当前位置: 仪器信息网 > 行业主题 > >

无线振动传感器

仪器信息网无线振动传感器专题为您提供2024年最新无线振动传感器价格报价、厂家品牌的相关信息, 包括无线振动传感器参数、型号等,不管是国产,还是进口品牌的无线振动传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合无线振动传感器相关的耗材配件、试剂标物,还有无线振动传感器相关的最新资讯、资料,以及无线振动传感器相关的解决方案。

无线振动传感器相关的资讯

  • 振动试验基础:加速度传感器介绍
    如果说振动控制仪是振动试验系统的大脑,那么加速度传感器就是人体的感官部分。本文主要介绍电荷型加速度传感器的原理和使用方法。※振动领域常用传感器加速度:压电型(电荷输出型或电压输出型IEPE)、动电型等。速度:激光测定器等。位移:LVDT(Linear Variable Differential Transformer)、Laser等。频率响应特性:加速度传感器 速度传感器 位移传感器(原因:相位关系),所以振动试验机系统多采用加速度传感器。※电荷输出型加速度传感器构造:原理:Q(电荷量) = C(电容) × V(电压)压力(F=mA)作用,压敏材料上产生电荷,对应电荷,输出电压变化。常见电荷型加速度传感器:※加速度传感器质量要求必须保证测定物质量的1/10以下。※加速度传感器频率使用范围避开传感器的共振点,使用直线形区域。在低频区域(1-5Hz)尤其要注意,由于频率响应特性的缘故,测得的加速度会有一定的偏差,对反馈控制有较大影响。也许这就是振动台厂家的设备产品目录中设备频率使用范围都是从5Hz开始标注的缘故吧。另外还要注意环境对传感器灵敏度的影响,比如,温度、湿度、电磁干扰等,别篇叙述。※加速度传感器的固定要求①用手测 ②磁铁(2点吸附) ③磁铁(平面吸附) ④垫片胶水粘贴 ⑤胶水粘贴 ⑥螺丝固定上图中,可以看出采用螺丝固定是最好的,但是由于实际情况,一般振动试验,能提供螺丝固定的螺孔基本上没有,所以通常采用胶水(502胶水等)粘贴或垫片(绝缘地线)胶水粘贴传感器。※加速度传感器的使用方法※加速度传感器的重要参数灵敏度、最大测定加速度、电容等。例:加速度传感器型号:2353B、灵敏度:0.209pC/(m/s²)传感器电容: 890pF,加速度500m/s²振动时,输出的电压是多少?(传感器低噪声电缆的电容已忽略。)Q=0.209×500=104.5[pC]V=Q/C=104.5/890=0.11742[V]= 11.742[mV]※前置功放(电荷放大器)将加速度传感器的电荷输出电压(mV级别)转换,通过增幅放大到±V级的电压信号,输出给振动控制仪。电压输出型(IEPE or ICP)加速度传感器也经常应用,稳定可靠,直接电压输出。内部含有微电子电路,受温度和湿度的影响比较大,一般使用上限在+125℃左右,建议在常温下采用。在三综合试验中,尤其需要特别注意试验条件的温度。备注:图片和部分文字等来源于网络,如有侵权,请联系作者本人。
  • 新品首发 | 必创科技2022年度旗舰新品Cat.1无线温振传感器VA530震撼来袭
    一款基于公网信号传输、部署更便捷的智能传感器,您想了解吗?通过手机随时查看设备运行工况的“设备智能听诊器”,您感兴趣吗?必创科技2022年度首款支持蓝牙、基于公网输出无需部署网关的旗舰新品正式上线啦~从客户需求角度出发精心打造低功耗技术持续优化适用场景更为广泛数据采集更加准确可靠传输方式选择灵活多样更适用于煤炭、冶金、石油石化、工业制造等多种智能化升级行业场景更便捷无需部署网关采用Cat.1,数据直接通过4G基站传输到客户平台端,高速率大数据量的传输方式,更有效为客户积累数据资源。蓝牙传输BLE 5.0 传输,通过BeeToolkit,可现场直接触发、读取采集数据,快速实现节点配置、校准操作,实时帮助用户掌握设备运行状态。更智能特有低功耗传感器协同处理技术,24h无间断监测设备启停状态内置高频响、高精度三轴加速度及温度传感器,两种感知单元融合检测,数据采集更准确,采集速度更高效通过内置的原始数据分析和异常识别算法,实时发送报警状态支持自定义数据采集,最大采样点数可达10000000点更适用支持Nano sim和eSIM,兼容移动、联通、电信3大运营商超低功耗,体积小巧,即装即用,整机使用年限达2年以上(传感器默认工作模式下测试结果)更安全防爆设计,有效避免火花风险,电池更换安全可靠,支持现场快速更换磁吸、螺柱、胶粘或选配防坠绳索及订制底座等多种安装方式可供用户选择,全方位保障用户设备安全平台服务Cat.1无线温振传感器VA530无缝链接必创科技监测平台BeeMonitor和BSC云平台系列产品,配置简单,访问便捷。用户可实时了解设备运行状态,实现故障预诊、健康状态定级和智能化维护。BSC云平台BeeMonitor监测平台系统架构为用户带来的价值提升设备运维效率,降低设备运维成本,减少维保人员劳动强度实现设备预测性维护,减少宕机时间,保障企业生产连续性故障智能预警,安全风险提前预知提醒,保障设备及人员安全,最大程度减少企业安全事故带来的损失帮助企业推进智能化升级,加快数智化管理进程必创科技多年深耕感知技术领域,始终坚持用品质赢得市场认可,力争为更多用户带来更高质量的产品与服务。
  • 【2023世界传感器大会】无源无线传感与智能微系统分场活动成功举办
    11月5日-7日,由河南省人民政府和中国科学技术协会主办的2023年世界传感器大会在河南郑州举行。中国移动研究院联合中国仪器仪表学会、无源物联网技术联合创新中心、清华大学-中国移动联合研究院承办了无源无线传感与智能微系统分场活动,来自政产学研用各界千余人次参会。会议邀请了加拿大工程院沈卫明院士、河南省科学技术协会王继芬副主席、郑州市政府陈立志副秘书长致辞。来自中国科学院、清华大学、北京大学武汉人工智能研究院、意大利国家应用物理研究所、电子科技大学、上海交通大学等多家国内外学术机构的专家学者发表主题演讲。沈卫明院士在致辞中阐述了智能微系统的发展趋势和尚存技术挑战,强调了智能微系统发展离不开产业通力合作,共同探索新场景新模式。河南省和郑州市政府领导在先后致辞中强调了学术交流是科学创新的重要源泉,倡导各界加强交流,启迪智慧,推动无源无线与智能微系统的发展。来自中国科学院的载人航天工程空间应用系统副总师钟红恩、意大利国家应用物理研究所主任Anna MIGNANI分享了航空航天、食品分析等场景下对于无源无线传感器的需求以及痛点问题,并提出了针对性的解决方案。清华大学仪器科学与技术研究所所长赵嘉昊介绍了智能微系统集成化关键技术和最近研究进展,提出智能微系统未来向微型化和系统化发展,基于先进封装技术,实现低功耗、高密度、异质异构集成。北京大学武汉人工智能研究院执行院长吴志强教授介绍了智能感知和数据智能在社会治理中的重要意义,通过人工智能、大数据、云计算、互联网等信息技术的加持,将会为每一座城市带来更加智能化的社会治理方式。电子科技大学李建教授介绍了无源标签通过集成感知能力、通信能力和标识能力,将在泛在感知、泛在智能的数字化场景中具有广阔应用前景。上海交通大学文玉梅教授介绍了基于RFID的无源自采能技术,通过采集环境中的射频能,转换为电能供传感器工作,实现了传感器终端的去电池化,解决了基于有线或电池的传感器终端存在的难以维护的行业痛点。最后,中国移动通信研究院物联网技术与应用研究所所长肖善鹏作了题为《无源无线智能微系统 构筑数实融合新时代》主题演讲,从无源化、无线化、集成化、智能化等方面,阐述了智能微系统变革的方向,并介绍了无源无线智能微系统融合创新实践。会上同步发布了《先进感知技术白皮书(1.0版)》,中国移动携手产业上下游共同探索传感前沿和传感融合最新的代表性技术,旨在更好的服务产业,加快先进感知技术的研究突破和落地应用。与会专家就智能微系统技术、产品及应用的未来发展进行了充分研讨,一致希望共同推动我国物联网传感器与智能微系统技术创新与应用落地,共建良好的产业发展生态,深度赋能产业数字化转型与升级,携手构筑数实融合新时代。
  • 振动试验入门——振动试验装置基础知识1
    振动试验目的满足产品的高性能、高品质、高可靠性要求。产品在其寿命周期内会受到各种各样的振动,必须在产品设计和制造阶段考虑振动的影响。特别是对大量制造的产品、不允许有故障的产品等。产品没有经过振动试验验证而制造,产生故障后,对顾客对厂家都会造成金钱损失,失去信任,比如汽车零部件行业等。振动试验装置系统是什么?振动试验装置系统主要包含以下几个部分,如下图。1 振动试验机(含冷却装置);2 功放;3 振动控制仪;4 加速度传感器(控制用)。振动控制仪中输入试验条件,产生振动波形,功放放大后,驱动振动试验机振动,加速度传感器感知加速度量级,反馈给振动控制仪,实现振动控制,振动试验机运行产生的热量,冷却装置对应冷却。振动试验实施时需要什么?※ 振动试验装置※ 振动试验条件※ 试验体(被试验品,含夹具)1 振动试验装置 根据试验条件、试验体形状质量等来选择振动试验装置,特别需要注意以下几个概念,如最大加振力、频率范围、最大加速度、最大速度、最大位移、最大搭载质量等。2 振动试验条件 各个产品有其各自适合的试验条件,有各种各样的规格进行选择,如GB、GJB、IEC、ISO、JIS、MIL等。特殊情况下,可根据测定产品的振动环境,决定其独自的试验条件。 需要注意,按照试验条件进行试验时,会产生过试验和欠试验现象。过试验就是实际试验条件超出要求试验条件(比如加速度量级变大),对试验体实施过剩试验,导致本来不该出现的故障反而发生。欠试验即实际试验条件低于要求试验条件(比如加速度量级变小),导致本来预测发生的故障没有被激发出来。所以,对试验条件或试验情况需要充分研究,根据数据,慢慢加以改善试验条件(学者研究)。3 试验体为了使试验体更好地固定在振动台面上,达到刚性连接,需要使用振动夹具。振动夹具需要满足完全传递振动,将振动试验机产生的振动完完全全地传递给试验体。然而这是一种理想要求,实际上夹具完全传递振动是很难的,特别是在500Hz以上的频率,所以需要对振动夹具进行不停的评价,不断地改良夹具(夹具设计)。在对振动夹具评价的同时,也需要注意加速度传感器的安装和安装位置的选择。安装位置不同,对试验内容有不同的影响,下文别章叙述。备注:图片和部分文字等来源于网络,如有侵权,请联系作者本人。
  • 《振动试验入门》系列文章介绍
    《振动试验基础》专辑推出后,得到了大家的好评,在此再次感谢各位的支持和帮助。订阅用户反映《振动试验基础》主要理论基础涉及较多,对振动试验装置方面说明较少,所以《振动试验入门》专辑经过酝酿,开始提笔,争取在今年内陆续推出。《振动试验入门》主要含以下三方面的内容:1、振动试验装置基础知识。涉及振动试验装置系统构成、动作原理和构造、主要专业用语、试验种类介绍等方面。2、振动试验装置导入安装注意事项。涉及装置防振、防噪音对策、均匀度和横纵比、夹具评价、加速度传感器安装等方面。3、其他相关事项。比如加速度传感器构造、许可偏心力矩等方面。适合学习对象为:1、对振动试验没有经验的或者有些许经验者;2、振动试验装置的销售人员;3、振动试验装置厂家新入员工等。特别是对振动试验不熟,或者对振动试验听都没有听过的人员,操作振动试验装置需要注意哪些事项,通过本专辑学习后,能有所理解。本专辑中也有一些比较难理解的公式,可能不知道其是如何推导而来,只要会活用即可,对试验实施没有影响,故不必深究。作者简介:薛峰,IMV株式会社上海代表处,技术经理。工学硕士,振动试验行业海外工作近20年,主要从事IMV振动试验系统的售前及售后工作,具有一定的振动试验测试能力和分析经验。独立运营原创微信公众号“振动试验学习笔记”,发表学习笔记近80篇,尽力普及振动试验基础,分享内容包括振动试验系统、振动试验、振动信号处理等知识,订阅用户已超过5000名。
  • 振动试验入门——振动试验装置基础知识2
    振动试验机的动作原理和构造电动型振动试验机的基本构造和音响的喇叭类似,只是喇叭的发音部分变成了金属制(铝合金或镁合金)的动圈,动圈受力发生上下振动。(注意:本专栏内振动试验机都是指电动型振动试验机。)其原理是高中时学的左手定则,磁场中的导体通电产生力,可通过下式表示。B的产生利用右手法则,即电流流过导体,其四周产生磁场。励磁线圈内流经直流电流,形成磁场(下图中N、S表示)。振动台面和线圈(动圈)加工在一起,安装在该磁场中,需要注意的是在振动试验机的动圈里面通过的是交流电流,受到的力是有正负之分的。产生上下交变力,发生振动,即振动台面上下振动。当然,为了保持振动台面的垂直方向振动不偏移,还需要上下支撑机构。具体内部构造简单示意图如下。功放的目的和动作功放主要是将振动控制的振动信号进行放大,即提供电能量给振动发生机动作,电能量可通过功率电压乘以电流表示。比如,输出10KVA的功放,振动控制仪输入信号约3V10mA(30mVA),通过功放可放大为100V100A(10kVA)。功放的类型也多种多样,有模拟型,开关数字型等等,下表是其各自特点比较。振动控制仪的种类振动控制仪对安装在振动台面上的控制加速度传感器反馈来的加速度值(振动量级响应值)和目标值进行比较,进行振动的控制。响应值大了就降低振动控制仪的输出,响应值小就增大振动控制仪的输出,始终使振动台面加速度在目标值附近振动,满足振动试验精度要求。简单理解,其实内部控制很复杂,不仅仅只控制加速度值。其种类有很多,主要有以下几种,正弦波控制软件:正弦波加振,对振动幅值控制。随机波控制软件:随即波加振,对振动谱控制。冲击波控制软件:实现有限脉宽(约2秒以下)冲击各波形控制。波形再现控制软件:实现长时间波形控制。由上可知,波形不同,控制方法各异,需要专门的控制软件进行对应。以前以模拟振动控制仪为主流,最近随着数字电子技术的发展,数字振动控制仪得到普及,且价格也相对变得便宜很多。备注:图片和部分文字等来源于网络,如有侵权,请联系作者本人。
  • 振动试验基础:理论测试题
    以前,新进公司员工在经过本人7天的培训后,都要进行测试的,这是理论测试的一部分。比较的简单,如果测试成绩在85分以下的话(点击此处查看试题答案),基本上都是要被部长约谈的。一、选择题(1题5分,闭卷)1、电动型振动试验机的动作原理是( )① 第二牛顿定律② 弗莱明右手定则③ 弗莱明左手定则④ 法拉第法则⑤ 第3牛顿定律2、振动试验机的种类有机械型(式)、液压型(式)、电动型(式)等。现在,使用广泛最流行的是(a);低频率、单纯振动、基本上现在不使用了的是(b);50kN以上推力的话,设备价格比较便宜,但运行成本和维修费用比较高,上限频率相对电动型较低的是(c)。上面a、b、c的排列为( )① a机械式、b液压式、c电动式② a液压式、b电动式、c机械式③ a机械式、b电动式、c液压式④ a电动式、b机械式、c液压式⑤ a电动式、b液压式、c机械式3、下图正弦波,周期和频率为( )① 12秒、1/12Hz② 2秒、0.5Hz③ 1秒、1Hz④ 0.5秒、2Hz⑤ 1/12秒、12Hz4、下图中红圈部分的部件名称是( )① 动圈② 励磁线圈③ 消磁线圈④ 短路环(铜)⑤ 上盖板5、加速度是速度对应时间的变化率,对于它的单位,1G =( )m/s²1gal =( )m/s²1G =( )gal加振力的单位,1kN =( )N1kgf =( )N1tonf =( )kN以上各括号中,正确的数字从上到下依次是( )① 9.81、0.001、981、1000、9.81、100② 9.81、0.01、981、1000、9.81、10③ 0.98、0.01、981、1000、9.81、10④ 0.98、0.001、981、100、9.81、10⑤ 9.81、0.01、98、1000、9.81、1006、下图为空冷电动型振动台的系统图,其中a、b、c的名字依次为( )① a冷却风机、b振动控制仪、c功放柜② a振动控制仪、b冷却风机、c功放柜③ a冷却风机、b功放柜、c振动控制仪④ a水冷单元、b振动控制仪、c功放柜⑤ a水冷单元、b功放柜、c振动控制仪7、振动试验中,压电式加速度传感器的固定方式,最理想的是( )① 用手拿着② 螺丝固定③ 双面胶固定④ 用蜡固定⑤ 用502等强力胶水固定8、振动试验规格中,①~⑤中不正确的( )① ISO:国际标准化机构② JIS:日本工业规格③ MIL:美国军标④ IEC:国际电气标准会议⑤ CCC:美国国内规格9、图中,各种各样的波形,对应的名称正确的是( )10、如下图是某压电式加速度传感器的出厂成绩书(日文)。从该成绩书判断,适合电动型振动台使用的最佳频率范围是( )① 1 kHz~2kHz② 0.1 kHz~20kHz③ 0.1 kHz~2kHz④ 0.1 kHz~50kHz⑤ 0.1 kHz~60kHz11、扫频方法一般有(a)&(b)两种方法。(a)的扫频速度单位是(c);(b)的扫频速度单位是(d)。abcd组合正确的是( )12、3dB对于振幅而言也就是(a)倍,-3dB针对PSD而言也就是(b)倍。a和b正确的数值是( )二、计算题(开卷,可参考培训资料;有小数点的场合,小数点后保留三位)问题1-1:10Hz~500Hz的频率范围内有几个octave(倍频程)?(3分)问题1-2:5Hz~1000Hz的频率范围内有几个decade(十倍频程)?(3分)问题2-1:频率33Hz,振动次数10⁷次的正弦定频试验,大概需要多少小时?(3分)问题2-2:10Hz~500Hz的频率范围,扫频速度1oct/min的单程扫频,振动次数大概是多少次?(3分)问题3:有下列随机试验的PSD两种,请计算各PSD的加速度rms值。(PSD1:3分,PSD2:5分)PSD1:PSD2:横轴(3~300、单位Hz)、纵轴(0~10、单位(m/s²)²/Hz)A(3,2)、B(60,2)、C(300,0.5)、O(3,0)、D(60,0)、E(300,0)注意:PSD谱中,梯形部分面积计算较难,有专门的计算公式;本体可近似利用梯形面积计算公式计算面积,不算错。问题4:压电式加速度传感器型号2353B,灵敏度0.200pC/(m/s²),传感器电容890pF,同轴电缆电容260pF,加速度650m/s²检测时,对应的输出电压是多少mV?(5分)问题5:准备使用① 40kN的振动试验机,各扩展台面的固定孔为10mm的螺孔;② 垂直扩展台台面尺寸600mm☓600mm,垂直加振时使用(质量40kg,共振频率2000Hz);③ 试验条件:正弦定频试验 频率f=10Hz 加速度10G;④ 试验体(含夹具)质量:45kg;⑤ 水平滑台台面尺寸600mm☓600mm质量(含动圈和牛头等质量):140kg,不用垂直扩展台。5-1 垂直振动时,需要多大的加振力(推力)?(3分)从推力上看,垂直时能否对应上面试验条件?(1分)5-2 水平加振时,需要多大的推力?(3分)从推力上看,水平时能否对应上面试验条件?(1分)5-3 该试验条件的位移是多少mm(o-p)?(4分)5-4 客户要求,固定夹具只能使用M12×30的螺钉,此时该振动试验机能否对应?(1分)若能对应请说明理由,若不能对应请提供解决方案。(2分)备注:图片和部分文字等来源于网络,如有侵权,请联系作者本人。
  • 苏州高新拟对东菱振动增资2.5亿元,以占据振动领域技术制高点
    11月20日,苏州新区高新技术产业股份有限公司(简称:苏州高新)发布关于对全资子公司苏州东菱振动试验仪器有限公司(简称:东菱振动)增资的公告。公告显示:为加大研发投资力度,加强产学研深度合作, 扩大生产经营规模,进一步提升品牌知名度及竞争力,苏州高新拟全部以现金方式对东菱振动增资24,957万元,增资价格为4.23元/注册资本份额,其中5,900万元计入注册资本,19,057万元计入资本公积;增资完成后,东菱振动的注册资本由2,100万元增至8,000万元。本次增资金额占苏州高新最近一期经审计净资产的3.57%;包含本次增资事项,经苏州高新第九届董事会第四十四次会议审议通过的对外投资总金额达到公司最近一期经审计净资产的10%。本次交易无需提交股东大会审议。本次交易不构成关联交易,也不构成重大资产重组。苏州新区在公告中表示:东菱振动业务范围涵盖高端装备制造、测试试验服务、软件开发和系统集成,本次增资能够为其扩大研发投入提供资金支持,进一步占据振动领域的技术制高点,增加战略新兴产业在公司营收和利润的占比,优化产业结构。 关于苏州东菱振动试验仪器有限公司成立日期:1996年8月8日企业类型:有限责任公司(非自然人投资或控股的法人独资)经营范围:振动、冲击、碰撞、功放(电源)、各类传感器、环境试验、疲劳试验设备及其测试仪器的开发、设计、制造、销售和维修服务;力学环境领域内测试技术保障(含技术咨询、技术服务);经营本企业自产产品及技术的出口业务和本企业所需的机械设备、零配件、原辅材料及技术的进口的业务(国家限定企业经营或禁止进出口的商品和技术除外)。(依法须经批准的项目,经相关部门批准后方可开展经营活动)主要股东:苏州高新持有东菱振动100%股权。财务状况:
  • 上海测振自主研发成功水下600米电涡流传感器
    近日,由上海测振自主研发的YDYT9800一体化电涡流传感器成功试用负600米深海作业。YDYT9800一体化电涡流传感器电涡流传感器能静态和动态地非接触、高线性度、高分辨力测量金属导体距探头表面的距离,它是一种非接触线性化计量工具,被广泛应用在机械、航空、汽车、电力、石油、化工、冶金等行业。其中,深海作业对电涡流传感器的壳体、探头、接头、电缆等都有非常高的品质要求。电涡流传感器在深海作业过程中,因所处环境较为恶劣,极有可能出现个类故障,造成经济损失甚至重大事故。上海测振的技术研发团队经多次试验,最终攻克超高水压密封、高腐蚀环境、复杂电磁干扰等难题,通过微型封装技术把前置器内置探头内部,完成探头与前置器融为一体化方案,可满足深海领域的使用环境要求。作为深海领域传感器的代表作,YDYT9800一体化电涡流传感器采用耐腐蚀、耐水解的壳体、探头、接头、电缆等,防水及密封性能强,可在恶劣环境下长期稳定工作,此外,还具有安装使用方便、非接触测量等优势,是一种高性能、低成本的新型电涡流位移传感器,可对厚度、速度、位移、转速、应力、表面温度、材料损伤等进行持续不间断的测量。当前传感器国产化需求加重,国内传感器正在趋向技术化、创新化、自主研发化路线发展。YDYT9800一体化电涡流传感器的成功研发,正表明了我国传感器技术在不断突破,同时也将助推我国深海工业领域的不断发展。关于上海测振:上海测振自动化仪器有限公司(简称“上海测振”)成立于2006年,专业从事研发和生产振动传感器、位移传感器、转速传感器以及工业监控保护仪器,具有自营进出口贸易权。主要经营的产品有电涡流位移传感器,振动传感器,转速传感器及其配套仪器仪表四大类,包括四十多个不同型号,其中YD9200A、CZ9300、YDYT9800、YD260、YD280为国内首次推出。产品覆盖军工、重工、科研、教育等各个领域,与中国航空工业集团、沈阳黎明航天发动机集团、大连华锐重工集团等知名企业建立了良好的合作关系。
  • 半导体所研制成功无源/半无源双模无线温湿度传感器
    中国科学院半导体研究所超晶格国家重点实验室研究员吴南健团队研制出一种低功耗无源/半无源双模无线温湿度传感器。相关研究成果在传感器领域学术期刊IEEE SENSORS JOURNAL上发表,该论文在2015年2月和3月连续入选为该期刊的前50热点论文。  无线温湿度传感器在高危环境监测、紧急救援、先进物流仓储系统、设备监测、建筑物监测和文物监测等领域具有非常广阔的应用前景,但无线传感器的功耗和成本严重限制了无线传感器网络的大规模应用。在国家自然科学基金和国家科技支撑项目的支持下,课题组研制出一种可与现有商用超高频RFID系统完全兼容的低成本低功耗无源/半无源双模无线温湿度传感器。传感器采用了自主研发的核心芯片,可实现高效率的电磁波能量采集、身份识别、温湿度测量、数据处理和无线通信的功能,传感器的最大工作距离可达6米。该传感器符合ISO18000-6C国际标准,可通过现有商用超高频RFID阅读器进行操作,还可支持扩展多种其他功能的传感器。使用这种传感器有望将无线传感器网络融合至现有的超高频RFID系统中,从而大幅降低无线传感器网络的应用成本,提升无线传感器网络的市场竞争力。
  • 振动试验基础:实践操作题
    振动试验的实践操作主要包括振动台的操作、加速度传感器的安装、试验体的安装、振动控制仪的操作等项目。每个环节都对试验结果有着一定的影响,不容有失。加强对工作人员的培训,尤其是培养其认真细心的工作态度,极为重要。所以,在新入员工理论知识考核合格前提下,再进行以上各操作培训(各操作1对1培训2星期+现场跟机培训1个月),主要培训内容集中在试验内容说明和振动控制仪的软件操作上,培训后,需要进行实践操作考核。一般考核是提供各种试验条件,抽签决定试验条件,需要新入社员在无负载情况下正确安装加速度传感器、切换振动台、使用振动控制仪使试验进行,且在试验前说明确认试验内容,并在试验后回答考官1-2个简单问题(主要是电脑操作,比如切换通道显示、显示试验的传递函数、显示失真度曲线等),最后完成试验报告书。下表是在考核过程中,评判的基准,供大家参考。表1 实践操作考核评判基准1 振动控制仪的操作、数据处理等2 振动试验机的操作等3 加速度传感器的安装等4 试验的说明等5 试验报告书等实践操作考核分两个阶段进行,第一阶段为常见简单试验条件,比如定频正弦、正弦扫频、随机试验、正弦半波冲击试验等;第二阶段为比较少见的试验条件,比如拍波试验、SOR、ROR等,可以安排在第一阶段考核半年后。以下为两个考核阶段的试验内容(以前振动试验基础的文章中都有介绍),供参考。第一阶段考核各种试验内容:第二阶段考核各种试验内容:考核的目的除了让工作人员掌握最基本的操作内容,主要是为了培养其认真仔细的工作态度,粗心大意的人员是没有办法适应此工作的。因为振动试验考虑的因素实在是太多太多,涉及到方方面面,一个疏忽,试验即报警停止。特别是长时间的三综合试验,一旦由于细节出错,时间上、金钱上、工作上、客户的信赖性上都将产生不可弥补的问题。切记细心细心再细心!!!备注:图片和部分文字等来源于网络,如有侵权,请联系作者本人。
  • 《振动试验基础》系列文章介绍
    振动试验基础系列文章主要针对刚入行的振动试验人员,介绍振动试验的基础知识,主要内容有必要的数学和物理知识、振动试验的概要、振动试验设备系统构成、振动试验设备的选择、常见振动试验条件说明、理论和实践测试要求。希望通过本专辑文章的介绍,对初入行业者有一定的帮助。主要文章如下:01.振动试验基础1--必要的数学和物理知识102.振动试验基础1--必要的数学和物理知识203.振动试验基础2--什么是振动,振动的种类04.振动试验基础2--振动试验的几个用语05.振动试验基础2--电动型振动试验机的构成06.振动试验基础2--加速度传感器介绍07.振动试验基础3--振动试验机的选择及试验可否判断要素08.振动试验基础3--振动试验机的选择及试验可否判断要素 加振力计算(垂直、水平)09.振动试验基础4--试验条件内容介绍之正弦试验10.振动试验基础4--试验条件内容介绍之随机试验11.振动试验基础4--试验条件内容介绍之冲击试验12.振动试验基础4--试验条件内容介绍之特殊试验1 RSTD、SOS、SOR、ROR13. 振动试验基础4--试验条件内容介绍之特殊试验2 TWR、sinebeat、sineburst、非高斯随机试验14. 振动试验基础5 理论测试题15. 振动试验基础5 理论测试题参考答案16. 振动试验基础6 实践操作题作者简介:薛峰,IMV株式会社上海代表处,技术经理。工学硕士,振动试验行业海外工作近20年,主要从事IMV振动试验系统的售前及售后工作,具有一定的振动试验测试能力和分析经验。独立运营原创微信公众号“振动试验学习笔记”,发表学习笔记近80篇,尽力普及振动试验基础,分享内容包括振动试验系统、振动试验、振动信号处理等知识,订阅用户已超过5000名。
  • 振动试验内容介绍——正弦试验
    本文主要介绍典型的振动与冲击试验条件内容——正弦试验,希望初入者对其有一定的认识。典型振动与冲击试验分类正弦定频(spot)试验正弦扫频(sweep)试验扫频方式:直线扫频、对数扫频★直线扫频Vl =(f2-f1)/TVl:扫频速度(Hz/s)f2:扫描频率上限(Hz)f1:扫描频率下限(Hz) T:扫描时间(s)振动次数:C=f1・T+0.5V1・T2(回)(T≦(f2-f1)/ Vl )例:10Hz~1000Hz直线扫描、扫频速度100Hz/s、来回一次、扫频时间需要多少秒?去路 T=(1000-10)/100=9.9s来回 9.9×2=19.8秒★对数扫频R = Roct/T (二倍频)= [ log(f2/f1)/log2] /TR:扫频速度(oct/min)f2:扫描频率上限(Hz)f1:扫描频率下限(Hz) T:对数扫描时间(min)振动次数:C=60(f2-f1)/(ln2・R)回或者 R=Rdec/T(十倍频很少用到,不做叙述。)例:10Hz~1000Hz对数扫描、扫频速度2oct/min、来回一次、扫频时间需要多少秒?Roct= log(1000/10)/log2 = 2/log2 oct  去路 T=2/log2/2 = 1/log2 min来回 1/log2×2=6.645 分总结:以上试验条件内容加上振动方向、加速度传感器控制和检测通道数、试验体质量等信息,便构成了基本的正弦试验条件内容,从来通过试验内容来选择合适经济的振动台。正弦振动是振动试验的基础,在几十年前由于科学技术的落后,只能通过简单的正弦试验来进行,沿用至今。现今随着随机振动试验技术的成熟,大有被其代替的趋势。备注:图片和部分文字等来源于网络,如有侵权,请联系作者本人。
  • 无振动、更精确——Accurion主动隔振台
    Accurion主动隔振台是一款采用先进主动隔振技术的设备,专为满足高精度测量和高标准生产需求设计。这种隔振台可以有效地隔离和消除来自环境的各种振动,保证设备运行在最佳状态。以下为隔振系列产品,适合多种应用场景。选择Accurion主动隔振台,为您打造一个无振动、更精确的工作环境。工作原理 Accurion主动隔振台采用了压电式主动隔振技术,利用内置的高精度传感器实时捕捉环境中任何微小的振动,并通过先进的数字信号处理技术和高性能执行器快速生成反向振动抵消作用,从而实现实时、6个自由度的主动隔振。无论是对于精密实验室仪器还是对振动极其敏感的测量设备,它都能有效隔离振动,确保其在任何负载状况下都能维持超高位置稳定性及作业精度。应用行业Accurion主动隔振台广泛应用于多个行业,包括但不限于:生物科技和医疗设备:在进行细胞培养、显微成像等精细操作时,确保设备稳定是获取准确数据的前提。半导体制造:在芯片制造过程中,任何微小的振动都可能导致产品缺陷,使用主动隔振台可以显著提高产品质量。精密工程:在精密加工和组装操作中,振动控制是确保高质量成果的关键。仪器特点高性能隔振效果:通过主动控制技术,Accurion隔振台可以实现超过传统被动隔振技术的效果,大幅度提升稳定性,并且可以实现六个自由度主动隔振。易于集成和操作:设计简洁,易于安装和维护,用户界面友好,适合各种工作环境。广泛的适用范围:能够适应不同的工作环境和应用要求,并且拥有标准化产品和用户定制产品。 茂默科学力求解决行业内客户对科学仪器选型难、维护难的处境。欲了解更多关于Accurion主动隔振台的信息,Welcome to consult~
  • 传感器行业盛事——2022深圳国际传感器展暨高峰论坛6月于深圳国际会展中心启幕
    传感器行业盛事——2022深圳国际传感器展暨高峰论坛6月于深圳国际会展中心启幕传感器行业盛事深圳国际传感器技术与应用展览会暨高峰论坛(SENSOR EXPO)确定于2022年8月23-25日在全球最大会展中心深圳国际会展中心(宝安新馆)举行展会概况随着5G技术以及人工智能、物联网及其他智慧领域等高新技术产业的迅速崛起和高速发展,人类社会进入了一个万物互联的新时代,传感器作为感知与传导信息的核心组件,也成为了当下炙手可热的焦点。为推动新一代传感器技术在应用领域的创新实践和产业上下游之间的贸易交流,由广东智展展览有限公司牵头,联合国内外多家行业协会、机构、高校及媒体,于2022年8月23-25日在深圳国际会展中心举办2022深圳国际传感器技术与应用展览会暨高峰论坛(以下简称:SENSOR EXPO 2022)。展会重点展示各类传感器产品、原材料及元器件、设计与制造设备、传感系统集成模块、仪器仪表、终端应用等,进行产业链的融合展出,以“专业展览+主题论坛”的形式,为行业呈现一场精彩的传感器盛宴。2021深圳国际传感器展览会已于2021年9月27-29日在深圳会展中心成功举办,组委会广东智展展览有限公司联合深圳市传感器与智能化仪器仪表行业协会打造,展出面积达15,000平方米,汇集众多国内外知名企业,展会吸引了来自比利时、日本、韩国、美国,俄罗斯、德国等多个国家和台湾、香港等地区的专业观众累计15,000余人次参观采购, 60多个采购团。高起点立足大湾区,Sensor Expo2022将成为推动行业交流与技术应用的前沿阵地2020年,大湾区国家级高新技术企业总数突破两万家,位居全国之首。作为大湾区创新驱动的引擎,深圳前瞻布局5G、人工智能、集成电路、智能制造、无人机、生物医药等未来科技领域,并取得卓越成果,直接带动了传感器技术的研究与发展,并孕育了广阔的市场。SENSOR EXPO 2022聚焦传感器设计、制造与应用所涉及的材料、装备与技术,突出产品与技术应用,将成为推动中国传感器行业进行产品与技术展示、深入应用市场的前沿阵地。高规格SENSOR EXPO 2022将在全球最大的展馆举行SENSOR EXPO 2022选择在全球最大的会展中心-深圳国际会展中心(宝安新馆)举行,良好的硬件设施及服务,将为展会的品质提供更好的保证。作为全球超大型的会展中心,深圳国际会展中心地处粤港澳大湾区湾顶,地理位置优越,硬件设施先进,全馆5G覆盖,交通便利、配套完善,集海陆空铁轨五大交通优势。通往会展中心的地铁已正式开通,地铁口分别位于南、北登录大厅,为参展参观的人士带来了极大的便利。展馆同期将有汽车、新能源、智慧出行等多场下游展会举行,共享40多万平方米超大展会带来的蓬勃商机。高水平专业组展机构精心打造,凸显SENSOR EXPO2022专业品质展会主办方——智展展览为国际展览业协会UFI成员单位,荣膺2015年“中国十佳品牌组展商”、2018年“中国展览产业百强展览主办机构”殊荣,在工业类及科技类展会的品质管理和长远培育上经验丰富。主办方将整合传感器行业权威机构、科研院所、活跃媒体、重点企业,共同塑造SENSOR EXPO2022的专业品质。此外,主办方将充分深耕物联网、消费电子、智能汽车、自动化、仪器仪表、国防电子、航空航天、交通运输、农业水利、环境监测等多个应用领域,为供需双方挖掘潜在客户,创造商业机会。高质量SENSOR EXPO 2022聚焦传感器制造与应用,五大专题融合展出SENSOR EXPO 2022展会规划面积达20,000平方米,共分为五大专题展区。通过上下游产业链及关联模块的融合展出,能够全方位展示传感器行业各细分领域的技术与产品,让SENSOR EXPO2022真正成为传感器行业人士必须参加的交流盛宴。各类传感器展区压力传感器、光敏传感器、声音传感器、图像传感器、视觉传感器、温度传感器、称重传感器、重力传感器、生物传感器、无线传感器、变频功率传感器、电阻应变式传感器、压阻式传感器、热电阻传感器、电导传感器、激光传感器、霍尔传感器、加速度传感器、无线温度传感器、位移传感器;超声波测距传感器、雷达传感器、液位传感 器、真空度传感器、电容式物位传感器、锑电极酸度传感器、酸、碱、盐浓度传感器等;陶瓷传感器、薄膜传感器、厚膜传感器、集成传感器等;MEMS传感器、智能传感器等;传感器设计与制造设备、原材料及元器件展区封装与测试设备:传感器集成设备、各类封装设备、机械测试设备、电气测试设备、热力学测试设备、实验室设备等;原材料:半导体材料、金属材料、陶瓷材料、有机材料及其他材料等;元器件及配件:敏感元件、转换元件、连接器、陶瓷部件、 保护膜、光学元件、特种玻璃、变换电路和辅助电源;传感器ASIC、传感器IC接口、混合电路、LCD、密封壳体、 编码器、PCB电路板、精制螺栓、拉头材质、声波部件、温度计保护管、特种胶等配件等;传感器设计:传感器设计企业、科研院所、实验室等;传感器芯片、嵌入式系统及相关集成模块展区传感系统供应商和集成商、嵌入式软件和硬件企业、传感器芯片制造商、各类算法、通讯模块及云计算服务商、传感器AI技术服务商等;仪表仪器展区各类标准计量(量值传递)仪器、科学实验仪器、教学仪器、航空航天仪表、汽车仪表、矿用仪表、工业仪表、测试测量、变送器、流量计等;终端应用展区智慧城市、智慧医疗、物联网、机器人、消费电子(可穿戴、移动智能终端等)、智慧环境、智慧能源、智慧农业、汽车电子、智能家居、智能制造、人工智能、大数据、云计算、航空航天、工业自动化、电力等。高体验同期举办多场行业峰会及交流活动更好的商业体验,呈现更好的展出效果由中国电子元件行业协会敏感元器件与传感器分会、中国仪器仪表学会传感器分会指导,广东智展展览有限公司联合湖南省传感器产业促进会、广州市半导体协会、深圳市半导体行业协会、深圳市物联网智能技术应用协会、珠海市物联网行业协会、浙江省半导体行业协会、深圳市集成电路产业协会、《仪表技术与传感器》等国内行业权威组织、专家学者、重点企业,在展会同期重点打造主题论坛——2022深圳国际传感器技术与应用高峰论坛,围绕传感器研发领域“卡脖子”技术、未来发展趋势、应用场景等进行技术分享和观点交流。同时举办MEMS及智能传感器技术研讨会,境外采购商洽谈会,传感器新产品、新技术推广会,工程师沙龙活动,一对一供需对接会等30多场多层次的商业活动,进一步提升观展体验和参展效果。同时,SENSOR EXPO同期还有第20届深圳国际小电机及电机工业、磁性材料展览会,2022深圳国际线圈工业、电子变压器及绕线设备展览会,2022深圳国际粉末冶金、硬质合金及先进陶瓷展览会等相关工业类展会举行。参展费用标准展位光地(36㎡起租)外资企业RMB14800/12㎡RMB1200/㎡USD2600/12㎡注:双开口展位在原展位费基础上加收10%费用。展位配置说明每个标准展位提供如下基本设施:三面围板(转角位2面或1面)、一桌两椅、地毯满铺、两支射灯、220V电源插座,中英文公司楣板制作。(注:租用光地展位不含以上设施。)组委会联络处电话:020-29193588,020-29193589手机:18520254916(微信同号)传真:020-29193591E- mail:ex36035@126.com 官网网址:http://www.sensor-expo.com.cn/ 微信公众号:sensorexpoandsummit
  • 褚君浩:传感器,让我们的敏感神经更敏感
    褚君浩,中国科学院院士,红外物理学家、半导体物理和器件专家,中国科学院上海技术物理研究所研究员,东华大学理学院院长。他是我国培养的第一个红外物理博士,从20世纪70年代末开始,他就专注于红外探测器的研究,并与汤定元、徐世秋两位科学家研究了一种全新的半导体材料,创造性地提出了测算这种材料特性的公式,该公式最终以三位中国科学家的名字命名,被称为CXT公式,成为判断红外探测器新材料、新结构的参照标准。他的专著《窄禁带半导体物理学》,被国外20多个研究机构作为相关材料和器件研究的理论依据。  智能时代,传感器无处不在。传感器与计算机、通信被称为信息系统的三大支柱,成为衡量一个国家科技水平以及是否处在国际战略竞争制高点的一个重要标志。各种机器设备中的传感器就相当于人类的五官和神经系统,它们让机器能听、能闻、能看,从而更好地感知、学习和进化,为我们提供高精度、智能化的服务。传感器家族有哪些成员?它们能为我们提供怎样的服务?高性能传感器的市场长期被美国、日本、德国的企业占据,我国科学家如何才能在这一领域拼出一席之地?  简单来说,传感器就是用材料经过一定的设计,做成的一个器件,取代耳朵、鼻子、舌头、眼睛、皮肤的功能。它能够看得见、听得见,能够闻得出味道,能够感知到。它可以比人类的功能更强大,所以传感器要具有高性能。传感器具有的高性能,一般要超过人类的五官,能够听得到很远的声音,能够看得见红外光。  日常生活当中传感器非常多,最敏感的一个传感器大家可能没注意:你把手机靠近耳朵的时候,手机的屏幕就暗了,所以随便怎么碰耳朵,照样可以打电话,这就是手机传感器在起作用。手机里面传感器最多,而且都很小、很灵敏。现在传感器的发展趋势就是高精度、高灵敏、高速响应、高稳定性、高可靠性、微型化、柔性化、多功能集成化、数字化、智能化、无线通信化,另外还要绿色环保。  没有传感器就无法数字化  2019年,嫦娥四号探测器成功着陆在月球背面。嫦娥四号搭载了多种科学探测仪器,可以探测月球表面的地形地貌、月表物质的成分和月球表层的结构。嫦娥四号的着陆器上还安装了4个与月壤直接接触的温度计,可每900秒测量一次月壤的温度,这也是人类首次实现在月球背面对月壤温度进行原位测量。我们进入了一个智能化的时代,上至宇宙探索,下至日常生活,数字技术已经渗透到方方面面,农业测产、荒野探矿、太空探月都离不开传感器,传感器信息采集功能的重要性也因此越来越凸显。物联天下,传感先行,无论是“大数据”“人工智能”,还是“物联网”,其最重要的“基石”就是传感器技术。那么,传感器技术怎样进行数据的采集、存储、计算?  智能时代的最大特点就是智能化系统的运用。智能化系统有三大支柱:动态感知、智慧识别、自动反应控制。比如机器人能够把乒乓球打到,首先是动态感知,看到这个球怎么过来;其次要分析这个球会从哪里进来,这是智慧分析;然后它采取措施,打到这个球。智能化系统最后的出路就是推动人工智能、智慧地球、数字城市的建设。这个系统最大的核心就是数字化,因为只有数字化才能定量化、精准化、规律化、智慧化,最后促进数字经济的发展。  数字经济的“数字”从哪里来?就是靠传感器来的,所以传感器是大数据的源头。数据有两类:一类是文本大数据,另一类是物理大数据。物理大数据是靠传感器实时获得的,这类数据好多都是声、光等类型的,它们属于一个波动世界。这个波动世界里面的数据量特别大,一个波有振幅、有位相、有频率,还有偏振等等,再加上时间、空间等海量的大数据,就可以告诉我们好多信息,然后对这些信息进行分析。  传感器和物联网是智慧地球、智慧城市两个核心技术。智慧分析就是从大数据分析出一些我们所需要的信息。现在浙江省义乌市有一座大桥里面安装了好多传感器,通过传感器看它里面振动的应力波形,不同的车辆开过去波形都会有变化。如果有一天发现应力情况异常,就会报警。  传感器是支撑智能化最重要的“一条腿”。无线通信接收信号要靠传感器,通信卫星主要就是发射和接收,接收需要传感器,没有传感器,通信就中断了,后面的智能化更无法实现。可以说没有传感器,就没有智能时代;没有传感器,也没有信息化时代。  我国传感器技术与国外的差距及优势  一部智能手机中有20多个传感器,一部汽车更是有多达上百个各类传感器。无处不在的传感器,已经成为全世界最具发展潜力的高新技术产业。但是,目前全球2万多种传感器产品中,我国能生产的只有大约6000种,远远不能满足国内市场的需求。智能手机中,传感器几乎均为国外产品,每年我国各种中高端传感器进口占比高达80%,传感器芯片进口的占比甚至要达90%。我国传感器技术与国外的差距究竟在哪里?如何才能打开自己的一片天地?  传感器国内一般来说都能制造,在一般的应用上面也都适用,但是在高端应用、精细应用方面和国外有差距,这就要发扬工匠精神赶超世界一流。  我们也有自己的优势领域,有一本最有名的科学手册叫《LandoldtBoerstein》,这本科学手册,到现在已经有140年历史了,它每隔10年到15年要修订一次,我就是负责碲镉汞材料修订的作者负责人,因为在这个领域,我国科学家做的工作国际上认可,所以我们有这个资格来承担这项工作。  发展传感器,我国过去有一个弊端,就是买得到自己就不做了,但是红外探测器高端的买不到,就只能自己做,我们反而做出来了。其实在有些核心的关键领域还是要自立自强。我们现在好多企业,在红外传感器方面,水平不断地在提升。另外,要发展智能化,把芯片技术感受到的传感信息,智能化地分析处理,这就是当前传感器发展的趋势。  智能时代的“桥梁”  2019年4月15日,法国巴黎圣母院起火,考虑到空中投水可能造成建筑及文物损毁,法方派遣无人机捕获实时图像,为消防员实现精确定点扑救提供了重要支持。这其实得益于物联网技术的普及。互联网、物联网,一字之差,但两者截然不同。如果说,互联网是人们用来进行信息传播和共享的平台,那么,物联网就是“物物相连的互联网”,所不同的是,物联网是通过传感器、红外等各种感知设备,将信息传送到接收器,再通过互联网实现远程监视、自动报警、控制、诊断和维护。如今,物联网已经广泛应用在智慧城市、智慧医疗、智慧农业等众多领域,而传感器作为智能时代的“桥梁”,在各个领域智慧建设中已不可或缺。未来,传感器在智慧城市、智慧医疗、智慧农业等领域还能起到怎样的作用?  江苏无锡有一家公司,在公司每个区域里所有的转动部分都安装了传感器,这样在办公室里可以监控所有的电梯、马达是否正常。如果哪个地方不正常,控制室就亮黄灯了,马上就可以派人去修理。这就是智慧城市管理的一方面。  现在抑郁症很多,还有一些小孩患抑郁症,抑郁症当然有多种识别方法,也可以做成一个小的设备,定量分析患者的抑郁程度,这都是传感器信息获取分析的可能应用。如果我们人体里面都有传感器,比如口袋里放个心脏传感器,心电图随时可以拿到,如果一个人心脏有点不舒服了,跟医生打个电话,说我现在心脏不舒服,或者发条微信给他,这个是互联网技术的应用;但如果这个传感器的信号直接送到分析中心,分析中心就能够根据GPS定位知道人在什么位置,马上通知相关机构采取措施,这就是物联网技术应用。物联网技术在人类健康上面大有用处。  人类现在要进入智能时代,智能时代的最大特点就是智能化系统的运用,智能化系统非常重要的核心就是传感器,传感器就是我们的敏感神经。在智能时代的背景下,我们要努力打造敏感神经,通过科技创新手段不断提升信息传感水平,不断提升智慧分析水平,从而发展物联网、人工智能、智慧地球的事业,促进数字经济的发展和城市数字化转型,最终提升人们的生活水平。
  • 业界首发 – Hummingbird推出用于分析仪的 抗振性顺磁氧气传感器
    英国Crowborough,2015年10月26日 – Hummingbird Sensing Technology是医疗和工业市场中气体检测技术产品的领先制造商。近日,公司推出分析仪行业中首个Hummingbird Paracube Modus产品——全球首款具有高抗振性能的顺磁氧气传感器,专为集成到便携式分析仪中而设计。 Modus建立在Hummingbird成熟的Paracube平台基础上,将全球领先的磁动力顺磁氧气检测技术集成到了兼容RoHS标准的高度紧凑型传感器中,并且针对OEM集成进行了优化。该产品的面市具有标志性意义,率先为需要精确测量氧气的便携式分析应用开发出了可靠的非损耗性技术。 Hummingbird Sensing Technology公司市场部经理Martin Cox解释说:“我们的客户需要在运输过程或者频繁振动环境中仍能精确测量氧气的传感器。鉴于此,Hummingbird的工程师采用技术领先的创新性设计,并进行专项开发和整合以迎合具有挑战性的应用条件。大量测试结果显示,与标准顺磁测量池相比,Modus受振动影响可显著30倍。” Martin还补充道:“Hummingbird兼容RoHS标准的顺磁氧气传感器系列产品已广泛为世界一流的分析仪制造商所采用,Paracube Modus是对这一系列产品的进一步完善和扩展。” “Modus顺磁传感器性能优异且具备诸多特性,是用于替换作电化学传感器的新一代理想产品。老式的电化学传感器需要频繁进行更换,成本较高,而且不满足RoHS标准有关电子设备限制使用危险物质的要求。” “作为一种非损耗性替代产品,Hummingbird顺磁传感器具有很长的使用寿命。这样,用户就无需频繁更换测量池,也无需顾虑诸多因素而降低应用要求。这不仅保证了应用安全性,而且也大大降低了固定资产在整个寿命周期内的总持有成本。”关于Hummingbird Sensing Technology Hummingbird Sensing Technology坚信理解客户需求是开发有效气体传感器技术的唯一途径,因此25年来持续与客户保持紧密协作。这是我们始终走在世界传感器技术前列的秘笈。 我们用心倾听和了解客户需求,不断推陈出新,创新检测技术,以一贯的卓越性能、极佳可靠性和最合理的持有成本满足医疗和工业制造商的需求。 长期以来,我们不断探索以追求研发方面的极致,持续优化产品设计和制造工艺,凭借创新理念为客户提供一系列具有最佳系统集成性、灵活性、兼容性和可靠性的OEM氧气传感器。 Hummingbird在英国的生产基地经过ISO 9001认证,所有传感器均按最高质量标准制造并满足RoHS标准等各项法规要求,争做环保先锋。更多信息,请登录www.hummingbirdsensing.com
  • 振动试验基础:理论测试题参考答案
    一、选择题参考答案(一题5分,共60分,闭卷)二、计算题(开卷,可参考培训资料;有小数点的场合,小数点后保留三位)问题1-1:10Hz~500Hz的频率范围内有几个octave(倍频程)?(3分)解:问题1-2:5Hz~1000Hz的频率范围内有几个decade(十倍频程)?(3分)解:问题2-1:频率33Hz,振动次数10⁷次的正弦定频试验,大概需要多少小时?(3分)解:问题2-2:10Hz~500Hz的频率范围,扫频速度1oct/min的单程扫频,振动次数大概是多少次?(3分)解:这个计算值和ln2的取值有很大关系,若小数点后面多取几位,比如取ln2为0.6931时,次数变为42415.234次。实际中以振动控制仪中的计算为准。问题3:有下列随机试验的PSD两种,请计算各PSD的加速度rms值。(PSD1:3分,PSD2:5分)PSD1:解:PSD2:横轴(3~300、单位Hz)、纵轴(0~10、单位(m/s²)²/Hz)A(3,2)、B(60,2)、C(300,0.5)、O(3,0)、D(60,0)、E(300,0)解:① 长方形AODB面积S1② 梯形BCED面积S2这个梯形的面积不可以直线坐标系下的面积公式计算,因为是在对数坐标系下。用梯形面积计算公式计算的,数值有差别,也可算对。③问题4:压电式加速度传感器型号2353B,灵敏度0.200pC/(m/s²),传感器电容890pF,同轴电缆电容260pF,加速度650m/s²检测时,对应的输出电压是多少mV?(5分)解:可以思考一下,为什么同轴电缆的电容影响可以不考虑进去?问题5:准备使用① 40kN的振动试验机,各扩展台面的固定孔为10mm的螺孔;② 垂直扩展台台面尺寸600mm☓600mm,垂直加振时使用(质量40kg,共振频率2000Hz);③ 试验条件:正弦定频试验 频率f=10Hz 加速度10G;④ 试验体(含夹具)质量:45kg;⑤ 水平滑台台面尺寸600mm☓600mm质量(含动圈和牛头等质量):140kg,不用垂直扩展台。5-1 垂直振动时,需要多大的加振力(推力)?(3分)从推力上看,垂直时能否对应上面试验条件?(1分)解:在这里故意埋了个坑,细心的读者应该发现了,就是没有告知振动台动圈的质量。主要是增加记忆,希望读者在计算推力的时候一定要搞清楚动圈的质量,重中之重!需要查询设备的产品目录,得到动圈的质量。如果某公司产品目录中没有动圈质量或者设备式样书不告知客户动圈质量,采购设备时,这样的公司基本上可以不需要考虑。通过查询,可得到动圈质量为35kg,厂家不同,质量也不同。5-2 水平加振时,需要多大的推力?(3分)从推力上看,水平时能否对应上面试验条件?(1分)解:5-3 该试验条件的位移是多少mm(o-p)?(4分)解:上述计算结果,单位移(振幅)在24.87mm,为了避免试验中出现过位移报警,建议此试验在大位移(76mmp-p或100mmp-p)的振动台上进行。5-4 客户要求,固定夹具只能使用M12×30的螺钉,此时该振动试验机能否对应?(1分)若能对应请说明理由,若不能对应请提供解决方案。(2分)解:由于扩张台面都是φ10mm的固定螺孔,而固定夹具只能使用M12的螺钉,故固定螺钉和螺孔不能匹配,暂时无法进行试验。需要增加转接板,建议材质使用铝合金,根据夹具的图纸合理设计布局固定在台面上的通孔和固定试验体及夹具的螺孔。且转接板质量不能超过以下计算值的最小值。垂直加振时,转接板质量为x千克,则水平加振时,转接板质量为y千克,则由此可见,只要转接板质量满足194.789千克以下,就不会过载加振,实际应用中估计也就20kg就能满足了。当然,夹具设计中的避免共振点等问题,又是另外一个复杂问题,不再赘述。总结:对于参考答案中的公式和说明,如果都能看懂和更深一层理解的话,恭喜您,出师了!若一知半解的话,还需要继续努力哦!觉得太简单的,请绕道走!接下来还将提供一套实际操作的考试题,供大家参考学习,从而给《振动试验基础》来进行收尾,敬请期待!备注:图片和部分文字等来源于网络,如有侵权,请联系作者本人。
  • 船舶气象仪-一款有条不紊的微型气象传感器
    船舶气象仪-一款有条不紊的微型气象传感器#2022已更新【品牌型号:天合环境TH-Y6】雷雨大风天气对船舶航行安全会带来很大影响,船舶在大风浪区域航行,将出现较剧烈的摇荡运动、降速、航向不稳定,以及由此引起的其他操纵方面的困难,甚至出现难以预料的危险,而且大雨、暴雨会引起能见度下降,影响航行安全。一、产品简介山东天合环境科技有限公司作为专业研发生产销售微型气象仪的企业,一直致力于微型气象仪和气象环境解决方案推广应用。具有完整的生产链、实力雄厚的技术团队和全面的营销团队,我们研发生产的超声波风速风向仪、五要素微气象仪、六要素微气象仪和小型自动气象站等气象产品,已广泛应用到气象监测、城市环境监测、风力发电、航海船舶、航空机场、桥梁隧道等领域,客户遍布全国各地,并取得了良好的社会效益和经济效益。TH-Y6型六要素微气象仪原理为发射连续变频超声波信号,通过测量相对相位来检测风速风向。与传统的超声波风速风向仪相比,我司产品克服了对高精度计时器的需求,避免了因传感器启动延时、解调电路延时、温度变化而造成的测量不准问题。TH-Y6型六要素微气象仪创新性地将气象标准六参数(环境温度、相对湿度、风速、风向、大气压力、压电雨量)通过一个高集成度结构来实现,可实现户外气象参数24小时连续在线监测,通过数字量通讯接口将六项参数一次性输出给用户。二、产品特点1、顶盖隐藏式超声波探头,避免雨雪堆积的干扰,避免自然风遮挡2、原理为发射连续变频超声波信号,通过测量相对相位来检测风速风向3、风速、风向、温度、湿度、大气压力、压电雨量六要素一体式4、采用先进的传感技术,实时测量,无启动风速☆5、抗干扰能力强,具有看门狗电路,自动复位功能,保证系统稳定运行6、高集成度,无移动部件,零磨损7、免维护,无需现场校准8、采用ASA工程塑料室外应用常年不变色9、产品设计输出信号标配为RS485通讯接口(MODBUS协议);可选配232、USB、以太网接口,支持数据实时读取☆10、可选配无线传输模块,最小传输间隔1分钟11、探头为卡扣式设计,解决了运输、安装过程松动不准的问题☆三、技术参数1、风速:0~60m/s(±0.1m/s);2、风向:0~360°(±2°);3、空气温度:-40-60℃(±0.3℃);4、空气湿度:0-100%RH(±3%RH);5、大气压力:300-1100hpa(±0.25%);6、压电雨量:0-4mm/min(±4%)7、功率:1.08W8、生产企业具有ISO质量管理体系、环境管理体系和职业健康管理体系认证☆9、生产企业具有知识产权管理体系认证证书和计算机软件注册证书☆四、产品尺寸图五、产品结构图六、注意事项1.传感器水平周围1米半径无遮挡,避免水滴飞溅影响2.传感器安装位置应避开强机械振动源3.传感器安装上方应为开阔区域,雨滴应直接滴落至传感器,应免二次滴落和连续水流冲击
  • 振动台的三种试验及注意事项
    振动台的三种试验及注意事项振动试验台试验:正弦振动试验: 在规定的频率范围内,采用正弦信号,对被测样机进行振动的检测.随机振动试验: 在规定的频率范围内,采用所以频率成分同时激振,而且各个频率的输入振幅是随机改变的激振信号,对被测样机进行振动的检测。 冲击试验: 规定脉冲波形,在振动试验台上对被测样机进行冲击的检测。振动试验台注意事项:时间必须刚性地安装在试验台面上,否则会产生谐振和波形失真,影响试验结果,时间振动试验中不能拆卸。夹具要正确使用并保证确实固定,避免造成人员伤害及损伤设备试验中如果发生异常现象,赢停止试验避免设备损坏。系统在运行中切不可触摸传感器。工作时,不要把磁性或不宜接触磁性的物件(如手表等物)靠近你振动发生机为了让功率放大器模块和台体有充分的冷却时间,必须在切断信号以后,冷却7至10分钟后才可断开功率放大器漏电断路开关。不允许在关闭功放之前先关控制箱和微机电源,否则会造成对功放和振动台的冲击而损坏。
  • 我国振动和冲击测量领域首项国际标准通过:有了话语权
    由中国计量院起草的国际标准ISO/DIS16063-45“内建校准线圈振动传感器的在线校准方法”,近日全票通过了ISO(国际标准化组织)成员国表决,即将由ISO正式向全球发布,这是我国在振动和冲击测量领域主导完成的首项国际标准。该标准明确了内建校准线圈振动传感器的标准校准方法,为该类传感器的研制、生产和贸易提供了规范化、可操作的指引,不仅填补了国际在线振动校准方法标准的空白,也标志着我国在全球振动测量领域拥有了话语权。  据了解,ISO 16063系列标准是世界各国对于振动和冲击计量以及相关传感器校准的主要依据。此前,该系列标准都是由德国、美国、日本和丹麦等发达国家主导制定。在这些国际标准的支撑下,振动和冲击领域的高端测量仪器和校准产品几乎完全被国外厂家所垄断。为改变这一现状,中国计量院针对“振动传感器在线计量方法”开展了深入研究,并积极参与ISO振动和冲击计量领域“新校准技术标准体系”的起草制定工作。2012年,中国计量院被ISO/TC108指定主导起草“内建校准线圈振动传感器在线校准方法”的国际标准。  在“振动传感器在线计量方法研究”项目支持下,中国计量院成功建立了内建校准线圈式振动计量系统,并首次在国际上提出了内置校准线圈振动传感器的在线校准方法,解决了振动传感器在线校准和量值溯源难题,获得了国际振动测量领域同行的一致肯定。在此基础上,中国计量院按照ISO相关规定,经过4年的努力,主导完成了该国际标准的起草和修订。日前,该标准草案全票通过了国际标准草案(DIS)阶段成员国表决,并将跳过最终国际标准版草案(FDIS)阶段,作为国际标准由ISO向全球发布。  ISO16063-45的发布将为引导我国高端振动测量仪器和传感器的研发、提升产品质量档次,带领产品跟随国际标准“走出去”、参与高水平竞争提供基础,展现了中国计量院通过实施技术标准战略引领国家相关产业成功转型升级的实力与决心。
  • 洪佳旭/王后禹/何耀团队开发无线便携式泪液分析传感器,通过眼泪灵敏检测眼病
    眼泪是由泪腺分泌的,其在全身循环并接触到身体的各个器官和组织。眼泪含有蛋白质、多肽、脂质、代谢物和电解质,可以作为多种疾病的生物标志物,不仅包括眼部疾病(例如干眼综合症、角膜炎、夜盲症、急性结膜炎等),还包括系统性疾病(例如癌症、糖尿病、帕金森病、阿尔茨海默病、囊性纤维化和多发性硬化症等)。此外,与血液检测相比,泪液分析更加方便、无创,且患者耐受性好。因此,泪液分析已成为临床监测健康的常规检查。然而,现有的泪液分析方法面临着三大障碍:1)泪液中目标分子的浓度极低(通常在皮摩尔水平);2)可收集的泪液量很小(仅微升水平);3)同时检测多种生物标志物有困难。这些挑战不可避免地导致了不准确的诊断。此外,基于质谱和或免疫分析的方法通常需要大型分析实验室设备,这使得POCT即时检测变得困难。近日,复旦大学附属眼耳鼻喉科医院洪佳旭主任医师与苏州大学功能纳米与软物质研究院王后禹教授、何耀教授合作,在 Advanced Materials 期刊发表了题为:Framework Nucleic Acids Combined with 3D Hybridization Chain Reaction Amplifiers for Monitoring Multiple Human Tear Cytokines 的研究论文。该研究开发了一种无线便携式泪液分析传感器,仅需3mL泪液即可灵敏检测泪液中的干眼综合症(DES)相关的四种细胞因子(IFN-γ、IL-6、TNF-α、MMP-9),检出限低至0.1 pg/mL。该研究为开发个性化、准确诊断多种眼病的泪液传感器奠定了基础。在这项研究中,研究团队开发了一种无线便携式泪液分析传感器,可以对泪液中的四种细胞因子——干扰素-γ(IFN-γ)、白细胞介素-6(IL-6)、肿瘤坏死因子-α(TNF-α)和基质金属蛋白酶-9(MMP-9)进行灵敏的定量分析。这四种泪液细胞因子与干眼症(DES)密切相关。该传感器的检测策略基于DNA四面体框架(DTF)与三维杂交链反应(3D-HCR)放大器的偶联。最近,框架核酸使制造用于癌症诊断、药物递送、生物计算和智能治疗的多维有序纳米结构成为可能。此外,杂交链反应(HCR)提供了在各种环境中对分子信号进行多重、等温、无酶放大的解决方案,因此已被用于生物检测、原位成像和DNA纳米结构的构建。然而,其在泪液分析中的应用仍存在空白。在这项新研究中,研究团队利用DNA四面体框架(DTF)有效地捕获了具有可控多分支臂的3D-HCR产物。3D-HCR产物的组装由特定细胞因子触发,传统的1D-HCR具有不可控多分支臂,表现出相对较低的扩增效率,而3D-HCR产物显示出11.0倍的电化学信号增强。3D-HCR器件能够以100pg/mL、1pg/mL、1pg/mL和0.1pg/mL的检测限对MMP-9、IFN-γ、IL-6和TNF-α进行灵敏检测,且仅需3mL眼泪。研究团队使用所开发的传感器和商业ELISA试剂盒对临床干眼症(DES)样本进行的双盲测试显示,两者之间没有显著差异。与单一生物标志物诊断相比,基于多种生物标志物的这种传感器的诊断准确性提高了约16%。总的来说,该研究所开发的系统为泪液传感器提供了潜力,促进了各种眼病的创新诊断方法的开发,有望实现对各种眼病的个性化和准确诊断。长期以来,洪佳旭主任和何耀教授团队围绕角膜病的关键临床问题展开攻关,相关药物和器械研发均已推进至临床研究阶段,建立了良好的“临床-科研-转化”协作范式。
  • 工业融合,传感互联|第二届传感器与工业互联网研讨会成功召开
    仪器信息网讯 2023年11月11-12日,第二届传感器与应用技术大会在深圳光明区云谷国际会议中心成功举办。本届大会由由深圳市光明区和中国传感器与物联网产业联盟联合主办,吸引了国内外领先传感器企业参与,并组织了多场先进传感器技术和应用会议,聚焦储能、工业、医疗等应用方向。会议现场12日上午,第二届传感器与工业互联网研讨会在深圳光明区云谷国际会议中心成功召开。本届研讨会吸引了国内外领先传感器企业参与,汇集国内外工业互联网解决方案、应用端及传感器头部企业,围绕工业互联网应用场景、部署价值、市场发展及未来趋势等主题进行产业探讨。报告人:西门子四方维亚太区总经理 洪子伦报告题目:产品数智化的新机遇数字设计资产是否能够更精准地找到潜在客户?如何消除潜在客户设计采用的障碍?面对这些问题,四方维提供了从PDFs到数字孪生,在线、互动和数字设计资产的解决方案。洪子伦表示,任何设计都需要BOM上每个组件的原理图符号、PCB焊垫和3D模型支持,四方维支持25+PCB设计工具和30+CAD工具。数字化+商业化将加速对外推广工作,而四方维提供了前所未有的有关数百万工程师与采购人士的元器件采用实时情报,提升元器件销售转换,助力客户实现终端触达、业务出海。报告人:浙江中控自动化仪表有限公司总工程师/副总经理 俞利明报告题目:“E 网到底”——数字化仪表解决方案当前智能工厂建设中,现场仪表面临诸多痛点:非智能仪表普遍存在,大大降低了全厂智能化水平;HART、FF智能仪表,通讯速度太慢,难以实现高端应用;仪表种类繁多,由众多不同的供应商提供,难以统一管理;仪表维护成本高,现场维护耗时长,效率低;仪表在线参数和报警,缺乏有效监控手段;仪表资产台账,无法自动动态更新;手操器,独家进口,价格昂贵,操作记录难以追溯。因此,当前智能仪表研究方向主要为,全生命周期数据管理的智能仪表;仪表对外部工况的自适应、自学习、自调整技术;高灵敏感知、探测技术;仪表的远程升级及回溯功能;传感层数据安全与功能的安全技术;基于人工智能的高精度测量方法;基于大数据分析的预测性维护功能;仪表本体软硬件诊断技术;仪表虚拟化技术 (场景仿真);基于低功耗的高速通讯技术等。基于此,俞利明介绍了中控技术的APL总线仪表及智能仪表管理平台和中控自动化仪表业务情况。报告人:TE Connectivity传感器事业部亚太区业务拓展负责人 郑婷婷报告题目:智能传感技术助力工业高质量发展TE Connectivity致力于智能/高效/高性能的传感器解决方案,帮助客户实现从概念到产品的转化。郑婷婷表示,工业物联网与传感器的发展相辅相成,传感器是工业物联网发展的基础和关键,工业物联网发展的不同阶段和不同目标,离不开传感器的广泛应用。与此同时,工业物联网也对传感器的发展提出更高要求,给它未来的创新带来驱动力。报告中,郑婷婷介绍了TE解决方案在状生产流程控制、电力工业、城燃管网、风电、液冷、氢能源、轨交等领域的监测应用。报告人:龙元集团总裁助理/龙元天册总经理 王萍报告题目:数字工业赋能CDI绿色双碳百园计划《巴黎协定》提出世界须在2030年前将碳排放减少四成,将全球变暖限制在1.5°C的目标。中国的二氧化碳排放占全球比重为27%,中国的温室气体排放占全球33%左右,中国实现“3060”降碳目标就能使全球升温减少了0.2-0.3度。国家主席习近平在第七十五届联合国大会一般性辩论上发表重要讲话,我国将提高国际自主贡献力度,二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和。我国各类工业园区的碳排放量约占全国碳排放的31%,工业领域是我国能源消耗与碳排放的重要领域,约占70%。产业园区作为工业发展的主要载体,是践行国家“双碳”战略的重要应用场景。建设“绿色双碳园区”是我国绿色低碳转型、落实“双碳”目标的必经之路。在此背景下,8月3日,第四届CDI开发区创新发展大会上,“CDI绿色双碳百园计划”重磅启动。王萍在报告中详细介绍了该计划的情况,并呼吁加入该计划。报告人:西安中星测控有限公司董事长 谷荣祥报告题目:高端智能传感器提升工业物联网价值据了解,西安中星测控有限公司已成为中国乃至全球知名的各种智能传感器专业制造商及物联网(智慧城市/智能制造)综合解决方案提供商。报告开始,谷荣祥以一则短视频展现了中星测控的风采,并表示,物联网的到来为我们的工作和生活带来了无法想象的巨大改变,智能制造、智慧城市正在一步步实现。报告中,谷荣祥介绍了工业物联网智能传感器的基本要求、中国原创MCS高端工业压力传感器、中星测控公司振动/温度/压力复合传感器的工业物联网应用以及无线蓝牙温度/压力传感器在空调制冷系统中的节能应用。报告人:西门子数字化工业软件集团创新中心技术总监 袁晓舟报告题目:数字孪生-赋能传感器与物联网全产业链数字化企业融合真实世界与数字世界。实现面向产品与生产的持续闭环优化。西门子的数字孪生产品可以实现在数字世界中设计、仿真、验证产品,包括机械、多物理场、电子与软件的管理;在数字世界里规划、仿真、预测和优化生产,以及PLC代码的生成与虚拟调试等功能,并指导企业实现高效、安全地运行生产。从芯片、到系统、到生态,西门子为半导体(传感器) 行业提供全面的数字孪生。
  • 全球振动试验设备制造业技术水平分析
    行业发展历史及技术水平  随着科技发展对工业产品高速化、智能化、大功率化等的要求不断提高,产品的结构越来越复杂、精度越来越高,相应地振动试验设备及环境与可靠性试验的作用和地位也更加重要。  1、国外振动试验设备与环境试验行业的发展历史及技术水平  国外振动试验设备制造业源起于二次世界大战前的三十年代。欧美发达国家根据一战期间军事装备的故障情况,提出了有针对性的大量模拟环境条件的试验方法,振动试验是其中重要的试验方法之一。二战后的六、七十年代,振动试验技术及振动试验设备得到了空前的发展,以美国军用标准系列(MIL)为例:近二十年来,该系列标准已将振动试验技术的关注点从单一环境应力、单轴单激励试验方法,转向多环境应力、多轴多激励试验方法 同时,各种试验方法从单一为军事工业服务逐步转向全面为各行业产品服务,促进了民用行业和国民经济的高速发展。  目前国外在环境与可靠性试验方面,除大量使用电动振动试验系统外,已广泛使用三轴同振振动试验系统(电动台或液压台)、三轴六自由度多台激励系统(电动台或液压台)、单轴多台并激系统(电动台或液压台)。在欧美发达国家的军事工业产品及高技术产品研发过程中,试验技术、试验方法是其绝密资料之一。资料显示,自上世纪九十年代初,美国在航天飞机的研发过程中便已应用了多轴多激励的振动试验技术。目前国外在航空航天和汽车制造等行业,还广泛运用振动带扭转、离心机带振动台复合运动试验设备 在研究建筑、桥梁、核电站设备抗震方面使用大型液压振动台(大位移、大负载、三轴六自由度系统)等。  随着环境试验技术的发展,国外已从单一的振动试验发展为多种环境条件的综合试验,此外,基于激发产品故障的新型试验设备高加速寿命试验和应力筛选系统也已广泛应用于电子、汽车、仪器设备、航空航天等领域。  2、我国振动试验设备与环境试验服务行业发展历史及技术水平  我国振动试验设备制造业起步于上世纪五十年代末六十年代初。随着国内大规模工业建设的兴起,引发了对振动试验设备的需求。振动试验设备制造行业的发展,与国内其他现代工业一样,经历了仿制、引进、消化、吸收、自主创新的不同阶段。由于欧美发达国家对我国振动试验技术、振动试验设备采取了较为严格的管制措施,使得产品试验需求长期得不到满足,严重影响了我国装备工业现代化的进程。1962年,本公司的业务前身苏州试验仪器厂成功研制了企业第一台电动振动台产品后,经过五十年的发展,已完成了从98N到392kN全系列电动振动试验设备及其他力学环境试验设备,为我国振动试验设备行业的发展做出了巨大贡献。  经过五十多年的发展,我国电动振动试验设备制造技术已日臻成熟和完善,除了能满足国内市场的需求外,还有部分产品出口满足国际市场的需求。但是,由于我国的振动试验设备制造行业起步晚、起点低,与欧美发达国家相比,目前仍有较大的差距。这些差距主要表现在多应力集成的大型试验系统研发能力不足,以及多应力、多轴多激励复杂试验技术的研究投入较少等。因此在高端产品领域,如多应力复合、多轴多激励等试验设备,目前国内的需求还主要依赖进口产品。此外,在液压振动台领域,由于其生产工艺较为复杂、资本投入金额较大,目前国内厂商液压振动台的生产水平相对落后。  在环境与可靠性试验方面,我国相关领域的实验室目前已可以从事环境与可靠性领域的主要试验检测项目,但在试验方法及试验技术的研究上,与国外相比仍存在一定差距。比如,为避免装备在结构最低共振频率上过试验或欠试验,国外通行的试验方法需在振动台、夹具、试件中间安装动态力传感器以将振动台的运动由力传感器反馈控制,以再现外场实测的界面力,而目前国内振动试验中较少采用此试验方法。我国环境与可靠性试验行业对于试验方法及试验技术的持续研究和改进,对于提升我国工业产品的环境适应性与性能可靠性水平至关重要。
  • 监测机器微小振动的图像动态,保障机器的正常运行!
    众所周知,任何机器的运转都会产生振动,有些振动代表运行正常,而有些振动则表示故障的初始信号。在预测维护领域,检测振动特征是诊断过程的关键因素,通过振动检测可以确定并缓解问题,以免发生更严重的事件。今天,小菲就给大家介绍下通过感应、放大和测量细微运动,使用户可以看到工厂资产(例如机器)上的振动特征,保障机器的正常运行。传统检测费时费力,停机成本高昂传统检测机器震动的方法是在机器上部署有线传感器(例如接触式加速计)监视出现的振动。在从传感器获取数据后,对该数据进行工作振型分析,以呈现机器运动的动画模型,从而使振动模式可视化。但是据RDI Technologies(美国田纳西州诺克斯维尔)的创始人和CEOJeff Hay博士称,该技术不仅需要花时间从多个点处采集测量数据,而且还需要能接触机器。在机器不便接触或根本接触不到时(机器前方有重重障碍或玻璃),该技术往往没有使用的可能性。另外,传统的接触式测量在安装加速计时经常需要机器停止运行,致使产生因停工而带来的高昂成本。为此,RDI Technologies的工程师开发出了一款名为Iris M的非接触式视频处理系统,该系统使用FLIR机器视觉相机感应、放大和测量机器引起的细微振动,消除了使用早期技术本身固有的缺陷。Iris M系统使用装在Vanguard三脚架上的FLIR 2.3Mpixel Grasshoppper3相机,此相机以默认分辨率为1920x1050、速度为120帧/秒的规格获取单色图像数据。从相机获取的数据将通过USB 3.0接口传输到平板电脑上,在此使用公司专用软件进行分析,使用户可以看到工厂资产(例如机器)上的振动特征。选择FLIR机器视觉相机的原因在Iris M系统中,FLIR机器视觉相机相当于数据获取的设备,它收集视频图像,然后从中提取和分析运动。FLIR 2.3Mpixel Grasshoppper3 GS3-U3-23S6M-C相机装在Vanguard三脚架上,以默认分辨率为1920x1050、速度为120 帧/秒的规格获取单色图像数据。 获取后的数据会通过防脱落电缆经USB 3.0接口从相机传输到Getac F110或Microsoft Surface Book的平板电脑上。“然后电脑软件Motion Amplification的专用视频处理算法会使机器振动可视化。它将逐帧分析每幅图像的像素,确定场景中哪些部分在移动。接下来,它将场景中所有运动振幅的幅度更改放大至肉眼可见的程度,从而加强对引起任何振动的组件之间的理解,”Hay 博士说道。通过使用电脑上运行的图形用户界面,用户可以选择图像的某一部分进行下一步分析。该系统软件将显示与这些区域关联或与时间相关的强度数据。然后可以使用各种数学函数(例如快速傅里叶变换,又称 FFT),将与时间相关的强度数据集转换为与频率相关的强度数据。随后将向用户呈现场景所选部分不同频率的未放大振幅和振动阶段。Iris M系统灵敏度高,可推广更多行业自从2016年第3季度发布以来,Iris M系统已经改变了行业内人士使用机器监控观察振动的方式。该系统不仅易于使用,还可反馈给用户可见的、简单明了的视频图像,以便用户更好地了解设备运行状况。据Hay博士称,选择FLIR Grasshopper相机已成为该系统大获成功的一个关键性原因。该相机具有12 位动态范围,可以捕获图像中亮光照射和黑暗区域之间像素强度的细微差别,使该系统软件相比于其他软件能够提取更详细的变化情况。Grasshopper相机系列将CCD和CMOS技术与Point Grey的专门技术相结合,实现了高性能、高质量的成像。但同样重要的是Motion Amplification算法本身, “得益于这套独特的算法,Iris 在测量位移方面比传统基于图像的测量工具要大约灵敏100倍。另外,在必要时,Iris M能够直接从图像点测量,可用于量化运动的位移,而不必通过解释该点测量来确定运动种类和呈现的错误,”他说。 这种技术的另一大好处就是数据反馈的速度和数据的详细程度。与传统的接触式测量系统不同,它还可以扩展,因为可以同时测量相机视野内的所有资产振动。另外,它还使自己成为技术人员和非技术人员用户之间良好的沟通工具,因为任何资产的任何问题根源都可直接在视频中看到。新系统已在各种实用应用中部署,除执行对工业资产(例如机器)的状态监控外,Iris M系统也可用于分析桥梁、建筑和相似结构的结构完整性。此外,它还可以用于生物医学监控应用,以评估个体呼吸作用。
  • 恭喜重庆地质仪器厂选用爱佩品牌模拟运输振动台
    恭喜重庆地质仪器厂选用爱佩品牌模拟运输振动台壹台,型号:AP-ZD-300,签定日期2015年12月03日,送货地址位于:重庆市沙坪坝区先锋街2号。业务负责人:李冬梅;电话:86-0769-81015055 手机:13316686114;全国服务热线:400-6727-800。重庆地质仪器厂是1969年为响应党中央关于加强三线建设的号召,由北京地质仪器厂、上海地质仪器厂与原重庆地校留守处的部分职工内迁组成的一个企业,工厂原属地矿部(国土资源部)现属为国机集团下的中国地质装备总公司领导,生产地球物理勘探仪器的专业生产企业,性质为全民所有制。重庆地质仪器厂主要从事地质勘探仪器的生产、开发、经营,兼营数字仪表、环保仪器、汽车电器及电子仪器产品和社会有关机械电子一体化产品。面向全国找矿、工程勘探、环境监测,地震预报,寻找地下水源等方面的产品和服务,属于高科技产品生产企业。2001年通过ISO9001质量体系认证,2010年7月获重庆市高新技术企业认定,重庆市沙坪坝区“企业研发中心认定。企业位于重庆市沙坪坝区先锋街2号,是重庆市园林式企业,工厂全厂占地面积18.3万平米,其中生产用地约4.5万平米。企业在2010年被评为重庆市精神文明单位。重庆地质仪器厂主要专业产品有六大系列:1、地震仪器系列产品:DZQ48/24/12等各种型号的地震仪器,高分辨率地震仪,数字深层地震仪等。主要用于:水、工、环的,地质基础调查及找矿。2、测井仪器系列主要产品有:综合数字测井系统、系统轻便工程测井,绞车控制器等各种测井产品、各种用途探管,测斜仪系列产品。主要用于:煤田数字测井,水文工程数字测井,固体金属矿测井,工程测井等。3、电法仪器系列:其中又分为直流电法和交流电法,二大系列产品。主要产品有DZD6—6A多功能直流电法仪,DUK-2A高密度电法测量系统,工程瞬变电磁测量系统等各种型号产品,用于寻找地下水及水、工、环地质勘察,矿产资源勘察等。4、放射性仪器系列有FD-803A,NP-4 γ射线能谱仪等多种系列产品,用于找矿及环境监测等。5、地震传感器系列主要产品有低频系列检波器,大振级检波器,井中三分量检波器和各种中高频检波器等。主要用于深部的地质勘探、人工地震监测、各种工程振动监测和道路、建筑等安评检测等。6、社会产品:汽车、摩托车电喇叭,以及承揽表面加工业务。爱佩品牌模拟运输振动台符合美国及欧洲运输标准及 EN、ANSI、UL、ASTM、ISTA国际运输标准。试品装夹采用导轨式,操作方便、安全、 数字仪表显示振动频率、 同步静噪皮带传动,噪声极低、机台底座采用重型槽钢配减振胶垫,安装方便,运行平稳,无需安装地脚螺丝。重庆地质仪器厂选用的模拟运输振动试验台更多优势特点参数价格请联系爱佩公司客服人员.
  • 这个光学低温恒温器太小了,还超低振动,量子光学实验必备!
    随着科学技术的发展,越来越多的研究人员希望在低温下进行量子光学实验,但却没有空间放置占用几立方米宝贵实验室空间的大型低温恒温器。针对此问题,国际知名低温显微镜领域制造商attocube systems AG公司推出了全新一代立光学低温恒温器attoDRY800xs。attoDRY800xs将attoDRY800的革命性概念提升到了一个新的水平,成为量子光学实验中紧凑的平台。该平台可定制低温护罩,配备您想要的光学设置,集成到光学平板中。attoDRY800xs是有史以来个立的光学低温恒温器,低温样品空间地嵌入到一个无障碍的工作空间中。图1. 全新一代立光学低温恒温器attoDRY800xs。 根据典型配置,我们设计了几种标准真空罩和冷屏,它们在定位器、样品架、工作距离和目标方面进行了优化。图2为可配置的低温物镜兼容真空罩,该真空罩内可配置attocube有的低温消色差物镜以及纳米精度位移台。如果仍然不够,可以根据用户的技术要求和偏好定制桌面上方的任何内容。图2:低温物镜兼容真空罩。 尽管设计紧凑,但attoDRY800xs仍能提供出色的超低振动性。图3中激光干涉仪直接测量冷头位置的振动,垂直方向的峰间振动小于2纳米(3纳米),而在横向上低于10纳米(40纳米),带宽为200赫兹(1500赫兹)。图3. attoDRY800xs样品区域振动水平测试结果 紧凑的光学低温恒温器attoDRY800xs保留了原始attoDRY800的所有关键优势,例如类似的低振动性能、通过可定制的真空护罩实现的多功能性,以及自动温度控制、气体处理和远程控制。 因此,attoDRY800xs可以直接在其光学平板上建立一个立的实验,也可以将其放置在现有较大的光学台附近,光学元件之间进行光纤耦合。简而言之, attoDRY800xs为您的科学研究提供一个小型紧凑但功能依然强大的光学低温平台。 attoDRY800xs主要技术特点:☛ 只需要17英寸x28英寸的实验室空间☛ 光学面包架和闭式循环低温恒温器地结合在一起☛ 宽温度范围(3.8 K… 300 K)☛ 用户友好、多功能、模块化☛ 与低温消色差物镜兼容☛ 可定制的真空罩☛ 与典型光学桌的高度相同☛ 自动温度控制☛ 包含36根直流电线attoDRY800应用案例:1. InGaN量子点作为单光子源的提升与改进 虽然量子点通常被认为是单光子源的佳候选,但它们的实际性能在很大程度上取决于化学成分。在氮化物量子点的特殊情况下,一方面它们即使在温度高达350 K的情况下可以发射单光子,另一方面它们的发射会显著加宽。为了了解优化其性能的佳方法,Robert Taylor小组(英国牛津大学)对InGaN量子点的光致发光进行了广泛的研究,发现在非性平面上生长的量子点与性氮化物点相比,光谱扩散率降低,寿命显著缩短。由于在配备有ANPxyz101位移台的attoDRY800低温恒温器中进行了低温光致发光测量,这些发现得以实现。【参考】Robert A. Taylor, et al Decreased Fast Time Scale Spectral Diffusion of a Nonpolar InGaN Quantum Dot. ACS Photonics 2022, 9, 1, 275–281 2. 悬浮纳米颗粒的量子控制 attoDRY800不仅能够为量子光学实验提供一个无障碍的实验平台,而且还可以确保非常干净的高真空条件。Lukas Novotny(瑞士苏黎世ETH)团队出色地利用了这些特性,他们次在低温环境中光学悬浮介电纳米颗粒,并实现了对其运动的量子控制。由于在低温环境中抑制气体碰撞和黑体光子发射所提供的低水平的退相干,从而允许将粒子的运动反馈冷却到量子基态,从而实现了这些结果,反馈控制依赖于粒子位置的无腔光学测量,该测量接近海森堡关系的小值,在2倍以内。此外,量子研究的重要性以及Novotny在其中的作用在ETH董事会2021年的年度报告中有所体现。【参考】Lukas Novotny, et al Quantum control of a nanoparticle optically levitated in cryogenic free space, Nature, 595, 378–382 (2021) 3. 增强单光子量子密钥分配 按下按钮即可发射单光子的工程量子光源是量子通信协议的基本组件。为了大限度地提高量子密钥分发的预期安全密钥和通信距离,柏林理工大学(德国柏林)的Tobias Heindel团队开发了一些工具,以优化使用此类工程单光子发射器实现的量子密钥分发性能。利用二维时间滤波,可以优化预期的安全密钥以及通信距离。该小组在一个基本的量子密钥分发试验台上完成了他们的常规工作,该试验台包括一个量子点装置,该装置向一个四端口接收器发送单光子脉冲,分析飞行量子比特的化状态。单光子源安装在光学attoDRY800光学恒温器的冷台上,冷台与光学平台的集成为光学平台上的冷点提供了简单的解决方案。该团队的方法进一步证明了通过光子统计进行实时安全监控,这是量子通信安全认证的重要一步。【参考】Tobias Heindel, et al Tools for the performance optimization of single-photon quantum key distribution.npj Quantum Information , 6, 29 (2020) 4. 易于使用的单光子实验平台 有效地产生单个、不可区分的光子对于光学量子信息处理的发展至关重要。具体而言,按需创建单光子的探索仅限于某些类型的源和技术。为了实现这一目标,Quandela公司提供光学配件和先进的固态源设备,这些设备每秒可发射数百万个量子纯光子。将attocube的闭式循环低温恒温器attoDRY800与Quandela的半导体量子点发射器相结合,可为复杂的实验和协议提供可靠且易于使用的先进固态单光子源。通过这种稳健的设置,很容易使用单光子源按需生成零、一或两个光子的量子叠加加速芯片多光子实验,并证明该技术可用于大规模制造相同的源。【参考】J. C. Loredo, et al Generation of non-classical light in a photon-number superposition,Nature Photonics ,13, 803–808(2019) 5. 高压下的纳米量子传感器 压力会影响从行星内部的性质到量子力学相位之间的转换等现象。然而,在高压实验装置(如金刚石砧座单元)中产生的巨大应力梯度限制了大多数常规光谱学技术的应用。为了应对这一挑战,由三个小组(按字母顺序)立开发了一种新型纳米传感平台:Jean-Francois Roch小组(法国巴黎大学)、Sen Yang小组(中国香港中文大学)和Norman Yao小组(美国加州大学伯克利分校)。研究人员利用集成在砧座单元中的量子自旋缺陷,在端压力和温度下以衍射限的空间分辨率检测到了微小信号。为此,Norman Yao及其同事使用了台式集成闭合循环attoDRY800低温恒温器,这是快速控制金刚石砧座温度的理想平台,同时提供了大的样品室和自由光束通道。【参考】N.Y.Yao, et al Imaging stress and magnetism at high pressures using a nanoscale quantum sensor,Science 2019:366, 6471,1349-1354 6. 低温拉曼研究气相沉积的二维材料NiI2晶体磁学性质 范德瓦尔斯磁性材料的发现引起了材料科学和自旋电子学界的大关注。制备原子厚度以下的超薄磁性层是一项具有挑战性的工作。纳米科学中心的谢黎明研究员团队报道了气相沉积的NiI2范德华晶体,在SiO2/Si衬底上生长的二维NiI2薄片为5−40纳米,在六角氮化硼(h-BN)上可生长原子层厚度的晶体。随温度变化的拉曼光谱揭示了生长的二维NiI2晶体中的磁性相变。该研究工作使用attoDRY800光学低温恒温器进行了样品冷却,低温物镜(LT-APO/VIS/0.82)用于激光聚焦和信号采集。这项工作为外延二维磁性过渡金属卤化物提供了一种可行的方法,也为自旋电子器件提供了原子层厚度的材料。【参考】Liming XIE, et al Vapor Deposition of Magnetic Van der Waals NiI2 Crystals, ACS Nano 2020, 14, 8, 10544–10551. 7. 范德华异质结构中局域层间激子间的偶相互作用 虽然自由空间中的光子几乎没有相互作用,但物质可以调解它们之间的相互作用,从而产生光学非线性。这种单量子水平上的相互作用会导致现场光子排斥,对于基于光子的量子信息处理和实现光的强相互作用多体态至关重要。美国Ajit Srivastava课题组报道了异质双层MoSe2/WSe2中电场可调的局部化层间激子之间的排斥偶-偶相互作用。具有平面外非振荡偶矩的单个局部化激子的存在将二激发的能量增加约2 meV:大于发射线宽的一个数量,对应于约7 nm的偶间距离。样品被装入闭循环低温恒温器attoDRY800中,课题组自制了低温(~ 4K)显微镜进行PL测量。在较高的激发功率下,多激子络合物以较高的系统能量出现。该发现是朝着创建激子少体和多体态迈出的一步,例如范德华异质结构中具有自旋谷旋量的偶晶体。 【参考】Ajit Srivastava, et al Dipolar interactions between localized interlayer excitons in van der Waals heterostructures, Nature Materials, 19, 624–629(2020) 8. 单层WS2范德华异质结构腔中的光吸收 单层过渡金属二卤化物(TMD)中的激子控制着它们的光学响应并显示出由寿命限制的光−物质强相互作用。虽然各种方法已被应用于增强TMD中的光激子相互作用,但所达到的强度远远不足,并且尚未提供其潜在物理机制和基本限制的完整图片。西班牙Koppens课题组介绍了一种基于TMD的范德瓦尔斯异质结构腔,它提供了在超低激发功率下观察到的近100%激子吸收和激子复合物发射。低温恒温器attoDRY800为光谱吸收实验提供了不同的温度条件(4K-300K)。实验的结果与描述光的激子−空腔相互作用的量子理论框架完全一致。研究发现,辐射、非辐射和退相衰变率之间的微妙相互作用起着至关重要的作用,并揭示了二维系统中激子的普遍吸收定律。此增强型光−激子相互作用为研究激子相变和量子非线性提供了一个平台,为基于二维半导体的光电子器件提供了新的可能性。 【参考】Frank H. L. Koppens, et al Near-Unity Light Absorption in a Monolayer WS2 Van der Waals Heterostructure Cavity, Nano Lett. 2020, 20, 5, 3545–3552图4:低振动无液氦磁体与恒温器—attoDRY系列,超低振动是提供高分辨率与长时间稳定光谱的关键因素。
  • 振动试验机选择及试验可否判断的要素
    通过前文介绍,相信初入者对振动试验系统应该有一定了解。特别是电动式振动台推力有1~60tonf,针对试验条件和试验体,如何选择合适且经济的振动台进行试验?下面进行阐述。试验前,必须明确试验条件和要求。需要考虑的要素如下:※有没有试验规格※振动台式样规格※试验种类:正弦试验、随机试验、冲击试验、etc.※频率范围※加速度、速度大小※振幅(位移)大小※试验体的尺寸、质量、形状等※夹具的尺寸、质量、形状、共振点等※振动方向(垂直、水平、二轴同时振动、三轴同时振动)※是否和温度、湿度、高度(气压)、光照等条件复合试验※试验的控制点、检测点、控制误差范围等※其他特殊要求等试验规格介绍1.ISO(International Organization for Standard,国际标准化机构)2.CCC(China Compulsory Certificate System),GJB(国军标),GB(国标)3.MIL(Military Specifications and Standard,美军标)4.IEC(International Electro-technical Commission,国际电气标准会议)5.EN(European Norm)6.JIS(Japanese Industrial Standard,日本工业规格)7.各个公司内部规格BMW,TOYOTA, HONDA, SONY, SHARP, Panasonic。要读懂试验规格是一件很困难的事情,只能在实践中慢慢去理解,多请教,多学习。振动试验机的式样规格各个厂家的设备目录中记载有很多参数和规格,一般标准振动台以下几个参数比较重要,加振力:10kN、20kN、30kN、、、、、600kN最大正弦加速度:1000m/s2最大正弦速度:2m/s、2.5m/s最大位移:51mm、76mm、100mm使用频率范围:5Hz~3000Hz动圈质量:加振力不同,质量不同。这些规格参数代入前面的A、V、D、f四者之间的计算公式,即可以得到设备的交越频率和最大正弦能力特性曲线图(无负载)。再结合牛顿第二定律计算出各种负载下的最大加速度,继续使用上面的式子,可得到各种负载下的交越频率和能力特性曲线图。最大正弦能力特性曲线图(无负载情况):图中可以看出,电动振动台有三个工作区域,低频段对应位移区域,低中频段对应速度区域,中高频段对应加速度区域。或者说低频段受最大位移限制,低中频段受最大速度限制,中高频段受最大加速度限制。每个物理量对应频率变换点就是交越频率。因此,如果说5Hz的时候需要满足加速度500m/s2,或者1000Hz的时候满足位移50mmp-p,那就是外行话了。例题:某电动振动台使用频率范围5~2000Hz,最大位移51mmp-p,最大速度2m/s,最大加速度1000m/s2,请计算位移到速度,速度到加速度的两个交越频率,并试着画出该设备无负载最大能力特性曲线图。图中可以看出,25kg负载情况下,蓝线以下(含蓝线)的试验条件该设备都可以对应。超出蓝线对应的话,导致设备故障损坏。个人经验,振动台的损坏,一半以上都是过负载原因造成的,切记。试验条件的确认试验的种类:正弦试验、随机试验、冲击试验、etc。试验频率范围f加速度大小A、加振力F=∑mA(下节重点叙述)振幅(位移大小)D速度大小V1. 正弦定频试验的场合试验条件:频率10Hz 加速度10G半位移峰值D0-p = A0-p/(2πf)2 = 10×9.8/62.82 = 24.85mm全位移峰峰值49.70mm (注意半位移和全位移的倍数)一般振动台的全位移峰峰值有51mm、76mm、100mm,为了安全起见可以选76mm的设备。(请再计算一下速度的峰值。)注意:①控制仪输入f、A、D、V中的两个参数,会自动得出另外两个参数。4个量都不可以超过振动台式样规格。②扫频试验的时候取最大值。③正弦试验一般各个参数小于试验机的规格值即可,一般安全系数1.2~1.3。④以上计算都假定没有夹具和试验体的共振影响。2. 随机试验的场合加振力试验加振力rms≦随机额定rms(必要时需要试验PSD的等价频幅修正)速度3✖试验rms≦正弦波额定速度峰值位移3.5✖试验rms≦正弦波额定位移峰值☆☆☆加速度rms、速度rms、位移rms值的计算比较复杂,可以通过振动控制仪输入PSD值之后,自动得出数据。3. 冲击试验的场合加振力F= ∑mA∑m:总质量(动圈质量+夹具质量+ 试验体质量)速度≦正弦波额定速度峰值位移≦正弦波额定位移峰值☆☆☆速度、位移峰值的计算比较复杂,可以通过振动控制仪输入冲击脉宽和加速度之后,自动得出数据。规格标准不同,数值结果不同。IEC标准:MIL标准:试验体的尺寸、质量、形状、固定方式① 试验体直接固定动圈或垂直扩张台(垂直方向),水平滑台(水平方向),还是先固定在夹具上再固定在台面上?② 试验体尺寸有没有超出台面,有没有碰到其他地方(三综合恒温恒湿箱内壁等)?③ 各重心是否都在一直线上,重心是不是偏高?振动台台面的抗倾覆力矩是否在允许条件下?④ 固定螺栓全部固定好了?固定后是否会在振动时候倒下来?⑤ 夹具是不是要提前准备?⑥ 夹具共振点是多少?是不是在试验频率范围内?⑦ etc.。各种夹具的确认试验体固定在夹具上的位置和尺寸、夹具的共振点、夹具固定在振动台面上的间隔( □100mm,φ50mm,φ100mm ),螺钉大小( M6,M8,M10,M12等),公制(mm)还是英制(in.)?下面介绍一些常见的试验夹具。垂直扩张台面(Vertical Table):水平滑台(Slip Table): 其他夹具:总结一次振动试验的顺利完成需要考虑的要素很多,以上只是列举了一些基本要素。此外还涉及到振动控制仪的设置、控制点的位置、避免夹具的共振点、加速度传感器的固定方式、试验体的m(质量)k(弹性系数)c(阻尼)、振动台的能力(动圈特性、功放性能等)等等要素。总之,记住一句话“振动的水很深!”。只能在不断地工作和学习中慢慢积累。备注:图片和部分文字等来源于网络,如有侵权,请联系作者本人。
  • 传感器阵列以最高分辨率记录脑信号 为中长期脑机接口研究提供新的可能
    一个由工程师、外科医生和医学研究人员组成的团队发布了来自人类和大鼠的数据,证明一种新的大脑传感器阵列可直接从人脑表面记录电信号,并实现破纪录的细节处理。该大脑传感器具有密集网格,由1024或2048个嵌入式皮质电图(ECoG)传感器组成。如果获准用于临床,传感器将直接从大脑皮层表面为外科医生提供大脑信号信息,且分辨率比目前可用的高100倍。该论文于19日发表在《科学转化医学》杂志上。  人的大脑总是在运动,例如,随着每一次心跳,大脑会随着流过它脉动的血液而发生活动。从直接放置在大脑表面的传感器网格记录大脑活动,已经被外科医生普遍用作一种工具,用来切除脑肿瘤和治疗对药物或其他药物无反应的癫痫症。  此次新研究提供了广泛的同行评审数据,证明具有1024或2048个传感器的网格可用于可靠地记录和处理直接来自人类和大鼠大脑表面的电信号。相比之下,当今手术中最常用的ECoG网格通常具有16到64个传感器。  能够以如此高分辨率记录脑信号,可提高外科医生尽可能多地切除脑肿瘤的能力,同时最大限度地减少对健康脑组织的损害。对于癫痫,更高分辨率的脑信号记录能力可提高外科医生精确识别癫痫发作起源的大脑区域的能力,这样就可在不接触附近未参与癫痫发作的大脑区域的情况下移除这些区域。通过这种方式,这些高分辨率网格可以增强正常功能脑组织的保存。  研究团队表示,此次能以更高的分辨率记录大脑信号,归因于他们能够将单个传感器放置得更靠近彼此,而不会在附近的传感器之间产生干扰。例如,该团队的3厘米×3厘米网格和1024个传感器直接记录了19名志愿者的脑组织信号。在这种网格配置中,传感器彼此相距一毫米。相比之下,已经批准用于临床的ECoG网格通常具有相距1厘米的传感器。这为新网格提供了每单位面积100个传感器,而临床使用的网格每单位面积1个传感器。  该项目由加州大学圣地亚哥分校雅各布斯工程学院领导,团队其他成员来自马萨诸塞州总医院和俄勒冈健康与科学大学。该团队正在研究这些高分辨率ECoG网格的无线版本,可用于对顽固性癫痫患者进行长达30天的大脑监测。
  • 传感器的科普知识来啦!
    传感器(Sensor)是一种常见的却又很重要的器件,它是感受规定的被测量的各种量并按一定规律将其转换为有用信号的器件或装置。对于传感器来说,按照输入的状态,输入可以分成静态量和动态量。我们可以根据在各个值的稳定状态下,输出量和输入量的关系得到传感器的静态特性。传感器的静态特性的主要指标有线性度、迟滞、重复性、灵敏度和准确度等。传感器的动态特性则指的是对于输入量随着时间变化的响应特性。动态特性通常采用传递函数等自动控制的模型来描述。通常,传感器接收到的信号都有微弱的低频信号,外界的干扰有的时候的幅度能够超过被测量的信号,因此消除串入的噪声就成为了一项关键的传感器技术。  物理传感器  物理传感器是检测物理量的传感器。它是利用某些物理效应,把被测量的物理量转化成为便于处理的能量形式的信号的装置。其输出的信号和输入的信号有确定的关系。主要的物理传感器有光电式传感器、压电传感器、压阻式传感器、电磁式传感器、热电式传感器、光导纤维传感器等。作为例子,让我们看看比较常用的光电式传感器。这种传感器把光信号转换成为电信号,它直接检测来自物体的辐射信息,也可以转换其他物理量成为光信号。其主要的原理是光电效应:当光照射到物质上的时候,物质上的电效应发生改变,这里的电效应包括电子发射、电导率和电位电流等。显然,能够容易产生这样效应的器件成为光电式传感器的主要部件,比如说光敏电阻。这样,我们知道了光电传感器的主要工作流程就是接受相应的光的照射,通过类似光敏电阻这样的器件把光能转化成为电能,然后通过放大和去噪声的处理,就得到了所需要的输出的电信号。这里的输出电信号和原始的光信号有一定的关系,通常是接近线性的关系,这样计算原始的光信号就不是很复杂了。其它的物理传感器的原理都可以类比于光电式传感器。  物理传感器的应用范围是非常广泛的,我们仅仅就生物医学的角度来看看物理传感器的应用情况,之后不难推测物理传感器在其他的方面也有重要的应用。  比如血压测量是医学测量中的最为常规的一种。我们通常的血压测量都是间接测量,通过体表检测出来的血流和压力之间的关系,从而测出脉管里的血压值。测量血压所需要的传感器通常都包括一个弹性膜片,它将压力信号转变成为膜片的变形,然后再根据膜片的应变或位移转换成为相应的电信号。在电信号的峰值处我们可以检测出来收缩压,在通过反相器和峰值检测器后,种传感器外形我们可以得到舒张压,通过积分器就可以得到平均压。  让我们再看看呼吸测量技术。呼吸测量是临床诊断肺功能的重要依据,在外科手术和病人监护中都是必不可少的。比如在使用用于测量呼吸频率的热敏电阻式传感器时,把传感器的电阻安装在一个夹子前端的外侧,把夹子夹在鼻翼上,当呼吸气流从热敏电阻表面流过时,就可以通过热敏电阻来测量呼吸的频率以及热气的状态。  再比如最常见的体表温度测量过程,虽然看起来很容易,但是却有着复杂的测量机理。体表温度是由局部的血流量、下层组织的导热情况和表皮的散热情况等多种因素决定的,因此测量皮肤温度要考虑到多方面的影响。热电偶式传感器被较多的应用到温度的测量中,通常有杆状热电偶传感器和薄膜热电偶传感器。由于热电偶的尺寸非常小,精度比较高的可做到微米的级别,所以能够比较精确地测量出某一点处的温度,加上后期的分析统计,能够得出比较全面的分析结果。这是传统的水银温度计所不能比拟的,也展示了应用新的技术给科学发展带来的广阔前景。  从以上的介绍可以看出,仅仅在生物医学方面,物理传感器就有着多种多样的应用。传感器的发展方向是多功能、有图像的、有智能的传感器。传感器测量作为数据获得的重要手段,是工业生产乃至家庭生活所必不可少的器件,而物理传感器又是最普通的传感器家族,灵活运用物理传感器必然能够创造出更多的产品,更好的效益。  光纤传感器  近年来,传感器在朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能,绝缘、无感应的电气性能,耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。  光纤传感器是最近几年出现的新技术,可以用来测量多种物理量,比如声场、电场、压力、温度、角速度、加速度等,还可以完成现有测量技术难以完成的测量任务。在狭小的空间里,在强电磁干扰和高电压的环境里,光纤传感器都显示出了独特的能力。目前光纤传感器已经有70多种,大致上分成光纤自身传感器和利用光纤的传感器。  所谓光纤自身的传感器,就是光纤自身直接接收外界的被测量。外接的被测量物理量能够引起测量臂的长度、折射率、直径的变化,从而使得光纤内传输的光在振幅、相位、频率、偏振等方面发生变化。测量臂传输的光与参考臂的参考光互相干涉(比较),使输出的光的相位(或振幅)发生变化,根据这个变化就可检测出被测量的变化。光纤中传输的相位受外界影响的灵敏度很高,利用干涉技术能够检测出10的负4次方弧度的微小相位变化所对应的物理量。利用光纤的绕性和低损耗,能够将很长的光纤盘成直径很小的光纤圈,以增加利用长度,获得更高的灵敏度。  光纤声传感器就是一种利用光纤自身的传感器。当光纤受到一点很微小的外力作用时,就会产生微弯曲,而其传光能力发生很大的变化。声音是一种机械波,它对光纤的作用就是使光纤受力并产生弯曲,通过弯曲就能够得到声音的强弱。光纤陀螺也是光纤自身传感器的一种,与激光陀螺相比,光纤陀螺灵敏度高,体积小,成本低,可以用于飞机、舰船、导弹等的高性能惯性导航系统。如图就是光纤传感器涡轮流量计的原理。  另外一个大类的光纤传感器是利用光纤的传感器。其结构大致如下:传感器位于光纤端部,光纤只是光的传输线,将被测量的物理量变换成为光的振幅,相位或者振幅的变化。在这种传感器系统中,传统的传感器和光纤相结合。光纤的导入使得实现探针化的遥测提供了可能性。这种光纤传输的传感器适用范围广,使用简便,但是精度比第一类传感器稍低。  光纤在传感器家族中是后期之秀,它凭借着光纤的优异性能而得到广泛的应用,是在生产实践中值得注意的一种传感器。  仿生传感器  仿生传感器,是一种采用新的检测原理的新型传感器,它采用固定化的细胞、酶或者其他生物活性物质与换能器相配合组成传感器。这种传感器是近年来生物医学和电子学、工程学相互渗透而发展起来的一种新型的信息技术。这种传感器的特点是机能高、寿命长。在仿生传感器中,比较常用的是生体模拟的传感器。  仿生传感器按照使用的介质可以分为:酶传感器、微生物传感器、细胞器传感器、组织传感器等。在图中我们可以看到,仿生传感器和生物学理论的方方面面都有密切的联系,是生物学理论发展的直接成果。在生体模拟的传感器中,尿素传感器是最近开发出来的一种传感器。下面就以尿素传感器为例子介绍仿生传感器的应用。  尿素传感器,主要是由生体膜及其离子通道两部分构成。生体膜能够感受外部刺激影响,离子通道能够接收生体膜的信息,并进行放大和传送。当膜内的感受部位受到外部刺激物质的影响时,膜的透过性将产生变化,使大量的离子流入细胞内,形成信息的传送。其中起重要作用的是生体膜的组成成分膜蛋白质,它能产生保形网络变化,使膜的透过性发生变化,进行信息的传送及放大。生体膜的离子通道,由氨基酸的聚合体构成,可以用有机化学中容易合成的聚氨酸的聚合物(L一谷氨酸,PLG)为替代物质,它比酶的化学稳定性好。PLG是水溶性的,本不适合电机的修饰,但PLG和聚合物可以合成嵌段共聚物,形成传感器使用的感应膜。  生体膜的离子通道的原理基本上与生体膜一样,在电极上将嵌段共聚膜固定后,如果加感应PLG保性网络变化的物质,就会使膜的透过性发生变化,从而产生电流的变化,由电流的变化,便可以进行对刺激性物质的检测。  尿素传感器经试验证明是稳定性好的一种生体模拟传感器,检测下限为10的负3次方的数量级,还可以检测刺激性物质,但是暂时还不适合生体的计测。  目前,虽然已经发展成功了许多仿生传感器,但仿生传感器的稳定性、再现性和可批量生产性明显不足,所以仿生传感技术尚处于幼年期,因此,以后除继续开发出新系列的仿生传感器和完善现有的系列之外,生物活性膜的固定化技术和仿生传感器的固态化值得进一步研究。  在不久的将来,模拟生体功能的嗅觉、味觉、听觉、触觉仿生传感器将出现,有可能超过人类五官的敏感能力,完善目前机器人的视觉、味觉、触觉和对目的物进行操作的能力。我们能够看到仿生传感器应用的广泛前景,但这些都需要生物技术的进一步发展,我们拭目以待这一天的到来。  红外技术发展到现在,已经为大家所熟知,这种技术已经在现代科技、国防和工农业等领域获得了广泛的应用。红外传感系统是用红外线为介质的测量系统,按照功能能够分成五类:(1)辐射计,用于辐射和光谱测量 (2)搜索和跟踪系统,用于搜索和跟踪红外目标,确定其空间位置并对它的运动进行跟踪 (3)热成像系统,可产生整个目标红外辐射的分布图象 (4)红外测距和通信系统 (5)混合系统,是指以上各类系统中的两个或者多个的组合。  红外系统的核心是红外探测器,按照探测的机理的不同,可以分为热探测器和光子探测器两大类。下面以热探测器为例子来分析探测器的原理。  热探测器是利用辐射热效应,使探测元件接收到辐射能后引起温度升高,进而使探测器中依赖于温度的性能发生变化。检测其中某一性能的变化,便可探测出辐射。多数情况下是通过热电变化来探测辐射的。当元件接收辐射,引起非电量的物理变化时,可以通过适当的变换后测量相应的电量变化。  电磁传感器  磁传感器是最古老的传感器,指南针是磁传感器的最早的一种应用。但是作为现代的传感器,为了便于信号处理,需要磁传感器能将磁信号转化成为电信号输出。应用最早的是根据电磁感应原理制造的磁电式的传感器。这种磁电式传感器曾在工业控制领域作出了杰出的贡献,但是到今天已经被以高性能磁敏感材料为主的新型磁传感器所替代。  在今天所用的电磁效应的传感器中,磁旋转传感器是重要的一种。磁旋转传感器主要由半导体磁阻元件、永久磁铁、固定器、外壳等几个部分组成。典型结构是将一对磁阻元件安装在一个永磁体的刺激上,元件的输入输出端子接到固定器上,然后安装在金属盒中,再用工程塑料密封,形成密闭结构,这个结构就具有良好的可靠性。磁旋转传感器有许多半导体磁阻元件无法比拟一款电磁传感器的外形的优点。除了具备很高的灵敏度和很大的输出信号外,而且有很强的转速检测范围,这是由于电子技术发展的结果。另外,这种传感器还能够应用在很大的温度范围中,有很长的工作寿命、抗灰尘、水和油污的能力强,因此耐受各种环境条件及外部噪声。所以,这种传感器在工业应用中受到广泛的重视。  磁旋转传感器在工厂自动化系统中有广泛的应用,因为这种传感器有着令人满意的特性,同时不需要维护。其主要应用在机床伺服电机的转动检测、工厂自动化的机器人臂的定位、液压冲程的检测、工厂自动化相关设备的位置检测、旋转编码器的检测单元和各种旋转的检测单元等。  现代的磁旋转传感器主要包括有四相传感器和单相传感器。在工作过程中,四相差动旋转传感器用一对检测单元实现差动检测,另一对实现倒差动检测。这样,四相传感器的检测能力是单元件的四倍。而二元件的单相旋转传感器也有自己的优点,也就是小巧可靠的特点,并且输出信号大,能检测低速运动,抗环境影响和抗噪声能力强,成本低。因此单相传感器也将有很好的市场。  磁旋转传感器在家用电器中也有大的应用潜力。在盒式录音机的换向机构中,可用磁阻元件来检测磁带的终点。家用录像机中大多数有变速与高速重放功能,这也可用磁旋转传感器检测主轴速度并进行控制,获得高画面的质量。洗衣机中的电机的正反转和高低速旋转功能都可以通过伺服旋转传感器来实现检测和控制。  这种开关可以感应到进入自己检验区域的金属物体,控制自己内部电路的开或关。开关自己产生磁场,当有金属物体进入到磁场会引起磁场的变化。这种变化通过开关内部电路可以变成电信号。  更加突出电磁传感器是一门应用很广的高新技术,国内、国外都投入了一定的科研力量在进行研究,这种传感器的应用正在渗透入国民经济、国防建设和人们日常生活的各个领域,随着信息社会的到来,其地位和作用必将。  磁光效应传感器  现代电测技术日趋成熟,由于具有精度高、便于微机相连实现自动实时处理等优点,已经广泛应用在电气量和非电气量的测量中。然而电测法容易受到干扰,在交流测量时,频响不够宽及对耐压、绝缘方面有一定要求,在激光技术迅速发展的今天,已经能够解决上述的问题。  磁光效应传感器就是利用激光技术发展而成的高性能传感器。激光,是本世纪六十年代初迅速发展起来的又一新技术,它的出现标志着人们掌握和利用光波进入了一个新的阶段。由于以往普通光源单色度低,故很多重要的应用受到限制,而激光的出现,使无线电技术和光学技术突飞猛进、相互渗透、相互补充。现在,利用激光已经制成了许多传感器,解决了许多以前不能解决的技术难题,使它适用于煤矿、石油、天然气贮存等危险、易燃的场所。  比如说用激光制成的光导纤维传感器,能测量原油喷射、石油大罐龟裂的情况参数。在实测地点,不必电源供电,这对于安全防爆措施要求很严格的石油化工设备群尤为适用,也可用来在大型钢铁厂的某些环节实现光学方法的遥测化学技术。  磁光效应传感器的原理主要是利用光的偏振状态来实现传感器的功能。当一束偏振光通过介质时,若在光束传播方向存在着一个外磁场,那么光通过偏振面将旋转一个角度,这就是磁光效应。也就是可以通过旋转的角度来测量外加的磁场。在特定的试验装置下,偏转的角度和输出的光强成正比,通过输出光照射激光二极管LD,就可以获得数字化的光强,用来测量特定的物理量。  自六十年代末开始,RC Lecraw提出有关磁光效应的研究报告后,引起大家的重视。日本,苏联等国家均开展了研究,国内也有学者进行探索。磁光效应的传感器具有优良的电绝缘性能和抗干扰、频响宽、响应快、安全防爆等特性,因此对一些特殊场合电磁参数的测量,有独特的功效,尤其在电力系统中高压大电流的测量方面、更显示它潜在的优势。同时通过开发处理系统的软件和硬件,也可以实现电焊机和机器人控制系统的自动实时测量。在磁光效应传感器的使用中,最重要的是选择磁光介质和激光器,不同的器件在灵敏度、工作范围方面都有不同的能力。随着近几十年来的高性能激光器和新型的磁光介质的出现,磁光效应传感器的性能越来越强,应用也越来越广泛。  磁光效应传感器做为一种特定用途的传感器,能够在特定的环境中发挥自己的功能,也是一种非常重要的工业传感器。  压力传感器  压力传感器是工业实践中最为常用的一种传感器,而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也称为压电传感器。  我们知道,晶体是各向异性的,非晶体是各向同性的。某些晶体介质,当沿着一定方向受到机械力作用发生变形时,就产生了极化效应 当机械力撤掉之后,又会重新回到不带电的状态,也就是受到压力的时候,某些晶体可能产生出电的效应,这就是所谓的极化效应。科学家就是根据这个效应研制出了压力传感器。  压电传感器中主要使用的压电材料包括有石英、酒石酸钾钠和磷酸二氢胺。其中石英(二氧化硅)是一种天然晶体,压电效应就是在这种晶体中发现的,在一定的温度范围之内,压电性质一直存在,但温度超过这个范围之后,压电性质完全消失(这个高温就是所谓的“居里点”)。由于随着应力的变化电场变化微小(也就说压电系数比较低),所以石英逐渐被其他的压电晶体所替代。而酒石酸钾钠具有很大的压电灵敏度和压电系数,但是它只能在室温和湿度比较低的环境下才能够应用。磷酸二氢胺属于人造晶体,能够承受高温和相当高的湿度,所以已经得到了广泛的应用。  在现在压电效应也应用在多晶体上,比如现在的压电陶瓷,包括钛酸钡压电陶瓷、PZT、铌酸盐系压电陶瓷、铌镁酸铅压电陶瓷等等。  压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。  压电传感器主要应用在加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别压电传感器的外形是航空和宇航领域中更有它的特殊地位。压电式传感器心乂  也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。  压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛。  除了压电传感器之外,还有利用压阻效应制造出来的压阻传感器,利用应变效应的应变式传感器等,这些不同的压力传感器利用不同的效应和不同的材料,在不同的场合能够发挥它们独特的用途。  相关控制系统  继电器控制  继电器是我们生活中常用的一种控制设备,通俗的意义上来说就是开关,在条件满足的情况下关闭或者开启。继电器的开关特性在很多的控制系统尤其是离散的控制系统中得到广泛的应用。从另一个角度来说,由于为某一个用途设计使用的电子电路,最终或多或少都需要和某一些机械设备相交互,所以继电器也起到电子设备和机械设备的接口作用。  最常见的继电器要数热继电器,通常使用的热继电器适用于交流50Hz、60Hz、额定电压至660V、额定电流至80A的电路中,供交流电动机的过载保护用。它具有差动机构和温度补偿环节,可与特定的交流接触器插接安装。  时间继电器也是很常用的一种继电器,它的作用是作延时元件,通常它可在交流50Hz、60Hz、电压至380V、直流至220V的控制电路中作延时元件,按预定的时间接通或分断电路。可广泛应用于电力拖动系统,自动程序控制系统及在各种生产工艺过程的自动控制系统中起时间控制作用。  在控制中常用的中间继电器通常用作继电控制,信号传输和隔离放大等用途。此外还有电流继电器用来限制电流、电压继电器用来控制电压、静态电压继电器、相序电压继电器、相序电压差继电器、频率继电器、功率方向继电器、差动继电器、接地继电器、电动机保护继电器等等。正是有了这些不同类型的继电器,我们才有可能对不同的物理量作出控制,完成一个完整的控制系统。  除了传统的继电器之外,继电器的技术还应用在其他的方面,比如说电机智能保护器是根据三相交流电动机的工作原理,分析导致电动机损坏的主要原因研制的,它是一种设计独特,工作可靠的多功能保护器,在故障出现时,能及时切断电源,便于实现电机的检修与维护,该产品具有缺相保护,短路、过载保护功能,适用于各类交流电动机,开关柜,配电箱等电器设备的安全保护和限电控制,是各类电器设备设计安装的优选配套产品。该技术安装尺寸、接线方式、电流调整与同型号的双金属片式热继电器相同。是直接代替双金属片式热继电器的更新换代的先进电子产品。继电器技术发展到现在,已经和计算机技术结合起来,产生了可编程控制器的技术。可编程控制器简称作PLC。它是将微电脑技术直接用于自动控制的先进装置。它具有可靠性高,抗干扰性强,功能齐全,体积小,灵活可扩,软件直接、简单,维护方便,外形美观等优点 以往继电器控制的电梯有几百个触点控制电梯的运行。  而PLC控制器内部有几百个固态继电器,几十个定时器/计数器,具备停电记忆功能,输入输出采用光电隔离,控制系统故障仅为继电器控制方式的10%。正因为如此,国家有关部门已明文规定从97年起新产电梯不得使用继电器控制电梯,改用PLC微电脑控制电梯。  可以看出,继电器技术在日常生活中无所不在,而且和电脑的紧密结合更加增强了它的活力,使得继电器为我们的生活更好地服务。  液压传动控制系统  液压传动控制是工业中经常用到的一种控制方式,它采用液压完成传递能量的过程。因为液压传动控制方式的灵活性和便捷性,液压控制在工业上受到广泛的重视。液压传动是研究以有压流体为能源介质,来实现各种机械和自动控制的学科。液压传动利用这种元件来组成所需要的各种控制回路,再由若干回路有机组合成为完成一定控制功能的传动系统来完成能量的传递、转换和控制。  从原理上来说,液压传动所基于的最基本的原理就是帕斯卡原理,就是说,液体各处的压强是一致的,这样,在平衡的系统中,比较小的活塞上面施加的压力比较小,而大的活塞上施加的压力也比较大,这样能够保持液体的静止。所以通过液体的传递,可以得到不同端上的不同的压力,这样就可以达到一个变换的目的。我们所常见到的液压千斤顶就是利用了这个原理来达到力的传递。  液压传动中所需要的元件主要有动力元件、执行元件、控制元件、辅助元件等。其中液压动力元件是为液压系统产生动力的部件,主要包括各种液压泵。液压泵依靠容积变化原理来工作,所以一般也称为容积液压泵。齿轮泵是最常见的一种液压泵,它通过两个啮合的齿轮的转动使得液体进行运动。其他的液压泵还有叶片泵、柱塞泵,在选择液压泵的时候主要需要注意的问题包括消耗的能量、效率、降低噪音。  液压执行元件是用来执行将液压泵提供的液压能转变成机械能的装置,主要包括液压缸和液压马达。液压马达是与液压泵做相反的工作的装置,也就是把液压的能量转换称为机械能,从而对外做功。  液压控制元件用来控制液体流动的方向、压力的高低以及对流量的大小进行预期的控制,以满足特定的工作要求。正是因为液压控制元器件的灵活性,使得液压控制系统能够完成不同的活动。液压控制元件按照用途可以分成压力控制阀、流量控制阀、方向控制阀。按照操作方式可以分成人力操纵阀、机械操纵法、电动操纵阀等。  除了上述的元件以外,液压控制系统还需要液压辅助元件。这些元件包括管路和管接头、油箱、过滤器、蓄能器和密封装置。通过以上的各个器件,我们就能够建设出一个液压回路。所谓液压回路就是通过各种液压器件构成的相应的控制回路。根据不同的控制目标,我们能够设计不同的回路,比如压力控制回路、速度控制回路、多缸工作控制回路等。  根据液压传动的结构及其特点,在液压系统的设计中,首先要进行系统分析,然后拟定系统的原理图,其中这个原理图是用液压机械符号来表示的。之后通过计算选择液压器件,进而再完成系统的设计和调试。这个过程中,原理图的绘制是最关键的。它决定了一个设计系统的优劣。  液压传动的应用性是很强的,比如装卸堆码机液压系统,它作为一种仓储机械,在现代化的仓库里利用它实现纺织品包、油桶、木桶等货物的装卸机械化工作。也可以应用在万能外圆磨床液压系统等生产实践中。这些系统的特点是功率比较大,生产的效率比较高,平稳性比较好。  液压作为一个广泛应用的技术,在未来更是有广阔的前景。随着计算机的深入发展,液压控制系统可以和智能控制的技术、计算机控制的技术等技术结合起来,这样就能够在更多的场合中发挥作用,也可以更加精巧的、更加灵活地完成预期的控制任务。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制