提出提高激活离子Ho[font=等线][sup][size=13px]3+[/size][/sup][/font]的掺杂浓度,同时共掺适量能级耦合离子Pr[font=等线][sup][size=13px]3+[/size][/sup][/font](镨离子),以降低Ho[font=等线][sup][size=13px]3+[/size][/sup][/font]激光下能级寿命,抑制自终止效应。采用熔体提拉法,成功生长出了4 at.% Ho[font=等线][sup][size=13px]3+[/size][/sup][/font]、0.1 at.% Pr[font=等线][sup][size=13px]3+[/size][/sup][/font]共掺YAP晶体,系统开展了晶体结构、晶体质量、热学、光谱及其激光性能的研究。由于退激活离子Pr[font=等线][sup][size=13px]3+[/size][/sup][/font]的掺入,其激光下能级寿命由5.391毫秒降至1.121毫秒,同时激光上能级寿命变化较小,表明共掺Pr[font=等线][sup][size=13px]3+[/size][/sup][/font]能够有效抑制自终止效应,有利于降低激光阈值、提高激光性能。采用1150纳米拉曼光纤激光器端面泵浦,在Ho,Pr:YAP晶体上实现了最大平均功率502毫瓦的~3微米连续激光输出,相应的斜效率为6.3%。与Ho:YAP晶体相比,其激光阈值降低,最大输出功率及效率均得到了提高。目前,LD泵浦Er:YSGG晶体的中红外脉冲激光已高达数十瓦,而连续激光输出功率仅有瓦级,采用连续LD侧面泵浦有望进一步提高连续激光输出功率。由于在激光运转过程中,激光增益介质内部会产生温度梯度,导致产生各种热效应,限制了激光输出功率和效率的提高。我们通过在Er:YSGG晶体棒的两端键合高热导率的未掺杂YSGG晶体作为端帽,以改善热效应。采用978纳米LD侧面泵浦YSGG/Er:YSGG/YSGG键合晶体,实现了最大平均功率28.02瓦的~2.8微米连续激光输出,这是目前报道的在氧化物晶体中获得最高功率的~2.8微米连续激光输出,相应的斜效率和光-光转换效率分别为17.55%和12.29%。其最大功率和斜效率均高于相同泵浦条件下的未键合Er:YSGG晶体,表明键合可有效改善热效应,提高激光性能。实验测试并理论计算了LD侧面泵浦未键合Er:YSGG晶体和YSGG/Er:YSGG/YSGG键合晶体在不同泵浦功率下的热焦距,结果表明,YSGG/Er:YSGG/YSGG键合晶体更适于在高泵浦功率下工作。以上研究工作得到了国家自然科学基金、替代专项、安徽省自然科学基金和合肥物质院院长基金的支持。[来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • 【讨论】激光粒度仪谁家的激光器最好?

    我觉得是法国Cilas的,他们用的是半导体激光器。这个公司主要的业务还是激光器这块嘛,在全世界范围来说生产的激光器都是数一数二的。马尔文,贝克曼这些公司都是买了人家的。

  • 美探索用反物质制造伽马射线激光器 探测微小空间

    美探索用反物质造伽马射线激光器 可对非常微小的空间进行探测 科技日报讯 传统激光器的操作光波可从红外线到X射线一网打尽,而伽马射线激光器则依靠比X射线更短的光波来运行,这就使其能产生波长仅为X射线千分之一的光波,从而能对非常微小的空间进行探测,并在医学成像领域大展拳脚。不过,长期以来,建造伽马激光器一直是个难题。现在,美国科学家让一类名为“电子偶素(positronium)”的物质—反物质混合物作为增益介质,将普通光变成了激光束。 据美国趣味科学网站5月8日报道,在最新一期的《物理评论·原子分子物理》杂志上,马里兰大学联合量子研究所的王逸新(音译)、布兰登·安德森以及查尔斯·克拉克撰文表示,他们发现,当向电子偶素提供特定能量,它将产生在其他能量下无法制造出的激光;而且,要制造出激光束,这种电子偶素必须处于玻色—爱因斯坦凝聚态下。 克拉克解释道,这种奇怪的效应与电子偶素的“性格”有关。每个电子偶素“原子”实际上是一个普通的电子和一个正电子(电子的反物质)。正电子和电子分别带正负电荷。当它们相遇时,会相互湮灭并释放出两个高能光子,这两个光子位于伽马射线范围内,反向移动。 有时,电子和正电子会围绕对方旋转,就像电子围绕着质子旋转组成原子一样。然而,正电子比质子轻,因此电子偶素并不稳定,在不到十亿分之一秒内,电子和正电子会相互碰撞并发生湮灭。 为了制造出伽马射线激光器,科学家们需要使电子偶素的温度非常低,接近绝对零度(零下273摄氏度)。这一冷却过程会让电子偶素进入波色—爱因斯坦凝聚态,这种状态下物质内的所有原子,也就是电子—正电子对,进入同样的量子状态,一举一动整齐划一。 量子状态的一个方面是自旋。电子偶素的自旋数要么为1,要么为0。一束远红外线光脉冲能让电子偶素的自旋数为0。自旋为零的电子偶素会湮灭并产生双方向相干的伽马射线束—激光束。研究人员表示,能做到这一点是因为所有电子偶素“原子”拥有同样的自旋数。如果是自旋为0和自旋为1的电子偶素随机组合,那么,光会朝各个方向散射。 研究人员也计算出,为了让一台伽马射线工作,每立方厘米大约需要1018个电子偶素原子,听起来有点多,但与空气的密度相比还是少很多,同样体积的空气大约有2.5×1019个原子。 在1994年首次提出伽马射线激光器这一概念的贝尔实验室的艾伦·米尔斯表示,研究人员可以借用数学方法,让制造这种激光器所需要的环境更加精确。(刘霞)来源:中国科技网-科技日报 2014年05月10日

  • 半导体激光器的优点和缺点

    半导体激光器又称激光二极管(LaserDiode,LD),是二十世纪八十年代半导体物理发展的最新成果之一。半导体激光器的优点是体积小、重量轻、可靠性好、使用寿命长、功耗低。此外,半导体激光器采用低电压恒流供电方式,电源故障率低、使用安全,维修成本低。目前,半导体激光器的使用数量居所有激光器之首,某些重要的应用领域,过去常用的其他激光器,已逐渐被半导体激光器所取代。此外,半导体激光器品种繁多,既有波长较长的红外、红光,也有波长较短的绿光、蓝光,可以利用这些优势拓展激光粒度仪的测量范围, 提高测量精度。早期的半导体激光器激光性能受温度影响大,光束的发散角也大( 一般在几度到 20 度之间 ),所以在方向性、单色性和相干性等方面的性能并不理想。但随着科学技术的迅速发展,目前半导体激光器的的性能已经达到很高水平,光束质量也有了很大提高,因此世界上大多数品牌的激光粒度仪都使用半导体激光器做为光源,半导体激光器用作激光粒度仪的光源时,在控制电路上须采取恒流和恒温措施,以保证输出功率的稳定。

  • 揭开星战中激光弹的神秘面纱

    揭开星战中激光弹的神秘面纱

    http://ng1.17img.cn/bbsfiles/images/2015/01/201501161459_532530_2972800_3.jpg 对于科幻迷来讲,没有什么比激光弹满天飞的星球大战更令人激动的了。那么,真正的激光弹在飞行过程中是什么样的呢?它真的是五颜六色的吗?为了解开上述困惑,近日,波兰物理化学科学院激光中心研究所和华沙大学物理学院的研究员们合作发明了一款新型便携式激光器,它能产生具有10兆瓦超高能量的长距离飞行激光脉冲,通过观察记录该脉冲在空气中的飞行过程,研究员们揭开了激光导弹不为人知的秘密。 该激光器配有一个特制的多路光学参量放大器(NOPCPA),能产生持续十几飞秒(1飞秒=10-15秒)的激光脉冲,这样的脉冲十分强大,因而能瞬间电离原子,同时产生等离子纤维(丝)。研究人员通过适当选择激光操作参数,平衡脉冲电磁场与等离子体丝间的相互作用,激光光束不但不会在空气中消失,反而能够自聚焦。“值得注意的是,尽管该激光器射出的光线属于近红外范围,但人们看到的却是白色光线。这是因为脉冲与等离子体相互作用时会产生许多不同波长的光,人眼同时接收到这些光就会看到白色光。”尤里巴克博士解释道。研究人员通过将相机与激光器的频率同步来拍摄激光飞行的过程。图中蓝色光是激光,其他颜色都是由脉冲与等离子体相互作用所产生的不同波长的光线。 新型激光器能产生长距离飞行白色激光脉冲的能力让它十分适用于远程监测大气污染的激光雷达上。不同波长的光与空气中的原子和分子相互作用能提供更为丰富的信息。因此,配备新型激光器的激光雷达能检测到更多污染大气的元素和化合物,从而为监测大气污染提供更加全面信息。

  • 国产HeCd激光器推荐

    测zno的PL谱一般要用到325nm的HeCd激光器作为激发光源吧。但苦于进口的激光器动辄十几万,预算不够,大伙有没较便宜的国产激光器推荐的。谢谢!

  • 【转帖】世界首个反激光器问世

    http://i1.sinaimg.cn/IT/2011/0222/U5385P2DT20110222082412.jpg传统激光器利用增益媒介产生连续光束。http://i3.sinaimg.cn/IT/2011/0222/U5385P2DT20110222082423.jpg反激光器将被证实在电脑计算方面的应用会比在武器防御方面更有用。  北京时间2月22日消息,美国物理学家研制成世界首个反激光器,它可完全抵消激光器发出的光束。这种装置由美国耶鲁大学科研组制成,它能完全吸收入射激光束。  不过研究人员表示,该装置并不是用来防御高能激光武器的。他们认为,可以把这种反激光器应用到下一代超级电脑上,这种电脑利用光而非电子等成分制造。耶鲁大学的道格拉斯·斯通教授和他的同事最初是为了提出一项理论,用来解释哪种材料可以当作激光器的基本组成要素。  斯通解释说,当前在激光器设计方面取得的新进展,导致大量与众不同的装置产生,它们无法通过传统激光器概念进行解释。他说:“因此我们正在设想一种新理论,以便预测什么材料能够制成激光器。”通过该理论还能预测到,他们制造的反激光器不像激光器那样可以增强光,它可能会吸收入射光束。现在他们已经成功制造了一个这种装置。  他们的装置将两束特殊频率的激光束集中到一个经过特殊设计的、用硅制成的光共振腔里,硅晶片用来捕捉入射光,束缚住它们,直到它们的能量消耗完为止。他们在《科学》杂志上的论文里说,反激光器能吸收99.4%的一种特殊波长的入射光。斯通表示,改变入射光的波长,意味着可以利用光学开关有效打开和关闭反激光器。  斯通表示,制造可以吸收不同波长的光的装置非常简单,但是像反激光器一样只吸收一种特殊波长的光的装置,可能对光学电脑有好处。反激光器的一大优势是它是用硅制造的,这种物质已经广泛应用于电脑中。据斯通说,该技术不会太多应用于激光护目镜上。他说:“它会以热的形式驱散光。因此,如果一些人利用高能激光烘烤你,反激光器是无法阻止的。”

  • 【分享】激光雷达/激光探测及测距系统

    【分享】激光雷达/激光探测及测距系统

    激光雷达可以按照所用激光器、探测技术及雷达功能等来分类。目前激光雷达中使用的激光器有二氧化碳激光器,Er:YAG激光器,Nd:YAG激光器,喇曼频移Nd:YAG激光器、GaAiAs半导体激光器、氦-氖激光器和倍频Nd:YAG激光器等。其中掺铒YAG激光波长为2微米左右,而GaAiAs激光波长则在0.8-0.904微米之间。根据探测技术的不同,激光雷达可以分为直接探测型和相干探测型两种。其中直接探测型激光雷达采用脉冲振幅调制技术(AM),且不需要干涉仪。相干探测型激光雷达可用外差干涉,零拍干涉或失调零拍干涉,相应的调谐技术分别为脉冲振幅调制,脉冲频率调制(FM)或混合调制。按照不同功能,激光雷达可分为跟踪雷达,运动目标指示雷达,流速测量雷达,风剪切探测雷达,目标识别雷达,成像雷达及振动传感雷达。激光雷达最基本的工作原理与无线电雷达没有区别,即由雷达发射系统发送一个信号,经目标反射后被接收系统收集,通过测量反射光的运行时间而确定目标的距离。至于目标的径向速度,可以由反射光的多普勒频移来确定,也可以测量两个或多个距离,并计算其变化率而求得速度,这是、也是直接探测型雷达的基本工作原理。由此可以看出,直接探测型激光雷达的基本结构与激光测距机颇为相近。相干探测型激光雷达又有单稳与双稳之分,在所谓单稳系统中,发送与接收信号共同在所谓单稳态系统中,发送与接收信号共用一个光学孔径。并由发射/接收(T/R)开头隔离。T/R开关将发射信号送往输出望远镜和发射扫描系统进行发射,信号经目标反射后进入光学扫描系统和望远镜,这时,它们起光学接收的作用。T/R开关将接收到的辐射送入光学混频器,所得拍频信号由成像系统聚焦到光敏探测器,后者将光信号变成电信号,并由高通滤波器将来自背景源的低频成分及本机振荡器所诱导的直流信号统统滤除。最后高频成分中所包含的测量信息由信号和数据处理系统检出。双稳系统的区别在于包含两套望远镜和光学扫描部件,T/R开关自然不再需要,其余部分与单稳系统的相同。美国国防部最初对激光雷达的兴趣与对微波雷达的相似,即侧重于对目标的监视、捕获、跟踪、毁伤评(SATKA)和导航。然而,由于微波雷达足以完成大部分毁伤评估和导航任务,因而导致军用激光雷达计划集中于前者不能很好完成的少量任务上,例如高精度毁伤评估,极精确的导航修正及高分辨率成像。较早出现的一种激光雷达称为“火池”,它是由美国麻省理工学院的林肯实验室投资,于60年代末研制的。70年代初,林肯实验室演示了火池雷达精确跟踪卫星,获得多普勒影像的能力。80年代进行的实验证明,这种CO2激光雷达可以穿透某些烟雾,识破伪装,远距离捕获空中目标和探测化学战剂。发展到80年代末的火池激光雷达,采用一台高稳定CO2激光振荡器作为信号源,经一台窄带CO2激光放大器放大,其频率则由单边带调制器调制。另有工作于蓝-绿波段的中功率氩离子激光与上述雷达波束复合,用于对目标进行角度跟踪,而雷达波束的功能则是收集距离――多普勒影像,实时处理并加以显示。两束波均由一个孔径为1.2M的望远镜发射并接收。据报道,美国战略防御局和麻省理工学院的研究人员于1990年3月用上述装置对一枚从弗吉尼亚大西洋海岸发射的探空火箭进行了跟踪实验。在二级点火后6分钟,火箭进入亚轨道,即爬升阶段,并抛出其有效负载,即一个形状和大小均类似于弹道导弹再入飞行器的可充气气球。该气球有气体推进器以提供与再入飞行器和诱饵的物理结构相一致的动力学特性。目标最初由L波段跟踪雷达和X波段成像雷达进行跟踪。并将这些雷达传感器取得的数据交给火池激光雷达,后者成功地获得了距离约800千米处目标的像。[~116966~][~116967~][~116968~][img]http://ng1.17img.cn/bbsfiles/images/2017/01/201701191651_624049_1602049_3.jpg[/img]

  • 半导体激光器的优点和缺点有哪些?

    [font=&]半导体激光器又称激光二极管(LaserDiode,LD),是二十世纪八十年代半导体物理发展[/font][font=&]的最新成果之一。[/font][font=&]半导体激光器的优点是体积小、重量轻、可靠性好、使用寿命长、功耗低。此外,半导体激[/font][font=&]光器采用低电压恒流供电方式,电源故障率低、使用安全,维修成本低。目前,半导体激光[/font][font=&]器的使用数量居所有激光器之首,某些重要的应用领域,过去常用的其他激光器,已逐渐被[/font][font=&]半导体激光器所取代。此外,半导体激光器品种繁多,既有波长较长的红外、红光,也有波[/font][font=&]长较短的绿光、蓝光,可以利用这些优势拓展激光粒度仪的测量范围, 提高测量精度。[/font][font=&]早期的半导体激光器激光性能受温度影响大,光束的发散角也大( 一般在几度到 20 度之[/font][font=&]间 ),所以在方向性、单色性和相干性等方面的性能并不理想。但随着科学技术的迅速发展,[/font][font=&]目前半导体激光器的的性能已经达到很高水平,光束质量也有了很大提高,因此世界上大多[/font][font=&]数品牌的激光粒度仪都使用半导体激光器做为光源,半导体激光器用作激光粒度仪的光源时,[/font][font=&]在控制电路上须采取恒流和恒温措施,以保证输出功率的稳定。[/font]

  • 【求助】关于质谱仪上,激光器的问题

    大家看看我贴的图片1 这个图片中的激光器的参数该怎么翻译?2 脉冲能量稳定性:2%,是什么意义?3 beam divergence(V×H)这个翻译为激光发散角,为什么值是:0.5×0.3mrad?4 有谁知道ABI的激光器用的什么牌子的?5 激光器的衰减参数是多少?

  • 德研发快速检测水质的激光器

    据新华社柏林10月23日电 德国科研人员利用激光技术,推出了一种饮用水快速检测法,仅需几分钟就可得出检验结果。 德国弗劳恩霍夫应用固体物理研究所日前发表研究公报称,一种特殊的红外线激光器可以对自来水厂的饮用水样本进行自动分析。这种激光器的体积仅为鞋盒大小,其工作原理是,每种化合物分子都有特定的吸收光谱,用红外线激光照射水样本并分析其吸收光谱就可以确认化合物的种类。 这套红外线激光器已在德国黑森林地区的金齐希河自来水厂进行试用。在六周的时间里,这套仪器每隔三分钟就会对饮用水样品进行自动检测,共进行了约2.1万次检测,结果非常精确。 除对饮用水进行日常检验分析外,这套仪器还能快速检验出水中的危险物质,这将有助于政府部门对水污染事件作出快速反应。

  • 激光器光源

    最近接触到了关于应用激光器作为分子荧光的光源,请问专家,这个与氙灯有什么区别呢?具体怎么个应用?

  • 新型超小激光器只有一个病毒大小

    突破阈值限制 可在室温下工作2012年11月07日 来源: 中国科技网 中国科技网讯 据物理学家组织网11月6日(北京时间)报道,美国西北大学的一个研究小组开发出一种只有一个病毒大小的超小型激光器。这种激光器具有体积小、室温下即可工作的特点,能够很容易地集成到硅基光子器件、全光电路和纳米生物传感器上,具有极为广阔的应用前景。相关论文发表在近日出版的《纳米快报》杂志上。 光子和电子元件的尺寸对超快数据处理和超高密度信息存储至关重要,因此,小型化是此类设备未来发展所必须攻克的一个难关。负责这项研究的纳米技术专家,西北大学温伯格学院艺术与科学学院以及麦考密克工程和应用科学学院材料学教授泰瑞·奥多姆说,纳米尺度上的相干光源不仅能够用来对小尺度的物理化学现象进行探索和分析,同时也能够帮助科学家打破光的衍射极限。 奥多姆称,能够制造出这种纳米激光器,都要归功于一种3D蝴蝶结式的纳米金属空腔结构。这种激光腔的几何结构能够产生表面等离子激元,这是一种在金属介质界面上激发并耦合电荷密度起伏的电磁振荡,具有近场增强、表面受限、短波长等特性,在纳米光子学的研究中扮演着重要角色。当产生表面等离子激元后,由于金属表面电子的集体震荡,因而能够最大限度的突破阈值限制,让所有光子都以激光形式进行发射,不浪费任何光子。这种蝴蝶结状结构的使用与先前类似的设备相比有两个明显的好处:第一,由于其电磁特性和纳米尺寸的体积,这种结构清晰可辨认。第二,由于其离散结构,损失可以减到最少。 此外,研究人员还发现,当这些结构排列成为一个阵列时,3D蝴蝶结谐振器能够根据晶格的参数发射出带有特定角度的光。(记者 王小龙) 总编辑圈点 科学家以前开发出的极小尺寸机器,包括小轮子、小马达和小弹簧等等,大多是机械类的。纳米光电类机器也有不少,但光源很难缩小到这个尺寸,使得纳米级光电路链条难以完整。美国西北大学研发的迄今最小的激光源,让纳米级光电路的元件齐全了。这意味着,完全依靠病毒或细菌大小的机器,信息的采集、传递和计算也可以实现。“小尺度的智慧”可能很快超出人们的想象。 《科技日报》(2012-11-07 一版)

  • 世界最强X射线激光器会是什么样子的?

    据国外媒体报道,美国国家加速器实验室近日利用世界上最强大的X射线激光器--直线加速器相干光源激光器再现恒星内部强大的压力与高温情形。这种激光器的激光能量迸发可超过一个小国家全年的发电总量。  在实验中,科学家将X射线聚焦于一个直径比人类头发丝还要细30倍的小点上,在1万亿分之一秒内将金属箔加热到200万摄氏度。金属在如此短的时间内被熔化,其所产生的极度高温和高压状态,通常只有在恒星内部才会出现。  英国牛津大学物理系科学家萨姆-文科博士等人参与了直线加速器相干光源激光器实验。文科博士表示,“如果我们要想了解现存恒星内部的情形以及我们太阳系内外巨型行星中心的情形,那么制造高温、高密度的物质非常重要。直线加速器相干光源激光器是一台神奇的机器,我们已经在多个科学领域取得了重大发现,如材料科学、生物学等。”  直线加速器相干光源激光器的实验成果近日发表于《自然》杂志之上。直线加速器相干光源长约2公里,可以产生密集的X射线爆发,亮度超过地球上任何光源10亿倍。在高峰时,光脉冲的能量甚至比一些小国家一年的发电总量都要多

  • 氦氖激光器波长如何校准?

    正常情况下,FT-IR的氦氖激光器波长632.8nm是不变的,无需校准。但是在出现波数偏移时,是否需要通过校准激光器的波长来修正呢?如何校准?

  • 布鲁克的机子激光器出问题

    布鲁克的机子激光器出问题,换样品测的时候激光器必然熄灭是什么原因啊,改变下波长时又亮了。还有超过60S的扫描时间还是熄灭了,求助,

  • 便携式拉曼光谱仪激光器使用寿命是多少

    [font=-apple-system, BlinkMacSystemFont, &][color=#05073b][size=18px]  便携式拉曼光谱仪激光器使用寿命是多少,便携式拉曼光谱仪的激光器使用寿命并不是一个固定的数值,因为它受到多种因素的影响。以下是一些影响激光器使用寿命的关键因素以及相应的解释:  控制发射功率:合理地控制激光器的发射功率是延长激光器寿命的有效方法之一。控制发射功率可以缓解晶体加热的程度,从而减缓晶体老化的速度。  维护工作环境:保持工作环境的良好通风和恒温状态,控制温度在激光器所允许的范围内,能够有效地延长激光器的使用寿命。  日常维护工作:多关注激光器的运行状态,及时更换性能不佳的部件,定期清洗光学元件和泵浦激光器,做好日常维护工作,也可以有效延长激光器的使用寿命。  具体到数值上,由于不同品牌和型号的便携式拉曼光谱仪激光器存在差异,以及使用环境、操作方式等因素的不同,因此无法给出确切的使用寿命数字。  然而,一般而言,如果正确操作和维护,激光器的使用寿命可以达到数千小时甚至更长。但是,这只是一个大致的估计,实际使用寿命可能因具体情况而异。  为了延长便携式拉曼光谱仪激光器的使用寿命,建议用户遵循以下几点:  仔细阅读并遵守产品说明书中的操作和维护指南。  定期对激光器进行清洁和检查,确保其处于良好的工作状态。  避免将激光器暴露在极端温度、湿度或灰尘环境中。  遵循正确的开关机顺序和操作流程,避免对激光器造成不必要的损害。  总之,虽然无法给出便携式拉曼光谱仪激光器确切的使用寿命数字,但通过正确的操作和维护,可以有效地延长其使用寿命。[/size][/color][/font]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制