当前位置: 仪器信息网 > 行业主题 > >

纤维图像分析仪

仪器信息网纤维图像分析仪专题为您提供2024年最新纤维图像分析仪价格报价、厂家品牌的相关信息, 包括纤维图像分析仪参数、型号等,不管是国产,还是进口品牌的纤维图像分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纤维图像分析仪相关的耗材配件、试剂标物,还有纤维图像分析仪相关的最新资讯、资料,以及纤维图像分析仪相关的解决方案。

纤维图像分析仪相关的资讯

  • 欢迎参加瑞士IST公司FibreShape纤维图像分析测试技术交流会
    致相关检验测试单位专家: 瑞士IST有限公司是欧洲著名的快速图像分析测试专门厂家,主要产品有PowderShape颗粒图像分析仪、FibreShape纤维图像分析仪、DiaShape 金刚石图像分析仪等。 北京安唯安实验设备有限公司很高兴地邀请瑞士IST公司的Dr. Hubert Schmid先生在北京参加ISO/TC24/SC4会议期间举办一场客户技术交流会。具体如下: 技术交流会时间:2014年5月26日(周一)会议主题: FibreShape 纤维图像分析技术主要内容: 1. FibreShape在羊毛、麻纤维、棉纤维的表征应用 2.FibreShape在碳纤维和玻璃纤维表征方面的应用 3.FiVer对于交叉纤维的识别和测量 4.纤维测定中样品溶液分散制备技术 5.高通量纤维分析测定 会议地址:见邀请函。 欢迎各位专家报名参会交流!报名方式:1.电子邮件:info@al-tt.com2.电话:010-88132032 报名时请注明以下信息: 单位名称: 姓名: 职务: 电话: 手机: Email: 北京安唯安实验设备有限公司Add: Rm.4029, Yunhang Building, No.9 Kunminghu Nanlu, Haidian, Beijing, PR.China 地址:北京市海淀区昆明湖南路4029室Post code:100195Tel: +86 10 88132032Fax:+86 10 82386759Web: www.al-tt.com NetShow: www.instrument.com.cn/netshow/SH102845/
  • 创新领航丨拉曼图像一体化在扫描显微分析上的应用
    形貌、成分和结构信息的表征是科研和检测工作最重要的部分,电子显微镜作为“科学之眼”是微观分析中最重要的工具之一,自然也被广大科技工作者寄予了越来越高的期望。10月18日,2017年全国电子显微学学术年会在成都星宸皇家金煦酒店隆重开幕,这是一年一度电子显微领域从业者共襄的盛会,行业专家、学者、仪器厂商共同交流电子显微学及相关仪器技术的前沿发展,以及基础与应用研究的最新进展。本届学术年会在会议规模、参会人数、报告数量和质量等各方面又有了新的提升,共吸引了来自高等院校、科研院所及企业的900多人参会,共计288个特邀报告。 随着电镜技术的快速发展以及科研分析日益复杂,目前电子显微镜的发展方向主要是在:高分辨能力、原位观测能力和分析能力三个方面。TESCAN作为全球知名的电镜显微分析仪器的制造商,在产品设计上提出了“All In One 综合显微分析平台”的理念,并给出了完善的解决方案。10月18日下午,TESCAN公司技术专家在学术年会分会场分享了拉曼图像一体化在扫描显微分析上的最新应用进展。扫描电镜与共聚焦拉曼成像一体化系统通过实现原位、快速、方便和高性能的拉曼分析,弥补了传统电镜和能谱的分析能力的不足。尤其是针对有机结构解析、碳结构解析、无机相鉴定、同分异构分析、结晶度分析等领域作了重大突破,使得扫描电镜在以前一些分析较弱的应用领域,如地质、矿物晶体、高分子聚合物、医学、生命医药、宝玉石鉴定等方面的应用得到拓展,真正实现全方位的综合分析。TESCAN电镜-拉曼一体化系统的新技术应用,引起了参会老师的极大兴趣!报告分享结束后,会场的老师纷纷来到TESCAN展台咨询,和应用专家针对性沟通了电镜-拉曼联用技术在橡胶中的共混物分析检测以及生物方向等相关应用解决方案。更多电镜-拉曼一体化系统的应用案例,请关注“TESCAN公司”官方微信平台查看: “拉曼-电镜-能谱 +”,SEM Plus带你玩转无机材料分析“高碳材料带来低碳生活,TESCAN带你了解 “神器”的神奇有机结构解析难?RISE显微镜给你新方法 如果您对于电镜-拉曼联用技术、双束电镜-飞行时间二次离子质谱等最新联用技术及TESCAN综合显微分析解决方案感兴趣,想深入了解相关信息,请关注:2017年10月17-20日2017年全国电子显微学术年会二楼TESCAN展位与现场专业人员深入沟通,现场还有“幸运大转盘”现场抽奖活动,礼品丰厚。关于TESCANTESCAN发源于全球最大的电镜制造基地-捷克Brno,是电子显微镜及聚焦离子束系统领域全球知名的跨国公司,有超过60年的电子显微镜研发和制造历史,是扫描电子显微镜与拉曼光谱仪联用技术、聚焦离子束与飞行时间质谱仪联用技术以及氙等离子聚焦离子束技术的开拓者,也是行业领域的技术领导者。关注TESCAN新微信,更多精彩资讯
  • 恒美新品|植物根系图像分析仪自动杂质剔除
    植物根系图像分析仪是一种专门用于分析植物根系图像的仪器。它通过高清晰度相机和计算机视觉技术,能够实现对植物根系图像的自动识别、测量和分析。 产品链接https://www.instrument.com.cn/netshow/SH104275/C510092.htm 植物根系图像分析仪具有多种功能,包括但不限于以下几点: 1.自动识别和测量根系参数:仪器可以通过图像处理算法自动识别和测量根系的长度、直径、分支等参数,大大提高了测量效率和准确性。 2.分析根系生长状况:仪器可以根据测量的根系参数,分析根系的生长状况,如生长速度、生长趋势等,为植物生长研究提供重要依据。 3.研究根系与土壤环境相互作用:仪器可以用于研究根系与土壤环境的相互作用,如根系对土壤水分的吸收、土壤质地对根系生长的影响等。 4.评估植物对环境的适应能力:仪器可以通过分析根系的结构和生长状况,评估植物对环境的适应能力,为植物育种和栽培提供参考。 总之,植物根系图像分析仪是一种强大的工具,对于研究植物生长和环境适应性具有重要意义。它有助于提高农业生产的效率和可持续性,为科研和农业生产提供有力支持。
  • 1220万!上海市儿童医院计划采购液相色谱串联质谱检测系统 、自动扫描显微镜和图像分析仪 等仪器设备
    一、项目基本情况项目编号:SHXM-00-20220721-1156项目名称:上海市儿童医院液相色谱串联质谱检测系统等设备预算编号: 0022-W11320,0022-W11328,0022-W11325,0022-W11326,0022-W11324,0022-W11321 预算金额(元): 12200000元(国库资金:0元;自筹资金:12200000元)最高限价(元): 包1-2000000.00元,包2-1600000.00元,包3-1300000.00元,包4-2000000.00元,包5-3000000.00元,包6-2300000.00元 采购需求: 标项一 包名称:液相色谱串联质谱检测系统 数量:1 预算金额(元):2000000.00 简要规格描述或项目基本概况介绍、用途:主要适用于有机小分子化合物定量分析和研究。具体项目内容及采购要求以招标文件“第四章招标需求”为准。 标项二 包名称:激光显微切割系统 数量:1 预算金额(元):1600000.00 简要规格描述或项目基本概况介绍、用途:对显微镜下的细胞或组织进行切割,分离并弹射至收集管内,用于后期分子生物学实验。具体项目内容及采购要求以招标文件“第四章招标需求”为准。 标项三 包名称:快速切片扫描仪 数量:1 预算金额(元):1300000.00 简要规格描述或项目基本概况介绍、用途:该设备是用于将传统的玻璃切片扫描存储成动态的数字切片,通过计算机可以浏览数字切片的任意位置,并对切片进行诊断标记和给出诊断报告。具体项目内容及采购要求以招标文件“第四章招标需求”为准。 标项四 包名称:自动扫描显微镜和图像分析仪 数量:1 预算金额(元):2000000.00 简要规格描述或项目基本概况介绍、用途:通过自动样品搜索及自动对焦显微系统,对获得的所有数据进行包括细胞、RNA、DNA、蛋白质的定量分析。具体项目内容及采购要求以招标文件“第四章招标需求”为准。 标项五 包名称:小分子荧光成像示踪系统 数量:1 预算金额(元):3000000.00 简要规格描述或项目基本概况介绍、用途:通过自动样品搜索及自动对焦显微系统,对获得的所有数据进行包括细胞、RNA、DNA、蛋白质的定量分析。具体项目内容及采购要求以招标文件“第四章招标需求”为准。 标项六 包名称:高通量样本处理系统 数量:1 预算金额(元):2300000.00 简要规格描述或项目基本概况介绍、用途:用于高质量标准化的的大量测序文库样本的制备,文库构建及实现检测结果的重现性及可信度,提高样品制备成功率。具体项目内容及采购要求以招标文件“第四章招标需求”为准。 合同履约期限: 合同签订后90天内交货 本项目( 否 )接受联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:本项目不属于专门面向中小微企业、监狱企业、残疾人福利性单位采购的项目。3.本项目的特定资格要求: 1、符合《中华人民共和国政府采购法》第二十二条的规定2、未被“信用中国”(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单3.3 投标产品为进口产品的,投标人应提供开标日在有效期内的投标产品生产厂家授权书或合法获得投标产品的其他证明。3.4投标人自开展经营活动以来,未有过行贿犯罪记录。 三、获取招标文件时间:2022年07月25日至2022年08月01日,每天上午00:00:00-12:00:00,下午12:00:00-23:59:59(北京时间,法定节假日除外)地点:上海市政府采购网(http://www.zfcg.sh.gov.cn)方式: 网上获取 售价(元): 0 四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年08月15日 10:00(北京时间)投标地点:投标人在上海市政府采购云平台(网址:http://www.zfcg.sh.gov.cn)网上投标,并将纸质版投标文件密封递交至上海市宁波路1号10楼1001会议室开标时间: 2022年08月15日 10:00 开标地点:投标人在上海市宁波路1号10楼1001会议室进行网上开标。网络地点:上海市政府采购云平台(网址:http://www.zfcg.sh.gov.cn)五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1、项目属性:货物类。2、本项目接受进口产品投标。3、采购项目需要落实的政府采购政策情况:推行节能产品、环境标志产品政府采购,促进中小企业、监狱企业、残疾人福利性单位发展,扶持不发达地区和少数民族地区等相关政策。规范进口产品采购政策。4、获取招标文件其他说明:4.1 凡愿参加投标的合格供应商需在政采云平台(网址:http://www.zfcg.sh.gov.cn)成功报名,并在上述获取招标文件规定的时间内关注微信公众号“东松投标”进行报名信息完善或购买纸质招标文件。4.2 本项目采用电子化采购方式,合格供应商可在上海市政府采购网免费获取电子招标文件。供应商如需纸质招标文件可自行打印,也可向代理机构购买,纸质招标文件售价¥500.0元,售后不退。5、开标所需携带其他材料:5.1 投标人需在网上投标同时递交纸质版投标文件;5.2 开标时请投标人代表持可无线上网并可登录上海市政府采购云平台进行投标的笔记本电脑、投标时所使用的数字证书(CA证书)参加开标;七、对本次采购提出询问,请按以下方式联系1.采购人信息名 称:上海市儿童医院地 址:上海市泸定路355号联系方式:021-529740322.采购代理机构信息名 称:上海东松医疗科技股份有限公司地 址:上海市宁波路1号11楼联系方式:021-63230480转8605、86133.项目联系方式项目联系人:徐旭东、王弈璐电 话:021-63230480转8605、8613
  • Molecular Devices网络讲堂:手把手教您提升显微图像采集分析技能
    网络讲堂:手把手教您提升显微图像采集分析技能显微成像技术广泛应用于细胞生物学和生物医学研究。面对不同的实验应用和研究,显微成像操作灵活多变,获得一组好的显微图像需要大量的复杂的操作,很多研究人员都头痛于如何能够简便快速的获得漂亮的显微图像结果。 对获得的显微图像进行分析,即从图像中获得细胞的形态结构、蛋白表达以及细胞功能的结果,是科研人员头痛的另一个方面。科研人员不得不花费大量时间和精力,对于获得的满意图像测量大量的细胞学信息,以确认细胞的变化结果。 MetaMorph软件系统,能够帮助您轻松实现显微图像的成像,方便的工具使操作更简单流畅;MetaMorph具有的细胞学分析功能模块能够自动化快速识别和分析研究者关心的细胞特征,使显微图像的获得和对图像结果的分析不再是负担!开课日期:2017年3月23日 开课时间:周四10:00-11:00 主讲人: 周旋,美谷分子仪器产品市场经理,拥有10年以上经验,一直从事于显微成像及高内涵成像的应用支持工作,熟悉目前各种细胞学成像技术,包括共聚焦、双光子、超分辨以及Light Sheet等。报名请联系美谷分子美谷分子仪器(上海)有限公司 产品咨询热线: 021-3372 1088 售前服务邮箱: info.china@moldev.com 售后服务邮箱: support.china@moldev.com 官方网站: www.MolecularDevices.com.cn欢迎关注官方微信
  • 动态颗粒图像分析仪中标啦
    日前,我司的“动态颗粒图像分析仪”参加中北大学的招标活动,凭强劲的实力和极高的技术优势,赢得胜利。中标仪器型号:QICPIC/LIXELL特点:首次结合了特殊开发的高品质的照明系统、高效的分散系统、成像系统和信息处理技术,实现将团聚颗粒分散后再进行检测,每秒处理500万像素的数据(这一速度以前几乎不可想象)。一般来说,每次测量的颗粒数都超过一百万个,某些情况下甚至可能超过1千万个。检测保持很高的精确度,使取样误差小于1%成为了现实。
  • 精彩回顾 | 莱比信《动态颗粒图像分析仪CPA 2-1专项培训会》顺利举办
    2019年7月8日,莱比信举行了动态颗粒图像分析仪CPA 2-1的专项培训会,邀请了德国Haver&Boecker公司的 Bastian Driefer 先生指导培训,旨在增进销售人员对筛分仪和动态图像颗粒分析仪的理解及要点掌握。  本次培训会主要内容为动态颗粒图像分析仪CPA 2-1的解读及仪器原理操作,会上不仅详细介绍了仪器的原理,还演示了检测样品的标准要求及检测方法,通过现场检测方法实操,让人更容易掌握系统知识。培训会上,每位销售都认真倾听工程师讲解,开展面对面互动交流,踊跃发言提问。  CPA 2-1 特别适于实验室分析34μm到25mm的颗粒形态、粒径及分布。  HAVER CPA 2-1上安装有HAVER CpaServ软件,可以在Windows操作系统下运行。CpasServ强大的软件功能使仪器安装更简单,操作更直观,与笔记本电脑相连进行操作使用,具有良好的移动性。  HAVER REAL TIME技术,可以即时对样品进行分析和处理。  德国Haver&Boecker公司创建于1887年,在全球拥有众多的分支机构和工厂。莱比信与其携手在颗粒分析测量领域展开合作,提供无论是过滤、筛选、颗粒分析、结构和设计问题,还是用于产品和工艺的制备、储存、包装和自动化的整体系统解决方案,日后双方将会锐意进取,不断创新,以高品质的产品满足客户的需求。
  • 240万!山东省千佛山医院染色体全自动扫描显微镜和图像分析系统采购项目
    项目编号:SDGP370000000202202006132 项目名称:山东第一医科大学第一附属医院(山东省千佛山医院)染色体全自动扫描显微镜和图像分析系统采购项目 预算金额:240.0万元 最高限价:240.0万元 采购需求:标的标的名称数量简要技术需求或服务要求本包预算金额(单位:万元)A染色体全自动扫描显微镜和图像分析系统 1 详见附件 240.000000 合同履行期限:详见招标文件 本项目不接受联合体投标。
  • 超越流式细胞术?珀金埃尔默推出全新图像式细胞分析仪,加速简化细胞和基因治疗发制造流程
    加速简化细胞和基因治疗的研发及制造流程Cellaca® PLX图像式细胞分析仪带来工作流程的革新,一站式满足多个关键质量属性的分析致力于以创新技术打造更健康世界的技术型企业--珀金埃尔默日前推出Cellaca® PLX图像式细胞分析系统,这是业界第一款能让研究人员在单个自动化工作流中实现对细胞样本多个关键质量属性(CQA)进行分析和评估的台式平台,包括对细胞性质、质量和数量的分析评估。拥有尖端技术的Cellaca PLX系统由珀金埃尔默旗下的Nexcelom公司设计,它整合了一流的图像式细胞分析仪的硬件、软件、经验证的耗材和可跟踪的数据报告功能于一体,无需复杂的校准程序或严格的培训要求,即可操作。为了进一步提升客户体验,这一专利解决方案中还使用了来自珀金埃尔默旗下BioLegend公司经验证的抗体试剂盒对试剂方案进行优化。这一新产品可为研究人员提供超越流式细胞术和染色方法的扩展细胞样本CQA分析选项,而这些分析选项历来都需要采用各种不同的仪器和分析方法进行分析。通过这些功能的整合,Cellaca PLX系统能够让研究人员在一台仪器中同时检测多个标记物(多路技术),并通过简单易用的现代化用户界面在短短数秒内即可执行免疫表型分析和细胞活性测定。Cellaca(R) PLX Image Cytometer图像式细胞分析仪珀金埃尔默生命科学事业部高级副总裁Alan Fletcher表示,"制药公司在细胞和基因治疗领域大举投入,然而他们面临的一项重大挑战是如何对复杂的细胞样本进行评估,以满足其研究和制造过程中巨大的科研需求和严苛的法规要求。目前我们仍在对Cellaca PLX Image Cytometer图像式细胞分析平台在治疗领域的应用加以开发,我们预计它对于从事CAR-T细胞治疗研究,简化免疫细胞表型分析的下游流程而言,将具有重大意义。"珀金埃尔默旗下Nexcelom公司是细胞分析领域自动化细胞计数技术和图像式细胞仪产品的领先供应商,其产品包括现有的应用广泛的Cellaca® MX高通量自动化细胞计数仪。有关新平台Cellaca PLX及其它图像式细胞分析仪和试剂的更多资讯,可在11月5日至10日在第五届中国国际进口博览会上了解,珀金埃尔默将在国家会展中心(上海)8.1号馆B4-03展示其生命科学及细胞和基因治疗产品组合的最新创新。
  • 显微镜相机助您轻松拍摄高质量的显微镜图像
    显微镜相机助您轻松拍摄高质量的显微镜图像显微镜相机可以将显微镜中观察到的微小物体放大并通过软件进行图像处理和分析,实时显示在电脑或手机屏幕上,让用户轻松地拍摄高质量的显微镜图像。显微镜相机能够满足高级科研应用的各类需求,具有高清晰度、高亮度和高分辨率等优点,让人们更加清晰地观察微观世界。显微镜相机应用领域:1.生命科学:显微镜相机可以用于细胞、组织和器官的结构和功能观察、组织切片、病理学等方面。2.材料科学:显微镜相机可以用于材料分析、表面形貌观察等方面。3.教育科研:显微镜相机可以用于学校实验室、科研机构等场所。针对不同的应用场景和需求,显微镜相机的参数也有所不同,常见的参数包括分辨率、帧率、像素大小等,可以通过显微镜摄像头定制,定制专属的光学参数和软件功能,获得更清晰、更准确的视野。△显微镜USB2.0 CMOS相机USB2.0与CMOS图像传感器相机(USB2.0 Advanced CMOS 相机);采用USB2.0作为数据传输接口;硬件分辨率横跨1.2M~8.3M等多种 实时8/12位切换,任意ROI尺寸。△显微镜USB3.0 CMOS相机采用Sony Exmor CMOS背照式传感器的C接口CMOS USB3.0相机;传感器采用双层降噪技术,具有超高的灵敏度以及超低噪声;分辨率横跨40万~2000万,图像传输速度快,随相机提供高级视频与图像处理应用软件;广泛用于显微图像的拍摄与记录。△显微镜USB3.0 CCD相机USB3.0接口CCD相机,其感光芯片采用索尼ExView HAD CCD芯片;采用SONY EXview技术的C接口CCD相机,分辨率有1.4M~12M等多种;IR-CU红外窗口,滤除红外,又起保护传感器的作用;在黑暗的环境下也可得到高亮度的照片;FPGA控制支持长达1分钟长曝光,保证捕获弱荧光图像;可用于弱光或荧光图像的拍摄与分析。△显微镜制冷相机高效制冷模块,大大降低了图像噪声,保证了图像质量的获取。双级专业设计的高性能TE冷却结构,散热速度快;温度任意可控,最高达50度温度降幅,确保在视频或图像噪声小的情况下尽可能高的光电转换量子效率;防结雾结构,确保传感器表面在低温情况下不会防结雾;支持触发操作模式,软件触发或外部触发,支持一次触发采集单张或多张图片。通过数码成像系统,可以直接在电脑上观察图像,还能将所成像在电脑上保存成图片,大大的方便了使用者将图像数据保存的要求,也更加方便了资料数据的管理和编辑。并且能通过专业的软件图像进行调整,标注,拼接,合成,测量等,形成图文文件,可互相传阅。≥≥≥更多显微镜相机款式型号≥≥≥更多显微镜相机款式型号 如需显微镜摄像头定制或者了解更多解决方案,请与我们联系!
  • 获取复杂样品超高分辨图像及图形的分析统计数据
    现如今对材料进行微观形貌表征时,仅仅看到清晰的形貌是远远不够的,针对有重复结构的材料,如多孔,颗粒等结构的样品,还需对图片中的孔洞或颗粒进行统计与分析,比如统计总数,大小,尺寸等,获得量化结果,辅助研究。硫酸铝矿孔径分布测量当我们对多孔硫酸铝样品进行观察,孔径尺寸大约在10nm左右,由于孔径尺寸非常小,想要清晰的观察到孔的形貌,需要使用超高分辨场发射扫描电镜Regulus8200观察,利用其低加速电压下高分辨率的特点,轻松获取高倍清晰图片。由于图像里的孔与背景亮度对比度的不同,使用Image Pro图像分析软件对感兴趣区域框选,软件可通过信号的强弱分离孔洞并自动测量硫酸矾石的孔径分布(图2)及定量数据。图2中的图表是平均孔径的直方图。当我们分析数据时,可以选取一个孔(图2中的粉红色箭头)时,您可以看到它在直方图中的位置(红色圆圈)。或者在直方图中选择一个条柱(图 3 中的粉红色箭头)时,您可以看到所选条柱包含哪些孔(Brue 字符)。统计数据直方图如图4所示。高容量硬盘驱动器(HDD)中的,磁性颗粒粒度分析高容量硬盘驱动器(HDD)中的磁性颗粒会随着记录密度的提高而变小。然而,较小的磁性颗粒可能会产生较小的矫顽力,因此会妨碍稳定的记录。因此,评估晶粒尺寸和晶粒间距对于实现和保持稳定的HDD性能非常重要。图5(a)显示了配置高容量HDD的磁盘上磁性颗粒的BSE图像。通过使用YAG-BSE探测器拍摄70万倍的高分辨图像,并从中获取颗粒的形状。在对图像上的颗粒进行分析时,首先这些晶粒被识别为感兴趣区域(ROI),使用Image-Pro 10图像处理软件将晶界和背景进行分离,如图6(b)所示。尽管BSE图像因为通道效应导致每一个颗粒对比度和亮度不均匀,但依然可以稳定地对颗粒直径或面积定量分析,因为这些颗粒是通过信号强度提取的,另外还通过其形状和大小提取的。图7(c)是磁性晶粒直径的柱状图。超高分辨冷场扫描电子显微镜Regulus8200和图像分析软件Image-Pro 10的组合可实现HDD的高分辨率成像和定量图像分析,帮助HDD在增强记录密度的研究中。Regulus8200 "Regulus系列"扫描电子显微镜(SEM)被广泛应用于纳米技术,半导体电子行业,生命科学,材料科学等领域的材料结构观察。仅仅具有超高分辨率还远远不够。还要求能在低加速电压下对表面细微结构的观察和高灵敏度的元素分析。发挥高性能,高稳定性,轻松获取高倍清晰图片。END公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 杨正红:静态图像法粒度和形貌分析技术在药品质量控制中的应用
    药物生产中的关键工艺参数是影响药物和剂型理化性质和生物药剂学性质的重要因素。原料药粉末的大小和晶体形状影响其流动性和压实性能:粒径大且球形度好的颗粒通常比颗粒小但长宽比大的颗粒更容易流动;小颗粒溶解更迅速,并且比大颗粒的悬浮液粘度更高。因此,各国药典中都对相关药物所涉及的粒度问题及测量方法做出了规定。有关粒度测定的测定方法是随着科学的发展和计算机技术的飞速进步逐渐发展起来的,包括:筛分法、显微镜法、电阻法和光阻法、以及目前非常流行的激光衍射法(光散射法)等(1,2)。然而,随着计算机功能日益强大,数字化图像分辨和提取技术不断提高,可以同时具备上述各种方法能力,可以测量粒度分布、粒形分布,可以准确计数的图像法粒度粒形分析仪正在走向舞台中央(2)。一、中国药典中所涉及的药物粒度及测定方法中国药典2020年版四部在通则0982《粒度和粒度分布测定法》中规定了以下测定方法:1.第一法(显微镜法),用于测定药物制剂的粒子大小或限度。2.第二法(筛分法):用于测定药物制剂的粒子大小或限度,粒度下限在75μm左右的样品。3.第三法(光散射法):即激光衍射法。根据ISO13320-2009,该方法用于测定原料药或药物制剂的粒度分布,适用的粒度范围大约为0.1μm~3mm。在中国药典中涉及粒度的药物包括中药、丸药、颗粒剂、外敷软膏、滴眼液、抗生素等,如下表中国药典一部中国药典二部中国药典三部药品名所载页数粒度测定方法要求药品名所载页数粒度测定方法要求通则所载页数粒度测定方法要求人参茎叶总皂苷389第二法灰黄霉素351第一法0104颗粒剂第二法人参总皂苷391第二法曲安奈德注射液362第一法0105眼用制剂第一法心脑欣丸722第二法阿莫西林克拉维酸钾颗粒437第二法0109软膏剂、乳膏剂第一法冰黄K乐软膏865第一法蒙脱石1452第三法0114凝胶剂第一法妇乐颗粒896第二法蒙脱石分散片1454第二法0115散剂第二法京万红软膏1106第一法蒙脱石散1455第二法逍遥颗粒1358第二法醋酸甲羟孕酮混悬注射液1529第一法通心络胶囊1447第一法磷霉素钙颗粒1585第二法障翳散1672第一法注射用亚锡聚合白蛋白1599第一法---锝[99mTc]聚合白蛋白注射液1607第一法二、美国药典中所涉及的药物粒度及测定方法美国药典中涉及粒度分析内容是用于注射液和滴眼液的USP788/789通则,推荐的方法是光阻法和膜显微镜法,主要关注药液中粒度范围在10~24μm和25~50μm(可视范围)的颗粒计数和评价。这些颗粒存在的形式如下:i.不溶的可移动的固体/半固体;ii.单个实体或聚集体;iii.一种或几个物种;iv.化学反应产生的固体v.制剂变化产生的固体这些颗粒物产生的原因包括:i.外源性物质存在;ii.内源性物质存在:包括生产工艺的功能故障和包装来源;iii.制剂固有的颗粒,如生物制品中存在的颗粒。USP789基本等同于788,但主要针对滴眼液。USP788等同于欧洲药典EP5.5和日本药典JPXIV,XV。关注医疗风险的USP729是以USP788为模板的,适用于所有脂质(10%,20%,30%)。其限定的粒度范围是在0.5~5μm,因为这些颗粒可以机械阻塞微血管。但是,USP788所主张的粒度测定方法存在以下问题:1.光阻法的问题:只适用于球形颗粒;气泡和油滴不能分辨,也被计数。2.显微镜的问题:对粒子的判断和解释存在主观意识。另外,对于生物制剂中不可见粒子分析,特别是可以通过不同的机制聚集的蛋白质的应用,USP788面临着挑战。因为对于透明、非球形和高浓度的蛋白质聚集体,光阻法和显微镜法无能为力。对于口服制剂和原料药(API),USP429规定了激光衍射方法测定粒度的通则。该方法根据ISO标准13320-1(1999)和9276-1(1998)建立的,整个章节也已经和EP和JP的相应章节进行了协调。USP429指出,此技术并不能区分单个粒子的散射和一团基本粒子的散射,也就是不能区分结块和凝聚。绝大多数的样品都包含结块和凝聚,并且我们主要关注的是基本粒子的尺寸分布,所以在检测前这些结块通常需要分散成基本粒子。虽然ISO13320-2009修改了激光衍射法的应用限制,指出激光衍射法测量粒度只适用于球形颗粒,其测量的误差来源包括非球形、表面粗糙度和不正确的光学参数,USP429也已经指出,被测物质的光学性质和它的结构(如形状、表面粗糙度和多孔性)对于最终结果有影响。三、图像法粒度和形貌分析技术阿扎胞苷为无菌冻干粉针剂,是一种新型表观遗传学抗肿瘤药,是目前唯一被临床证明可延长高风险骨髓增生异常综合征患者总生存期的抗肿瘤药。根据美国药典USP章节 788 和 729 ,必须关注注射类产品中颗粒物对生物学性质的影响。美国药典附录中规定了注射剂分析的主要方法:1.可测量尺寸和颗粒计数2.数据统计非常重要,特别是尺寸小于1微米的颗粒和数目但是,药典中给出的消光法粒子计数器(光阻法)粒度和计数功能只能覆盖2~400微米,其消光效率无法解决低于2微米的问题。自USP788以来,药物产品已经发生了深刻变化:疫苗、新癌症治疗药物、纳米颗粒(克服不溶性)、控释微球、聚合物、结晶纳米颗粒、脂质体制剂等新的剂型不断涌现,同时对粒度检测也提出了新的要求。2010年12月8日至10日,美国药典委员会在马里兰州洛克维尔USP总部召开了USP有关粒度的专题研讨会,对USP788通则面临的挑战开始寻找和调查替代方法。来自美国StableSolutionsLLC公司的DavidF.Driscoll博士在研讨会上明确指出:要解决小于1微米颗粒的技术挑战,包括:■颗粒物理性质■颗粒筛分■颗粒计数■颗粒统计■颗粒轮廓在研讨会上,讨论和考察了一系列新的粒度分析仪器和技术,欧奇奥(Occhio)图像法粒度粒形分析仪也位列其中。而这些挑战对于先进的适用于医药行业的静态图像法粒度粒形分析仪已经迎刃而解。作为下一代粒度分析仪,Occhio粒度粒形分析仪可以进行:●颗粒大小及其分布l颗粒计数●颗粒形状及其分布●干法或湿法,动态或静态●适用于悬浮液、乳浊液、泡沫、颗粒、粉末、纤维●同时具有激光粒度仪、库尔特法或光阻法计数器和显微镜的功能1.粒度粒形分析仪的组成粒度粒形分析仪有硬件和软件两个部分。硬件部分由分散系统、进样系统和成像系统组成。其中成像系统是核心部件(见表2)。成像系统检测的是颗粒群中每个颗粒的尺寸,因此必须使用分散系统以保证颗粒之间没有团聚。根据被测物料的介质是气态还是液态,可分为干法分散系统和湿法分散系统:湿法分散系统是将颗粒分散在液体介质中,干法分散系统是将颗粒在空气中直接分散。与激光粒度分析仪的干法系统不同,图像法的干法分散样品是可以回收并重复测定的,因此具有极大的优越性。所以,应该提倡“干样干测,湿样湿测”,最大程度地保持样品的初始状态。干法测定可以极大简化样品准备过程,避免粉体样品在液体介质中团聚的可能。表2粒度粒形分析仪的成像系统组成及功能成像系统部件功能光源单色(脉冲)光可避免颗粒对光的衍射产生虚影,得到边界清晰的颗粒图形,优于白光扩束单元根据不同缩放倍率的镜头调节输出光束的直径测试区(样品池)颗粒与脉冲光的作用区光学系统不同的放大倍率和相应的测试范围相适应;好的光学系统不存在像差工业相机是远高于普通摄像机成像和存储速率的图像拍摄装置进样装置:物料在进入成像系统或分散系统前,需要调节到一定的浓度,以得到最佳的分散/检测效果:●湿法:通过加入不同体积的颗粒量进行调节,由注射泵(可相对计数)、蠕动泵(可相对计数)或离心泵(动态湿法,只能绝对计数)将样品带入位于光路中的样品池(见图1左)。●干法(动态):由振动进样单元控制,调节单位时间的进样量,然后进行自由下落式分散或气流分散。气流分散包括喷射式分散和横向分散,其中横向分散对样品扰动最小,并能使样品处于势能最低的位置,准确采样(见图1右)。●干法(静态):将分散在载玻片上的颗粒样品通过机械传动装置,直接置于成像系统的测试区。图1湿法和动态干法粒度粒形分析仪示例左图:OcchioFC200湿法粒度粒形分析仪原理图,包括光源、变倍率远心镜头、高分辨相机、样品池和内置注射泵,检测下限低于200nm。可外置湿法分散模块;右图:OcchioZephyrLDA动态干法粒度粒形分析仪原理图,包括振动进样单元、横向气流分散装置、样品池自动吹扫系统、成像系统和真空样品回收系统。静态法图像分析仪器对样品扰动少,安全性高,还可以对颗粒进行计数,统计量达上万个,既可以替代扫描电镜,也可以替代激光粒度仪,测量、描述和验证方法的执行标准包括GB/T21649.1-2008和ISO13322-1。应用3D软件和反射光分析技术,还可以对混合物样品进行颜色分析,估算各种单质的比例。一次实验可以得到多个结果,数据量极为丰富,是药品研发和质控表征技术升级改造必备的分析手段。专用的图像法粒度和形貌分析仪还可用于蛋白质聚集体或结晶反应过程的跟踪分析。图2下限低于200nm的Occhio500nanoXY静态干湿法粒度粒形分析仪及其各部分功能说明(点击了解仪器更多详情)2.原料药(API)或晶型药物的分散分散器是粒度分析仪器的主要组成部分。良好分散的要求是:●颗粒必须被分开;●在分散过程中,样品的尺寸和形状不应该被改变。●较小的颗粒和较大颗粒必须以相同方式分离。●分散过程可以重复几次,并在同一样品上再现相同的结果。通常,药物制剂中最重要的产品是API,一般通过粉末的晶体形态对其进行表征,其尺寸分布从亚微米到几百微米不等。部分API可能由精细,脆弱的针状晶体组成,这些颗粒通常与小纤维相似。图3比较了三种分散样品的方法,数据表明:只有方法C提供了正确的粒度粒形值。图3.不同分散方法的比较A手动分散:有颗粒团聚体存在且分布不均匀;B脉冲空气分散:可以看到,由于进气压力的存在,导致晶体颗粒被破坏;COcchio可控的真空分散:这种分散是均匀的,且脆弱的晶体颗粒没有被破坏;可控的真空分散方法(2)分散API颗粒(图2),不仅样品用量少,而且保证分散过程中样品的完整性,并可进行重复分析。与空气喷射式干法相比,不仅可以保证晶型不被气流破坏,而且可以减少与环境大气相关的污染,继而用统计软件来详细描述颗粒结构,并提供可对比的尺寸形貌研究。图4对比了两种不同分散方式得到的样品粒度结果。由图4可见,曲线之间存在着非常重要的差异。在小于10μm(点2)的区域,可以看到存在大量的细粉。这些颗粒是因为分散期间的晶体断裂产生的(空气分散,图3B)。蓝色曲线中粗颗粒更多(点1),这些不是真正的晶体,而是由于颗粒的非均匀分布而引起的团聚。粒径(μm)P10P25P50P75P90空气分散(蓝线)11.652520.752132.884856.139378.3827Occhio真空分散(红线)11.045917.491426.085434.679544.3478图4同一样品不同分散方法得到的累计粒度分布图(横坐标为筛分直径)事实上,图像法粒度及粒形分析已经进入USP1787。由于ISO13322-1把显微镜归于静态图像法,美国药典将图像法粒度分析仪看作“流动的显微镜”。目前,欧奇奥图像分析技术为技术不仅能提供ISO9276-6定义的粒度和粒形参数,还另外发展了五十多个粒度分布和形貌分布参数以及色彩分布参数。这些先进的图像分析技术已经应用到世界各大著名药厂,包括Sanofi(France,Germany)、Unilever(UK)、GSK、Novartis、Janssens、Fresenius、BoehringerIngelheim、Lilly、Therapeomic、Nycomed、Pfizer、Biomé rieux、Cytheris、Stryker、Ethypharm、EvenSante、Glatt等,并且在中国药企中也开始发挥作用。四、图像法粒度和形貌分析技术在药品质量控制中的应用1.药物一致性研究:一般认为造成仿制药物与原研药物、不同企业生产的同种药物、同一企业的不同生产批号药物临床疗效差异的原因大多数是来自于固体化学药物的晶习在状态的变化。同一种药物由于晶型不同,其不仅物理性质会有所不同,而且其生物活性也会有明显差异。有些药物的不同晶习,生物活性不仅差异显著,而且干扰了药物的临床应用。表3仿制药晶型表征推荐参数2.API颗粒的球形度研究和修饰:原料药粉末(API)的大小和形状影响其流动性和制剂时的压实性能。球形度好的大颗粒通常比较小的颗粒或长宽比大的颗粒更容易流动;更小的颗粒溶解更迅速,并导致比颗粒较大的悬浮液粘度更高。表4API颗粒球形度推荐参数3.不溶性微粒检测和蛋白质聚集体监控:药品包装材料对药物本身的污染和生物制品因不稳定产生的蛋白质聚集体是药品生产和安全贮存研究的重大课题。药物中的外源性颗粒包括纤维、昆虫部分、花粉和营养物质、纤维素、绒、矿物质、玻璃、塑料、橡胶、金属和油漆、上皮细胞、衣物碎片和毛发;内源性颗粒包括硅油。虽然硅油是大部分产品的必需添加剂,但它会产生人造颗粒或不想要的颗粒,或由于未控制或过量使用而影响治疗成分的稳定性。图5Occhio图像粒度分析仪检测不溶性大颗粒(左侧二维图可区分不同的颗粒形状分布)生物制剂中的蛋白质聚集是我们不想看到的,但又无法避免,因此需要监控其聚集的程度;检测范围增加2-5μm和5-10μm的量,也是为了很好的监控其聚集程度。乳液也存在类似情况,因此,要对2μm以上的大乳粒进行分析和监控。上述颗粒的种类无法通过传统的计数方法加以区分,而通过粒度粒形分析均可以分别计数和统计,还可以排除气泡的影响,这在传统方法的检测结果中是无法避免的。图5是不溶性大颗粒的应用举例。光阻法测试大颗粒只能给出粒径和数量,但很多纤维状或片状颗粒误认为小颗粒或者超大颗粒,造成假性结果,而对透明颗粒(如微塑料),只有高端的图像法粒度仪可以区分识别(图6)。图6OcchioIPAC2图像粒度分析仪检测透明大颗粒(图左)和发现纤维及团聚体(图右)4.破壁中药粉体的破壁效能及破壁成分固体药物制剂中,药物的颗粒大小影响药物从剂型中溶出及释放的速率,进而影响药物的疗效与生物及利用度。对难溶性固体药物而言,其粉末愈细,粒径愈小,比表面积愈大,溶解速度愈快,药物吸收速度也愈快,吸收量愈多,药效就愈好。因此减少制剂中固体颗粒的大小,有利于药物的溶出,也有利于难溶药被人体吸收,进而提高药物的疗效及生物利用度。但过细的粉末易因粉体团聚而导致流动性较差,影响药物制作过程。超细药物粉体在应用过程中因其溶解速度快,人体吸收快,易使人体中毒,因此需要更加精准的配方设计及临床测试。采用不同的粉碎技术对天然药物或者合成药物进行粉碎所获得的药物粉体,具有不一样颗粒大小,形状,表面能,比表面积等,对医药粉体后续的制剂的工艺性能及产品质量影响甚大。中药破壁饮片是将符合《中国药典》要求并具有细胞结构的中药饮片,经现代破壁粉碎技术加工至D90<45μm粉体,加水或不同浓度的乙醇粘合成型,制成30~100目的原饮片全成分的均匀干燥颗粒状饮片。我们对丹参破壁饮片用500nanoXY静态粒度粒形分析仪(图2)进行了分析研究,发现小于1微米的颗粒数量占30%,最小粒径可接近0.2微米,说明破碎后有大量细胞器释放出来。通过3D粒形分析,利用Occhio颗粒形貌3D复合标度分析——“腋瓣(Calypter)”技术,并与相应的电镜照片比对,提示我们破壁中药微粉中释放出的各种细胞器(见图7),从而为进一步提高药效和生物利用度指明方向。另外,表面处理技术对药物的生物利用度及疗效也存在极大影响。医学研究表明,人体接受药物之后,因药物存在的表面状态不同而产生不完全一致的效应,进而对生物利用度及疗效有着显著的影响。利用粉体表面改性技术修饰医药粉体表面,可以获得具有合适生物利用度及疗效的医药产品。如:利用表面包覆或为胶囊化控制药物的释放速率,进而改变或者控制药物的生物利用度及疗效。图7用Occhio颗粒形貌3D复合标度分析技术鉴定丹参破壁粉体中的氩细胞器(下)并与电镜照片对比(上)五、总结创新性的粒度粒形分析仪器,适用于药物发现、化学和制剂开发以及药物生产领域的质量控制。静态图像法粒度分析技术也符合ISO13022和2020版中国药典0982规则,可针对一系列针剂、胶囊剂和口服制剂进行了药品质量分析表征的研究,并帮助使用者开发稳健的配方,由此获得具有生物利用度的稳定药品。适当的分散方式是确保API稳定性以及正确的粒度粒形结果的基础。采取可控的真空分散程序,才能保证符合大多数药物法规中要求的测量稳定性和可重复性。随着生物药物市场关注度和资金投入的迅猛增长以及人们对具有特殊用途的新颖生物药物的需求不断增加,这一行业在确保提供起效快且安全可靠的治疗药物方面正面临越来越大的压力。着眼于单克隆抗体、重组蛋白、疫苗、寡核苷酸等生物分子的生物制药开发和生产过程漫长、十分复杂,同时面临非常特殊的分析挑战。不依靠显微镜的可变倍率显微成像扫描尖端技术可直接测量透明粒子大小和形态,并对蛋白质聚集体进行跟踪分析,保证粒度和粒形的最终结果统计可信度。为降低生物大分子制剂的风险,将计数器、显微镜和激光粒度分析表征方法融于一身,不仅可以及时提供准确的数据,而且精简了流程,消除了瓶颈,提高了效率。最新一代的颗粒分析技术必将推动新药的开发和药品质量控制的提升。参考文献:1.VincentChapeau,ChristianGodino.Methodanddevicefordispersingdrypowders.US20110120368A1,20112.杨正红,欧阳亚非.静态图像粒度分析中真空分散器原理和分散效果解析.现代科学仪器.2019,1:65-68.3.Wadel,H.(1932),Volume,shape,androundnessofrockparticles,JournalofGeology,vol.40,pp.443-451.4.Krumbein,W.C.(1941),Measurementandgeologicalsignificanceofshapeandroundnessofsedimentaryparticles,JournalofSedimentaryPetrology,vol.11,No.2,pp.64-72.5.Krumbein,W.C.andSloss,L.L.(1963),StratigraphyandSedimentation,SecondEdition,W.H.FreemanandCompany,SanFrancisco,p.660.6.Powers,M.C.(1953),Anewroundnessscaleforsedimentaryparticles,JournalofSedimentaryPetrology,vol.23,No.2,pp.117-119.7.Barrett,P.J.(1980),Theshapeofrockparticles,acriticalreview,Sedimentology,vol.27,pp.291-303.8.ISO9276-6:2008粒度分析结果的表述第6部分:颗粒形状和形态的描述和定量表征9.TudorArvinte,EmiliePoirier,CarolinePalais.PredictionofAggregationInVivobyStudiesofTherapeuticProteinsinHumanPlasma.Biobetterspp91-104.Springer,NewYork,NY,2015作者:杨正红仪思奇(北京)科技发展有限公司总经理(注:本文由杨正红老师供稿,不代表仪器信息网本网观点)
  • M&M2014召开 显微分析仪器厂商齐赞助
    仪器信息网讯 2014年8月3日-7日,显微镜学及显微分析年会(Microscopy & Microanalysis 2014,M&M2014)将在康涅狄格州哈特福德市会议中心举行。显微镜学及显微分析年会(M&M)是美国显微镜学会(MSA)和微观分析学会(MAS)的联合年会,是世界上显微镜及显微分析领域规模最大的会议,本次会议汇集了2000名这一领域的科学家,上千个报告,及上百家厂商参展。Peter Duncumb显微分析卓越奖在会议期间颁布。  微观分析协会国际联合会第六次会议(IUMAS-6)将和M&M2014连同举办,会议主办方还包括国际金相学会(IMS)、加拿大显微学会/法国显微学会(MSC/SMC)。IUMAS-6在8月2日-3日举行了会前会议,聚焦离子束,X射线显微分析,电子背散射衍射,原子探针和光谱成像等技术领域。  M&M 2014于8月4日早晨8:30开幕。会议邀请了两位大会报告嘉宾,剑桥大学Colin Humphreys教授放眼未来,作了题为&ldquo 尖端的原子分辨率显微镜如何帮助解决一些世界能源问题&rdquo ,而剑桥大学Brian J. Ford教授则回顾过去作了题为&ldquo 显微镜诞生之初的生物图像&rdquo 的报告。  8月4日-7日,M&M2014将举行专题研讨会涵盖各种主题,如扫描透射显微镜、3D成像、晶体缺陷、碳纳米材料、染色质结构、超微结构生物学、多光子成像、原位显微镜、电子探针分析、疾病诊断用显微镜和X射线成像等。同时还将举行聚焦扫描电镜的Oliver Wells纪念研讨会,以及聚焦病理解剖Gé rard T. Simon纪念研讨会,来纪念这两位刚刚去世的研究人员。  会议同期举行的展览会,将有110家厂商展示显微镜及相关仪器设备。  本次会议得到了阿美特克、牛津仪器、徕卡、赛默飞、蔡司、布鲁克、日本电子、FEI、泰斯肯等厂商的赞助。白金赞助商黄金赞助商白银赞助商(撰稿:秦丽娟)
  • 透过图像看本质,蔡司 arivis图像分析解决方案来了!
    透过图像看本质,蔡司 arivis图像分析解决方案来了!“顶刊里那些三维动画好炫酷,是怎么做出来的?”“我用光片显微镜拍的透明化脑组织图像接近1TB,我的电脑带不动,怎么办?”“我想看到两个结构在三维空间是不是共定位,要怎么做呢?”“电镜图像都是黑白的,我要想提取其中的线粒体结构,要怎样处理?”随着成像技术的不断发展,蔡司君收到关于显微镜图像处理和图像分析的咨询越来越多。仅仅 “看见”细胞结构已经不能满足今天的科研工作者的需求,我们要“看得更清,看得更全,看得更快”,我们更要“透过图像看到本质”,挖掘图像背后的科学数据和结果。作为一家有177年历史的光学公司,蔡司不仅提供从光镜到X射线显微镜到电镜的全流程显微成像设备解决方案,也关注显微图像的图像处理和图像分析。今年,提供显微图像分析解决方案的arivis AG以蔡司子公司Carl Zeiss Microscopy Software Center Rostock GmbH的形象全新亮相,正式加入蔡司大家庭,为科学家提供高效智能的图像分析解决方案。什么是arivis?arivis是专业的显微图像分析方案,既有单机版的软件,也可提供基于服务器的图像共享和批量分析的解决方案,广泛支持市面常见的图像格式,可以实现高质量的图像渲染和智能高效的图像分析。1. TB级大型显微图像数据的渲染和分析:arivis特有的ImageCoreTM图像操作技术,几乎不受电脑硬件条件限制,普通的笔记本电脑也能处理上百GB甚至TB级的大数据。CUBIC透明化的小鼠大脑,整个数据有超过1,300,000张图像,总数据量超过14TB,利用64 GB RAM, 2x hexacore, 3x8 TB HD的电脑完成全脑三维重构。数据来自:Susaki EA, et al, Cell Chem Biol, 20162. AI智能图像分析:arivis利用机器学习和深度学习,只需在图像上涂涂画画,标注所需分割的图像信号,即可实现图像分割,电镜图像也能轻松识别。体电镜拍摄HeLa细胞亚细胞结构,利用深度学习训练模型进行图像分割,对线粒体等亚细胞结构进行提取和分析。3. 高效的图像分析流程:arivis广泛支持市面常见显微成像设备图像格式,高效灵活的图像分析流程可针对您的图像优化分析方案。arivis针对细胞轨迹及命运追踪,神经元追踪等分析,提供专业的图像分析模块,高效获得图像分析数据小鼠大脑神经元结构,通过arivis Pro软件追踪神经元轴突及树突形态4. 广泛的应用潜力:可扩展python脚本,实现个性化图像分析。支持VR可视化交互,走进样品内部探索更深层次的信息。对于大型平台的海量数据管理需求,可提供服务器解决方案。细胞核中染色质的三维空间分布,通过python脚本引入同心圆参考系,帮助定位染色体空间分布。数据来自:Daria Amiad-Pavlov, et al,Science Advances. 2021.心动不如行动,想要体验蔡司arivis软件的强大功能吗?长按下方二维码,申请30天免费试用版。数据文献来源Susaki EA, Ueda HR Whole-body and Whole-Organ Clearing and Imaging Techniques with Single-Cell Resolution: Toward Organism-Level Systems Biology in Mammals Cell Chem Biol, 2016Daria Amiad-Pavlov, Dana Lorber, Gaurav Bajpai, Adriana Reuveny, Francesco Roncato, Ronen Alon, Samuel Safran and Talila Volk. Live imaging of chromatin distribution reveals novel principles of nuclear architecture and chromatin compartmentalization. Science Advances 02 Jun 2021: Vol. 7, no. 23, eabf6251.
  • 世界首台动态三维彩色粒度粒形分析仪问世
    世界首台动态三维彩色粒度粒形分析仪发布会在中国上海举行  仪器信息网讯 2014年10月14日上午,值第十二届中国国际粉体加工/散料输送展览会(IPB 2014)之际, 美国康塔仪器公司在上海国际展览中心举办了新闻发布会,宣布世界首台动态三维彩色粒度粒形分析仪MORPHO 3D问世。新闻发布会现场  过去,观察样品颗粒的全貌是依靠显微镜,对极少量颗粒进行拍照存档,但如何对颗粒的粒形进行科学的定量,一直是困扰科学家的课题。近年来,随着微电子技术渗入到各个科学领域,图像法粒度粒形分析仪应运而生,因其测量的随机性、统计性和直观性等特点,被公认为是测定结果与实际粒度分布吻合最好的测试技术。  然而,常规的图像法粒度粒形分析仪只能测得颗粒的长度和宽度,不能测量厚度,已无法满足日新月异的工业科技对同样粒径的颗粒进行属性区分要求。  鉴于此,比利时欧奇奥(Occhio)仪器公司经过十余年探索,成功推出了世界首台动态三维彩色粒度粒形分析仪MORPHO 3D,不仅可实现颗粒长度、宽度和厚度的三维测量,还可进行彩色成像。欧奇奥公司海外销售总监杰罗姆&bull 萨巴蒂尔(Jerome SABATHIER)  杰罗姆&bull 萨巴蒂尔介绍说,MORPHO 3D突破性地采用了两部呈90度角的相机由样品正上方和左侧采集数据的技术,以及欧奇奥专利皮带输送技术,首次实现了颗粒三维信息的真实获取,再结合欧奇奥公司的&ldquo 骄子&rdquo (Callisto)3D彩色分析软件,可用于分析非球形颗粒如小球、谷物、药片、玉米、化肥、大米等的粒度及厚度 其彩色分析功能还可以呈现颗粒颜色,并根据颗粒的不同颜色分析每种颗粒群所占比例。同时,其新型及独特的样品分散器能够将一个个颗粒完全分散开,从而保证颗粒之间无干扰采集数据 样品传送带可以将颗粒保持在同一位置,从而得到真实颗粒粒度及厚度即颗粒的三维数据。MORPHO 3D动态三维彩色粒度粒形分析仪从左到右依次为:3D成像分析仪原型机、专利螺旋式干法分散器、动态粒度粒形实时显示  作为欧奇奥公司的战略合作伙伴和中国总代理,美国康塔仪器公司特别将这款创新型颗粒粒度粒形分析仪推向中国市场,希望能够为中国客户打造出材料颗粒特性表征现代化与全方位解决之道。美国康塔仪器公司中国区经理、首席代表杨正红  杨正红表示:&ldquo 正如上世纪90年代末激光粒度分析仪逐渐取代沉降法分析一样,颗粒分析领域正在迎来一个新的时代。目前,国内的混凝土等行业对3D分析有着迫切的需求,因此,MORPHO 3D可以适时、及时地满足这种需求,我们希望越来越多的科研人员和工程师能够关注到MORPHO 3D动态三维彩色粒度粒形分析仪。&rdquo 由MORPHO 3D 捕捉到的颗粒成像效果  会上,与会者对MORPHO 3D动态三维彩色粒度粒形分析仪产生了极大的兴趣,纷纷就该新品的性能特点与应用领域提问,杰罗姆&bull 萨巴蒂尔现场回答了与会者的疑问。  后记:  会后,美国康塔仪器公司中国区经理、首席代表杨正红受仪器信息网编辑邀请,专门撰写了一篇内容详实的图像颗粒测试技术约稿,内容包括不同颗粒测试方法的优缺点、图像颗粒分析法发展历史与优势,以及MORPHO 3D的性能特点及应用领域等。在此,仪器信息网特别将约稿全文呈上,以飨读者。  点击下载:杨正红-图像颗粒测试技术约稿全文编辑:刘玉兰
  • 迅数全自动菌落分析仪精彩亮相全国微生态制剂研讨会
    2010年11月19-21日,&ldquo 全国微生态制剂研究开发与综合应用新技术、新设备交流研讨会&rdquo 在杭州隆重召开,100多位微生态制剂领域的专家和企业代表到会并进行了深入的交流。迅数科技应邀在会上展示了旗下最受欢迎的菌落计数分析仪-&ldquo G6全自动菌落分析仪&rdquo 并向与会代表汇报了自动菌落分析技术在微生态制剂研究与检测中的应用,受到与会代表的高度评价。 迅数全自动菌落分析仪在中粮集团、荷兰帝斯曼乳品创新中心等单位的微生态制剂研究与检测中,取得了诸多创新应用: 自动菌落计数-菌落总数、大肠菌群2010新国标、乳酸菌检验2010新国标; 菌落形态分析-培养基质量控制、菌种筛选(直径大小,面积大小,圆度,颜色等); 抑菌圈自动测量-&beta 内酰胺酶类药物检验、抗菌素耐药类型测定、抑菌性能分析; 显微图像分析:显微图象定量应用、每批次菌株生长情况的显微图像保存。 随着微生态学理论研究的不断深入,微生态制剂也随之迅速地发展起来。我国微生态制剂的研究应用起步较晚,尽管近十几年的市场培育和宣传推广,使微生态制剂无论在人的医疗保健方面、动物保健方面还是农用微生态制剂都取得了空前的发展,但该行业整体上还处于发展期。 本次会议交流展示了我国微生态制剂行业的开发、生产和应用等核心技术,搭建了产学研之间的合作交流平台,必将推动这一产业的进一步健康发展。
  • 捷报核磁共振纤维上油率分析仪荣获2017科学仪器优秀新品
    捷报核磁共振纤维上油率分析仪荣获2017科学仪器优秀新品4月15日,纽迈分析应邀出席在常州召开的“2017第十二届中国科学仪器发展年会”(以下简称ACCSI 2018),当天晚上,在ACCSI 2018年度仪器风云榜颁奖盛典上,纽迈工业核磁——核磁共振纤维上油率分析仪凭借出色的产品性能和市场反馈从134台入围仪器中脱颖而出,荣获了“2017科学仪器优秀新品”奖 据悉,在2016年该年会的颁奖典礼上,纽迈获得“2015科学仪器行业最具成长潜力企业” 第十二届“科学仪器优秀新产品”从2017年底开展以来,共有来自 287家国内外仪器厂商申报的688台2017年度上市的仪器新品通过了审批。在入围的132台仪器中,来自超过75位业内专家按照严格的评审程序对入围的新品进行网上评议,最终评选出30台”2017年度科学仪器优秀新产品“,纽迈核磁共振纤维上油率分析仪榜上有名。 获奖理由: 核磁共振纤维上油率分析仪 :该仪器快速、精确、无损,目前应用于包含粘胶、涤纶短丝、涤纶长纤、锦纶和丙纶在内的16种纤维的上油率测试分析,其中涤纶短丝的含油率分析是纽迈独创的方法,在目前市场中的同类产品中具有竞争优势。PQ001核磁共振纤维上油率分析仪是一款纤维企业专用小核磁,已成熟应用于纤维含油率的分析测试,此外,除了含油率分析,还可以用于粘胶、锦纶等材料的回潮率测试,以及工业锦纶、涤纶等的化纤工业丝的附胶量测试。ACCSI对话:杨培强董事长及6位老总”华山论剑“此次ACCSI 2018举办期间,纽迈分析董事长杨培强先生受邀出席“中国科学仪器发展年会高峰论坛,与其他6位老总论贸易战下的科学仪器发展之道。纽迈分析小编特在常州现场为大家实时直播ACCSI对话的内容,对于以下问题,他们都怎么说2017年,各公司的业绩增长主要来自哪些领域?哪类仪器?杨董:纽迈分析2017年业绩保持两位数增长,主要在能源、食品农业领域。 纽迈专业做低场核磁共振技术,测试含油含水、含孔、含氢的介质。如有需求详询:400 060 3233或http://www.niumag.com/物联网、人工智能概念如此火热,这类新技术是否已在纽迈公司得到应用?杨董观点:纽迈快速成长或者说低场核磁共振的广泛应用就得益于对数据的采集、挖掘、共享和处理。核磁共振的诞生其实就是现代仪器+人工智能+大数据相互应用的结果:因为核磁共振的原理是提取待测物质中氢的信号,把信号进行大数据的提取和人工智能的算法处理,从而对待测样品的品质情况进行评判。两个典型的案例分别是育种行业中玉米的筛选和食用油品质的快速鉴别,像食用油数据这块我们整整做了10年了,大数据的积累为我们最终输出方法提供最坚实可靠的基石。这里我先透露一下,这款仪器很快就会推出来,敬请期待!“您认为2018年的国务院机构改革是否会影响科学仪器行业?”“中美贸易战打响,贵公司是否受波及?”“2018年您最看好哪个市场? 哪类仪器?”想知道杨董对于以上问题是如何回答的,扫描二维码查看直播回放!纽迈专注于“低场核磁共振”技术及应用推广、具备强大的研发能力、完备的生产、服务和成熟的运营管理体系。公司自主开发多款核磁共振分析仪器并已获得多项国家奖项和资质认证,产品广泛应用于农业食品、能源勘探、高分子材料、纺织工业、生命科学等行业领域,获得业界一致认可。
  • 1220万!广州医科大学全景组织单细胞识别及图像分析系统等采购项目
    一、项目基本情况项目编号:GZZJ-ZG-2023163项目名称:广医大2023年科研仪器设备购置项目(六)采购方式:公开招标预算金额:7,713,300.00元采购需求:合同包1(低温保存箱等设备):合同包预算金额:2,562,700.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1临床检验设备二级生物安全柜(A2型)20(台)详见采购文件1,260,000.00-1-2临床检验设备二级生物安全柜(B2型)13(台)详见采购文件819,000.00-1-3试验箱及气候环境试验设备电热恒温干燥箱7(台)详见采购文件117,600.00-1-4试验箱及气候环境试验设备低温保存箱7(台)详见采购文件171,500.00-1-5试验箱及气候环境试验设备生化培养箱7(台)详见采购文件194,600.00-本合同包不接受联合体投标合同履行期限:合同签订后90个日历日内交货、安装及调试。(不包含质保期)合同包2(常温台式离心机等设备):合同包预算金额:3,395,600.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)2-1消毒灭菌设备及器具高压灭菌锅7(台)详见采购文件306,600.00-2-2显微镜普通倒置显微镜7(台)详见采购文件420,000.00-2-3离心机台式冷冻离心机7(台)详见采购文件595,000.00-2-4离心机常温台式离心机7(台)详见采购文件420,000.00-2-5分析仪器辅助装置移液器14(套)详见采购文件142,100.00-2-6试验箱及气候环境试验设备恒温金属浴7(台)详见采购文件24,500.00-2-7试验箱及气候环境试验设备恒温沙浴7(台)详见采购文件22,400.00-2-8试验箱及气候环境试验设备过氧化氢消毒机1(台)详见采购文件265,000.00-2-9显微镜倒置荧光显微镜4(台)详见采购文件1,200,000.00-本合同包不接受联合体投标合同履行期限:合同签订后90个日历日内交货、安装及调试。(不包含质保期)合同包3(直热式二氧化碳培养箱):合同包预算金额:1,755,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)3-1试验箱及气候环境试验设备直热式二氧化碳培养箱27(台)详见采购文件1,755,000.00-项目编号:GZZJ-ZG-2023164项目名称:广医大2023年科研仪器设备购置项目(三)采购方式:公开招标预算金额:4,490,000.00元采购需求:合同包1(全景组织单细胞识别及图像分析系统等设备):合同包预算金额:2,990,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他分析仪器全景组织单细胞识别及图像分析系统1(套)详见采购文件2,590,000.00-1-2临床检验设备石蜡切片机1(台)详见采购文件400,000.00-本合同包不接受联合体投标合同履行期限:合同签订后90个 日历日内交货、安装及调试。(不包含质保期)合同包2(全自动数字玻片扫描系统):合同包预算金额:1,500,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)2-1其他分析仪器全自动数字玻片扫描系统1(套)详见采购文件1,500,000.00-本合同包不接受联合体投标合同履行期限:合同签订后90个 日历日内交货、安装及调试。(不包含质保期)二、获取招标文件时间: 2023年05月06日 至 2023年05月25日 ,每天上午 00:00:00 至 12:00:00 ,下午 12:00:00 至 23:59:59 (北京时间,法定节假日除外)地点:广东省政府采购网https://gdgpo.czt.gd.gov.cn/方式:在线获取售价: 免费获取三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:广州医科大学地 址:广州市番禺区新造镇新造路1号联系方式:371031322.采购代理机构信息名 称:广州中经招标有限公司地 址:广州市越秀区寺右一马路18号泰恒大厦14楼1409室联系方式:020-873851513.项目联系方式项目联系人:陈秀洁电 话:020-87385151
  • 图像分析法在3D打印金属粉末粒度及形状表征领域的应用
    2021年6月1日,《增材制造 金属粉末性能表征方法》(GB/T 39251-2020)[6]正式实施, 该标准中明确要求按照《粒度分析 图像分析法 第2部分:动态图像分析法》(GB/T 21649.2- 2017)[3]来检测并计算金属粉末颗粒投影的球形度值。早在2018年,德国最大的学术组织德 国工程师协会(Verein Deutscher Ingenieure,VDI)在《Additive manufacturing processes, rapid manufacturing Beam melting of metallic parts Characterisation of powder feedstock》(VDI 3405 Part 2.3)[13]中已将动态图像分析法列为增材制造金属粉末粒度及粒形分析的首选方法;美国材料试验协会(American Society of Testing Materials,ASTM)在《Additive manufacturing — Feedstock materials — Methods to characterize metal powders》(ASTM 52907:2019)[12]中, 也将动态图像分析法列为金属粉末粒度分析的方法之一。此次GB/T 39251的实施,代表着我国在金属粉末表征领域与国际同步。 自1999年动态图像法被发明至今已有22年的发展历程,技术层面已经十分成熟,得益于其“所见即所得”的直接测量方法,如今在亚微米-毫米尺度内正被越来越多的用户推崇, 用于颗粒粒度与粒形表征。本文使用图像分析法,激光衍射法和筛分法分别测量了金属粉末的粒度与形状,从形状分析灵敏度、与传统方法对比以及对大颗粒的检测灵敏度等方面对测量结果进行了对比分析,论证了图像分析法在该领域的应用优势。 1. 动态图像法分析原理说明:1 分散态的颗粒;2 颗粒运动控制装置;3 测量区域;4 光源;5 光学系统;6 景深;7 图像采集 设备;8 图像分析设备;9 显示 图1 动态图像法流程图 动态图像分析流程:粉末样品在(2)颗粒运动控制装置的控制下,均匀分散地进入(3) 测量区域,(4)光源发射的可见光经(5)光学系统转变为平行光,平行光照射到粉末颗粒 后形成的颗粒投影被(6)图像采集设备拍摄捕捉,颗粒图像传输至(8)图像分析设备,统 计分析得到最终结果(9)。图2 基于双摄像头成像技术的Microtrac MRB动态图像分析仪Camsizer X2,分析范围0.8μm-8mm 2 . 动态图像法在增材制造领域的应用优势 增材制造金属粉末粒度一般在20μm-80μm之间并且分布尽可能窄,同时卫星颗粒、非球形颗粒、超大颗粒或熔结颗粒的含量应尽可能低,以提高粉末烧结性能并且避免成型缺陷。 另外,3D打印过程中仅有少部分粉末用于部件成型,另有大部分粉末需要回收利用,回收粉末是否仍然满足打印质量要求是金属粉末质量检测的重要课题。传统方法一般使用筛分法或 气流分级法分级金属粉末得到所需粒度段,使用激光衍射法和筛分法测定金属粉末粒度分布,使用扫描电镜观察金属粉末球形度。 2.1 快速准确定量分析颗粒形状 利用气雾法在不同生产条件下得到原始粉末,并使用筛分法筛选出<60μm的1#与2#合 金粉末,使用SEM扫描电镜观察1#与2#合金粉末,得到图3样品图片,使用动态图像分析仪 Camsizer X2检测1#与2#合金粉末,得到图4的粒度分布与粒形分布曲线。图3 1#、2#合金粉末的扫描电镜图像图4 1#与2#合金粉末的粒度频率分布曲线(左)与球形度曲线(右)分析仪器:Microtrac MRB德国麦奇克莱驰 Camsizer X2 如图4所示,1#与2#样品粒度分布几乎完全重叠,但其球形度SHPT分布曲线呈现明显差 异,其中1#样品SHPT曲线整体更靠近右侧,表明1#样品的颗粒形貌更加规则。 表1 具有相同粒度分布的两个金属粉末样品的动态图像分析结果从表1中可知,1#与2#样品的D10、D50、D90值偏差仅有1μm左右,使用激光粒度仪根 本无法检测出两个样品的差异;使用SEM观察颗粒形状,如图3所示,虽然直观感觉1#样品 的形貌比2#样品更加规则,但SEM无法量化表征粒形数值,只能作为参考展示和定性分析; 使用动态图像法检测两个样品,球形度SPHT平均值分别为0.9166和0.8596,如果把球形度值 0.9作为球形颗粒认定标准的话,1#与2#样品SPHT>0.9的球形颗粒占比分别为65.88%和 38.02%。动态图像分析仪仅用时4-5分钟,就统计了超过1000万颗颗粒信息,得到极佳的具 有统计代表性的结果。 2.2 粒度粒形同步分析 Microtrac MRB动态图像分析仪Camsizer X2采用两个420万像素的高分辨率摄像头,每 秒钟可拍摄超过300张图像,软件统计每一张图像中的每一颗颗粒粒度及形状数据。 使用Camsizer X2检测金属粉末得到颗粒投影原始灰度图像,如图5所示,使用图像分析 功能提取出两颗颗粒的粒度与粒形数据如表2所示。图5 动态图像法单颗粒投影原始图像 表2 单个颗粒粒度与粒形数据动态图像法拍摄统计每一颗颗粒的粒度及粒形数据,基于真实的颗粒测量,所见即所得, 不受样品折射率、遮光率的影响,不受筛网变形影响,检测结果比激光粒度仪和筛分仪更加 可靠。但是在新颁布的国家标准中,粒度分布测定方法仅列出了激光衍射法与筛分法,笔者 分析是在标准制定过程中,考虑到目前图像法分析仪的市场占有率远远低于激光粒度仪,出 于方法普遍性而做出的选择。在德国VDI和美国ASTM标准中,均将图像法列为粒度和粒形 分析方法之一,在后续的标准修订中我们应该改进。 2.3 与传统方法的对比 根据样品不同、检测方法不同、应用方向不同,颗粒粒径有多种不同定义,如图6所示。 图 6 常用的颗粒粒径定义 Xc min:颗粒弦长,从 64 个不同方向测量颗粒在该方向上的最大弦长 Xc,取 64 个弦长值中最小的一 个作为颗粒弦长 Xc min,Xc min常用于和筛分法结果对比。 Xarea:等效球径,与颗粒投影面积相等的圆形的直径,Xarea 常用于和激光衍射法结果对比。 XFe max:颗粒长度,从 64 个不同方向测量颗粒在该方向上的费雷特直径 XFe,取 64 个费雷特直径中最大的一个作为颗粒长度 XFe max,即颗粒的最大卡规径。 动态图像法根据颗粒投影所占据的像素数量与位置,一次进样可以检测图 6 中 3 种不 同的粒径定义。 2.3.1 动态图像法与激光衍射法的对比 激光粒度仪一般基于米氏理论或弗朗霍夫理论,利用颗粒对光的散射现象,根据散射光 能的分布计算被测颗粒的粒度分布:当样品颗粒的散射光分布与某一大小的球形颗粒的分布 一致时,即认为样品颗粒大小等于该球形颗粒的直径。即激光粒度仪所测粒径为图6中的等 效球径Xarea,对于大部分非规则的颗粒样品,激光粒度仪测量结果存在系统性偏差。 分别使用动态图像分析仪与激光粒度仪测量4种不同形状的金属粉末,得到图7的粒度累积分布曲线。图7 激光粒度仪与动态图像分析仪粒度累积分布曲线对比 动态图像分析仪器:Camsizer X2(Microtrac MRB) 激光粒度分析仪器:Sync(Microtrac MRB) 红色曲线:Xc min 颗粒弦长;绿色曲线:Xarea 等效球径;蓝色曲线:XFe max 颗粒长度;黑色曲线:激光粒度 使用动态图像分析仪可以同时得到颗粒弦长Xc min、等效球径Xarea与颗粒长度XFe max三条 曲线,如果样品是球形颗粒,如图7中Sample1与Sample2所示,3条曲线差距很小;如果样品 中含有非球形颗粒,如图7中Sample3与Sample4所示,3条曲线就会呈现明显差异,并且样品 越不规则,3条曲线差异越明显。激光粒度仪无法区分颗粒宽度与长度,其检测结果一般位 于动态图像分析仪的颗粒弦长与颗粒长度之间。Sample2为通过53μm孔径筛网的金属粉末,所有颗粒的弦长均应小于53μm,只有部分 颗粒的长度可能大于53μm。如图7所示,Sample2的红色曲线Xc min上限D100<53μm,只有 蓝色曲线XFe max检测到少量>53μm的颗粒,而黑色曲线激光粒度数据显示有超过5%的颗粒 >53μm,与实际存在误差。这表明,激光粒度仪对颗粒粒度上限的检测精度不够准确,图 像分析仪可以准确检测粒度上限D100,更接近真实结果。 2.3.2 动态图像法与筛分法的对比 筛分法作为一种经典的颗粒分级与粒度分布测量方法,被广泛应用于金属粉末的质量控制,此次实施的国家标准中,建议>45μm的金属粉末可以采用筛分法来测定粒度及粒度分布。筛分法的优点是检测范围宽、重复性好、设备成本低,缺点是检测效率低,人为误差大, 受筛网变形影响大。目前所用的筛网一般是金属丝编织筛网,网孔大小指方形网孔编织丝线 间的垂直距离。理论上标准球形颗粒通过筛网的最小孔径等于其颗粒直径,非球形颗粒通过 筛网的最小孔径约等于其颗粒弦长,如图4所示。 分别使用筛分法和动态图像法测量某粒度区间位于100μm-5mm的宽分布塑料颗粒,得到图8所示曲线。图8 宽分布塑料颗粒动态图像法与筛分法一致性曲线,横坐标为筛网目数 动态图像法分析仪器:Camsizer P4(Microtrac MRB) 筛分法分析仪器:AS200C(Retsch GmbH) 如图8所示,即使是粒度分布非常宽的样品,动态图像分析仪Camsizer也能够准确检测, 检测结果Xc min与筛分法结果高度一致,可以直接替代筛分法用于金属粉末的粒度和粒度分布测定。 实际筛分过程中,由于筛网的产地不同、标准不同、质量不同等多方面因素,再加上筛分过程中的人为误差,常常会产生非常大的筛分误差。为减小筛分误差,首先应选用经过计量认证的不易变形的标准筛网,其次,应使用振动筛分仪器在标准程序下进行筛分。 2.4 超大颗粒的检测灵敏度 增材制造金属粉末中少量大颗粒的存在会很大程度上影响粉体流动性和铺粉效率,从而影响成型件的结构强度,容易形成空隙和划痕,所以需要对金属粉末的粒度分布,尤其是超大颗粒的含量进行严格的控制。传统的激光粒度仪由于分析原理限制,对于超大颗粒的检测灵敏度仅为 2%左右。德国麦奇克莱驰 Microtrac MRB 的动态图像分析仪 Camsizer X2 采用 双摄像头技术,拍摄区域宽,分析精度高,对超标颗粒检测灵敏度可达 0.01%。 在约5克<80微米的金属粉末样品(图9 上左)中加入约0.005克(0.1%)的超过200μm 的大颗粒(图9 上中),使用Camsizer X2检测该混合样品得到图9下粒度分布曲线。‍图9 动态图像分析仪Camsizer X2对超大颗粒的检测灵敏度 如图9下所示,Camsizer X2准确检测到0.1%的超大颗粒。继续添加不同组分的超大颗粒, 验证Camsizer X2对大颗粒含量的识别精度,得到如表3结果: 表3 Camsizer X2对不同组分大颗粒的检测精度即使低至0.005%含量的超大颗粒,Camsizer X2也能够准确识别,依靠其双摄像头成像 技术,Camsizer X2超宽的检测范围不会漏拍任何颗粒。 3. 静态图像分析法在增材制造领域的应用 此次实施的标准中,显微镜法也是测量粉末球形度的方法之一。显微镜配备测量软件, 即为一台静态图像分析仪器,方法依据《粒度分析 图像分析法 第1部分:静态图像分析法》 (GB/T 21649.1 2008)[4]。图10 德国麦奇克莱驰Microtrac MRB静态图像分析仪Camsizer M1 静态图像分析仪Camsizer M1配备最多6个不同倍数的放大镜头,可以清晰拍摄细至0.5 微米的颗粒,检测上限可达1.5毫米,完全覆盖金属粉末的粒度范围。 与动态图像法一样,静态图像法同时检测颗粒的多项粒度与粒形参数,如图13所示。分 别使用动态图像分析仪Camsizer X2与静态图像分析仪Camsizer M1检测粒度区间位于38-53 μm和90-106μm的颗粒样品,对比两种方法的优劣,得到图11所示粒度频率分布曲线与表 4检测数据。‍图11 动态图像分析与静态图像分析结果 动态图像分析仪:Camsizer X2 (Microtrac MRB) 静态图像分析仪:Camsizer M1 (Microtrac MRB) 表4 动态图像分析与静态图像分析检测结果静态图像分析仪样品统计量少,容易产生取样误差,适合窄分布的样品。由于颗粒统计量少,所以大颗粒对静态图像分析仪检测结果影响较大,如图11所示,90-106μm样品的静 态图像分析曲线连续性较差,为了增加颗粒统计数量提高统计代表性,静态图像分析仪检测 时间一般在10分钟以上。 由表4可知,窄分布细颗粒样品的动态图像与静态图像检测结果一致性较好,宽分布粗颗粒样品一致性较差;动态图像比静态图像分析时间短,颗粒统计量大。 同时,静态图像分析要求颗粒应以合适浓度均匀分散在载玻片上。Camsizer M1配备专门的粉末分散装置M-jet,使用10-70kPa的负压均匀分散粉末,避免由于分散不均造成的颗粒 堆叠、黏连现象,分散效果如图12所示。图12 采用M-jet分散的金属粉末总览图 Camsizer M1采用透射光与入射光两种光源,能够从多角度拍摄分析金属粉末,在软件中分别读取入射光颗粒图像与透射光颗粒图像,见图13。图13 Camsizer M1入射光(左)与透射光(右)拍摄的金属粉末原始图像 由于颗粒处于静止状态,并且光学系统性能更加优秀,静态图像分析仪的成像质量一般远远优于动态图像分析仪。Camsizer M1的入射光图像(图13 左)能够拍摄颗粒表面细节, 观察卫星颗粒、熔结颗粒以及异形颗粒的状态,有助于更深层次了解金属粉末。 总结 图像分析法在亚微米-毫米尺度内正被广泛应用于粉体粒度分布与颗粒形貌的分析,完美适用于增材制造金属粉末。 图像分析法分为动态图像分析与静态图像分析两种,动态图像法的优势是统计代表性好、 检测时间短,检测结果可以与激光衍射法和筛分法对比,适用于金属粉末的快速准确质检; 静态图像法的优势是图像清晰度高,可以观察更多金属粉末的表面细节,适用于研发,但静态图像法检测时间长、统计代表性有待提高,取样量少容易产生取样误差,摄像头的聚焦范围窄,不适用于宽分布样品的检测分析。参考文献 1. Microtrac MRB. 066 Metal Powders with Lazer Diffraction and Image Analysis Sync X2 EN 2. 郭瑶庆, 严加松, 舒春溪,等. 催化裂化催化剂形貌分析方法的建立[J]. 工业催化, 2020(3):73-77. 3. GB/T 21649.2-2017,粒度分析 图像分析法 第2部分:动态图像分析法[S]. 4. GB/T 21649.1-2008,粒度分析 图像分析法 第1部分:静态图像分析法[S]. 5. GB/T 15445.6-2014,粒度分析结果的表述 第6部分:颗粒形状和形态的定性及定量表述[S]. 6. GB/T 39251-2020,增材制造 金属粉末性能表征方法 7. 罗章, 蔡斌, 陈沈良. 动态图像法应用于海滩沉积物粒度粒形测试及其与筛析法的比较 [J]. 沉积学报, 2016, 34(005):881-891. 8. 涂新斌, 王思敬. 图像分析的颗粒形状参数描述[J]. 岩土工程学报, 2004, 26(5):659-662. 9. 杨启云, 吴玉道, 沙菲,等. 选区激光熔化用Inconel625合金粉末的特性[J]. 中国粉体技术, 2016(3):27-32. 10. [1]刘鹏宇. 典型选区激光熔化粉末的特性及其成型件组织结构的研究[D]. 兰州理工大 学. 11. Nan D , Zz A , Jl B , et al. W–Cu composites with homogenous Cu–network structure prepared by spark plasma sintering using core–shell powders - ScienceDirect[J]. International Journal of Refractory Metals and Hard Materials, 2019, 82:310-316. 12. EN ISO/ASTM 52907-2019,Additive manufacturing - Feedstock materials - Methods to characterize metal powders[S]. 13. VDI 3405 Blatt 2.3:2018-07 Additive manufacturing processes, rapid manufacturing - Beam melting of metallic parts - Characterisation of powder feedstock[S].作者:王瑞青 德国麦奇克莱驰 Microtrac MRB
  • 550万!中南大学冶金与环境学院电子探针显微分析仪采购项目
    项目编号:HZ20220201-0143项目名称:中南大学冶金与环境学院电子探针显微分析仪采购项目预算金额:550.0000000 万元(人民币)采购需求:序号标的名称分项项目名称(标的名称)是否核心产品是否接受进口数量(台套)采购项目预算(人民币)交货要求代理服务收费标准交货时间交货地点1中南大学冶金与环境学院电子探针显微分析仪电子探针显微分析仪电子探针显微分析仪主机(5通道10块晶体)是是1台550万元免税手续办理完成后45个工作日内湖南省长沙市中南大学新校区金贵楼具体收费标准详见本项目“投标须知前附表2配套电子探针能谱仪否是1台3配套电子探针高真空喷碳仪否是1台4配套电子探针循环水冷机否否1台5配套电子探针外置整机不间断电源否否1套6配套电子探针除湿机否否1台7配套电子探针电子防潮柜否否1台8配套电子探针激光打印机否否1台9配套电子探针用标准参考物质否否1套 注:具体详见本项目招标文件第五章采购需求。合同履行期限:具体内容详见招标文件第五章的“采购需求”。本项目( 不接受 )联合体投标。
  • Nature技术突破:质谱和显微技术首次完成“图像融合”
    来自范德比尔特大学的研究人员完成了质谱分析和显微技术的第一次&ldquo 图像融合&rdquo ,这一技术突破将能极大的提高癌症的诊断效率和治疗疗效。这一研究成果公布在Nature Method杂志上。  显微技术能帮助研究人员获得组织的高分辨率图像,但&ldquo 这种技术无法给你具体的分子信息,&rdquo 范德比尔特大学的生化和质谱研究中心主任,文章的通讯作者Richard Caprioli博士说。  而质谱技术能完成组织中蛋白,脂质及其它分子的各种精确分析,但是图像处理过于粗糙。如果能将这两种技术的优点结合起来,将能令研究人员获得高分辨率的体内分子构成。  &ldquo 对我来说,这是一项重要的技术突破,&rdquo Caprioli博士说。  Caprioli表示这项技术能重新定义外科范畴,比如肿瘤外科手术时癌细胞与正常细胞边界的界限。目前这一界限是由组织学决定的,也就是通过显微镜观察细胞外观获取的。但是不少癌症患者在手术后又会复发,这有可能是因为一些癌细胞看上去像是正常细胞,如果利用质谱技术进行蛋白成分分析,那么就能精确标记癌细胞范围了。  这一技术成果由多名研究人员完成,包括荷兰代尔夫特理工大学Raf Van de Plas博士,范德比尔特大学Junhai Yang博士等。  在这项研究中,他们采用了一种称为回归分析(regression analysis,编者译)的数学方法,从而能将质谱信息的每个像素投射到显微成像的对应位置上,获得一个全新的&ldquo 预测&rdquo 图像。  这在概念上类似于绘制标准曲线的实验点,Caprioli 说,虽然在这些真实测量点之间没有&ldquo 实际点&rdquo ,但是可以通过之前的实验进行预测。&ldquo 我们预测数据也采用了相同的方法,&rdquo 他说。
  • 基于声波聚焦技术,赛默飞推出全新图像增强流式分析仪Attune CytPix
    近期,赛默飞宣布推出Invitrogen Attune CytPix流式细胞仪,这是一款图像增强型的流式细胞仪,将声波聚焦流式细胞术与高速相机相结合。有了Attune CytPix流式细胞仪,用户能够从细胞中收集高性能的荧光流式数据,同时捕获高分辨率的明场图像,从而将图像与流式数据进行匹配,以便更好地了解细胞形态和质量。借助专利的声波聚焦技术,Cytpix能够很好地稳定细胞在液流中的位置,从而实现在高流速上样(最高达1ml/min)的同时进行高清成像(6000张/s)。其独特应用在于:利用图像的方法排除杂质和异常细胞的干扰,精细圈门;研究细胞互作;结合形态学和荧光产生新的分析方法,比如微生物学研究;对细胞培养物进行进一步的图像QC鉴定,特别适合细胞治疗领域;精细测量样本中单个细胞的面积,获得新的空间数据等。赛默飞蛋白质和细胞分析副总裁兼总经理Valerie Bressler-Hill说:“先前收集细胞图像和高性能流式数据需要进行两个独立的实验,需要花费额外时间将细胞表型与图像相关联。而Attune CytPix结合了上述工作流程,提供了图像增强型的流式细胞分析技术。它以简单易用的形式提供额外的样本和数据质量控制,代表了客户对台式流式细胞仪的期望又向前迈进了一步。”据了解,Invitrogen Attune CytPix流式细胞仪是一款用户友好的、模块化的台式仪器,让从事质量控制或细胞治疗应用的研究人员能够在不牺牲速度或简便性的情况下收集有关细胞和样本质量的额外信息。
  • 苏州医工所关于图像扫描显微成像技术最新研究进展
    p  激光扫描共聚焦显微镜(Laser Scanning Confocal Microscopy,LSCM)是研究亚微米细微结构的有效手段,广泛应用于生物医学、材料检测等领域,是从事生物医学和材料科学研究的科技工作者必备的研究工具。然而,在共聚焦显微镜中,其分辨率与信噪比相互矛盾,不能同时实现高分辨率和高信噪比。近年来出现的基于共聚焦显微成像的图像扫描显微成像技术解决了这一问题,可以同时实现高信噪比、高分辨率成像。由于显微成像的分辨率与入射光偏振态有关,因此对入射光的偏振调制仍可以进一步提高图像扫描显微技术的分辨率。/pp  近期,中国科学院苏州生物医学工程技术研究所张运海课题组的肖昀等研究人员,对入射光进行偏振调制,得到尺寸较小的径向偏振光纵向分量的聚焦光斑,成功提高了现有图像扫描显微成像技术的分辨率,获得了高信噪比且更高分辨率的图像。该技术利用径向偏振光的纵向分量具有紧凑型光斑的特性,获得了较小的照明光斑,并进行图像扫描显微成像,与普通图像扫描成像相比,其分辨率提高了7%。/pp  研究结果表明,径向偏振光的图像扫描成像的分辨率优于圆偏振光,其分辨率是1AU针孔下共聚焦成像的1.54倍,同时径向偏振光纵向分量的图像扫描成像信号强度是1AU针孔下共聚焦成像的1.54倍,优于圆偏振光的图像扫描成像。在高分辨显微成像中,当背景噪声不变时,信号强度越强,信噪比越好。尤其是在探测微弱的荧光信号时,信号强度增加,信噪比改善比较明显。该研究结果有助于径向偏振光在图像扫描显微成像中的应用。/pp  以上成果已经在Optics Communications上发表。该工作得到了国家重大科研装备研制项目(超分辨显微光学关键部件及系统)、江苏省六大人才高峰资助项目、江苏省自然科学青年基金以及苏州应用基础研究计划项目的支持。/pp  文章链接/pp  centerimg width="500" height="331" alt="" src="http://www.cas.cn/syky/201706/W020170614377009851718.png"//centerp/pp /pp /pp  图1. 25个点阵列图案成像,(a)为25个方形点的阵列图案,每个点的边长为0.06λ,相邻点的间距为0.46λ,(b)、(c)、(d)分别为阵列图案经过1AU针孔下传统共聚焦显微系统、圆偏振光与径向偏振光纵向分量图像扫描成像生成的图像,(e)为(b)、(c)、(d)中绿线位置的光强分布。/pp  centerimg width="500" height="132" alt="" src="http://www.cas.cn/syky/201706/W020170614377009864453.png"//centerp/pp /pp /pp  图2.(a)1AU针孔下传统共聚焦成像(黑色曲线)、0.2AU针孔下传统共聚焦成像(绿色曲线)、1AU针孔下圆偏振光(蓝色曲线)和径向偏振光纵向分量(红色曲线)分别经过图像扫描成像的PSF横向强度曲线,(b)为(a)中PSF所对应的OTF,(c)中黑色曲线、绿色曲线、红色曲线分别为1AU针孔下传统共聚焦成像、0.2AU针孔下传统共聚焦成像、1AU针孔下径向偏振光纵向分量图像扫描成像的PSF横向强度曲线。/p/p/p
  • 瑞士华嘉动态颗粒图像分析技术问世
    2009年,新年伊始,挪威安娜泰克有限公司(AnaTec AS,Norway)发布了其最新的动态颗粒图像分析技术,三维图像动态识别专利(3D images),并携带其主打产品,FPA颗粒图像分析仪及DustMon粉尘浓度测量仪,在中国各主要城市进行了为期一周的巡回展示,得到了相关应用领域专家的一致好评。  Mr. Terje Jorgensen,安娜泰克有限公司执行总裁,全程参与了瑞士华嘉有限公司为该产品在中国首发的一系列市场活动。作为一种全新的动态颗粒图像分析技术,安娜泰克公司采用了比常规动态图像分析方法更为先进的3D images(三维图像动态识别)专利,能实时区分同一颗粒在不同影像位置时的几何形态,配合多种高效快捷的全自动取/进样器,被测样品量大,能真正得到极具代表性的颗粒图像分析结果。  二十多年来,挪威安娜泰克有限公司一直致力于在线及实验室用颗粒图像分析技术的研究与生产,开发出一系列针对不同应用领域的高性能图像分析仪器。前身为Norsk Hydro集团(全球500强公司之一)的研发机构,安娜泰克以其在诸多工业应用领域成熟的技术平台,能够为终端客户量身定制,提供颗粒图像分析的全套解决方案,包括硬件配置,软件设计,系统安装,技术支持及反馈。安娜泰克的所有产品结构牢固,操作简单(兼容LIMS系统),在建筑材料,食品工业,矿物加工,制药原料,石油石化等领域有着广泛的应用前景。
  • 500万!吉林大学电子探针显微分析仪采购项目
    项目编号:JLU-WT22260项目名称:吉林大学电子探针显微分析仪采购项目预算金额:500.0000000 万元(人民币)最高限价(如有):475.0000000 万元(人民币)采购需求:货物名称:电子探针显微分析仪数量:一套主要技术参数:*1.2.2 谱仪道数:≥4道本项目允许进口产品进行投标。合同履行期限:收到信用证后300日内发货。本项目( 不接受 )联合体投标。公告.docx
  • 220万!华中科技大学同济医学院显微成像流式细胞分析仪采购项目
    项目编号:HBCZ-22020156-221518项目名称:华中科技大学同济医学院附属同济医院采购显微成像流式细胞分析仪项目预算金额:220.0000000 万元(人民币)最高限价(如有):220.0000000 万元(人民币)采购需求:包号设备名称数量预算总价/最高限价(万元)交货期质保期是否可以采购进口产品备注1显微成像流式细胞分析仪1220合同签订后2个月内2年是 合同履行期限:合同签订后2个月内。本项目( 不接受 )联合体投标。
  • 电子显微镜首次生成彩色图像
    想象你的一生只能在看见黑色和白色的世界中度过,然后第一次看见一瓶彩色的玫瑰花。这便是利用电子显微镜首次拍摄下细胞多色彩照片的科学家拥有的感觉。  电子显微镜可将一个物体放大到1000万倍,从而使研究人员得以窥视细胞或蝇眼的内部工作原理。但迄今为止,他们看到的只有白色和黑色图像。最新进展利用了3种被称为镧系元素的不同稀土金属。它们被分层叠放在显微镜载片上的细胞上方。显微镜能探测到每种金属何时失去电子并且用人工色素记录下每一次过程。迄今为止,研究人员仅能产生3种颜色——红色、绿色和黄色。他们在日前出版的《细胞化学生物学》杂志网络版上报告了这一成果。  不过,这种利用不同颜色的能力创造了灰度图像无法实现的鲜明对比。比如,该团队能更详细地看见一连串蛋白挤过细胞膜,而这是科学家此前从未做到的。随着进行更多微调并加入金属离子,研究人员希望再添加三四种其他颜色并且改善图像的分辨率。
  • 岛津原子力显微镜——锂电池导电性分析(联用元素分析工具)
    锂离子电池是一种可充电蓄电池,其通过从活性材料的结构中解吸/插入Li+来充电/放电。从制作工艺而言,锂电池正极由活性材料、导电剂、粘结剂、增稠剂及溶剂去离子水等多相物质混合制成。这其中,对于提高性能和质量控制,最重要的是活性材料、粘合剂和导电添加剂的工作状态和分布状态。图1 锂电池充放电示意图目前应用最为广泛的正极材料主要有钴酸锂、磷酸铁锂、锰酸锂、三元材料镍钴锰酸锂和镍钴铝酸锂等。其中高镍三元锂离子电池正极材料NCM(锂镍锰钴氧化物;Li(Ni-Co-Mn)O2)凭借比容量高、成本较低和安全性优良等优势,成为研究的热点,被认为是极具应用前景的锂离子动力电池正极材料。为了保证电极具有良好的充放电性能,通常加入一定量的导电剂,在活性材料之间、活性材料与集流体之间起到收集微电流的作用,以减小电极的接触电阻,加速电子的移动速率。导电剂的材料、形貌、粒径及含量对电池都有着不同的影响,碳系导电剂从类型上可以分为导电石墨、导电炭黑、导电碳纤维和石墨烯。常用的锂电池导电剂可以分为传统导电剂(如炭黑、导电石墨、碳纤维等)和新型导电剂(如碳纳米管、石墨烯及其混合导电浆料等)。锂电池粘结剂是一种将活性材料粘附在集流体上的高分子化合物。专门用于粘结和固定电极活性材料,增强电极活性材料与导电剂以及活性材料与集流体之间的电子接触,更好地稳定极片的结构。聚偏氟乙烯(PVDF)是一种具有高介电常数的聚合物材料,具有良好的化学稳定性和温度特性,具有优良的机械性能和加工性,对提高粘结性能有积极的作用,被广泛应用于锂离子电池中,作为正负极粘结剂。另一方面,正极中的这三种主要物质的分布状态和工作状态决定了锂电池的充放电性能。最常遇到的不利情况包括不导电的粘结剂对活性材料的包裹导致无法参与反应,活性材料颗粒的碎裂导致隔离于反应体系,粘结剂/导电剂分散不均导致一些区域间隙过大使活性材料隔离于反应体系。在这些情况下活性材料成为死的活性材料,不再参与电极反应。图2 正极中各组分存在状态为了更全面地分析,需要结合多种仪器进行。传统上,SEM+EDS可以对正极表面形貌和元素分布。但是局限性也很大,首先,EDS仅是一种定性分析工具,不能对元素进行定量分析,需要更精确的方法;另一方面,SEM仅能观察形貌,无法观测正极的工作状态,需要一种表面电学性能观测的方法。因此本实验使用EPMA电子探针微量分析仪(EPMA-8050G)测量正极的元素分布,使用原子力显微镜(SPM-9700HT)观测表面电流分布状态。通过比较EPMA和SPM相同区域图像来评估正极表面各种组分的工作状态。比较EPMA和SPM在相同区域的分析结果。图3至图5示出了EPMA数据,图6至图8示出了SPM数据。在EPMA结果中,图3是成分图像(COMPO),图4是C和F分析的叠加图像,图5是Mn、Co、Ni和O分析的叠加图像。因为导电剂和粘结剂都含有C,图4中C的位置是导电剂和粘合剂,因为只有粘合剂(PVDF)含有F,因此F的位置是粘合剂。图5中Mn、Co、Ni和O的重叠位置是活性材料。在SPM图像中,图6是用电流模式下的SPM获得的表面形貌图像,图7是低偏压激励下小电流分布图像,图8是高偏压激励下大电流分布图像。结合图6和图5,对比可知道活性材料的分布与形貌;结合图2,可认为图8中电流区域为为导电剂;同时对比图7和图8,从图7中扣除图8的大电流区域,可认为其他小电流区域为活性材料,即活性材料A区域。但是结合图7和图5 ,可发现有些活性材料在偏压激励下并没有电荷移动(形成电流),因此可判断,未形成电流的活性材料可能是被不导电的粘合剂包裹,或者因破碎和间隙被隔离于反应体系,无法参与充放电,即活性材料B区域。由此实验可见,对于锂电池的研究,结合元素分析工具(EPMA)和电流分析工具(SPM),既可以了解到各种组分的分布,还可以深度了解个部分的工作状态及可能的失效原因,为深入理解锂电池的工作原理与过程提供可行实验方案。本文内容非商业广告,仅供专业人士参考。
  • PerkinElmer红外及拉曼显微化学图像技术进展及国内外最新应用高级研讨会
    特聘请国内外知名专家授课,集中讲解有关红外及拉曼显微化学图像技术的理论、应用和实验。近年来,随着红外及拉曼光谱仪器购置数量逐年增加,仪器的智能化、综合化程度也不断提高。为充分开发仪器功能,提升仪器使用者的能力,使红外光谱仪在各行业的应用和研究中发挥更大的效益,PerkinElmer 11月中旬将在北京、成都和上海连续举办三场【红外及拉曼显微化学图像技术进展及国内外最新应用】高级研讨会。特聘请国内外知名专家授课,本次高级研讨会注重理论、应用和实验结合的方式,给参会人员真正带来理论与应用的提高。具体内容如下:授课专家Morimoto Mitsuhiko 教授: PerkinElmer日本公司资深红外应用专家,加入公司20多年来,在红外及拉曼应用中有极高的造诣。日本目前已有我公司上百台红外显微化学图像系统,在电子、农业、环境、医疗、药物、材料、刑侦、科研等领域拥有广泛的应用。冯计民:公安部二所微量物证鉴定中心资深红外专家,在20多年物证检验经验的基础上,对分析过的约3万张红外光谱图,经分析、整理、归纳, 编写了由化学工业出版社2010年出版的《红外光谱在微量物证分析中的应用》一书。内容简介:微量物证检验是法庭科学的重要组成部分。塑料、纤维、橡胶、涂料、印泥是微量物证检验的重要内容。这些看似平常的物质在成为物证材料(共混/共聚后的物品)后,其红外光谱比均聚物和纯净物的红外光谱复杂得多,谱图解释也复杂、困难得多。《红外光谱在微量物证分析中的应用》是书中内容由三部分构成: 1. 常见塑料、纤维、橡胶、涂料、印油等均聚物; 2. 塑料、纤维、橡胶、涂料、印泥等常用染料、颜料、填料、增塑剂; 3. 上述两类物质的共聚物、共混物;分别介绍了这些作为微量物证物质的组成、性能和红外光谱,并对红外光谱进行了解释。 书的内容可供从事法庭科学红外光谱检验的同行参考,也可供相关专业从业人员参考,尤其适合熟悉红外光谱仪使用,但不熟悉法庭科学中微量物证红外光谱检验的从业人员参考。 研讨内容(1) 红外及拉曼显微化学图像- 红外及拉曼显微化学图像的原理与进展- 红外及拉曼显微化学图像在环境领域的最新应用- 红外及拉曼显微化学图像在农业领域的最新应用- 红外及拉曼显微化学图像在电子领域的最新应用- 红外及拉曼显微化学图像在食品领域的最新应用- 红外及拉曼显微化学图像在医药领域的最新应用- 红外及拉曼显微化学图像在电子领域的最新应用- 红外及拉曼显微化学图像在材料领域的最新应用- 红外及拉曼显微化学图像在刑侦领域的最新应用(2) 多联机技术的最新进展与应用- TGA/FTIR/GC-MS联用- Raman-DSC联用- 在线与遥测技术(3) 微量物证红外光谱鉴定法- 微量物证的勘察提取- 微量物证样品制备技巧- 微量物证红色印泥、印油的红外光谱鉴定法- 微量物证红色汽车漆的红外光谱鉴定法- 微量物证混合物样本的红外光谱鉴定法- 微量物证真假珠宝、玉石等的红外光谱鉴定法与会对象各企事业单位负责化学分析及红外拉曼光谱仪器的负责人及工程技术人员,以及对此技术感兴趣的业内人士。会议时间、地点有关地点详情,请留意此网页。 2010年11月15日 北京 2010年11月17日 成都 2010年11月19日 上海 报名事宜报名者请尽快提交回执,名额有限,先到先得!【高级研讨会报名回执】传真或 E-mail 报名者: 报名传真:021- 50791310 报名邮件:xiao-Huan.he@perkinelmer.com咨询电话:021-38769510转3226 (联系人:何晓欢) 会前一周,我们会向您函发正式会议通知。报到时间、地点及有关事宜将在正式报到通知中说明。
  • 美国Microtrac 3D动态颗粒图像分析仪_PartAn 3D斩获2014年度科学仪器优秀新品奖
    2015(第九届)中国科学仪器发展年会&rdquo 于4月底在北京完美谢幕,本次会议颁发了2014年度&ldquo 科学仪器优秀新品奖&rdquo ,科学仪器优秀新产品评选活动自2006年起已经连续、成功举办了八届,受到越来越多的用户、国内外仪器厂商以及相关媒体的关注和重视,有250余家国内外仪器厂商通过仪器信息网新品栏目发布了近600台2014年度上市的仪器新品,物性测试仪器及设备站到了总新品的15.2%,新品评选竞争尤为激烈。 另外,本次会议实现了公平、公正、权威的评选方式,评选流程:网上申报及仪器信息网初审 &rarr &ldquo 新品评选委员会&rdquo 专家投票评出&ldquo 入围仪器名单&rdquo &rarr 独立评审委员会专家对入围仪器进行网上评议和打分&rarr 经统计最终评出&ldquo 年度科学仪器优秀新产品&rdquo 。新品评审专业委员会已邀请了超过60位业内资深专家按照严格的评审程序,对入围新品进行网上评议。 在如此强激烈的竞争条件下,大昌华嘉(DKSH)代理的美国Microtrac 3D动态颗粒图像分析仪_PartAn 3D脱颖而出,斩获2014年度&ldquo 科学仪器优秀新品奖。 美国麦奇克有限公司 (Microtrac Inc.)是世界上最著名的激光应用技术研究和制造厂商,其先进的激光粒度分析仪已广泛应用于水泥,磨料,冶金,制药,石油,石化,陶瓷,军工等领域,并成为众多行业指定的质量检测和控制的分析仪器。Microtrac在在线颗粒大小和形状测量方面有超过25年经验,了解过程加工环境的所有需求,在线测量的好处就是让操作者能实时的看到过程的变化,使他们立即作出反应,得到高质量的产品。 PartAn 3D独一无二的分析技术,除了可以记录2D分析具有的颗粒大小和形状参数外,还可以记录颗粒度信息。并且只需要一次运行即可完成颗粒的追踪功能。技术参数:多于30种的形态参数测量范围:15um &ndash 35mm(依赖于镜头的选择)相机系统:至少100幅/秒,最高可达500幅/秒,1400ⅹ1024像素光源:LED频闪光源分析时间:1-5分钟(依赖于具体样品应用)国际标准:符合ISO 13322-2 和 ISO9276-6 标准 大昌华嘉是一家著名的国际贸易集团,总部位于瑞士的苏黎世。公司自1900年以来便与中国进行友好贸易往来。大昌华嘉仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,在中国的石化,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。 如果您对我们的任何产品,活动感兴趣,或者对现有仪器存在任何问题,欢迎您回复我们的邮件ins.cn@dksh.com,或者拨打400 821 0778电话咨询。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制