当前位置: 仪器信息网 > 行业主题 > >

无线频率干扰仪

仪器信息网无线频率干扰仪专题为您提供2024年最新无线频率干扰仪价格报价、厂家品牌的相关信息, 包括无线频率干扰仪参数、型号等,不管是国产,还是进口品牌的无线频率干扰仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合无线频率干扰仪相关的耗材配件、试剂标物,还有无线频率干扰仪相关的最新资讯、资料,以及无线频率干扰仪相关的解决方案。

无线频率干扰仪相关的论坛

  • 无线鼠标的理解

    全球首个采用27 MHz RF无线技术的鼠标于1991年由罗技发布,而这位业界巨人于1998年发布了首款无线鼠标套装。至此,采用27 MHz RF无线技术的鼠标产品拉开了进军市场的序幕。为了防止出现频率干扰和传输不畅的情况,部分较新型的无线鼠标产品采用了双频道的方案。此外,因为其他无线网络设备很少使用27Mhz频率,因此该类鼠标产品受到来自其他无线设备的干扰的可能性并不大。虽然占据了技术成熟、成本低和受干扰风险较低的优势,但27Mhz频段的劣势也是比较明显的。首先,该类鼠标产品仅支持单向传输,也就是说仅支持鼠标的发射端向信号接收器发送信号而不能“逆行”。另外,27MHz技术由于传输速率的原因,必须连续工作,因此功耗也比较大。此外无线安全级别较低、有效传输距离较短等均是27Mhz频率鼠标产品不可回避的劣势。其实鼠标在我们生活中还是不可以少的,我们要用到电脑,就要用到鼠标是吧,而现在还出现一个无线鼠标,那减直是好极了。有方便,到那里都可以带上,不象以前的鼠标还有一根那么长的线,不方便啊。

  • 频率表到底是怎么一回事?

    频率表是测量频率的机械式指示电表。频率表种类很多,有电动系、铁磁电动系和属于整流式的变换器式频率表 频率表等。生产现场用来监测频率用的安装式频率表,大多采用铁磁电动系电表的测量机构。   铁磁电动系频率表的测量机构与电路如图。带有铁心的固定线圈与电感器L、电容器C组成的串联谐振电路,通常被调整在标尺的中间频率(例如50赫)时谐振。可动部分由两个线圈组成,其中动圈1与电容器C1串联后与谐振电路并联。接通电源时,可动部分所受转动力,I、I1分别为固定线圈及动圈1中电流,θ为两电流相量间夹角,K为系数。动圈2与电阻器R2、电感器L2构成闭合回路。当可动部分指针偏离标尺中间位置α角时,动圈2将受到一个与偏转角α 成正比、并使指针返回中间位置的反抗力矩。当被测频率等于标尺中间频率时,谐振电路发生谐振,这时固定线圈中的电流与动圈1中电流相量间夹角θ=90°,因而转动力矩M=0。于是可动部分在动圈2力矩的作用下,使指针指在标尺的中间频率(例如50赫)的刻度上。当被测频率偏离中间频率时,谐振条件被破坏,转动力矩不再为零,可动部分发生偏转,直到转动力矩与反抗力矩平衡时为止,可动部分将停在与被测频率对应的新位置上。改变串联谐振电路的参数,可以获得不同的频率量程。   频率表 用于测量工频电网的频率。对于50赫的频率来说,频率表的测量误差小于0.1赫。   世界上许多国家利用短波频率来进行世界范围的广播传输,短波频率范围通常在 1.6MHz- 30MHz之间.一般我们还将短波频率划分为很多“米段波”,每一个米波段包含一段频率范围。    例如:19M米波段包含的频率范围为从15.100到15.600MHz 。国际无线电委员会规定民用广播使用米波段范围内的 频率,米波段之外的频率大多用于军事和其他民用通讯。所以,只有在米波段频率范围内,才能接收到民用广播电台节目。短波信号传播受到许多因素影响,诸如太阳黑子活动、大气层和地球电 离层变化的影响,因此短波广播电台每年有两次大的频率调整,即"夏季频率"及"冬季频率".

  • 【原创】激发频率对打点有什么影响?

    [b][color=#d40a00][size=4]直读光谱做分析时,除了激发电流和时间等参数,还有激发频率这个参数。帮朋友修直读光谱时发现激发频率对激发电流影响较大,同干扰也有影响,激发频率偏低(如200Hz),激发电流较大,干扰也较大(偶尔有死机现象),激发频率偏高(如400Hz),激发电流稍小些,干扰也小一些,不知各位同行对此有何见解?如何去理解激发频率在直读光谱中的作用?[color=#d40a00]按常理讲,难熔元素用高一些的激发频率,可能对分析有利一些,当然还要取决于激发电流和电压。[/color][/size][/color][/b]

  • 【求助】求 SS3341A 频率计数器的说明书

    【求助】求 SS3341A 频率计数器的说明书

    各位好!本菜新近淘得一台旧的 SS3341A 频率计数器,石家庄无线电四厂1987年出品。年代久远,已经没有说明书了。不知哪位朋友有说明书或电路图。提前致谢。http://ng1.17img.cn/bbsfiles/images/2016/10/201610312136_615471_0_3.jpg

  • 【资料】无线电磁环境监测与分析

    无线电磁环境监测与分析贵州省信息产业厅无线电管理局 夏跃兵摘 要对无线电磁环境的定义和测量、分析方法进行阐述。说明了无线电磁环境的测量方法以及测量时应注意的事项,如保证监测系统本身的准确性、监测资料正确记录。最后介绍了在实际工作中,电磁环境分析软件的基本要求、主要功能及辅助应用。关键词电磁环境 监测 分析 应用0前言在诸多无线电管理文件和资料中,经常出现“电磁环境恶化”、“电磁环境复杂”等术语,这在某种程度上表明了电磁环境在无线电管理工作中的重要性。如何测量和判别电磁环境的优劣,对于我们维护电波秩序、主动查处有害干扰、科学规划和利用无线电频谱资源有着极为重要的作用。下而,笔者结合无线电监测实践,与大家分享一些对无线电磁环境监测和分析的认识。1电磁环境监测1.1电磁环境的定义GB/T4365—1995对电磁环境有这样的描述:电磁环境是指存在于给定场所的所有电磁现象的总和。此定义包括了两层含义:第一,电磁环境是指某一给定场所,有限定 的地区范围;第二,电磁环境是在给定地区范围内所有电磁现象的总和,包括自然界电磁现象、人为电磁现象。电磁噪声是一种明显不传递信息的时变电磁现象,它可能与有用信号叠加或组合。电磁环境的优劣直接影响无线电设备的工作质量,恶劣的电磁环境会导致无线电设备不能正常工作,这就是我们常说的电磁噪声干扰。无线电环境是指无线电频率范围内的电磁环境。指在给定场所内所有处于工作状态的无线电发射机产生的电磁场总和,属于人为电磁现象(人工装置所产生的电磁现象)的范畴。1.2电磁环境监测设备 电磁环境的监测通常需要专用的设备来完成。电磁环境的监测设备的要求不同于通信接收机,通信接收机是用于再现一个信号,在接收这种信号中灵敏度和速度起着重要的作用。电磁环境监测设备是用来测试电磁噪声和无线电信号的电平和频率等指标,所测量的可能是干扰源,也可 能是无线电信号。因此,对它的要求是测量精度。1.2.1临测接收机 由于在电磁环境洲量中,经常出现具有不同带宽特性的信号,所以对监测接收机的互调特性也有严格的要求。为适应各种调制形式信号的测量,除可接收正弦波信号外,更常用于接收脉冲干扰信号。因此,监测接收机应具有平均值检波、峰值检波和准峰值检波功能,依据不同的测量对象,选择检波方式。实际测量的信号基本可以分为三类:连续波、脉冲波和随机噪声。连续波干扰(如:载波、电源谐波和本振)是窄带干扰,往无调制的情况下用峰值、有效值或平均值检波器均可以检测出来,且测量的幅度相同。对于脉冲干扰信号,峰值检波器可以很好地反映脉冲的最大值,但反映不出脉冲重复频率的变化。这时,使用准峰值检波器最为合适,其加权系数随脉冲信号重复频率的变化而改变,重复频率低的脉冲信号引起的干扰小,反之加权系数大。而用平均值、有效值检波器测量脉冲信号,其读数也与脉冲重复的频率有火。随机十扰的来源有热噪声、雷达日标反射以及自然噪声等,这时,主要分析平稳随机过程干扰信号的测量,通常使用有效值和平均值检波器来测量。利用检波器的特性,通过比较信号在不同检波方式下的响应,就可以判别所测未知信号的类型,确定干扰信号的性质。例如,用峰值检波器来测量某一干扰信号,改为平均值或有效值检波时幅度小变,则该信号是窄带信号。若幅度发生变化,则该信号可能是宽带信号(即频谱超过接收机分辩带宽的信号,如脉冲信号)。对于电磁环境监测设备,需要注意的是:(1)防止输入端过载;(2)选用合适的检波方式;(3)测试前要进行校准;(4)选择适合的预选器。 无论是高电平的窄带信号还是具有一定频谱强度的宽带信号,都可能导致测量接收机输入端混频器过载,产生错误的测量结果。对于脉冲类的宽带信号,任混合器前进行滤波(也称为预选),可避免发生过载的现象。不经预选 时,宽带信号的所有频谱分量都同时出现在混频器上,若宽带信号的时域峰值幅度超过了混频器的过载电平,便会发生过载情况。经过预选时,由于进行了跟踪滤波,故输入信号频谱只有一部份进入预选器的通带内,到达混频器的输入端,输入信号的频谱强度不会因滤波而改变。这种靠滤波而不是靠衰减来实现的幅度减小,改变了宽带信号测量的动态范围,同时又能维持接收机测量低电平信号的能力。若窄带信号(如连续波信号)处在预选滤波器的带通内,则预选的过程不会改变测量窄带信号的动态范围。1.2.2临测天线 各省(区、市)监测站拥有最多的是覆盖70 MHz~3000 MHz频段的监测设备,同时该频段也是关注程度最高的频段。住此频段进行监测时,要求有覆盖70 MHz~3000 MHz频段的监测天线,监测天线应具有水平和垂直两种极化方式,无方向性,以便更为详尽地监测电磁环境。使用定向天线时,要有尽可能低的方向性,在360°不同方向的增益变化小大于6 dB。监测天线的高度以能够消除地表面反射波的影响为基本要求,一般监测天线高度距地表面(或房顶而)不低下6米。

  • 【讨论】关于ICP光谱仪RF发生器工作频率及IRIS INTREPID II系列各型号的说明

    1、RF发生器  目前商品化ICP光谱仪都使用两种类型的RF发生器,一类是自激式发生器,另一类是晶体振荡式(它激式)发生器。自激式是采用L-C振荡回路,工作线圈即是L,参与振荡,等离子体本身就是振荡回路的一部分,所以负载的变化将引起振荡回路参数的变化,正向功率和振荡频率都会产生波动,而且点火不容易。而它激式的发生器就不存在这个问题,它的原理基于石英晶体的压电效应,用晶体的谐振频率来取代L-C振荡回路,所以它具有频率、功率稳定性好,点火容易等特点。发生器在5-60M都可以满足ICP工作的需求,但商品化的ICP光谱仪都使用工业标准的27.12M和40.68M两个频率,因为国际上规定凡工业和医用高频设备使用这两个频率,即使它有泄漏也不干扰正常的通讯广播。按原理上说,频率越高趋肤效应越大,等离子体的中心通道越宽,样品经雾化后通过中心通道被间接加热,40.68M的原子或离子密度降低,背景降低,从而提高了信背比,降低了如K等易电离元素的检出限;但是由于中心通道宽,使其温度比27.12M低,因此影响等离子体的稳定性,而且原子密度降低,所以将影响一些难电离元素的灵敏度。对于点火效果来说,如果是自激式的发生器一般要用40.68M,这样容易点火,而对于晶体控制式,27.12M同样可以获得很好的点火效果,况且对于维修工程师来说,他们希望是更安全的低频率。 2、IRIS Intrepid II系列型号说明  Thermo的IRIS Intrepid II系列ICP产品是基于新的CID38A检测器、改进的RF系统、中阶梯光学系统和TEVA软件,在2003年年初同时推出了三个型号:XSP(扩展稳定性)、XDL(扩展检出限)和XUV(扩展紫外波长)。XPS在IRIS AD 双闭环直接耦合的基础上改进了RF发生器的实时控制电路,虽然把最大输出功率限定在1500W,但其等离子体光源显得更稳定;另外改进了检测器与光室的隔热,改进了光室内的氩气走向;改进了光室恒温系统,这一系列改进使得XSP可获得优异的短期和长期稳定性,所以特别适合于工矿企业、商检质监、测试中心等样品量多,品种复杂的单位,XSP在国内有近200台,使用情况良好。XDL还是使用原来IRIS AD的RF发生系统,目的是通过提高功率等方法来扩展检出限,目前主要是用于纯基体行业,如水和环保行业,通过提高功率来改善此类样品中如Pb等重金属测定的信噪比。但至今XDL占整个系列销售比例不到1%,毕竟用户不只是分析水,就环保来说还是经常分析大气粉尘和土壤等。对于存在大量基体的情况下,信号提高的同时基体背景干扰可能更加严重,虽然仪器检出限(IDL)降低了,但并没有有效地降低方法检出限(MDL)。由于产量较少,所以生产地成本相对较高。XUV是通过改变中阶梯光栅的衍射角,使得紫外波长扩展到130nm,这是油品分析的专业仪器,因为目前国际上对油品中Cl-的分析一般要求使用134nm灵敏线,同时配合油料进样系统进行测定。所以说IRIS Intrepid II系列的三种型号是针对于不同的应用,从目前的销售情况来说,由于XSP的超高稳定性,使其适用面更广一些。

  • 国家时间频率计量基准相关介绍

    [align=center][b][size=24px]国家时间频率计量基准相关介绍[/size][/b][/align] 国家时间频率计量基准包括:[b]秒长国家计量基准和原子时标国家计量基准[/b]。[b]秒长国家计量基准[/b]: 秒长国家计量基准是直接复现秒定义的实验装置,输出的标准频率具有最高计量学特性,它是经国家审查、批准作为统一全国秒长量值(频率量值)最高依据的计量器具,全国只有一套。1967年,秒定义从天文秒改为原子秒,定义在铯原子基态能级跃迁上。铯原子钟成为直接复现秒定义的实验装置。 世界上第一台热铯束钟是英国国家物理实验室1955年研制完成的。中国计量科学研究院从70年代起开始了热铯束钟的研究,1981年研制完成的NIM3热铯束钟,相对频率不确定度达到3×10[size=12px]-13[/size],成为中国第一代秒长国家计量基准。2003年,中国计量科学研究院研制完成了中国第一台激光冷却铯原子喷泉钟NIM4,不确定度达到8.5×10[size=12px]-15[/size],随后改进提高至5×10[size=12px]-15[/size],经国家质量监督检验检疫总局批准替代NIM3热铯束钟,成为中国第二代秒长国家计量基准。2014年,中国计量科学研究院研制完成的新一代NIM5铯原子喷泉钟,不确定度达到1.5×10[size=12px]-15[/size],获批取代NIM4成为新的秒长国家计量基准。2014年8月,NIM5铯原子喷泉钟通过国际专家评审开始参加国际原子时合作驾驭国际原子时。2017年改进后的NIM5不确定度达到9×10[size=12px]-16[/size]。 秒长基准利用高稳晶振或者低温蓝宝石晶振等频率源,通过频率变换合成9192631770 Hz的微波信号。利用此微波信号激励铯原子产生钟跃迁,误差信号反馈给频率源将微波频率锁定到铯原子秒定义能级跃迁上。由于秒定义在不受任何外界场干扰的孤立的铯原子跃迁频率,因此世界各国计量院研制的基准钟复现秒定义都评定和修正一系列物理效应引入的钟跃迁频率偏移,包括外界场引入的频率偏移,如将原子周围温度引入的黑体辐射频移修正到0 K温度,将重力场引入的频率偏移修正到平均海平面水准。 秒长国家计量基准作为国家时间频率计量体系的源头,复现秒定义输出基准频率,用来驾驭氢钟产生本地原子时,向国际计量局报送数据,驾驭国际原子时,也直接测量光钟等高性能原子钟的频率。 随着科学技术的发展,秒定义可能被修改,其时,按新定义复现秒长的实验装置将成为新的秒长国家计量基准。[b]原子时标国家计量基准[/b]: 中国计量科学研究院于1980年建立了原子时标,1983年经国家计量主管部门(原国家质量监督检验检疫总局)批准,由中国计量科学研究院(NIM)国家时间频率计量中心建立和保持的原子时标UTC(NIM)为原子时标国家计量基准,是统一全国时间频率量值的最高依据。 原子时标国家计量基准由守时钟组、内部测量系统、溯源比对系统、数据处理系统、算法及控制系统等部分组成。守时钟组由不间断运行的多台商品氢原子钟和商品铯原子钟组成,产生连续稳定的时间频率信号;内部测量系统通过双混频时差测量得到中国计量科学研究院协调世界时UTC(NIM)与各守时原子钟之间的时差(相位差);溯源比对系统通过全球卫星导航系统(GNSS)及卫星双向时间频率传递(TWSTFT)技术使UTC(NIM)实现国际比对,参加国际原子时合作;数据处理系统对内部比对和国际比对数据进行存储、监测和处理;算法及控制系统对钟组相关数据进行计算产生本地原子时,利用中国计量科学研究院保持的铯喷泉钟秒长国家计量基准和国际原子时合作返回的UTC-UTC(NIM)数据对其进行驾驭(校准),产生准确稳定的UTC(NIM)。 UTC(NIM)作为原子时标国家计量基准,其量值溯源至国际标准时间-协调世界时(UTC)并对UTC做贡献;同时作为国家时间频率量值的源头,保证国内时间频率测量量值的准确统一。与协调世界时(UTC) 实现全球卫星导航系统(GNSS)共视及载波相位时频传递,保证了UTC(NIM)参加TAI合作的高水平链接,与UTC偏差在±5 ns内,标准合成不确定度优于2 ns。 中国计量科学研究院基于载波相位的链接于2013年成功主导了欧亚四国铯原子喷泉钟国际比对,标志中国第一次成功实现基准钟国际比对;实现时间传递链路校准技术及装置,2014年被BIPM指定为国际9家一类GNSS时间传递链路校准实验室,负责对亚太区域内二类实验室的校准。

  • 无线电干扰

    我们准备增项,做无线电干扰,检测依据GB/T 7349-2002 ,使用什么仪器设备

  • 关于仪器期间核查频率

    实验室的有台仪器设备之前都是按程序文件要求半年6个月进行1次仪器期间核查(按仪器校准规范核查的),以及2年一次外面公司上门计量校准,现在有个问题想问下?半年一次期间核查,我想把程序文件修改成1年1次期间核查可以吗?(因为仪器期间核查买标液还是其次的,主要核查操作太麻烦)?还有说明下这台仪器的检测项目是已申请了CNAS认可,我们把核查频率由6个月改成12月,到时候现场评审老师看到会不会质疑不认可?实验室其实每年还有做其他质量监控的现在想减少仪器期间核查频率!

  • 观测频率

    对于原子核的Larmor频率来说 在核磁中是不是其频率越高 越容易被检测到信号?为什么呢?

  • 【讨论】超声中功率和频率的关系?

    [size=3]药典中的含量测定下,提取方法有许多采用超声提取,并标注了功率和频率(例:功率250W 频率40kHz)。我的问题是:功率和频率有什么联系?我们的超声清洗仪只能控制功率而不能控制频率,怎样改变频率?[/size]

  • 【转帖】智能工业电导仪误差来源及分析:电源频率引起的误差

    【转帖】智能工业电导仪误差来源及分析:电源频率引起的误差

    工业电导仪一般采用分压法测量溶液的电导,假如用直流电源作为外加电压,就会产生极化现象,使溶液的等效电阻发生变化 智能工业电导仪采用交流电源作为外加电压以消除极化造成的影响,但由此产生的后果是电导池系统便不再是纯电阻,而是包括容抗的阻抗,其分布情况见图1。但在考虑溶液浓度与电导的关系时,只能把电导池看作纯电阻元件,且在仪表定标时也以电阻箱代替它进行刻度,所以在测量溶液的电导时会产生误差。其大小与电源频率的关系如下。[img]http://ng1.17img.cn/bbsfiles/images/2009/12/200912302155_193108_1615922_3.jpg[/img]图中Rl , 为电极电阻 为极化电阻 R3为电解液电阻 C1为电极表面双电层电容 C2为电解液电容。由图1知,与待测成分有关的部分是Rs,为了提高测量灵敏度,应使R3占总阻抗的比例越大越好,所以测量低浓度范围内的溶液,R3占的比例就大,仪表有较高的灵敏度。容抗Ze=1/2πfC。由此知,为降低与R3串联的C1, 的容抗,电源的频率取高些更为有利 同时提高电源频率也有助于减小极化电阻,但频率过高,会降低C2的容抗,这对精确测量R3是不利的。基于上述分析,智能工业电导仪采用了1 kHz方波电压,增强了驱动电压的负载能力,以保证电压的稳定性,使得仪表的测量误差小于1%,较模拟工业电导仪精度提高1%~20%。

  • 期间核查的频率

    期间核查是指两次校准期间对设备的核查,如果我定义设备的校准频率和期间核查频率分别为2年,穿插进行,是否符合CNAS要求?比如:设备在2009年校准,下次校准时间为2011年。 期间核查第一次为2010年,下次期间核查时间为2012年。请帮忙多指点哦!谢谢啦

  • 频谱分析仪测量电磁干扰

    电磁干扰是电子产品设计中不可忽略的一个重要影响因素,要解决电磁干扰问题,就必须知道干扰源和发生的干扰幅度。测量电磁干扰源,有些工程师可能首先会想到使用数字示波器,但是示波器其实不是最好的测量电磁干扰的仪器,主要是因为:1、示波器测量取得的数据没办法和现有的标准进行比较,还需要将其波形转换成频域频谱才能进行比较;2、使用数字示波器没办法对叠加在一起的高频/低频信号进行测量;3、示波器的灵敏度达不到测量电磁干扰的层级。所以,除了示波器,还有一个更好的测量电磁干扰的仪器,那就是频谱分析仪。 频谱分析仪的工作原理如下图所示,由天线接收到信号,然后经过混频后,使信号频率达到中频,再经过中频放大器进入检波阶段,经过检波后再通过视频放大器将信号进行放大然后显示出来,就能测量出电磁干扰信号的数据。http://www.xmhaotian.com/upload/fck/14262318571452287212.jpg 频谱分析仪使用操作参数 1、扫描时间。扫描时间指的是从频谱仪从信号的频率最低端扫描到最高端所使用的时间,如果扫描时间偏短的话,则测量的信号幅度会比实际中信号幅度小。 2、频率扫描范围。如果扫描的频率范围越宽的话,那么测量的时间就会加长,测量精度就会降低,所以应尽量使用较小的频率范围来进行测量。 3、中频分辨宽带。通过对宽带的调整,可以提高频谱仪的选择性(选择性越高,可以对距离很近的两个信号进行测量)和频谱仪的灵敏度。

  • 【转帖】关于ICP光谱仪RF发生器工作频率及IRIS INTREPID II系列各型号的说明

    关于ICP光谱仪RF发生器工作频率及IRIS INTREPID II系列各型号的说明1、RF发生器  目前商品化ICP光谱仪都使用两种类型的RF发生器,一类是自激式发生器,另一类是晶体振荡式(它激式)发生器。自激式是采用L-C振荡回路,工作线圈即是L,参与振荡,等离子体本身就是振荡回路的一部分,所以负载的变化将引起振荡回路参数的变化,正向功率和振荡频率都会产生波动,而且点火不容易。而它激式的发生器就不存在这个问题,它的原理基于石英晶体的压电效应,用晶体的谐振频率来取代L-C振荡回路,所以它具有频率、功率稳定性好,点火容易等特点。发生器在5-60M都可以满足ICP工作的需求,但商品化的ICP光谱仪都使用工业标准的27.12M和40.68M两个频率,因为国际上规定凡工业和医用高频设备使用这两个频率,即使它有泄漏也不干扰正常的通讯广播。按原理上说,频率越高趋肤效应越大,等离子体的中心通道越宽,样品经雾化后通过中心通道被间接加热,40.68M的原子或离子密度降低,背景降低,从而提高了信背比,降低了如K等易电离元素的检出限;但是由于中心通道宽,使其温度比27.12M低,因此影响等离子体的稳定性,而且原子密度降低,所以将影响一些难电离元素的灵敏度。对于点火效果来说,如果是自激式的发生器一般要用40.68M,这样容易点火,而对于晶体控制式,27.12M同样可以获得很好的点火效果,况且对于维修工程师来说,他们希望是更安全的低频率。  2、IRIS Intrepid II系列型号说明  Thermo的IRIS Intrepid II系列ICP产品是基于新的CID38A检测器、改进的RF系统、中阶梯光学系统和TEVA软件,在2003年年初同时推出了三个型号:XSP(扩展稳定性)、XDL(扩展检出限)和XUV(扩展紫外波长)。XPS在IRIS AD 双闭环直接耦合的基础上改进了RF发生器的实时控制电路,虽然把最大输出功率限定在1500W,但其等离子体光源显得更稳定;另外改进了检测器与光室的隔热,改进了光室内的氩气走向;改进了光室恒温系统,这一系列改进使得XSP可获得优异的短期和长期稳定性,所以特别适合于工矿企业、商检质监、测试中心等样品量多,品种复杂的单位,XSP在国内有近200台,使用情况良好。XDL还是使用原来IRIS AD的RF发生系统,目的是通过提高功率等方法来扩展检出限,目前主要是用于纯基体行业,如水和环保行业,通过提高功率来改善此类样品中如Pb等重金属测定的信噪比。但至今XDL占整个系列销售比例不到1%,毕竟用户不只是分析水,就环保来说还是经常分析大气粉尘和土壤等。对于存在大量基体的情况下,信号提高的同时基体背景干扰可能更加严重,虽然仪器检出限(IDL)降低了,但并没有有效地降低方法检出限(MDL)。由于产量较少,所以生产地成本相对较高。XUV是通过改变中阶梯光栅的衍射角,使得紫外波长扩展到130nm,这是油品分析的专业仪器,因为目前国际上对油品中Cl-的分析一般要求使用134nm灵敏线,同时配合油料进样系统进行测定。所以说IRIS Intrepid II系列的三种型号是针对于不同的应用,从目前的销售情况来说,由于XSP的超高稳定性,使其适用面更广一些。

  • 求购频率计

    要求:检测频率范围在0.1~250MHz,大概研究200MHz左右的频率稳定性。

  • 指针式频率表的构成

    指针式频率表应用磁电原理工作,驱动指针运动,依靠指针在面板上停留位置来 的频率大小的表,用于显示被测物体的频率度数。磁电系电工仪表的测量机构是由固定的磁路系统和可动部分组成的。仪、的磁路系统包括永久磁铁1,固定在磁铁两极的极掌2以及处于两个极掌之间的圆柱形铁芯3。圆柱形铁芯固定在仪表支架上,用来减小磁阻,并使极掌和铁芯间的空气隙中产生均匀的辐射形磁场。处在这个磁场中的可动线圈4绕转轴偏转时,两个有效边上的磁场也总是大小相等,并且方向是与线圈边相互垂直的。可动线圈绕在铝框上。转轴分成前后两部分,每个半轴的一端固定在动圈铝框上,另一端则通过轴尖支撑于轴承中。在前半轴还装有指针,当可动部分偏转时,用来指示被测频率的大小。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制