当前位置: 仪器信息网 > 行业主题 > >

烟气多效取样管

仪器信息网烟气多效取样管专题为您提供2024年最新烟气多效取样管价格报价、厂家品牌的相关信息, 包括烟气多效取样管参数、型号等,不管是国产,还是进口品牌的烟气多效取样管您都可以在这里找到。 除此之外,仪器信息网还免费为您整合烟气多效取样管相关的耗材配件、试剂标物,还有烟气多效取样管相关的最新资讯、资料,以及烟气多效取样管相关的解决方案。

烟气多效取样管相关的资讯

  • 崂应发布崂应3023Y型 紫外烟气分析仪 新品
    崂应3023Y型 紫外烟气分析仪 一、产品概述本仪器是以紫外差分吸收光谱分析技术(DOAS)为核心的新型产品,全新一体化结构设计,采用崂应自主研发的紫外差分核心光学模块,适用于固定污染源排气中SO2、NO、NO2、H2S、CO、CO2、O2等烟气浓度的现场分析,特别适合低温、高湿、低浓度排放的各种锅炉、烟道、工业炉窑等固定污染源中烟气成分的现场分析。产品广泛应用于环保、检测公司、工矿企业(电厂、钢铁厂、水泥厂、糖厂、造纸厂、冶炼厂、陶瓷厂、锅炉炉窑、以及铝业、镁业、锌业、钛业、硅业、药业,包括化肥、化工、橡胶、材料厂等)、卫生、劳动、安监、军事、科研、教育等领域。二、执行标准n HJ 1045-2019 固定污染源烟气(二氧化硫和氮氧化物)便携式紫外吸收法测量仪器技术要求及检测方法n GB/T 37186-2018 气体分析 二氧化硫和氮氧化物的测定 紫外差分吸收光谱分析法n HJ/T 397-2007 固定源废气监测技术规范n JJG 968-2002 烟气分析仪检定规程n DB37/T 2641-2015 便携式紫外吸收法多气体测量系统技术要求及检测方法n DB37/T 2704-2015 固定污染源废气氮氧化物的测定紫外吸收法n DB37/T 2705-2015 固定污染源废气二氧化硫的测定紫外吸收三、产品特点 测量系统n 采用差分吸收光谱技术,抗干扰能力强,不受水分和粉尘影响,有效避免气体间的交叉干扰n 内置加酸装置和帕尔贴制冷高效除水装置,保证检测结果准确n 采用脉冲氙灯冷光源,预热时间短,使用寿命长,光谱范围宽,覆盖NO2最佳吸收波段n 长光程设计,检出下限低,量程范围宽,用户可根据需要定制量程n SO2分析双量程设计,根据浓度值自动切换量程n 具备气密性自动检测、自动/手动校零、采样结束后自动清洗气路等功能n 烟气测量方式自动、手动可选择,自动模式下可设置单次测量时间和测量次数,方便与在线仪器的比对n 满足HJ 1045-2019最新标准要求 结构设计n 采用一体化设计,功能高度集成,无需繁琐的管路连接,真正做到方便用户n 取样管可拆卸设计,便于携带,用户可另外根据需要选配不同长度的取样管 操控系统n 双操控系统设计:支持手操器遥控和主机按键触控两种操控模式,满足用户的多样化选择n 支持中、英文输入,方便用户输入采样地点等信息,实现良好人机交互n 各烟气成分浓度曲线实时显示,显示比例最大放大32倍,提高低浓度测量时曲线显示的分辨率n 配置高速低噪声微型热敏打印机,轻松掌握实时数据n 配备丰富人机接口,支持鼠标、U盘、键盘、触摸板、打印机等设备n 预留物联网模块接口,可拓展物联网功能,实现数据实时上传、手机实时查看测量结果等功能 动力系统n 精密芯泵,耐腐蚀,连续运转免维护,适应各种工况,具有过载保护功能其他n 交、直流双供电工作模式,保证在无交流电的场所也能正常工作n 与崂应3060-A 型一体式烟气流速监测仪搭配使用,工况测量数据一键获取n 具有仪器故障、密闭性自动检测与报警功能,方便用户维护及使用 *说明:1、以上内容完全符合国家相关标准的要求,因产品升级或有图片与实机不符,请以实机为准, 本内容仅供参考。创新点:1、高度集成 一体化机身2、两种操控方式3、多次发射 长光程气室4、NO2直接测量5、SO2分析双量程崂应3023Y型 紫外烟气分析仪
  • 崂应发布崂应3023Y型 紫外烟气分析仪 新品
    崂应3023Y型 紫外烟气分析仪 一、产品概述本仪器是以紫外差分吸收光谱分析技术(DOAS)为核心的新型产品,全新一体化结构设计,采用崂应自主研发的紫外差分核心光学模块,适用于固定污染源排气中SO2、NO、NO2、H2S、CO、CO2、O2等烟气浓度的现场分析,特别适合低温、高湿、低浓度排放的各种锅炉、烟道、工业炉窑等固定污染源中烟气成分的现场分析。产品广泛应用于环保、检测公司、工矿企业(电厂、钢铁厂、水泥厂、糖厂、造纸厂、冶炼厂、陶瓷厂、锅炉炉窑、以及铝业、镁业、锌业、钛业、硅业、药业,包括化肥、化工、橡胶、材料厂等)、卫生、劳动、安监、军事、科研、教育等领域。二、执行标准n HJ 1045-2019 固定污染源烟气(二氧化硫和氮氧化物)便携式紫外吸收法测量仪器技术要求及检测方法n GB/T 37186-2018 气体分析 二氧化硫和氮氧化物的测定 紫外差分吸收光谱分析法n HJ/T 397-2007 固定源废气监测技术规范n JJG 968-2002 烟气分析仪检定规程n DB37/T 2641-2015 便携式紫外吸收法多气体测量系统技术要求及检测方法n DB37/T 2704-2015 固定污染源废气氮氧化物的测定紫外吸收法n DB37/T 2705-2015 固定污染源废气二氧化硫的测定紫外吸收三、产品特点 测量系统n 采用差分吸收光谱技术,抗干扰能力强,不受水分和粉尘影响,有效避免气体间的交叉干扰n 内置加酸装置和帕尔贴制冷高效除水装置,保证检测结果准确n 采用脉冲氙灯冷光源,预热时间短,使用寿命长,光谱范围宽,覆盖NO2最佳吸收波段n 长光程设计,检出下限低,量程范围宽,用户可根据需要定制量程n SO2分析双量程设计,根据浓度值自动切换量程n 具备气密性自动检测、自动/手动校零、采样结束后自动清洗气路等功能n 烟气测量方式自动、手动可选择,自动模式下可设置单次测量时间和测量次数,方便与在线仪器的比对n 满足HJ 1045-2019最新标准要求 结构设计n 采用一体化设计,功能高度集成,无需繁琐的管路连接,真正做到方便用户n 取样管可拆卸设计,便于携带,用户可另外根据需要选配不同长度的取样管 操控系统n 双操控系统设计:支持手操器遥控和主机按键触控两种操控模式,满足用户的多样化选择n 支持中、英文输入,方便用户输入采样地点等信息,实现良好人机交互n 各烟气成分浓度曲线实时显示,显示比例最大放大32倍,提高低浓度测量时曲线显示的分辨率n 配置高速低噪声微型热敏打印机,轻松掌握实时数据n 配备丰富人机接口,支持鼠标、U盘、键盘、触摸板、打印机等设备n 预留物联网模块接口,可拓展物联网功能,实现数据实时上传、手机实时查看测量结果等功能 动力系统n 精密芯泵,耐腐蚀,连续运转免维护,适应各种工况,具有过载保护功能其他n 交、直流双供电工作模式,保证在无交流电的场所也能正常工作n 与崂应3060-A 型一体式烟气流速监测仪搭配使用,工况测量数据一键获取n 具有仪器故障、密闭性自动检测与报警功能,方便用户维护及使用 *说明:1、以上内容完全符合国家相关标准的要求,因产品升级或有图片与实机不符,请以实机为准, 本内容仅供参考。创新点:1、采用崂应自主研发的紫外差分核心光学模块2、高度集成 一体化机身3、两种操控方式4、多次发射 长光程气室5、NO2直接测量6、SO2分析双量程崂应3023Y型 紫外烟气分析仪
  • 路博新出烟气汞采样器符合现在新环境汞的采样
    LB-6030型 烟气汞综合分析仪 详细介绍1概述 LB-6030型 烟气汞采样器符合美国EPA Method 30B和HJ 543-2009标准的要求,可以用来采集污染源排气中的气态总汞,也可用来监测烟道气中气态汞浓度,烟气流速,烟气温度和含氧量等参数。该仪器主要用于监测燃煤电厂废气中气态汞的含量。广泛适用于环境监测、工矿企业、劳动卫生、科研机构等部门。2执行标准GB/T 16157-1996《固体污染源排气中颗粒物测定与气态污染物采样方法》EPA Method 30B《吸附管法测定燃煤污染源中气态总汞排放量》GB 13223-2011 《火电厂大气污染物排放标准》HJ 543-2009 《固定污染源废气 汞的测定 冷原子吸收分光光度法》3技术特点l 同时满足EPA Method 30B和HJ 543-2009采样要求;l 两气路均采用高性能超低音隔膜泵,使用寿命长;l 两路完全独立的采样通道,可分别设置采样时间,采样流量和单独启动;l 采用图形彩色触控显示屏,中文菜单化操作;l 采用双气室干燥器,得到干基标况气体;l 集成化采样探头,将S型皮托管、铂电阻和采样腔整合在一起;l 采样探头具有独立加热功能,精确控制采样腔温度,且温度可调;l 交直流两用,内置高能锂电池,可连续工作6小时以上;l 进口流量压力计,可实现恒流采样,流量控制精度高;l 自动折算实际流量、标况流量、实际体积、标况体积; l 具备USB接口,可通过U盘导出数据;l 高亮度触摸显示屏,图形化操作界面;l 采样过程中停电数据自动保护,来电继续采样;l 30B取样管具有恒温功能,精确控制采样腔温度,且温度可调;l 烟气采样管和软管全程恒温伴热,气路采用无吸附材质;l 有冰浴箱,可容纳14个大型气泡吸收瓶;l 故障检测自动保护l 自动检漏功能l 软件参数标定l 用户密码保护 4工作条件4.1工作电源: AD220V±10%, 50Hz4.2环境温度: -20 ~ 50 ℃4.3环境湿度: 0 ~ 85 %4.4 环境大气压 : 86 ~ 106 KPa4.5适用环境: 非防爆场合 5主要技术指标 主要指标参数范围分辨率准确度烟气流速2~45m/s0.1m/s±2.0%烟气温度0~ 200℃1℃±1.5℃计前温度-30~ 120℃1℃±2.0℃烟气静压-30~ 30KPa0.01KPa±1.5%烟气动压0~ 2500Pa1Pa±1.5%大气压60~110kPa0.01kPa±2.5%含氧量0~ 30%0.1%±2.0%取样管加热温度0~ 150℃0.1℃±1.5℃A路采样流量0.1~ 1.5L/min0.001L/min±2.0%B路采样流量0.1~ 1.5L/min0.001L/min±2.0%A路计前压力-30~ 0KPa0.01Kpa±1.5%B路计前压力-30~ 0Kpa0.01Kpa±1.5%A路采样时间1~ 999min1s±0.1%B路采样时间1~ 999min1s±0.1%电池工作时间(不带加热)6h主机尺寸W×D×H(419×229×341)mm主机工作电源AC220V或内置电池组主机重量5.5Kg取样管长度≥1.5m
  • 国瑞力恒发布红外烟气综合分析仪新品
    GR-3027型红外烟气综合分析仪 1.产品概述 GR-3027型红外烟气综合分析仪(以下简称分析仪)是以非分散红外吸收法(NDIR)为核心的新型产品,主要用于污染源排放管道中有害气体成分的测量,广泛应用于环境监测以及热工参数测量等部门。该分析仪用于测量O2,SO2,NO,NO2,CO,H2S,CO2等有害气体的浓度,其中SO2,NO,CO2采用非分散红外技术进行分析测量;该分析仪具有测量精度高、可靠性强、响应时间快、使用寿命长等优点。分析仪研制过程中广泛征求专家及广大用户的意见,采用进口长光程多组分检测器件、创新抗干扰算法、传感器及新材料领域的高新技术,竭力为用户提供一台质量可靠、性能稳定的高品质分析仪2.适用范围a) 各种锅炉、工业炉窖的SO2、NOx、CO等有害气体的排放浓度、折算浓度和排放总量的测定。b) 烟道排气参数:动压、静压、烟温、流速、标干流量等的测定。c) 烟气含氧量、空气过剩系数的测定。d) 烟气连续测量仪器测量准确度的评估和校准。3.采用标准JJG 968-2002 《烟气分析仪》HJ/T397-2007 《固定源废气监测技术规范》HJ 629-2011 《固定污染源废气 二氧化硫的测定 非分散红外吸收法》HJ 692-2014 《固定污染源废气 氮氧化物的测定 非分散红外吸收法》 GB/T 16157-1996 《固定污染源排气中颗粒物测定与气态污染物采样方法》4.技术特点l采用非分散红外吸收法测量原理,同时测量SO2、NOx、CO2、CO、H2S、O2多种烟气成分;l核心部件具有自主知识产权,测量系统具有除湿、除粉尘、恒温控制、减震装置等措施,有效保护仪器,提高仪器的适用范围及数据测量的准确性;l皮托管、烟气取样管、烟气预处理器三合一,现场使用方便,提高工作效率。l对于高湿工况的测量可选配具有专利技术的半导体和膜式除水联用的二级烟气预处理系统,烟气水溶性损失小、除水更彻底,测量数据更准确。l内置烟气湿度测量传感器,当烟气湿度过高时停止工作,又要保护仪器不受湿气的损坏。l10.1寸高亮彩色触摸显示屏,界面美观,操作方便,兼容触摸屏和按键操作l内置锂电池,电池工作时间4大于小时。l交直流两用:交流输入80-264V,现场适应性强,尤其针对高电磁干扰工业现场;直流宽压输入,输入电压12-26V,具有欠压、过压、反接保护功能,有效保护仪器不受损坏。l整机采用电磁兼容性及静电防护设计,可有效抵抗现场静电和电磁干扰。 l选用大容量存储器实时存储分钟数据和总平均数据,测量数据可通过U盘导出。l实时查询检测数据,标配蓝牙打印机,现场打印。l可选配物联网模块,实现远程数据传输和物联网组网。 5.技术参数表1 主要技术指标主要参数参数范围分辨率准确度烟气温度(-50~500)℃0.1℃优于±3℃等速采样流速(2~45)m/s0.1m/s优于±5%烟气动压(0~2000)Pa1Pa优于±1%FS烟气静压(-35~+35)kPa0.01kPa优于±1%FS烟气采样流量1.0L/min烟气浓度O2(0~30)%0.01%示值误差:优于±5.0%重复性:≤2.0%响应时间:≤90s稳定性:1小时内示值变化≤5.0% SO2(0~2860)mg/m30.1mg/m3NO(0~2000)mg/m30.1mg/m3CO2(0~20)%0.01%NO2(可选)(0~200)mg/m30.1mg/m3CO(可选)(0~5000)mg/m30.1mg/m3H2S(可选)(0~300)mg/m30.1mg/m3外型尺寸(长×宽×高)470X192*365整理重量150W功率6.5kg创新点:GR-3027型红外烟气综合分析仪是以非分散红外吸收法(NDIR)为核心的新型产品,SO2,NO,CO2采用非分散红外技术进行分析测量;该分析仪具有测量精度高、可靠性强、响应时间快、使用寿命长等优点;红外烟气综合分析仪
  • 两项重大在线烟气仪器开发专项最新研制进展
    两项重大在线烟气仪器开发专项最新研制进展&mdash &mdash CIOAE 2014之在线烟气分析专场  仪器信息网讯 2014年11月25日,由中国仪器仪表学会分析仪器分会、中国仪器仪表行业协会分析仪器分会联合主办的&ldquo 第七届中国在线分析仪器应用及发展国际论坛暨展览会(CIOAE 2014)&rdquo 在国家会议中心正式召开。仪器信息网作为战略支持媒体参加了此次会议。CIOAE 2014之在线烟气分析会议现场  作为CIOAE 2014的重点分会场之一&mdash &mdash 在线烟气分析专场于26日上午在国家会议中心307B会议室举行。会上,河北工业大学张思祥教授、北京雪迪龙韩占恒分别介绍了各自承担的重大仪器开发专项的最新进展,吸引了近100位业内人士参会。河北工业大学张思祥教授  目前,国内现有的恶臭检测方法包括GCMS、HPLC离线分析与嗅辨员感观分析,取样送检过程繁琐,费用高,且无法实现实时在线测量,缺乏预警执法的依据,已无法满足环境监测的需求。&ldquo 据不完全统计,我们整个市场对恶臭在线监测设备的需求超过了几十万台,市场规模则超过千亿元。&rdquo   在这样的社会需求与市场前景下,&ldquo 恶臭自动在线监测预警仪器开发及应用示范&rdquo 项目被列入国家重大科学仪器设备开发专项,将攻克超高灵敏激光传感、恶臭嗅辨、电子感知、系统集成等关键技术,掌握大气有害气体在线监测预警仪器的核心技术,研制出具有自主知识产权的恶臭在线自动监测预警仪器,可同时实现恶臭气体的感官测定和成分分析。  张思祥教授团队主要承担其中的复合恶臭嗅辨阵列传感器的研制任务。他介绍说,微流控芯片主要以微管道网络为结构特征,可以有效实现气体分离 同时,光电离(PID)检测器具有灵敏度高、稳定性好、体积小、实时性好等优点。基于此,张思祥教授通过微机电加工技术将连接器、分离器、检测器、微阀、微泵、微通道等微结构加工到一起,研制出微流控芯片气体检测系统,具有尺寸小、易便携、试样消耗少、分析时间短、效率高等优点。  另外,张思祥教授还研制出了综合多种类传感器的恶臭专用嗅辨阵列传感器及前端调整模块,可对含硫、含氮及复合VOC气体进行测量,实现了我国恶臭监测设备的国产化。自行设计的恶臭气体分析软件,则实现了系统所需的基本功能,能够检测并分析部分恶臭气体。北京雪迪龙科技股份有限公司韩占恒  汞具有挥发性、迁移性、毒性以及沉积效应,对人体健康产生很大的危害。我国是汞生产和使用大国,也是排放污染大国,因此,汞排放监测是国家&ldquo 十二五&rdquo 重金属污染防治的主要目标之一。  2012年,国家重大科学仪器设备开发专项&mdash &mdash 重点防控重金属汞、铬、铅、镉、砷便携/车载/在线监测仪器开发与应用示范项目获批立项,雪迪龙承担了其中&ldquo 基于差分吸收光谱技术的大气/烟气汞在线监测关键设备研制与产业化&rdquo 的研发任务。  2014年5月,雪迪龙自主研制的固定污染源废气中气态汞排放连续自动监测系统设备(SCS-900Hg)样机测试成功,性能稳定、可靠,填补了我国在固定污染源废气重金属排放中汞的在线自动监测设备的空白。  韩占恒在会上详细介绍了SCS-900Hg的组成以及性能特点。SCS-900Hg核心单元包括汞在线分析仪、元素态汞标准气发生器、离子态汞标准气发生器等。其中,汞在线分析仪检测单元采用了双气室长光程差分技术,有效提高了检测灵敏度,可有效消除SO2、NOX等其他烟气组分对汞检测的干扰;汞标准气发生器可模拟发生出标定仪表所需要的单质态汞、离子态汞标准气。  据了解,SCS-900Hg已成功进行了现场测试,测试结果良好。该系统设备根据需求可实现批量产业化生产,可广泛应用于燃煤火电厂、垃圾焚烧厂、冶金厂等固定污染源废气中气态汞排放在线监测。编辑:刘玉兰
  • 国瑞力恒发布紫外烟气综合分析仪新品
    GR-3028型紫外烟气综合分析仪 1.产品概述 GR-3028型紫外烟气综合分析仪(以下简称分析仪)以紫外差分吸收光谱技术为核心的光学烟气分析仪,仪器主要用于排气管道中有害气体成分的测量,广泛应用于环境监测以及热工参数测量等部门。该分析仪采用紫外差分吸收光谱技术和化学计量学算法测量烟气中的SO2,NO,NO2,O2,CO,CO2等气体的浓度,测量数据不受烟气中水蒸气影响,具有测量精度、交叉干扰少、响应时间快、可靠稳定、使用寿命长等特点,特别适合超低排放、高湿低硫工况测量。分析仪采用高性能长寿命脉冲氙灯、耐腐蚀吸收池、进口高分辨光谱仪、传感器及新材料领域的高新技术,竭力为用户提供一台质量可靠、性能稳定的高品质仪器。2.适用范围a) 各种锅炉、工业炉窖的SO2、NOx等有害气体的排放浓度、折算浓度和排放总量的测定。b) 烟道排气参数(动压、静压、烟温、流速、标干流量等)的测定。c) 烟气含氧量、空气过剩系数的测定。d) 烟气连续测量仪器测量准确度的评估和校准。3.采用标准GB/T37186-2018 《气体分析 二氧化硫和氮氧化物的测定 紫外差分吸收光谱法》HJ1045-2019 《固定污染源烟气(二氧化硫和氮氧化物)便携式紫外吸收法测量仪器技术要求及检验方法》JJG968-2002 《烟气分析仪检定规程》DB37/T 2704-2015《固定污染源废气氮氧化物的测定紫外吸收法》DB37/T 2705-2015《固定污染源废气二氧化硫的测定紫外吸收法》DB37/T2641-2015 《便携式紫外吸收法多气体测量系统技术要求及检测方法》HJ/T 397-2007 《固定源废气监测技术规范》GB13233-2011 《火电厂大气污染物排放标准》4.技术特点l采用紫外光谱差分吸收技术(DOAS),测量精度高,测量数据不受烟气中水蒸气影响,特别适合超低排放、高湿低硫工况的测量;l核心部件具有自主知识产权,关键部件带有恒温、减震装置等措施,有效避免数据漂移,提高测试数据的准确性;l双测量量程,根据排放浓度的高低浓度值自动切换高低量程;l皮托管、烟气取样管、烟气预处理器三合一,现场使用方便,提高工作效率。l紫外光源脉冲氙灯,预热时间短,使用寿命长;l10.1寸高亮彩色触摸显示屏,界面美观,操作方便,人机交互可选择屏幕直接操作也和选项按键操作。l内置锂电池,电池工作时间大于4小时。l交直流两用,宽压直流输入,直流输入电压12-26V,直流输入具有欠压,过压,反接保护功能,有效保护仪器不受损坏。l选用大容量存储器实时存储分钟数据和总平均数据,测量数据可通过U盘导出;l实时查询检测数据,标配蓝牙打印机,现场打印;l可拓展CO、CO2 、H2S/CS2/NH3/C6H6等监测项目;l可选配物联网模块,实现远程数据传输和物联网组网5.技术参数表1 主要技术指标主要参数参数范围分辨率准确度烟气温度(-50~500)℃0.1℃优于±3℃等速采样流速(2~45)m/s0.1m/s优于±5%烟气动压(0~2000)Pa1Pa优于±2%FS烟气静压(-30~+30)kPa0.01kPa优于±4%FS大气压(60-110)kPa0.01kPa优于0.5kPa烟气采样流量1.5L/min烟气浓度O2(0~30)%0.1%示值误差:优于±5.0%重复性:≤2.0%响应时间:≤90s稳定性:1小时内示值变化≤5.0%SO2低量程:(0~600)mg/m3高量程:(600~4000)mg/m30.1mg/m3NO低量程:(0~600)mg/m3高量程:(600~1200)mg/m30.1mg/m3NO2低量程:(0~500) mg/m3高量程:(500~1000) mg/m30.1mg/m3H2S(可选)(0~300)mg/m30.1mg/m3CO(可选)(0~5000)mg/m30.1mg/m3CO2(可选)(0~20)%0.01%外型尺寸(长×宽×高)470X192*365整机功耗150W整机重量12kg工作电压DC 12-26V/AC 220V创新点:GR-3028型紫外烟气综合分析仪以紫外差分吸收光谱技术为核心的光学烟气分析仪,该分析仪采用紫外差分吸收光谱技术和化学计量学算法测量烟气中的SO2,NO,NO2,O2,CO,CO2等气体的浓度,测量数据不受烟气中水蒸气影响,具有测量精度、交叉干扰少、响应时间快、可靠稳定、使用寿命长等特点,紫外烟气综合分析仪
  • 针对烟气检测紫外吸收新规,乐氏科技提供最优解决方案
    为您解答!烟气检测紫外吸收法新规定生态环境部发布HJ1131-2020 《固定污染源废气 二氧化硫的测定 便携式紫外吸收法》、HJ 1132-2020 《固定污染源废气氮氧化物的测定 便携式紫外吸收法》自2020年8月15日起实施。 符合标准: 该分析仪性能指标均符合国家环保局颁布的烟气测试仪的有关规定。采用紫外吸收光谱技术和化学计量学算法测量O2、SO2、NO、NO2、NOx、NH3、H2S等气体的浓度,不受烟气中水蒸气影响,具有较高的测量精度和稳 定性,特别适合高湿低硫工况测量,具有测量精度高、可靠性强、响应时间快、使用寿命长等优点。 【乐氏科技 技术解决方案】德国Fodisch UVA17m便携式高温紫外烟气分析仪测量原理: UVA17m便携式高温紫外烟气分析仪采用国际上目前 最先进成熟的原态采样,原态分析方法。实现污染源大气污染物的快速,无损,原态的高精度测量。整个分析全程高温取样、高温过滤、高温快速分析,无需气体干燥、稀释冷却等前处理,直接分析样品,有效减少过程损失,测量结果更加真实可靠。 适用场合:UVA 17m 便携式高温紫外烟气分析仪,适用于垃圾焚烧、脱硫脱销、催化剂生产以及燃烧器排放分析。尤其针对烟气 的超低排放、高温高湿低硫检测、氨逃逸等复杂工况的监测及检测,有极高的 适用性,广泛应用于环境监测以及热工参数测量等部门。仪器优势: 原态分析方法:全程高温取样、高温过滤、高温分析——最大限度的减少过程损失。 高温采样预处理:全程185℃——从源头解决烟气温度低、湿度大、易损失的问题。 先进的光学系统:采用紫外吸收光谱技术测量——不受烟气中水蒸气影响,具有极高的测量精度和稳定性。 强大的软件功能:丰富的化学计量学算法,完善的数据处理——数据结果拥有强大的保障。 消除与干扰: 采用高温测量法(无需使用制冷器,避免样气冷凝损失) 热湿态分析,全程高温加热 185℃,水呈气态,不除水, 避免了除水过程中低浓度NO2-SO2-H2S-NH3等气体的溶解,尤其适合脱硫脱硝后低浓度NO2,SO2以及氨逃逸测 量,不存在H2O对测量数据的交叉干扰。 补充亮点: UVA17m便携式高温紫外烟气分析仪的出现,弥补了电化学、普通红外、低温紫外等烟气测量分析技术上的不足,具有高精度、抗干扰、能力强、耐腐蚀、免除水等特点。尤其符合目前中国环保形势对污染企业减排净化工作的要求。
  • 众瑞仪器发布ZR-3714型 多路烟气采样器新品
    详细介绍1 概述ZR-3714型多路烟气采样器,既适用于溶液吸收法对固定污染源中的各种有害成分进行采样,也适用于采用吸附管采样法和其它固相吸附法,可以采集环境空气中的苯系物、醛酮类化合物、卤代烃等挥发性有机物,同时与烟气预处理器配合使用,还可以测定固定污染源废气中的挥发性有机物。可满足负压管道和正压管道中的烟气组分采样的需求。2 执行标准GB/T 16157-1996 固体污染源排气中颗粒物测定与气态污染物采样方法HJ 644-2013 环境空气 挥发性有机物的测定 吸附管采样-热脱附/气相色谱-质谱法HJ645-2013 环境空气 挥发性卤代烃的测定 活性炭吸附-二硫化碳解吸/气相色谱法HJ 683-2014 环境空气 醛、酮类化合物的测定 高效液相色谱法HJ583-2010 环境空气 苯系物的测定固体吸附/热脱附-气相色谱法HJ584-2010 环境空气 苯系物的测定活性炭吸附/二硫化碳解吸-气相色谱法HJ739-2015 环境空气 硝基苯类化合物的测定 气相色谱-质谱法HJ 734-2014 固定污染源废气 挥发性有机物的测定 固相吸附-热脱附/气相色谱-质谱法HJ 38-2017 固定污染源排气中非甲烷总烃的测定 气相色谱法HJ/T47-1999 烟气采样器技术条件HJ 543-2009 固定污染源废气汞的测定 冷原子吸收分光光度法HJ 917-2017 固定污染源废气 气态汞的测定 活性炭吸附 / 热裂解原子吸收分光光度法EPA Method 30B 吸附管法测定燃煤污染源中气态总汞排放量GB 13223-2011 火电厂大气污染物排放标准HJ/T375-2007 环境空气采样器技术要求及检测方法JJG956-2013 大气采样检定规程注:烟气汞采样需搭配烟气汞取样管或烟气冰浴采样箱3 技术特点内置高性能锂电池,供电时间>8h;内置4路采样系统,两路(0.2-1.5)L/min、两路(10-200)mL/min;流量和采样时间单独控制,支持恒流采样;采用5.0寸触摸显示屏,内容更直观,操作更简便;支持USB数据导出;采用高精度、耐腐蚀、耐高湿电子流量计,保障了高稳定性及采样体积高准确度;具备系统气密性自动检漏功能。可选配蓝牙打印机及烟道工况测量模块;可选配采样管伴热功能,准确控制采样管温度,且温度可调;可选配GPS定位模块,记录采样位置信息。可选配4G模块进行远程数据传输。创新点:1、既适用于溶液吸收法对固定污染源中的各种有害成分进行采样,也适用于采用吸附管采样法和其它固相吸附法,可以采集环境空气中的苯系物、醛酮类化合物、卤代烃等挥发性有机物,同时与烟气预处理器配合使用,还可以测定固定污染源废气中的挥发性有机物。可满足负压管道和正压管道中的烟气组分采样的需求;2、内置4路采样系统,两路(0.2-1.5)L/min、两路(10-200)mL/min。采样流量和采样时间单独控制,支持恒流采样;3、采用高精度、耐腐蚀、耐高湿电子流量计,保证了高可靠性及采样体积高精确度。ZR-3714型 多路烟气采样器
  • 国瑞力恒发布烟气湿度检测仪新品
    GR-3021型烟气湿度检测仪产品概述GR-3021型烟湿度速检测仪(以下简称检测仪)是采用湿敏电容法测量烟气中水分含量的一款湿度检测仪器,仪器采用进口传感器,自带温度、压力补偿修正,具有测量精度高,耐腐蚀,使用温度范围宽等优点,广泛应用于锅炉、炉窑以及各种排风管道的烟气湿度测量。适用范围本仪器采锅炉、炉窑以及各种排风管道的烟气水分或含湿量的测量,适用于应用于环保、职业卫生、劳动、安监、军事、科研、教育等部门。。采用标准GB/T 11605 -2005《温湿度测量方法》主要特点1. 采用原装进口湿度传感器,测量精度高,耐腐蚀,使用寿命长;2. 内置高能锂离子电池,一次充电可连续工作3小时以上;3. 采用独创的温湿度修正补偿算法,消除烟道温度、压力对测量结果的影响,测量分辨率可达0.01%,测量精度更高;4. 传感器表面双层粉尘过滤,有效保护传感器不受粉尘的影响;5. 传感器表面具有加热功能,防止传感器表面结露,有效保护传感器;6. 采用一体化设计,减少外部干扰,使用方便7.操作界面简单,开机直接进入测量,无需任何操作8.大容量数据存储,可存储1000组数据文件;9.大尺寸、宽温高亮彩色显示屏显示;10.内置蓝牙模块,可选配蓝牙打印机进行数据打印技术指标 检测仪主要技术指标技术指标参数范围分辨率准确度湿度(0~60)%0.01%不超过±2.0%大气压(50~110) kPa0.01 kPa不超过±2.0%烟气温度180℃(注:180度以上工况不可使用本仪器)响应时间30S温控温度(0-160)℃取样管长度1.2米(可定制) 电池工作时间大于5小时整机功耗60W 整机重量约3.5kg工作温度(-20-60)℃工作电压内置电池或AC220/DC24电压适配器创新点:GR-3021型烟湿度速检测仪是采用湿敏电容法测量烟气中水分含量的一款湿度检测仪器,仪器采用进口传感器,自带温度、压力补偿修正,具有测量精度高,耐腐蚀,使用温度范围宽等优点,1.采用原装进口湿度传感器,测量精度高,耐腐蚀,使用寿命长;传感器表面双层粉尘过滤,有效保护传感器不受粉尘的影响;烟气湿度检测仪
  • 青岛佳明-烟气连续监测系统CEMS解决方案
    “中国环境报”讯,当今社会,环境对于经济发展的重要性日益凸显。环境污染问题越来越被重视。在我国,从“先污染后治理”向以预防为主的“清洁生产”的环境污染治理发展过程中,有效的控制污染源源头的超标排放变得尤为重要。烟气连续监测系统(CEMS)能够实时监控污染源的排污情况并上传数据至相关部门,能够真实的“表述”出排污口的排放浓度及排放量,所以,若要达到真实反映排污用户的排放浓度及排污量的效果,现场安装CEMS是必不可少的。一、行业现状及存在的问题目前,烟气污染物监测行业的监测方法分为热湿法和冷干法,市场上主要以冷干法为主,其中参数SO2的监测方法分为非分散红外法和紫外差分光谱法。冷干法与热湿法相比,在技术上更成熟、维护率更低且使用寿命更长。CEMS可用于钢铁冶金、石油化工、固废焚烧和能源电力等多个行业。在实际的设备运行过程中,会遭遇到强酸、强碱、强腐蚀、烟气湿度大的现场工况。预处理过程结束后进入分析仪的样气中若含有H2O、SO3、HF等杂质气体,会对分析仪气室造成毁灭性的破坏,因此,若按照行业材质和分析流程配置设备,设备的寿命就会大打折扣,稳定性也会受到一定影响。二、解决方案及流程青岛佳明测控仪器有限公司依据十余年的行业探索经验,在预处理过程中采用两级冷凝法,在工况恶劣的现场选用耐强酸、强碱、强腐蚀且耐高温的材质作为采样传输部件,选用的除水器、除酸器等样器预处理部件均为德国进口部件。因此能有效去除样气中的水分、SO3以及HF等破坏性因子,以保证分析仪表的正常使用。 测量流程:设备通过加热取样探头从排污口将样气采集,并由热管将样气输送到仪器分析小屋,再经过冷凝除水,得到清洁干净的样气进入分析仪。三、技术优势青岛佳明测控仪器有限公司生产的YSB烟气连续监测系统(CEMS)采用了国际主流的烟气冷干法。主测参数有气态污染物(SO2、NO、CO、CO2)、粉尘浓度、烟气辅测参数(烟气温度、烟气流量、烟气含氧量和烟气压力),设备的灵活性高,监测参数可以随意搭配。1.采用高品质光源结合差分光谱技术设计。设计本身避免了COS、硫醇和氢气等天然气、石化行业应用中常见的背景气干扰问题;独特的光路设计,能够有效祛除各测量参数的交叉干扰,保证了优越的测量精度。2.设备分析仪器采用多组分紫外光谱监测技术,可对被测气体进行连续高速扫描,响应速度快。3.触摸屏显示及操作,图形化界面操作极为简便。4.高温采样及高温伴热输送样气设备。该设备保证了预处理系统的高标准要求,也保证了测量数据的准确性。5.独到的恶劣现场工矿应对方法,做到了“客户提供现场,我们提供监测方案和监测设备”。在现场勘察时,根据客户的现场工况和实际生产情况,为客户量身定制烟气连续监测系统,对每一位客户负责,让每一位客户满意和实用。四、典型案例分析大唐淮北发电有限公司项目项目要求:需要监测脱硫前和脱硫后的污染物排放浓度及排放量,能够依据显示、记录的测量数据计算出脱硫设备的脱硫率,并且将实时数据传输至市环保局、国家电网、DCS控制室。 解决方案:在脱硫前和脱硫后的代表性区域分别安装一套YSB烟气连续监测系统(CEMS),实时监控脱硫前、脱硫后污染物的排放浓度,将实时数据接入DCS控制室,计算出脱硫率,用户可将脱硫率作为自己生产投料的依据,既能优化生产工艺,也保障了脱硫率的稳定性。YSB烟气连续监测系统(CEMS)选用TPC1063H作为上位机,良好的人机界面和图形化操作界面使得操作极为简便,更能做到存储数据达十年之久。YSB烟气连续监测系统还可将测量数据通过GPRS传输到市环保局,通过光纤传输到国家电网。YSB烟气连续监测系统(CEMS)具有测量方法先进、响应速度快、稳定性高等特点,能保证数据的真实性和及时性,完成用户提出的设备要求。五、运营经验及技术支持 我公司现已在全国多地成功运营,主要原因有以下几点:1.技术人员充足,设备故障维修经验丰富。青岛佳明测控仪器有限公司成立于1995年,是国内最早的烟气连续监测设备的生产商、集成商,经过十余年的成功运作,青岛佳明测控仪器有限公司积累了大量优秀的技术人员和丰富的设备知识。2.烟气连续在线监测设备配件充足。青岛佳明测控仪器有限公司拥有国内一流的烟气在线监测研发团队,可以针对任何一类仪器仪表做出相应的维护方案,保证设备正常运行。3.国际化的管理模式。引进ERP管理软件,严格执行ISO9000质量体系的管理要求。生产和物料配送实行管理信息化,通过网络,客户可以查询订购产品的每一个生产环节。如今,青岛佳明测控仪器有限公司在全国各大省市都有独立运营或者作运营项目部。积累了运营管理的大量经验。可以满足任何不同地市不同要求的运营管理任务。
  • 山东省科学院研发多旋翼远距离烟气实时监测系统
    目前,由于各种人为因素,企业偷排现象仍非常严重,导致环境监测数据失实。日前,山东省科学院计算中心研发的多旋翼远距离烟气实时监测系统,成功破解了环保执法部门遇到的难题。实际监测时,操作人员可预先设定坐标和高度,无人机自主按照设定数据,飞行到指定地点悬停,然后通过机载各种气体传感器对指定位置空气中的PM2.5、PM10、二氧化硫等空气含量进行定量分析,还可以检测空气浓度,及早作出雾霾天气分析。  据了解,多旋翼远距离烟气实时监测系统是国内首创性地将自主研发的传感器及设计平台应用于无人机,并通过系统控制实现了高精度定位(定位差小于50厘米),在国内居于领先水平,也是国内唯一专注于在无人机上搭载自主研发的传感器进行环境监测的系统。该系统由移动飞行平台、机载气体检测设备、机载3G/4G通讯模式、机载高清视频图像采集系统、地面通讯控制基站和无线传输系统五大控制系统组成。  该系统还创新了基于多传感器融合的移动平台高精度自定位控制算法,多移动平台协调控制算法、基于移动平台的多Sink型无线传感网络的路由维护方法、时变复杂网络的自适应同步控制方法、一种无线传感器网络通信资源分配方法等多项科研成果。
  • PE取样管特点及使用指导
    取样管前端可放置滤筒,加热盒内可放置聚四氟乙烯材质滤膜夹。外管采用高防腐不锈钢材料,内管采用钛合金材料,外形美观。  和加热盒为分体式结构,根据不同采样需要可自由选择管路连接方式。   高效水浴箱,适用多种吸收瓶。   采用220V交流供电,升温快,效率高。   具有自动加热恒温,能对颗粒态、蒸汽态和气态硫酸雾、氟化氢、氯化氢、铬酸雾进行采集。   多功能组合型采样,包含烟温及皮托管测流速功能。 取样管的产品特点:  1、结构一体化设计,集加热及加热控制于一体;   2、壳体采样6063铝合金板材,表面氧化,耐腐蚀,经久耐用;   3、管体全部采用优质不锈钢材质精制而成,美观、整洁、耐用;   4、双路独立采样;   5、能兼容多规格的吸附管。   注意事项:  1、各种采样管是按标准预填固定剂量抗凝剂,换句话说,抗凝能力是有限的,可以往里面添加的样本量也是有要求,必须按照采样管的标签提示,加入恰当量的样本。样本不能过少,以免抗凝剂稀释样本;样本不能过多,以免抗凝不良,样本发生凝固。   2、即使是同一种抗凝剂,采样管的颜色随着不同厂家或者不同国家的要求,都有可能发生改变,使用采样管前,必须检查管上的标签,以免使用错误,影响检查结果。
  • HORIBA(堀场)烟气分析仪促销
    好消息,好消息!我司为回馈新老客户长久以来对我司的支持与厚爱,特推出HORIBA(堀场)多组分烟气分析仪ENDA-600ZG系列产品的促销活动。 凡在活动期间(2016-1-25——2016-2-25)购HORIBA(堀场)烟气分析仪的新老客户,均可享受购仪器赠笔记本电脑的优惠喔!机不可失,失不再来,有需求的客户现在就可以拨打我司电话(010-62151736)采购啦!
  • 多通道近位抽取高精度脱硝氨逃逸在线分析系统技术应用
    p  strongspan style="color: rgb(0, 112, 192) "氨逃逸分析的意义/span/strongbr//pp  当前,随着我国经济的持续发展,能源压力日趋紧张,环境污染已严重危害到我国人民的健康和生活质量。近年来河北、山东、北京等地被持续的大范围雾霾天气所笼罩,引发全社会的广泛关注。二氧化硫、氮氧化物和可吸入颗粒物这三项是雾霾主要组成。为了降低经济快速发展带来的雾霾、臭氧层破坏、温室效应及酸雨现象,我国要求使用燃煤的工厂(主要是火电厂和水泥厂)安装脱硝装置,降低氮氧化物的排放。/pp  国内外应用较多且工艺成熟的选择性催化还原法(SCR)和选择性非催化还原法(SNCR)烟气脱硝,均需要向烟气中喷入还原剂氨,使烟气中的氮氧化物还原成氮。/pp  为了保证氮氧化物充分反应,提高脱硝效率,需要实现还原剂氨注入量的最优化。如果喷氨过多,则会产生氨逃逸,造成更严重的危害:/pp  1.逃逸的氨与烟气中的SOsub3/sub反应生成NHsub4/subHSOsub4/sub,当后续烟道烟温降低时,NHsub4/subHSOsub4/sub就会附着在空气预热器表面和飞灰颗粒物表面。/pp  2.NHsub4/subHSOsub4/sub可以沉积并积聚在催化剂表面,引起催化剂的失活。/pp  3.NHsub4/subHSOsub4/sub在低于150℃时,以液态形式存在,腐蚀空气预热器,并通过与飞灰表面物反应而改变飞灰颗粒物的表面形状,最终形成一种大团状粘性的腐蚀性物质。/pp  4.这种飞灰颗粒物和在空气预热器换热表面形成的NHsub4/subHSOsub4/sub会导致空气预热器的压损急剧增大。/pp  5.逃逸的氨导致飞灰化学性质发生改变,使得飞灰不能作为建材原料而得到利用。/pp  所以,脱硝工艺喷氨量的控制,既要保障脱硝效率最高,又不能过量喷氨造成新的危害,需要对氨逃逸进行实时准确的在线分析。作为脱硝工艺中必不可少的关键监测设备,氨逃逸的准确稳定测量,对提高工业效率和安全生产有着重要的意义。/pp  strongspan style="color: rgb(0, 112, 192) "氨逃逸分析的现状/span/strong/pp  目前电力行业脱硝工艺基本上已经装配了氨逃逸在线分析系统,但在实际运行过程中这些氨逃逸在线分析系统往往存在着一些普遍性问题:/pp  1.氨逃逸数据为0或某个固定值,或只有仪表自身噪声信号,没有真正检测出逃逸氨,给性能验收和环保验收带来麻烦。/pp  2.增大或减少喷氨量,氨逃逸数据无变化,没有趋势相关性,无法为电厂控制喷氨流量提供科学的数据参考。为了NOx达标排放可能会喷氨过量,造成氨水浪费和形成大量铵盐对后面设备造成严重腐蚀。/pp  3.传统氨逃逸不能随时通标气进行验证,不能确保数据的准确性。/pp  通过对这些氨逃逸设备实地调研分析,发现这些设备主要采用原位测量方式,将设备的发射端和接收端分别安装在烟道上,采取对射的方式。这种测量方式会有以下几种影响:/pp  1.测量点位置粉尘量大,激光透射率不足,导致无法测量。/pp  2.为了解决透射率不足无法测量的问题,很多原位式分析仪采用斜角安装方式,即在烟道一角采取对射安装。这种方式测量的氨逃逸不具有代表性,不能反映烟道截面的真实状况,同时粉尘对测量仍然会造成影响。/pp  3.测量精度和测量下限与光程相关,光程越长,测量精度和测量下限越好。采用斜角安装方式测量光程短,测量下限和精度不够,无法满足氨逃逸精确测量的需求。/pp  4.现场振动和热膨胀因素,会造成激光对射不准,影响正常使用。/pp  5.无法通标气标定和验证。/pp  正是由于上述原因,原位式脱硝氨逃逸分析仪在实际使用中遇到了众多的困难,为了解决这些问题,国内一些企业将国外进口的分析仪进行改造,自己设计加工样气室,采用抽取式去除粉尘,抽取样气进入样气室测量,但是由于自身不掌握TDLAS核心技术,在改造过程中存在诸多技术问题及测量光程不够等因素,也没有取得良好的测量效果。/pp  strongspan style="color: rgb(0, 112, 192) "多通道近位抽取高精度测量技术应用/span/strong/pp  针对上述问题和现状,北京大方科技有限责任公司基于自身掌握的TDLAS核心技术,将多通道近位抽取及多次反射高精度测量技术应用于氨逃逸在线分析,成功解决上述问题,并得到了广泛应用。/pp  一、采用高精度多次反射长光程技术/pp  鉴于脱硝工程中氨逃逸对环境和设备的巨大危害,环保部对脱硝工艺中氨逃逸量有严格的规范。环保部2010年1月发布的环发[2010]10号《火电厂氮氧化物防治技术政策》以及2010年2月发布的标准HJ562-2010《火电厂烟气脱硝工程技术规范----选择性催化还原法》皆要求SCR氨逃逸控制在2.5mg/msup3/sup(干基,标准状态)以下。因此,脱硝工程中的氨逃逸量极低(ppm量级),这对氨逃逸分析仪的测量精度提出了极高的要求。/pp  目前测量氨逃逸通常采用可调谐二极管激光吸收光谱技术(TDLAS技术),其基本原理是朗伯-比尔定律(Beer-Lambert’s law),依据朗伯-比尔定律,当单色光穿过均匀气体介质时透射光强和入射光强的关系, 如方程(1)、(2)所示:/pp style="margin-left:13px text-indent:21px line-height:150% text-autospace:none"span style="font-size:21px line-height:150% font-family:仿宋" img src="http://img1.17img.cn/17img/images/201710/noimg/f1b1356f-e59a-4815-a181-8722c53bd3d8.jpg" title="公式.png"/ /span/pp  其中,P 为气体的压力;/pp  T 是样品气体的温度;/pp  Xabs 是被测气体在样品气体中的摩尔百分比;/pp  L 为光程长度;/pp  S 为吸收谱线的强度;/pp  fn为吸收谱线的线型函数。/pp  由公式可知光程长度越长,气体的吸收强度越强,所得到信号的信噪比越好,也就是说测量光程越长,测量精度越高。大方科技自主开发多次反射高温样气室,激光在样气室中多次反射,如图1为多次反射技术样气室中光路轨迹仿真图,光程可达30米,极大的提高了测量精度和检测下限。通过光程的提高,很大程度的解决了传统氨逃逸光程短、测量精度不足的问题。/pp style="text-align: center " img src="http://img1.17img.cn/17img/images/201710/noimg/5c6248b5-acb0-4782-b0e4-1b81f607f144.jpg" title="图1.png"/ /pp style="text-align: center "span style="color: rgb(0, 176, 240) "图1.大方科技多次反射技术样气室中光路轨迹仿真图/span/pp  二、多通道近位抽取测量技术应用/pp  针对原位式氨逃逸在线分析系统受烟尘和烟道震动影响等因素,大多数氨逃逸在线分析系统已采用抽取式技术路线,将烟气抽出经过预处理后进行测量,很好的解决了上述问题。目前已有的抽取式氨逃逸在线监测系统多采用单点取样,将一根取样探杆沿烟道长边中心位置插入至烟道核心区域,虽然和传统的原位式氨逃逸分析仪安装在烟道角落位置相比,目前单点核心区域抽取更具代表性,但对于大型机组烟道尺寸很大(通常长边可达13米以上)的情况下,烟道内流场分布复杂,截面上氨逃逸浓度也不尽相同,为了更准确的代表烟道中氨逃逸的浓度,需要实现多点测量。如果单点测量是一台通用测量设备,那么多点测量则是一台高端设备,满足高质量、高要求用户的需求。/pp  大方科技在抽取式技术路线基础上,通过产品小型化、外置过滤装置、减震安装装置设计、近位恒温控制、流路控制等成功实现多通道近位测量技术。近位测量实现取样气体从取样探杆出来直接进入分析气室,不需要伴热管线,减少了系统的响应时间,降低氨气吸附的风险,降低伴热管线堵塞及损坏的可能,提高了系统的可靠性和耐用性。取样点的位置和取样探杆的长度可根据现场情况设计,既可实现同一烟道多点同时测量,也可以实现多烟道多通道测量,且每个取样点可独立反吹。通道数量可以1~6任意扩展。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201710/noimg/9f23d8c0-cf6c-42b2-ac42-dc46822639d5.jpg" title="图片2.png"//pp style="text-align: center " span style="color: rgb(0, 176, 240) " 图2.大方科技近位抽取氨逃逸在线分析系统主机实物图/span/pp  大方科技率先开展氨逃逸的多点取样测量,成功实现了两点、三点、四点以及网格取样的应用,测量准确有代表性,得到了用户的高度评价。/pp  三、复杂烟气工况高温近位抽取预处理技术应用/pp  由于我国燃煤种类及燃烧工艺的复杂多样性,烟气具有高温、高湿、高腐蚀、高粉尘的特点,且每家的工况环境各异,这给氨逃逸的在线监测带来了不确定性。氨分子极易溶于水且具有极强的吸附性,因此要求整个系统中不能存在冷点,也不能降温除水,需要在高温下完成测量。由于烟气中存在大量的粉尘,要求预处理系统既能够将粉尘过滤掉,避免造成光学器件的污染,又不能堵塞,加大现场的维护量。烟气中含有SO3、NH3等腐蚀性气体,且湿度大,要求整个烟气流路需要做防腐处理。所以,开发适合我国烟气工况,且适应强的氨逃逸在线分析系统,其首要难点之一是烟气预处理系统的开发。/pp  针对上述复杂工况,大方科技结合自身在烟气预处理多年摸爬打滚的经验,成功开发了稳定可靠的近位抽取预处理系统。抽取气体直接进入气室,不需要经过伴热管线,烟气接触的流路全程高温伴热250℃以上无冷点,避免氨气吸附和损失,保证样气真实性。系统滤芯采用碳化硅过滤器,在高温下不会与SO2、NH3等腐蚀性气体发生化学反应,且滤芯采用后置安装,无需专业工具拆卸,更换和清理极其方便。每个通道皆具有自动反吹控制,反吹间隔和反吹时长根据工况设置,有效避免滤芯堵塞。/pp  对于氨逃逸监测而言,复杂的烟气工况环境是造成故障率攀升的主要原因。所以,预处理系统的稳定性和耐用性是氨逃逸监测设备的核心竞争力之一。大方科技近位抽取式预处理技术的应用,极大的提高了系统稳定性,结合多次反射长光程技术的应用,保障了测量结果的准确,为合理喷氨提供了科学的数据支撑。图3为大方科技氨逃逸在线分析系统现场趋势图,红色为喷氨量曲线,黄色为氨逃逸曲线,当系统的喷氨量发生变化时,氨逃逸数据曲线也相应地变化,从图上看喷氨量和氨逃逸曲线趋势一致,相关性高,为系统的安全、经济运行提供有价值的数据参考。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201710/noimg/f84c9423-8972-473b-83c6-2c3ca3349309.jpg" title="图3.png"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "图3.大方科技氨逃逸在线分析系统现场趋势图/span/pp style="text-align: right "span style="color: rgb(0, 176, 240) "span style="color: rgb(0, 0, 0) "【供稿来源:北京大方科技有限责任公司】/spanbr//span/p
  • CIOAE2015之专题报告:在线烟气分析
    pstrong  仪器信息网讯/strong 2015年11月16-17日,由中国仪器仪表学会分析仪器分会、中国仪器仪表行业协会分析仪器分会联合主办的“第八届中国在线分析仪器应用及发展国际论坛暨展览会(简称 CIOAE 2015)”在国家会议中心举行。本届论坛除大会报告外,另设有5个专题会场。在“在线烟气分析”专场中,来自科研院所、企业的学者专家分享了a style="COLOR: #0070c0 TEXT-DECORATION: underline" title="" href="http://www.instrument.com.cn/zc/310.html" target="_blank"span style="COLOR: #0070c0"strong在线烟气分析/strong/span/a的市场情况及相关技术的最新进展和应用。/pp style="TEXT-ALIGN: center"img title="IMG_4585.JPG" src="http://img1.17img.cn/17img/images/201511/insimg/01268975-8c05-4f58-893c-ddd9789193f5.jpg"//pp style="TEXT-ALIGN: center"strong会议现场/strong/ppspan style="COLOR: rgb(0,112,192)"strong环境监测在线仪器市场发展/strong/span/pp style="TEXT-ALIGN: center"img title="IMG_4815.JPG" src="http://img1.17img.cn/17img/images/201511/insimg/ab49a545-c1a4-410f-b1ac-7c588c30ab84.jpg"//pp style="TEXT-ALIGN: center"strong中国环境保护产业协会马立学主任/strong/pp  中国环境保护产业协会马立学主任分析了中国环境监测产业的发展趋势,并对市场进行了展望。近年来,受政策激励,我国环境监测仪器市场发展快速,环境监测仪器企业不断壮大,大而全的企业发展迅速,小而精的企业虽还欠缺但也已有案例。/pp  据估计,“十三五”期间,我国环境监测市场容量预计达到500亿以上。大气空气质量监测将继续发展,区域站、市县级空气自动监测站建设预计市场容量约为30亿左右,将继续建设100个左右超级站,预计投资15亿元。污染源烟气监测市场预计为50亿元,全国目前市场污染源烟气设备保有量约5万套,每年新增更新约8000-9000套,超低排放改造工程启动,预计将有2.5万套设备更新。工业化工园区监测市场约93亿元,我国石油化工企业10万家,规模以上企业2.8万家,环保部要求在2017年底前建成VOC监测控制体系。汽车尾气监测市场约6亿元,北京在2017年以前要建设150套固定遥感监测点位和20套遥感监测车,估计全国113个重点城市在十三五期间有1/3城市需要建设汽车尾气监测系统。水环境监测市场约100多亿元,861个定期监测水源地保护区需落实61项监测指标的能力建设项目,2400个饮用水源地监测点需要建设水质监测站,预计市场容量24亿元,污水监测点需再建6500个,预计市场容量13亿元,河湖水质监测站点需增加2000个,预计市场容量10亿元,地下水监测约30亿元,十三五计划增加1000个无人船/浮标站约10亿元。环境监测服务市场预计达150亿元以上。智慧环保市场约30亿元。/ppspan style="COLOR: rgb(0,112,192)"strong专家谈气体分析仪/strong/span/pp style="TEXT-ALIGN: center"img title="IMG_4572.JPG" src="http://img1.17img.cn/17img/images/201511/insimg/766d3e4b-9394-4c7e-9be2-4f39df6a8b1b.jpg"//pp style="TEXT-ALIGN: center"strong河北工业大学张思祥教授/strong/pp  目前,我国的恶臭污染排放企业20余万家,其中国控大型企业9862家,而我国的恶臭检测方法多为实验室方法如GCMS、HPLC或者人工嗅辨,缺乏时效性。河北工业大学张思祥教授参与的“恶臭自动在线监测预警仪器开发及应用示范”重大科学仪器专项的主要任务就是研发在线式恶臭监测系统,实现对恶臭的连续、在线、自动监测并预警,并同时测定恶臭组分和恶臭强度。/pp  张思祥教授团队采用电子鼻技术对恶臭气体进行检测,电子鼻主要由气体取样操作器、气体传感器阵列和信号处理系统三种功能器件组成,主要机理是在阵列中的每个传感器对被测气体都有不同的灵敏度使系统能根据传感器的响应来识别气味。经过多方比较,嗅辨阵列传感器最终采用了测量硫化氢、氨气的电化学气体传感器和测量挥发性有机化合物的光离子化气体传感器以及金属氧化物检测器。目前,此系统可实现至少10种气体的检测,至少6种混合气体的分离,实现了我国恶臭监测设备的国产化。据张教授介绍,预计我国恶臭监测设备市场需求超过30万台,市场规模超过5千亿元。/pp style="TEXT-ALIGN: center"img title="IMG_4689.JPG" src="http://img1.17img.cn/17img/images/201511/insimg/0c355811-570b-4f6b-be21-c4c69fb6b4c1.jpg"//pp style="TEXT-ALIGN: center"strong合肥工业大学李保生教授/strong/pp  合肥工业大学李保生教授介绍了其研发的光热干涉探测颗粒物吸收技术和环境空气颗粒物监测技术。光热干涉探测仪主要用于监测气溶胶对大气辐射的吸收作用。李教授研发的环境空气颗粒物监测仪主要优势在于精度可达2%,可使探测器工作在最佳工作点,成本下降16%。/pp style="TEXT-ALIGN: center"img title="IMG_4756.JPG" src="http://img1.17img.cn/17img/images/201511/insimg/4a2eb2c8-6b85-476c-a644-ced8f8b3cf47.jpg"//pp style="TEXT-ALIGN: center"strong钢铁研究总院胡少成/strong/pp  我国环境空气质量标准和多个行业污染物排放标准均对大气污染物重金属指标进行了规定,但目前我国仅部分城市开展了重金属污染物监测项目,并未建立重金属监测网络。而进口大气重金属仪器价格昂贵,国产大气重金属在线分析仪器在灵敏度、稳定度和可靠性方法还有待改进和提高。另外我国大气中重金属相关标准和法律法规不健全。针对此种情况,钢铁研究总院胡少成介绍了其团队开发的基于XRF技术的AHMA-1000大气重金属在线检测系统和XRFZ-1000烟气重金属在线分析系统。/pp style="TEXT-ALIGN: center"img title="IMG_1923.jpg" src="http://img1.17img.cn/17img/images/201511/insimg/0c2881da-796d-4fec-86f9-a96d300ae6c3.jpg"//pp style="TEXT-ALIGN: center"strong国电科学技术研究院汤光华/strong/pp  国电科学技术研究院汤光华以“火电厂烟气脱硝氨逃逸及超低排放监测技术”为题介绍了相关技术。氨逃逸系统通过氨逃逸场分布测试和调整、选择合适的安装点位和个数、多点分时或混合测量保证测量代表性,通过直接抽取法保证测量准确性。超低排放浓度监测选用紫外高精度烟气分析仪代替红外分析仪。/pp style="TEXT-ALIGN: center"img title="IMG_1924.jpg" src="http://img1.17img.cn/17img/images/201511/insimg/eaf1c06e-4cf6-4ce0-8447-cf9dd3c15470.jpg"//pp style="TEXT-ALIGN: center"strong中国仪器仪表学会分析仪器分会在线专业委员会朱卫东委员/strong/pp  中国仪器仪表学会分析仪器分会在线专业委员会朱卫东委员介绍了傅里叶变换红外光谱分析技术在煤制乙二醇过程中进行气体分析的应用,主要用于监测酯化反应循环气测点的一氧化氮和亚硝酸甲酯,和羰化反应进料器的一氧化碳、一氧化氮和亚硝酸甲酯。/ppspan style="COLOR: rgb(0,112,192)"strong厂商气体分析仪产品推介/strong/span/pp style="TEXT-ALIGN: center"img title="未标题-1.jpg" src="http://img1.17img.cn/17img/images/201511/insimg/983de2d1-6a0d-47fa-af30-366aff47658f.jpg"//pp style="TEXT-ALIGN: center"strong赛默飞世尔科技(中国)有限公司王伟工程师/strong/pp  赛默飞王伟工程师介绍了赛默飞的烟气监测全方位解决方案。赛默飞的烟气监测仪采用稀释取样技术、全程校准,减少了维护工作量和水汽对分析的影响。烟尘分析仪采用光散射和震荡天平两种原理,二氧化硫分析仪采用紫外荧光法,氮氧化物采用化学发光法,汞采用冷原子荧光法。/pp style="TEXT-ALIGN: center"img title="IMG_4794.JPG" src="http://img1.17img.cn/17img/images/201511/insimg/e81f751b-e076-4932-bf2d-7a7a03e2f2a8.jpg"//pp style="TEXT-ALIGN: center"strong横河电机(中国)有限公司技术工程师郑波/strong/pp  横河电机(中国)有限公司技术工程师郑波介绍了横河电机最新激光分析仪TDLS8000。TDLS8000采用面积法进行浓度测量,与上代产品相比,8倍自动增益保持了高信噪比,内置参比池锁定连续峰,自带CPU板可在现场即插即用。此款仪器可应用于燃烧分析、乙烯生产过程分析、脱硝氨逃逸测量、火炬总管和油气回收测量、天然气中微量水测量。/ppspan style="COLOR: rgb(0,112,192)"strong气体分析仪重要“搭档”——标准气体/strong/span/pp style="TEXT-ALIGN: center"img title="IMG_4643.JPG" src="http://img1.17img.cn/17img/images/201511/insimg/28142de5-433d-45d4-81bb-48a136df7fac.jpg"//pp style="TEXT-ALIGN: center"strong中国测试技术研究院周鑫/strong/pp style="TEXT-ALIGN: center"strongimg title="IMG_4665.JPG" src="http://img1.17img.cn/17img/images/201511/insimg/2cd0bce6-bab7-4d6e-b8c5-1c7a827b410f.jpg"//strong/pp style="TEXT-ALIGN: center"strong大连大特气体有限公司曲庆/strong/pp  标准气体在环境监测仪器测量结果准确性方面起到至关重要的作用。中国测试技术研究院周鑫介绍了其团队在线仪器分析气体标准物质和色谱分析气体标准物质的研制工作。目前,钢瓶的内壁处理是制约标准气体制备的重要因素,选择合适的钢瓶内壁涂层和钢瓶阀门是保证标准气体稳定保存的重要因素。周鑫团队研制成功的标准物质有氮中硫化氢、氮中氧硫化碳、氮中氨气、空气中氨气、氮中氯气、空气中氯气以及22组分和42组分的VOC混合气体。大连大特气体有限公司曲庆就气体分析中主要的置换方法进行了比较和分类。连续吹扫置换法是直接用样品气体连续吹扫采样系统以获得代表性样品;升降压置换法是通过反复迅速给待置换系统充入一定的气体,使其压力升高,再将系统内的气体缓慢排尽,压力降为大气压;抽真空置换法是在样品进入采样容器或者分析仪之前加入一真空泵,以抽真空的方式置换系统。曲庆详细介绍了三种方法的置换效率数学模型和试验验证结果,以期为气体分析工作者提供参考。(撰稿:李学雷)br//p
  • 湿法脱硫:治理燃煤烟气污染却成巨大污染源
    p  在今年三月份的全国两会期间,李克强总理在陕西代表团参加审议时说:“雾霾的形成机理还需要深入研究,因为我们只有把这个机理研究透了,才能使治理措施更加有效,这是民生的当务之急。我们不惜财力也要把这件事研究透,然后大家共同治理好,一起打好蓝天保卫战。”/pp  “我在国务院常务会议几次讲过,如果有科研团队能够把雾霾的形成机理和危害性真正研究透,提出更有效的应对良策,我们愿意拿出总理预备费给予重奖!这是民生的当务之急啊。我们会不惜财力,一定要把这件事研究透!”/pp  “我相信广大人民群众急切盼望根治雾霾,看到更多蓝天。这需要全社会拧成一股绳,打好蓝天保卫战!”/pp  从2013年初算起,中国治理大气污染的大规模行动已经进行了四年多,各地政府和相关企业,为之投入了巨大的人力物力。京津冀地区,在几个重点的燃煤烟气污染领域,如钢铁冶金(重点是烧结机)、焦炭、水泥、燃煤发电厂、燃煤蒸汽和热水锅炉、玻璃行业,这几年给几乎所有的大烟囱都带了口罩——加装燃煤烟气处理系统。收效虽有,但大家总觉得与治理的深度和广度差距太大。我与某地环保局的专业工作人员聊天时,曾听到对方的困惑:几乎所有的大型燃煤设施,都已经上了烟气处理措施。在重压之下,有几个企业敢大规模偷排啊?大气中的PM2.5的浓度怎么还是这么高啊?这些颗粒物到底是从哪里来的?/pp  在中国,已经有很多科学论文介绍,中国的大气颗粒物监测中经常发现有大量的硫酸盐。北京的严重雾霾天气,硫酸盐的比例有时甚至远超50%。/pp  曾经有专家认为大气中大量的硫酸铵颗粒物是在大气中由二氧化硫和氨气合成的。而氨气是从农业种植业和养殖业中逃逸出来的。还有中外合作的科研团队的结论是,北京及华北地区雾霾期间,硫酸盐主要是由二氧化硫和二氧化氮溶于空气中的“颗粒物结合水”,在中国北方地区特有的偏中性环境下迅速反应生成。可农业种植和养殖业的氨逃逸不是最近几年才突然增长,通过这几年的大气污染治理措施,大气中二氧化硫和二氧化氮的含量是逐渐下降的。显然,这些结论很牵强附会。篇幅所限,我就不深入分析了。/pp  我谈谈自己的经历。/pp  去年夏天我在某市出差,前天晚上下了一场暴雨,第二天空气“优”了一天,但第三天空气质量就跨越两个级别,达到轻度污染,第四天就是中度污染了。夏季没有散煤燃烧采暖造成的污染,而该市主要的燃煤烟气设备都有有效的颗粒物减排措施。虽然大气中的二氧化硫和氨能合成二次颗粒物,可大气中二氧化硫的浓度并不高,暴雨也能把地里的氨大部分都带走,大气中不可能有这么多的氨气,而且颗粒物的增长也不应该这么快。/pp  我在一个企业调查时,用肉眼就清晰地发现,某大型燃煤设施经湿式镁法脱硫后的烟气中的水雾蒸发之后,仍拖着一缕长长的淡淡的蓝烟。这是烟气中的水雾在空气中蒸发之后,水雾中的硫酸镁从中析出,留在了空中。/pp  而在另外几个企业,我则看到,用湿式钙法脱硫技术处理的烟气中的水雾蒸发后,留下一缕白色的颗粒物烟尘。其中有一次我在一个钢铁企业考察时,因为气象的原因,经湿法脱硫的烧结机燃烧烟气沉降到地面上,迅速闻到一股呛人的粉尘气味。/pp  这种现象很多专业人士都注意到了。某省一位专业环保官员告诉我,这种湿法脱硫工艺产生的烟气颗粒物,还有一个俗称,叫“钙烟”。/pp  2015年我的德国能源署同事在中国的调研工作中清晰地发现了这个情况,并在2016年载入了科研报告:“很多燃煤热力站的烟气净化主要在洗气塔中进行,没有在尾部安装过滤装置。由于洗气塔的净化效果有限,并且只适用于分离水溶性物质,因此,中国企业广泛采用未加装过滤装置的洗气塔的方式并不可靠”。/pp  更糟糕的是,我们看到,很多企业为了降低不菲的烟气脱硫废水处理成本,不对湿法脱硫的废水中溶解的硫酸盐做去除处理,而是将溶有大量硫酸盐的废水反复使用,还美其名曰,废水零排放。废水是零排放了,可溶性的硫酸盐却全都撒到天上了,每立方米的燃煤烟气中,有好几百毫克的硫酸盐,全都变成PM2.5了。还不如不做烟气脱硫处理呢!/pp  今年5月17日下午,中国生物多样性保护与绿色发展基金会与国际中国环境基金会总裁何平博士联合组织了一次“燃煤烟气治理问题与对策研讨会”。我也应邀参加了这次会议。在这次会议上,大家纷纷指出了一个重要的大气污染源,燃煤烟气湿法脱硫。/pp  其中山东大学的朱维群教授介绍了他从经湿法脱硫后的烟气里检出了大量硫酸盐的实验结果。与会的其他两个公司也介绍了类似的发现。其中一个来自东北某省会城市的公司介绍,最近两年,该市每年在供暖锅炉启动运行的第一天,就出现大气中的颗粒物含量迅速上升现象。而这些锅炉都有烟气处理工艺,从监测仪表上看,颗粒物的排放比前些年大幅下降。而二氧化硫和二氧化氮要合成二次颗粒物不会这么快。可以断定,是在烟气处理过程中的湿法脱硫工艺合成了大量的颗粒物。该公司负责人还调侃说,他曾给市环保局建议,把全市的燃煤烟气湿法脱硫停止运行试一天做个试验,肯定大气中的颗粒物浓度会大幅下降。/pp  我也介绍了我和同事们在河北进行大气污染治理时发现的类似现象,并介绍了我们于2016年在有关报告中建议的治理方法:“基于德国的经验,建议采用(半)干法烟气净化技术取代湿法洗气塔。具体而言,我们建议采用APS (Activated Powder Spray,活性粉末喷洒)烟气处理工艺”。/pp  十分凑巧的是,就在举办这个会议的当天晚上,华北某市的环保局局长(尊重他的意愿,我不能公开他的姓名和所在的城市)来北京出差,约我聊一聊治霾问题。一见面,他就开门见山告诉我一件令他困惑了几年并终于揭晓的谜:/pp  几年来,他一直怀疑现在的燃煤烟气处理工艺有问题,因为在这些已经采用了燃煤烟气处理工艺的烟囱附近的空气质量监测站,发现大气中颗粒物的浓度要明显高于其他地区监测站监测的结果。不久前,他所在城市的一家大型燃煤发电厂刚刚安装了超净烟气处理设施。但在超净烟气处理设施运行的当天,附近大气质量监测站检测出的大气中的颗粒物浓度比起其他地区的监测站,有了突然的大幅升高。于是他让环保检测人员到现场从烟囱里抽出烟气到实验室里检测。结果,发现有大量的冷凝水,在将这些冷凝水蒸发后,得到了大量的硫酸盐,其数量相当于在每立方米的烟气中,有100~300毫克/的以硫酸盐为主的颗粒物。而国家规定的燃煤锅炉烟气中的颗粒物排放上限(依锅炉的功率和是否新建或既有)分别为20~50毫克/立方米 燃煤电厂烟气超净排放标准的颗粒物排放上限甚至只有5~10毫克/立方米。也就是说,湿法脱硫产生的二次颗粒物造成烟气中的颗粒物浓度超过不同的国家标准上限几倍至几十倍!/pp  超净烟气中水分含量更高,带出的冷凝水和溶盐更多,烟气的温度也更低,所以在烟囱附近沉降的颗粒物更多。/pp  既然是超净排放,烟气中怎么还会有这么多的颗粒物?烟气中的颗粒物可都是有在线监测的。难道是偷排?还真不是偷排。/pp  原因很简单:国家的烟气检测规范规定,烟气中的颗粒物浓度是在烟气除尘之后湿法脱硫之前进行检测。这也有道理,因为在湿法脱硫工艺之后,大量的水雾被带到烟气中,这些水雾在普通的烟气检测技术方法中,往往会被视为颗粒物,造成巨大的测量误差。即便有高级仪器能区分湿烟气中的水雾和颗粒物,也很难测定水雾中的硫酸盐含量。除非能检测水雾中的盐含量。但这太困难了。即使有检测装置能够在线检测出来水雾中的硫酸盐浓度,成本也太惊人了。/pp  燃煤烟气在经过湿法脱硫后,会含有大量的水雾,水雾中溶解有大量的硫酸盐和并含有脱硫产生的微小颗粒物,其总量总高可达几百毫克。/pp  以上的事实,对大气中的颗粒物中有大量的硫酸盐、甚至经常有超过50%比例的硫酸盐的现象做出了合理的解释:大气中绝大部分的硫酸盐并不是二氧化硫和氨气在大气中逐渐合成的,而是在湿法脱硫装置中非常高效迅速地合成的。/pp  也就是说,湿法脱硫虽然减少了二氧化硫——这个在大气中能与碱性物质合成二次颗粒物的污染物,但却在脱硫工艺中直接合成出大量的一次颗粒物。在已经普遍安装了燃煤烟气处理装置的地方,湿法脱硫在非采暖季已经成为大气中最大的颗粒物污染源。万万没想到,烟气治理,治理出更多的颗粒物来,甚至出现在超净烟气处理的工艺中,真是太冤了。/pp  难怪下了这么大的力气治理燃煤烟气污染,大气中的颗粒物浓度降不下来,原因就是燃煤烟气污染治理本身,并不是燃煤的企业和环保部门的工作人员治理大气污染不积极、不认真 而是方法错了。方法错了,南辕北辙。这充分说明,铁腕治霾,一定要建立在科学的基础上。方法不科学,很可能腕越铁,霾越重。/pp  有疑问吗?有疑问不必争辩,找人对湿法脱硫之后的燃煤烟气进行取样,拿到实验室去一检测就清楚了。实践是检验真理的唯一标准。/pp  现在雾霾治不了,很多地方的环保部门就采用“特殊手段”。其中一种手段是用水炮。可是,一些人不知道,硫酸盐是水合盐,在湿度高时,硫酸盐分子会吸收大量的水分,增大体积,这也就是为什么很多地方在空气湿度升高后,颗粒物的浓度会突然大幅增加的原因。我有个朋友是环保专家,他告诉我,有一次,他所在的地区大气颗粒物浓度过高,他的上司要派人到监测站附近打水炮降颗粒物,他赶忙拦住:“现在湿度高,越打水炮,硫酸盐颗粒物吸水越多,颗粒物浓度越高。”/pcenterimg alt="asd" src="http://img.caixin.com/2017-07-10/1499667799730726.jpg" width="571" height="395" style="width: 571px height: 395px "//centerp  更下策的办法是给监测仪器上手段,直接对仪器作假,譬如给颗粒物探测头上缠棉纱。第一个作假被抓住并被公布的环保局官员,就是在我的家乡西安,我的心情很不平静。在这里,我不是为作假者开脱,而是为他们的无奈之举感到深深的悲哀。/pp  湿法脱硫的技术包括钙法、双碱法、镁法、氨法。这些工艺都或多或少地在湿法脱硫过程中合成大量的硫酸盐,只是其中所含硫酸盐的种类(硫酸钠、硫酸镁、硫酸铵、硫酸钙)和比例有所不同。/pp  我用最常用的钙法脱硫的烟气处理(超净排放需要增加脱硝的处理工序)流程图,简要地解释一下湿法脱硫产生大量的硫酸盐的过程:/pp  /pcenterimg alt="2" src="http://img.caixin.com/2017-07-10/1499668426791886.jpg" width="562" height="234"//centerpbr//pp  湿法脱硫产生大量二次颗粒物的问题,从上世纪七八十年代起,在德国也出现过。德国发现了这个问题后,研究解决方案,选择了两条解决问题的路径:/pp  1. 在原来湿法脱硫的基础上打补丁。其具体措施是:/pp  1) 加强水处理措施,对每次脱硫后的废水去除其中颗粒物和溶解的盐 /pp  2) 加装烟气除雾装置(例如旋风分离器) /pp  3) 加装湿法静电除尘器 /pp  4) 采取了以上的方法后,烟气中仍然有可观的颗粒物。于是为了避免颗粒物在烟囱附近大量沉降,又加装了GGH烟气再热装置,将烟气加热,升到更高的高度,以扩散到更远的地方——虽然扩大了污染面积,但减轻了在烟囱附近的空气污染强度。当然烟气再加热,又要消耗大量的热能。/pp  /pcenterimg alt="asd" src="http://img.caixin.com/2017-07-10/1499667818346916.jpg" width="584" height="241"//centerpbr//pp  但国内外都发现了GGH烟气再热装置结垢堵塞的现象,于是在发生结垢堵塞要对GGH再热装置进行清洗(结垢就是颗粒物,这也证实了湿法脱硫后的烟气中含有大量的颗粒物)时,需要有烟气旁路。而中国的环保部门为了防止偷排,关闭了旁路。所以,检修锅炉要停机,很多燃煤电厂为了防止频繁的锅炉停机,只好拆除了GGH烟气再热装置,由于烟气温度过低,因此烟气中的大量颗粒物在烟囱附近沉降,这也就是前述的某市环保局长发现的在燃煤电厂附近区域空气监测站发现大气中有较高的颗粒物含量的原因。/pp  但这个方法只适合于大型燃煤锅炉,如燃煤电厂的大型燃煤锅炉。因为采用上述的技术措施,工艺复杂,电厂的大锅炉,由于规模大,脱硫废水和废渣的处理成本还能承受。对于小的燃煤锅炉在经济上根本承受不了,且不说还要加装价格不低的湿式静电除尘器。因此,在德国,非大型燃煤电厂的锅炉几乎都不采用这种在原湿法脱硫工艺的基础上打补丁的方法,而是采用下述的第二种方法。/pp  2. 第二种方法就是干脆去除祸根湿法脱硫工艺,采用(半)干法烟气综合处理技术。德国比较成功的是APS (Activated Powder Spray,活性粉末喷洒)烟气处理工艺,综合脱硫、硝、重金属和二恶英。这种工艺是在上世纪末发明的,本世纪开始逐渐成熟并得到推广。其具体措施是:/pp  1) 燃煤烟气从锅炉出来用旋风分离器进行大致的除尘后,即进入到APS烟气综合处理罐,进行综合脱硫、硝、重金属和二恶英(垃圾焚烧厂和钢铁工业的烧结机排放的烟气中有大量的二恶英) /pp  2) 而后用袋式除尘器将处理用的大量脱污染物的粉末和少量的颗粒物一并过滤回收,多次循环使用(平均约100次左右)。/pp  /pcenterimg alt="asd" src="http://img.caixin.com/2017-07-10/1499667826241238.jpg" width="567" height="179"//centerpbr//pp  德国现在普遍采用这种(半)干法综合烟气处理工艺。即便是从前采用给湿法脱硫打补丁的燃煤电厂,也逐步地改为(半)干法综合烟气处理工艺。/pp  /pcenterimg alt="asd" src="http://img.caixin.com/2017-07-10/1499667836914688.jpg" width="597" height="403" style="width: 597px height: 403px "//centerp  /pcenterimg alt="asd" src="http://img.caixin.com/2017-07-10/1499667844142957.jpg" width="460" height="496" style="width: 460px height: 496px "//centerp  上面两张图片是在德国凯泽斯劳滕市中心的热电联供站的屋顶上拍摄的,热电联供站既有燃煤锅炉,也有燃气锅炉。其中燃煤锅炉满足基础热力负荷,而燃气锅炉提供峰值热力负荷。上面两张照片上的两个烟囱当时都在排放燃煤烟气,不过这些燃烧烟气经过了APS半干法烟气综合烟气系统的处理,颗粒物排放浓度当时只有1毫克/立方米左右,所以用肉眼根本看不到排放的烟气。2016年,凯泽斯劳滕市的年均大气PM2.5浓度为13微克/立方米。/pp  燃煤烟气采用先进的半干法烟气综合烟气系统,完全可以达到中国燃煤烟气超净排放的标准,即:颗粒物 5~10毫克/立方米烟气,SOx 35毫克/立方米烟气 NOx 50毫克/立方米烟气。如果烟气中有二恶英,则烟气中的二恶英浓度甚至可以降低到0.05纳克/立方米以下(在实际项目中经常可以降到0.001纳克/立方米以下),而欧盟标准的上限是0.1纳克/立方米烟气。/pp  湿法脱硫这个新的巨大的大气污染源被发现是坏事也是好事。坏事是知道很多的钱白花了,污染却没减多少,甚至有所增加,很遗憾。好事是知道了大气污染的主要症结在哪里,知道了如何去治理 特别是知道了,大气质量会因此治理措施(在中国北方+散煤治理措施)得到根本性的改善。/pp  这一污染并不难治,采用先进的(半)干法技术综合烟气处理技术,立马就能把这个问题解决。尽管有一些成本,但是可以接受的成本,因为这种处理技术,如果要达到同样的环保排放标准,成本比采用湿法脱硫技术的烟气处理工艺还要低。如果现在就开始治理,冬奥会之前,把京津冀地区这个主要污染源基本治理好,再加上治理好散煤污染(在下一篇中详述),让大气质量上一个大台阶,把京津冀所有市县的年均PM2.5的浓度降到35微克/立方米一下,应该不难实现。/pp  最后我要强调的是,这个主要大气污染源的发现,并非我一个人或者我们这个中德专家团队所为,而是一批工作在治霾第一线的专家和环保官员们(当然也包括我和我们这个团队)经过精心观察发现的,并逐步得到越来越清晰的分析结果。我只不过把我们分别所做的工作用这篇文章做一个简单的综述。在此,本文作者对所有为此做出了贡献的人(很遗憾,他们之中的很多人现在不愿意公布他们的姓名和单位——也许要待到治霾成功那一天他们才愿意公布)表示衷心的敬意和感谢!/ppstrong style="color: rgb(51, 51, 51) font-family: 宋体 text-align: justify white-space: normal background-color: rgb(255, 255, 255) "作者为中德可再生能源合作中心(中国可再生能源学会与德国能源署合办)执行主任/strongstrong style="color: rgb(51, 51, 51) font-family: 宋体 text-align: justify white-space: normal background-color: rgb(255, 255, 255) "陶光远/strong/p
  • 【干货】火电厂超低排放烟气在线监测技术探讨
    p  火电厂实施超低排放改造后,对污染物在线监测的精确性提出了更高要求。本文通过对比几种应用于二氧化硫、氮氧化物和烟尘的典型监测技术,提出了适用于超低排放改造的a title="" target="_self" href="http://www.instrument.com.cn/application/SampleFilter-S02005-T000-1-1-1.html"strong烟气/strong/a在线监测系统优化配置方案,为火电厂超低排放改造中烟气在线监测系统的选型提供参考。/pp  1引言/pp  自《煤电节能减排升级与改造行动计划(2014-2020年)》(发改能源[2014]2093号)发布后,国家出台了一系列文件、措施和鼓励性政策支持火电厂实施超低排放改造,并在东部地区进行了试点。经过试点后,“十三五”期间将在全国范围内实施火电厂超低排放改造,改造后烟气排放限值执行标准为烟尘 10mg/m3、二氧化硫35 mg/m3、氮氧化物50 mg/m3。/pp  火电厂实施超低排放改造后,烟气污染物浓度大幅降低,烟气水分含量增大,烟气特性发生了较大改变,对污染物在线监测的精确性提出了更高要求。因此,在现阶段总结超低排放试点电厂烟气在线监测系统(CEMS)的运行情况,分析对比各种烟气监测技术的性能特点,对于“十三五”火电厂超低排放改造中CEMS的选型具有积极作用。/pp  2 火电厂烟气在线监测技术现状/pp  2.1 非分散红外/紫外吸收法SO2和NOX监测技术/pp  “十一五”和“十二五”期间,国内在脱硫和脱硝上应用最为广泛的是非分散红外吸收法监测技术,有少部分紫外吸收技术。这类技术是基于朗伯-比尔 (Lambert-Beer)吸收定律的光谱吸收技术,其基本分析原理是:当光通过待测气体时,气体分子会吸收特定波长的光,可通过测定光被介质吸收的辐射强度计算出气体浓度。即:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201603/insimg/ba5ac4a7-c3d8-4993-9dac-f4185deda181.jpg" title="11.jpg"//pp  式中:I—光被介质吸收后的辐射强度 /pp  I0—光通过介质前的辐射强度 /pp  K—待分析组分对辐射波段的吸收系数 /pp  C—待分析组分的气体浓度 /pp  L—气室长度(待测气体层的厚度)。/pp  2.2 紫外荧光法SO2监测技术/pp  紫外荧光法基于分子发光技术,在一定条件下,SO2气体分子吸收波长为190~230nm紫外线能量成为激发态分子,激发态的SO2分子不稳定,瞬间返回基态,发射出波长为330 nm的特征荧光。在浓度较低时,特征荧光的强度与SO2浓度成线性关系,即可通过检测荧光强度计算SO2浓度。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201603/insimg/f0f3e27d-62a0-4250-ba79-e190032bf99c.jpg" title="22.jpg"//pp  2.3 化学发光法NOX监测技术/pp  化学发光法是在一定条件下,NO与过量的O3发生反应,产生激发态的NO2。激发态NO2返回基态时,会产生波长为900nm的近红外荧光。在浓度较低情况下,NO与O3充分反应发出的光强度与NO浓度成线性关系,即可通过检测化学发光强度计算NO浓度。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201603/insimg/79153f86-4b97-4e01-a90b-e0dcc5971bfa.jpg" title="33.jpg"//pp  2.4 烟尘监测技术/pp  2.4.1 光透射法烟尘监测技术/pp  光透射法技术基于朗伯-比尔定律,即光穿过含尘烟气时透过率与烟尘浓度呈指数下降关系。在实际应用中有单光程和双光程两种类型的仪器,光透射法的准确性受颗粒物粒径分布影响较大,且灵敏度不高,一般用于烟尘浓度高(大于300mg/m3)、烟道直径大且烟气湿度低的工况。/pp  2.4.2 光散射法烟尘监测技术/pp  光照射在烟尘上时会被烟尘吸收和散射,散射光偏离光入射的路径,散射光强度与烟尘粒径和入射光波长有关,光散射法就是采用测量散射光强度来监测烟尘浓度的。在实际应用中有前向散射、后向散射和边向散射三种类型。该技术灵敏度高,能够测量低至0.1mg/m3的烟尘浓度,最低量程可达到0-5mg/m3,适用于烟尘浓度低、烟道直径小的情况。但该技术同样容易受水汽影响,不适宜烟气湿度高的工况。/pp  2.4.3电荷法烟尘监测技术/pp  所有烟尘颗粒均带有电荷,颗粒物接触或摩擦时将产生电荷交换,电荷法就是用电绝缘传感探针测量探头和附近气流或直接与探头碰撞的颗粒物之间的电荷交换来测量烟尘浓度的。该技术除受烟尘粒径变化、组分变化和烟气湿度影响外,还受烟气流速影响,主要用于布袋除尘的泄漏检测和报警等定性测量,少在CEMS中应用 。/pp  2.4.4 贝塔射线吸收法烟尘监测技术/pp  & #946 射线具有一定穿透力,当它穿过一定厚度的吸收物质时,其强度随吸收物质厚度的增加逐渐减弱,通过测量穿过物质前后的& #946 射线强度,即可得出吸收物质的浓度。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201603/insimg/70107fe8-94e7-475f-826f-0bc4e290f1ef.jpg" title="44.jpg"//pp  式中:I—通过吸收物质后的射线强度 /pp  I0—未通过吸收物质的射线强度 /pp  & #956 —待测吸收物质对射线的质量吸收系数 /pp  x—待测吸收物质的质量浓度。/pp  该技术基于抽取式测量方式,不受烟尘粒径分布、折射系数、组分变化、烟气湿度等影响,可用于烟尘浓度低、烟气湿度大的工况。但抽取式测量属于点测量,不适合烟气流速变化大、烟尘浓度分层的场所。/pp  2.5 烟气预处理技术/pp  基于非分散红外/紫外吸收法技术的CEMS系统多数采用直抽法取样,为防止系统堵塞和水分对测量的干扰,需要对烟气进行除尘和除水处理。预处理装置的效果直接影响CMES的整体性能,通常以处理后的烟气露点作为重要指标来判定预处理的性能。/pp  在实际应用中,“过滤+冷凝”的预处理方式较为广泛。其中烟气过滤除尘技术较为成熟,常用的有金属滤芯、陶瓷烧结滤芯和膜式过滤器。在采样探头处初步过滤,样气进分析仪前深度过滤,至少过滤掉0.5-1微克粒径以上的颗粒物。/pp  烟气冷凝除水技术较为常用的有压缩机冷凝和半导体冷凝,可将烟气露点干燥至5℃。新兴技术中有高分子膜式渗透除水技术,采用高分子聚合亲水材料,具有高选择性除水性能,不改变烟气中SO2和NOX污染物因子成份,可将烟气露点干燥至-5℃以下。/pp  3 几种烟气在线监测技术的性能比较/pp  国内火电厂烟气在线监测产品众多,本文结合各种产品的运行情况,参考了拥有该种技术典型品牌产品的说明书,对超低排放较为关注的量程、精度等重要指标参数进行对比。其中最小量程指的是最小物理量程,而非软件迁移的量程。/pp  3.1 SO2和NOX监测技术的比较/pp  几种主要SO2测量技术的简单参数对比表见表1。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201603/insimg/0a6a0a06-ef1a-4c64-9c06-8ef7296c45d7.jpg" title="55.jpg"//pp  几种主要NOX测量技术的简单参数对比表见表2。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201603/insimg/9a723c58-4207-4427-9a0b-c88d4ca6bf09.jpg" title="66.jpg"//pp  根据《固定污染源烟气(SO2、NOX、颗粒物)排放连续监测系统技术要求及检测方法》(HJ/T76),按超低排放限值计算,SO2和NOX量程应不大于 175mg/m3和250mg/m3。 从表1和表2可以看出,传统非分散红外吸收法分析仪SO2和NOX的最小量程分别为286mg/m3和308mg/m3,不能满足超低排放污染物在线监测的要求。/pp  非分散紫外吸收/差分法分析仪的最小量程满足HI/T76标准要求,但CEMS系统的整体性能不但与分析仪本身性能有关,还受烟气预处理系统性能的影响。预处理部分的比较将在后文专题论述。/pp  从表1和表2还可看出,紫外荧光法和化学发光法测SO2和NOX的最小量程可达到0.1mg/m3,检出下限极低。紫外荧光法和化学发光法是分子发光气体分析技术,属于ppb级的气体分析技术。该种技术以分子发光作为检测手段,具有灵敏度高、选择性好、试样量少、操作简便等优点,已在生物医学、药学以及环境科学等方面广泛应用,也是EPA(美国环境保护署)认证中明确推荐的SO2和NOX浓度监测技术。该技术采用抽取稀释法(常用稀释比为100:1)对烟气进行预处理,避免了烟气水分、烟尘对测量的影响,在超低排放烟气监测上具有较好的适应性。/pp  3.2 烟尘监测技术的比较/pp  几种主要烟尘测量技术的简单对比表见表3。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201603/insimg/f0168a55-67d8-413e-84b8-0eb3052375e4.jpg" title="77.jpg"//pp  在火电厂超低排放改造中,烟尘浓度一般要达到10mg/m3以下。尤其以湿式除尘改造为主要技术路线的烟气中水分含量较大,给烟尘的准确监测带来挑战。在实际应用中一般是将烟气等速抽取,经升温加热使水分雾化不出现液滴,再通过光散射等低浓度测量方法进行测量 另一种是将烟气等速抽取,将加热干燥的空气与其按一定比例混合稀释,从而降低烟气中的水分含量,再通过光散射等低浓度测量方法进行测量,结合混合气体的稀释比计算出烟尘浓度。这种方式采用低浓度测量原理,优化了烟气采样和预处理,有效解决目前超低排放改造中高湿低浓度烟尘在线监测的问题,在湿式除尘后已有广泛应用。/pp  3.3 烟气预处理技术的比较/pp  火电厂实施超低放改造后,烟气污染物浓度大幅降低,在线监测的适应性取决于系统的检出下限,而CEMS 的检出下限受分析仪本体和烟气预处理装置两部分制约。在实际应用的烟气预处理中,直接抽取+冷干法占70%,均采用冷凝除水技术。该技术在冷凝过程中,冷凝水会吸收携带部分SO2和NOX,以致在超低浓度工况下的监测数据严重失真甚至无检测数据,不能满足HJ/T76标准的技术要求。表4为不同水分含量下不同预处理方式对SO2测量影响的实验对比表。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201603/insimg/2a5c2e14-a1a8-4109-8997-00c3fa7c0203.jpg" title="88.jpg"//pp  注:标气SO2浓度500ppm,样气温度120℃,测量数值单位ppm。/pp  从表4可看出,水分含量越高对测量结果影响越大,其中渗透膜除水技术对SO2测量的影响远小于其它除水技术,其除水效果优于其他技术。也可由此而知,在直抽法采用紫外吸收/差分法分析仪时,应同时选用除水效果更好的烟气预处理技术,否则监测数据可能严重失真甚至检测不出数据。/pp  在稀释法取样中,预处理侧重于对稀释气体的处理,通常配备专门的压缩空气净化装置或者发生装置,经精密过滤和干燥,可将露点降至-40℃,不需要加热采样管线。在CEMS中,稀释抽取法通常与紫外荧光和化学发光技术配套使用。/pp  4 结论与建议/pp  (1)超低排放改造实施后,进出口烟气特性差异较大,烟气监测对CEMS的系统配置提出了更高、更具体的要求,建议在可研或技术规范书里明确各测点不同污染物对烟气取样方式、预处理、分析仪的测量原理、量程、检出下限等主要参数和选型的具体要求。/pp  (2)在超低排放改造中,脱硫脱硝入口CEMS仍可采用常规的预处理装置和非分散红外技术测量SO2和NOX浓度,除尘器前可采用光透射法测量烟尘浓度。/pp  (3)在脱硫脱硝出口特别是湿式除尘后,SO2和NOX的测量优先采用紫外荧光法和化学发光法技术 若采用直抽法非分散紫外吸收/差分法分析仪时,应同时配备除水性能更优越的膜渗透烟气预处理技术。/pp  (4)在脱硫出口特别是湿式除尘后,优先采用抽取高温光散射法测量烟尘浓度。/p
  • 南京分析仪器展出DH-9086型多组分烟气分析仪——CIOAE 2011视频报道系列
    仪器信息网讯 2011年11月9日至10日,“第四届中国在线分析仪器应用及发展国际论坛暨展览会(CIOAE 2011)”在北京国际会议中心成功召开。在本届论坛的报道中,仪器信息网特别开设了视频报道形式,让广大网友跟随我们的镜头,近距离地了解本次论坛上各大仪器厂商展出的在线分析仪器新产品与新技术。以下是南京分析仪器厂有限公司市场部经理姚启生先生介绍该公司DH-9086型多组分烟气分析仪的视频。  姚启生先生首先介绍了南京分析仪器厂有限公司的发展概况,目前公司产品主要有环境监测、工业流程、工业系统和生化医疗等四大类仪器。随后向大家展示了公司在引进国外先进制造技术的基础上开发的高新技术产品DH-9086型多组分烟气分析仪,该款仪器采用国际上新型的电化学传感器和先进的数据采集分析处理系统,具有显示、存储、打印各种测量数据等功能。仪器科学的模块化整体设计,独立的测量模块,可灵活配置便于升级及扩大应用范围。目前,该款仪器主要用于测定一氧化碳、二氧化硫、氮氧化物等烟气中的各种成分。  南京分析仪器厂有限公司  南京分析仪器厂有限公司的前身——南京分析仪器厂,始建于1956年,是国内最早从事分析仪器研制和生产的专业厂、南京市首批高新技术企业,企业先后承担了国家重点科技攻关项目和国家火炬开发项目。如:国家科委“七五”重点科技攻关项目(过程分析仪器取样预处理开发研究),1990年通过机电部验收鉴定,并获国家重大科技成果奖;“八五”国家火炬开发项目(CX-6800工业气相色谱仪开发研究),获机电部科技进步二等奖等。  2005年3月企业经过改制,成立了南京分析仪器厂有限公司。新厂区位于江苏省高新技术开发区——南京雨花经济技术开发区内,占地108亩,建筑面积53400平方米。该公司是专业从事在线分析技术研究、开发、生产的高科技实体,公司内设有从事新产品开发的研发中心;有控制产品质量和传递国家计量标准的质量检测中心;有以数控镗铣、数控车削、数控冲压等设备为主的精密加工中心。公司被江苏省和南京市授予高新技术企业。
  • 高效方案,推动烟气治理行业快速发展
    在众多领军企业和北极星广大粉丝的支持与参与下,历时39天的“北极星杯”2021烟气治理影响力企业评选圆满结束,精微高博实至名归,荣获“烟气行业优秀企业”奖项。导致大气污染的原因有很多,火力发电形成的氮氧化物(NOx)即为其中之一,这一问题得到了广泛的关注。在诸多NOx排放控制技术中,选择性催化还原反应(SCR)技术是目前工业上应用最广的一种脱硝技术,其催化剂是重要组成部分,它的结构和性能直接影响SCR 体系的脱硝效果。按照活性组分可将SCR催化剂可以分为三类:第一类为铂、钌、钯等贵金属,第二类是以V2O5 为主的钒、钨、钼的氧化物,第三类是含铁、铈、锰、铋和铜的复合氧化物。由于脱硝反应是一个多相催化反应,且发生在固体催化剂的表面,所以催化剂表面积的大小直接影响到催化活性,通过比表面积的分析,我们能够掌握脱硝反应的实施过程和脱硝反应的具体特征,解决脱硝反应的实际进程问题。JW-BK200C比表面及孔径测试仪搭载0.1torr INFICON小量程传感器,PFEIFFER超高真空分子泵,能准确测试催化剂的比表面积,孔容,孔径等参数,为后续的研发,测试等环节提供有力支持。JW-BK200C比表面及孔径测试仪配置1torr/0.1torr高精度小量程传感器,及10-8Pa涡轮分子泵,适合分子筛、催化剂、活性炭等多微孔样品的超微孔分析。孔径范围:0.35-500nm 比表面测试范围:0.0001m2/g中值孔径重复性:0.02nm比表面积重复性:≤1%研究表明,烟气中的碱金属会吸附在催化剂的活性位点上,形成稳定的金属氧化物,进而中和催化剂表面活性位点的酸性,影响还原剂氨的吸附,导致催化剂失活。重金属,如砷( As) 对 SCR催化剂毒害作用显著,砷的浓度在1 μg / m3~ 10 mg /m3时,在气相中以 As2O3的形态存在。As2O3气体分子吸附在催化剂孔隙中,会消耗路易斯酸性位点导致催化剂失活。催化剂在运行过程中,水溶性离子 K、Na、P 和 As 会占据催化剂活性中心的酸性位点,导致其活性降低。工业用钒钛基催化剂在催化还原NOx的同时,也使部分烟气中的SO2催化氧化成SO3,其与烟气中大量存在的H2O,NH3发成反应生成NH4HSO4,沉积在催化剂位点造成催化剂堵塞。因此探究SO2催化氧化机理极具价值,实验主要采用原位红外光谱(FT-IR)手段。AMI-300IR化学吸附仪能够快速完成催化剂的原位红外表征,以及活性位点测试,辅助科研人员深入了解催化剂中毒原理,减缓催化剂化学中毒和物理中毒,通过增加催化剂表面酸性、添加抗碱金属助剂等手段提高催化剂抗金属中毒能力。AMI-300IR全自动原为红外&程序升温化学吸附仪,将AMI化学吸附标准技术与傅立叶变换红外光谱(FTIR)相结合对催化剂表面进行原位分析,这种组合技术能够实现对于被吸附物质的直接观察,从而确定催化位的性质,吸附的类型,以及是否存在多种类型的催化位,从而扩展了对吸附/脱附过程性质的认识。燃煤烟气中存在大量的HgO,钒基SCR 催化剂具有良好的氧化能力,在 O2以及 HCl 存在情况下可将烟气中HgO转化为 Hg2+,成为控制烟气中 Hg 排放的一种有效方式。研究认为HCl和 HgO在催化剂表面发生吸附,影响 V 以及O 的化学环境,可能会与SCR反应过程的 NH3发生竞争吸附,进而影响脱硝反应的进行。此外,在低温SCR脱硝过程中,烟气中存在的水蒸气,会通过物理竞争吸附和化学吸附干扰反应,影响催化剂的脱硝效率。物理竞争吸附是水蒸气“抢走”了本该吸附在催化剂表面的NO,其导致的催化剂活性降低是可以通过去除水蒸气而恢复的,属于可逆型的物理失活 化学吸附则是由于催化剂被水蒸气破坏掉了表面上的羟基,属于不可逆型失活。以上两种状况表明,SCR脱硝催化剂的研究离不开竞争吸附测试,mixSorb竞争吸附仪能够模拟SCR催化剂所处的真实环境,完成多种吸附质在SCR催化剂上的竞争吸附。mixSorb竞争性吸附分析仪广泛应用于多孔材料应用与研究如MOF,COF材料等,分离过程和热力学研究;吸附热的应用研究;气体的精细提纯和回收再利用;气体储存等方向。应用领域有气体分离、催化行业、储能材料、MOFs材料等。
  • 超低烟气排放的除尘技术大全
    烟气超低排放实际上是指烟气中颗粒物的超低排放,排放烟气中不仅包括烟尘,而且包括湿法脱硫过程中产生的次生颗粒物,因此要实现烟气的超低排放必须进行必要的除尘处理。除尘技术一般包括:烟气脱硝后烟气中烟尘的去除,称之为一次除尘技术,主流技术包括:电除尘技术?袋式除尘技术和电袋复合除尘技术 脱硫后对烟气中颗粒物的再次脱除或烟气脱硫过程中对颗粒物的协同脱除,称之为二次除尘或深度除尘技术,脱硫后对烟气中颗粒物的脱除主要采用湿式电除尘技术,脱硫过程中对颗粒物的协同脱除主要采用复合塔脱硫技术,并采用高效的除雾器或在湿法脱硫塔内增加湿法除尘装置?下面详细介绍一下这几种除尘技术。一次除尘技术1电除尘技术电除尘技术利用强电场电晕放电,使气体电力产生大量自由电子和离子,并吸附在通过电场的粉尘颗粒上,使烟气中的粉尘颗粒荷电,荷电后的粉尘颗粒在电场库仑力的作用下吸附在极板上,通过振打落入灰斗,经排灰系统排出,从而达到收尘的目的。优点:除尘效率较高,压力损失小,使用方便且无二次污染,对烟气的温度及成分敏感度不高,设备运行检修相对容易,安全可靠性较好。局限:设备占地面积较大,除尘效率受煤种和飞灰成分的影响较大。依据电极表面灰的清除是否用水,电除尘可分为干式电除尘和湿式电除尘?干式电除尘常被称作电除尘,如静电除尘技术、低低温电除尘技术 湿式电除尘常被称作湿电,湿电仅用于湿法脱硫后的二次除尘?(1)静电除尘技术静电除尘技术是在电晕极和收尘极之间通上高压直流电,所产生的强电场使气体电离、粉尘荷电,带有正、负离子的粉尘颗粒分别向电晕极和收尘极运动而沉积在极板上,使积灰通过振打装置落进灰斗。静电除尘器与其他除尘设备相比,耗能少,除尘效率高,适用于除去烟气中0.01~50μm的粉尘,而且可用于烟气温度高、压力大的场合。但由于静电除尘器基于荷电收尘机理,静电除尘器对飞灰性质(如成分、粒径、密度、比电阻、黏附性等)较为敏感,特别对高比电阻粉尘、细微烟尘捕集困难,运行工况变化对除尘效率也有较大影响。另外其不能捕集有害气体,对制造、安装和操作水平要求较高。(2)低低温电除尘技术低低温电除尘技术是通过烟气冷却器降低电除尘器入口烟气温度至酸露点以下的电除尘技术?低低温电除尘技术因烟气温度降至酸露点以下,粉尘比电阻大幅下降,且击穿电压上升,烟气流量减小,可实现较高的除尘效率 同时,烟气温度降至酸露点以下,气态SO3将冷凝成液态的硫酸雾,通过烟气中粉尘吸附及化学反应,可去除烟气中大部分SO3 在达到相同除尘效率前提下,与常规干式电除尘器相比,低低温电除尘器的电场数量可减少,流通面积可减小,运行功耗降低,节能效果明显。但粉尘比电阻降低会削弱捕集到阳极板上粉尘的静电黏附力,从而导致二次扬尘有所增加?2袋式除尘技术袋式除尘技术利用过滤原理,用纤维编织物制作的袋式过滤单元来捕捉含尘烟气中的粉尘。堆积在滤袋表面的粉饼层在此反向加速度及反向穿透气流的作用下,脱离滤袋面,落入灰斗。落入灰斗后的灰再经输灰系统外排。优点:布袋除尘器占地面积小 除尘效率高,一般可保证出口排放浓度在50mg/m3以下 处理气体量范围大 不受煤种、飞灰成分、浓度和比电阻的影响 结构简单,使用灵活 运行稳定可靠,操作维护简单。局限:受滤袋材料的限制,在高温、高湿度、高腐蚀性气体环境中,除尘时适应性较差。运行阻力较大,平均运行阻力在1500Pa左右,有的袋式除尘器运行不久阻力便超过2500Pa。另外,滤袋易破损、脱落,旧袋难以有效回收利用。3电袋复合除尘技术电袋复合除尘技术是电除尘技术与袋式除尘技术有机结合的一种复合除尘技术,利用前级电场收集大部分烟尘,同时使烟尘荷电,利用后级滤袋区过滤拦截剩余的烟尘,实现烟气净化?未被前级电区捕集的荷电粉尘,由于电荷作用使细微颗粒极化或凝并成粗颗粒,同时由于同性电荷的排斥作用,到达滤袋表面堆积的粉尘层排列有序?结构疏松,呈棉絮状,粉尘层阻力低,容易清灰剥离,因而产生了荷电粉尘增强过滤性能的效应,降低运行阻力,延长滤袋寿命?电袋复合除尘器按照结构型式可分为一体式电袋复合除尘器?分体式电袋复合除尘器和嵌入式电袋复合除尘器?其中一体式电袋复合除尘器技术zui为成熟,应用zui为广泛?优点:对煤种和烟尘比电阻变化的适用性比电除尘器强,运行阻力低于纯布袋除尘器,滤袋寿命较布袋除尘器更长,电耗低于电除尘器。局限:由于兼有电除尘和布袋除尘两套单元,运行维护较为复杂。二次除尘技术1湿式电除尘技术湿式电除尘技术是用水冲刷吸附在电极上的粉尘?根据阳极板的形状,湿式电除尘器分为板式、蜂窝式和管式等,应用较多的是板式与蜂窝式。湿式电除尘器安装在脱硫设备后,可有效去除烟尘及湿法脱硫产生的次生颗粒物,并能协同脱除SO3、汞及其化合物等?影响湿式电除尘器性能的主要因素有湿式电除尘器的结构型式、入口浓度、粒径分布、气流分布、除尘器技术状况和冲洗水量?优点:对粉尘的适应性强,除尘效率高,适用于处理高温、高湿的烟气 无二次扬尘 无锤击设备等易损部件,可靠性强 能有效去除亚微米级颗粒、SO3气溶胶和石膏微液滴,对有效控制PM2.5、蓝烟和石膏雨。局限:排烟温度需低于冲刷液的绝热饱和温度 在高粉尘浓度和高SO2浓度时难以采用湿式电除尘器 必须要有良好的防腐蚀措施 湿式电除尘器冲洗水虽采用闭式循环,但要与脱硫水系统保持平衡。2复合塔脱硫技术复合式脱硫塔工作时烟气由引风机鼓入脱硫塔内,在脱硫塔径向进风管内设有*级喷淋装置,对烟气进行预降温和预脱硫,经过降温和预脱硫的烟气由脱硫塔中下部均匀上升,依次穿过三级喷淋装置形成的高密度喷淋洗涤反应区和吸收反应区,脱硫液通过螺旋喷嘴生成极细的雾滴为烟气与脱硫液的充分混合提供了巨大的接触面积,使得气液两相进行充分的传质和传热的物理化学反应,从而达到SO2的高效脱除。脱硫塔内置有两级脱水除雾装置,经过脱硫后的烟气继续上升,依次经过两层折板除雾装置,通过雾气、小液滴在折板处的多次撞击形成较大液滴,大液滴与烟气分离后下落,脱水后的烟气通过烟道至烟囱排放。针对以上几种除尘技术的选择,当电除尘器对煤种的除尘难易性为“较易”时,可选用电除尘技术 当煤种除尘难易性为“较难”时,可优先选用电袋复合除尘技术,300MW等级及以下机组也可选用袋式除尘技术 对于一次除尘就要求烟尘浓度小于10mg/m3或5mg/m3不依赖二次除尘实现超低排放的,可优先选择超净电袋复合除尘技术?其他情况下(包括煤种的除尘难易性为“一般”),可结合二次除尘技术效果?煤质波动情况?场地条件?投资与运行费用等因素综合考虑选择?另外,还可遵循原则:一次除尘器出口烟尘浓度为30mg/m3~50mg/m3时,二次除尘宜选用湿式电除尘器 一次除尘器出口烟尘浓度小于30mg/m3,二次除尘也可选用湿式电除尘器,实现更低的颗粒物排放浓度,更好地适应煤炭市场等因素的变化,投资与运行费用也会适当增加?一次除尘器出口烟尘浓度为10mg/m3~30mg/m3时,二次除尘宜选用复合塔脱硫技术协同除尘,并确保复合塔的除雾除尘效果?
  • RBR便携式烟气分析仪ECOM-D促销
    为回馈新老客户长久以来对我司的支持与厚爱,今我司推出德国RBR烟气分析仪ECOM-D的促销活动.  ECOM-D便携式烟气分析仪由于其功能强大,身材小巧,成功中标多个环境监测站烟气分析项目.  凡在活动期间(2014-6-12——2014-7-12)购买ECOM-D烟气分析仪的新老客户,均可享受买分析仪即赠送大礼包的优惠活动!机不可失,失不再来,有需求的客户现在就可以拨打我司电话(400-639-1125)采购啦!
  • 思想传承 技术创新 踏上在线分析新征程——CIOAE 2012在线烟气分析专题报告
    仪器信息网讯 2012年10月29-30日,“第五届中国在线分析仪器应用及发展国际论坛暨展览会(CIOAE 2012)”(以下简称“论坛”)在北京国际会议中心隆重召开。本次论坛吸引了1000余名观众参加,80余家在线分析仪器厂商参展。  本次论坛设有1个主会场和7个专题报告分会场,49名来自石化、环保、科研等领域的专家学者做了报告。  以下是本次论坛“在线烟气分析专题报告”分会场的报告内容。中国科学院大连化学物理研究所关亚风、美国博纯有限公司上海办事处李峰、梅特勒-托利多国际贸易(上海)有限公司高平、西克麦哈克(北京)仪器有限公司周鸿斌、浙江大学戴连奎、南京金陵石化工程设计有限公司丁妍、重庆凌卡分析仪器有限公司金义忠分别做了报告。  7个报告,不但有仪器研制过程的经验、多种技术集成的在线监测系统设计、拉曼光谱分析系统研究等传统技术的研究与应用,也有Nafion管新技术CEMS(烟尘烟气连续自动监测系统)应用、创新单法兰探头式TDL氧气分析仪等新技术的展示,更重要的是还展现了当代科研工作者对钱学森、朱良漪等科学前辈思想与精神的继承与发扬。  中国科学院大连化学物理研究所 关亚风  报告题目:在线VOC在线监测  关亚风的报告从VOC分析仪国外热解析技术TurbomMatrix TD的方法原理入手,提出目前中国市场的两种需求:TDU-GC(热解析-气相联用)和 TDU-GC-MS(热解析-气相色谱质谱联用)。进一步介绍了中科院大连化物所开发这两种设备的历程。从选择制冷器、富集方法到系统设计再到气相色谱及质谱仪的选择等,并给出了该所研制的两类仪器的具体实验条件。  美国博纯有限公司上海办事处 李峰  报告题目:一种创新的冷干直抽法CEMS样气预处理技术的应用研究  报告中李峰首先介绍了美国博纯公司,并讲解了冷干直抽法CEMS的常见问题与挑战。并介绍了该公司以Nafion管为核心的GASS氧气预处理系统,以及该系统的应用。  梅特勒-托利多国际贸易(上海)有限公司 高平  报告题目:探头式TDL氧气分析仪用于关键之处  高平首先介绍了仪器使用者所期望的氧气分析仪应该具有的减少停机时间、增强安全、原位测量、可靠性高及最少的维护的特点。以此为切入点高平介绍了梅特勒可调谐二极管激光(TDL)氧分析仪的激光系统特点、原理等。并分析了分体式TDL和探头式TDL(梅特勒采用)的区别及后者的优势等。他还强调不同于其他公司氧分析仪在CEMS上的应用,梅特勒氧分析仪主要的应用领域是氧化反应、运输、存储等过程中氧气的检测。  西克麦哈克(北京)仪器有限公司 周鸿斌  报告题目:基于傅里叶技术的垃圾焚烧排放连续监测系统设计  周鸿斌介绍了垃圾焚烧排放连续监测系统的主要工艺条件、测量组分、取样技术、国内主要标准排放限值等。并着重介绍了西克麦哈克MCS100FT垃圾焚烧排放连续监测系统的原理及工艺流程,并简单阐述了该系统具有的Linux操作系统、高温环境抗腐蚀样气室、大流量射流泵技术、傅里叶红外分析技术、集成氧化锆模块O2测量及丰富的通讯接口技术等。  浙江大学控制系 戴连奎  报告题目:石化过程在线拉曼系统的研制及其应用  戴连奎在报告中主要介绍了过程工业对在线分析仪的技术要求,在线色谱法与在线光谱法的技术分析。国产在线拉曼分析系统RS-6130的组成与技术特点,RS-6130在PX装置中的工业应用及在线拉曼分析仪的应用限制条件等。  南京金陵石化工程设计有限公司 丁妍  报告题目:在线拉曼光谱仪的研制及其在吸附分离装置优化中的应用  丁妍介绍了在线拉曼光谱仪研制的背景和意义,研究的主要技术指标以及技术内容、技术路线、实施方案和方法。报告还进一步介绍了在线拉曼光谱仪在吸附分离装置优化中的应用。还列出了该研究相应的研究成果、创新点及未来的前景。  重庆凌卡分析仪器有限公司 金义忠  报告题目:构建在线分析系统(OAS)基础理论的探索研究  金义忠从我国“十二五”发展规划出发,谈到目前我国国产仪器所面临的问题、战略和任务。并以钱学森、朱良漪两位科研前辈的科学思想为指导和启示进行在线分析仪器的研发。金义忠还介绍了构建OAS基础理论的战略思维、OAS基础理论的要点、在线分析仪的发展、样品处理系统的发展、OAS发展的课题以及发展的多维度技术思考等问题。
  • HORIBA在线烟气监测仪ENDA-600ZG促销
    应众多客户的强烈要求,今我司隆重推出日本HORIBA的ENDA-600ZG烟气监测系统促销活动。此系统只需一个分析单元即可实现最多5种烟气组分的监测,完全可以满足您对气体监测仪器的各项要求。 即日起,凡活动期间(2014-3-17——2014-4-17)在我司订购ENDA-600ZG的新老客户均可享受买仪器送移动电源的优惠活动哦!
  • HORIBA在线烟气分析仪ENDA-600ZG促销
    为回馈新老客户长久以来对我司的支持与厚爱,今我司推出日本进口HORIBA(堀场)在线烟气分析仪ENDA-600ZG仪器的促销活动。 凡在活动期间(2014-10-20——2014-11-20)购HORIBA在线烟气分析仪ENDA-600ZG的新老客户,均可享受买仪器赠笔记本一个的优惠喔!机不可失,失不再来,有需求的客户现在就可以拨打我司电话(010-62151736)采购啦!
  • HORIBA(日本)烟气分析仪ENDA-600ZG促销
    为回馈新来客户长久以来对我司的支持与厚爱,今我司特推出HORIBA在线烟气分析仪ENDA-600ZD的促销活动。 凡在活动期间(2014-6-16——2014-7-16)购买烟气分析仪ENDA-600ZG的新老客户,均可享受买仪器即赠笔记本电脑一台的优惠喔!机不可失,失不再来,有需求的客户现在就可以拨打我司电话(010-62151736)采购啦!
  • HORIBA(堀场)烟气分析仪PG-300促销
    新年伊始,倾情大促!我司为回馈新老客户长久以来对我司的支持与厚爱,特推出HORIBA(堀场)便携式多组分烟气分析仪PG-300系列产品的促销活动。 凡在活动期间(2016-2-15——2016-3-15)购HORIBA(堀场)烟气分析仪的新老客户,均可享受购仪器赠移动电源的优惠喔!机不可失,失不再来,有需求的客户现在就可以拨打我司电话采购啦!
  • 天津20台烟气脱硝待建 保每年至少310个蓝天
    根据近日公布的《天津市环境保护“十二五”规划》,本市将重点实施严格控制煤烟型污染、降低扬尘污染、强化机动车尾气治理、降低挥发性有机物及恶臭污染、完善产业结构调整等五大重点任务,确保城市环境空气质量全年好于或等于2级标准的天数占全年监测天数的比例≥85%(310天),大气主要污染物年均值达到国家二级标准。  根据规划,到2015年本市将完成20台20万千瓦及以上火电机组烟气脱硝治理工程,重点开展钢铁、水泥、石化、化工等行业氮氧化物污染防治。同时加强建设、道桥、拆迁工地、散体物料堆场的扬尘污染治理,减少全市开工作业面,缩短建设周期。加强绿化建设,加大对裸露地面的覆盖力度,减少城区裸露地面,到2015年建成区绿化覆盖率达到35%,全市林木覆盖率提高到23%。  强化机动车尾气治理,推行绿标通行、黄标限行、无标禁行。提高机动车排放控制水平,逐步过渡到国家第四阶段机动车排放标准,到2015年供应符合国Ⅳ标准的油品 开展城区长途客运及班线包车黑烟专项治理,对老旧公交车进行更新、淘汰和改造,推进机动车改燃。  降低挥发性有机物及恶臭污染,严格控制城市餐饮服务业油烟排放 开展对距离居民聚居区较近的纪庄子污水处理厂的搬迁改造项目,实施对咸阳路污水处理厂和东郊污水处理厂恶臭综合治理项目,治理市内垃圾转运设施恶臭和异味污染,对严重扰民被市民投诉的工业企业开展恶臭和异味治理。  此外,本市将继续大力推广天然气、风能、太阳能、地热能、浅层地温能等清洁能源,大力发展公共交通、轨道交通、绿色交通,积极推广电动、混合动力等清洁能源机动车,逐年推行电动、混合动力公交车更新替换。到2015年,公共交通分担率达到30%以上。
  • 烟气排放连续监测系统技术培训会议在宁顺利召开
    2007年11月6日至11月8日,由华北电力科学研究院主办的烟气排放连续监测系统技术规范和运行维护技术培训会议在南京顺利召开。来自华北电网有限公司及所属火电厂、大唐国际发电股份有限公司及直属与控股火电厂、中国神华能源股份有限责任公司国华电力分公司及所属火电厂和京津唐各电厂的环保与热工专业人员参加了此次会议,赛默飞世尔科技(Thermo Fisher Scientific)环境仪器空气质量部技术人员也受邀参加此次会议。 此次会议以电力行业为主,行业针对性强,为厂家和用户建立了一个非常好的交流平台。会上,赛默飞世尔科技环境仪器空气质量部技术人员就CEMS(污染源烟气连续自动监测系统)和在场同行相互交流意见。与会的各大电厂中有16家正在使用赛默飞世尔科技的CEMS系统。CEMS采用独特的稀释技术,与各种直接采样技术相比有着明显的优势。根据美国1990年清洁空气法案的要求,稀释法为污染源在线监测的首选方法,在美国已安装的2000多套污染源系统中,有1800多套采用稀释法,其中1600多套采用的是Thermo Scientific的系统。在中国,Thermo Scientific不仅提供了第一套稀释系统,而且占有国内稀释法的大部分市场,广泛应用于电厂污染源烟气排放及脱硫系统监测,钢厂动力锅炉烟气排放的监测,纸浆厂动力锅炉及碱石灰的烟气排放监测及脱硝系统烟气监测等。 screen.width-300)this.width=screen.width-300" border=0
  • 实现烟气超低排放,干湿除尘技术要两手抓!
    随着环境污染的越发严重,国家对锅炉烟气排放提出了更加严格的标准。面对这一发展形势,相关企业要加强锅炉烟气除尘技术的运用,并且结合实际生产情况做好除尘设备的选择,以便在响应国家政策号召的同时,给企业生产带来一定的效益。既促进了工业的可持续发展,同时为人们创造一个安全、舒适的生存环境。 下面小编针对干式与湿式两种较为实用高效的除尘技术进行简要介绍,希望对您有所帮助。 一、干式除尘技术 干式除尘技术主要包括静电除尘、袋式除尘和电袋复合除尘技术。其中静电除尘技术具有处理烟气量大、除尘效率高、设备阻力低、适应烟温范围宽、使用简单可靠等优点,已经应用在我国80%以上的燃煤机组。针对静电除尘的增效技术包括:低低温电除尘、旋转电极式电除尘、微颗粒捕集增效、新型高压电源技术等。通过增效的干式除尘技术,辅以湿法脱硫的协同除尘,在适宜煤质条件下,能实现烟囱出口烟尘排放浓度低于10mg/m3。 这里重点对低低温电除尘技术及其应用进行介绍: 低低温电除尘技术通过低温省煤器或气气换热器使电除尘器入口烟气温度降到90~100℃低低温状态,除尘器工作温度在酸露点之下。 具有以下优点: ①烟气温度降低,烟尘比电阻降低,能够提高除尘效率; ②烟气温度降低,烟气量下降,风速降低,有利于细微颗粒物的捕集; ③烟气余热利用,降低煤耗; ④烟气中SO3冷凝并粘附到粉尘表面,被协同脱除; ⑤对于后续湿法脱硫系统,由于烟温降低,脱硫效率提高,工艺降温耗水量降低。 在国际上,日本低低温电除尘技术应用较为广泛,为应对日本排放标准的不断提高并解决SO3引起的酸腐蚀问题,三菱公司1997年开始研究日本基于烟气换热器装置的低低温高效烟气治理技术,现今在日本已得到大面积的推广应用,三菱、日立等低低温电除尘器配套机组容量累计已超13GW。日本橘湾电厂1050MW机组应用数据显示低低温烟气处理技术可实现烟囱出口粉尘排放浓度在5mg/m3以下,出口SO3排放浓度低于2.86 mg/m3。我国首台低低温电除尘器应用是在2010年12月广东梅县粤嘉电厂6号炉135MW机组。 2012年6月,我国首台600MW低低温电除尘在大唐宁德电厂4号炉成功投运,经第三方测试除尘器出口粉尘排放低于20mg/m3,同时具有较强的SO3、PM2.5、汞等污染物协同脱除能力。 2014年浙江嘉华电厂1000MW机组采用低低温电除尘后除尘器出口粉尘浓度降至15 mg/m3。相关的工程应用实践表明,低低温电除尘技术集成了烟气降温、高效收尘与减排节能控制等多种技术于一体。综合考虑当前我国极其严峻的“雾霾”大气污染和煤电为主的能源资源状况,低低温电除尘技术具有粉尘减排、节煤、节电、节水以及SO3减排多重效果,是我国除尘行业最急需支持应用推广的技术之一。 二、湿式静电除尘技术 湿式静电除尘技术通常用于燃煤电厂湿法脱硫后饱和湿烟气中颗粒物的脱除。要实现烟尘浓度低于5 mg/m3的超低排放,一般情况下需要配套湿式静电除尘技术。 湿式静电除尘工作原理是:烟气被金属放电线的直流高电压作用电离,荷电后的粉尘被电场力驱动到集尘极,被集尘极的冲洗水除去。与电除尘器的振打清灰相比,湿式静电除尘器是通过集尘极上形成连续的水膜高效清灰,不受粉尘比电阻影响,无反电晕及二次扬尘问题;且放电极在高湿环境中使得电场中存在大量带电雾滴,大大增加亚微米粒子碰撞带电的机率,具有较高的除尘效率。湿式静电除尘技术突破了传统干式除尘器技术局限,对酸雾、细微颗粒物、超细雾滴、汞等重金属均具有良好的脱除效果。 全世界第1台除尘器为湿式静电除尘器,1907年投入运行,主要用来去除硫酸雾,后来被拓展用于电厂细微颗粒捕集。美国在用于多污染物控制的湿式静电除尘器研究及应用方面处于领先地位。国内,湿式静电除尘器在冶金行业、硫酸工业已有多年成功的运行经验,是一项非常成熟的技术,并且针对微细雾滴制定出台了环保部标准HJ/T 323—2006《电除雾器》。 主要技术特点:单体处理烟气量较小,一般不超过50000m3/h,设计烟气流速较低,一般为1m/s左右,电极多采用PV或FRP材质。随着湿式静电技术的进一步发展,其应用领域和功能也不断拓展,加之在传统脱硝、脱硫、除尘技术均已达到一定水平,湿式静电在细颗粒物、超细雾滴、SO2、NOx、Hg等雾霾前体污染物进一步协同控制和深度净化上被寄予更多预期,这也是今后发展的趋势。 三、烟气超低排放技术路线 为了减少烟气中的烟尘,实现低于5mg/m3的超低排放,除采用以上增效干式除尘技术——低低温电除尘和湿式静电除尘器之外,也可配套使用必要的过程监测仪器,如烟气分析仪(低量程在线型)Gasboard-3000Plus,对整个烟气除尘工艺流程进行过程调控优化,以最大限度的提高除尘效率,实现烟气排放符合超低排放标准。 烟气分析仪(低量程在线型)Gasboard-3000Plus结合领先的微流红外技术,创造性采用隔半气室设计,可实现200ppm内的低量程测量,在满足行业标准应用的同时,还可根据用户需求定制量程,实用性大大提高。 烟气通过低低温电除尘脱除大部分粉尘、部分SO3和颗粒汞,同时通过烟气余热的回收利用,节约电煤消耗,降低烟温和烟气量,使后续湿法脱硫节水、提效,缓解“石膏雨”现象;然后通过湿式静电除尘,使得烟气含尘量达到超低排放要求,另一方面对SO3、重金属、NH3等多污染物协同净化,并有效减少“石膏雨”;此外,烟气成分分析仪作为整个工艺流程的过程监测单元,可指导现场操作人员对SO2或NOx进行过程调控,如在系统最后治理单元——湿式深度净化装置中,可根据需要适量添加脱硫液或脱硝液,实现对烟气成分的深度净化。来源:微信公众号@工业过程气体监测技术,转载请务必注明来源!
  • 【新品推介】ZR-3211型便携式紫外烟气综合分析仪
    【新品推介】ZR-3211型便携式紫外烟气综合分析仪小瑞又来为大家推荐新品了众瑞紧跟行业和市场发展需求推出采用紫外吸收光谱技术的烟气浓度及排放量的综合测试仪器ZR-3211型便携式紫外烟气综合分析仪主要特点●采用紫外光谱差分吸收技术(DOAS)测量固定污染源排气中的SO2、NO、NO2等气体浓度,测量精度高,不受烟气中水蒸气影响,特别适合高湿低硫工况。●拓展H2S/CS2/NH3/CH3SCH3/CH2O/C6H6等监测项目,无需添加硬件,降低采购成本。●配备自主知识产权的紫外检测模块,关键部件带有恒温、减震装置,消除温度漂移,测量结果稳定。●双量程分析设计,根据SO2、NO、NO2高低浓度值自动切换量程。●采用进口深紫外光谱仪,匹配SO2、NO等组分的吸收谱段。●紫外光源采用氘灯(选配脉冲氙灯),预热时间小于10min,使用寿命长,紫外波段能量占比大,确保低检测限。●分钟数据和总平均数据动态保存,导出excel表格,可选配大容量硬盘,数据海量存储。●实时查询检测数据,标配蓝牙打印机,现场打印。●采用高性能低功耗工控机,宽温高亮度彩色触摸屏,整体防尘防水防静电设计,多级光电隔离,能够在恶劣工况下连续稳定运行。●选配手机或平板实现所有的操作和数据存储,提高仪器操控性。执行标准JJG968-2002 《烟气分析仪检定规程》HJ/T 397-2007《固定源废气监测技术规范》DB37/T 2704-2015《固定污染源废气氮氧化物的测定紫外吸收法》DB37/T 2705-2015《固定污染源废气二氧化硫的测定紫外吸收法》DB37/T2641-2015 《便携式紫外吸收法多气体测量系统技术要求及检测方法》GB13233-2011《火电厂大气污染物排放标准》配套使用ZR-D05BT型烟气预处理器是集过滤、加热、冷凝除水于一体的被测烟气前处理设备,具有除水能力强、烟气损失率低等特点,可有效的提高配套烟气分析仪的测量精度,延长传感器的使用寿命。◆烟气成分损失率低:预处理器前端过滤器内含加热设计,杜绝冷凝水的产生,冷凝室采用加酸方式抑制冷凝水对SO2的吸收,有效降低 SO2的损失,更适用于高湿、烟气成分浓度低的工况。◆精密过滤:内置金属和PTFE两级过滤器,有效除尘,拆装方便。◆有效除水:采用大功率两级电子制冷,制冷温差大,可处理含水量高达30 Vol.%的低温低硫烟气。◆动态排水:采用蠕动泵动态排水,防止冷凝水进入烟气分析仪。◆体积轻巧:采样管和除水装置一体设计,方便携带和使用。◆出气露点稳定:冷却(出气口)温度恒定在4°C。“以质量求生存,以服务求市场,以科技求发展”众瑞出品,值得关注
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制