拟盘多毛孢属

仪器信息网拟盘多毛孢属专题为您提供2024年最新拟盘多毛孢属价格报价、厂家品牌的相关信息, 包括拟盘多毛孢属参数、型号等,不管是国产,还是进口品牌的拟盘多毛孢属您都可以在这里找到。 除此之外,仪器信息网还免费为您整合拟盘多毛孢属相关的耗材配件、试剂标物,还有拟盘多毛孢属相关的最新资讯、资料,以及拟盘多毛孢属相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

拟盘多毛孢属相关的资料

拟盘多毛孢属相关的论坛

  • 气相色谱峰很多毛刺

    最近我们的GC Agilent 7890A不知道为什么,走出来的色谱峰毛刺特别多(直接进样和顶空进样都有很多毛刺),我做过如下处理: ①、老化色谱柱,进样口,检测器。 ②、将色谱柱的前端截去一部分。 ③、清洗检测器。 结果色谱峰的毛刺问题没有得到改善,不知道大家有没有更好的建议?最近,做过固体样品溶解后直接进样的实验,不知道跟这个有没有关系?如果是,该怎么处理呢?盼求解答,谢谢!

  • 气相色谱峰,很多毛刺

    热电的GC-MS测农残,用的是热电的农残专用柱,中等极性最近一段出现这样的问题:走纯溶剂标液时,目标物峰形很差,很多毛刺;但是用基质配标,就没有这种情况,峰形很好为什么呢? 有没有人碰到过跟我一样的问题啊?

  • 红外投射谱中有很多毛刺,很影响观感,怎么消除呢?求教!

    红外投射谱中有很多毛刺,很影响观感,怎么消除呢?求教!

    溴化钾压片得到的图,图中有很多毛刺不知道是为什么,问过厂家,说是因为溴化钾片压得太薄了,导致片内存在衍射导致的。请问大神们如何消除毛刺。是通过降低分辨率?还是压片压厚一点,还是应该怎么做啊!http://ng1.17img.cn/bbsfiles/images/2016/11/201611221501_01_3163397_3.png

拟盘多毛孢属相关的方案

拟盘多毛孢属相关的资讯

  • 新品发布| “小”有作为,Mini-Beam 小型化多毛细管微焦点X射线源- XOS新成员
    在现代X射线分析系统中,多毛细管X光透镜一直发挥着关键作用,其中微区XRF是最流行和最成功的应用之一。为了优化毛细管的传输效率并最大程度提高分析系统性能,首选的微焦点X射线光源尺寸应小于100μm。然而,对于某些需要尺寸更小、重量更轻且易于集成的X射线激发系统的工业应用来说,传统的微聚焦x射线管还是不能满足要求。虽然目前也有商业化的一体式紧凑型x射线管(带有内置高压电源和控制器),但x射线的光源尺寸往往太大,以致于无法充分利用多毛细管的性能优势。 此外,多毛细管的用户还面临着另一个挑战,即光学元件和X射线源之间的精确对准。不完美的光学对准不仅会影响X射线的输出强度,还会影响X射线激发系统的稳定性。多毛细管X光透镜XOS多毛细管X光透镜的概念始于上世纪90年代初期。近二十多年来,XOS 与来自世界各地的科研团体携手进行了广泛的研究和开发,将多毛细管X光透镜的制造工艺进行了显著提升。目前,XOS 已成为全球领先的高性能多毛细管X光透镜及激发系统制造商。XOS现在设计出了一款小型化、低功率的X射线源Mini-Beam,采用了一体化设计,重量不到2kg,并且配备的X射线光源尺寸也足够小,可以充分挖掘多毛细管X光透镜的性能潜力。其元件底座/对准接口也十分便于实现精确的光学对准。行业领先的卓越性能Mini-Beam的输出光强是传统针孔准直器的1000倍焦斑小至5μm @Rh Ka(20.162 kev)集成可拆卸滤光滚轮,轻松更换滤片易于集成小巧紧凑轻松与任何仪器或系统集成支持USB连接维护简单可配备不同规格的多毛细管,更换简单易于维护,现场对准Mini-Beam标准款配备了不同的多毛细管,参数如下:高度聚焦毛细管典型应用:Micro XRF-微粒分析-薄膜和镀层厚度测量-高分辨元素MappingMini-Beam PF-004Mini-Beam PF-010Mini-Beam PF-020Mini-Beam PF-050输出焦距(mm)4102050输出光强(phs/s)@50KV/10W, Ag Ka, 22.16keV5.0E+041.0E+052.0E+054.0E+05焦斑大小(μm, FWHM, @Ag K)152550100 高度准直毛细管典型应用:XRD&WDS-粉末衍射-织构和应变测量-波长色散光谱仪Mini-Beam PC-004Mini-Beam PF-006Mini-Beam PC-010Mini-Beam PF-015输出光束直径(mm)461015输出光强(phs/s)@50KV/10W, Ag Ka, 22.16keV5.0E+051.0E+052.0E+06302E+06Mini-Beam也可针对需要小型化、低功率X射线微焦源的各种应用进行定制。欢迎各位对Mini-Beam感兴趣的老师随时联系我们,为您量身定制解决方案。Mini-Beam基本配置:Available Targets*Ag, Rh, W, Cu, and CrTube TypeMetal-ceramicTube Operating Temperature-10 to +50 CCoolingForced airHigh Voltage Potential4 to 60kVBeam Current5 to 200μAMaximum Power12 wattsInput Power110V/220VAC, 50/60HzMinimum Dimensions12 x 4 x 3 inchesWeight4.3 lbs*如有需要,可提供其他靶材。
  • 程琳教授团队:毛细管聚焦的微束X射线衍射仪及其应用研究
    毛细管聚焦的微束X射线衍射仪及其应用研究邵金发,程琳*(北京师范大学核科学与技术学院,射线束技术教育部重点实验室 100875)摘要随着自然科学的不断进步,诸多领域都朝着微观层面发展,人们对物质的分析随之深入到微区范畴。微束X射线衍射分析技术是一种无损分析微小样品或样品微区物相结构的有利工具,凭借着无损、微区、空间分辨率高等特点被应用于诸多领域中。本实验室将毛细管X射线聚焦技术与X射线衍射分析技术相结合,自行设计研发了一种新型毛细管聚焦的微束X射线衍射仪。它利用毛细管X光透镜的特点,将X射线源发出的X射线束会聚到微米量级,从而实现对小样品或者样品微区的物相分析,为解决金属文物、陶瓷文物等的无损微区物相分析提供了解决方案。1. 引言微束X射线衍射(micro-X-ray diffraction,µ-XRD)是一种可靠的、无损的物相结构分析技术,已被广泛应用于生物化学、材料科学、地球科学、应力分析等领域[1-6]。目前获得微束入射X射线的方法主要有准直器限束和X射线光学器件聚焦两种。通过准直器限束获得微束入射X射线是最早在微束X射线衍射仪中使用的方法,具体为采用准直狭缝或小孔作为光阑放置在入射光路上,用以减小入射X射线的发散度。但是与此同时,入射光束的强度会因为物理阻挡而降低,导致获得的衍射信息变弱,难以达到理想的分析效果[3,4]。而多毛细管X光透镜利用X射线全反射原理,可将在空心毛细管内表面上的多次全反射的X射线会聚于一焦点。因此可以以较大的角度收集从X射线源产生的X射线,且会聚后X射线的束斑大小可低至几十微米。同时,毛细管X光透镜对Cu-Kα的能量有高达2-3个数量级的放大倍数[7],且具有低的发散度,非常适合微小样品和样品微区物相结构无损分析的研究。目前德国Bruker公司生产的D8系列X射线衍射仪通过添加一个由微焦点X射线源和多毛细管X光透镜集成的附加模块实现μ-XRD分析的功能[8];意大利LANDIS实验室开发了一个集成多毛细管半透镜的μ-XRD衍射[9,10]仪。但由于仪器均缺乏二维、三维自动控制平台,难以实现样品微小测量点的准确定位,更无法实现样品微区的二维μ-XRD分析。面向微小样品和样品微区µ-XRD分析的需求,本实验室自行设计和开发一种新型的微束X射线衍射仪以及相应的计算机控制程序,并且开展了相关分析方法学的研究。2. 仪器组成本实验室设计的毛细管聚焦的微束X射线衍射仪外观如图1所示,其主要由微焦斑X射线管(Cu靶,焦斑大小50 μm×50 μm)、毛细管X光透镜(Cu-Kα能量处束斑大小为100 µm)、接收狭缝、SDD X射线探测器(5.9keV时能量分辨率为145eV,铍窗有效面积25 mm2)、具有20倍放大功能的1400万像素固定焦距CCD摄像头、测角仪,XYZφ四维样品台,以及在LabVIEW语言环境下开发的仪器控制程序等部分组成。图1 微束X射线衍射仪的外观图控制程序的主界面具有微区X射线衍射分析和微区能量色散X射线荧光(micro energy dispersive X-ray fluorescence,μ-EDXRF)分析两种模式,如图2所示。谱图显示区域在探测过程中实时显示X射线探测器探测到的谱图。此外,该仪器使用的高精度自动化三维运动平台可以满足微区的二维μ-XRD分析的需求,以便实现对感兴趣区域内物相分布的分析等相关问题。图2 微束X射线衍射仪控制程序的主界面与Si (4 0 0)的X射线衍射图3. 实验分析3.1 氮化钛薄膜的分析薄膜具有强大的性能,但同时也会因为各种内部或者外部因素而发生失效。因此,薄膜微观区域特征的变化对宏观尺度特征的研究具有重要的作用。本文选择TiN薄膜作为研究对象,以期了解薄膜中TiN晶相生长的择优取向并对其进行快速评估。该TiN薄膜的是利用金属真空蒸汽电弧离子源(MEVVA)先进行离子注入,再经磁过滤真空阴极电弧沉积系统(FCVA)气相沉积而成。被测样品如图3所示,A部分和B部分是TiN薄膜,C部分为304不锈钢衬底,其中A部分更靠近整个样品的边缘,感兴趣的区域标识在中间的矩形条框中(0.5 mm×5.0 mm)。由于图中各部分形状不规则,易被常规X射线仪器的射线束无差别的覆盖,因此在这里进行微区分析十分必要。图3 TiN薄膜与304不锈钢衬底以及被测位置图片在μ-EDXRF分析模式下,X射线管电压为30 kV,管电流为0.5 mA,X射线束与样品表面的夹角θ1和X射线探测器铍窗的中心线与样品表面的夹角θ2均为45°,探测器探测活时间为60 s,测量得到的μ-EDXRF光谱见图4。同时,选择如图3中所示的感兴趣区域,使用微束X射线衍射仪进行µ-EDXRF二维扫描分析。扫描步距为50 μm,每个点的测量条件与μ-EDXRF分析保持一致,每步的探测活时间为500 ms。经过数据处理,得到扫描区域内各元素的分布如图5所示。在µ-XRD分析模式下,X射线管的设置与µ-EDXRF分析模式下相同,测角仪2θ范围为10°~120°,步距角为0.1°,每步的探测活时间为1 s,测量得到的X射线衍射图谱如图6所示。图4 TiN薄膜测量点的μ-EDXRF光谱图5 TiN薄膜扫描区域中Fe和Ti元素的分布图6 TiN薄膜测量点的μ-XRD图从图4可以看出,TiN薄膜测量点a和b的主要荧光峰来自Ti元素,同时,测得的304不锈钢衬底的主要合金元素为Fe、Ni和Cr。通过荧光峰的强度可知,a点Fe与Cr的相对含量较b点高,而b点Ti的相对含量较a点高,即b点处沉积了更多的Ti。从图5中可以看出,从中部到边缘位置Ti的含量发生了明显的改变,这主要受沉积束流在304不锈钢衬底上的覆盖面积所影响,而这种含量的改变与薄膜物相的变化有一定的联系。图6的测量结果表明,在该TiN薄膜中TiN所呈现的取向分别为(1 1 1)、(2 0 0)、(2 2 0)和(3 1 1)。在a点中最强的衍射峰来自于TiN的(2 2 0)晶面;在b点中TiN的(1 1 1)晶面呈现为最强,而(2 2 0)晶面消失了。结合图5中的元素分布可知,Ti的含量在物相变化的过程中起到了重要作用,随着沉积Ti的增加,膜内积聚的内压力促进了相变。因此,使用本微束X射线衍射仪可以实现对TiN薄膜,尤其是镀在微小零件上的薄膜的定点性能监测。同时,借助本微束X射线衍射仪,可从元素组成、元素分布、物相组成几方面对薄膜的微区进行表征。可以帮助认识了薄膜微区的性质,并为宏观的薄膜失效或者薄膜强化提供了研究数据。3.2 清代红绿彩瓷的分析为了评估本仪器对样品微区进行物相二维μ-XRD分析的能力,选取一片清代红绿彩瓷的残片作为研究对象。调节样品台使样品表面感兴趣区域清晰呈现在CCD图像中,并通过鼠标在控制界面的CCD视野中选择具体的目标扫描区域(图7)。选择图7中A(白釉),B(红彩)和C(绿彩)进行μ-XRD分析。µ-XRD分析的测量条件与上文保持一致,所得μ-XRD图如图8所示。从图8中可以看出,A点白釉XRD谱图在15 °~35 °之间出现一个驼峰,这是白釉在高温烧制过程中形成的非晶相所致;同时,经过对比ICCD PDF卡,A点白釉中主要存在的晶相为钾长石KAlSi3O8 (PDF 25-0618)、石英SiO2 (PDF 46-1045)和莫来石3Al2O32SiO2 (PDF 15-0776)等;B点红彩中主要存在的晶相为Fe2O3 (PDF 47-1409)和石英SiO2(PDF 46-1045)等;C点绿彩中主要存在的晶相为Pb8Cu(Si2O7)3 (PDF 31-0464)等。图7 清代红绿彩瓷残片与感兴趣区域图片图8 红绿彩中白釉、红彩和绿彩的μ-XRD图此外,选择如图7中2 mm×2 mm的感兴趣区域,使用微束X射线衍射仪进行µ-XRD二维扫描分析。该区域被划分为21×21个被测试点,扫描步距为100 µm,每个点的测量条件为:X射线管电压为30 kV,电流为0.5 mA,2θ探测范围为24.5°到30.5°,步距角为0.3°,每步探测活时间为0.8 s。由此得到的扫描总谱经数据处理得到的晶相分布图如图9所示。图9 扫描区域中Pb8Cu(Si2O7)3、3Al2O32SiO2、KAlSi3O8和Fe2O3的晶相分布4. 结论本实验室将毛细管X光透镜技术与X射线衍射分析技术相结合,设计和研发成一种新型微束X射线衍射仪。该微束X射线衍射仪具备无损分析微小样品和样品微区的物相结构的能力,且能实现样品微区中感兴趣区域的μ-XRD二维扫描。同时,该仪器还可实现样品的μ-EDXRF分析和μ-EDXRF二维元素分析,可为物相结构的研究提供了元素种类的参考信息,扩展了微束X射线衍射仪的功能。因此,其在材料科学、地球科学和文物保护等领域有着广泛的应用前景。 参考文献[1] Lin C , Li M , Youshi K , et al. The study of chemical composition and elemental mappings of colored over-glaze porcelain fired in Qing Dynasty by micro-X-ray fluorescence[J]. Nuclear Inst & Methods in Physics Research B, 2011, 269(3):239-243.[2] Laclavetine K, Ager F J, Arquillo J, et al. Characterization of the new mobile confocal micro X-ray fluorescence (CXRF) system for in situ non-destructive cultural heritage analysis at the CNA: μXRF-CONCHA[J]. Microchemical Journal, 2016, 125: 62-68.[3] Figueiredo E, Pereira M, Lopes F, et al. Investigating Early/Middle Bronze Age copper and bronze axes by micro X-ray fluorescence spectrometry and neutron imaging techniques[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2016, 122:15-22.[4] Brai M, Gennaro G, Schillaci T, et al. Double pulse laser induced breakdown spectroscopy applied to natural and artificial materials from cultural heritages[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2009, 64(10):1119-1127.[5] HložEk M, Trojek T, B Komoróczy, et al. Enamel paint techniques in archaeology and their identification using XRF and micro-XRF[J]. Radiation Physics & Chemistry, 2016: S0969806X16300573.[6] Scrivano S, Ruberto C, B Gómez-Tubío, et al. In-situ non-destructive analysis of Etruscan gold jewels with the micro-XRF transportable spectrometer from CNA[J]. Journal of Archaeological Science: Reports, 2017, 16: 185-193.[7] Bonfigli, Francesca, Hampai, et al. Characterization of X-ray polycapillary optics by LiF crystal radiation detectors through confocal fluorescence microscopy[J]. Optical Materials, 2016, 58: 398-405. .[8] Berthold, C. , Bjeoumikhov, A. , & Lutz Brügemann. (2009). Fast XRD2 micro diffraction with focusing X-ray microlenses. Particle & Particle Systems Characterization, 26(3), 107-111.[9] Rotondo, G. G. , Romano, F. P. , Pappalardo, G. , Pappalardo, L. , & Rizzo, F. . (2010). Non-destructive characterization of fifty various species of pigments of archaeological and artistic interest by using the portable X-ray diffraction system of the Landis laboratory of catania. Microchemical Journal, 96(2), 252-258.[10] Padeletti, G. , Fermo, P. , Bouquillon, A. , Aucouturier, M. , & Barbe, F. . (2010). A new light on a first example of lustred majolica in Italy. Applied Physics A, 100(3), 747-761.*通讯作者程琳,工学博士,美国加州大学尔湾分校访问学者。现任职于北京师范大学核科学与技术学院,教授,博导。长期从事毛细管聚焦的微束X射线分析技术的研究及相关设备的研发;目前已经成功研发出国内首台毛细管聚焦的微束X射线荧光谱仪和毛细管聚焦的X射线衍射仪等设备并开展相关的分析技术及应用研究;作为项目负责人已经承担多项国家自然科学基金、北京市自然科学基金和北京市科技计划项目等,国家自然科学基金评审专家、北京市高新技术企业评审专家和X-ray spectrometry等国际刊物审稿人。e-mail: chenglin@bnu.edu.cn
  • 程琳教授团队:毛细管聚焦的微束X射线荧光谱仪及其应用研究
    毛细管聚焦的微束X射线荧光谱仪及其应用研究邵金发,侯禹存,程琳*(北京师范大学核科学与技术学院,射线束技术教育部重点实验室 100875)摘要随着科技的发展,人们对物质的分析慢慢深入到微区领域。而微束能量色散X射线荧光作为一种高灵敏、高精度的元素分析技术,已然成为物质微区分析的有利工具。本实验室将毛细管X射线聚焦技术与能量色散X射线荧光分析技术相结合,自行设计研发了一种新型毛细管聚焦的微束X射线荧光谱仪。该谱仪在利用毛细管X光透镜的特点将X射线源发出的X射线束会聚到微米量级的同时,基于激光位移传感器开发了自动调整样品测量点到透镜出口端距离的闭环控制系统,有效的减少由于样品表面不平整或弧度带来的测量误差,弥补了现有微束X射线荧光谱仪在此方面的不足。因此,该微束X射线荧光谱仪为表面不平整文物样品的无损微区元素分析提供了解决方案。1. 引言微束能量色散X射线荧光光谱(Micro-energy dispersive X-ray fluorescence, µ-EDXRF)分析技术因其快速、准确、无损分析等优点,被广泛应用在考古、地质、环境、材料、生物等科学领域[1-8]。目前,基于实验室光源以获得微束入射X射线的方法主要有准直器限束和X射线光学器件聚焦两种。通过准直器限束获得微束入射X射线是最早在微束X射线荧光谱仪中使用的方法,具体为采用准直狭缝或小孔作为光阑放置在入射光路上,用以减小入射X射线的发散度。但与此同时,入射光束的强度会因为物理阻挡而降低,从而导致获得的特征X射线信息减弱。而多毛细管X光透镜利用X射线全反射原理,可将在空心毛细管内表面上的多次全反射的X射线会聚于焦点。因此可以实现以较大的角度收集从X射线源产生的X射线,且会聚后X射线的束斑大小可低至几十微米。同时,毛细管X光透镜对Cu-Kα的能量有高达2-3个数量级的放大倍数[9],且具有低的发散度。同时,可以将基于毛细管聚焦的微束能量色散X射线荧光分析技术与大面积扫描相结合,实现微米级表面结构和元素分布的分析测定。目前国内外存在部分商业化的微束X射线荧光谱仪,其中美国EDAX公司生产的Orbis系列微束X射线荧光谱仪,适用于部分地质和考古样品测试的[10];德国Bruker公司生产的M4 Tornado可移动式微束X射线荧光谱仪,适用于实验室或博物馆内各类样品的研究[11]。但由于部分文物样品表面并不平整或存在较大的弧度,若不对相对位置进行修正,这将使得样品测量点与毛细管X光透镜出口端的距离在测量过程中发生改变,从而影响测量结果的准确性和元素区域扫描的分辨率[12]。为解决上述问题,本实验室自行设计和开发一种新型的微束X射线荧光谱仪以及相应的计算机控制程序,并且开展了相关分析方法学的研究。2. 仪器组成本实验室设计的毛细管聚焦的微束X射线荧光谱仪结构示意图如图1所示,其主要由微焦斑X射线管(Mo靶,焦斑大小50μm×50μm,德国Röntgen公司)、毛细管X光透镜(Mo-Kα能量处束斑大小为31µm)、SDD X射线探测器(5.9keV时能量分辨率为145eV,铍窗有效面积25mm2)和PX5多道分析器、精度为20µm的激光位移传感器、激光笔、具有20倍放大功能的1400万像素固定焦距CCD摄像头、高精度XYZ三维样品台,以及在LabVIEW语言环境下开发的仪器控制程序等部分组成。仪器控制软件主要包括探测系统控制界面、X射线源高压控制界面、机械运动系统控制界面、CCD图像采集控制界面和氦气控制界面构成。其中主界面包含了各个控制功能系统的一些主要控制命令及输出,如图2所示。谱图显示区域在探测过程中实时显示X射线探测器探测到的谱图。此外,该仪器使用的高精度自动化三维运动平台可以满足微区的二维μ-EDXRFF分析的需求,以便实现对感兴趣区域内元素分布的分析。图1 微束X射线荧光谱仪的结构示意图图2 微束X射线荧光谱仪控制程序主界面3. 实验分析3.1 清代红绿彩瓷的分析为了评估本仪器对样品微区进行元素二维扫描分析的能力,选取一片清代红绿彩瓷的残片作为研究对象(图3)。选取图3中A(白釉)、B(红彩)、C(绿彩)进行微区的元素组成分析。实验测量时,X射线管电压40 kV,电流0.6 mA,探测活时间300 s。样品A(白釉)、B(红彩)、C(绿彩)三点的微束X射线荧光分析的能谱如图4所示,彩料中各元素化学成分采用基本参数法进行定量分析,所得的数据如表1所示。图3 清代红绿彩瓷残片与感兴趣区域图片图4 红绿彩中白釉、红彩和绿彩的μ-EDXRF光谱表1 白釉、红彩和绿彩的化学成分(质量分数,%)此外,选择如图3中2mm×2mm的感兴趣区域,使用微束X射线荧光谱仪进行µ-EDXRF二维扫描分析。进行µ-EDXRF二维扫描分析时,X射线管电压为40 kV,电流为0.6 mA,扫描步距为30 µm,每个点探测时间为1.5 s,扫描数据经软件处理得到如图5所示的元素分布图。图5 扫描区域内Pb、K、Fe、Ca、Cu、Al、Mn、Si元素的分布3.2 吉州窑古陶瓷的分析为评估本仪器对表面存在大弧度的样品进行微区元素二维扫描分析的能力,选取一片吉州窑古陶瓷的残片作为研究对象(图6)。实验开始前调节平移台使样品表面感兴趣区域清晰呈现在CCD图像中,并通过鼠标在控制界面的CCD视野中选择具体的目标扫描区域。选取图6中大小为10mm×10mm的区域进行元素二维扫描分析。µ-EDXRF二维扫描分析的测量条件与上文相同。同时,为验证本仪器“源-样”距离自动控制系统对测量结果的影响,分别在开启和关闭“源-样”距离自动控制系统的条件下进行元素二维扫描分析,扫描数据经软件处理得到如图7所示的元素分布图。图6 吉州窑古陶瓷样品与扫描区域图片图7 扫描区域内K、Ca、Zn、Fe元素分布图。a)关闭“源-样”距离自动控制系统,b)开启“源-样”距离自动控制系统通过图7与图6的比较可知,在关闭“源-样”距离自动控制系统的情况下进行µ-EDXRF二维扫描时,由于样品表面的弯曲,样品测量点与毛细管X光透镜出口端之间的距离发生变化,使得X射线光束的焦点无法与样品测量点重合。这导致测得元素分布图空间分辨率变差,同时生成的图像发生了扭曲。相反,当打开“源-样”距离自动控制系统进行测量时,由于该系统可实时调整平移台使X射线束准确照射在样品测量点上,显著降低由于样品表面弯曲带来的偏差。极大的改善了测量结果,表明该仪器在不平整样品的µ-EDXRF二维扫描中具有重要的应用价值。4. 结论本实验室将毛细管X射线聚焦技术与能量色散X射线荧光分析技术相结合,设计和研发了一种新型毛细管聚焦的微束X射线荧光谱仪。该微束X射线荧光谱仪在具备无损分析微小样品和样品微区的元素分布能力的同时,其基于激光位移传感器开发的“源-样”距离自动控制系统可实时调整样品测量点到透镜出口端距离,显著降低了由样品表面不平整或弧度带来的测量偏差,弥补了现有微束X射线荧光谱仪在此方面的不足。因此,其在材料科学、地球科学和文物保护等领域有着广泛的应用前景。参考文献[1] 戴珏,吴奕阳,张元璋,等.能量色散X射线荧光光谱法在检测仿真饰品中有害元素的应用[J].上海计量测试,2018,45(04):34-35.[2] 陈吉文,倪子月,程大伟,等.基于EDXRF的土壤中痕量镉的快速检测方法研究[J].光谱学与光谱分析,2018,38(08):2600-2605.[3] 陈曦,周明慧,伍燕湘,等.能量色散X射线荧光光谱仪在稻米中镉含量测定的应用研究[J].食品安全质量检测学报,2018,9(10):2331-2338.[4] 蒯丽君. 化学前处理—能量色散X射线荧光光谱法应用于矿石及水体现场分析[D].中国地质科学院,2013.[5] Rathod T, Tiwari M, Maity S , et al. Multi-element detection in sea water using preconcentration procedure and EDXRF technique [J]. Applied Radiation & Isotopes, 2018, 135.[6] Figueiredo E, M F, Araújo, Silva R J C, et al. Characterisation of Late Bronze Age large size shield nails by EDXRF, micro-EDXRF and X-ray digital radiography [J]. Applied Radiation & Isotopes Including Data Instrumentation & Methods for Use in Agriculture Industry & Medicine, 2011, 69(9):1205-1211.[7] Natarajan V, Porwal N K, Babu Y, et al. Direct determination of metallic impurities in graphite by EDXRF. [J]. Appl Radiat Isot, 2010, 68(6):1128-1131.[8] Li L, Huang Y, Sun H Y, et al. Study on the property of the production for Fengdongyan kiln in Early Ming dynasty by INAA and EDXRF [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2016, 381:52-57.[9] Bonfigli, Francesca, Hampai, et al. Characterization of X-ray polycapillary optics by LiF crystal radiation detectors through confocal fluorescence microscopy[J]. Optical Materials, 2016, 58: 398-405.[10] Moradllo M K, Sudbrink B, Hu Q, et al. Using micro X-ray fluorescence to image chloride profiles in concrete[J]. Cement & Concrete Research, 2016:S0008884615300636.[11] Ramos I. Pataco I M, Mourinho M P, et al. Elemental mapping of biofortified wheat grains using micro X-ray fluorescence[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2016.[12] Ricciardi P,Legrand S,Bertolotti G, et al. Macro X-ray fluorescence (MA-XRF) scanning of illuminated manuscript fragments: potentialities and challenges[J]. Microchemical Journal, 2016, 124:785-791.*通讯作者程琳,工学博士,美国加州大学尔湾分校访问学者。现任职于北京师范大学核科学与技术学院,教授,博导。长期从事毛细管聚焦的微束X射线分析技术的研究及相关设备的研发;目前已经成功研发出国内首台毛细管聚焦的微束X射线荧光谱仪和毛细管聚焦的X射线衍射仪等设备并开展相关的分析技术及应用研究;作为项目负责人已经承担多项国家自然科学基金、北京市自然科学基金和北京市科技计划项目等,国家自然科学基金评审专家、北京市高新技术企业评审专家和X-ray spectrometry等国际刊物审稿人。e-mail: chenglin@bnu.edu.cn

拟盘多毛孢属相关的仪器

  • 快速、准确地分析纳米级镀层FT160 台式 XRF 分析仪旨在测量当今 PCB、半导体和微连接器上的微小部件。准确、快速地测量微小部件的能力有助于提高生产率并避免代价高昂的返工或元件报废。FT160 的多毛细管光学元件可以测量小于 50 μm 的特征上的纳米级镀层,先进的检测器技术可为您提供高精度,同时保持较短的测量时间。其他功能,例如大样品台、宽样品舱门、高清样品摄像头和坚固的观察窗,可以轻松装载不同尺寸的物品并在大型基板上找到感兴趣的区域。该分析仪易于使用,与您的 QA / QC 流程无缝集成,在问题危机发生前提醒您。产品亮点FT160 的光学和检测器技术专为微光斑和超薄镀层分析而设计,针对细小的特征进行了优化。用于从安全距离查看分析的大观察窗测量方法符合 ISO 3497、ASTM B568 和 DIN 50987 标准IPC-4552B、IPC-4553A、IPC-4554 和 IPC-4556 一致性镀层检测用于快速样品设置的自动特征定位为您的应用优化的分析仪配置选择在小于 50 μm 的特征上测量纳米级镀层将传统仪器的分析通量提高一倍可容纳各种形状的大型样品专为长期生产使用的耐用设计产品对比FT160FT160LFT160S元素范围Al – UAl – UAl – U探测器硅漂移探测器 (SDD)硅漂移探测器 (SDD)硅漂移探测器 (SDD)X射线管阳极W 或 MoW 或 MoW 或 Mo光圈多毛细管聚焦多毛细管聚焦多毛细管聚焦孔径大小30 μm @ 90% 强度(Mo tube)35 μm @ 90% 强度(W tube)30 μm @ 90% 强度(Mo tube)35 μm @ 90% 强度(W tube)30 μm @ 90% 强度(Mo tube)35 μm @ 90% 强度(W tube)XY轴样品台行程400 x 300 mm300 x 300 mm300 x 260 mm样品尺寸上限400 x 300 x 100 mm600 x 600 x 20 mm300 x 245 x 80 mm样品聚焦聚焦激光和自动聚焦聚焦激光和自动聚焦聚焦激光和自动聚焦测试点识别???软件XRF ControllerXRF ControllerXRF Controller
    留言咨询
  • XOS多毛细管X光透镜 400-860-5168转2943
    根据客户需求提供定制多毛细管x射线光学解决方案。多毛细管准直透镜器件 将高度发散的 X 光束转换成低发散的准平行光束。这些透镜器件主要应用于 X 射线衍射 (XRD) 和波长色散谱 (WDS)。多毛细管聚焦透镜器件 从 X 射线源收集 X 射线的大立体角,并将射线聚焦为小至 10 μm 的光斑。获得的 X 射线通量密度比用常规针孔准直器获得的高几个数量级。这些透镜器件的主要应用是微量 X 射线荧光 (XRF) 分析,广泛用于薄膜和电镀分析、贵金属评估、合金测量和电路板涂层监测。该透镜器件还可用于在诸如共焦 XRF 分析和超导能量色散 X 射线光谱仪等应用中进行检测。使用多毛细管聚焦透镜器件将显著提高检测灵敏度,并允许使用低功率 X 射线管实现高性能。微米级空间分辨率使之可应用于电子和贵金属小特性评估。多毛细管透镜器件提供 100x-10,000x 的增益,输出焦点可小至 10 μm。特性来自微米级光斑的量级通量增益• 与紧凑型低功率电源集成,可提供相当于旋转阳极源的通量 • 光谱带宽较宽:50 eV - 50 KeV• 点对点会聚光束• 点对平行光束• 可定制设计机壳优势极高的通量密度• 提高了空间分辨率• 非常适合分析形状不规则、未经制备或低阻抗的样品优于电子探针 X 射线分析:• 增强检测灵敏度• 无需特殊样品制备• 在空气中操作技术参数:Focusing Optics Applications include micro-XRF for elementalmapping, plating thickness and fine feature analysis.Working distance (mm)2492050100200Focal spot size* (μm, FWHM, 17.4keV) 7 15 25 45 100 180 300Intensity gain*(vs а plnhole collimator of same size, 100mm fгom the source) 6000 4500 3500 2000 800 300 120Note: *With а 100μm X-ray source.Half-focusing Optics (XRF/XAS) Applications include micro XRF, micro XAS, and confocal XRF. Working distance (mm)2492050Focal spot size* (μm, FWHM, 17.4keV) 7 15 25 45 100Intensity gain*(vs a pinhole collimator of same size) 850 550 400 200 80Note: *With an incident beam of 2mm in diameter and a divergent angle of 0.5mradCollimating/Parallel Beam Optics (XRD/WDS/XRF) Applications include powder XRD, texture and stress analysis, WDS and confocal XRF.Output beam diameter (mm)0.5123461015Intensity gain*1245130250370470680850Note: *With а 50μm X-ray source at 8keV, The lFD of the optics is 18mm and the output divergent angle is 0.2 degree.Figure 1: 有机玻璃散射X射线光谱Comparison of MXRF spectra generated using a focusing polycapillary optic and a pinhole aperture. The spectra was collected by scattering a Mo beam off Plexiglas.Figure 2: 采用光晕抑制型毛细管实现高分辨率 XRF Mapping Comparison of MXRF spectra generated using a focusing polycapillary optic and a pinhole aperture. The spectra was collected by scattering a Mo beam off Plexiglas.
    留言咨询
  • 主要性能极高的通量密度:- 采用聚焦透镜器件:50W 提供通量密度大于 12KW 的旋转阳极源- 采用准直透镜器件:50W 提供接近密封管性能的通量密度• 聚焦 X 光束的更强空间分辨率• 焦斑大小仅为5μm @ Rh Ka (20.162 kev)设计灵活,节省空间• 紧凑结构便于集成• 透镜器件或光圈可互换• 集成风冷系统• 集成快门模块符合 PTB 规定• 无油包装• 提供安全互锁• 包含 PC 控制的软件接口易维修性• 现场对齐透镜器件,可轻松更换试管技术参数公司介绍:美国XOS是一家世界知名、提供专用X射线整机分析仪器的公司。公司可以提供元素分析解决方案,以提高石油,消费品,环境测评行业的公共安全和客户效率。 产品涵盖针对不用应用行业的X射线荧光分析设备,同时包含高亮的微焦点X射线源、多毛细管X透镜和双曲弯晶聚焦镜等高端的X射线部件。
    留言咨询

拟盘多毛孢属相关的耗材

  • 上电极多毛清扫刷 刷柄
    上电极新型清扫刷 刷柄 Modified cleaning brush and Handle产品名称货号规格包装上电极多毛清扫刷CN13108782-8771个上电极多毛刷刷柄CN13108B782-9181个产品介绍各种类刷子是维护仪器运行必用的清洁工具,刷子采用优质材料,规格准确,制作精良性价比高,快捷供货,配套多种CS/ONH分析仪器
  • T细胞分离尼龙毛柱
    尼龙毛柱是免疫学中一种用于分离T细胞的分离柱,在研究体内及体外的免疫系统时,分离淋巴细胞群是一个关键步骤。T细胞尼龙毛分离法利用了尼龙毛对B细胞的亲和力,从而使T细胞在没有严重损伤的情况下达到的足够的纯度。该方法不像流式和磁珠费用昂贵,而且操作简便,所需要的条件也不高,是一种非常实用的方法。 美国Polysciences原装,每盒10个柱子,10ml的柱子预装500mg尼龙毛(已灭菌)。每个柱子处理的细胞量1-2 x 108 。 订购信息:货号产品名称规格PS-21759尼龙毛柱(预装好)Kit
  • T细胞分离尼龙毛柱
    尼龙毛柱是免疫学中一种用于分离T细胞的分离柱,在研究体内及体外的免疫系统时,分离淋巴细胞群是一个关键步骤。T细胞尼龙毛分离法利用了尼龙毛对B细胞的亲和力,从而使T细胞在没有严重损伤的情况下达到的足够的纯度。该方法不像流式和磁珠费用昂贵,而且操作简便,所需要的条件也不高,是一种非常实用的方法。 美国Polysciences原装,每盒10个柱子,10ml的柱子预装500mg尼龙毛(已灭菌)。每个柱子处理的细胞量1-2 x 108 。 订购信息:货号产品名称规格PS-21759尼龙毛柱(预装好)KitPS-18369-50尼龙毛Nylon Wool Fiber50g PS-18369-10尼龙毛Nylon Wool Fiber10g

拟盘多毛孢属相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制