当前位置: 仪器信息网 > 行业主题 > >

文档评估显微镜

仪器信息网文档评估显微镜专题为您提供2024年最新文档评估显微镜价格报价、厂家品牌的相关信息, 包括文档评估显微镜参数、型号等,不管是国产,还是进口品牌的文档评估显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合文档评估显微镜相关的耗材配件、试剂标物,还有文档评估显微镜相关的最新资讯、资料,以及文档评估显微镜相关的解决方案。

文档评估显微镜相关的论坛

  • 创新快捷的荧光检测评估方案 —以荧光(共聚焦)显微镜分辨率为例

    创新快捷的荧光检测评估方案 —以荧光(共聚焦)显微镜分辨率为例

    Confocal(激光共聚焦显微镜)现在已经司空见惯,甚至是超分辨(SIM等)也是屡见不鲜,今天我们就定性和定量两个方面分析显微成像系统的性能(以分辨率为例),从而更了解系统性能好坏,才能在选择显微镜时做到有的放矢 。[align=center][img=,445,262]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261504385121_662_3450141_3.png!w445x262.jpg[/img][/align]这次我们主要测试对象为奥林巴斯(Olympus) SpinSR超高转盘共聚焦系统,搭载超分辨模块SpinSR10,配以Photometrics 公司的Prime 95B相机。[b][color=#00af50]一、定性分析[/color][/b]利用共聚焦模块与超分辨模块分别在100倍油镜下扫描,采集成像。样品采用Argolight标准测试片Argo-SIM。此测试片中的图样由激光写入,不仅无光漂白效应,而且常见波段皆可被激发,使用方便。通过标准测试片中的“间距渐变线对”图样可以快速定性评估系统空间分辨率及信噪比。Argolight的Argo-SIM标准片中共有4组间距渐变线对,分别朝向四个方向,用以测试显微镜对不同方向的分辨率。线对间距以0 nm为起点,30 nm为步进递增至390 nm。[align=center] [/align][align=center][img=,390,266]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261505109514_806_3450141_3.png!w390x266.jpg[/img][/align][align=center]图一:用户在观看“间距渐变线对”图样(激发光488nm )[/align]实时预览状态下,我们仅用肉眼就可以看出,线对之间有无明显分开,以此大致判定系统的分辨率。线对从下往上数,如从第n根可以分开,则显微镜的分辨率大致为(n-1)*30nm左右。以下图为例:[align=center][img=,690,657]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261506487351_747_3450141_3.png!w690x657.jpg[/img][/align][align=center]图二 定量分析示意图[/align]但是,人眼判断的精确度有限。对于关注方法学的人,仅仅定性分析已不能满足需求。需要对相关结果定量分析,得出更准确的值。[b][color=#00af50] [/color][color=#00af50]二、定量分析[/color][/b]第二阶段,我们将上述采集到的图像分别送入Argolight测试片配套的图像分析软件Daybook中自动计算出分辨率结果。为了得到更为准确的结果,分析过程中截取图像不同区域,分别计算出其分辨率,平均计算得出最终分辨率数值。[align=center][img=,468,298]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261508270801_1889_3450141_3.png!w468x298.jpg[/img][/align][align=center]图三 Daybook软件对比度测量计算图[/align][align=center] [/align]分析过程中,Daybook软件首先自动识别图像中的线对,将强度曲线中的峰值和谷值分别进行标定,之后计算不同线对之间峰值和谷值得的光强对比度(见图三)。另外,软件允许用户选择对比度阈值,以此作为分辨率的判定标准。[align=center][img=,545,242]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261511582801_395_3450141_3.png!w545x242.jpg[/img][/align] [align=center] confocal成像(左) 右:超分辨模块成像(右)[/align][align=center]图四 Argo-SIM测试片中的“间距渐变线对”图样的成像(激发光488 nm)[/align][align=center] [/align][align=center][img=,523,294]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261513007694_2665_3450141_3.png!w523x294.jpg[/img][/align][align=center]五 Daybook软件测量结果截图[/align][align=center] 通过此次测试,我们清楚了解该显微镜的实际分辨率,验证了与厂家参数的契合度。同时,有赖于Argolight荧光显微镜测试方案的高效和便捷,整个测试过程耗时不超过30分钟。[/align][align=center]Argolight荧光标准评估片除了测试显微镜分辨率外,还可以测试其它性能如照明均匀度、光强光谱响应度、空间共定位、定位误差等等。可关注后续文章或致电了解更多功能。[/align][align=center](注)[/align][align=center]1、图片传送压缩问题,图片可能失真。烦请谅解![/align][align=center]2、测量最终结果涉及其他厂家相关产品,暂决定不公布相关测量准确数值,如需了解结果可咨询相关厂家。我司仅负责提供相关产品测量方案,不负责具体系统的评测。烦请谅解![/align]

  • 【每日分享一篇解决方案】如何用生物显微镜观察药物晶体

    【每日分享一篇解决方案】如何用生物显微镜观察药物晶体

    [align=center][size=18px][/size][/align][align=center][b][font='Arial',sans-serif][color=#548DD4]#[/color][/font][font=等线][color=#548DD4]每日一篇分享一篇解决方案:[/color][/font][/b][/align][align=center][b][font=等线][color=#548DD4]今日行业领域:石油[/color][/font][font='Arial',sans-serif][color=#548DD4]/[/color][/font][font=等线][color=#548DD4]化工[/color][/font][/b][/align][b][color=#9999ff]如何用生物显微镜观察药物晶体[/color][/b]一、生物显微镜应用在药物领域能观察什么物质药物晶体:生物显微镜可以观察和研究药物中的晶体结构。这对于药物的物理性质、稳定性和溶解性等方面的研究非常重要。细胞结构:生物显微镜可以观察和研究药物中的细胞结构,包括细胞核、细胞质、细胞器等。这对于了解药物的组成和作用机制非常重要。细菌和真菌:生物显微镜可以观察和鉴定药物中的细菌和真菌。这对于评估药物的微生物污染情况以及对药物的杀菌效果进行研究和监测非常关键。病原体:生物显微镜可以观察和鉴定药物中的病原体,如病毒、寄生虫等。这对于药物的疾病治疗效果评估和病原体的研究具有重要意义。药物颗粒:生物显微镜可以观察和分析药物中的颗粒,如微粒、纳米颗粒等。这对于药物的制备工艺、释放特性和药效等方面的研究具有重要意义。药物载体:生物显微镜可以观察和研究药物中的载体材料,如纳米粒子、聚合物等。这对于药物的控释特性、靶向性和药物传递等方面的研究非常关键。通过生物显微镜的应用,可以对药物的微观结构和性质进行观察和分析,为药物研发、质量控制和治疗效果评估提供重要的信息。二、如何运用生物显微镜观察药物晶体要观察药物晶体,可以按照以下步骤使用生物显微镜:准备样品:将药物晶体制备成适当的样品。可以将药物晶体直接放置在载玻片上,或者将其溶解在适当的溶剂中后滴在载玻片上。调整显微镜参数:将载玻片放置在生物显微镜的样品台上,调整显微镜的参数,如聚焦、光源亮度、放大倍数等,以获得清晰的图像。选择合适的放大倍数:根据药物晶体的大小和细节,选择合适的放大倍数。开始时可以选择较低的放大倍数,然后逐渐增加放大倍数以观察更详细的细节。观察和记录:通过显微镜观察药物晶体的形状、大小和结构。可以使用相机或者计数器来辅助记录。同时,可以通过调整焦距和光源角度来改善图像的清晰度和对比度。分析和测量:根据观察到的药物晶体图像,可以进行进一步的分析和测量。例如,可以测量晶体的尺寸、形状参数,或者使用显微镜图像分析软件进行晶体图像处理和测量。需要注意的是,药物晶体可能具有不同的形态和晶体结构,因此在观察时应注意选择典型的晶体区域进行观察。此外,一些药物晶体可能在常温下易溶解,因此在观察前可能需要采取适当的保护措施,如使用显微镜温台或封闭载玻片等。[align=center][img]https://img0.baidu.com/it/u=3594765546,1888245350&fm=253&fmt=auto&app=138&f=JPEG?w=500&h=516[/img][/align][font='宋体']三、药物晶体的分析执行标准包括以下几个方面:[/font][font='宋体']纯度分析:对药物晶体的纯度进行检验,包括有机杂质、无机杂质、水分等的含量分析。[/font][font='宋体']结晶性质分析:对药物晶体的结晶性质进行评估,包括晶体形态、晶体尺寸、晶体形貌等的表征。[/font][font='宋体']结晶度分析:对药物晶体的结晶度进行检验,包括晶体的结晶度、结晶速度等的测定。[/font][font='宋体']热性质分析:对药物晶体的热性质进行评估,包括熔点、热分解温度、热容等的测定。[/font][font='宋体']光学性质分析:对药物晶体的光学性质进行检验,包括吸收光谱、荧光光谱等的测定。[/font][font='宋体']结构分析:对药物晶体的晶体结构进行解析,包括X射线衍射、核磁共振等的测定。[/font][font='宋体']总之,通过生物显微镜的应用,可以观察和分析药物晶体的形态、结构和特征,为药物的物理性质、稳定性和溶解性等方面的研究提供重要的信息。[/font][font='宋体']在国货崛起的今天,[/font][font='宋体']徕[/font][font='宋体']科光学研发的各种型号的生物显微镜已经被越来越多的高校、研究所、科研单位、企业所运用,并且已成为各客户在研究工作中的主流设备产品,这些设备所呈现出的效果与进口设备的毫无差别,但其价格仅为进口设备的三分之一左右,依靠着科技感和[/font][font='宋体']创新感双强[/font][font='宋体']的研发力量,可以根据不同客户的需求定制出高性价比的产品方案、内核稳定的售后方案,更加直接且高效地为客户做好售前、售中、售后服务保障。[/font][font='宋体']徕[/font][font='宋体']科光学研发的各种型号的生物显微镜已不仅仅是已经是当下最流行且性能稳定的国际大品牌“平替”产品,其已经成为了行业最受欢迎的TOP明星产品。[/font][font='宋体'][size=20px][color=#4f5862]产品配置单:[/color][/size][/font][align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310161108245283_6991_5996718_3.png[/img][/align][align=center][url=https://www.instrument.com.cn/show/C532699.html][font='宋体']生物显微镜LK-83[/font][/url]([url=https://www.instrument.com.cn/netshow/SH101998/][size=14px]天津[/size][size=14px]徕[/size][size=14px]科光学仪器有限公司[/size][/url])[/align][align=left][url=https://www.instrument.com.cn/application/Solution-947254.html][font='宋体'][size=16px]点击这[/size][/font] [font='宋体'][size=16px]里[/size][/font][/url][font='宋体'][size=16px][color=#000000]浏览[/color][/size][/font][font='宋体'][size=16px][color=#000000]或[/color][/size][/font][font='宋体'][size=16px][color=#000000]下载原[/color][/size][/font][font='宋体'][size=16px][color=#000000]文档,更多解决方案内容请浏览[/color][/size][/font][url=http://www.instrument.com.cn/application/][font='宋体'][size=16px][color=#0081d7]行业应用[/color][/size][/font][/url][font='宋体'][size=16px][color=#000000]栏目:[/color][/size][/font][/align][align=left][url=http://www.instrument.com.cn/application/][font='宋体'][color=#0081d7][back=#ffffff]http://www.instrument.com.cn/application/[/back][/color][/font][/url][font='宋体'][color=#000000]行业应用栏目简介:[/color][/font][font='宋体'][color=#000000] [/color][/font][font='宋体'][color=#000000] 【行业应用】[/color][/font][color=#333333]是仪器信息网[/color]专业的行业导购平台。汇聚了行业内国内外主流厂商的优质解决方案及相应的仪器设备。建立了兼顾国家相关规定和用户习惯的专业分类,涉及食品、药品、环境、石化等二十余个使用仪器相对集中的行业领域。并以样品和标准为主线,为用户查找仪器提供一个独特的维度,也为仪器产品提供一个全新的展示渠道。[/align]

  • 电子显微镜和数码显微镜的区别

    ①照明源不同。电镜所用的照明源是电子枪发出的电子流,而光镜的照明源是可见光(日光或灯光),由于电子流的波长远短于光波波长,故电镜的放大及分辨率显著地高于光镜。   ②透镜不同。电镜中起放大作用的物镜是电磁透镜(能在中央部位产生磁场的环形电磁线圈),而光镜的物镜则是玻璃磨制而成的光学透镜。电镜中的电磁透镜共有三组,分别与光镜中聚光镜、物镜和目镜的功能相当。   ③成像原理不同。在电镜中,作用于被检样品的电子束经电磁透镜放大后打到荧光屏上成像或作用于感光胶片成像。其电子浓淡的差别产生的机理是,电子束作用于被检样品时,入射电子与物质的原子发生碰撞产生散射,由于样品不同部位对电子有不同散射度,故样品电子像以浓淡呈现。而光镜中样品的物像以亮度差呈现,它是由被检样品的不同结构吸收光线多少的不同所造成的。   ④所用标本制备方式不同,电镜观察所用组织细胞标本的制备程序较复杂,技术难度和费用都较高,在取材、固定、脱水和包埋等环节上需要特殊的试剂和操作,最后还需将包埋好的组织块放人超薄切片机切成50~100nm厚的超薄标本片。而光镜观察的标本则一般置于载玻片上,如普通组织切片标本、细胞涂片标本、组织压片标本和细胞滴片标本等。   电子显微镜由电子流代替可见光,由磁场代替透镜,让电子的运动代替。光子“数码显微镜”实际上就是在光学显微镜的基础上加了一个数码成像装置,可以将显微镜所成的像,在电脑屏幕上直接显示出来(Intel就推出过一款类似儿童玩具的“数码显微镜”),其基础还是光学显微镜,和电子显微镜的成像原理是有根本区别的。在这里我们要区别清楚分辨率和放大倍数的问题。细微物体在放大成像时,其最高分辨率取决于所反射的光波的波长,波长越短,分辨率就越高,电子显微镜是利用了波长比普通可见光短得多的X射线成像,当然具备很高的分辨率,而普通“数码显微镜”的放大倍数可以很大,但分辨率是无法提高的。   光学显微镜的分辨率与光波的波长有关。对于接近和小于光波波长的物体光学显微镜就无能为力了。电子运动的波长比光波波长短的多,就可以看到更细小的物体。光学显微镜是由一组光学镜头组成的放大成像系统,而电子显微镜由电子流代替可见光,由磁场代替透镜,让电子的运动代替光子,这样就可以看到比光学系统能看到的更小的物体。   所谓“数码显微镜”实际上就是在光学显微镜的基础上加了一个数码成像装置,可以将显微镜所成的像,在电脑屏幕上直接显示出来(Intel就推出过一款类似儿童玩具的“数码显微镜”),其基础还是光学显微镜,和电子显微镜的成像原理是有根本区别的。在这里我们要区别清楚分辨率和放大倍数的问题。细微物体在放大成像时,其最高分辨率取决于所反射的光波的波长,波长越短,分辨率就越高,电子显微镜是利用了波长比普通可见光短得多的X射线成像,当然具备很高的分辨率,而普通“数码显微镜”的放大倍数可以很大,但分辨率是无法提高的。

  • 【资料】工业显微镜和生物显微镜的区别?

    工业显微镜和生物显微镜的区别,但就字面意思上能了解到它们最大的区别,就是用途不同,这里主要从其物镜上来说明它们的不同之处:物镜的鉴别能力可分为平面和垂直鉴别能力。物镜(objectivelens)物镜是决定光学显微镜基本性能及功能的最重要的光学单元。因此,为了满足各种需求和应用,我们研制出了有着最佳光学性能和功能(这对光学显微镜而言也是最重要的性能和功能)的物镜,推出了能满足不同使用目的多种物镜产品。 光学显微镜的用途大致分为“生物用”和“工业用”两大类。物镜也可以按照这两种用途,划分为“生物物镜用”物镜和“工业用”物镜。在工业用途中,一般是在金属矿物切片、半导体晶圆和电子零部件等标本没有被遮盖的状态下进行观察的。所以,工业显微镜用物镜采用了物镜前端和标本之间没有盖玻片状态的最佳光学系统设计。然而在生物用途中,一般是将生物标本放置在载玻片上,并从上面用盖玻片遮盖固定。由于生物用物镜需要透过盖玻片观察样本,所以采用了考虑到盖玻片的厚度(一般为0.17mm)的光学系统设计。  在这里说明生物显微镜和工业显微镜的物镜也是大有不同的,基本上物镜是按照用途、观察方法、倍率、性能(像差校正)等进行分类。其中,按照像差校正来分类的是显微镜物镜特有的分类方法。

  • 【原创】数码显微镜有效解决普通光学显微镜的局限性

    普通光学显微镜有许多局限性。对于初学者来说,通常情况下只限于通过目镜来观察显微物体。一眨眼的时间,很有可能就会错过一些刚才观察到的显微图像。另外,观察者除了通过自己的描述外没有其他办法将刚才观察到的显微图像保存下来。用眼睛观察到的显微图像只能通过观察者的文字描述来和他人共享。普通光学显微镜最明显的局限性还在于观察者的视野范围受到了限制。因为镜头尺寸小,所以每次只能研究一小块区域。如果想查看物体表形,就需要不断的移动载物台来查看物体的全貌。以上这些限制通过数码显微镜都能得到有效的解决。数码显微镜通过USB数据线连接到电脑,从显微镜目镜看到的显微图像能在电脑显示器中实时预览。 当然,数码显微镜能做的远远不止这些。 通过数码显微镜你可以建立自己的显微图片库。这意味着你能把显微图片保存下来供日后的观察及满足进一步研究的需要。此外,拍摄的显微图片还可以进行编辑处理。想更近距离的观察显微物体表形的特定区域吗? 通过数码显微镜的数码放大功能,能看到的图像比肉眼通过常规显微镜看到的要大30倍、50倍,甚至100倍。想和他人共享你的发现吗?因为你已经将图片保存下来了,所以共享将会变得十分简单。目前,数码显微镜在世界上许多工业领域已经成为重要的工具。在医学领域,尤其是实测复杂活体活动的研究中,数码显微镜的应用价值也是无价可估的。想要鉴别钱币和邮票的集邮爱好者们将会发现数码显微镜将给他们带来的种种益处。业余爱好者们也将会发现数码显微镜的优势。当然,从事研究事业的朋友们使用数码显微镜将会得更多的多产期。

  • 倒置显微镜还是正置显微镜

    我们现在要建个微生物实验室,以后的发展方向应该是真菌分离、鉴定培养,可能需要培养瓶培养。现在在纠结到底买倒置显微镜呢还是买正置显微镜。我是想买普通2w左右的倒置是很普通的了,但买1w多的正置是比较好的了,并且我估计以后多数时候是鉴定的时候用的比较多,而我们领导偏向于买倒置的,买个便宜点的。同志们给我个建议,买哪种比较好。

  • 科学级单色显微镜CCD相机及规格参数

    [url=http://www.f-lab.cn/microscope-cameras/moticam-pro285c.html][b]科学级单色显微镜CCD相机MOTICAM-Pro285C[/b][/url]是一款采用专业单色CCD图像传感器的科研单色显微镜相机,有4帧缓存器,内置Schott BG 40的带通滤波器确保高品质的成像图像处理,可用于科学研究用途。[b]科学级单色显微镜CCD相机MOTICAM-Pro285C[/b]具有一个外部硬件触发端口(TTL)可以用来触发相机或摄像机触发外部设备。[b][b]科学级单色显微镜CCD相机MOTICAM-Pro285C[/b]特点[/b]• 4帧图像帧缓冲区使得图像传输和处理更快。• 该相机性价比高,灵活性强,高质量图像的广泛各种应用。• 提供的软件将普通显微镜转变为多媒体演示、分析和文档平台• 相机在选定的时间间隔记录温度来创建温度记录[img=专业单色显微镜CCD相机]http://www.f-lab.cn/Upload/MOTICAM-Pro205C.jpg[/img][b][b]科学级单色显微镜CCD相机MOTICAM-Pro285C[/b]规格[/b]传感器类型:单色CCD分辨率:1360x1024像素满幅速度:15fps图像传感器规格:ICX285AL图像传感器尺寸:2/3单个像素大小:6.45x6.45微米数模转换器:12bit图像缓存:4帧缓存时间设置:125ms~60s图像传输:USB2.0[color=#666666][color=#000000]显微镜相机官网:[url]http://www.f-lab.cn/microscope-cameras.html[/url][/color][/color][color=#666666][/color]

  • 读数显微镜的分类

    按细分的原理不同,读数显微镜通常分为直读式、标线移动式和影象移动式3种。1.直读式读数显微镜:线纹尺上的刻度经物镜局部放大后成象于分划板上,如线纹间距为1毫米,放大至与分划板上100个分度的距离相等,通过目镜(放大)即可读出0.01毫米的分度值。2.标线移动式读数显微镜:测量时转动微动手轮,使可动分划板上的双刻线与线纹尺线纹象对准,从读数鼓轮或其他读数机构读出百分位数和千分位数,从可动分划板上读出十分位数。为了避免微动手轮上的精密螺纹(或其他微动机构)磨损,有的显微镜把可动分划板上的双刻线制成双阿基米德螺旋线(图中c)。双阿基米德螺旋线的螺距等于1/10线纹尺线纹间距乘以物镜放大倍数,而在其内圈又刻有100个等分分度,所以在它对准线纹象后,即可从固定分划板上读出十分位数、从可动  分划板上读出百分位数和千分位数。3.影象移动式读数显微镜:在物镜与分划板之间,加入可动光学元件(例如平面平行玻璃、光楔玻璃或补偿透镜等)。当移动这类光学元件时,线纹尺的线纹象出会移动,在线纹象与固定分划板上的双刻线对准后,即可分别从固定分划板和可动分划板上读出十分位和百分位、千分位的数值。

  • 【分享】共聚焦显微镜与普通光学显微镜的比较

    共聚焦显微镜与普通光学显微镜的比较显微镜是观察细胞的主要工具。根据光源不同,可分为光学显微镜和电子显微镜两大类。前者以可见光(紫外线显微镜以紫外光)为光源,后者则以电子束为光源。普通光学显微镜与激光共聚焦显微镜同属于光学显微镜。  一、普通光学显微镜  普通生物显微镜由3部分构成,即:①照明系统,包括光源和聚光器;②光学放大系统,由物镜和目镜组成,是显微镜的主体,为了消除球差和色差,目镜和物镜都由复杂的透镜组构成;③机械装置,用于固定材料和观察方便。  显微镜物象是否清楚不仅决定于放大倍数,还与显微镜的分辨力(resolution)有关,分辨力是指显微镜(或人的眼睛距目标25cm处)能分辨物体最小间隔的能力,分辨力的大小决定于光的波长和镜口率以及介质的折射率,用公式表示为:  R=0.61λ /N.A. N.A.=nsinα/2  式中:n=介质折射率;α=镜口角(标本对物镜镜口的张角),N.A.=镜口率(numeric aperture)。镜口角总是要小于180?,所以sina/2的最大值必然小于1。  制作光学镜头所用的玻璃折射率为1.65~1.78,所用介质的折射率越接近玻璃的越好。对于干燥物镜来说,介质为空气,镜口率一般为0.05~0.95;油镜头用香柏油为介质,镜口率可接近1.5。  普通光线的波长为400~700nm,因此显微镜分辨力数值不会小于0.2μm,人眼的分辨力是0.2mm,所以一般显微镜设计的最大放大倍数通常为1000X。

  • 光学显微镜的分类

    以下内容摘自中国分析仪器网,供有兴趣的版友参考。一、显微镜的分类 (一)、按使用目镜的数目可分为单目、双目和三目显微镜。 单目价格比较便宜,可以作为初学爱好者的选择,双目稍贵点,观察的时候两眼可以同时观察,观察得舒适些,三目又多了一目,它的作用主要是连接数码相机或电脑用,比较适合长时间工作的人员选用。 (二)、根据其用途以及应用范围分为生物显微镜、金相显微镜、体视显微镜等。 1、生物显微镜是最常见的一种显微镜,在很多实验室中都可以见到,主要是用来观察生物切片、生物细胞、细菌以及活体组织培养、流质沉淀等的观察和研究,同时可以观察其他透明或者半透明物体以及粉末、细小颗粒等物体。生物显微镜供医疗卫生单位、高等院校、研究所用于微生物、细胞、细菌、组织培养、悬浮体、沉淀物等的观察,可连续观察细胞、细菌等在培养液中繁殖分裂的过程等。在细胞学、寄生虫学、肿瘤学、免疫学、遗传工程学、工业微生物学、植物学等领域中应用广泛。 2、体视显微镜又称为实体显微镜、立体显微镜,是一种具有正像立体感的目视仪器,广泛的应用于生物学、医学、农林等。它具有两个完整的光路,所以观察时物体呈现立体感。主要用途有:①作为动物学、植物学、昆虫学、组织学、考古学等的研究和解剖工具。②做纺织工业中原料及棉毛织物的检验。③在电子工业,做晶体等装配工具。④对各种材料气孔形状腐蚀情况等表面现象的检查。⑤对文书纸币的真假判断。⑥透镜、棱镜或其它透明物质的表面质量,以及精密刻度的质量检查等。 3、金相显微镜主要是用来鉴定和分析金属内部结构组织,是金属学研究金相的重要仪器,是工业部门鉴定产品质量的关键设备,专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。不仅可以鉴别和分析各种金属、合金材料、非金属物质的组织结构及集成电路、微颗粒、线材、纤维、表面喷涂等的一些表面状况,金相显微镜还可以广泛地应用于电子、化工和仪器仪表行业观察不透明的物质和透明的物质。如金属、陶瓷、集成电路、电子芯片、印刷电路板、液晶板、薄膜、粉末、碳粉、线材、纤维、镀涂层以及其它非金属材在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。所以用金相显微镜来检验分析金属内部的组织结构在工业生产中是十分重要的。体视显微镜在工业生产中也可以用到,但是它只是用来观察金属表面划伤、划痕等,放大倍数一般在10X-50X之间,金相的放大倍数一般在40X-400X,有些可以达到800X。 (三)、按光学原理可分为偏光、相衬和微差干涉对比显微镜等。 1、偏光显微是鉴定物质细微结构光学性质的一种显微镜。凡具有双折射性的物质,在偏光显微镜下就能分辨的清楚,当然这些物质也可用染色法来进行观察,但有些则不可能,而必须利用偏光显微镜。主要用于研究透明与不透明各向异性材料。一般具有双折射的物质都可以用这种显微镜进行观察。双折射性是晶体的基本特征。因此,偏光显微镜被广泛地应用在矿物、化学等领域,如在植物学方面,如鉴别纤维、染色体、纺锤丝、淀粉粒、细胞壁以及细胞质与组织中是否含有晶体等。在植物病理上,病菌的入侵,常引起组织内化学性质的改变,可以偏光显微术进行鉴别。在人体及动物学方面,常利用偏光显微术来鉴别骨骷、牙齿、胆固醇、神经纤维、肿瘤细胞、横纹肌和毛发等。 2、相衬显微镜又称为相差显微镜,最大的特点就是可以观察未经染色的标本和活细胞。这些样品在一般的显微镜下是观察不到的,而相差显微镜则利用物体不同结构成分之间的折射率和厚度的差别,把通过物体不同部分的光程差变为振幅差,经过带有环状光阑的聚光镜和带有相位片的相差物镜来实现观测,简单的说它利用的是样品密度差别产生的反差来进行观察的,所以即使样品不染色也可以进行,这大大便利了活体细胞的观察,因此相衬镜检法广泛应用于倒置显微镜中。有相板的物镜称”相衬物镜”,外壳上常有”Ph”字样。相衬法是一种光学信息处理方法,而且是最早的信息处理的成果之一,因此在光学的发展史上具有重要意义。 3、微分干涉对比镜检术出现于60年代,它不仅能观察无色透明的物体,而且图像呈现出浮雕壮的立体感,并具有相衬镜检术所不能达到的某些优点,观察效果更为逼真。 (四)、按光源类型可分为普通光、荧光和激光显微镜等。 1、普通光显微镜采用的就是普通光源,是最常用的。 2、荧光显微镜是以紫外线为光源,通常是照射被检物体(落射式),使之发出荧光,然后在显微镜下观察物体的形状及其所在位置。荧光显微镜用于研究细胞内物质的吸收、运输、化学物质的分布及定位等。 3、激光共聚焦扫描显微镜,采用激光做为扫描光源,逐点、逐行、逐面快速扫描成像。因为激光束的波长较短,光束很细,所以共焦激光扫描显微镜有较高的分辨力,大约是普通光学显微镜的3倍。 (五).按显微镜物镜的位置分正置和倒置显微镜 1、倒置显微镜是为了适应生物学、医学等领域中的组织培养、细胞离体培养、浮游生物、环境保护、食品检验等显微观察。由于上述样品特点的限制,被检物体均放置在培养皿(或培养瓶)中,这样就要求倒置显微镜的物镜和聚光镜的工作距离很长,能直接对培养皿中的被检物体进行显微观察和研究。因此,物镜、聚光镜和光源的位置都颠倒过来,故称为”倒置显微镜”。倒置显微镜多用于无色透明的活体观察。如果用户有特殊需要,也可以选配其它附件,用来完成微分干涉、荧光及简易偏光等观察。倒置显微镜由于制作更加严密,价格也是比较贵的。目见倒置显微镜广泛应用于patch-clamp(膜片钳),transgeneICSI等领域。 (六).数码显微镜 1、数码显微镜又叫视频显微镜,它是将显微镜看到的实物图像通过数模转换,使其成像在计算机上。数码显微镜是将精锐的光学显微镜技术、先进的光电转换技术、普通的电视机完美地结合在一起而开发研制成功的一项高科技产品。从而,我们可以对微观领域的研究从传统的普通的双眼观察到通过显示器上再现,从而提高了工作效率。数码显微镜在观察物体时能产生正立的三维空间影像。立体感强,成像清晰和宽阔,又具有长工作距离,并是适用范围非常广泛的常规显微镜。它操作方便、直观、检定效率高,适用于电子工业生产线的检验、印刷线路板的检定、印刷电路组件中出现的焊接缺陷(印刷错位、塌边等)的检定、单板PC的检定、真空荧光显示屏VFD的检定等等,它将实物的图像放大后显示在计算机的屏幕上,可以将图片保存,放大,打印。

  • LEICA显微镜-思贝舒专业销售LEICA显微镜

    Leica拥有160年显微镜生产历史,以高质量光学系统而闻名。Leica一贯注重产品研发和最新技术应用,其产品质量一直走在显微镜技术前列。Leica显微镜拥有多项专利和世界首创技术。作为显微系统领域的开拓者和先驱,Leica光学系统赢得多项荣誉。一、LEICA显微镜的应用领域作为显微系统的高端产品,Leica一直牢牢占据高校、研究所、科研机构、大型企业、跨国公司等市场,服务于钢铁、冶金、机械、航空航天、汽车、轮船、、仪器仪表、电力、地质、石油、石化、陶瓷、医院、生命科学等领域。二、LEICA立体显微镜有如下5大特点:1.双目镜筒中的左右两光束不是平行,而是具有一定的夹角——体视角(一般为12度---15度),因此成像具有三维立体感;2.像是直立的,便于操作和解剖,这是由于在目镜下方的棱镜把像倒转过来的缘故;3.虽然放大率不如常规显微镜,但其工作距离很长4.焦深大,便于观察被检物体的全层。5.视场直径大。三、LEICA显微镜的机械维护使用防尘罩是保证显微镜处于良好机械和物理状态的最重要的因素。显微镜的外壳如有污迹,能用乙醇或肥皂水来清洁(无用其他有机溶剂来清洁),但切勿让这些清洗液渗入显微镜内部,造成显微镜内部电子部件的短路或烧毁。保持显微镜使用场地的干燥,尽管每台徕卡系列显微镜均采用了特殊的防霉处理工艺,但当显微镜长期工作在湿度较大的环境中,还是容易增加霉变的几率,因此如显微镜不得不工作在这些湿度较大的环境中,建议使用除湿机。四、使用LEICA显微镜的建议采取下列措施,或许能更好的延长您的显微镜使用时间并使之保持良好的工作状态。(1)每次关闭显微镜电源前,请将显微镜灯光调至最暗。(2)关闭显微镜电源后,请等灯箱完全冷却后(约15分钟后),再罩上显微镜防尘罩。(3)开启显微镜电源后,若暂时不使用,可以将显微镜灯光调至最暗,而无需频繁开关显微镜电源。显微镜工作一年后,宜每年至少做一次专业的维护保养。本文转自:***

  • 【转帖】解剖显微镜

    解剖显微镜(dissecting microscope)  又被称为实体显微镜或立体显微镜,是为了不同的工作需求所设计的显微镜。  特点及应用:  解剖显微镜能形成正立像,立体感强。常常用在一些固体样本的表面观察,或是解剖、钟表制作和小电路板检查等工作上。

  • 显微镜的分类

    光学显微镜有多种分类方法:按使用目镜的数目可分为双目和单目显微镜;按图像是否有立体感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理可分为偏光、相衬和微差干涉对比显微镜等;按光源类型可分为普通光、荧光、紫外光、红外光和激光显微镜等;按接收器类型可分为目视、数码(摄像)显微镜等。常用的显微镜有双目体视显微镜、金相显微镜、偏光显微镜、荧光显微镜等。1.双目体视显微镜双目体视显微镜又称"实体显微镜"或"解剖镜",是一种具有正象立体感地目视仪器。在生物、医学领域广泛用于切片操作和显微外科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。它利用双通道光路,双目镜筒中的左右两光束不是平行,而是具有一定的夹角--体视角(一般为12度--15度),为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。目前体视镜的光学结构是:由一个共用的初级物镜,对物体成象后的两光束被两组中间物镜----变焦镜分开,并成一体视角再经各自的目镜成象,它的倍率变化是由改变中间镜组之间的距离而获得的,因此又称为"连续变倍体视显微镜"(Zoom-stereomicroscope)。随着应用的要求,目前体视镜可选配丰富的选购附件,如荧光,照相,摄象,冷光源等等。2.金相显微镜金相显微镜是专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。这种反射照明方式也广泛用于集成电路硅片的检测工作。3.偏光显微镜(Polarizingmicroscope)偏光显微镜是用于研究所谓透明与不透明各向异性材料的一种显微镜。凡具有双折射的物质,在偏光显微镜下就能分辨的清楚,当然这些物质也可用染色法来进行观察,但有些则不可能,而必须利用偏光显微镜。将普通光改变为偏振光进行镜检的方法,以鉴别某一物质是单折射(各向同行)或双折射性(各向异性)。双折射性是晶体的基本特性。因此,偏光显微镜被广泛地应用在矿物、化学等领域,在生物学和植物学也有应用。4.荧光显微镜荧光显微镜是用短波长的光线照射用荧光素染色过的被检物体,使之受激发后而产生长波长的荧光,然后观察。荧光显微镜广泛应用于生物,医学等领域。荧光显微镜一般分为透射和落射式两种类型。透射式:激发光来自被检物体的下方,聚光镜为暗视野聚光镜,使激发光不进入物镜,而使荧光进入物镜。它在低倍情况下明亮,而高倍则暗,在油浸和调中时,较难操作,尤以低倍的照明范围难于确定,但能得到很暗的视野背景。透射式不使用于非透明的被检物体。落射式:透射式目前几乎被淘汰,新型的荧光显微镜多为落射式,光源来自被检物体的上方,在光路中具有分光镜,所以对透明和不透明的被检物体都适用。由于物镜起了聚光镜的作用,不仅便于操作,而且从低倍到高倍,可以实现整个视场的均匀照明。目前许多新兴生物研究领域应用到荧光显微镜,如基因原位杂交(FISH)等等。5.相衬显微镜(Phasecontrastmicroscope)在光学显微镜的发展过程中,相衬镜检术的发明成功,是近代显微镜技术中的重要成就。我们知道,人眼只能区分光波的波长(颜色)和振幅(亮度),对于无色通明的生物标本,当光线通过时,波长和振幅变化不大,在明场观察时很难观察到标本。 相衬显微镜利用被检物体的光程之差进行镜检,也就是有效地利用光的干涉现象,将人眼不可分辨的相位差变为可分辨的振幅差,即使是无色透明的物质也可成为清晰可见。这大大便利了活体细胞的观察,因此相衬镜检法广泛应用于倒置显微镜中。6.微分干涉对比显微镜(DifferentialinterferencecontrastDIC)微分干涉对比镜检术出现于60年代,它不仅能观察无色透明的物体,而且图象呈现出浮雕壮的立体感,并具有相衬镜检术所不能达到的某些优点,观察效果更为逼真。微分干涉对比镜检术是利用特制的渥拉斯顿棱镜来分解光束。分裂出来的光束的振动方向相互垂直且强度相等,光束分别在距离很近的两点上通过被检物体,在相位上略有差别。由于两光束的裂距极小,而不出现重影现象,使图象呈现出立体的三维感觉。7.倒置显微镜(Invertedmicroscope)倒置显微镜是为了适应生物学、医学等领域中的组织培养、细胞离体培养、浮游生物、环境保护、食品检验等显微观察。由于上述样品特点的限制,被检物体均放置在培养皿(或培养瓶)中,这样就要求倒置显微镜的物镜和聚光镜的工作距离很长,能直接对培养皿中的被检物体进行显微观察和研究。因此,物镜、聚光镜和光源的位置都颠倒过来,故称为"倒置显微镜"。由于工作距离的限制,倒置显微镜物镜的最大放大率为60X。一般研究用倒置显微镜都配置有4X、10X、20X、及40X相差物镜,因为倒置显微镜多用于无色透明的活体观察。如果用户有特殊需要,也可以选配其它附件,用来完成微分干涉、荧光及简易偏光等观察。目见倒置显微镜广泛应用于patch-clamp,transgeneICSI等领域。8.数码显微镜数码显微镜是以摄像头(即电视摄像靶或电荷耦合器)作为接收元件的显微镜。在显微镜的实像面处装入摄像头取代人眼作为接收器,通过这种光电器件把光学图像转换成电信号的图像,然后对之进行尺寸检测、颗粒计数等工作。这类显微镜可以与计算机联用,这便于实现检测和信息处理的自动化,多应用于需要进行大量繁琐检测工作的场合。目前出现一种便携式数码显微镜照相机,简称数微相机。它将显微镜和数码相机相结合,以同时达到显微镜观察(Micro preview)和显微摄影(Micro photography)的要求。最高物镜显微倍率可达150X,机身小巧,便于携带,自备光源,可运用于多种场合。可直接与计算机、打印机(不需要电脑)、电视(不需要电脑)联用。

  • 显微镜照明装置

    显微镜镜基底座——照明装置 人工光源照明:将主开关拨到“I”。拨动调光旋钮,调节光亮强度;自然光源照明:将反光镜架转向光线射来的方向,拨动反光镜角度,使外来的光线进入光路,并充满视场;调整光源和更换灯泡:将显微镜底座翻转,松开光源门盖螺钉翻出,见光源灯泡用螺丝批松开灯脚固定螺钉即可,拔出灯泡,并更换新的灯泡,灯脚的插入深浅的程度,可调节灯泡中心的位置在通光中心。将显微镜底座翻转,取下整个灯座,拔下灯泡,更换新的灯泡,把灯座装回显微镜底座,并用螺丝批松开灯座下的灯泡中心调节螺丝,调节灯泡中心,然后固紧螺丝。 在更换灯泡或保险丝时,必须将电源插头拔下,离开供电电源。在工作中需要更换灯泡时,必须要让灯泡冷却后,才能更换操作。

  • 【分享】如何选购显微镜

    显微镜是生物实验室最为常用的仪器之一,配备量比较大,一般是2到4人一台,条件好的学校是每人一台。因此正确选购显微镜很重要,不但能满足需要,还能避免浪费经费。1 一般结构显微镜是耐用品,一般可用数年,甚至10多年,高质量的零部件和严密的装配是使用寿命的保证。因此,应选择具有稳固结实镜架的显微镜,材料最好是合金的,以减少变形。塑料制的显微镜不适合学校使用。除此之外,还应切记,镜头应是光学玻璃的,调焦螺旋必须是金属的齿轮并且用金属的螺丝固定于镜架上,重点转动的地方应装配滚珠,而不是仅仅靠润滑油。此外,漆层应光滑均匀,各种部件使用应顺畅等。如果暂时见不到实物,只能见到样本上或网上的照片,可以通过比较它们的重量和包装的尺寸,来初步判断它们的大小和金属的结实程度。一般原则是重量越重就越稳固结实。要确信你所购买的显微镜是按照有关通用标准生产的,尤其是物镜和目镜,这样才能确保你今后可方便地购买到所需要的配件。目前,我们国家有关显微镜主要有以下生产标准:GB/T 2985.1999生物显微镜;GB/T 2609—1996显微镜物镜;GB/T 9246—1996显微镜目镜;GB/T 9247.1996显微镜聚光镜;JB/T 7398—1994显微镜。

  • 【转帖】金相显微镜和生物显微镜的区别

    生物显微镜与金相显微镜的区别主要是在照明方式与物镜上面: 1、生物显微镜用的是透射照明,一般用来观察透时和半透明的样本,不能用来观察不透明物体,而金相显微镜主要是落射照明方式(也叫同轴照明),光源从物镜射出,主要用于观察不透明样本的表面,当然也有附带透射照明装置的较高级金相显微镜,可同时用于观察透明样本。 2、从物镜来看,生物显微镜的高倍物镜都有考虑盖玻片厚度(0.17)和载玻片、培养器皿厚度(1.2),所以其物镜是通常标有 /0.17(正置显微镜)、 /1.2(倒置显微镜),正置生物显微镜10倍以下物镜则是 /-,也就是可以不考虑,这是为了校正玻璃对于光折射的影响,而金相显微镜的物镜通常标有/0 。

  • 生物显微镜和工具显微镜的原理

    生物显微镜和工具显微镜又称工具制造用显微镜,是一种工具制造时所用高精度的二次元坐标测量仪。生物显微镜工具显微镜是利用光学原理将工件成像经物镜投射至目镜,即借着光线将工件放大成虚像,再利用装物台与目镜网线(eyepiece reticle)等辅助,以作为尺寸、角度和形状等测量工作,可作为检验非金属光泽的工件表面。生物显微镜工具显微镜仪器在立柱上装有一显微镜,放大倍率从10倍至100倍间等数种倍率,工具显微镜的测量系统光源( 灯炮 ) 通电后,光线依次经过二个透镜滤热镜 ( 片)、镜径薄膜、透镜、反射镜、装物台、物镜、反射镜、目镜等,工件与物镜间的距离,随着放大倍率和工件厚薄,可利用对焦旋钮调至理想位置。1、 生物显微镜工具显微镜将人眼瞄准,采集元素的个别点坐标,改为CCD摄像机自动采集元素图像,采集信息量增大,减少人工干预,操作效率提高。 2、生物显微镜工具显微镜软件数据处理结果除以数据表示外,增加了图形信息窗,处理的点、线、图、弧等元素展现在屏幕上,形象直观,条理清晰,避免出错,并且可以输出到AUTOCAD形成工程图。3、引进先进的英国RENISHAW钢带反射光栅系统代替原有的玻璃光栅系统,该系统信号优良,安装间隙大,外形小巧,发热量小,安装调试简单,抗污染,抗腐蚀能力强,耐震性好等众多优点,大大提高了系统的可靠性,是当今国际最先进的光栅系统之一。4、 生物显微镜和工具显微镜生物显微镜工具显微镜除X、Y坐标数字显示外,将测高坐标和分度头角度坐标也改成数显,实现了四坐标全数显化,这一改进对凸轮轴测量十分有益。5、用半导体激光器作为指向器,红色光点打在工件表面,用于快速确定测量部位,避免了因CCD视场面积小带来的找象困难,解决了目前图像系统的通病。引用:www.bsdgx.com

  • 【资料】奥林巴斯生物显微镜CX31使用说明书

    下面奥林巴斯生物显微镜CX31使用说明书PDF文档是由广州明美提供,欢迎点击下载查看。[B][URL=http://www.mshot.com.cn/uploadfile/upfile/mykXI4GS2KtpAODpr3qD.pdf]奥林巴斯生物显微镜CX31使用说明书[/URL][/B]

  • 手持数码显微镜有哪些特点

    手持数码显微镜有哪些特点?手持式数码显微镜也叫便携式数码显微镜,顾名思义是一种小巧便携的微型显微镜产品,显微镜可以将显微镜看到的实物图像通过数模转换,使其成像在显微镜自带的屏幕上或计算机上。从而,我们可以对微观领域的研究从传统的普通的双眼观察到通过显示器上再现,从而提高了工作效率。手持式显微镜深受消费者的喜爱,它的轻巧便捷是其它显微镜无法超越的,相对于传统光学显微镜它可以提供完美的解决方案让检测工作现场化,高效化。那么,手持数码显微镜有哪些特点?第一、体积小,便于携带,特别适合移动检测、现场检测,大小重量只有普通光学显微镜的1/10,突破传统显微镜使用空间的局限性。第二、观测物体可以将显微放大的图像直接显示在屏幕上,便于观察,而且可以实时拍照、录像,记录检测数据,极大的提高了检测效率。第三、在显微图像软件处理上,可以根据使用需求实现画面反色、黑白、倒置、对比等画面调节功能,同时还可以对显微图像进行数据测量(长度、角度、直径等),最高精度达0.001mm。第四、手持式显微镜可以连接多种显示设备(电视、电脑、投影),便于多人同时分享、讨论,数码教学等。第五、提供多种供电选择,电脑USB供电、干电池供电、锂电池供电,真正实现随时随地,现场检测!第六、根据观察物体及使用环境的的不同,可以提供多种光源(荧光、红外等),最大限度满足使用需求!文章转载于网络更多文章资讯:奥林巴斯显微镜(http://www.microimaging.com.cn/)

  • 【原创】显微镜软件免费下载

    功能模块:显微镜软件,软件包含了显微测量和图像处理两大功能模块。应用领域:精密零件、光纤、电子、机械、塑胶、医学、材料学、生物学、矿物学、工业检测、环境、纺织、农林、公安、集成电路、TFT、PCB、模具、连接器、封装测试、晶圆、软板、五金零件等行业。具体功能描述:1.系统参数设置。包括:硬件选择,支持动态实时测量;对显微镜的图像标定;用户管理等功能。2.几何测量模块。包括:线、圆、矩形、多边形、角度等测量工具,对图像上线段长度、圆直径、面积、角度的等几何参数进行测量。3.自动寻边测量模块。可根据取点范围,自动识别线、圆、弧,具有极强的去毛边的功能,并极大地提高线距、线夹角、圆半径、弧半径测量精度,避免人工误差。4.视频处理模块。主要包括:自动白平衡,自动曝光功能;视频参数设置功能(RGB设置,gamma调节,曝光设置,偏移量设置等等);视频缩放显示及视频大小控制功能;视频上下、左右反转功能等。5.图像处理模块。主要包括:图像模糊及锐化;亮度/对比度调节;RGB增益调节;多幅图片组合功能,包括图片间的逻辑与,逻辑或,叠加等操作;镜像,旋转功能;提取边缘功能;图像对比功能(即把拍下来的两张或多张图像在同一窗口显示进行比较);图像拼接功能;单独选择图像的某一个部份进行操作。6.图像数据管理模块。包括:图像库浏览、图像标注、文字操作、打印等功能实现。7.检测报告输出模块。将检测报告以word、excel的文档格式进行输出增殖服务:1、按需裁剪。可根据客户的实际需要对功能进行裁减、修改和添加,以满足客户的针对性应用,并大幅降低成本;2、可供OEM。若批量采购,可提供贴牌服务。3、可提供免费的升级和维护。

  • 【转帖】显微镜简史

    【转帖】显微镜简史

    无式镜在从未被文字记录下来的那段历史中的某一天,一个腰上挂着树叶串、头上长发飘飘的人一脚飞起一块石子。他用类似于尖叫的语言说:“咦,这是什么东西亮闪闪在地下?”他捡起这块大致像颗棋子的透明石头瞅瞅,“石子对面的世界放大啦~”他的同类还试着用透明圆石头在炎炎烈日下长时间凝视地上一些烂草棍,结果草棍呼的一下烧着了!对大自然打磨的奇妙石头的记忆一直延续到公元1世纪初,在罗马哲学家的笔记中,它们被称为“放大器”(magnifier)或“点火石”(burning glasses);直到13世纪,这些石头终于从脚下一路登鼻子上脸,被赐名透镜(lense),因为它们长得好像一颗小扁豆(lentil)。 随后,“小扁豆”又被人们粘进一根细长筒里。人们就像看万花筒一样,举着这个小筒偷看跳蚤打架,所以这只筒名叫“跳蚤镜”(flea glasses)。它就像眼镜的衍生物,然而已从人脸向前迈出一大步,是未来单式显微镜的雏形。谓之“单式”,因为它不同于你生物课上用过的显微镜,没有目镜、物镜之分,放大多少只由一颗“小扁豆”决定。单式镜现代实验室显微镜即使配以“雕梁画栋”,也未必可以卖得更贵,因为雕梁画栋违背了现代人讲究目的和实用的原则。因此我们常常难以理解为什么历史上许多划时代的发明刚刚出现的时候,人们想不到用这些发明改变世界,却只把它们当成丰富视觉享受、甚至象征贵族生活的道具。当我看到十七世纪初那做工精美的“单式镜”,真想搞一个来摆在家里——纯装饰。当时,人们却可以用它来观察桔子表皮,具体做法是:取一只桔子,噗地一声扎在针尖一样的“载物台”上,从直立的单片镜片背后即可观看一只疼痛的桔子。前后移动桔子可以改变放大倍率,只是她挺沉的,晃晃悠悠地不太稳当。(图一)[img]http://ng1.17img.cn/bbsfiles/images/2009/12/200912311537_193327_1601358_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2010/03/201003311212_209200_1601358_3.jpg[/img]单式显微镜达到登峰造极的水平是在列文虎克。如果我没有记错,中学的生物是从列文虎克发明显微镜开始的。其实,不论“单式”还是今天普遍应用的“复式”(即多个镜片前后排列,如目镜+物镜),发明者都不是他。只是这一点损失对于列文虎克作出的贡献无伤大雅。前边提到,单式显微镜的放大本领只能依靠一颗“小扁豆”来实现,要想让镜片放大率增大,镜片焦距必须很短,扁豆必须很小,这就需要很高的打磨工艺——如果你是用打磨的方法。一般人能磨出放大率几十倍的镜片已经很了不起,于是列文虎克来了。

  • 【资料】光学显微镜的分类

    光学显微镜有多种分类方法:按使用目镜的数目可分为双目和单目显微镜;按图像是否有立体感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理可分为偏光、相衬和微差干涉对比显微镜等;按光源类型可分为普通光、荧光、紫外光、红外光和激光显微镜等;按接收器类型可分为目视、数码(摄像)显微镜等。常用的显微镜有双目体视显微镜、金相显微镜、偏光显微镜、荧光显微镜等。1.[b]双目体视显微镜[/b]双目体视显微镜又称"实体显微镜"或"解剖镜",是一种具有正象立体感地目视仪器。在生物、医学领域广泛用于切片操作和显微外科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。它利用双通道光路,双目镜筒中的左右两光束不是平行,而是具有一定的夹角--体视角(一般为12度--15度),为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。目前体视镜的光学结构是:由一个共用的初级物镜,对物体成象后的两光束被两组中间物镜----变焦镜分开,并成一体视角再经各自的目镜成象,它的倍率变化是由改变中间镜组之间的距离而获得的,因此又称为"连续变倍体视显微镜"(Zoom-stereomicroscope)。随着应用的要求,目前体视镜可选配丰富的选购附件,如荧光,照相,摄象,冷光源等等。2.[b]金相显微镜[/b]金相显微镜是专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。这种反射照明方式也广泛用于集成电路硅片的检测工作。3.[b]偏光显微镜[/b](Polarizingmicroscope)偏光显微镜是用于研究所谓透明与不透明各向异性材料的一种显微镜。凡具有双折射的物质,在偏光显微镜下就能分辨的清楚,当然这些物质也可用染色法来进行观察,但有些则不可能,而必须利用偏光显微镜。将普通光改变为偏振光进行镜检的方法,以鉴别某一物质是单折射(各向同行)或双折射性(各向异性)。双折射性是晶体的基本特性。因此,偏光显微镜被广泛地应用在矿物、化学等领域,在生物学和植物学也有应用。4.[b]荧光显微镜[/b]荧光显微镜是用短波长的光线照射用荧光素染色过的被检物体,使之受激发后而产生长波长的荧光,然后观察。荧光显微镜广泛应用于生物,医学等领域。荧光显微镜一般分为透射和落射式两种类型。透射式:激发光来自被检物体的下方,聚光镜为暗视野聚光镜,使激发光不进入物镜,而使荧光进入物镜。它在低倍情况下明亮,而高倍则暗,在油浸和调中时,较难操作,尤以低倍的照明范围难于确定,但能得到很暗的视野背景。透射式不使用于非透明的被检物体。落射式:透射式目前几乎被淘汰,新型的荧光显微镜多为落射式,光源来自被检物体的上方,在光路中具有分光镜,所以对透明和不透明的被检物体都适用。由于物镜起了聚光镜的作用,不仅便于操作,而且从低倍到高倍,可以实现整个视场的均匀照明。目前许多新兴生物研究领域应用到荧光显微镜,如基因原位杂交(FISH)等等。5.[b]相衬显微镜[/b](Phasecontrastmicroscope)在光学显微镜的发展过程中,相衬镜检术的发明成功,是近代显微镜技术中的重要成就。我们知道,人眼只能区分光波的波长(颜色)和振幅(亮度),对于无色通明的生物标本,当光线通过时,波长和振幅变化不大,在明场观察时很难观察到标本。 相衬显微镜利用被检物体的光程之差进行镜检,也就是有效地利用光的干涉现象,将人眼不可分辨的相位差变为可分辨的振幅差,即使是无色透明的物质也可成为清晰可见。这大大便利了活体细胞的观察,因此相衬镜检法广泛应用于倒置显微镜中。6.[b]微分干涉对比显微镜[/b](DifferentialinterferencecontrastDIC)微分干涉对比镜检术出现于60年代,它不仅能观察无色透明的物体,而且图象呈现出浮雕壮的立体感,并具有相衬镜检术所不能达到的某些优点,观察效果更为逼真。微分干涉对比镜检术是利用特制的渥拉斯顿棱镜来分解光束。分裂出来的光束的振动方向相互垂直且强度相等,光束分别在距离很近的两点上通过被检物体,在相位上略有差别。由于两光束的裂距极小,而不出现重影现象,使图象呈现出立体的三维感觉。7.[b]倒置显微镜[/b](Invertedmicroscope)倒置显微镜是为了适应生物学、医学等领域中的组织培养、细胞离体培养、浮游生物、环境保护、食品检验等显微观察。由于上述样品特点的限制,被检物体均放置在培养皿(或培养瓶)中,这样就要求倒置显微镜的物镜和聚光镜的工作距离很长,能直接对培养皿中的被检物体进行显微观察和研究。因此,物镜、聚光镜和光源的位置都颠倒过来,故称为"倒置显微镜"。由于工作距离的限制,倒置显微镜物镜的最大放大率为60X。一般研究用倒置显微镜都配置有4X、10X、20X、及40X相差物镜,因为倒置显微镜多用于无色透明的活体观察。如果用户有特殊需要,也可以选配其它附件,用来完成微分干涉、荧光及简易偏光等观察。目见倒置显微镜广泛应用于patch-clamp,transgeneICSI等领域。8.[b]数码显微镜[/b]数码显微镜是以摄像头(即电视摄像靶或电荷耦合器)作为接收元件的显微镜。在显微镜的实像面处装入摄像头取代人眼作为接收器,通过这种光电器件把光学图像转换成电信号的图像,然后对之进行尺寸检测、颗粒计数等工作。这类显微镜可以与计算机联用,这便于实现检测和信息处理的自动化,多应用于需要进行大量繁琐检测工作的场合。目前出现一种便携式数码显微镜照相机,简称数微相机。它将显微镜和数码相机相结合,以同时达到显微镜观察(Micro preview)和显微摄影(Micro photography)的要求。最高物镜显微倍率可达150X,机身小巧,便于携带,自备光源,可运用于多种场合。可直接与计算机、打印机(不需要电脑)、电视(不需要电脑)联用。

  • 【资料】相衬显微镜的定义及与普通显微镜的区别

    相衬显微镜的定义及与普通显微镜的区别: 相衬显微镜是一种特殊的显微镜,特别适用于观察具有很高透明度的对象,例如生物切片、油膜和位相光栅等等。光波通过这些物体,往往只改变入射光波的位相而不改变入射光波的增幅,由于人眼及所有能量检测器只能辨别光波强度上的差别,也即振幅上的差别,而不能辨别位相的变化,因此用普通显微镜是难以观察到这些物体的。 ------------------------------------- 透明度很高的物体,也称为位相物体。相衬法(也叫位相反衬法)是通过空间滤波器将物体的位相信息转换为相应的振幅信息,从而大大提高透明物体的可分辨性,所以从这个意义上说,相衬法是一种光学信息处理方法,而且是最早的信息处理的成果之一,因此在光学的发展史上具有重要意义。1935年泽尔尼克根据阿贝成像原理,首先提出位相反衬法,由改变频谱的位相以改善透明物体成像的反衬度,1953年泽尔尼克因此获诺贝尔物理学奖。这是诺贝尔物理学奖中少数几项与光学有关的奖项之一 ----------------------------------------- 工作原理: 实际的做法可以是,在玻璃基片的中心处加一滴液体,液滴的光程引起一定的相移,这样就形成了一块位相板,将这块位相板放置在显微镜的后焦面上,当作一个空间滤波器。在相干光的照射下,像面上出现与物的位相信息相关的图像。像面上的强度分布与样品位相成线性关系,也就是说,样品的位相分布调制了像面上的光强。 相衬法不是在使用显微镜的过程中发现的,而是泽尔尼克在工作于别的光学领域时发现的。这要从1920年泽尔尼克对衍射光栅产生兴趣时说起。这种反射式光栅是由平面或凹面镜片构成,镜片表面上刻有大量等距的刻痕。刻痕位置稍有差错,就会明显影响光栅的光学效果。刻机周期性重复出现的误差,使光程差发生相应的变化,观察者在观察镜面时,就会看到镜面似乎变得起伏不平。光栅表面细致的刻线直接用肉眼是看不见的,看到的只是在镜面上出现相隔较宽的粗线。用这样的光栅所形成的光谱,往往在每根强度谱线两侧伴随有一系列杂乱的弱线,这就叫“罗兰鬼线”。一块完善的光栅,像手掌那么大,拿在手里,在均匀照明之下,看上去色彩丰富,斑斓绚丽,展现出可见光谱里的各种颜色。可是,实际上有的光栅看上去却是“伤痕”遍布,在彩带上叠加了一条条粗线。1902年阿伦(H.S.Allen)曾宣称,这些粗线不是真实的,乃是主要谱线与其鬼线互相干涉抵消的结果。1920年泽尔尼克在研究光栅时,对这一说法表示异议。他认为这些带“伤痕”的表面视场要比照像底片拍摄所得的光谱照片提供了更多信息,表面视场给出了鬼线的相对位相,而照片丢失了鬼线的位相信息。泽尔尼克这时正在从事统计物理学研究,就把这一问题放在心里,留待以后研究。 大约在1930年,泽尔尼克的实验室得到了一块大凹面光栅,安装在支架上准备使用。很快人们就看到了光栅表面的“伤痕”。由于光栅距人眼6m,看不清楚,泽尔尼克试着用一台小型望远镜观察它。这时不期而遇的事情发生了。线条状的伤痕看得非常清楚,可是当把望远镜精确聚集在镜面表面时,线条却消失无遗!怎么回事?泽尔尼克想起了10年前的思考,他意识到这一现象的重要意义,立刻集中精力研究这个光学问题。他借助于阿贝的成像理论,经过一系列实验和计算,终于作出了成功的解释。原来这是由于波的位相差所引起的干涉现象。1935年,泽尔尼克进一步根据位相理论研究出了位相反衬法,发明了相衬显微镜。在他的第一次设计中,使用一个直线条带样的孔径光阑,并在物镜的后焦面放置一个相应的直线条带光阑。泽尔尼克在他的诺贝尔领奖词中提到这一发明的偶然性时说:“然而,这个装置使物体结构的显微像显示了晕,因为衍射效应使物体细节的带状物像——沿垂直于带的方向散开,从而使像上的小亮点成为短线段状。为了避免这种观象,我改用了环状光阑,此光阑导致晕圈向各方向散开,不过晕圈变得很微弱以致实际上完全没有意义。” 现在全世界生产相衬显微镜的公司很多,相衬显微镜已经广泛应用于生物学及医学方面作细菌学和病理学的研究,也在矿物晶体微形貌学中得到了有效的应用。用这种特殊的显微镜,可以进行晶体表面生长的动态观察。 其实相衬显微镜就是我们平时所说的相差显微镜。它是根据光线通过不同密度的物质时,其滞留程度不同(密度大则滞留时间长)的原理设计的。 相差显微镜,可以将这种光程差或相位差,转换成振幅差,增强对比度。它与普通光学显微镜最主要的不同点是在物镜后装有一块相差板,由于相差板上部分区域有吸光物质,通过其的偏转光线之间又增加了新的光程差,从而对样品不同密度造成的相位差起了“夸大”作用。最后两组光线通过透镜会聚成一束,发生相互叠加或抵消的干涉现象,从而表现出肉眼明显可见的明暗差别。 由于反差是以样品的密度差别为基础形成的,故相差显微镜的样品不需染色,可观察活细胞,甚至研究细胞核、线粒体等细胞器的动态。

  • 想购买体视显微镜,金相显微镜,扫描电镜各一台

    想购买体视显微镜,金相显微镜,扫描电镜各一台,请大家给推荐一款,研究非金属材料,导电性不好,就是金刚石粉末加金属钴的烧结体,立方氮化硼粉末加金属单质铝等和氧化物,碳化物,氮化物的烧结体。请各位高手指点一二。考虑到国内国外仪器差别很大,想买进口品牌。

  • 【讨论】光学显微镜的分类

    [font=宋体][size=3][b]光学显微镜有多种分类方法:[/b][/size][/font][font=宋体][size=3] 按使用目镜的数目可分为双目和单目显微镜;[/size][/font][font=宋体][size=3] 按图像是否有立体感可分为立体视觉和非立体视觉显微镜;[/size][/font][font=宋体][size=3] 按观察对像可分为生物和金相显微镜等;[/size][/font][font=宋体][size=3] 按光学原理可分为偏光、相衬和微差干涉对比显微镜等;[/size][/font][font=宋体][size=3] 按光源类型可分为普通光、荧光、紫外光、红外光和激光显微镜等;[/size][/font][font=宋体][size=3] 按接收器类型可分为目视、数码(摄像)显微镜等。[/size][/font][font=宋体][size=3] 常用的显微镜有双目体视显微镜、金相显微镜、偏光显微镜、荧光显微镜等。[/size][/font][size=3][b][font=Times New Roman]1[/font][font=宋体].双目体视显微镜[/font][font=Times New Roman] [/font][/b][/size][size=3][font=宋体] 双目体视显微镜又称[/font][font=Times New Roman]"[/font][font=宋体]实体显微镜[/font][font=Times New Roman]"[/font][font=宋体]或[/font][font=Times New Roman]"[/font][font=宋体]解剖镜[/font][font=Times New Roman]"[/font][font=宋体],是一种具有正象立体感地目视仪器。在生物、医学领域广泛用于切片操作和显微外科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。它利用双通道光路,双目镜筒中的左右两光束不是平行,而是具有一定的夹角[/font][font=Times New Roman]--[/font][font=宋体]体视角(一般为[/font][font=Times New Roman]12[/font][font=宋体]度[/font][font=Times New Roman]--15[/font][font=宋体]度),为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。[/font][/size][size=3][font=宋体] 目前体视镜的光学结构是:由一个共用的初级物镜,对物体成象后的两光束被两组中间物镜[/font][font=Times New Roman]----[/font][font=宋体]变焦镜分开,并成一体视角再经各自的目镜成象,它的倍率变化是由改变中间镜组之间的距离而获得的,因此又称为[/font][font=Times New Roman]"[/font][font=宋体]连续变倍体视显微镜[/font][font=Times New Roman]"[/font][font=宋体]([/font][font=Times New Roman]Zoom-stereomicroscope[/font][font=宋体])。随着应用的要求,目前体视镜可选配丰富的选购附件,如荧光,照相,摄象,冷光源等等。[/font][font=Times New Roman] [/font][/size][size=3][b][font=Times New Roman]2[/font][font=宋体].金相显微镜[/font][font=Times New Roman] [/font][/b][/size][font=宋体][size=3] 金相显微镜是专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。这种反射照明方式也广泛用于集成电路硅片的检测工作。[/size][/font]

  • 【转帖】显微镜锦之堂显微镜常识--光学显微镜的组成结构和分类

    本文来自显微镜之家转贴显微镜之家融合了各种进口国产显微镜的集中展示,集显微镜知识/咨询/动态等于一体的显微镜之家 http://goldroom.zhan.cn.yahoo.com/登陆指导!光学显微镜一般由载物台、聚光照相系统物镜、目镜和调焦机构组成。载物台用于承放被观察的物体,利用调焦旋扭可以驱动调焦机构,使载物台作粗调和微调的升降运动,使被观察物体调焦清晰成像,它的上层可以在水平面内沿作精密移动和转动,一般都把被观察的部位调放到视场中心。聚光照明系统由灯源和聚光镜构成,聚光镜的功能是使更多的光能集中到被观察的部位。照明灯的光谱特性必须与显微镜的接收器的工作波段相适应。物镜位于被观察物体附近,是实现第一级放大的镜头,在物镜转换器上同时装着几个不同放大倍率的物镜,转动转换器就可让不同倍率的物镜进入工作光路,物镜的放大倍率通常为5~100倍。物镜是显微镜对成像质量优劣起决定性作用的光学元件,常用的有能对两种颜色的光线校正色差的消色差物镜;质量更高的还有能对三种色光校正色差的复消色差物镜;能保证物镜的整个像面为平面,以提高视场边缘成像质量的平像场物镜。高倍物镜中多采用浸液物镜,即在物镜的下表面和标本片的上表面之间填充折射率为1.5左右的液体,它能显著的提高显微观察的分辨率。目镜是位于人眼附近实现第二级放大的镜头,镜放大倍率通常为5~20倍,按照所说的所能看到的视场大小,目镜可分为视场较小的普通目镜和视场较大的大视场目镜(或称广角目镜)两类。载物台和物镜两者必须能沿物镜光轴方向作相对运动以实现调焦,获得清晰的图像.用高倍物镜工作时,容许的调焦范围往往小于微米,所以显微镜必须具备极为精密的微动调焦机构。显微镜放大倍率的极限即有效放大倍率,显微镜的分辨率是指能被显微镜清晰区分的两个物点的最小间距,分辨率和放大倍率是两个不同的但又有联系的概念。当选用的物镜数值孔径不够大,即分辨率不够高时,显微镜不能分清物体的微细结构,此时即使过度地增大放大倍率,得到的也只能是一个轮廊虽大但细节不清的图像。聚光照明系统对显微镜成像性能有较大影响,但又是易于被使用者忽视的环节。它的功能是提供亮度足够且均匀的物面照明,聚光镜发来的光束应能保证充满物镜孔径角,否则就不能充分利用物镜所能达到的最高分辨率。为此目的,在聚光镜中没有类似照相物镜中的,可以调节开孔大小的可变孔径光阑,用来调节照明光束孔径,以与物镜孔径角匹配。改变照明方式,可以获得亮背景上的暗物点(称亮视场照明)或暗背景上的亮物点(称暗视场照明)等不同的观察方式,以便在不同情况下更好地发现和观察微调结构。

  • 【转帖】光学显微镜

    光学显微镜是利用光学原理,把人眼所不能分辨的微小物体放大成像,以供人们提取微细结构信息的光学仪器。  早在公元前一世纪,人们就已发现通过球形透明物体去观察微小物体时,可以使其放大成像。后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。  1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。1610年前后,意大利的伽利略和德国的开普勒在研究望远镜的同时,改变物镜和目镜之间的距离,得出合理的显微镜光路结构,当时的光学工匠遂纷纷从事显微镜的制造、推广和改进。  17世纪中叶,英国的胡克和荷兰的列文胡克,都对显微镜的发展作出了卓越的贡献。1665年前后,胡克在显微镜中加入粗动和微动调焦机构、照明系统和承载标本片的工作台。这些部 件经过不断改进,成为现代显微镜的基本组成部分。  1673~1677年期间,列文胡克制成单组元放大镜式的高倍显微镜,其中九台保存至今。胡克和列文胡克利用自制的显微镜,在动、植物机体微观结构的研究方面取得了杰出的成就。  19世纪,高质量消色差浸液物镜的出现,使显微镜观察微细结构的能力大为提高。1827年阿米奇第一个采用了浸液物镜。19世纪70年代,德国人阿贝奠定了显微镜成像的古典理论基础。这些都促进了显微镜制造和显微观察技术的迅速发展,并为19世纪后半叶包括科赫、巴斯德等在内的生物学家和医学家发现细菌和微生物提供了有力的工具。  在显微镜本身结构发展的同时,显微观察技术也在不断创新:1850年出现了偏光显微术;1893年出现了干涉显微术;1935年荷兰物理学家泽尔尼克创造了相衬显微术,他为此在1953年获得了诺贝尔物理学奖。  古典的光学显微镜只是光学元件和精密机械元件的组合,它以人眼作为接收器来观察放大的像。后来在显微镜中加入了摄影装置,以感光胶片作为可以记录和存储的接收器。现代又普遍采用光电元件、电视摄象管和电荷耦合器等作为显微镜的接收器,配以微型电子计算机后构成完整的图象信息采集和处理系统。  表面为曲面的玻璃或其他透明材料制成的光学透镜可以使物体放大成像,光学显微镜就是利用这一原理把微小物体放大到人眼足以观察的尺寸。近代的光学显微镜通常采用两级放大,分别由物镜和目镜完成。被观察物体位于物镜的前方,被物镜作第一级放大后成一倒立的实象,然后此实像再被目镜作第二级放大,成一虚象,人眼看到的就是虚像。而显微镜的总放大倍率就是物镜放大倍率和目镜放大倍率的乘积。放大倍率是指直线尺寸的放大比,而不是面积比。  光学显微镜的组成结构  光学显微镜一般由载物台、聚光照明系统、物镜,目镜和调焦机构组成。载物台用于承放被观察的物体。利用调焦旋钮可以驱动调焦机构,使载物台作粗调和微调的升降运动,使被观察物体调焦清晰成象。它的上层可以在水平面内沿作精密移动和转动,一般都把被观察的部位调放到视场中心。  聚光照明系统由灯源和聚光镜构成,聚光镜的功能是使更多的光能集中到被观察的部位。照明灯的光谱特性必须与显微镜的接收器的工作波段相适应。  物镜位于被观察物体附近,是实现第一级放大的镜头。在物镜转换器上同时装着几个不同放大倍率的物镜,转动转换器就可让不同倍率的物镜进入工作光路,物镜的放大倍率通常为5~100倍。  物镜是显微镜中对成象质量优劣起决定性作用的光学元件。常用的有能对两种颜色的光线校正色差的消色差物镜;质量更高的还有能对三种色光校正色差的复消色差物镜;能保证物镜的整个像面为平面,以提高视场边缘成像质量的平像场物镜。高倍物镜中多采用浸液物镜,即在物镜的下表面和标本片的上表面之间填充折射率为1.5左右的液体,它能显著的提高显微观察的分辨率。  目镜是位于人眼附近实现第二级放大的镜头,镜放大倍率通常为5~20倍。按照所能看到的视场大小,目镜可分为视场较小的普通目镜,和视场较大的大视场目镜(或称广角目镜)两类。  载物台和物镜两者必须能沿物镜光轴方向作相对运动以实现调焦,获得清晰的图像。用高倍物镜工作时,容许的调焦范围往往小于微米,所以显微镜必须具备极为精密的微动调焦机构。  显微镜放大倍率的极限即有效放大倍率,显微镜的分辨率是指能被显微镜清晰区分的两个物点的最小间距。分辨率和放大倍率是两个不同的但又互有联系的概念。  当选用的物镜数值孔径不够大,即分辨率不够高时,显微镜不能分清物体的微细结构,此时即使过度地增大放大倍率,得到的也只能是一个轮廓虽大但细节不清的图像,称为无效放大倍率。反之如果分辨率已满足要求而放大倍率不足,则显微镜虽已具备分辨的能力,但因图像太小而仍然不能被人眼清晰视见。所以为了充分发挥显微镜的分辨能力,应使数值孔径与显微镜总放大倍率合理匹配。  聚光照明系统是对显微镜成像性能有较大影响,但又是易于被使用者忽视的环节。它的功能是提供亮度足够且均匀的物面照明。聚光镜发来的光束应能保证充满物镜孔径角,否则就不能充分利用物镜所能达到的最高分辨率。为此目的,在聚光镜中设有类似照相物镜中的,可以调节开孔大小的可变孔径光阑,用来调节照明光束孔径,以与物镜孔径角匹配。  改变照明方式,可以获得亮背景上的暗物点(称亮视场照明)或暗背景上的亮物点(称暗视场照明)等不同的观察方式,以便在不同情况下更好地发现和观察微细结构。  光学显微镜的分类  光学显微镜有多种分类方法:按使用目镜的数目可分为双目和单目显微镜;按图像是否有立体  感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理可分为偏光,相衬和微差干涉对比显微镜等;按光源类型可分为普通光、荧光、红外光和激光显微镜等;按接收器类型可分为目视、摄影和电视显微镜等。常用的显微镜有双目体视显微镜、金相显微镜、偏光显微镜、紫外荧光显微镜等。  双目体视显微镜是利用双通道光路,为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。双目体视显微镜在生物、医学领域广泛用于切片操作和显微外 科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。  金相显微镜是专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。这种反射照明方式也广泛用于集成电路硅片的检测工作。  紫外荧光显微镜是用紫外光激发荧光来进行观察的显微镜。某些标本在可见光中觉察不到结构细节,但经过染色处理,以紫外光照射时可因荧光作用而发射可见光,形成可见的图像。这类显微镜常用于生物学和医学中。  电视显微镜和电荷耦合器显微镜是以电视摄像靶或电荷耦合器作为接收元件的显微镜。在显微镜的实像面处装入电视摄像靶或电荷耦合器取代人眼作为接收器,通过这些光电器件把光学图像转换成电信号的图像,然后对之进行尺寸检测、颗粒计数等工作。这类显微镜的可以与计算机联用,这便于实现检测和信息处理的自动化,多应用于需要进行大量繁琐检测工作的场合。  扫描显微镜是成像光束能相对于物面作扫描运动的显微镜 。在扫描显微镜中依靠缩小视场来保证物镜达到最高的分辨率,同时用光学或机械扫描的方法,使成像光束相对于物面在较大视场范围内进行扫描,并用信息处理技术来获得合成的大面积图像信息。这类显微镜适用于需要高分辨率的大视场图像的观测。

  • 【求助】光学显微镜、解剖显微镜和倒置显微镜的区别?

    如题,光学显微镜、解剖显微镜和倒置显微镜的区别?土豆在填写药检仪器调查表的时候发现这几个名词,有点不太明白,一般常用的就是光学显微镜了,那解剖显微镜和倒置显微镜用在什么实验上的啊?有何不同之处,还望各位指教。

  • 便携式生物显微镜特点及应用

    [url=http://www.f-lab.cn/biomicroscopes/goren-bio.html][b]便携式生物显微镜[/b][/url]是专业为野外研究或现场应用而设计的手持便携式显微镜,具有便携而多功能的独特优势,结构紧凑且坚固耐用,是现场观察研究的理想显微镜。[b]便携式生物显微镜特点[/b]便携式设计且具有实验室级显微镜的性能和实惠的价格多功能设计,可以很容易地修改执行为明场,暗场,相衬,或偏振显微镜多样显微镜器件达到实验室显微镜水平:照明元件、调焦机构、子级光学系统,样品台可由电池供电或110V / 240v电源供电。[img=便携式生物显微镜]http://www.f-lab.cn/Upload/Goren-Bio.jpg[/img][b]便携式生物显微镜[/b]应用 地质学、考古学、生物学、教育、司法、地球科学、生物学、医学、Botany、热带疾病,病理学,艺术学,Mineralogy。[b]便携式生物显微镜结果[img=便携式生物显微镜]http://www.f-lab.cn/Upload/Goren-Bio-results.jpg[/img][img=便携式生物显微镜]http://www.f-lab.cn/Upload/goren-application.JPG[/img][/b](A)数组(“涂抹部分”)从Maresha附近的中始新世沉积放射虫、以色列(显微镜放大倍数:40×);(B)场浸渍和光薄片的土从Tsaghkasar、亚美尼亚(100×,正交偏光镜);(C)结核杆菌(600×,油浸);(D)硅藻(舟形藻,200×)。更多生物显微镜官网:[url]http://www.f-lab.cn/biomicroscopes.html[/url]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制