当前位置: 仪器信息网 > 行业主题 > >

相衬生物显微镜

仪器信息网相衬生物显微镜专题为您提供2024年最新相衬生物显微镜价格报价、厂家品牌的相关信息, 包括相衬生物显微镜参数、型号等,不管是国产,还是进口品牌的相衬生物显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合相衬生物显微镜相关的耗材配件、试剂标物,还有相衬生物显微镜相关的最新资讯、资料,以及相衬生物显微镜相关的解决方案。

相衬生物显微镜相关的论坛

  • 【资料】相衬显微镜的定义及与普通显微镜的区别

    相衬显微镜的定义及与普通显微镜的区别: 相衬显微镜是一种特殊的显微镜,特别适用于观察具有很高透明度的对象,例如生物切片、油膜和位相光栅等等。光波通过这些物体,往往只改变入射光波的位相而不改变入射光波的增幅,由于人眼及所有能量检测器只能辨别光波强度上的差别,也即振幅上的差别,而不能辨别位相的变化,因此用普通显微镜是难以观察到这些物体的。 ------------------------------------- 透明度很高的物体,也称为位相物体。相衬法(也叫位相反衬法)是通过空间滤波器将物体的位相信息转换为相应的振幅信息,从而大大提高透明物体的可分辨性,所以从这个意义上说,相衬法是一种光学信息处理方法,而且是最早的信息处理的成果之一,因此在光学的发展史上具有重要意义。1935年泽尔尼克根据阿贝成像原理,首先提出位相反衬法,由改变频谱的位相以改善透明物体成像的反衬度,1953年泽尔尼克因此获诺贝尔物理学奖。这是诺贝尔物理学奖中少数几项与光学有关的奖项之一 ----------------------------------------- 工作原理: 实际的做法可以是,在玻璃基片的中心处加一滴液体,液滴的光程引起一定的相移,这样就形成了一块位相板,将这块位相板放置在显微镜的后焦面上,当作一个空间滤波器。在相干光的照射下,像面上出现与物的位相信息相关的图像。像面上的强度分布与样品位相成线性关系,也就是说,样品的位相分布调制了像面上的光强。 相衬法不是在使用显微镜的过程中发现的,而是泽尔尼克在工作于别的光学领域时发现的。这要从1920年泽尔尼克对衍射光栅产生兴趣时说起。这种反射式光栅是由平面或凹面镜片构成,镜片表面上刻有大量等距的刻痕。刻痕位置稍有差错,就会明显影响光栅的光学效果。刻机周期性重复出现的误差,使光程差发生相应的变化,观察者在观察镜面时,就会看到镜面似乎变得起伏不平。光栅表面细致的刻线直接用肉眼是看不见的,看到的只是在镜面上出现相隔较宽的粗线。用这样的光栅所形成的光谱,往往在每根强度谱线两侧伴随有一系列杂乱的弱线,这就叫“罗兰鬼线”。一块完善的光栅,像手掌那么大,拿在手里,在均匀照明之下,看上去色彩丰富,斑斓绚丽,展现出可见光谱里的各种颜色。可是,实际上有的光栅看上去却是“伤痕”遍布,在彩带上叠加了一条条粗线。1902年阿伦(H.S.Allen)曾宣称,这些粗线不是真实的,乃是主要谱线与其鬼线互相干涉抵消的结果。1920年泽尔尼克在研究光栅时,对这一说法表示异议。他认为这些带“伤痕”的表面视场要比照像底片拍摄所得的光谱照片提供了更多信息,表面视场给出了鬼线的相对位相,而照片丢失了鬼线的位相信息。泽尔尼克这时正在从事统计物理学研究,就把这一问题放在心里,留待以后研究。 大约在1930年,泽尔尼克的实验室得到了一块大凹面光栅,安装在支架上准备使用。很快人们就看到了光栅表面的“伤痕”。由于光栅距人眼6m,看不清楚,泽尔尼克试着用一台小型望远镜观察它。这时不期而遇的事情发生了。线条状的伤痕看得非常清楚,可是当把望远镜精确聚集在镜面表面时,线条却消失无遗!怎么回事?泽尔尼克想起了10年前的思考,他意识到这一现象的重要意义,立刻集中精力研究这个光学问题。他借助于阿贝的成像理论,经过一系列实验和计算,终于作出了成功的解释。原来这是由于波的位相差所引起的干涉现象。1935年,泽尔尼克进一步根据位相理论研究出了位相反衬法,发明了相衬显微镜。在他的第一次设计中,使用一个直线条带样的孔径光阑,并在物镜的后焦面放置一个相应的直线条带光阑。泽尔尼克在他的诺贝尔领奖词中提到这一发明的偶然性时说:“然而,这个装置使物体结构的显微像显示了晕,因为衍射效应使物体细节的带状物像——沿垂直于带的方向散开,从而使像上的小亮点成为短线段状。为了避免这种观象,我改用了环状光阑,此光阑导致晕圈向各方向散开,不过晕圈变得很微弱以致实际上完全没有意义。” 现在全世界生产相衬显微镜的公司很多,相衬显微镜已经广泛应用于生物学及医学方面作细菌学和病理学的研究,也在矿物晶体微形貌学中得到了有效的应用。用这种特殊的显微镜,可以进行晶体表面生长的动态观察。 其实相衬显微镜就是我们平时所说的相差显微镜。它是根据光线通过不同密度的物质时,其滞留程度不同(密度大则滞留时间长)的原理设计的。 相差显微镜,可以将这种光程差或相位差,转换成振幅差,增强对比度。它与普通光学显微镜最主要的不同点是在物镜后装有一块相差板,由于相差板上部分区域有吸光物质,通过其的偏转光线之间又增加了新的光程差,从而对样品不同密度造成的相位差起了“夸大”作用。最后两组光线通过透镜会聚成一束,发生相互叠加或抵消的干涉现象,从而表现出肉眼明显可见的明暗差别。 由于反差是以样品的密度差别为基础形成的,故相差显微镜的样品不需染色,可观察活细胞,甚至研究细胞核、线粒体等细胞器的动态。

  • 【原创】什么是相衬显微镜?

    [size=2][font=宋体]在光学显微镜的发展过程中,相衬镜检术的发明成功,是近代显微镜技术中的重要成就。[/font][/size][size=2][font=宋体]我们知道,人眼只能区分光波的波长(颜色)和振幅(亮度),对于无色通明的生物标本,当光线通过时,波长和振幅变化不大,在明场观察时很难观察到标本。相衬显微镜利用被检物体的光程之差进行镜检,也就是有效地利用光的干涉现象,将人眼不可分辨的相位差变为可分辨的振幅差,即使是无色透明的物质也可成为清晰可见。这大大便利了活体细胞的观察,因此相衬镜检法广泛应用于倒置显微镜中。[/font][/size][size=2][font=宋体]相衬镜检法在装置上与明场不同,有一些特殊要求:[/font][/size][size=2][font=宋体]a. 环状光阑(Ring slit): 装在聚光镜的下方,而与聚光镜组合为一体---相衬聚光镜。它是由大小不同的环形光阑装在一圆盘内,外面标有10X、20X、40X、100X等字样,与相对应倍数的物镜配合使用。[/font][/size][size=2][font=宋体]b. 相板(Phase plate): 装在物镜的后焦平面处,它分为两部分,一是通过直射光的部分,为半透明的环状,叫共轭面;另一是通过衍射光的部分,?quot 补偿面"。有相板的物镜称"相衬物镜",外壳上常有"Ph"字样。[/font][/size][size=2][font=宋体]相衬镜检法是一种比较复杂的镜检方法,想要得到好的观察效果,显微镜的调试非常重要。[/font][/size][size=2][font=宋体]除此之外还应注意以下几个方面:[/font][/size][size=2][font=宋体]a. 光源要强,全部开启孔径光阑;[/font][/size][size=2][font=宋体]b. 使用滤色片,使光波近于单色[/font][/size]

  • 【转帖】相衬显微镜

    相衬显微镜 摘要:本文详细介绍了相衬显微镜的光学结构、相衬装置、相衬原理、相衬显微分析的基本原理、相衬显微镜的操作以及其在金相分析中的应用。相衬显微镜是利用特殊相板的作用,使不同相位的反射光发生干涉或迭加,借以鉴别金相组织,又称“相差显微镜”。试样表面高度差大概在十埃到几百埃范围内均能清楚地被“相衬显微镜”所鉴别。 关键字:相衬显微镜、相衬原理、相衬装置 1. 相衬显微镜的光学结构 相衬显微镜的特点是在一般金相显微镜中加两个特殊的光学元件,在光源系统光阑的位置上,更换一块单环或同心双环遮板在物镜后焦面上放置一块相板,它是一块透明的玻璃片,在对应于圆环形遮板透光的狭缝处,真空喷镀两层不同物质的镀膜,称为“相环”,它起着移相合降低振幅的作用,当光线经遮板狭缝后形成环形光束射入显微镜,借助透镜调整遮板,使圆环狭缝正好聚焦在相板上,即使射入的环形光束与相板上的环状涂层完全吻合,为了调节方便,实际板上的环状涂层略大于狭缝的投影。 环形光束通过相环后经物镜投射在试样表面上,如果试样是一块平整光滑的磨面,那么反射光进入物镜光线必然与相环吻合,如果磨面有凸凹差别,,则不同部位的反射结果不同,凸出部分的反射光是直射光,经物镜后重又投在相环上,透过相环进入目镜,而凹陷部分的反射光包括直射光和衍射光两部分,直射光透过相环而衍射光则由各个方向进入物镜投射在相板的整个平面上,可见借遮板与相板的配合使反射光中的直射光裕衍射光在相板上通过不同的区域,即直射光通过相板上的相环部分,而衍射光则通过相板整个平面,通过和相环部分的直射光可借相环移相和降低振幅,达到提高衬度的效果。 2. 相衬装置 2.1 相板 相板是相衬显微镜中最重要的元件,它是一块圆形平面光学玻璃,在相环部位真空喷镀一层氟化镁,则通过相环部分的光线比通过其它部分的光线迟后一定位相,这就实现了移相,只要适当控制薄膜厚度,使相位刚好迟后π/2,这就是负相衬或明衬。如果镀膜加厚,使直射光迟后3π/2,这就是正相衬或暗衬。 除使直射光移相外,还需要降低振幅,使得迭加后的相衬效果更为明显,为此在相环上再喷镀一层银,使直射光通过镀银层振幅显著降低。 相板分为固定相板和活动相板,相板安置在物镜与垂直照明器之间,配有专用相衬物镜的相衬显微镜中,相板安置在物镜的后焦面上,但随着数值孔径的改变,相板与相环尺寸必须相应改变,才能得到正确的配合,因此每一物镜必须装有一个相应尺寸的相板,这种配有相板的专用物镜称相衬物镜,物镜上必须装有一个相应尺寸的相板,这种

  • 【资料】相衬显微镜的发明者

    [color=#00008B]泽尔尼克(Frits Frederik Zernike, 1888-1966)因论证相衬法,特别是发明相衬显微镜,获得了1953年度诺贝尔物理学奖。[/color]显微镜中所观察的许多物体,如生物切片、油膜和位相光栅等,均具有较高的透明度。光波通过这些物体时,只改变入射光波的位相而不改变它的振幅,这种物体称为“位相物体”。因为人眼只能辨别强度的差别,亦即振幅的变化,而不能识别位相的变化,因而用普通显微镜无法观察位相物体。1935年,泽尔尼克提出“相衬法”,指出对于因位相变化而产生的看不见的影响,可以转化为与之等价的可见的振幅变化,也就是通过空间滤波器将物体的位相分布转换为相应的振幅分布,从而大大提高了透明物体的可分辨性。泽尔尼克不仅给出了上述的理论分析,而且还制造了第一台相衬显微镜。光通过透明物体时是要慢下来的,为了把直接传播的光和被物体衍射的光区分开来,在聚光器的焦平面上放一环形光栅,并在两个物镜之间插入一个相板,使相板上的环形条纹与环形光栅的象恰好重合。这样,直接光全部穿过位相板上的环纹,而衍射光多半穿过纹道的外部,从而使直接光和衍射光之间产生了相差。如果相板做得能使入射光波延迟1/4波长,那么两波的峰及谷将会重合,这将给出大振幅的合成波,细节就会明显地呈现出来。近代科学的发展,对显微镜提出了各种特殊要求,泽尔尼克发明相衬显微镜使人们有可能观测到普通显微镜无法观察的位相物体,这无疑是一项重要的进展。

  • 【分享】相衬显微镜的原理及其应用

    [size=4][color=#DC143C][B]相衬显微镜的原理及其应用[/B][/color][/size] 相衬显微镜又叫相差显微镜。通常我们用金相显微镜观察试样的显微组织,是靠试样表面反射光的强弱(即黑白灰度的不同)来鉴别它。有的显微组织由于其反射率和吸收率不同,而产生不同的灰度。反射率较大者,则组织较明亮;反射率较小者,组织比较灰暗。当试样上两相的反射系数相同,仅有因轻微浸蚀或各相硬度不同而使抛光时形成微小凹凸,或者有塑性变形及第二类共格相变引起的表面浮凸,这时样品表面的反射光没有强度的差别,只有光程的微小差别。对此一般金相显微镜明场就不易鉴别,当表面高低起伏极小时,更难辨别,而相衬技术成功地解决了这一问题。一般表面高低差在100~1500范围内均能用相衬显微镜来观察。 相衬原理是荷兰的物理学家泽尔尼克(Zernike)于1934年建立,并在实际应用中获得巨大成就,曾获得1953年度的物理学诺贝尔奖。相衬显微分析是最成功的应用之一。

  • 生物显微镜的成像原理分析

    显微镜(microscope)简称光镜,是一种将肉眼无法看清楚的微生物体进行光学放大成像的常用仪器。在生命科学、材料科学、基础科学及众多的微观领域中都离不开显微镜。1590年.荷兰的Han,父子始创放大10倍显微镜。175.8年,Dollond制成消色差透镜,提高了显微镜放大倍数。1873年,德国科学家Abbe设计成近代显微镜。1953年.上海江南光学仪器厂国产显微镜诞生,并陆续生产了荧光、相衬、偏光等专用显微镜。生物及医用显微镜可分为光学放大及电子放大两大类。前者按用途可分为普通型、特种型、高级型显微镜和手术显微镜。普通型生物显微镜仅供一般用途使用,通常的农用与医用显微镜、倒税显微镜均属这一类。特种型生物显微镜可作某些专用的观察和研究。暗场生物显微镜、荧光显微镜、偏光显微镜、相衬和干涉相衬显微镜等均属于这一类。高级型生物显微镜系指大型多用途的生物显微镜.研究用生物显微镜和万能研究用生物显微镜等属于这一类。一、显微镜放大成像系统显微镜光学系统由物镜和目镜两部分组成。因为被观测的物体本身不发光,而要借助于外界照明,故显微镜需要有一个照明系统,这些部分都是由较复杂的透镜组成,尤其物镜更为复杂。下图是显微镜成像的光路原理图,图中的物镜和目镜均用薄透镜表示。http://www.yi7.com/file/upload/201201/07/14-00-33-93-1.jpg显微镜成像原理显微镜的物体AB处于物镜的2倍焦距之内一倍焦距之外,它首先通过物镜成一放大的倒立实像A'B',且使之位于目镜的物方焦平面上或焦平面以内很靠近的地方,然后目镜将这一实像再次成一个正立虚像A"B"于无限远或人眼明视距离之外,以供眼睛观察。显微镜对物体进行2次放大,因此与放大镜相比,具有更高的放大倍率,能观察到肉眼所不能直接观察的微小物体,分辨更细小的细节。在这里目镜相当于放大镜,只不过这时放大镜的物是物镜所成的像而已。由于物镜所成的像是实像.因而可在实像处(即目镜的物方焦平面处)安放各种用途分划板.供对准或测量用。二、显徽镜的放大率与分辨本领1.显微镜的分辨本领 分辨本领主要指接物镜分辨被检查物体细微结构的能力,也就是说在显微镜下判别的最小微粒的大小或两点之间最短距离及某物点最小直径的限度,便叫做显微镜的分辨本领.或称为鉴别率。通常用d表示:http://www.yi7.com/file/upload/201201/07/14-00-33-14-1.jpg式中.A表示波长;n sins (NA)表示数值孔径。 从式中可知,显微镜的分辨率主要取决于光的波长和数值孔径这两个因素。d值越小,分辨本领也就越强,越能看清物体的细微结构。鉴别率计算单位是Um. 显微镜的鉴别率的提高只有两个办法: (1)增大物镜的数值孔径(镜口率)。从图可以看出,影响数值孔径(n sina)的因素有两个:其一为物体上某点射人物镜光锥角(镜口角)的一半(sina);其二为检品与物镜间媒质的折射率n。即数值孔径为NA = n sine镜口角半数最大能到900,故si na的最大值为1.00,这时物镜的焦距最短而曲度也很大,制造上是极为困难的。即使能办到,在干燥系中的镜口率只有1 x sin90“(控气n二1)。若再增大镜口率便只有从媒质着手,所以便有水、甘油,石蜡油和香柏油等浸润均匀媒质的应用,确实改进了镜口率不少.它最高可到1.40。如果用澳萘液可达1.67左右,更接近盖片和透镜的折射率。http://www.yi7.com/file/upload/201201/07/14-00-33-51-1.jpghttp://www.yi7.com/file/upload/201201/07/14-00-33-44-1.jpg (2)缩短光源的波长:采用紫外线作光源,波长可到0.1Um,这样放大倍数比自然光放大的倍数大3-4倍,普通紫外线光波在0.2 Um左右,即使能产生出0.1 Um波长的紫外线.一般透镜也将把它吸收干净.无法利用。显微镜的最大数位孔径可达1.5 Um左右,在这种情形下: http://www.yi7.com/file/upload/201201/07/14-00-33-33-1.jpg即在这种显微镜里,仍可分辨的两点间最短距离差不多等于所用光波波长的1/30假定绿光的光波的波长http://www.yi7.com/file/upload/201201/07/14-00-33-23-1.jpg那么显微镜能分辨的最短距离为:http://www.yi7.com/file/upload/201201/07/14-00-33-89-1.jpg 则这台显微镜的最高分辨距离也超不过。.182 Um。肉眼在明视距离(250 mm)能分辨的两点之间最短距离为0.1 mm,约为上述d值的560倍.因此I台光学显徽镜的放大率有100()倍也就足够了。这是因为光的本性及光的绕射现象就限制了显徽镜的放大极限。凡是光波超过微粒直径的2倍时,光线就很方便地绕过微粒而继续前进,所以普通干燥系显微镜的最大鉴别率只能达到光源波长的1/2,直径小到0.2 5m的微粒就无法被光学显微镜发觉。虽然后来应用浸润系方法,如油镜,提高了折射率,其鉴别率也只不过能提高到光源波长的1/3而已。而且还要用最好的透镜才能达到。

  • 便携式生物显微镜特点及应用

    [url=http://www.f-lab.cn/biomicroscopes/goren-bio.html][b]便携式生物显微镜[/b][/url]是专业为野外研究或现场应用而设计的手持便携式显微镜,具有便携而多功能的独特优势,结构紧凑且坚固耐用,是现场观察研究的理想显微镜。[b]便携式生物显微镜特点[/b]便携式设计且具有实验室级显微镜的性能和实惠的价格多功能设计,可以很容易地修改执行为明场,暗场,相衬,或偏振显微镜多样显微镜器件达到实验室显微镜水平:照明元件、调焦机构、子级光学系统,样品台可由电池供电或110V / 240v电源供电。[img=便携式生物显微镜]http://www.f-lab.cn/Upload/Goren-Bio.jpg[/img][b]便携式生物显微镜[/b]应用 地质学、考古学、生物学、教育、司法、地球科学、生物学、医学、Botany、热带疾病,病理学,艺术学,Mineralogy。[b]便携式生物显微镜结果[img=便携式生物显微镜]http://www.f-lab.cn/Upload/Goren-Bio-results.jpg[/img][img=便携式生物显微镜]http://www.f-lab.cn/Upload/goren-application.JPG[/img][/b](A)数组(“涂抹部分”)从Maresha附近的中始新世沉积放射虫、以色列(显微镜放大倍数:40×);(B)场浸渍和光薄片的土从Tsaghkasar、亚美尼亚(100×,正交偏光镜);(C)结核杆菌(600×,油浸);(D)硅藻(舟形藻,200×)。更多生物显微镜官网:[url]http://www.f-lab.cn/biomicroscopes.html[/url]

  • 【分享】重庆澳浦显微镜UB200i生物显微镜

    【分享】重庆澳浦显微镜UB200i生物显微镜

    UB200i 系列生物显微镜光学系统:UCIS无限远色差独立校正光学系统机身:一体化设计,整体压铸,机身更加稳定牢固放大倍率:40~l000X目镜:具有防霉功能,平场10X高眼点目镜,视场20mm,高眼点观察,瞳孔距离21mm,屈光度可调。物镜:无限远经济型平场消色差物镜(具有防霉功能),4X/0.10;10X/0.25;40X/0.65(带弹簧和缓冲装置);100X/1.25 (油、带弹簧和缓冲装置)。绞链式双/三目:无限远,观察角度30°,双瞳距离52mm~75 mm,视度可调。三目配标准C-Mount接口,可适配数码摄像头或相机。物镜转换器:内定位四孔转换结构;粗微调焦装置:低位粗动同轴调焦手轮;微动手轮0.1mm/转,格值0.001mm;微调格值越小,调焦越清晰。粗动松紧可调,14mm/转;工作台上限位装置,最大行程20mm; 粗微调焦手轮位置上下可调,满足不同用户的需求。载物台:156mm×138mm,带移动尺,移动范围76×54mm,精度0.1mm;X、Y向低位同轴调节手轮;聚光镜:阿贝聚光镜N.A.1.25,配相衬插孔,手轮升降式,精准的聚光镜上下可调系统,使聚光镜能够精确地与各种倍数的物镜匹配使用。聚光镜托架配备聚光镜中心调节装置,便于照明系统中心对准,聚光效果更加优异,聚光镜孔径光阑采用与物镜色圈颜色相同的标记,便于得到高分辨率、高对比度的图像,即使对显微镜设置不熟悉的用户也可以很快掌握,为便于显微镜的升级,同时配备相衬插孔。照明系统:内置6V/20W卤素灯,亮度可连续调节,抽屉式的灯座,更换灯泡方便。优异独立散热系统,在6V/20W卤素灯24小时照明的情况下,显微镜主机仍然能够保持较低的温度。专用搬运把手。中外合资企业、国家高新技术企业、通过ISO9001、ISO14001、CE、13485认证。暗场附件:简易式暗场聚光镜插件组;干式暗场聚光镜;浸液暗场聚光镜;相衬附件:对中望远镜;无穷远平场正衬物镜:10X、20X、40X、60X、100X无穷远平场负衬物镜:10X、20X、40X、60X、100X平场转盘式相衬聚光镜;平场相衬插板:10X、20X、40X/60X/100X荧光附件:荧光落射照明器;紫外线挡光板组件;100W直流汞灯灯箱;100W直流汞灯电源箱;国产荧光激发模块:B、G、UV、V进口荧光激发模块;B、G、UV、V

  • 徕卡DM750生物显微镜

    徕卡DM750生物显微镜

    徕卡DM750生物显微镜http://ng1.17img.cn/bbsfiles/images/2016/01/201601121035_581595_3049546_3.jpg 徕卡DM750生物显微镜,是为高级生命科学课程的全面要求以及医学、兽医和牙医学校的专业培训专门设计的,同时,是为了革新科研教学以及实验在生命科学课程上有更多的动手操作时间而专门设计开发的。这款教学显微镜,设计人性化,操作简单,成像清晰,在日常实验工作中带来便利的同时,徕卡DM750生物显微镜在使用及维护方面也显示出了极大的优势。1、一体化的垂直手柄便于运输,保证更安全的搬运显微镜;各种镜筒在安全地固定在支架上的同时可以自由旋转;带目镜锁定螺钉的标准镜筒可以防止目镜脱落;2、一体化的电源线收集盒避免了电源线包装不当对显微镜组件造成的损坏;垂直电源线插入可以防止电源线在保存或使用时部分脱离主机,并且使实验台干净整洁;3、LED长寿命照明,平均使用寿命超过15年。LED 照明消耗的能量比标准卤素照明少大约 80%;http://ng1.17img.cn/bbsfiles/images/2016/01/201601121035_581597_3049546_3.jpg4、专利的延时开关功能可在2小时不用后自动关闭照明,节约能源;5、徕卡显微系统有限公司在显微镜的所有触点上都使用了添加剂进行处理,可以抑制细菌生长。这样利用显微镜表面的特殊处理有助于防止疾病传播,从而形成更健康的实验室环境;http://ng1.17img.cn/bbsfiles/images/2016/01/201601121035_581596_3049546_3.jpg6、标准聚光镜,放大倍率4X-100X;7、聚光镜可实现明场和相衬的转换。选配用于低放大倍率的摇摆式聚光镜;8、可以选装具有最佳照明和对比度的Koehler视场照明;9、DM750配备4位或5位物镜转换盘;http://ng1.17img.cn/bbsfiles/images/2016/01/201601121035_581599_3049546_3.jpg10、可配相衬、荧光、共览、集成或独摄像CCD,提供了无限扩展的可能;11、DM750显微镜载物台采用特殊材料加工,可以更好的防止摩擦损坏;12、重平衡聚焦手柄提供了惯性,可以非常精确地定位聚焦;http://ng1.17img.cn/bbsfiles/images/2016/01/201601121035_581600_3049546_3.jpg13、所有包装都是完全可回收利用的;所有玻璃组件中均不含铅;所有产品都经过独立的安全实验室的测试,并带有 cULus 和 CE 认证标志以证明其设计安全。 徕卡显微系统有限公司致力于教育发展和为国际社会做贡献。为了我们自己和子孙后代,我们积极实施可以让我们的环境更清洁、更安全的措施!

  • 显微镜的分类

    光学显微镜有多种分类方法:按使用目镜的数目可分为双目和单目显微镜;按图像是否有立体感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理可分为偏光、相衬和微差干涉对比显微镜等;按光源类型可分为普通光、荧光、紫外光、红外光和激光显微镜等;按接收器类型可分为目视、数码(摄像)显微镜等。常用的显微镜有双目体视显微镜、金相显微镜、偏光显微镜、荧光显微镜等。1.双目体视显微镜双目体视显微镜又称"实体显微镜"或"解剖镜",是一种具有正象立体感地目视仪器。在生物、医学领域广泛用于切片操作和显微外科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。它利用双通道光路,双目镜筒中的左右两光束不是平行,而是具有一定的夹角--体视角(一般为12度--15度),为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。目前体视镜的光学结构是:由一个共用的初级物镜,对物体成象后的两光束被两组中间物镜----变焦镜分开,并成一体视角再经各自的目镜成象,它的倍率变化是由改变中间镜组之间的距离而获得的,因此又称为"连续变倍体视显微镜"(Zoom-stereomicroscope)。随着应用的要求,目前体视镜可选配丰富的选购附件,如荧光,照相,摄象,冷光源等等。2.金相显微镜金相显微镜是专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。这种反射照明方式也广泛用于集成电路硅片的检测工作。3.偏光显微镜(Polarizingmicroscope)偏光显微镜是用于研究所谓透明与不透明各向异性材料的一种显微镜。凡具有双折射的物质,在偏光显微镜下就能分辨的清楚,当然这些物质也可用染色法来进行观察,但有些则不可能,而必须利用偏光显微镜。将普通光改变为偏振光进行镜检的方法,以鉴别某一物质是单折射(各向同行)或双折射性(各向异性)。双折射性是晶体的基本特性。因此,偏光显微镜被广泛地应用在矿物、化学等领域,在生物学和植物学也有应用。4.荧光显微镜荧光显微镜是用短波长的光线照射用荧光素染色过的被检物体,使之受激发后而产生长波长的荧光,然后观察。荧光显微镜广泛应用于生物,医学等领域。荧光显微镜一般分为透射和落射式两种类型。透射式:激发光来自被检物体的下方,聚光镜为暗视野聚光镜,使激发光不进入物镜,而使荧光进入物镜。它在低倍情况下明亮,而高倍则暗,在油浸和调中时,较难操作,尤以低倍的照明范围难于确定,但能得到很暗的视野背景。透射式不使用于非透明的被检物体。落射式:透射式目前几乎被淘汰,新型的荧光显微镜多为落射式,光源来自被检物体的上方,在光路中具有分光镜,所以对透明和不透明的被检物体都适用。由于物镜起了聚光镜的作用,不仅便于操作,而且从低倍到高倍,可以实现整个视场的均匀照明。目前许多新兴生物研究领域应用到荧光显微镜,如基因原位杂交(FISH)等等。5.相衬显微镜(Phasecontrastmicroscope)在光学显微镜的发展过程中,相衬镜检术的发明成功,是近代显微镜技术中的重要成就。我们知道,人眼只能区分光波的波长(颜色)和振幅(亮度),对于无色通明的生物标本,当光线通过时,波长和振幅变化不大,在明场观察时很难观察到标本。 相衬显微镜利用被检物体的光程之差进行镜检,也就是有效地利用光的干涉现象,将人眼不可分辨的相位差变为可分辨的振幅差,即使是无色透明的物质也可成为清晰可见。这大大便利了活体细胞的观察,因此相衬镜检法广泛应用于倒置显微镜中。6.微分干涉对比显微镜(DifferentialinterferencecontrastDIC)微分干涉对比镜检术出现于60年代,它不仅能观察无色透明的物体,而且图象呈现出浮雕壮的立体感,并具有相衬镜检术所不能达到的某些优点,观察效果更为逼真。微分干涉对比镜检术是利用特制的渥拉斯顿棱镜来分解光束。分裂出来的光束的振动方向相互垂直且强度相等,光束分别在距离很近的两点上通过被检物体,在相位上略有差别。由于两光束的裂距极小,而不出现重影现象,使图象呈现出立体的三维感觉。7.倒置显微镜(Invertedmicroscope)倒置显微镜是为了适应生物学、医学等领域中的组织培养、细胞离体培养、浮游生物、环境保护、食品检验等显微观察。由于上述样品特点的限制,被检物体均放置在培养皿(或培养瓶)中,这样就要求倒置显微镜的物镜和聚光镜的工作距离很长,能直接对培养皿中的被检物体进行显微观察和研究。因此,物镜、聚光镜和光源的位置都颠倒过来,故称为"倒置显微镜"。由于工作距离的限制,倒置显微镜物镜的最大放大率为60X。一般研究用倒置显微镜都配置有4X、10X、20X、及40X相差物镜,因为倒置显微镜多用于无色透明的活体观察。如果用户有特殊需要,也可以选配其它附件,用来完成微分干涉、荧光及简易偏光等观察。目见倒置显微镜广泛应用于patch-clamp,transgeneICSI等领域。8.数码显微镜数码显微镜是以摄像头(即电视摄像靶或电荷耦合器)作为接收元件的显微镜。在显微镜的实像面处装入摄像头取代人眼作为接收器,通过这种光电器件把光学图像转换成电信号的图像,然后对之进行尺寸检测、颗粒计数等工作。这类显微镜可以与计算机联用,这便于实现检测和信息处理的自动化,多应用于需要进行大量繁琐检测工作的场合。目前出现一种便携式数码显微镜照相机,简称数微相机。它将显微镜和数码相机相结合,以同时达到显微镜观察(Micro preview)和显微摄影(Micro photography)的要求。最高物镜显微倍率可达150X,机身小巧,便于携带,自备光源,可运用于多种场合。可直接与计算机、打印机(不需要电脑)、电视(不需要电脑)联用。

  • 光学显微镜的分类

    以下内容摘自中国分析仪器网,供有兴趣的版友参考。一、显微镜的分类 (一)、按使用目镜的数目可分为单目、双目和三目显微镜。 单目价格比较便宜,可以作为初学爱好者的选择,双目稍贵点,观察的时候两眼可以同时观察,观察得舒适些,三目又多了一目,它的作用主要是连接数码相机或电脑用,比较适合长时间工作的人员选用。 (二)、根据其用途以及应用范围分为生物显微镜、金相显微镜、体视显微镜等。 1、生物显微镜是最常见的一种显微镜,在很多实验室中都可以见到,主要是用来观察生物切片、生物细胞、细菌以及活体组织培养、流质沉淀等的观察和研究,同时可以观察其他透明或者半透明物体以及粉末、细小颗粒等物体。生物显微镜供医疗卫生单位、高等院校、研究所用于微生物、细胞、细菌、组织培养、悬浮体、沉淀物等的观察,可连续观察细胞、细菌等在培养液中繁殖分裂的过程等。在细胞学、寄生虫学、肿瘤学、免疫学、遗传工程学、工业微生物学、植物学等领域中应用广泛。 2、体视显微镜又称为实体显微镜、立体显微镜,是一种具有正像立体感的目视仪器,广泛的应用于生物学、医学、农林等。它具有两个完整的光路,所以观察时物体呈现立体感。主要用途有:①作为动物学、植物学、昆虫学、组织学、考古学等的研究和解剖工具。②做纺织工业中原料及棉毛织物的检验。③在电子工业,做晶体等装配工具。④对各种材料气孔形状腐蚀情况等表面现象的检查。⑤对文书纸币的真假判断。⑥透镜、棱镜或其它透明物质的表面质量,以及精密刻度的质量检查等。 3、金相显微镜主要是用来鉴定和分析金属内部结构组织,是金属学研究金相的重要仪器,是工业部门鉴定产品质量的关键设备,专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。不仅可以鉴别和分析各种金属、合金材料、非金属物质的组织结构及集成电路、微颗粒、线材、纤维、表面喷涂等的一些表面状况,金相显微镜还可以广泛地应用于电子、化工和仪器仪表行业观察不透明的物质和透明的物质。如金属、陶瓷、集成电路、电子芯片、印刷电路板、液晶板、薄膜、粉末、碳粉、线材、纤维、镀涂层以及其它非金属材在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。所以用金相显微镜来检验分析金属内部的组织结构在工业生产中是十分重要的。体视显微镜在工业生产中也可以用到,但是它只是用来观察金属表面划伤、划痕等,放大倍数一般在10X-50X之间,金相的放大倍数一般在40X-400X,有些可以达到800X。 (三)、按光学原理可分为偏光、相衬和微差干涉对比显微镜等。 1、偏光显微是鉴定物质细微结构光学性质的一种显微镜。凡具有双折射性的物质,在偏光显微镜下就能分辨的清楚,当然这些物质也可用染色法来进行观察,但有些则不可能,而必须利用偏光显微镜。主要用于研究透明与不透明各向异性材料。一般具有双折射的物质都可以用这种显微镜进行观察。双折射性是晶体的基本特征。因此,偏光显微镜被广泛地应用在矿物、化学等领域,如在植物学方面,如鉴别纤维、染色体、纺锤丝、淀粉粒、细胞壁以及细胞质与组织中是否含有晶体等。在植物病理上,病菌的入侵,常引起组织内化学性质的改变,可以偏光显微术进行鉴别。在人体及动物学方面,常利用偏光显微术来鉴别骨骷、牙齿、胆固醇、神经纤维、肿瘤细胞、横纹肌和毛发等。 2、相衬显微镜又称为相差显微镜,最大的特点就是可以观察未经染色的标本和活细胞。这些样品在一般的显微镜下是观察不到的,而相差显微镜则利用物体不同结构成分之间的折射率和厚度的差别,把通过物体不同部分的光程差变为振幅差,经过带有环状光阑的聚光镜和带有相位片的相差物镜来实现观测,简单的说它利用的是样品密度差别产生的反差来进行观察的,所以即使样品不染色也可以进行,这大大便利了活体细胞的观察,因此相衬镜检法广泛应用于倒置显微镜中。有相板的物镜称”相衬物镜”,外壳上常有”Ph”字样。相衬法是一种光学信息处理方法,而且是最早的信息处理的成果之一,因此在光学的发展史上具有重要意义。 3、微分干涉对比镜检术出现于60年代,它不仅能观察无色透明的物体,而且图像呈现出浮雕壮的立体感,并具有相衬镜检术所不能达到的某些优点,观察效果更为逼真。 (四)、按光源类型可分为普通光、荧光和激光显微镜等。 1、普通光显微镜采用的就是普通光源,是最常用的。 2、荧光显微镜是以紫外线为光源,通常是照射被检物体(落射式),使之发出荧光,然后在显微镜下观察物体的形状及其所在位置。荧光显微镜用于研究细胞内物质的吸收、运输、化学物质的分布及定位等。 3、激光共聚焦扫描显微镜,采用激光做为扫描光源,逐点、逐行、逐面快速扫描成像。因为激光束的波长较短,光束很细,所以共焦激光扫描显微镜有较高的分辨力,大约是普通光学显微镜的3倍。 (五).按显微镜物镜的位置分正置和倒置显微镜 1、倒置显微镜是为了适应生物学、医学等领域中的组织培养、细胞离体培养、浮游生物、环境保护、食品检验等显微观察。由于上述样品特点的限制,被检物体均放置在培养皿(或培养瓶)中,这样就要求倒置显微镜的物镜和聚光镜的工作距离很长,能直接对培养皿中的被检物体进行显微观察和研究。因此,物镜、聚光镜和光源的位置都颠倒过来,故称为”倒置显微镜”。倒置显微镜多用于无色透明的活体观察。如果用户有特殊需要,也可以选配其它附件,用来完成微分干涉、荧光及简易偏光等观察。倒置显微镜由于制作更加严密,价格也是比较贵的。目见倒置显微镜广泛应用于patch-clamp(膜片钳),transgeneICSI等领域。 (六).数码显微镜 1、数码显微镜又叫视频显微镜,它是将显微镜看到的实物图像通过数模转换,使其成像在计算机上。数码显微镜是将精锐的光学显微镜技术、先进的光电转换技术、普通的电视机完美地结合在一起而开发研制成功的一项高科技产品。从而,我们可以对微观领域的研究从传统的普通的双眼观察到通过显示器上再现,从而提高了工作效率。数码显微镜在观察物体时能产生正立的三维空间影像。立体感强,成像清晰和宽阔,又具有长工作距离,并是适用范围非常广泛的常规显微镜。它操作方便、直观、检定效率高,适用于电子工业生产线的检验、印刷线路板的检定、印刷电路组件中出现的焊接缺陷(印刷错位、塌边等)的检定、单板PC的检定、真空荧光显示屏VFD的检定等等,它将实物的图像放大后显示在计算机的屏幕上,可以将图片保存,放大,打印。

  • 【资料】光学显微镜的分类

    光学显微镜有多种分类方法:按使用目镜的数目可分为双目和单目显微镜;按图像是否有立体感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理可分为偏光、相衬和微差干涉对比显微镜等;按光源类型可分为普通光、荧光、紫外光、红外光和激光显微镜等;按接收器类型可分为目视、数码(摄像)显微镜等。常用的显微镜有双目体视显微镜、金相显微镜、偏光显微镜、荧光显微镜等。1.[b]双目体视显微镜[/b]双目体视显微镜又称"实体显微镜"或"解剖镜",是一种具有正象立体感地目视仪器。在生物、医学领域广泛用于切片操作和显微外科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。它利用双通道光路,双目镜筒中的左右两光束不是平行,而是具有一定的夹角--体视角(一般为12度--15度),为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。目前体视镜的光学结构是:由一个共用的初级物镜,对物体成象后的两光束被两组中间物镜----变焦镜分开,并成一体视角再经各自的目镜成象,它的倍率变化是由改变中间镜组之间的距离而获得的,因此又称为"连续变倍体视显微镜"(Zoom-stereomicroscope)。随着应用的要求,目前体视镜可选配丰富的选购附件,如荧光,照相,摄象,冷光源等等。2.[b]金相显微镜[/b]金相显微镜是专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。这种反射照明方式也广泛用于集成电路硅片的检测工作。3.[b]偏光显微镜[/b](Polarizingmicroscope)偏光显微镜是用于研究所谓透明与不透明各向异性材料的一种显微镜。凡具有双折射的物质,在偏光显微镜下就能分辨的清楚,当然这些物质也可用染色法来进行观察,但有些则不可能,而必须利用偏光显微镜。将普通光改变为偏振光进行镜检的方法,以鉴别某一物质是单折射(各向同行)或双折射性(各向异性)。双折射性是晶体的基本特性。因此,偏光显微镜被广泛地应用在矿物、化学等领域,在生物学和植物学也有应用。4.[b]荧光显微镜[/b]荧光显微镜是用短波长的光线照射用荧光素染色过的被检物体,使之受激发后而产生长波长的荧光,然后观察。荧光显微镜广泛应用于生物,医学等领域。荧光显微镜一般分为透射和落射式两种类型。透射式:激发光来自被检物体的下方,聚光镜为暗视野聚光镜,使激发光不进入物镜,而使荧光进入物镜。它在低倍情况下明亮,而高倍则暗,在油浸和调中时,较难操作,尤以低倍的照明范围难于确定,但能得到很暗的视野背景。透射式不使用于非透明的被检物体。落射式:透射式目前几乎被淘汰,新型的荧光显微镜多为落射式,光源来自被检物体的上方,在光路中具有分光镜,所以对透明和不透明的被检物体都适用。由于物镜起了聚光镜的作用,不仅便于操作,而且从低倍到高倍,可以实现整个视场的均匀照明。目前许多新兴生物研究领域应用到荧光显微镜,如基因原位杂交(FISH)等等。5.[b]相衬显微镜[/b](Phasecontrastmicroscope)在光学显微镜的发展过程中,相衬镜检术的发明成功,是近代显微镜技术中的重要成就。我们知道,人眼只能区分光波的波长(颜色)和振幅(亮度),对于无色通明的生物标本,当光线通过时,波长和振幅变化不大,在明场观察时很难观察到标本。 相衬显微镜利用被检物体的光程之差进行镜检,也就是有效地利用光的干涉现象,将人眼不可分辨的相位差变为可分辨的振幅差,即使是无色透明的物质也可成为清晰可见。这大大便利了活体细胞的观察,因此相衬镜检法广泛应用于倒置显微镜中。6.[b]微分干涉对比显微镜[/b](DifferentialinterferencecontrastDIC)微分干涉对比镜检术出现于60年代,它不仅能观察无色透明的物体,而且图象呈现出浮雕壮的立体感,并具有相衬镜检术所不能达到的某些优点,观察效果更为逼真。微分干涉对比镜检术是利用特制的渥拉斯顿棱镜来分解光束。分裂出来的光束的振动方向相互垂直且强度相等,光束分别在距离很近的两点上通过被检物体,在相位上略有差别。由于两光束的裂距极小,而不出现重影现象,使图象呈现出立体的三维感觉。7.[b]倒置显微镜[/b](Invertedmicroscope)倒置显微镜是为了适应生物学、医学等领域中的组织培养、细胞离体培养、浮游生物、环境保护、食品检验等显微观察。由于上述样品特点的限制,被检物体均放置在培养皿(或培养瓶)中,这样就要求倒置显微镜的物镜和聚光镜的工作距离很长,能直接对培养皿中的被检物体进行显微观察和研究。因此,物镜、聚光镜和光源的位置都颠倒过来,故称为"倒置显微镜"。由于工作距离的限制,倒置显微镜物镜的最大放大率为60X。一般研究用倒置显微镜都配置有4X、10X、20X、及40X相差物镜,因为倒置显微镜多用于无色透明的活体观察。如果用户有特殊需要,也可以选配其它附件,用来完成微分干涉、荧光及简易偏光等观察。目见倒置显微镜广泛应用于patch-clamp,transgeneICSI等领域。8.[b]数码显微镜[/b]数码显微镜是以摄像头(即电视摄像靶或电荷耦合器)作为接收元件的显微镜。在显微镜的实像面处装入摄像头取代人眼作为接收器,通过这种光电器件把光学图像转换成电信号的图像,然后对之进行尺寸检测、颗粒计数等工作。这类显微镜可以与计算机联用,这便于实现检测和信息处理的自动化,多应用于需要进行大量繁琐检测工作的场合。目前出现一种便携式数码显微镜照相机,简称数微相机。它将显微镜和数码相机相结合,以同时达到显微镜观察(Micro preview)和显微摄影(Micro photography)的要求。最高物镜显微倍率可达150X,机身小巧,便于携带,自备光源,可运用于多种场合。可直接与计算机、打印机(不需要电脑)、电视(不需要电脑)联用。

  • 相差显微镜简单介绍

    相差显微镜:利用光的衍射和干涉现象将透过标本的光线光程差或相位差转换成肉眼可分辨的振幅差显微镜。提高了密度不同物质图像的明暗区别,可用于观察未经染色的细胞结构。 相差显微镜是荷兰科学家Zernike于1935年发明的,用于观察未染色标本的显微镜。活细胞和未染色的生物标本,因细胞各部细微结构的折射率和厚度的不同,光波通过时,波长和振幅并不发生变化,仅相位发生变化(振幅差),这种振幅差人眼无法观察。而相差显微镜通过改变这种相位差,并利用光的衍射和干涉现象,把相差变为振幅差来观察活细胞和未染色的标本。相差显微镜和普通显微镜的区别是:用环状光阑代替可变光阑, 用带相板的物镜代替普通物镜,并带有一个合轴用的望远镜。相衬显微镜,又称相差显微镜或位相显微镜。

  • 金相显微镜的分类

    金相显微镜是用来调查不透明物体的。因为光线不能透过不透明物体,所以有必要选用一套杂乱的照明体系使光线从正面或旁边面把物体外表照亮,然后依托物体外表的反射能力使局部光线反射入光学体系,经扩大成象,为眼睛所调查。由此可见,金相显微镜是使用反射光调查不透明物体的。金相显微镜的品种许多,它首要依据金相研讨的意图、目标、办法的异样而描绘。如偏光金相显微镜、相衬金相显微镜、紫外线金相显微镜等。从光路方式来看,也有正置式与倒置式光路之分,两者的首要区别是根据对金相试样的恳求异样。但凡金相试样磨面向上放置,试样外表要与地上平行,物镜朝下调查的都称为正置式光路(即与生物显微镜的调查方式一样)。但凡磨面朝下放置、试样底面为恣意形状、物镜朝上调查的都称为倒置式光路。

  • 显微镜的使用方法,你造吗?

    传统显微镜的使用方法传统显微镜可用于生物学、细菌学、组织学、药物化学等研究工作以及临床度验之用。具有粗微动同轴的调焦机构,滚珠内定位转换器,亮度可调的照明装置,并带有摄影、摄像接口。传统显微镜具有以下特点:1、无限远光学系统,提供了卓越的光学性能2、创新的物体机构、清晰的标本观察,便捷的操作方式,专为细胞培养观察而量身设计,是常规检查的革新方案。3、无限远平场长工作距离物镜,使得观察标本视野更平坦、亮度更高、反差更强,且更容易观察活细胞的状态。4、配备标准相衬环板,中心可调 ,可观察低反差或透明标本的鲜明图像。使用传统显微镜要注意如何正确对光,正确对光方法如下:⑴转动粗准焦螺旋,使镜筒上升。⑵转动转换器,使低倍物镜对准通光孔⑶转动遮光器,使遮光器上最大的光圈对准通光孔。⑷左眼注视目镜(右眼睁开),转动反光镜,直到看到一个明亮的视野。文章转载于网络更多文章资讯:上海全耀仪器设备有限公司http://www.microimaging.com.cn/

  • 【资料】光学显微镜的分类

    光学显微镜有多种分类方法:按使用目镜的数目可分为双目和单目显微镜;按图像是否有立体感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理可分为偏光、相衬和微差干涉对比显微镜等;按光源类型可分为普通光、荧光、紫外光、红外光和激光显微镜等;按接收器类型可分为目视、数码(摄像)显微镜等。常用的显微镜有双目体视显微镜、金相显微镜、偏光显微镜、荧光显微镜等。 1.双目体视显微镜 双目体视显微镜又称"实体显微镜"或"解剖镜",是一种具有正象立体感地目视仪器。在生物、医学领域广泛用于切片操作和显微外科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。它利用双通道光路,双目镜筒中的左右两光束不是平行,而是具有一定的夹角--体视角(一般为12度--15度),为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。 目前体视镜的光学结构是:由一个共用的初级物镜,对物体成象后的两光束被两组中间物镜----变焦镜分开,并成一体视角再经各自的目镜成象,它的倍率变化是由改变中间镜组之间的距离而获得的,因此又称为"连续变倍体视显微镜"(Zoom-stereomicroscope)。随着应用的要求,目前体视镜可选配丰富的选购附件,如荧光,照相,摄象,冷光源等等。

  • 光学显微镜简史

    早在公元前一世纪,大家就已发现颠末球形通明物体去调查细小物体时,可以使其扩大成像。后来逐步对球形玻璃外表能使物体扩大成像的规则有了知道。 1590年,荷兰和意大利的眼镜制作者现已造出相似显微镜的扩大仪器。1610年前后,意大利的伽利略和德国的开普勒在研讨望远镜的一起,改动物镜和目镜之间的间隔,得出合理的显微镜光路布局,其时的光学工匠遂纷繁从事显微镜的制作、推行和改善。   17世纪中叶,英国的胡克和荷兰的列文胡克,都对显微镜的开展作出了杰出的奉献。1665年前后,胡克在显微镜中参加粗动和微动调焦组织、照明体系和承载标本片的工作台。这些部件颠末不断改善,成为现代显微镜的根本组成部分。 1673~1677年时间,列文胡抑制成单组元扩大镜式的高倍显微镜,其间九台保管至今。胡克和列文胡克使用便宜的显微镜,在动、植物机体微观布局的研讨方面取得了杰出成就。 19世纪,高质量消色差浸液物镜的呈现,使显微镜调查微细布局的才能大为进步。1827年阿米奇第一个选用了浸液物镜。19世纪70年代,德国人阿贝奠定了显微镜成像的古典理论基础。这些都促进了显微镜制作和显微调查技能的迅速开展,并为19世纪后半叶包罗科赫、巴斯德等在内的生物学家和医学家发现细菌和微生物供给了有力的东西。 在显微镜自身布局开展的一起,显微调查技能也在不断创新:1850年呈现了偏光显微术;1893年呈现了干与显微术;1935年荷兰物理学家泽尔尼克发明了相衬显微术,他为此在1953年获得了诺贝尔物理学奖。 古典的光学显微镜仅仅光学元件和精密机械元件的组合,它以人眼作为接收器来调查扩大的像。后来在显微镜中参加了拍摄设备,以感光胶片作为可以记载和存储的接收器。现代又遍及选用光电元件、电视摄像管和电荷耦合器等作为显微镜的接收器,配以微型电子计算机后构成完好的图画信息收集和处理体系。

  • 【分享】金相显微镜使用

    明暗场正置透反射金相显微镜:DMM-550D一、仪器的主要用途和特点 (1)仪器主要用途: DMM-550系列正置明暗场偏光透反射金相显微镜是一种多用途工业检验用显微镜,配有五孔转换器,明/暗场物镜,大视野目镜,50W大功率反射式及30W透射式“柯勒”照明系统,视场清晰明亮,并可配落射暗场照明装置。可用于半导体硅晶片、掩膜板,LCD基板,电路板,固体粉末及其它各种透明或不透明工业试样的检验;也可作生物试样、金相试样、矿物试样及岩相试样的检验。本产品还可选配120mm*100mm移动行程高精度大行程载物台,便于大尺寸试样的检验。另外,本产品还可配暗场、偏光、透射相衬及试样压平器进行样品深层次的检验。 DMM-550D数码型三目正置金相显微镜是将精锐的光学显微镜技术、先进的光电转换技术、尖端的数码成像技术完美地结合在一起而开发研制成功的一项高科技产品。既可人工观察金相图像,又可以在计算机显示器上很方便地适时观察金相图像,并可随时捕捉记录金相图片,从而对金相图谱进行分析,评级等,还可以保存或打印出高像素金相照片。 (2)仪器主要特点: 视场宽阔平坦:配备平常消色差物镜及视场数为Φ20mm的10X大视野目镜使视厂场宽阔平坦。 视场均匀明亮:采用12V/50W反射,6V/30W透射大功率卤钨灯(亮度可调)及透/反射式“柯勒”照明系统,使成像视场明亮均匀。 载物台可快速更换:本机设有载物台快速更换装置,可根据需要更换成120mm*100mm大行程载物台 可对式样进行偏光观察:本机的透射和反射系统均备有偏光装置,可快速方便的从明场切换到偏光。 丰富的附件供用户选择:本机有反射暗场、透射相衬、试样样压平器及各类物镜、目镜等供用户选择。二、仪器的主要技术指标1、组件及规格目镜 大视野 WF10X(Φ20mm)平场分划 10X(0.10mm/格值)物镜 平场消色差(无盖玻片) 放大倍数/数值孔径 工作距离PL10X/0.25 8.9PL20X/0.3 8.7PL40X/0.65 3.7SPL100X/1.25(油) 0.44平场暗场物镜 PL10XPL20XPL40X载物台 透反射两用载物台仪器主体 透反射显微镜机架,内状6V/30W透射光源三目头 内装检偏器偏光装置 起偏镜组,检偏镜组聚光镜组 透射光明暗场聚光镜组调焦机构 同轴粗微动调焦机构, 调焦范围15mm 微动格值2μm 透反射照明组 落射照明12V50W和透射照明6V/30W 卤素灯,亮度可调,内装落射光起偏器2、选购件: (1)16X广角目镜; (2)有盖玻片平场消色差物镜 (3) 大行程载物台(100mmX120mm) (4) 平场相衬物镜(10X,40X,100X),对中目镜,相衬聚光镜组 (5) 反射光暗场照明组三、系统的组成1、金相显微镜DMM-5502、数码适配镜3、彩色数码相机四、选购部分1.金相分析软件五 、同类仪器的比较1、DMM-550C电脑倒置金相显微镜2、DMM-550D数码倒置金相显微镜

  • 【资料】微分干涉相衬法及其应用

    [size=3][font=宋体][/font][size=2][font=宋体][/font][/size][/size][size=2][font=宋体]微分干涉相衬法(DIC)作为一种极具前途的分析检验方法,具有对金相样品的制备要求较低,所观察到的样品各组成相间的相对层次关系突出,呈明显的浮雕状,对颗粒、裂纹、孔洞以及凸起等能作出正确的判断,能够容易判断许多明场下所看不到的或难于判别的一些结构细节或缺陷,可进行彩色金相摄影等优点。但在目前的金相检验工作中,DIC法还利用得很少。[/font][/size][size=2][font=宋体]在金相显微镜检验方法中,微分干涉相衬法(DIC)是金相检验的一种强有力的工具,其特点主要为:[/font][/size][size=2][font=宋体]对金相样品的制备要求降低,对于某些样品,甚至只需抛光而不必腐蚀处理即可进行观察。优点是可以观察到样品表面的真实状态,如将试样抛光后在真空下发生马氏体相变,不用腐蚀就可以观察到马氏体的相变浮凸。 [/font][/size][size=2][font=宋体]所观察到的表面具有明显的凹凸感,呈浮雕状,样品各组成相间的相对层次关系都能显示出来,对颗粒、裂纹、孔洞以及凸起等都能作出正确的判断,提高了金相检验准确性,同时也增加了各相间的反差。 [/font][/size][size=2][font=宋体]用微分干涉相衬法观察样品,会看到明场下所看不到的许多细节,明场下难于判别的一些结构细节或缺陷,可通过微分干涉进行反差增强而容易判断。 [/font][/size][size=2][font=宋体]微分干涉相衬法基于传统的正交偏光法,又巧妙地利用了在渥拉斯顿棱镜基础上改良的DIC 棱镜和补色器([/font][/size][size=2][font=Arial]λ-[/font][/size][size=2][font=宋体]片)等,使所观察的样品以光学干涉的方法染上丰富的色彩,从而可利用彩色胶卷或者数码产品(CCD 摄像头以及数码相机)进行彩色金相显微摄影。由于微分干涉相衬得效果与样品细节的浮雕像以及色彩都是可以调节的,因而比正交偏光更为优越。 [/font][/size][size=2][font=宋体]微分干涉相衬法在生物医学领域得到了广泛的重视,然而,到目前为止从发表的有关材料金相研究的论文中,国内外基于微分干涉相衬法进行材料金相研究的工作开展得很少。其原因主要有两个方面:一方面是由于配备微分干涉相衬部件的金相显微镜不是很多;另一方面,许多材料科学工作者还没有意识到微分干涉相衬法在材料研究中的优势。[/font][/size][size=2][font=宋体]一、微分干涉相衬法的基本原理:[/font][/size][size=2][font=宋体]微分干涉相衬法所需部件:起偏器、检偏器、微分干涉相衬组件插板(DIK组件插板),以及补色器([/font][/size][size=2][font=Arial]λ- [/font][/size][size=2][font=宋体]片)。起偏器和检偏器是在对金相样品进行正交偏振光观察中必不可少的基本配套部件,组装在明/暗场照明组件中,也是微分干涉相衬法必不可少的部件。起偏器是把光源变为按东- 西方向振动的线偏振光;检偏器可以使满足干涉条件的相干光进行干涉。DIK组件插板是微分干涉相衬法的核心部件,其上装配有以渥拉斯顿棱镜为基础改良后的DIC棱镜。DIK组件插板上有两个调节旋钮,其中较大的一个用来调节组成DIC棱镜的两个棱镜间的相对位置,使其厚度产生微小的改变从而引起光程或光程差的微小变化,产生明显的干涉相衬效果;较小的一个用来调节DIC棱镜的高低位置,以配合不同倍数物镜后焦平面位置上的差异,从而确保DIC观察视场中能获得均匀的照明。补色器([/font][/size][size=2][font=Arial]λ- [/font][/size][size=2][font=宋体]片)由石膏制成,插在线偏振光的照光路中用以增加一个光波波长约550nm的光程差,使干涉级序升高一级,保证视野中样品的不同组织细节获得丰富的色彩,从而利于金相组织的观察和分析。 [/font][/size][size=2][font=宋体]微分干涉相衬的基本原理:微分干涉相衬法的基本原理如图1所示。由光源出射的照明光经起偏器后变为东-西方向振动的线偏振光,第一次进入DIC棱镜内部时分为寻常光(o光)和非寻常光(e光),这两束光微微分开,而其振动方向相互垂直。当o光和e光穿出棱镜时,两者具有一定的光程差T1,这两束光通过物镜照射到样品上时,就有可能照射于不同的表面状态上。也就是说,这两束光的波前接触到了样品上的不平整表面、裂纹、微孔、凹陷、晶界等,都会产生不同情况的反射,再加上不同物相上光的折射率差异产生的光波相位变化,从而产生了新的附加光程差T0。当这两束光由样品表面反射后,穿过物镜第二次进入DIC棱镜,波前又产生了新的光程差T2 并进行合并。但这两束光仍然是相互垂直的线偏振光,并未产生干涉。在进入检偏器之前,总的光程差T总=T1±T0±T2只有符合光程差条件T总=(2k + 1)[/font][/size][size=2][font=Arial]λ/2[/font][/size][size=2][font=宋体],其中(k= 0,1,2等) 的光波波前,才可能通过检偏器。也就是说,线偏振光两次通过DIC棱镜后,只有那些经样品反射而其总光程差等于所用光源光波半波长奇数倍的波前,才能满足干涉条件而通过检偏器而进行干涉。当将DIC棱镜的两半部分进行适当的移动(即调节DIK 插板上较大的旋钮),则T1和T2 的比率就会发生变化:调节旋钮使DIC 棱镜在显微镜的光轴上为对称时(即棱镜上下两半部分没有相对位移),有T1=T2,视场中光强分布只与光程差T0有关,而T0是由样品上的不平整度以及物相造成的光波相位变化而引起的光程差。除了在样品表面上由于物相间折射率的差异导致的光波相位变化而引起的光程差之外,这种干涉方法所引起的样品光程差与o光和e光的分开距离x值(低于显微镜的分辨率极限,约012[/font][/size][size=2][font=Arial]μm[/font][/size][size=2][font=宋体])有关,还与样品表面上物相表面高度变化(凸起或凹下)梯度tg[/font][/size][size=2][font=Arial]α[/font][/size][size=2][font=宋体]([/font][/size][size=2][font=Arial]α[/font][/size][size=2][font=宋体]为o光或e光入射于样品表面的入射角)有关。即样品成像的反差取决于o光和e光波前在样品表面物相凸起或凹下的高度变化梯度所引起的光程差。当调节旋钮使DIC 棱镜上下两半部分产生相对位移时,物相表面凸起或凹下两个相反梯度所引起的光强差异就在显微镜的成像中产生了浮雕效果如图2所示,与单一方向斜射照明光所产生的近似立体效果相同。此时干涉效果是零级干涉级序下的微分干涉效果,灰度最大者为零级灰,在零级干涉级序下干涉相衬的效果最佳,同时也是最大的,但仅能以不同灰度层次显示。把补色器(或[/font][/size][size=2][font=Arial]λ-[/font][/size][size=2][font=宋体]片)加在线偏振光的照明或检偏器之前的成像光路中,可以将线偏振光在样品不同物相或表面上引起的光程差扩大约550nm ,也就是扩大一个光波波长的长度,使干涉级序提高一级,把原先干涉出来仅以不同灰度显示出来的层次转为色彩鲜艳且富有立体感的彩色,零级灰转为红色(一级红),而其它的灰度阶也依次变为橙、黄、绿、紫、粉紫以至于金黄色等对应的颜色如图3 (见彩图页) 所示。虽然加入补色器后干涉出来的色彩非常丰富,但干涉相衬的效果(即浮雕效果) 要相应减弱一些。 [/font][/size]

  • 什么是生物显微镜

    什么是生物显微镜?16.5万 1'32"生物显微镜国家药品监督管理局 | 本词条由国家药品监督管理局审核生物显微镜是一种用来观察生物切片、生物细胞、细菌以及活体组织培养、流质沉淀等也可以观察其他透明或者半透明物体以及粉末、细小颗粒等物体的精密光学仪器。生物显微镜用来供医疗卫生单位、高等院校、研究院所用于微生物、细胞、细菌、组织培养、悬浮体、沉淀物等的观察,可连续观察细胞、细菌等在培养液中繁殖分裂的过程等。在细胞学、寄生虫学、肿瘤学、免疫学、遗传工程学、工业微生物学、植物学等领域中应用广泛。其光学技术参数包括:数值孔径、分辨率、放大率、焦深、视场宽度、覆盖差、工作距离等。这些参数并不都是越高越好,它们之间既相互联系又相互制约的,实际应用中应当在保证分辨率的基础上根据镜检的目的和实际情况来协调参数间的关系。

  • 生物显微镜的用途

    生物显微镜是用来观察生物切片、生物细胞、细菌以及活体组织培养、流质沉淀等的观察和研究,同时可以观察其他透明或者半透明物体以及粉末、细小颗粒等物体。 生物显微镜供医疗卫生单位、高等院校、研究所用于微生物、细胞、细菌、组织培养、悬浮体、沉淀物等的观察,可连续观察细胞、细菌等在培养液中繁殖分裂的过程等。在细胞学、寄生虫学、肿瘤学、免疫学、遗传工程学、工业微生物学、植物学等领域中应用广泛

  • 【转帖】国产显微镜报价

    想采购一台显微镜,但是外行,对这个没有一点概念,搜了很久,都是要一家一家询价,今天终于搜到一个报价,可供与我有同样想法者参考,各位有买了的,也可以比较一下,看这个报价是否与实际复合.[B]注意这个帖子是2006年12月发布的了[/B].一、生物类显微镜 (单位:台/元) 序号 产 品 名 称 出厂价 序号 产 品 名 称 出厂价1 XSP-12型500倍单目生物显微镜 360 27 XSP-24N-101型单目生物显微镜 8102 XSP-15型640倍单目生物显微镜 370 28 XSP-24N-102型单目生物显微镜 9003 XSP-13A型1250倍单目生物显微镜 660 29 XSP-24N-103型单目生物显微镜 11804 XSP-16A型1600倍单目生物显微镜 670 30 XSP-24N-201型双目生物显微镜 85005 XS-011型200倍单目生物显微镜 200 31 XSP-24N-111型示教显微镜 16006 ESM100型生物显微镜(全塑) 98 32 Nikon YS100型双目生物显微镜 92007 XS-100型200倍学生用显微镜(全塑) 75 33 Nikon YS50型单目生物显微镜(自然光源) 85008 XS-212-201型双目生物显微镜 2600 34 Nikon YS50型单目生物显微镜(电光源) 88009 XS-212-202型双目生物显微镜 2550 35 Nikon YS100型三目摄影生物显微镜(相机选购) 1690010 XS-212-103型双目生物显微镜 1580 36 Nikon E200(MCA74401C)临床实验室 用双目生物显微镜     1590011 XS-212-104型双目生物显微镜(自然光源) 1460 12 XS-212-105型双目生物显微镜 1790 37 Nikon E200(MCA74411C)临床实验室 用双目生物显微镜(视场光栏) 1661013 XS-212-301型双目生物显微镜 3100 14 XS-200型双目生物显微镜 2780 38 Nikon E200(MCA74402C)临床实验室 用三目生物显微镜 1905015 XS-200型双目平场生物显微镜 4150 16 XS-201型双目生物显微镜 2880 39 Nikon E200(MCA74412C)临床实验室 用三目生物显微镜(视场光栏) 1976017 XS-201型双目平场生物显微镜 4250 18 XS-402型实验室用双目生物显微镜 6500 40 GAILEM型单目生物显微镜 300019 XS-402型实验室用荧光双目生物显微镜(二波段) 17500 41 GAILEM型单目生物显微镜(自然光源) 280020 XS-402型实验室用荧光三目生物显微镜(二波段) 19000 42 GAILEM型双目生物显微镜 380021 XS-402型实验室用荧光三目生物显微镜(四波段) 25000 43 GAILEM型双目平场生物显微镜 540022 XS-213-201型双目生物显微镜 4200 44 GAILEM型双目相衬生物显微镜 660023 XS-213-202型双目平场生物显微镜 5200 45 GAILEM型双目暗场生物显微镜 485024 XS-213-301型单目生物显微镜 4700 46 GAILEM型摄影生物显微镜(相机选购) 510025 XSP-24S-106型单目生物显微镜 1150 47 XD-101型倒置式生物显微镜(相机选购) 995026 XSP-24S-206型单目生物显微镜 1800 48 XD-101改型倒置式生物显微镜(相机选购) 17500二、体视类显微镜 序号 产 品 名 称 出厂价 序号 产 品 名 称 出厂价1 XTX-2型40倍小型体视显微镜 470 6 JSZ4(1:7)连续变倍体视显微镜(无光源) 42002 XTB-1型160倍连续变倍体视显微镜 2350 7 JSZ4(1:7)连续变倍体视显微镜(上下光源) 47003 XTL-1型200倍摄影体视显微镜(相机选购) 3650 8 JSZ4(1:8)连续变倍体视显微镜(无光源) 48004 JSZ4(1:4.3)连续变倍体视显微镜(无光源) 2850 9 JSZ4(1:8)连续变倍体视显微镜(上下光源) 53005 JSZ4(1:4.3)连续变倍体视显微镜(上下光源) 3350      三、偏光类显微镜 序号 产 品 名 称 出厂价 序号 产 品 名 称 出厂价1 XPT-7型偏光显微镜(附光源) 3600 4 XP-201型双目偏光显微镜 99502 XPT-8型偏光显微镜(附光源及摄影仪DP相机) 5880 5 Nikon YS2型双目偏光显微镜 230003 XP-201型单目偏光显微镜 8000 6 Nikon YS2型三目偏光显微镜(相机选购) 25500四、金相类显微镜 序号 产 品 名 称 出厂价 序号 产 品 名 称 出厂价1 XJX-1型单目正置式金相显微镜 3250 6 XJL-03型立式金相显微镜 320002 XJX-2型双目正置式金相显微镜 4100 7 XJG-05型卧式大型金相显微镜 415003 XJP-100型倒置单目金相显微镜 3400 8 XJZ-6型正置透反两用金相显微镜(相机选购) 230004 XJP-200型倒置双目金相显微镜 4250 9 XJZ-6A型立式金相显微镜 185005 XJL-5型立式金相显微镜 22000      五、大型仪器设备 序号 产 品 名 称 出厂价 序号 产 品 名 称 出厂价1 DLT2000多媒体显微实验• 示教系统 待询 5 XQF-2000型半自动金相图像分析仪 980002 DXT-100G型透射电子显微镜 285000 6 XQF-2000型全自动金相图像分析仪 1800003 H-600A-2型透射电子显微镜(进口组装) 880000 7 MIAS2000型图像分析通用软件(含图像卡) 280004 DXS-2B扫描电子显微镜 168000 8 HS88/23航空摄影仪 545000六、电视显微镜 序号 产 品 名 称 出厂价 序号 产 品 名 称 出厂价1 XS-213型电视生物显微镜(配25寸国产彩电) 18500 3 NikonYS2-TV型电视生物显微镜(配25寸国产彩电) 260002 GAILEM/TV型电视生物显微镜(配25寸国产彩电) 18500 4 XTL-1/TV型电视生物显微镜(配26寸国产彩电) 18500七、附件(选购) 序号 产 品 名 称 出厂价 序号 产 品 名 称 出厂价1 X11-3型体视透射光源 280 16 JSZ7体视 2X大物镜 4002 环形体视光源 340 17 JSZ7体视 10X目镜 1803 X11-5型斜照光源 280 18 JSZ7体视 20X目镜 2004 偏光光源 280 19 JSZ7体视 25X目镜 2505 冷光源 2650 20 JSZ8体视 2X大物镜 5306 X17-1型压平机 345 21 JSZ8体视 10X目镜 3007 显微镜修理工具 280 22 JSZ8体视 16X目镜 3508 移动尺(黑漆) 77 23 JSZ8体视 25X目镜 4009 移动尺(镀铬) 88 24 JSZ8体视 摄影附件(摄影目镜 2.5X,MD 卡口) 280010 NIDS-光标发生器(手动) 2800 25 数码相机附件 待询11 05型金相135摄影仪(配DF-300相机) 3800 26 XS-212、XS-213摄影装置(不含相机) 120012 JSZ4体视 2X大物镜 480 27 XS-212、XS-213相衬装置 280013 JSZ4体视 10X目镜 180 28 XS-212、XS-213偏光附件 600元14 JSZ4体视 15X目镜 200 29 XS-212、XS-213暗场聚光镜(干、油各一只) 105015 JSZ4体视 20X目镜 200 30 XS-212、XS-213暗场聚光镜(干、油各一只) 650元/套来源:中国教育装备采购网(来源:中国生物仪器网)

  • 快来看呀~~显微镜的发展历史

    早在公元前一世纪,人们就已发现通过球形透明物体去观察微小物体时,可以使其放大成像。后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。  1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。1610年前后,意大利的伽利略和德国的开普勒在研究望远镜的同时,改变物镜和目镜之间的距离,得出合理的显微镜光路结构,当时的光学工匠遂纷纷从事显微镜的制造、推广和改进。  17世纪中叶,英国的胡克和荷兰的列文胡克,都对显微镜的发展作出了卓越的贡献。1665年前后,胡克在显微镜中加入粗动和微动调焦机构、照明系统和承载标本片的工作台。这些部件经过不断改进,成为现代显微镜的基本组成部分。  1673~1677年期间,列文胡克制成单组元放大镜式的高倍显微镜,其中九台保存至今。胡克和列文胡克利用自制的显微镜,在动、植物机体微观结构的研究方面取得了杰出成就。  19世纪,高质量消色差浸液物镜的出现,使显微镜观察微细结构的能力大为提高。1827年阿米奇第一个采用了浸液物镜。19世纪70年代,德国人阿贝奠定了显微镜成像的古典理论基础。这些都促进了显微镜制造和显微观察技术的迅速发展,并为19世纪后半叶包括科赫、巴斯德等在内的生物学家和医学家发现细菌和微生物提供了有力的工具。  在显微镜本身结构发展的同时,显微观察技术也在不断创新:1850年出现了偏光显微术;1893年出现了干涉显微术;1935年荷兰物理学家泽尔尼克创造了相衬显微术,他为此在1953年获得了诺贝尔物理学奖。  古典的光学显微镜只是光学元件和精密机械元件的组合,它以人眼作为接收器来观察放大的像。后来在显微镜中加入了摄影装置,以感光胶片作为可以记录和存储的接收器。现代又普遍采用光电元件、电视摄像管和电荷耦合器等作为显微镜的接收器,配以微型电子计算机后构成完整的图像信息采集和处理系统。[em44]

  • 光学显微镜基础知识100条 读完你就成显微镜专家了

    1显微镜的光学原理图 ................................................................................................................... 12显微镜观察方式一 明视野观察(Bright field, BF) .............................................................. 13显微镜观察方式二 暗视野观察(Dark field) ....................................................................... 14显微镜观察方式三 相差镜检法(Phase contrast, PH) ...................................................... 25显微镜观察方式四 微分干涉镜检术(DIC) ......................................................................... 36显微镜观察方式五 偏光显微镜(Polarizing Microscopy, POL) ....................................... 47显微镜观察方式六 霍夫曼调制相衬(HMC) ....................................................................... 58显微镜观察方式七 荧光显微镜(Fluorescence Microscopy, FL) .................................... 69显微镜观察方式八 塑料DIC(Plas DIC) ............................................................................ 710物镜 ............................................................................................................................................ 711消色差物镜(Achromatic) ...................................................................................................... 812复消色差物镜(Apochromatic) ............................................................................................. 813平场消色差物镜(Plana chromatic) ..................................................................................... 814平场复消色差物镜(PF, Planapochromatic) ....................................................................... 815半复消色差物镜(Semi Apochromatic) ............................................................................... 816放大率(Magnification) .......................................................................................................... 817视场数 ........................................................................................................................................ 918物镜参数:数值孔径 ................................................................................................................. 919物镜参数:焦深 ....................................................................................................................... 1020物镜参数:齐焦距离 ............................................................................................................... 1021物镜参数:工作距离 ............................................................................................................... 1122物镜参数:分辨率 ................................................................................................................... 1123覆盖差 ...................................................................................................................................... 1124齐焦合轴 ..................................................................................................................................

  • 如何保养生物显微镜

    生物显微镜是实验室常用的设备之一,如何更好的保养生物显微镜,延长生物显微镜的使用寿命,下面是小编为你整理的相关资料。1、生物显微镜的安放应选择干燥清洁的房间,以避免光学部件发霉、金属部分生锈以及粘满灰尘。显微镜使用完毕后,即放回箱(柜)内,或用玻璃罩、塑料套罩住,并放入干操剂。2、不要自行拆卸各部件;镜筒要插上接目镜或益上镣苗盖,避免灰尘从镜筒上部进入;透镜表面不要用手指碰触或拭擦,如有灰尘,先用柔软毛笔轻轻拂去,再用柔软的清洁细布拭撩,也可用擦镜纸蘸少许二甲苯或石油迷试擦,但注意不要在透镜表面划出条纹。如镜片有轻度长霉,用擦绕纸擦不去时,可用棉签蘸少许70%乙醇与30%乙迷混合液轻轻拭撩。3、生物显微镜不可与腐蚀性酸类、减类或挥发性强的化学药品放在一起,以免被腐蚀,缩短使用年限。原则上,当观察含液体的标本时,一般都要盖上盖玻片;若液体中含有酸、碱等腐蚀性化学物质时,应把盖玻片的四周用石蜡或凡士林封住,然后观察。但由于进行中药显微鉴定时,经常要用这一类试剂,不可能都封固,因此要特别小心,防止液体流到载物台上,吏不要沾到物镜上。4、生物显微镜不应在直射阳光下暴晒,也不要放在靠近炉子或暖气的地方,以避免过剧的冷热变化引起透镜和机件的脱胶、变形或损坏。5、清洁接物镜只限于外表面。接物面被药品污染后即用撩镜纸蘸少许擦镜液拭擦(不要用乙醇);若背面须清洁时,可用柔软毛笔拂拭,或用皮吸头吸去灰尘。6、转动粗细调比铝调焦时,动作要缓慢,不要压碎盖被片,以防接物镜和集光器受控击而损坏。7、使用油镜后,须将镜头上的香柏油拭探干净(可用擦镜纸蘸少许二甲苯拭擦,但注怠二甲苯不能渗入镜头内部,否则二甲苯溶解透镜之间的粘合剂,可使镜片脱落)。8、反光镜镜面要保护清洁,不要使水、二甲苯或香柏油透入,以免反光镜的水银脱落。9、加机械部分不灵活,可用细绸布蘸二甲苯少钧:拭去锈和油腻(不得用乙醇,因为这些溶剂会侵蚀油漆),再用少许液体石服润滑;旋扭过紧不要强行扭动,以免损坏。10、有时在生物显微镜的视野中发现有污点或异物,可先转动目镜,如果这些污点跟着旋转,则可确定污点是在目镜上;否则,可移动标本片,如污点跟着移动,则污点是在标本片上。如果两者都不是,则污点是在物镜上,可先捡食物镜的前镜头,然后检查后镜头。根据不问情况进行清洁处理。有时视野的一部分不清晰,这可能是物镜或目镜的前透镜表面有指印或灰尘,也可能是标本片做得不好或显微镜用法不当,如照明系统末调好等原因,应查明情况,分别解决。11、生物显微镜用毕后,应将各部分擦拭干净,格接物镜转成八字形,然后将镜筒和集光器下降固定,再将反光镜的镜面置垂直的位置。

  • 光学显微镜概述

    早在公元前一世纪,人们就已发现通过球形透明物体去观察微小物体时,可以使其放大成像。后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。 1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。1610年前后,意大利的伽利略和德国的开普勒在研究望远镜的同时,改变物镜和目镜之间的距离,得出合理的显微镜光路结构,当时的光学工匠遂纷纷从事显微镜的制造、推广和改进。 17世纪中叶,英国的胡克和荷兰的列文胡克,都对显微镜的发展作出了卓越的贡献。1665年前后,胡克在显微镜中加入粗动和微动调焦机构、照明系统和承载标本片的工作台。这些部件经过不断改进,成为现代显微镜的基本组成部分。 1673~1677年期间,列文胡克制成单组元放大镜式的高倍显微镜,其中九台保存至今。胡克和列文胡克利用自制的显微镜,在动、植物机体微观结构的研究方面取得了杰出成就。 19世纪,高质量消色差浸液物镜的出现,使显微镜观察微细结构的能力大为提高。1827年阿米奇第一个采用了浸液物镜。19世纪70年代,德国人阿贝奠定了显微镜成像的古典理论基础。这些都促进了显微镜制造和显微观察技术的迅速发展,并为19世纪后半叶包括科赫、巴斯德等在内的生物学家和医学家发现细菌和微生物提供了有力的工具。 在显微镜本身结构发展的同时,显微观察技术也在不断创新:1850年出现了偏光显微术;1893年出现了干涉显微术;1935年荷兰物理学家泽尔尼克创造了相衬显微术,他为此在1953年获得了诺贝尔物理学奖。 古典的光学显微镜只是光学元件和精密机械元件的组合,它以人眼作为接收器来观察放大的像。后来在显微镜中加入了摄影装置,以感光胶片作为可以记录和存储的接收器。现代又普遍采用光电元件、电视摄像管和电荷耦合器等作为显微镜的接收器,配以微型电子计算机后构成完整的图像信息采集和处理系统。 目前全世界最主要的显微镜厂家主要有:奥林巴斯、蔡司、徕卡、尼康。国内厂家主要有:江南、麦克奥迪等。

  • 【资料】干涉显微镜一点小知识

    干涉显微镜是将光波的干涉技术与显微镜结合起来,利用光的干涉可以精确测量试样表面上高度的微小差别.干涉显微镜主要应用在:1)表面光洁度的测定.精密加工过的试样表面粗糙度常用干涉显微镜进行测量.电解抛光、化学抛光过的试样表面质量也可以用干涉显微镜进行鉴定。2)相变浮凸的研究。材料中的马氏体、贝氏体转变的浮凸现象产生了微小高度差,在相衬显微镜下可以得到很好的衬度差别,易于观察,但不能测量浮凸的高度。利用干涉显微镜,可以根据干涉条纹测得浮凸的高度。3)用干涉显微镜可以研究材料塑性变形的程度。金属在应力作用下超过弹性极限要发生塑性变形。塑性变形过程中晶体要沿一定晶面发生滑移,利用干涉显微镜可以测量滑移台阶高度。干涉显微镜现主要用于高等教学实验中!

  • 生物显微镜的保养注意事项

    生物显微镜是用来观察生物切片、生物细胞、细菌以及活体组织培养、流质沉淀等的观察和研究,同时可以观察其他透明或者半透明物体以及粉末、细小颗粒等物体。左图所示为生产的倒置生物显微镜型,该生物显微镜也是食品厂、饮用水厂办QS、HACCP认证的必备检验设备。用途   生物显微镜供医疗卫生单位、高等院校、研究所用于微生物、细胞、细菌、组织培养、 悬浮体、沉淀物等的观察,可连续观察细胞、细菌等在培养液中繁殖分裂的过程等。在细胞学、寄生虫学、肿瘤学、免疫学、遗传工程学、工业微生物学、植物学等领域中应用广泛。显微镜的重要光学技术参数在镜检时,人们总是希望能清晰而明亮的理想图象,这就需要显微镜的各项光学技术参数达到一定的标准,并且要求在使用时,必须根据镜检的目的和实际情况来协调各参数的关系。只有这样,才能充分发挥显微镜应有的性能,得到满意的镜检效果。  显微镜的光学技术参数包括:数值孔径、分辨率、放大率、焦深、视场宽度、覆盖差、工作距离等等。这些参数并不都是越高越好,它们之间是相互联系又相互制约的,在使用时,应根据镜检的目的和实际情况来协调参数间的关系,但应以保证分辨率为准。保养注意事项显微镜不论在使用或存放时应避免灰尘、潮湿、过冷、过热、与含有酸碱性的蒸气。 不得将化学药品放在显微镜附近,更不得在显微镜箱内放有化学药品(干燥剂除外)。 显微镜应经常装上目镜,使灰尘不致落到物镜里面。 透镜的表面若有灰尘,应先用黄鼠狼毛笔拭去,然后再行擦拭。 透镜的擦拭只能用专用拭镜纸或棉球擦拭。 透镜表面若有污秽时,可用拭镜纸或棉球,0少许石油精或二甲苯轻轻擦拭,但不得用酒精.否则透镜胶层将被溶解。 油浸式的物镜使用后的擦拭须依上述方法进行,不得让香柏油在透镜面上干涸. 更不得用酒精或类似液体浸洗镜头。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制