当前位置: 仪器信息网 > 行业主题 > >

药物稳定测试箱

仪器信息网药物稳定测试箱专题为您提供2024年最新药物稳定测试箱价格报价、厂家品牌的相关信息, 包括药物稳定测试箱参数、型号等,不管是国产,还是进口品牌的药物稳定测试箱您都可以在这里找到。 除此之外,仪器信息网还免费为您整合药物稳定测试箱相关的耗材配件、试剂标物,还有药物稳定测试箱相关的最新资讯、资料,以及药物稳定测试箱相关的解决方案。

药物稳定测试箱相关的资讯

  • 五洲东方携手德国MEMMERT共同推出环保型药物稳定测试箱
    当今世界,人类面临的环保压力越来越大。温室气体排放,不可降解材料的堆积是造成环境破坏的两个重要因素。顺应时代的召唤,做一个承担责任的社会人,北京五洲东方科技发展有限公司携手德国MEMMERT公司共同推出环保型药物稳定性测试箱(恒温恒湿箱)。让我们共同携手保护我们唯一的家园。
  • Alit大型人工气候室/药物稳定测试室新品上市
    大型步入式植物生长箱/人工气候室FITOCLIMA WALK-IN BIO系列FitoClima箱体产品适用于植物生长、组织培养、拟南芥、种子发芽、孵化、昆虫学研究、昆虫存储以及其他生命科学中的应用,FitoClima生物学研究用培养箱可提供灵活多样的配件选择以及控制条件来满足不同研究者的需求。FITOCLIMA WALK-IN BIO HP系列FitoClima高效箱体适用于需要大量光照强度和广泛光谱条件的植物,常应用于: 小麦、玉米、水稻、棉花、咖啡、软木等各种常见的需要高光照强度的大型植物。Fitoclima Pharma应用于制药行业的药品稳定性和耐光性试验 箱体设计符合人用药物注册技术要求国际协调会(ICH)的所有要求,这些箱体被应用于医药产品的稳定性(Q1A标准)及耐光性(Q1B标准)测试,符合国际通用标准以及ICH, DIN, EN, IEC ISO, NP和UNE的要求 箱体体积从600L到无体积限制的大型步入式药品测试室,Fitoclima Pharma系列箱体为制药行业提供独特的精度控制、均匀性和稳定性的气候条件。 欢迎新老客户前来咨询合作!艾力特国际贸易有限公司网址:www.alit.com.cn邮箱:marketing@alit.com.cn 电话:021-62299622
  • 上海一恒隆重推出带紫外光监测与控制的新原料药和新制剂药物的光稳定性测试箱
    一恒研发的综合药品光稳定性试验箱(带UV监测与控制),在原一恒GSD\GSP\GP综合稳定性试验箱基础上增加了可见光和紫外光的监测与控制, 是制药和化妆品企业进行GMP认证的必备设备。符合ICH三方协调指导原则中光稳定的性测试条件。 用概途述:◆人性化设计● 全新无氟设计:高效率、低能耗、促进节能,使您始终走在健康生活的前沿。● 微电脑控制器:控制稳定、准确、可靠,采用304不锈钢内胆,四角半圆弧形,易清洁,便于操作。● 独特风道循环:确保工作室内部风力分布均匀。● 箱体左侧标配有一直径25mm的测试孔。◆连续运行保证● 两套进口压缩机自动切换,确保药品试验长时间连续运行不发生故障。突破国内药品试验箱无法长时间连续运行的缺陷。● 连续运行无需化霜,避免在使用过程中,因为化霜产生箱内温湿度波动。◆ 品质保证● 温湿度控制器、压缩机、循环风机等关键零部件均采用进口产品,具备长时间运行稳定、安全、可靠等特点。◆ 安全功能● 独立限温报警系统,声光报警提示操作者,保证实验室安全运行不发生意外。● 温度偏低或偏高及超温报警,湿度偏高与偏低报警。● 标配可锁闭的门:避免试验过程中误开门,而导致UV光线损伤实验人员。● 可设密码保护的用户控制面板,避免非实验人员误操作。◆ 进口湿度传感器● 选用能在高温状态运行的湿度传感器,避免干湿球湿带频繁更换带来的烦恼。◆ 资料记录与故障诊断显示● 当试验箱发生故障,动态显示屏会出现故障信息,试验箱运行故障一目了然。● 可连接打印机或485通讯接口,用电脑和打印机记录温度和时间曲线,为试验过程数据储存与回放提供有力保证。◆ 可程式触摸屏控制器(型号中带“P”为标配)● 采用超大屏幕触摸式荧幕画面,荧幕操作简单,程式编辑容易。● 控制器操作界面设中英文可供选择,即时运转曲线图可由屏幕显示。● 具有100组程式1000段999循环步骤的容量,每段时间设定最大值为99小时59分。● 资料及试验条件输入后,控制器具有荧屏锁定功能,避免人为触摸而停机。● 具有P.I.D自动演算功能,可将温湿度变化条件立即修正,使温湿度控制更为精确稳定。● 具有RS-232或RS-485通讯界面,可在电脑上设计程式,监视试验过程并执行开关机等功能。光照系统详解:● 一恒仪器光稳定性药品试验箱的光照系统符合lCH中关于QlA和QlB新原料药和新制济的光稳定试验要求也符合相应国际标准,满足2005版化学药物稳定性试研究技术指导原则中药品强光照射试验要求。适用于制药企业对药品与新药的温湿度和光稳定性试验。● 光照系统可选择搁板式光照系统或外门光照系统,含可见光灯管和紫外线灯管,可单独控制可见光灯管和紫外灯管,也可选择单层或双层可见光灯管或紫外灯管;可调节载物样品搁板在工作室内的高度。(双层下光照系统选配)◆ 辐照度显示监测与控制● 突破现有药品稳定性试验箱辐照度无法显示与监测的缺陷,减少可见光和紫外灯管由于灯管老化引起的辐照度衰减,而造成药品稳定性试验误差。光照强度也可按照用户试验要求进行无级调节,我们还提供带光传感器可见光和紫外光测量探头,和经过第三方认证的辐照度监测仪,便于用户观察和校准。◆ 专业紫外线灯管● 专业紫外线灯管符合ICH中关于QlA和QlB新原料药和新制济的光稳定试验要求,相对于其他紫外线灯管,具有品质稳定和光谱功率均匀等特点,并且光源光谱功率分布不会随着灯管老化而造成衰减,好处是能重复更多的测试结果。◆ 产品规格齐全:更多产品咨询,请电话总机电话:021-56904023
  • 药品研发与生产的稳定之锚:稳定性实验箱的应用
    在现代医药领域,药品的研发、生产和质量控制是一个高度复杂且精密的过程,常常受到诸多外界因素的挑战与考验。药品存放的时间长短、存放环境的空气质量、温度波动、湿度变化以及光照强度等因素,都可能对药品质量产生影响,使得药品中的有效成分逐渐降解,药品的疗效大打折扣,甚至完全失效,产生有害物质。 因此,深入研究药品的稳定性,全面了解影响药品质量的各种因素,显得尤为重要。通过科学的稳定性研究,我们可以为药品的生产、包装、贮存、运输等环节提供有力的科学依据,为患者提供安全、有效的用药保障。 为了全面而精准地评估药品在不同环境条件下的稳定性表现,科研人员常常借助稳定性试验箱这一关键设备来进行测试。这种试验箱具备模拟多种环境条件的强大功能,能够精确控制温度、湿度、光照等重要参数,从而为试验药品提供一个稳定且标准化的测试环境。通过将测试样品置于试验箱中,并暴露于特定环境条件下一段时间后,科研人员可以评估样品是否发生变化,确认其在不同环境下的稳定性表现。Aralab是欧洲标准环境控制设备、药物稳定测试设备和特殊测试设备的主要供应商之一,凭借逾30年的专业研发与生产经验,其各类箱体设备和步入式房间品质卓越,一直深受客户赞誉。「Aralab葡萄牙总部」Aralab FitoClima 600 & 1200系列箱体,为药品稳定性试验提供了卓越而全面的解决方案:这一系列箱体分为600L和1200L两种规格,内部配置灵活多变,可分别搭载4层和8层不锈钢搁板,更可按需升级至10层和20层。每层搁板均可轻松拆卸,清洗维护极为方便。为了满足科研人员在稳定性测试中的多样化需求,FitoClima 600&1200系列还提供了多种型号选择:&bull FitoClima 600/1200 P:专为精准温度控制而设计。&bull FitoClima 600/1200 PH:在温度控制的基础上增加了湿度控制功能,可模拟更加复杂的环境条件。&bull FitoClima 600 PLH:集温度、湿度、紫外线和可见光控制于一体,满足更加全面的需求。&bull FitoClima 600 PLH-R:在PLH的基础上,通过集成辐射计和光传感器,实现了辐照暴露程度的自动控制。&bull FitoClima 1200 PN/PNH:可控制零下温度(-20℃),湿度控制功能可选配。此外,箱体还配备了7英寸的彩色触摸屏,使得科研人员能够直观、便捷地设置所有环境变量。无论是温度、湿度还是光照,都能轻松调节,满足各种实验需求。利用这一系统,科研人员能够设计复杂而全面的环境模拟程序。例如,在生物医药领域,由于疫苗、血清、抗体、细胞因子和酶等制品对温度变化异常敏感,冻融过程可能引发蛋白质变性、聚集或活性丧失等风险,因此冻融测试成为必不可少的环节。借助FitoClima 1200 PN/PNH试验箱,科研人员可通过程序预先设置好从-20℃至60℃的不同温度区间,分别模拟冷冻和融化阶段的环境条件,然后一键启动,即可直接进行冻融循环测试,无需频繁更换试验箱,大大提高了实验效率和准确性。FitoClima 600&1200系列试验箱 技术参数&bull 温度范围:-5℃ 至 60℃1200 PN/PHN型号可以扩展至-20℃至60℃&bull 温度波动 (随时间变化):±0.1°C 至 ±0.2°C&bull 空间温度均匀性:± 0.15°C 至 ± 1.0°C&bull 湿度范围:20% 至 95% rH&bull 湿度波动 (随时间变化):± 1%rH&bull 空间湿度均匀性:± 2%rH作为Aralab的中国区授权经销商,上海昊扩提供Aralab旗下各类高精度的环境控制设备,包括: &bull 低温培养箱/恒温恒湿箱/光照培养箱 &bull 步入式恒温恒湿房间 &bull 环境试验箱 &bull 步入式环境测试室 &bull 高低温冲击箱 &bull 人工气候箱/室想要了解更多相关产品信息,欢迎来电咨询!
  • 【网络研讨会】生物技术药物的稳定性分析技术及应用案例分享
    9月15日(周三),马尔文帕纳科将在药视网网络药学讲堂开讲啦!马尔文帕纳科两位产品应用专家将为您带来生物技术药物稳定性的分析解决方案及案例分享,现开放报名通道,期待您的关注和参与! ■ 会议日期:2021年9月15日(周三)■ 会议时间:15:00-16:30■ 活动类型:网络会议直播,需提前注册 ■ 涉及技术类型:n 微量热技术(DSC, ITC)n 动态光散射技术(DLS)n 静态光散射技术(SLS)n 电泳光散射技术(ELS)n 纳米颗粒跟踪分析技术(NTA) 生物技术药物如单克隆抗体、ADC药物、疫苗等是近年来发展迅猛的制药领域,重磅药物更是占据了药物销售榜前10名的多数席位。然而,与传统化学分子不同,生物技术药物由于其天然庞大的尺寸、结构的复杂性以及脆弱的稳定性,在药物研发和生产过程中也给开发者带来了巨大的挑战。 环境的改变与工艺的要求通常会导致维系蛋白质药物发挥功能的高级结构(High Order Structure, HOS)的改变,从而引起潜在的构象稳定性改变,进而影响到药效、生产可行性以及用药安全性(免疫原性)。同时,外部因素如制剂配方中的缓冲条件、pH环境以及添加成分也会通过与药物分子相互作用导致胶体稳定性的改变,进而产生聚集体等问题。常见的二级结构技术如CD 等通常不能准确的判断高级结构稳定性的变化,而传统的加速实验在药物研发早期又显得较为费时费力。 近年来,用于热稳定性研究的技术如微量热差示扫描量热法和用于胶体稳定性分析的光散射技术(包括动态光、静态光和电泳光散射)越来越受到生物药物开发者的关注。 在本次网络研讨会中,马尔文帕纳科的技术专家将通过实际案例和大家共同研讨生物技术药物的稳定性分析手段-微量热差式扫描微量热法技术方案,同时还将为大家介绍动态光散射技术(DLS)、静态光散射(SLS)、电泳光散射(ELS)在抗体药稳定性分析中的应用,探讨如何实现快速、原位、无损、微量抗体药稳定性测量。欢迎大家积极参与讨论。 报告主题及内容 主题一:生物技术药物的热稳定性解决方案 主讲人:韩佩韦博士 课程内容:² 生物技术药物稳定性面临的挑战² 微量热差示扫描量热仪基本原理及其参数的意义² 生物技术药物热稳定性研究的案例分享——抗体筛选、配方、生物类似药可比性研究等 主题二:光散射技术在抗体药稳定性表征上的应用 主讲人:张鹏博士 课程内容:² FDA对抗体药在粒径表征方面的法规介绍² 动态光散射技术(DLS)在抗体药稳定性及团聚体的表征² 静态光散射技术(SLS)在抗体药稳定性的表征² 电泳光散射技术(ELS)对抗体药稳定性的表征² 纳米颗粒跟踪分析技术(NTA)对抗体药团聚体的表征 点击或扫描二维码报名(填写注册信息并提交即可)https://zyt.ouryao.com/plugin.php?id=yaoshi&a=live&liveid=731&referid=668326 主讲人信息 韩佩韦 博士生命科学业务发展经理 微量热技术产品经理中科院生物物理所生物物理学博士,现任马尔文生命科学业务发展经理、微量热技术产品经理。长期负责蛋白质稳定性以及分子间相互作用技术如DSC, ITC, SPR等的技术支持和市场拓展。在2014年加入马尔文帕纳科之前,多年任职于通用电气(中国)医疗集团生命科学部(现Cytiva),曾任技术经理、Biacore & Microcal产品经理和Label-Free技术资深应用科学家等职位。韩佩韦博士长期活跃于生命科学领域和生物制药行业,组织和举办过相关的几百场技术交流会和培训班,并在多个大型会议上做分会技术报告,在分子相互作用领域和微量热应用领域具有丰富的经验。 张 鹏 博士纳米粒度产品线高级应用专家毕业于复旦大学,主攻方向为递药系统设计及肿瘤细胞靶向递药治疗。至今发表10余篇学术论文,作为课题负责人,承担并完成中国博士后基金面上项目一项,此外曾多次参与国家自然科学基金青年、面上项目。目前担任马尔文帕纳科纳米产品线高级应用专家,在颗粒粒径表征方面有着丰富的经验。
  • 新版《中国药典》:药物制剂稳定性试验条件更严格
    p  药物制剂稳定性研究,首先应查阅原料药物稳定性有关资料,特别了解温度、湿度、光线对原料药物稳定性的影响,并在处方筛选与工艺设计过程中,根据主药与辅料性质,参考原料药物的试验方法,进行影响因素试验、加速试验与长期试验。/pp  (一)影响因素试验/pp  药物制剂进行此项试验的目的是考察制剂处方的合理性与生产工艺及包装条件。供试品用1批进行,将供试品如片剂、胶囊剂、注射剂(注射用无菌粉末如为西林瓶装,不能打开瓶盖,以保持严封的完整性),除去外包装,置适宜的开口容器中,进行髙温试验、高湿度试验与强光照射试验,试验条件、方法、取样时间与原料药相同,重点考察项目见附表。/pp  (二)加速试验/pp  此项试验是在加速条件下进行,其目的是通过加速药物制剂的化学或物理变化,探讨药物制剂的稳定性,为处方设计、工艺改进、质量研究、包装改进、运输、贮存提供必要的资料。供试品要求3批,按市售包装,在温度40℃± 2℃、相对湿度75%± 5%的条件下放置6个月。所用设备应能控制温度± 2℃、相对湿度± 5% ,并能对真实温度与湿度进行监测。在试验期间第1个月、2个月、3个月、6个月末分别取样一次,按稳定性重点考察项目检测。在上述条件下,如6个月内供试品经检测不符合制订的质量标准,则应在中间条件下即在温度30℃± 2℃、相对湿度65%± 5%的情况下进行加速试验,时间仍为6个月。溶液剂、混悬剂、乳剂、注射液等含有水性介质的制剂可不要求相对湿度。试验所用设备与原料药物相同。对温度特别敏感的药物制剂,预计只能在冰箱(4-8℃)内保存使用,此类药物制剂的加速试验,可在温度25℃± 2℃ 。相对湿度60%± 10%的条件下进行,时间为6个月。乳剂、混悬剂、软膏剂、乳膏剂、糊剂、凝胶剂、眼膏剂、栓剂、气雾剂、泡腾片及泡腾颗粒宜直接采用温度30℃± 2℃、相对湿度65%± 5%的条件进行试验,其他要求与上述相同。对于包装在半透性容器中的药物制剂,例如低密度聚乙烯制备的输液袋、塑料安瓿、眼用制剂容器等,则应在温度40℃± 2℃、相对湿度25%± 5%的条件(可用CH3COOK· 1.5H2O 饱和溶液)进行试验。/pp  ( 三)长期试验/pp  长期试验是在接近药品的实际贮存条件下进行,其目的是为制订药品的有效期提供依据。供试品3 批,市售包装,在温度25℃± 2℃ 、相对湿度60%± 10%的条件下放置12个月,或在温度30℃± 2℃、相对湿度65%± 5%的条件下放置12个月,这是从我国南方与北方气候的差异考虑的,至于上述两种条件选择哪一种由研究者确定。每3个月取样一次,分别于0个月、3个月、6个月、9个月、12个月取样,按稳定性重点考察项目进行检测。12个月以后,仍需继续考察,分别于18个月、24个月、36个月取样进行检测。将结果与0个月比较以确定药品的有效期。由于实测数据的分散性,一般应按95%可信限进行统计分析,得出合理的有效期。如3批统计分析结果差别较小,则取其平均值为有效期限。若差别较大,则取其最短的为有效期。数据表明很稳定的药品,不作统计分析。对温度特别敏感的药品,长期试验可在温度6℃± 2℃的条件下放置12个月,按上述时间要求进行检测,12个月以后,仍需按规定继续考察,制订在低温贮存条件下的有效期。对于包装在半透性容器中的药物制剂,则应在温度25℃± 2℃、相对湿度40%± 5%,或30℃± 2℃、相对湿度35%± 5%的条件进行试验,至于上述两种条件选择哪一种由研究者确定。此外,有些药物制剂还应考察临用时配制和使用过程中的稳定性。/ppbr//p
  • 阿尔塔科技稳定同位素标记物产业化基地建设成果系列报道之六:氘代咪唑与苯并咪唑类抗菌药物
    建设世界一流的国产稳定同位素标记物产业化基地,为食品安全检测提供长期可靠的保障是十三五国家重点研发计划“食品安全关键技术研发”重点专项的任务之一。作为任务承接单位,阿尔塔科技有限公司开展科研攻关,已开发十余种稳定同位素标记物制备共性关键技术,实现了上百种的稳定性同位素标记农药、兽药、食品添加剂的量产和可持续供应,提前超额完成课题指标,稳定同位素标记物产业化基地建设成果斐然,国产化和替代进口成绩显著。2022年,阿尔塔科技获批筹建“天津市标准物质与稳定同位素标记技术研究重点实验室”。阿尔塔科技将依托重点实验室继续深耕食品安全、环境安全、医药研发、临床检测等领域稳定同位素标记标准物质的结构设计合成和分离纯化、分析方法开发和质量控制,开展稳定同位素标记标准物质全产业链应用技术研究。阿尔塔科技陆续推出了五期稳定同位素标记物产业化基地建设成果系列报道,本期向您推荐稳定同位素标记的咪唑与苯并咪唑类抗菌药物,继续展示阿尔塔科研团队的研发成果,包括但不限于十三五项目开发的稳定同位素标记RM。产品的化学结构、化学纯度和同位素丰度、均匀性和稳定性均经过严格的检测和评估,质量媲美进口产品,价格较进口产品大幅降低。阿尔塔科技期待与更多的科研机构、检测实验室进行合作,持续开发市场需求的高品质产品,让更多的国家标准制修订和实验室检测活动用上国产稳定同位素标记标准物质。部分咪唑与苯并咪唑类抗菌药物:了解更多产品或需要定制服务,请联系我们天津阿尔塔科技有限公司介绍天津阿尔塔科技有限公司成立于2011年,是中国领先的具有标准物质专业研发及生产能力的国家级高新技术企业,公司坚守“精于标准品科技创新,创造绿色安全品质生活“的企业愿景,秉持”致力于成为全球第一品牌价值的标准品提供者”的企业使命。是国家市场监督管理总局认可的标准物质/标准样品生产者(通过ISO 17034/CNAS-CL04认可),并通过了ISO9001:2015质量管理体系认证。公司于2022年获批筹建“天津市标准物质与稳定同位素标记技术研究重点实验室”,并先后被认定为国家高新技术企业、天津市“专精特新”企业、“瞪羚”企业等,成立了博士后科研工作站和院士创新中心,建立了国家食品安全重大专项稳定同位素产业基地,主持完成和参加了多项天津市重大科研支撑项目和在研国家重点研发计划重点专项,处于我国标准品和稳定同位素标记内标行业的领先地位。经过10余年的努力,阿尔塔科技以其卓越的品质和全方位的技术支持与服务受到全球客户的广泛认可和良好赞誉,成长为行业内国产高端有机标准品的知名品牌。2022年底,阿尔塔成功携手杭州凯莱谱精准医疗检测技术有限公司(迪安诊断旗下子公司),进一步开拓医药和临床检测标准品,为多组学创新技术以及质谱标准化的解决方案提供技术保障,为广大人民的健康生活做出贡献,真正实现From Medicare to Healthcare。
  • MFI专注蛋白聚集分析,助力药物稳定性研究
    近日,美国明尼苏达大学药学院药理学科学家,利用MFI,在权威杂志Journal of ControlledRelease(IF:7.901)发表文章:Freezing-induced Protein Aggregation - Role of pH Shift and Potential Mitigation Strategies, J Control Release. 2020 Jul 10 323:591-599. --研究背景--在设计用于肠胃外给药的蛋白质药物产品中,聚集体的产生,除了在外观上引起不适之外,最重要的是它们具有细胞毒性作用,或是引起机体免疫原性应答。美国和欧洲药典对肠胃外药物产品中的不溶性聚集物有规定:对于小剂量的肠胃外药物,通过光阻法测量的小颗粒(≥10μm)和大颗粒(≥25μm)的推荐药典规范分别为≤6000/container和≤600/container。因此,预防和减轻蛋白质聚集对于维持蛋白质药物产品的安全性,功效和质量至关重要。药品加工步骤中,如纯化,搅动,冻融,填充,冻干,制剂成分,运输压力,都有可能将天然蛋白质转化为聚集体。而蛋白质溶液在配制为药物产品之前,通常以冷冻状态保存很长一段时间,所以,因反复冻融而产生的蛋白聚集体更应引起关注。蛋白质制剂如缓冲液可确保制剂的pH值在整个保质期内都保持在所需范围内。但在低温过程中,某些缓冲区的有效性可能会受到影响。例如,当冷冻含有磷酸二氢钠和磷酸二钠的水溶液(即磷酸钠缓冲液)时,磷酸氢二钠的选择性结晶导致冷冻浓缩液的pH降低,从而引起蛋白聚集体的产生。因此,本文旨在研究,在不同缓冲溶液的冻融循环过程中,两种模型蛋白质(牛血清白蛋白(BSA)和β-半乳糖苷酶(β-gal))聚集体的产生,以及这两种蛋白对缓冲液pH值变化的影响。同时,评价了添加的非结晶溶质对pH值变化的影响,以及pH改变对蛋白质聚集行为的影响。--研究结果--使用MFI表征冷冻和解冻后蛋白颗粒的形成利用MFI检测发现,无论何种缓冲液,BSA(10mg/mL)在制备和立即分析时均显示出较低的颗粒数。当这些溶液经受五个冻融循环时,在许多系统中颗粒数量都有小幅增加。但冻融循环在磷酸钠缓冲液(100mM)中导致的颗粒计数增加显著。加入纤维二糖(纤维二糖(一种还原糖)被用作模型非结晶溶质,一种冷冻保护剂)后,在磷酸钠缓冲液(100mM)中导致的颗粒数有明显缓解。利用MFI检测发现,β-gal(10mg/mL)在水中冻融后的颗粒数(?100,000)急剧增加,表明该蛋白质对PH值的极端敏感性。同样,β-gal在磷酸钠缓冲液(100mM)中导致的颗粒计数增加显著。加入纤维二糖后,在磷酸钠缓冲液(100mM)中导致的颗粒数有明显缓解。低温pH测定将PBS和磷酸钠(100mM)冷却后,发现pH值变化幅度相似。当磷酸钠浓度为10mM时,冷却时的pH值变化不明显。而蛋白质的添加(10mg/mL)可以降低了PBS和磷酸钠(10mM)中pH值变化的幅度。当磷酸钠浓度很高(100mM)时,蛋白质的作用就不那么明显了,这表明,低蛋白浓度(10mg/mL)似乎不足以抑制缓冲盐的结晶和随之而来的pH偏移。低温XRD测定研究结果发现,当将磷酸钠缓冲溶液(10和100mM)冷却时,在-15°C时Na2HPO4• 12H2O结晶明显(分别参见图4B和4C)。而BSA的添加,可以使Na2HPO4• 12H2O的峰强度降低,特别是在较低的缓冲液浓度(10mM)下更为明显。这与观察到的BSA对缓冲溶液pH值变化幅度的影响密切相关。此外,纤维二糖的添加完全抑制了缓冲盐的结晶(图4D),以及冰峰的强度也受到了抑制。这些结果揭示了非结晶溶质在蛋白质制剂中的附加作用。通过抑制缓冲盐的结晶和随之而来的pH值变化,这些赋形剂可防止蛋白质不稳定性。热分析结果显示,当将BSA添加到PBS中时,在-54.4℃出现玻璃化转变温度(Tg′),随后在-22.4和0.1℃出现两个吸热峰。玻璃化转变温度反映了冷冻浓缩物组成发生了改变。BSA仅对100mM缓冲液的热行为有明显影响,导致Tg’(-47°C)和结晶温度(-30°C)降低。同时,纤维二糖的添加有望改变冷冻浓缩物的成分,这在Tg’(-34°C)中有所体现。结论:磷酸盐缓冲液被广泛用于肠胃外蛋白质制剂中。但在冷冻过程中,磷酸氢二钠(十二水合物)的选择性结晶会降低冷冻浓缩液的pH值,从而导致蛋白质聚集。可以通过降低缓冲液浓度来减小pH偏移。同时,BSA和β-gal可以通过对缓冲液结晶的抑制,减少pH的变化,但其作用程度要取决于缓冲液浓度。其它非结晶性赋形剂(纤维二糖)的添加,可通过抑制缓冲盐结晶,来提高蛋白质的稳定性。
  • 大气降水氢氧稳定同位素测试方法
    一、研究背景与意义大气降水作为内陆水循环的重要水分输入项,其形成过程中,伴随着地表蒸发、植物蒸腾以及水汽凝结等平衡分馏或动力分馏过程,使降水中的氢氧稳定同位素组成有不同的特征。因此降水氢氧稳定同位素常被视为良好的示踪剂,被广泛应用于水汽源地示踪、古气候重建、蒸发量及局地水汽再循环的估算等研究。降水氢氧稳定同位素的研究始于上世纪五十年代,以国际原子能机构(IAEA)和世界气象组织(WMO)建立了全球大气降水同位素观测网(Global Network of Isotopes in Precipitation, GNIP)为标志,开始了全球性的降水氢氧稳定同位素的长期监测;随后研究者们在国家、区域或单站点尺度上也开展了大气降水氢氧稳定同位素的监测,这些观测数据促进了我们对于复杂水循环过程的认识。因此,高时间和空间分辨率的降水氢氧稳定同位素的监测是一项非常重要的工作。二、测量原理降水氢氧稳定同位素组成的测定采用的是基于光腔衰荡光谱(Cavity Ring-Down Spectrospecopy, CRDS)技术的Picarro高精度水同位素分析仪。同其它光谱技术相同,CRDS技术也是基于气态分子独特的红外吸收光谱来量化稳定同位素组成的方法,但不同于其它光谱技术基于吸收强度的测量,CRDS技术是基于时间的测量,其测量结果对激光源本身的变动不敏感,从而可以保证仪器的噪声更小,且精度更高。Picarro高精度水同位素分析仪的光腔采用三镜片小光腔(体积约35 ml,长度约为25 cm)的设计,可以保证更快的腔室内气体更新速率,使仪器的响应时间更快;同时小光腔的设计可以实现对光腔内温度和压强的控制(温度:± 0.005 ℃;压强:±0.0002 大气压),使仪器具有更好的漂移性能。光腔内采用高反射率镜面可以有效的减少由于激光透射所引起激光强度的减弱,从而可以使激光穿过的更大的气体厚度,即更大的有效长光程( 10公里),从而使仪器拥有更低的检测下限。三、仪器介绍基于CRDS技术的Picarro高精度水同位素分析仪可以用于液态水样品中稳定氢氧同位素比率(δ2H,δ17O和δ18O)的测量,如降水、河水、湖水、地下水、冰川水、土壤水和植物水等液态水。仪器的典型精度:δ2H: <0.1‰,δ17O: <0.025‰,δ18O: <0.025‰;测量速度:每9分钟可以完成一针测量,每天可以完成160针(即27个样品)的测量;测量范围:满足同位素标记的重氘样品测量,δ2H的测量上限≥50000‰(或≥8500ppm);取样温度:0-50 ℃;样品体积:<2 μL/针(可调)。四、取样方法根据国际原子能机构和世界气象组织的要求,采用标准雨量器进行降水样品的收集。如需测定月尺度上的降水氢氧稳定同位素组成,可在室内准备一个足够大的容器,每次降水后,将在室外通过雨量器收集到的降水倒入该容器,低温密封保存,每个月的最后一天取10毫升过滤后的样品装入样品瓶中,使用封口膜密封,并冷藏保存。如需测定降水事件尺度上的降水稳定氢氧稳定同位素,则在每次降水后取10毫升过滤后的样品装入样品瓶中,使用封口膜密封,并冷藏保存。各观测点收集的降水样品可寄送至北京松盛华嘉检测技术有限公司使用基于CRDS技术的Picarro高精度水同位素分析仪进行集中测试。五、公司介绍北京松盛华嘉检测技术有限公司,为北京理加联合科技有限公司的全资子公司,致力于为用户提供更高质量的稳定同位素样品测试服务。已先后为中国科学院生态环境研究中心、中国科学院地理科学与资源研究所、中国科学院西北生态环境资源研究院、中国林业科学研究院林业研究所、中国科学院植物研究所、中国科学院遗传与发育生物学研究所和中国水利水电科学研究院等近百家单位提供快速、精确的稳定同位素测试服务和技术咨询服务。北京松盛华嘉检测技术有限公司拥有专业的测试团队,提供快速、精确的测试服务,可以为您提供及时的数据测样服务,助力您科研成果的尽快发布。
  • Nanologica首席执行官:分析色谱增长稳定 未来将致力于药物新剂型的研发
    21世纪是生命科学的世纪,近年来,全球生命科学及医疗健康领域市场规模日益庞大,生命科学领域涌现出越来越多的革命性技术突破。尽管如此,目前世界上还是有很多人由于各种原因得不到有效治疗。Nanologica的CEO Andreas Bhagwani提到,通过将药物或者其产物添加到二氧化硅颗粒孔径中,不但可以解决制药行业诸多问题,如增加药物溶解度等,还能使更多的人获得更好更便宜的药物。因此,开发药物新剂型将是2021年公司重要战略的一部分。此外,除了开发药物新剂型外,Nanologica今年还将在分析色谱快速发展的基础上,进一步加大制备色谱的发展。具体情况详见视频:
  • 样品测试 | 氢氧稳定同位素样品采集及预处理方法
    氢(δD)、氧(δ18O)稳定同位素是广泛存在于自然水体中的环境同位素。在测量氢氧稳定同位素之前,样品采集和预处理是主要的任务, 样品运输应当保证样品性质稳定,避免污染和同位素分馏。如您不清楚样品采集和预处理的具体方法、不确定样品储存的适宜条件和运输注意事项,请看本文介绍。水样品1、野外采集样品封口膜密封,低温保存:取样后(取样量根据老师研究需要自行决定)立即在瓶口处用封口膜密封并且低温保存(如样品暂时不测情况下,可以冰冻储存(如需冰冻储藏则建议用塑料瓶盛装样品,玻璃瓶会被冻裂),以防止蒸发。2、送样前分装封口膜密封,阿拉伯数字编号:用1ml的一次性注射器来取水样品(取一次即可),经过一次性0.45μm滤器(滤器分水系和有机系,根据样品不同来选择)过滤至2ml样品瓶里,盖好瓶盖并用封口膜密封,样品用阿拉伯数字编号,(不是数字编号的话需要您提供电子版样品清单)。3、低温储存OR运输冰箱冷藏储存,顺丰冷链寄送:密封好的样品可放置在冰箱冷藏储存;样品邮寄建议顺丰冷链寄送,并嘱咐快递小哥多放几个冰袋,以防止样品蒸发分馏,来保证数据准确。发送样品和快递信息给小编(以便及时接收您的样品):单位名称:样品数量:测试指标:是否回收:快递单号:接收样品后我们及时和您核对样品相关信息土壤/植物样品1、野外采集样品封口膜密封,低温保存:采集的土壤/植物样品需要装在12ml的样品瓶(规格:19mm*65mm或18mm*66mm)里,样品量可根据样品具体情况适当增减,原则为保证能抽提的水量不少于1ml,如果样品含水量特别低,需要准备两瓶或者多瓶样品,样品装好后,瓶口处用脱脂棉塞紧,然后拧紧瓶盖,样品瓶盖外需用封口膜密封以保证密封性良好来防止分馏。样品用数字编号(不是数字编号的话需要您提供电子版样品清单)2、低温储存OR运输冷链寄送,冷冻储存:密封好的样品可放置在冰箱冷冻储存;样品邮寄建议顺丰冷链寄送,并嘱咐快递小哥多放几个冰袋,防止样品蒸发分馏,以保证数据准确。发送样品和快递信息给小编(以便及时接收您的样品):单位名称:样品数量:测试指标:是否回收:快递单号:接收样品后我们及时和您核对样品相关信息提示一、对于植物样品和土壤样品来说,建议直接用12ml样品瓶采样和储存样品,能有效减少分馏情况发生,不建议用密封袋采集和储存样品,因为:1、如样品在密封袋中储存,抽提前就需要将样品从密封袋中腾装进样品瓶,这个过程会增加样品与空气接触时间,增加蒸发分馏的可能;2、植物样品冰冻储存过程中会冻出水分,水分会附着在密封袋上,腾装样品的这个过程不可能把粘在袋子上的水汽完全收集到进样瓶中,这种情况下将直接影响数据准确性。二、关于植物样品采样部位:根据不同的研究目的,植物样品的采集部位会有差异,为了研究植物水分来源,乔木和灌木应采集植物非绿色的枝条,而草本则应尽可能采集根茎结合处的非绿色部分。因为这些植物器官没有气孔,不会因蒸腾作用而导致目标同位素的分馏。附:相关耗材和测试过程照片:1.即将进行抽提的植物样品2.抽提工作正在进行3.抽提结束冷凝水收集4.收集完毕并密封好的待测样品5.氢氧同位素测试中以上内容仅供参考,如您有任何建议,欢迎与我们联系,非常荣幸能和您讨论学习。
  • 药品稳定性试验箱国标发布,博迅医疗参与制定
    2021年8月20日国家标准《GB/T 40326-2021 实验室设备能效等级药品稳定性试验箱》获得批准发布,并将于2022年3月1日起实施。博迅参与制定。本标准的编制,将为药品稳定试验箱的能效测试方法提供依据和参考,将促进行业技术的发展与进步,也为打造绿色实验室作出贡献。标准实施之后,预计能效将提高10%,年节约电能五千万千瓦时。业内有一句名言,叫做“三流企业做产品、二流企业做品牌、一流企业做标准”。做产品仅仅是最简单的劳动力转化为商品的过程;做品牌,就是在做商品的基础上,树立一种品牌荣誉感和责任感;而做标准,更加超出了做品牌的概念,是行业的标杆,是被业内外广泛认可和努力的方向与参照。从中国古代的“车同轨、书同文”,到现代工业规模化生产,都是标准化的生动实践。伴随着经济全球化深入发展,标准在便利经贸往来、支撑产业发展、促进科技进步、规范社会治理中的作用日益突显。标准已成为一个地区、一个国家,乃至全世界通用语言。博迅此前已经参与制定过3次国家标准,填补了多个国内和行业领域的技术空白。 点击查看博迅在线展位以及稳定试验整体解决方案关于博迅上海博迅医疗生物仪器股份有限公司专业从事箱体制造20余年。近年来,公司致力于制药和食品行业稳定性试验整体解决方案,我们努力从功能、性能、软件、硬件、设备规格等多方面全面提升,就是为了给客户提供更完美的使用体验和更完善的解决方案。
  • 实用建议:如何合理设计稳定的冻干蛋白配方(一)
    为什么要用冻干的方法制备稳定的蛋白药物产品?在蛋白药物治疗的早期研发中,有必要设计一种在运输和长期储存期间稳定的配方。显然,水溶剂的液体产品对于生产来说是很容易且经济的,对于终端使用者也是十分方便的。水溶剂的液体产品存在的问题1. 大多数的蛋白以液体状态存在时,易于化学(脱酰胺或氧化)和/或物理降解(聚合,沉淀) 2. 如果严格控制水溶剂蛋白的储存条件,并且对配方进行合理设计,可以减缓其降解,但是在实际的运输过程中,精确控制储存条件通常是行不通的,蛋白会因受到多种应力的作用而变性,包括摇动,高低温,冷冻等 3. 尽管会设计配方和运输条件尽可能规避这些应力导致的损害,但是仍然不能足够阻止在长期储存过程中造成的损害。例如,在某些情况下,尽量减少化学降解的条件会导致物理损伤,反之亦然,那么就无法找到提供必要的长期稳定性的折衷条件。解决方案:冻干配方设计合理的冻干配方,理论上可以解决以上存在的所有这些问题。在干燥的样品中,降解反应可以得到充分的抑制或减缓,蛋白产品在室温状态可以仍然维持其稳定性,保存期可达到数月或数年的时间。而且,在运输过程中,短期的温控偏离,冻干的蛋白样品通常也不会受到损害。即使在两种或多种降解途径需要不同条件才能实现最大热力学稳定性的情况下,干燥产品中反应速率的降低也可以实现长期的稳定性。因此,一般来说,当配方前研究表明在液体配方中不能获得足够的蛋白稳定性时,冷冻干燥提供了颇有吸引力的替代方案。冻干蛋白配方可能遇到的问题然而,相对水针剂产品,只需要简单灌装即可来说,冻干过程较为复杂,且耗时、成本高,再有,一个十分关心的问题,如果配方中没有合适的稳定赋形剂,大多数蛋白制剂在冻干的过程中至少部分会因冻结应力和脱水应力而变性,结果通常是不可逆的聚合,通常是在冻结之后立即聚合或在储存过程中,小部分蛋白分子发生聚合。因为大多数的蛋白药物是非肠道给药,即使只有百分之几的蛋白聚合也是不可以接受的。因此,只是简单的设计一个配方,允许蛋白能承受冻干过程中的应力,但是无法确保冻干后的样品能有长期的稳定性。一个较差的冻干配方,蛋白很容易发生反应,须要求在零度以下储存,这样的配方应当认为是不成功的。本文将提供一些实践的指导,用于配方的设计,可以在冻结和干燥过程中保护蛋白,并且在室温条件下长期储存和运输过程中具有很好的稳定性。再有,会简要地讨论,配方设计须考虑到工艺条件的物理限制,已获得最终低水分含量的良好蛋糕。我们将不讨论冻干工艺的设计和优化,也不会偏离关于赋形剂选择的实用建议,以解决关于这些化合物稳定蛋白质的机制的争论。有丰富经验的药物科学家可能跟这篇文章的内容也没有很大的关系,但是可以将蛋白药物产品推向市场,然而,我们的目标主要是针对对于稳定的冻干蛋白配方设计还不太了解以及具有很大挑战的那些研发人员提供一个很好的开始。 配方设计的主要制约因素有哪些?当合理设计冻干配方时,需要考虑的因素很多,从整体来看,工作会比较复杂,但如果能很好的理解决定最终成功的主要限制因素,那么就会容易很多。01蛋白的稳定性首先记住蛋白产品选择冻干方法的主要原因是其不稳定性,整个配方中最敏感的成分也是蛋白质,那么在配方设计中首要关心的是赋形剂的选择,能够提供蛋白好的稳定性。02最终药物配置在配方研发开始之前,须确定好最终药物的配置,需要考虑的问题包括给药途径(常为非肠道给药),共同给药的其他物质,产品体积,蛋白浓度,冻干盛装容器(西林瓶、预充针或其它)等,如果最终药物需要多次使用,在配方中需要加入防腐剂,这个可能会降低蛋白的稳定性。03配方张力在选择赋形剂时,可能会考虑设计等张溶液,甘露醇和甘氨酸通常是良好的张力调节剂,这些赋形剂经常优于NaCl,因为NaCl具有较低的共晶融化温度和玻璃态转变温度,使得冻干更难进行。另外,如果样品中含有相对低的蛋白量,经常会加入填充剂,避免在冻干的过程中蛋白损失,甘露醇和甘氨酸同时也可以充当这个角色,因为他们会最大程度的结晶并且形成机械强度较高的蛋糕结构。然而,须意识到单独使用晶体类的赋形剂通常不能够在冻干过程和储存期间给蛋白提供足够的稳定性。04产品的蛋糕结构最终冻干的样品须具有优雅的外观结构,较强的机械强度并且没有出现任何塌陷和/或共晶融化,水分残留要相对较低(1g水/100g 干物质),如果产品发生塌陷,不仅外观不能接受,而且会导致样品最终的水分含量较高,复水时间延长。05产品玻璃化转变温度为了确保干燥后蛋白具有长期稳定性,非晶态成分(包含蛋白)的玻璃转化温度要高于计划的储存温度。水是无定形相的增塑剂,需要保持较低的水分含量确保样品的Tg 要高于运输和储存的最高温度。06产品塌陷温度一般来说,达到最终的目标,在整个冻干过程中,需要维持产品温度在其玻璃转化温度以下。在干燥过程中,当冰晶升华时,对于非晶态样品,产品温度须维持在其塌陷温度以下,塌陷温度通常与热致相变温度(也就是最大冻结浓缩无定形相的玻璃态转变温度Tg’)一致,同时,也有必要维持产品温度在任何晶体成分的共晶融化温度以下。在实际中,这些温度可以通过差示扫描量热仪DSC或冻干显微镜来测定。在配方开发中有必要测定产品的塌陷温度。 冻干显微镜Lyostat5及搭配使用的DSC模块为什么要测定塌陷温度?在低于产品的塌陷温度下干燥是需要付出代价的,产品的温度越低,干燥的速度越慢,干燥的成本就越高。通常,在-40℃以下干燥是不实际的,同时样品能降低到的温度还受一些物理条件的限制,比如冻干机的性能以及产品的配方。在配方开发过程中,药物研发人员应该与工艺工程师(设计冻干工艺人员)紧密配合,并且清楚了解放大化生产型冻干机与实验室研发冻干机的区别是非常重要的,通常情况下,生产型冻干机和实验室冻干机在工艺参数控制方面会有所不同,一部分原因是生产型冻干机较大,在冻干过程中每瓶样品的产品温度差异较大。因此,如果对冻干过程熟悉的研发人员可以提供有用的信息帮助配方科学家做出正确的判断,避免由于误判导致将较好的配方排除在外。对于塌陷温度较低的产品,也有一些方法,如可以通过控制过程参数来实现短时快速干燥。配方设计需平衡蛋白稳定性和塌陷温度很明显,配方设计的一个目标是保证蛋白稳定性的前提下提供较高的塌陷温度,产品的塌陷温度主要取决于配方的组成,如果蛋白的含量超过所有溶质的20%,会对Tg’有较大的的影响。尽管单纯的蛋白溶液通常用DSC很难测出Tg’,根据实验得出,增加蛋白含量,对于大多数的配方来说,均可以提高Tg’。通过外推法得到纯的蛋白溶液的Tg’,大约为-10℃,远远高于大多数的单一赋形剂的Tg’(如蔗糖的Tg’为-32℃),因此,从工艺过程的经济角度考虑,更期望配方中较高的蛋白质和稳定剂比例,然而,蛋白的稳定性通常随着稳定剂与蛋白含量比例的增加而提高,因此须在高的塌陷温度和较好的稳定性方面做出平衡。并且,如下文讨论的内容,随着蛋白浓度的增加,蛋白质在预冻过程中抵抗冻结应力损伤的能力就会得到改善,那么在高蛋白浓度和高稳定剂和蛋白重量比的情况下,稳定性是最好的,这样,就会导致整个配方较高的固形物浓度,给工艺带来困难,总浓度超过10%的配方将比较难冻干。如何改变Tg'?在升华之前对配方进行一些处理可以改变Tg’,如经常使用的退火处理,在退火处理过程中,会从无定形相中移走一小部分成分,如使用甘氨酸作为晶体的填充剂,取决于预冻的方法,可能一部分的甘氨酸分子会保留在样品的无定形相中,甘氨酸具有相对较低的Tg’(-42℃),因此让甘氨酸尽可能的结晶是非常重要的,这样可以提高样品中无定形相的Tg’,加快干燥,节省成本。对于赋形剂结晶,设计理想完善的方案,可以用DSC模仿冻结和退火工艺的条件来进行,这个方法可以参考Carpenter 和 Chang的文章内容。 在哪些步骤蛋白需要维持稳定性?实际上,从灌装到最终干燥的产品复水,每一步均会对蛋白造成损伤,并且要求配方的成分能够抑制蛋白的降解。在快速处理步骤(如灌装,预冻,干燥和复水等)中,主要的问题通常是物理损害,如低聚物的形成和/或蛋白沉淀;通常,蛋白从液体到固体的转变,相对与减缓化学变化,更多的会减缓蛋白的物理变化的速率,因此,储存过程中的化学降解经常是更严重的稳定性问题。在储存期间或复水时,蛋白也会发生聚合。在预冻和干燥过程中,受到冻结和干燥应力的作用,蛋白的结构很容易遭到破坏,如果在这些过程中,能够抑制蛋白去折叠(变性),那么降解过程就会达到最小化,因此,配方设计主要的关注点就是在这些过程中能够保护蛋白,在干燥后的样品中具有较高的Tg及较低的含水量,能阻止样品内部发生化学反应,更好的保持蛋白的天然性能。01在预冻过程中的蛋白的稳定性特定的蛋白是否易受冷冻破坏的影响取决于许多因素,除了在配方中包含适当的稳定剂外。一般来说,会考虑三个很重要的参数:蛋白浓度,缓冲液的种类以及预冻方法。蛋白浓度增加蛋白质的浓度能够提高蛋白对冻结变性的抵抗力,可以通过简单地测定冻融后蛋白聚合的百分比,该百分比与蛋白质浓度呈反比。通常,如果预冻过程中去折叠的蛋白分子部分与浓度无关,那么预计增加蛋白浓度会增加蛋白聚合。然而,现在人们认为,增加蛋白质浓度会直接减少冷冻诱导的蛋白质去折叠。据推测,冻结阶段的损伤包括蛋白在冰水界面的变性,假设只有有限数量的蛋白分子在这个界面变性,增加蛋白的初始浓度会导致较低比例的变性蛋白。处于实际的目的,将蛋白浓度作为一个重要的考虑因素,在配方开发过程中尽可能保持较高的浓度,就显得特别简单了。缓冲液种类缓冲液的选择也是非常关键,主要引起问题的是磷酸钠和磷酸钾,在预冻和退火过程中,二者的pH值会有明显的变化。对于磷酸钠,其二元碱形式的容易结晶,导致在冷冻样品中,剩余的无定形相中的pH会降到4或更低。对于磷酸钾,其二氢盐结晶后,pH会变到接近9. pH改变的风险以及对蛋白的损害可以通过提高最初的冷却速度,限制退火步骤的时间,降低缓冲液的浓度等来控制,所有这些措施可以降低盐类结晶的机会。快速冷冻,不进行退火也限制了蛋白质在暴露在冷冻状态下的时间。尽管其他的赋形剂能够辅助抑制pH的改变,较好的方法是避免使用磷酸钠和磷酸钾。在预冻阶段pH有较小变化的缓冲液包括柠檬酸盐,组氨酸,Tris溶液等。预冻方法排除由于pH变化造成的问题,在实验中发现,预冻过程中,蛋白质受破坏的程度跟冷却的速率有关系,较快的冷却速度形成的冰晶体较小,冰的比表面积越大,受破坏的程度越大,这个推测是由于蛋白在冰水界面变性导致。冷却的速度通常受冻干机设备本身性能的限制,然而,一些对冷冻敏感的蛋白,即使慢速冷却也会导致其变性。02、在干燥和储存过程中蛋白的稳定性尽管整个蛋白分子在预冻过程中保持了其原有的结构,然而,在后续的脱水干燥过程中如果不加入合适的稳定剂也会面临变性的风险。简单的说,当去除蛋白分子的水合外层时,蛋白质天然的结构便遭到破坏。对多个蛋白的红外光谱研究表明:无合适的稳定剂存在时,在干燥的蛋白样品中,其结构将会遭到去折叠。如果样品迅速复水,损伤的程度(如,聚合百分比)与干燥蛋白质的红外光谱的非天然表现直接相关。因此,降低复水后结构的破坏需要减小预冻和主干燥过程中蛋白结构的去折叠。而且,即使样品立即复水后100%的天然蛋白分子被恢复,干燥的固体中也会有相当一部分去折叠的分子。在复水过程中分子内的再折叠可以主导分子间的相互作用,从而导致聚集,在复水后表现为100%的天然分子。适当的赋形剂可以阻止或至少减轻蛋白结构的去折叠,配方是否成功可以通过红外光谱检查干燥后蛋白的二级结构来立即判断,更重要的是,发表的一些研究显示,干燥样品的长期稳定性取决于干燥过程中天然蛋白的保留量,如果干燥后的蛋白样品存在结构上的去折叠,即使样品在低于其Tg温度以下储存,蛋白也会很快被破坏,因此,红外光谱法可作为蛋白配方的另外一种工具,研发人员可以在冻干后对样品进行检测,确定其结构是否遭到破坏。欢迎先关注我们,下一期内容将继续为大家带来“实用建议:如何合理设计稳定的冻干蛋白配方(二)”,详细分享:蛋白样品冻干的首选赋形剂有哪些、基于成功蛋白冻干配方会导致最终失败的一些细节问题等。莱奥德创冻干技术分享关注“莱奥德创冻干工场“,立即获取冻干线上技术分享内容。基于对于冻干研发的一些考量,莱奥德创创建了金字塔冻干技术分享平台:包含了从冻干理论基础,到配方和工艺开发,再到放大及生产,以及进阶的设备管理和线上线下专题内容分享。内容结合了来自Biopharma的冻干理论指导体系、来自于莱奥德创产品经理及应用工程师的实践经验总结及国内外专家的专题内容。获取方式Step 1:关注公众号 扫码关注莱奥德创公众号Step 2:点击菜单栏“冻干讲堂” Step 3:点击你感兴趣的内容Banner Step 4:开始学习 更多关于冻干技术分享平台的介绍请点击下方阅读:● 冻干免费技术内容获取-莱奥德创金字塔冻干技术分享平台► 点击阅读如果您对上述设备或冻干服务感兴趣,欢迎随时联系德祥科技/莱奥德创,可拨打热线400-006-9696或点击下方链接咨询。译自:《Rational Design of Stable Lyophilized Protein Formulations:Some Practical Advice》 John F.Carpenter,Michael J.Pikal,Byeong S.Chang,Theodore W.RandolpH pHarmaceutical Research, Vol.14,No.8,1997* 如有理解错误之处,还请参考原文关于莱奥德创冻干工场上海莱奥德创生物科技有限公司专注于提供前沿的冻干设备应用和制剂开发相关服务,依托于合作伙伴加拿大ATS集团SP品牌和英国Biopharma Group等的紧密合作,致力于促进中国生物医药技术创新升级,助力中国大健康行业的持续发展。莱奥德创在上海及广州设有实验室,拥有专业的技术团队及国内外专家支持体系。莱奥德创面向生物制药、食品科学等各个领域行业客户,提供冻干研发、放大、委托生产及培训等服务。前期研发● 产品配方特征研究:共晶点温度(Te)、塌陷温度(Tc)、玻璃态转化温度(Tg'、Tg)测定等;● 实验室工艺开发:冻干工艺开发:冻干制剂配方开发,工艺确定,申报材料撰写;● 冻干工艺优化:利用中试冻干机上PAT工具优化及缩短工艺;● 冻干产品质量指标测试:水分含量,冻干饼韧度分析;● 咨询服务:如产品外观问题、产品质量问题、其他troubleshooting等;工艺放大/技术转移● 冻干工艺转移/放大: 远程技术指导+现场服务;● 小批量冻干生产(NON-GMP),临床一期生产(GMP);其他业务● 企业小团队线上线下培训服务:冻干原理,工艺开发,设备使用维护等;● 冻干设备租赁服务。400-006-9696www.lyoinnovation.com莱奥德创冻干工场中国(上海)自由贸易试验区富特南路215号自贸壹号生命科技产业园4号楼1单元1层1002室德祥科技德祥科技有限公司成立于1992年,总部位于中国香港特别行政区,分别在越南、广州、上海、北京设立分公司。主要服务于大中华区和亚太地区——在亚太地区有27个办事处和销售网点,5个维修中心和2个样机实验室。30多年来,德祥一直深耕于科学仪器行业,主营产品有实验室分析仪器、工业检测仪器及过程控制设备,致力于为新老客户提供更完善的解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。与高校、科研院所、政府机构、检验机构及知名企业保持密切合作,服务客户覆盖制药、医疗、商业实验室、工业、环保、石化、食品饮料和电子等各个行业及领域。2009至2021年间,德祥先后荣获了“最具影响力经销商”、“年度最佳代理商“、”年度最高销售奖“等殊荣。我们始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!
  • 华盛顿大学研究人员利用“Serine Ligation”产生有效且稳定的GLP-1类似物
    大家好,今天为大家介绍一篇ACS Chemical Biology的文章,标题为“Generation of Potent and Stable GLP-1 Analogues Via ‘Serine Ligation’ ”,文章的通讯作者是来自美国华盛顿大学的David Baker教授。在这项工作中,作者受“Serine Ligation”方法的启发,介绍了一种具有位点特异性的生物偶联策略。该策略依赖于带有 1-氨基-2-羟基官能团的非天然氨基酸的多肽和水杨醛酯之间的偶联,实现多肽上的化学修饰。具体来说,作者利用这个技术对类似于索马鲁肽 (Semaglutide) 的胰高血糖素样肽-1 (GLP-1) 26位的赖氨酸以及18位的丝氨酸分别修饰,得到了GLP-1类似物G1和G2。结果显示,修饰后的G1和G2在基于细胞的激活试验中比GLP-1更有效,同时能提高其在人血清中的稳定性以及体内葡萄糖处理效率。这种方法展示了“Serine Ligation”在化学生物学中各种应用的潜力,特别是发展稳定的多肽治疗剂(图 1)。图 1 基于“Serine Ligation”的GLP-1位点特异性修饰胰高血糖素样肽-1 (GLP-1) 是一类多肽激素,源自于胰高血糖素原肽的组织特异性翻译后加工,具有通过增强胰岛素分泌从而降低血糖水平的能力。二肽基肽酶 (DPP-4)可以切割GLP-1 N端8位的丙氨酸,因此内源GLP-1的半衰期只有2 min左右。虽然有许多旨在于解决稳定性问题的方法,例如在降解位点引入“不可切割”的氨基酸,但这些方法通常以牺牲稳定性为代价来换取多肽的功能和效力。因此人们对开发既能维持效力,又能稳定多肽治疗剂的新技术产生了很大兴趣。另一方面,多肽和蛋白质的偶联彻底改变了人们对于引入各种官能团来扩展新应用的认识。其中便包括蛋白质组学和高分辨率成像技术。由于多肽或蛋白质中存在多个可反应的活性位点,利用传统的共轭策略,例如N-羟基琥珀酰亚胺 (NHS) 酯,会导致产物的异质性,进而引起分离提纯困难以及生物学活性下降等诸多问题。因而具有位点特异性的新修饰方法亟待开发。作者从“Ser/Thr Ligation”(STL) 中获取灵感,发现该偶联主要发生在C 端的水杨醛酯和 N 端含有丝氨酸或苏氨酸的残基之间。因此,作者通过合成和引入带有1-氨基-2羟基的非天然氨基酸,并将其与水杨醛酯的衍生物偶联,实现了多肽位点特异性的化学修饰(图 2)。图 2 “Serine Ligation”与引入非天然氨基酸的位点特异性生物偶联作者首先评估了该方法的普适性,合成了生物素、花青-3、一种棕榈酸类似物,以及单分散PEG 水杨醛酯。然后将这些探针特定地偶联到带有 1-氨基-2-羟基的非天然氨基酸的模型肽 1 上,生成产物 2-5(图 3)。为了代表性地评估产物的转化率和纯度,作者监测了多肽反应物1和生物素水杨醛之间的反应,发现几乎在30 min后实现了定量转换。图 3 对未保护模型肽的位点特异性修饰之后作者探究如何利用该生物偶联技术增强多肽的稳定性。最常用的方法包括聚乙二醇化和脂化。事实上,两种 GLP-1药物,索马鲁肽和利拉鲁肽都是脂化的,目前用于治疗 2 型糖尿病。基于此,作者利用STL合成了两种GLP-1类似物G1和G2。二者都含有一个类似索马鲁肽的杂合 PEG 和脂肪酸侧链。不同之处在于,G1的修饰在26位的赖氨酸上,与索马鲁肽的修饰位置相同。同时,为了增强稳定性,对G1多肽8号位的丙氨酸也进行了修饰,引入了2-氨基异丁酸 (Aib)。G2的修饰则在18位的丝氨酸上。借助于冷冻电镜,发现18位的丝氨酸在GLP-1与GLP-1受体的结合模型中是溶剂暴露的,因此不会干扰多肽激素的天然功能。在这种条件下,我们可以不对G2的8号位丙氨酸引入修饰,因为18号位丝氨酸引入的脂肪链离N端的距离近,可以保护8号位的丙氨酸不被蛋白水解(图 4)。图 4 GLP-1多肽类似物G1, G2的设计许多生化和结构研究表明GLP-1 内的一个扩展的两亲性 α-螺旋是负责与GLP 受体 (GLP-1R) 的细胞外结构域高亲和力结合的。为了去评估这些外加修饰是否会破坏多肽二级结构,作者使用圆二色谱 (CD) 来表征。相对于显示出特征性螺旋折叠的GLP-1,G1 和 G2 也都显示出螺旋结构;然而,它是低于天然GLP-1的。G1与G2的数据与在索马鲁肽上的脂质修饰相一致,说明了二级结构的丢失是脂质修饰引起的。GLP-1 与 GLP-1R 的内源性结合会导致募集G蛋白的细胞内重排,随后刺激cAMP的产生。cAMP来源于ATP并会导致葡萄糖刺激的胰岛素分泌。为了去评估GLP-1 类似物 G1 和 G2 去激活人源GLP-1R的能力,在过表达人 GLP-1R 的 CHO-K1 细胞中去监测cAMP的积累。细胞最初用天然 的GLP-1 和索马鲁肽进行处理。相比之下,G1 和G2 比未加修饰的GLP-1表现更好,并且与 Semaglutide 大致等效,EC50值为 0.97 ± 0.2 和 0.73 ± 0.2 nM(图 5A)。这些数据表明26位的赖氨酸和18位的丝氨酸的脂质修饰不会对其内源功能造成影响。为了补充体外的药理学分析,作者接下来用反向高效液相色谱 (RP-HPLC) 比较GLP-1类似物G1,G2,天然 GLP-1以及索马鲁肽在人血清中的稳定性。在这个测定中,每种肽在人血清中孵育最多48 小时,取出等分试样并通过 RP-HPLC 分析(图 5B)。相对于天然 GLP-1,G1 显示出显著的稳定性曲线,t1/2 ≈ 40 小时。同时G2也非常稳定,相对于天然 GLP-1 稳定性增幅超过了14倍,几乎与索马鲁肽相似。在得到理想的激活和稳定性数据之后,作者接下来使用标准葡萄糖耐量实验 (GTT) 在动物体内进行测试。更具体地说,在禁食 16 小时后,用 10 nmol/kg 剂量向小鼠注射多肽,其次是 2 g/kg 葡萄糖。血糖水平用血糖仪测量,然后在不同的时间长度之后进行定量(图 5C)。在这种急性 GTT 实验中,G1 和 G2 相比于天然的GLP-1显示出具有统计学意义的血糖控制能力,这与他们的体外数据相一致。这些数据表明脂质化修饰能够在不损害效力的前提下显著增加稳定性,从而改善急性高血糖小鼠模型的体内活性。图 5 脂化对细胞活性,蛋白水解的稳定性以及控制血糖能力的影响为了深入了解 G1 和 G2 是如何与GLP-1R相互作用,作者对相应的配体-受体复合物进行了计算建模。GLP-1R 肽结合模型是基于最近发表的GLP-1R 与未修饰的 GLP-1 复合物的Cryo-EM 结构。索马鲁肽、G1 和 G2 模型与 GLP-1R 的复合物表明脂质化18位的丝氨酸或26位的赖氨酸是溶剂暴露的,可能不会干扰与激活有关的相互结合作用(图 6)。图 6 GLP-1R-Semaglutide、GLP-1R-G1 和 GLP-1R-G2 复合物模型总结来看,作者介绍了一种强大的,基于“Serine Ligation”的位点特异性生物偶联策略。作者应用该方法合成了有效且稳定的GLP-1类似物。该类似物具有一个混合聚乙二醇和脂肪酸侧链,类似于广泛使用的糖尿病药物索马鲁肽。这两种化合物在激活GLP-1R的能力上与索马鲁肽等效;相比于天然的GLP-1,G1,G2在人血清中显示出显著改善的稳定性,并且在小鼠体内的改善血糖能力优于天然的GLP-1。在未来,该方法也显示出构建其他GPCRs稳定且有效的类似物潜力。原文:https://pubs.acs.org/doi/10.1021/acschembio.2c00075
  • 实用建议:如何合理设计稳定的冻干蛋白配方(二)
    本篇继上一篇“实用建议:“如何合理设计稳定的冻干蛋白配方(一)”继续为大家分享蛋白样品冻干的理想赋形剂有哪些、基于成功蛋白冻干配方会导致Final失败的一些细节问题等。 》》》对于蛋白样品,理想的赋形剂有哪些?从冻干对蛋白的所有危险以及我们需要在各个环节考虑的所有因素来看,快速开发一个稳定的蛋白配方看起来似乎是不可能的。幸运的是,如果我们能够采用合理的方法对配方进行很好的设计,大多数的配方问题是可以得到快速解决。这里,我们主要是对初始配方成分的选择提供基础。在一些情况下,初始的配方很有可能就是走向市场的Final产品。给定的组分,进行不同微小的修改,已经被成功地用于蛋白药物。需要强调的是对于冻干配方,在能够提供良好稳定性和结构的情况下,成分越简单越好。所加入的赋形剂都须要有数据证明对配方起有益的作用。01给定蛋白质维持稳定性的具体条件对于一些通用型的稳定剂,可以有效地保护绝大多数的蛋白质,在选择这些稳定剂之前,我们有必要通过优化影响蛋白物理和化学稳定性的具体因素来选择合适的稳定剂。影响蛋白物理和化学稳定性的具体因素:1. 避免极端的pH值可以显著降低蛋白脱氨基的几率。而且,通过优化溶液的pH值,可以显著提高蛋白在冻干过程中抵抗去折叠的能力。2. 还应该研究其他能提高蛋白质稳定性的特异性配体(通过增加去折叠的自由能)。肝素和其他聚阴离子对生长因子的稳定性影响就是一个很好的例子。3. 其它需要考虑的重要因素是离子强度对蛋白的去折叠和聚合的影响。须意识到,在预冻过程中,由于冰的形成将溶液浓缩,离子强度可增加50倍。因此负责原料药纯化和做药物配方前研究的人员已经对这些问题有了深刻的认识,配方科学家应该在着手设计冻干配方之前与他们进行沟通。即使在针对蛋白质稳定性优化的特定的溶液条件下,但是如果样品需要幸免于冻干的损害并长期保存,有必要加入一些其它的保护剂。首先,我们考虑一些已经用在冻干蛋白配方中的成分,但它们不能提供蛋白的稳定性,而且可能会促进蛋白在储存期间的破坏。我们将提供一个简单、有效的思路,并且讨论选择这些成分的原理。02不能提供蛋白稳定性的赋形剂部分多聚物作为赋形剂的优缺点在冻干工艺的快速开发过程中,为了获得一个强壮的蛋糕结构,一些多聚物,如葡聚糖,羟乙基淀粉,因具有较高的塌陷温度,导致Final产品的Tg也会比较高,常常是受欢迎的赋形剂。不好的是,这些多聚物在冻干过程中不能抑制蛋白结构的去折叠,因此在后续的储存中不能提供稳定性。无法抑制冻干诱导变性的原因大概是聚合物过大而无法与蛋白质氢键合,无法代替脱水过程中损失的水,或者是因为聚合物与蛋白质形成了分离的无定形相。尽管当这些多聚物单独使用时不是一种很好的稳定剂,但是经证实,如果其结合双糖稳定剂可以具有较好好的作用。冻干过程中的有效稳定剂对大量的化合物进行测定,显示在冻干过程在较有效的稳定剂是双糖,但是避免使用还原性糖。还原性糖在冻干过程中可以有效抑制蛋白结构的去折叠,但是在干燥样品的储存过程中,可以通过美拉德反应(糖的羰基和蛋白质上的游离氨基)降解蛋白,结果形成含有降解蛋白的棕色糖浆,而不是含活性蛋白的白色蛋糕状结构。通常,我们减缓这个过程的方法是将样品储存在零度以下,这就失去了产品冻干的意义,这些还原性的糖包括:葡萄糖,乳糖,麦芽糖,麦芽糊精等。在早期的研究中,晶体类的填充剂如甘露醇,甘氨酸在冻干过程中不能提供蛋白很好的稳定性,但是,一些配方使用了这两种物质的混合物,并且成功地推向了市场。在这些案例中,甘露醇和甘氨酸适当的比例可以导致一大部分的化合物保持无定形状态。这部分无定形状态的化合物足以抑制冻干过程中蛋白的去折叠并且提供长期储存的稳定性。但是建议谨慎选择这种方法,因为达到合适的工艺条件再加上合适的赋形剂比例,既耗时又很难办到的。03赋形剂的合理选择如何合理的选择赋形剂?案例分享举个具体的案例说明,假设:1. 蛋白药物的浓度定在2mg/ml;2. 主要的降解途径是冻干后或复水后蛋白的聚合以及储存期间蛋白的脱氨基;3. 优化具体的条件(如用柠檬酸盐缓冲液控制pH为6)只能将冻干和复水后聚合程度降到10%,尽管样品在低于Tg温度的20℃下进行储存脱氨基速度仍然不能接受。加入晶体类的膨胀剂,如甘露醇,保持样品强壮的结构及良好的外观。在这种情况下,主要缺少的成分是非还原性双糖,其在干燥样品中会与蛋白形成无定形的结构,作为主要的稳定剂,主要选择蔗糖或海藻糖。它们在预冻阶段能够很有效地保护蛋白并且能够很好的抑制复水过程中蛋白结构的去折叠。预冻阶段的保护取决于初始糖的总浓度,有时,超过5%(w/t)的浓度可以尽可能大程度地保持蛋白的稳定性。相反,在干燥阶段,蛋白的保护取决于Final糖和蛋白的质量比。一般来说,糖和蛋白的重量比至少为1:1时,可以提供较好的稳定性,当达到5:1时,可以达到很佳的稳定性。保持蛋白的浓度不变,选取一定范围的糖浓度进行筛选和检测,通过干燥样品中天然结构保留率以及复水后蛋白聚合降低的程度来确定最合适的浓度。一般来说,合适的糖浓度,可以在冻干过程中提供蛋白很好的稳定性,并且如果Final样品的Tg高于储存温度,在后期的储存期间也可以提供蛋白较好的稳定性。例如,假定最高的储存温度为30℃,那么Final产品的Tg >50℃应该是稳定的,但前提是Final样品的含水量需要达到允许的水平,因为水分的存在会降低样品的Tg。可以使用DSC检测每种样品的Tg值。蔗糖/海藻糖如何选择?蔗糖和海藻糖,作为两种常用的稳定剂,均有其优势和劣势,可根据不同的情况进行选择:● 在任何水分含量的样品中,海藻糖均会有较高的Tg,因此较为容易冻干。另外Tg >50℃的条件可以允许样品有较高的残留水分。然而,技术工程师应该能够针对这两种双糖设计经济有效的工艺。如果样品中蛋白浓度较高,可以提高Tg,这样就会弱化海藻糖的作用;● 与蔗糖相比,海藻糖更能抵抗酸解,双糖水解后会产生还原性的单糖,这是需要避免的。通常情况下,如果pH不是很低,如pH4左右或更低,这个应该不是很大的问题;● 蔗糖在冻干过程中抑制蛋白去折叠方面看似比海藻糖更有优势,当蛋白在预冻阶段非常不稳定(需要较高的糖浓度)和/或蛋白浓度较高时,这种优势更明显。海藻糖的相对不稳定性是由于在预冻和干燥过程中其更易于与蛋白之间产生相分离。对于给定的配方,这是否会有问题不能被预测,因此,每种制剂配方都需要检查其保护蛋白的能力。表面活性剂的作用在这里,我们案例中的配方可能就比较完整了,就像许多蛋白质的情况一样。然而,我们假设,即使蔗糖完全抑制可检测的蛋白质去折叠,正如用红外光谱对干燥固体的结构分析所评估那样,在复水后,仍然有1%的聚合蛋白。因为在原始的样品中是没有任何聚合的,假设在冻干过程中,一小部分蛋白发生了去折叠,在复水后,部分这些分子又重新折叠,但是部分聚合在一起。这个实际上看起来是个很普遍的问题,就像在冻干之前一些处理造成的聚合。幸运的是,通过在配方中加入一些非离子型表面活性剂,如聚山梨醇酯(吐温)通常可以抑制蛋白的聚合。要求的浓度通常比较低(<0.5% w/v),通过将表面活性剂滴定到包含所有其它组分的冻干制剂中,可以识别出理想浓度。应避免加入过量,因为表面活性剂在室温下是液体的状态,如果浓度较高,会降低配方的玻璃态转变温度。然而,通常在优化蛋白质稳定性所需的非常低的浓度下,不会有问题。表面活性剂看作是画龙点睛,通常在冻干产品配方中加入表面活性剂是有利的,可以抑制处理过程中界面引起的去折叠和聚集(如起泡夹带或瓶-液界面引起的)。最重要的是表面活性剂在冻干/复水过程中抑制聚合的能力,目前还不太清楚表面活性剂的保护在哪一步起作用的。有资料证明,表面活性剂在冻融及复水过程中可减少蛋白聚合并且在预冻阶段有助于抑制蛋白的去折叠,对干燥固体中聚集物特定红外波段的检查表明,表面活性剂可以抑制冻干过程中产生的聚集。在复水过程中,曲折叠分子的聚合能通过表面活性剂得到抑制,猜测是通过分子之间的相互作用和/或作为一种润湿剂,加速冻干产品的溶解。如果显示表面活性剂在复水过程中是有益的,则可以通过在稀释剂中加入表面活性剂来达到这种效果。 》》》还有哪些意想不到的危险可能会导致失败?尽管根据上述给出的建议,对于给定蛋白,我们可以设计出成功的配方,但是,还有其他一些问题可能会导致Final失败,特别是在长期储存期间。● 赋形剂中经常会有一些污染物,这些会导致蛋白快速的化学降解,糖类和甘露醇中会含有过渡金属元素,表面活性剂可能被过氧化物污染,所有的这些可以促进蛋白的氧化;● 在储存过程中,水分从胶塞转移到产品,引起水分参与的降解,直接损坏蛋白,并且降低蛋白的Tg,加速蛋白的降解,特别是当储存温度高于Tg 时;● 即使在高温(如40℃)下的储存稳定性研究中,一切都表现出理想的状态,但有一个常见的,但很少报道的事件可能是灾难性的,这个问题可以用下面的故事来说明。产品在实验室中在40℃下储存可以保持几个月的稳定性,在冬季,产品在运输过程中也保持良好的稳定性,没有来自消费者的问题报告,然而,有时在夏季,运输后,在室温下储存仅2周后发现产品过度降解,用差示扫描量热仪DSC对一开始的干燥粉末进行了检查,给出了合理的解释,结果发现,制剂中的甘露醇没有全部结晶,而是形成了Tg约为45℃的亚稳玻璃态,当在夏季运输过程中,超过了这个温度时,甘露醇变发生结晶,最先与甘露醇结合的水被转移到了剩余的无定形相中,蛋白相的水含量增加,降低了它的玻璃化转变温度,因此,加速了蛋白质的降解。这个问题可以使用DSC设计合理的退火方案使甘露醇再预冻阶段全部结晶来避免,另外也可以通过调整甘露醇的浓度,降低残留水分含量,使甘露醇即使在45℃的条件下也不会结晶。 》》》对于给定的蛋白药物,这些信息足够吗?对于大多数的蛋白,上面给出的建议一般会设计出成功的配方,但是,每种蛋白都有其独特的物理化学特性和稳定性要求。因此,针对每种不同的蛋白,配方也需要自定义设计。结合蛋白本身的特性知识以及选择合理的赋形剂可以快速设计出稳定的冻干蛋白配方。最后,在快速冻干工艺中保持干物质的物理性质和在干燥后获得天然的蛋白质之间需要折衷,研究表明:当蔗糖结合葡聚糖一起使用时,由于蔗糖的作用,蛋白质的天然结构可以保留在干燥的固体中;葡聚糖的存在提高了制剂的Tg,并提供了一种无定形的填充剂,快速干燥的同时保留了所需的蛋糕性质;其他的一些聚合物有可能提供与葡聚糖相同的优势,如羟乙基淀粉也具有较高的Tg,通常比葡聚糖更容易接受用于肠胃外给药。期望可以合理地利用这些多聚物作为Tg的调节剂,使得制剂更稳定,更容易快速冻干。莱奥德创冻干技术分享关注“莱奥德创冻干工场“,立即获取冻干线上技术分享内容。基于对于冻干研发的一些考量,莱奥德创创建了金字塔冻干技术分享平台:包含了从冻干理论基础,到配方和工艺开发,再到放大及生产,以及进阶的设备管理和线上线下专题内容分享。内容结合了来自Biopharma的冻干理论指导体系、来自于莱奥德创产品经理及应用工程师的实践经验总结及国内外专家的专题内容。获取方式Step 1:关注公众号 扫码关注莱奥德创公众号Step 2:点击菜单栏“冻干讲堂” Step 3:点击你感兴趣的内容Banner Step 4:开始学习 如果您对上述设备或冻干服务感兴趣,欢迎随时联系德祥科技/莱奥德创,可拨打热线400-006-9696或点击下方链接咨询。译自:《Rational Design of Stable Lyophilized Protein Formulations:Some Practical Advice》 John F.Carpenter,Michael J.Pikal,Byeong S.Chang,Theodore W.RandolpH pHarmaceutical Research, Vol.14,No.8,1997* 如有理解错误之处,还请参考原文关于莱奥德创冻干工场上海莱奥德创生物科技有限公司专注于提供前沿的冻干设备应用和制剂开发相关服务,依托于合作伙伴加拿大ATS集团SP品牌和英国Biopharma Group等的紧密合作,致力于促进中国生物医药技术创新升级,助力中国大健康行业的持续发展。莱奥德创在上海及广州设有实验室,拥有专业的技术团队及国内外专家支持体系。莱奥德创面向生物制药、食品科学等各个领域行业客户,提供冻干研发、放大、委托生产及培训等服务。前期研发● 产品配方特征研究:共晶点温度(Te)、塌陷温度(Tc)、玻璃态转化温度(Tg'、Tg)测定等;● 实验室工艺开发:冻干工艺开发:冻干制剂配方开发,工艺确定,申报材料撰写;● 冻干工艺优化:利用中试冻干机上PAT工具优化及缩短工艺;● 冻干产品质量指标测试:水分含量,冻干饼韧度分析;● 咨询服务:如产品外观问题、产品质量问题、其他troubleshooting等;工艺放大/技术转移● 冻干工艺转移/放大: 远程技术指导+现场服务;● 小批量冻干生产(NON-GMP),临床一期生产(GMP);其他业务● 企业小团队线上线下培训服务:冻干原理,工艺开发,设备使用维护等;● 冻干设备租赁服务。400-006-9696www.lyoinnovation.com莱奥德创冻干工场中国(上海)自由贸易试验区富特南路215号自贸壹号生命科技产业园4号楼1单元1层1002室德祥科技德祥科技有限公司成立于1992年,总部位于中国香港特别行政区,分别在越南、广州、上海、北京设立分公司。主要服务于大中华区和亚太地区——在亚太地区有27个办事处和销售网点,5个维修中心和2个样机实验室。30多年来,德祥一直深耕于科学仪器行业,主营产品有实验室分析仪器、工业检测仪器及过程控制设备,致力于为新老客户提供更完善的解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。与高校、科研院所、政府机构、检验机构及知名企业保持密切合作,服务客户覆盖制药、医疗、商业实验室、工业、环保、石化、食品饮料和电子等各个行业及领域。德祥始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!
  • 邀请函 | 2021生物制药稳定性论坛(苏州)
    以重组蛋白、单抗药物、疫苗、基因治疗、细胞治疗等为代表的生物制药是当前世界医药研发的热点和发展方向,但这些生物制药普遍面临不稳定的问题,不仅影响药物的有效性,更会产生包括免疫原性在内的毒副作用。生物药物的稳定性问题直接决定生物药能否成功应用于临床。生物药物稳定性问题的解决需要多学科的紧密协作,包括基础机理研究、工艺开发、制剂开发和质量分析。本次2021生物制药稳定性论坛(苏州)将于5月13日-15日在苏州西交利物浦国际会议中心举办。届时将邀请来自国内外企业界、高校、监管部门等生物制药稳定性领域的知名专家、学者汇聚一堂。大昌华嘉科学仪器部有幸受邀共同探讨生物制药稳定性研究发展趋势和新技术热点,推动我国生物制药产业的高质量发展!本次论坛的演讲和讨论嘉宾名单如下(按姓氏拼音顺序排列)演讲嘉宾单位/职务方伟杰浙江大学药学院副研究员何峰上海诗健生物科技有限公司运营官,联合创始人黄懿臻格生物,分析科学及质量控制部总监刘骏齐鲁药业副总裁刘恒利凯信远达研发中心总监刘永李上海蓝鹊生物技术有限公司制剂总监沈斌彬浙江大学药学院硕士生史力怡道生物科技(苏州)有限公司吴昊沈阳药科大学副教授袁俊杰浙江博锐生物制药有限公司结构表征负责人张志俊大昌洋行产品经理更多专家邀请确认中本次论坛的主题主要包括以下几个部分:1、生物药降解机理研究;2、生物药稳定性表征方法的开发与应用;3、新型生物药(如疫苗、细胞疗法等)制剂开发策略;4、生物药在分析过程中的稳定性。会议时间&地点时间:2021年5月13日-15日地点:苏州西交利物浦国际会议中心大昌华嘉在此诚邀您莅临大昌华嘉DKSH在此诚挚的邀请您莅临展位,与您共同探讨前沿技术,互惠共赢!DKSH展会号:1号展台会议报名&费用1.扫码报名2. 注册费用会议期间安排茶歇和晚宴。晚餐、交通和住宿需自理,酒店提供会议优惠住宿费。联系人:张老师 13866985569邮箱号:zhang_zhongwei@zju.edu.cn
  • 598项!深圳市2022年高等院校稳定支持计划拟资助项目
    11月29日,深圳市科技创新委员会网站公示了2022年高等院校稳定支持计划拟资助项目,共598项,详情如下:根据《深圳市高等院校稳定支持计划管理办法》等有关规定,市科技创新委员会拟对2022年高等院校稳定支持计划598个项目进行资助,现予公示,向社会征求意见。任何单位和个人对公示项目持有异议的,请在公示之日起10天内以书面形式(注明通讯地址和联系方式)向我委反映。单位提出异议的,应当在异议材料上加盖本单位公章;个人提出异议的,应当在异议材料上签署本人真实姓名(姓名不能打印),我委对异议人身份和反映情况予以保密。其他行政主管部门提出异议的,按照有关规定办理。为保证异议处理客观、公正、公平,保护拟资助项目依托单位的合法权益,凡匿名提出异议的,我委将不予受理。  异议受理处室:科技监督和诚信建设处  投诉联系邮箱:complain@sticmail.sz.gov.cn  业务咨询电话:88127371  深圳市科技创新委员会  2022年11月29日序号项目编号项目名称120220808185138001无损超声对阿尔茨海默症的治疗及其神经保护机制研究220220810145705001智能超声心动图结构和血流参数动态测量320220804193203001基于自增强SERS-电化学平台的钙钛矿电解水催化剂原位研究与理性设计420220810124046002面向智能触觉传感的高性能导电弹性材料研究520220810155530001“区块链+保险”背景下去中心化保险定价方式及风险管理的研究620220811121315001面向图数据的开放式学习720220811170904003氮杂环卡宾修饰异相铁基催化剂催化合成氘代化学品与药物820220809185023001数据驱动的图像重建及在异常检测的研究920220810130956001拓扑材料能带几何特性导致的非线性效应研究1020220807145745001康复外骨骼康复策略进化方法研究1120220810154601001能带调控与纳米结构有序化协同增强硫化锡热电性能的研究1220220809104426003高性能ZnO基双有源层薄膜晶体管的制备及电输运机理研究1320220810153817001组蛋白去乙酰化酶SIRT6调控T细胞功能的机制研究1420220809111527001高温燃料电池膜与催化剂间界面调控及传输机制研究1520220807102319001气候变化对粤港澳大湾区红树林湿地分布的影响及适应性管理策略研究1620220809172552003玻璃微光学元件精密快速热压印技术与装备1720220810160740001海洋环境下不同尺寸钢构件腐蚀速率关联规律研究1820220809165141001超声聚集荧光增强技术用于阿尔茨海默症miRNAs标志物的早期检测1920220810184822001桥梁巡检无人机自主飞行关键技术研究2020220810173620003碳中和背景下冰蓄冷系统参与电力市场需求响应控制策略研究2120220809191100001现代建筑与设备一体化设计策略及演化谱系研究2220220810140230001LDH@rCF增强海水海砂水泥基复合材料表界面工程2320220810161616001面向高效人工光合成的二维材料/金属氮化物纳米线异质结构的理性设计与机理探究2420220808172042001产城融合视角下深圳市数字创意产业的空间分布特征与集群发展策略研究2520220809160022001非氧化物镍基纳米材料的调控合成及有机小分子电催化氧化性能研究2620220809154139001基于脑电信号的认知功能状态表征研究2720220810160130001饮食决策的动态加工机制及其干预2820220810164838001高功率效率长寿命敏化型白光OLED器件研究2920220809195202001后疫情时期城市绿地对居民幸福指数影响研究:以深圳市为例3020220807204743001高功率密度 GaN 晶体管栅驱动控制芯片关键技术研究3120220804153845001群体淬灭减缓MBR膜污染技术中细菌菌间关系及功能基因调控机制研究3220220810171518001人际视角下自我表露对亲社会行为的影响及其脑基础3320220810174028001免疫检查点治疗在口腔鳞癌中的耐药机制的探索研究3420220809160139001多源融合视频智能编码与质量分析关键技术研究3520220809191805001人工耳蜗电听觉的时频信息感知及其神经网络表征3620220809160615001直接电解海水自支撑催化剂的构筑及性能研究3720220810143329001不实信息多模态识别算法软件研究3820220810100952001基于菌群智能优化方法的慢性病患者分类和健康管理路径研究3920220812132050001基于fMRI的脑干功能区域划分及其在帕金森病研究中的应用4020220810064150001粤港澳海上丝绸之路申遗路径探析4120220810135520002基于类脑智能的通用视觉定位方法研究4220220810160944001基于空间本体图模型的城市时空融合方法研究4320220809161641002红树林湿地沉积物中新型硫酸盐还原菌的多样性与生态效应4420220808130958001含氟氨基酸(FAAs)和含氟多肽的合成及其在肽类药物研发中的应用4520220810174622001基于集成透镜的双极化球面匹配波束天线研究4620220809163103001非线性波的混合模式4720220810170643004基于节能与院感防控需求的大型综合医院空间设计模式研究4820220810151038001深圳市大学校园空间的防灾避难可达性优化设计策略研究4920220808121346001高安全高强度高电导固态聚合物电解质关键技术研究5020220810144025001面向1000万核国产超级计算机的存储墙问题缓解理论方法研究5120220811005233001音乐训练影响儿童言语加工的认知神经过程5220220810161836001基于低维异质结的高性能全光调制器的开发与机理研究5320220809180405001基于图卷积的视频人体行为分析方法研究5420220810124032001情绪调节的动态发展过程追踪及神经调控干预5520220810110849002相位干涉电场刺激对静息态神经功能网络的影响5620220810160453001回收碳纤维毡微纳结构优化设计与水体抗生素污染物定向转化理论与技术5720220811100052001不同剪切模式下高性能FRP-ECC复合提升混凝土梁抗剪性能及设计理论5820220811012323001乏燃料储运过程智能分析与规划方法研究5920220808143139001地面周期荷载作用下软土地层浅埋盾构隧道力学特性及增韧技术研究6020220809175919001面向云网一体化的智能数控系统关键技术的研究6120220809171532001基于系统代谢工程的微藻基功能强化模拟鱼肉的研发6220220805175116001能量耗散格林函数方法和行进船舶在波浪中的响应6320220807020526001具有热活化荧光和聚集态荧光材料的制备及性能研究6420220808150117002基于动态滑坡灾害空间预测分析的实时滑坡监测与预警系统研究6520220809155403001二维贵金属硫族化合物的可控制备及其红外光探测器件研究6620220809143143001基于原子层沉积技术调控内建电场构筑高性能异质光催化材料及其性能研究6720220808165025003新型铜锌锡硫硒薄膜太阳电池应用基础研究6820220810180617001面向开放场景的视觉环境感知关键技术研究6920220805094705001可印刷MXene基柔性电极材料的制备研究7020220811103827001动态液晶-超表面器件的研究7120220810144837004基于多元异构数据的盾构隧道韧性评估理论研究7220220809165014001铜基二氧化碳电还原催化剂的稳定策略及其电极放大工艺7320220814141429001人本视角下社区承洪韧性评估与提升策略研究——以深圳为例7420220804182935001基于活性蛋白质组技术的大麻二酚干预阿尔茨海默症的靶点及机制研究7520220810103801001基于深度学习的数字化智能核素识别系统开发7620220812111141001阅读障碍者大脑和小脑间功能连接的重组机制研究7720220811152251005滨海大跨桥梁关键构件腐蚀-疲劳损伤机制及韧性提升技术研究7820220810232731001信息中心网络的多播系统和功能虚拟化在设备透明边缘计算中的应用研究7920220810115236001社会认知科学视角下青少年人工智能教育的作用机制及影响效应研究8020220810133200001低压过冷沸腾条件下汽泡热力/动力生长机理研究及模型修正8120220811103835003增强拉曼光学活性微纳光学器件研究8220220804115333001miR9560对菜心镉吸收转运的调控作用及机制研究8320220807222119001基于超声成像的储能电池无损检测技术8420220809125959001基于类脑神经形态像素单元的可信视觉传感芯片关键技术研发8520220811090705001m6A甲基转移酶METTL3介导运动改善糖尿病血管重构中的作用及机制研究8620220808170713001基于空间转录组测序技术探究血小板在振动加速正畸牙移动中的作用机制8720220809194504001用于质子交换膜燃料电池的高载量铂基催化剂的设计与开发8820220810132537001高强韧性钼基复合材料的激光选区熔化成形及其强韧化研究8920220809130438001近红外二区聚集诱导发光材料用于血管堵塞的评估及修复治疗研究9020220811155803001在线社交网络中的高价值信息传播链挖掘问题研究9120220807162217001粤港澳大湾区水汽输送的集聚模式与水灾害效应研究9220220809153419002基于Mn-O配位体调控的宽温自旋电子新材料与器件研究9320220810151419001搭载人工神经网络的宽光谱多维度可调节智能光电探测器9420220811141000001滨海复杂环境下铁路隧道结构隐蔽缺陷识别方法研究9520220811124838001莱茵衣藻ABCG蛋白在脂质合成与转运途径的作用机制研究9620220810160221001面向建筑运维的柔性用能与韧性管理技术研究9720220809120650001基于城市信息模型的大气污染时空演化模拟与可视化9820220810113321001有理函数的核熵9920220810124935001核电厂运行事件智能检测关键技术研究10020220810151354002粤港澳大湾区天然软土宏细观力学机制及变形控制技术研究10120220807184432001“双碳”目标下清洁能源转换效率测度与财政政策研究10220220810094017001免疫治疗与全身系统性免疫动态变化10320220804202415001数据驱动的统计建模、仿真模拟与动态智能分析系统 ——基于20+8产业集群产业链数据10420220810161720001淫羊藿素防治骨质疏松小鼠牙周炎骨缺损的机制研究10520220808173322004七轴微细电火花线切割冗余联动模式及复杂直纹曲面精度创成机理10620220809112159001基于导航数据的城市群医院访问行为时空特征研究10720220811110737003基于地址驱动的路由与安全控制技术研究10820220810142637001面向空地协同通信定位一体化的无人机应急组网关键技术10920220810131017001基于阴离子-π作用调控的N型聚合物热电材料设计及应用11020220811115030001肺动脉高压患者血浆cfDNA差异甲基化基因鉴定及功能研究11120220809212220001MEMS器件钛衬底纳米级精度表面的超精密切削技术研究11220220810180129001地热ORC梯级发电动态特性研究与协同优化11320220810144854005DNA损伤修复蛋白USP11缺乏促进乳腺细胞增殖和异常分化的机制研究11420220810142731001无感电子哨兵关键技术研发11520220804091920001基于非晶合金的多尺度光学模具制备技术、装备及应用研究11620220810151804002负载奥沙利铂的金属有机纳米颗粒用于肝癌的化疗与化学动力学及光热协同治疗的研究11720220812182215001利用超高分辨成像研究lncRNA在PRC2复合体形成与功能中的作用11820220810154235001超强超韧中熵合金激光焊接结构在液氮温度中的循环加载力学特性与变形机制11920220810144949003乳腺癌筛诊疗全流程人工智能辅助平台12020220809170611004面向空间激光通信的2μm全光波长转换调制技术12120220809152330002pn 结型核壳异质结纳米颗粒材料构筑的微米球气敏性能研究12220220810155553002融合知识本体和环境信息的深基坑开挖风险管理决策支持研究12320220809161043002海洋微藻菱形藻紫黄素脱环氧酶(VDE/VDL)调控调控类胡萝卜素生物合成和积累的机制12420220809181431001基于旋转环境的高能效能量俘获机理研究12520220811170440003石墨烯碳基材料在绿色合成中的应用12620220811095710001后疫情时代大湾区观演类文化旗舰项目开发策略研究12720220804234538001螺旋面聚合物空腔内导电高分子的原位合成及分子器件的构建12820220810144826003以人大脑细胞为研究对象探讨载脂蛋白E在阿尔茨海默病中的作用机制12920220809173605001铋基水系碱金属离子负极的失效机理研究及界面优化设计13020220804114140001基于消费者策略行为的网红直播带货供应链优化决策研究13120220814182105001对应光储直柔的光伏新能源建筑能效要素的分析与控制软件开发13220220810172813001稳定化生活垃圾焚烧飞灰螯合物失稳研究13320220812142907001用于新冠病毒核酸现场检测的免扩增快速分子诊断方法研究13420220811110339002壮药三叶香茶菜中Ternifonane型二萜活性成分靶向EZH2构效关系及其增敏铂类化疗药物抗三阴性乳腺癌的作用机制研究13520220810172237002基于脑网络的晕动症动态预测模型研究13620220810164450001压缩浇筑海水海砂混凝土力学性能和耐久性研究13720220810173216001lncRNA-H19调控miRNA-181a/TLR-4在牙髓炎中的作用及其机制研究13820220810153439004面向通信感知一体化可重构毫米波液晶天线技术研究13920220811094132001基于功能磁共振的大脑全局动态模式研究14020220810163220001核电厂事故推演与操纵员任务动态交互的风险监测预警方法研究14120220810173255002基于多时相三维探地雷达图像的道路隐患快速普查14220220810112354002面向复杂小样本的多目标化局部特征选择方法研究14320220809120915001碳-氮多重共振窄谱带电致发光材料的性能研究14420220811154353002通用并行计算平台上的数据流编程接口14520220810100345001双碳背景下可持续平台供应链韧性管理关键技术研究14620220810152104001机器学习中的随机算法研究14720220810095646001面向5G/6G通信的宽带高增益低复杂度缝隙天线研究14820220810142132002钢管-高强螺旋箍筋复合约束再生混凝土柱本构关系与优化设计14920220808141921001采用全息光镊技术实现微纳机器人操控与单细胞成像的研究15020220807153901001面向反渗透浓盐水零排放的新型膜蒸馏用Janus复合膜的制备及其耐久性研究151202208101547460013D打印全连通微通道结构生物陶瓷支架用于血管化骨修复的研究15220220809141216003面向弱小目标的智能视觉检测跟踪理论与方法15320220811031202001可控释自修复骨料性能调控机理与可靠度分析15420220810155330003高能量密度硅碳复合负极材料研发15520220811090420002新业态从业者心理健康现状及其干预研究15620220810163915001电场作用下CFRP-钢混凝土结构的性能评估及可靠度设计15720220809155933002滨海环境下韧性复合材料的轻量化设计、制备与力学性能研究15820220810164959001复杂荷载作用下微胶囊自修复混凝土细观损伤演化机制研究15920220811153252002智能环境下在线健康社区的用户信任风险扩散机制及控制策略研究160202208102027070010-6岁儿童家庭的基层卫生服务利用及健康管理模式研究16120220810120421001柔性导电结构可控制造新方法及其原理研究16220220809155455002基于在线优化和强化学习的无人机通信网络物理层安全关键技术研究16320220808191211001动态系统理论框架下跑步运动损伤的预警机制研究16420220810112113001深圳都市圈多尺度空间环境健康效应与规划应对16520220804103149001非晶去合金化制备高性能多元体系HER电催化剂16620220811094439002AI智能运动训练系统开发与研究16720220810171450002一类含潜变量的删失数据分位数回归模型16820220810142553001基于空间感知的跨视角开放场景定位研究16920220809161224001使用过滤算子技术计算矩阵内部特征值方法的若干问题研究17020220810163811002口腔种植修复体表面仿生纳米抗菌结构的机理研究与临床应用17120220810133521001氢能燃料电池低铂催化剂的应用研究17220220811101028001新型海洋源群感淬灭活性酶的筛选鉴定及其功能分析17320220810171824003普鲁士蓝类配位聚合物的核壳异质界面调控关键技术及其高温储钠性能研究17420220815102613001滨海混凝土抗碳化开裂的机理及韧性提升研究17520220810152651001基于光子人工神经网络的空分复用光传输17620220810150043001基于人工智能深度学习的口腔种植导板的智能设计研究17720220808183719001具有双重冲击响应剪切增稠液的制备与性能研究17820220809200041001运动单位动作电位序列重构的步态康复机器人肌电控制17920220811111306001粤港澳大湾区桥隧复杂工程碳排放评估研究18020220811103029001基于实时态势感知的核电站风险指引型动态自主运行决策技术研究18120220810164735001飞秒激光制备单模蓝宝石光纤光栅高温高压传感器18220220809175803001时序约束情况下多负荷受限机器人多点访问任务分配方法研究18320220809164213001RNA甲基化识别蛋白的作用机制研究及其抑制剂筛选18420220808011114001我国东部湖泊稀有微生物群落的分布格局及其活性特征研究18520220811103834002大环酯肽类真菌次级代谢产物的合成和结构鉴定18620220813151736001脑启发式视觉神经网络模型和算法研究18720220810114654001现代服务业升级:基于异质性微观厂商和产业网络的一般均衡宏观分析18820220724202837001餐厨垃圾厌氧发酵沼液水热定向资源化利用技术研究18920220810123501001锂电池层状正极材料LiNixMnyCozO2中Co的替代策略研究19020220810221952002空间认知视角下的城市风貌评估与模拟:基于大数据与机器学习算法19120220812103301001基于宏基因组技术的盐碱水生态系统微生物群落与功能研究19220220729144037005高性能过采样噪声整形式模数转换方法研究19320220810143642004通过Ar在高强度辉光放电中的作用探索自溅射的实现条件19420220810114419001中层管理者工作不安全感的影响研究:基于工作保存动机的理论视角19520200812164941003地表水环境微塑料与有机污染物典型交互作用研究19620200814103057002多靶点小分子探针用于肿瘤成像诊断与光动力学治疗的研究19720200814103036001靶向去泛素化酶家族的抗新冠病毒抑制剂和抗癌抑制剂的开发和靶标确认19820200827114656001面向神经形态电路的动态时间演进器件建模研究19920200814122231001基于超临界流体工艺改善柔性电子材料性能的研究20020200814213435001城市植被生态系统对气候变化的响应与反馈20120200812124825001富含二硫键天然多肽与GPCR作用机理的研究以及活性多肽的虚拟筛选20220200807025846001低温多晶硅/氧化物半导体的三维混合集成的关键技术研究20320200810223326001行为视角下的城市建成环境评估与优化:基于大数据与机器学习算法20420200816003026001珠三角城市群土地利用研究20520200807164903001面向复杂场景机器人高效作业的混合增强智能20620200827170132001基于多尺度模拟和机器学习相结合的多肽自组装材料计算设计方法的开发20720200814115301001基于表征学习和知识辅助的口语对话关键技术研究20820200810165349001污水处理生物脱氮耦合新兴污染物去除机理与技术研究20920200812142216001城市化地区生态修复的基础理论与支撑技术体系研究21020200811141635001胞外亲环素A抑制剂在II型糖尿病中的应用及机制研究21120200808165742001深圳大气中N2O5非均相反应机制与影响研究21220200806163656003基于智能学习策略的沉浸式媒体信息处理与分析21320200812133137001城市非正规土地利用演化与治理机制研究21420200807125314001钠离子电池正极材料的结构优化与性能调控研究21520200802205241003分子层沉积制备聚酰亚胺薄膜及其应用研究21620200827130534001光子芯片上超快光源的研究21720200827122756001柔性可拉伸突触及传感器件集成研究21820200812100115001基于[3+2]环加成反应构建重要活性天然产物的研究21920200807111854001高性能水系锌离子电池相关基础问题研究22020200827105738001亚热带大都市的城市蒸散发及其生态水文效应研究22120200815000631001两种模式激酶调控剂的发展和比较研究22220200813180415001粤港澳大湾区交通协调发展机制研究22320220811163824001毫米波相控阵天线关键技术研究22420220818165637002面向水下无线电能传输及通信的铁电/铁磁材料关键技术研究22520220811170225001恶意复杂环境下高效通用的安全多方计算技术研究22620220811151646002多臂空间机器人捕获动态目标的非连续动力学系统建模与控制22720220818120229001有机质-铁胶体对地下水中全氟化合物(PFAS)新型污染物的防控作用及机制研究22820220817124251002区块链系统的攻击检测与安全保障技术研究22920220811173949005基于合成生物学的细菌定向去除废水重金属及同步合成金属硫化物纳米材料调控与合成机制研究23020220811151734002混合动力无人机高功重比多模态推进电机系统关键技术研究23120220818151757003单晶半哈斯勒热电材料制备及关键技术研究23220220811152036001压电驱动无传感跨尺度微纳定位新原理与新方法研究23320220811151845006适应电动汽车快速普及的深圳市智能配电网PMU优化配置和混合量测状态估计方法研究23420220817152453003日球层空间天气数字预报研究23520220817143526002平台销售和回收下的闭环供应链决策优化研究23620220811163623002面向硅基光电子集成的片上窄线宽低噪声半导体激光器23720220817125846003离子液体辅助合成单原子催化剂及在锂硫电池中应用研究23820220811152110003基于人工智能技术的高速高机动水下航行器减阻研究23920220811164014001高温环境下复合材料结构表面的液冷散热性能优化研究24020220819054111001注册制下IPO审核问询强度的影响因素、作用机制与经济后果研究:以深交所创业板为例24120220818020341001面向“交通4.0”时代的未来城市空间与共享出行双向耦合系统动力学机制的智能仿真及精准决策技术24220220818172959001城市水载资源再生循环与减污降碳协同调控24320220811163936002一种面向可穿戴医疗传感器的毛细流控柔性燃料电池技术24420220811164142001用于海水电解制氢的固体氧化物电解池性能衰减机理研究24520220811164046002中低温直接氨固体氧化物燃料电池的阳极设计及性能优化24620220811152145004数据与机理混合驱动的超精密伺服切削微纳模具形性一体控制方法研究24720220811151458003面向氢燃料电池空压机的第二代箔片空气轴承承载与动态特性研究24820220818163456002先进封装用铜柱凸点微观组织调控24920220811151529003刚柔耦合可收展变胞机械臂的构型设计与力柔顺控制方法研究25020220818113020001海洋多层温度廓线结构及传热作用机制实验及数值模拟25120220818002513001知识和数据协同驱动的数字孪生双碳系统关键技术研究25220220811164345003固体氧化物燃料电池运行状态下复合阳极界面的力学与热学性能研究25320220811170358002机器同传关键技术研究25420220817140906007高效、高可靠、低成本海上智慧风电场应用基础研究25520220811151912002面向增减材复合制造的多机器人协同加工颤振机理与抑制方法研究25620220817144428005基于自然语言描述的视频流目标行为检索25720220817164856008量子计算和量子通信中的容错关键技术25820220817124827001面向多方医疗隐私数据共享的安全搜索和协同计算25920220811165249002异质组装的超长平板热管传热机理及其动力电池低温热管理新方案26020220811165757005耦合H2 /CO2利用的燃气富氧燃烧多联产热力循环机理及协同优化研究26120220811173340003基于一致性建模的低资源机器翻译方法研究26220220811164244003晶界偏析和CrFeCoNi基高强度高熵合金的抗氢脆性能研究26320220817171516009潜艇指挥塔复杂涡结构及基于机器学习的主动控制研究26420220811170436002基于分数阶方程智能反演计算的药物控释优化26520220817133329001多物理场耦合结构优化软件开发研究26620220811170504001基于蛋白质语言模型的抗菌肽序列识别与优化方法26720220817133854003面向全域资源利用的大规模MIMO关键技术研究26820220811172936001面向大数据分布式存储的局部修复码构造及编解码优化26920220818164924004数字赋能适老性社区建设:系统构建与规划应对27020220817145054002活性污泥显微图像大数据的实时获取与分析技术27120220818224716001小尺度可编程磁性软体机器人的精密制造及靶向递送应用研究27220220818152909001南海海域浮式风机共享锚固基础的关键技术研究27320220811164433002基于金膜辅助剥离技术的大面积二维TMD忆阻器研究27420220818191018001时间关联问题中智能算法的优化理论27520220817131550002光电驱动的二氧化碳转化和利用新途径研究27620220811163309001基于主体建模方法的深圳市社区生活圈识别与评价27720220811173317002基于缺失信息推理的不完备多视图弱标签学习关键问题研究27820220811163342003患者时空轨迹数据支持的综合医院门诊布局效能评估与智能优化研究27920220817123249001基于硅基负极的硫化物全固态电池应用基础研究28020220811163556003高通量遥感卫星数据在轨智能目标检测算法研究28120220817150352006柔性锌基电池的锌负极界面调控策略及其机制研究28220220817145518001基于手性介质超构表面内连续域中束缚态的超快全光偏振开关28320220811173233001数据缺失场景下的时空数据挖掘研究2842022081117010000124小时全天候行人重识别关键技术研究28520220811173149002基于深度强化学习仿蜂鸟微型扑翼飞行器飞行动作计算机仿真28620220811170603002融合在线小样本学习和离线域适应方法的工业未知任务推理与学习研究28720220811163649003基于黎曼流形的快速密集浅水海床声呐建图与识别方法28820220817125818001地下空间光环境智能控制与动态照明的人因工程学研究28920220811151946003基于开放式绕组永磁同步电机的高可靠性重载移动机器人驱动技术研究29020220811152309001面向FRP固体废弃物回收的FRP管-FSW骨料混凝土组合柱的约束机理及受力性能研究29120220811151420001基于手指触视觉反馈的柔软变形体操作方法29220220817131619001新媒体情境中粤港澳大湾区非遗传播的数字化设计策略研究与应用29320220811173736002L-5-甲基四氢叶酸原料药绿色合成新路线的设计、优化与连续化应用研究29420220817123150002多模态机器翻译关键技术研究29520220817151830003增材制造火箭发动机转子的多尺度力学构筑关键技术29620220819112051004物理与信息系统交互下新能源电网稳定运行的关键问题研究29720220811170253002序列驱动的复杂攻击检测方法研究29820220811163904001用于电子皮肤的自组装可拉伸导电纳米薄膜及其规模化制备29920220818114436001大规模无源物联网信号传输与处理关键技术研究30020220818171934001基于三维导向合成技术的单颗粒高精度生物芯片研发及其在新冠抗原快速检测中的应用30120220811163144001运营阶段超高层结构动力性能劣化机理与量化评价方法研究30220220811152211001再利用渣土制备低碳混凝土的力学性能与环境效益研究30320220811165158003负泊松比多孔陶瓷高温热-力耦合与热防护性能的关联机理及性能调控30420220811174022002城市区域云凝结核来源解析及水汽竞争效应研究30520220811170130002基于用户浏览行为预测的全景图像编码30620220811151813005基于数字孪生驱动的动力电池优化控制策略研究30720220811151610001面向无损液滴输运的三维电驱微流控装置的机理研究与功能探索30820220811163751003基于BIC光子器件-钙钛矿光探测器片上集成系统的新型窄带光探测机理和多探测波长窄带探测器阵列芯片集成研究30920220818170353009高维高分辨病理成像与人工智能辅助诊断研究31020220817143919002高性能FRP筋海水海砂混凝土及其结构31120220814221815001基于温度示踪和机器学习方法的地表水-地下水交互作用研究31220220814170440001边缘端面向DNA数据存储的纳米孔自适应测序关键技术研究31320220814180959001POCT微流控芯片中多组分流体的相界面传质动力学机理研究31420220815111542002考虑消费者公平偏好的跨境出口电商退货管理和提质创牌研究31520220814235931001高能质子束对全固态锂电池材料和器件的辐照作用研究31620220815153635001CCDC92在动脉粥样硬化发生发展中的作用机制研究31720220815113550002高机动环境下发动机转子-阻尼-支承系统非线性动力特性及振动控制31820220814170934001基于NO3自由基氧化的夜间大气含氮有机气溶胶生消机制研究31920220814171825001物种和传染病空间入侵的理论研究32020220815162731008中国经济增长尾部风险预测32120220814162144001磁近邻效应对量子自旋霍尔效应及量子反常霍尔效应的调控32220220815001356001超冷强磁性镝原子混合量子气体32320220815171308001基于空间互动行为感知的智慧教室人机系统技术创新32420220814230752003翼型尾缘气动噪声的主被动耦合控制方法与机理研究32520220815111002002肺表面活性物质生成的分子机制研究32620220815101116001Mott相变奇异临界行为与其粘弹性复杂力学机理的研究32720220815164435002基于仿生微纳结构的胃肠道药物递送装置32820220815164834003仿生光遗传学:仿生光驱动离子泵用于神经信号调控的研究32920220815111105001拓扑电磁超表面及其应用研究33020220815121807001分布式光纤声波传感关键机理及技术研究33120220815181327001基于多目标进化优化的机器学习公平性研究33220220815150554001面向BIM(建筑信息模型)装配式空间的设计建造理论与智能监控方法33320220815113214003基于Chan-Lam偶联的硫亚胺多肽合成方法学研究33420220815093611001粤港澳大湾区伶仃洋河口环流和水交换动力机制研究33520220815151149004基于复合超表面的太赫兹无线通信外部调制器研究33620220815111111002面向深度学习交叉交通电气化下无人驾驶汽车的应用研究33720220815103813001拟南芥AP-3复合体亚基AP-3β协助清除热胁迫诱导的应激颗粒机制研究33820220815150609002溶质原子对高温钛合金疲劳过程的位错演化和失效的影响机理33920220815110818001三维温度场的构建及其应用340202208151338260013D打印纤维增强自修复复合材料抗冲击性能及自修复机制研究3412022081509242200230个量子比特的自旋纠缠态的实验实现34220220815104331001面向靶向治疗的复合场操控微纳米机器人设计与集群化协同控制技术34320220815100238003基于城市振动源的地下空间地震学探测方法研究34420220815101643002结合超快飞秒激光与金属纳米探针制备纳米尺度超快点光源34520220815112848002面向大数据的探索式分析关键技术研究34620220815143953004融合基因PTPRK-RSPO3调控循环肿瘤细胞(CTC)远程转移的机制研究以及临床应用34720220815110144003地热开发与地下工程中裂缝网络探测基础理论研究34820220815145811001复杂环境中的微生物周期性轴对称阿米巴运动研究34920220815111555004数据分布变化下的算法设计原理与实证研究35020220815095607001反射型全固态电致变色器件的设计与制备35120220814193849001粤港澳大湾区跨域水生态服务的协同供给机制研究35220220815113158002双碳政策背景下新能源汽车消费市场研究:政策激励与技术创新35320220814203252001抗前列腺癌天然萜类Crotonianoid B的合成与药物化学研究35420220815153728002基于微纳复合材料的柔性降温与皮上体征传感系统研究35520220814233432001过氧化钙对水体病原体的消杀应急技术及机理研究35620220815094504001锌离子电池锌枝晶形核-生长动力学与界面工程策略研究35720220814161004001含硒化合物抑制肿瘤生长的机制研究与靶向策略开发35820220814164755002乙苯光催化脱氢制苯乙烯研究35920220815162316001基于黑磷范德华异质结的新型中红外发光器件36020220815130429001膜蛋白的结构与功能研究36120220815114624002大陆深部地壳部分熔融角闪岩波速和波速各向异性的实验研究36220220815101937003矿物填充内胆式电化学系统回收尿液中养分的效能与机制36320220815145746004高分辨激发态分子束的制备和表征36420220815160107001干旱下植物招募益生菌提升抗旱性的机理和应用研究36520220814165010001基于文献数据的知识图谱体系构建与知识推理36620220815094330001单细胞多模态多组学技术研究胚胎细胞命运决定机制36720220815111736001基于眼底三维模型的视网膜血管注射引导方法研究36820220815100308002面向智能网联汽车的通信辅助感知技术研究36920220815163454004基于空间电荷转移的超分子热活化延迟荧光材料37020220816131408001基于卤素电极的高电压锌基电池及关键问题研究37120220815170157002上市公司碳排放与资本市场表现-来自深交所与上交所主板的证据37220220815084720001滨海断裂带珠江口段设定情景地震风险模型构建及应用37320220815094750002胶体软材料力学特性的微观机制与调控37420220815150606001二维半导体与电介质界面研究37520220815141329003原子层沉积非晶二氧化钛亚稳相的控制合成与输运性能研究37620220814231741002烷基硼酸酯介导的小环分子合成新策略37720220814233319001手性过渡金属杂化材料的设计及圆偏振发光研究37820220815154711001H4K20甲基转移酶SUV420H1介导异染色质形成的分子机制研究37920220814213519001复杂环境下中小地震非双力偶成分的求解及误差分析38020220815161706001面向多主体博弈环境的新型V2G充电网协调规划技术研究38120220815130733001机器学习方法估算中国及邻区大地热流分布38220200925164021002面向自供能技术的新型Mg基室温热电材料、器件和系统研究38320200925161141006稀土团簇基功能材料的合成及其催化性质研究38420200925161222002新型多齿配体控制的非贵金属不对称氢化38520200925161843002植物22nt siRNA的生成和作用机制的研究38620200925161932001新疆阿勒泰造山带富锂铍稀有金属伟晶岩矿床成因及成矿规律研究38720200925162216001面向智能电网光纤在线检测关键技术研究及应用38820200925161102001二维硒化铟单层材料的大面积制备及其范德华异质结的研究38920200925173954005地球极端环境下古菌膜脂的结构组成和功能研究39020200925174052004基于眼脑数据分析的神经退行性疾病诊断和筛查的关键技术研究39120200925174447003面向复杂多目标优化问题的演化算法研究39220200925174525002大亚湾和深圳湾海底地下水与营养物质输入及其环境效应39320200925174603001用于软、湿界面的可调控水凝胶粘接39420200925174640002面向崎岖路况的动力大腿义肢三维视线导引与行走预见控制39520200925174707002“交通-充电-电力”三网协同优化与调控39620200925174735005稀土纳米材料红外二区超敏单分子检测系统39720200925174802001转录因子ZFHX3通过凝聚体调控基因转录和肿瘤生长的机制39820220817212651001滨海/海洋工程装备与基础设施高效防腐涂层的开发39920220820085638002基于深度学习的双光子显微成像关键技术研究40020220820003524001多层次表面微结构复合电火花加工关键技术研究40120220818172424009不对称蓝光铱配合物的设计、合成及其OLED性能研究40220220819134351002常态化疫情防控下轨迹大数据驱动的急救网络智能调度规划研究40320220818001848001激光雷达探测识别“低慢小”目标技术研究40420220818120240002基于无监督学习的多飞行器集群攻防对抗协同策略研究40520220818232202001功率受限的MIMO雷达与多用户通信一体化设计40620220817183401001群智决策中基于计算辩论的语义可解释性研究40720220817233950003MOFs/CQDs协同改性超滤膜处理高藻水效能及膜污染特性研究40820220817163729003手持式低流量敏感型柔性MEMS热膜肺量计关键技术研究40920220819134631001基于深度学习的基因表达调控网络重构研究41020220820003203001蜂格式车联网络入侵检测系统与适应性技术研究41120220817214021001基于深度学习的核电站工况诊断与自动停堆预测技术研究41220220730000151002基于激基复合物敏化结构与AIE圆偏振TADF发光体的叠层有机发光晶体管研究41320220817174758001单原子到纳米级负载型金属催化剂的可控构筑及其去除废水中抗生素的机制和应用探索41420220817233836001基于二维铁磁材料CrI3的新型自旋场效应晶体管设计、制备及测试研究41520220820003755001基于MOF/水滑石复合材料的垃圾焚烧过程二噁英类污染物和温室气体协同控制机理研究41620220818100434001基于深度学习的高效高精度结构光三维成像技术研究41720220820010535001基于功能模块化的约束性多目标粒子群优化算法平台及其应用研究41820220818112518001低成本泛用人体数字化与高保真可信数字人重现的方法研究41920220811134604001基于磷素调控的红树林湿地温室气体排放规律与蓝碳增汇技术研究42020220811170401001多用户可见光通信理论基础及其在车联网中的应用42120220817160017003动力学同位素效应在发光材料的研究42220220812141108001二维矿物MoS2大电流电解水制氢电极与器件应用42320220810110301001超大城市能源代谢路径与碳排放精细化核算技术方法研究42420220816140515001面向智能机器人对话交互的拟人化语音生成技术研究42520220819134430002基于免疫类器官的疫苗佐剂激活的系统生物学研究42620220811144737001从机体层面全面了解线粒体形态在衰老中的作用42720220819153248002基于MAIT细胞生物学特性的疫苗优化42820220810152404001基于手性超构表面的多路复用全息与全偏振涡旋场研究42920220811103500001基于平均场博弈的多智能体协同群智感知43020220817104930002AFM研究NCM正极与卤化物固态电解质界面稳定及离子输运机制43120220818100259004基于编码白光的多通道卷积神经网络43220220810120521003基于磁耦合谐振的水下无线电力传输技术研究43320220811114914001反硝化汇过程对亚热带森林土壤N2O排放的影响机制43420220810144927001基于等离子体射流的热带海洋风电叶片早期缺陷修复技术研究43520220816110140002无人机紫外通信信道模型的研究43620220808143010001规模化电动汽车参与城市电网电碳协同优化调度研究43720200821090937001基于环境功能材料的化学还原-氧化-微生物联合土壤修复技术研究43820200820200655001基于机器视觉的品质检验关键技术研究43920200819115243002新型低成本单原子催化剂的设计及其在先进能量转换中的应用44020200819163549002深圳河流水质稳定提升与生态健康安全评估及保障技术研究44120200821140447001可重构柔性装配中心关键技术研究44220200821104802001通用型脂质体纳米颗粒疫苗研发平台构建44320200819174646001海洋浮式风机选址、基础设计和智能运维关键技术研究44420200819173345002滨海湿地蓝碳生态系统碳循环关键过程与海洋增汇途径研究44520200821150704001肿瘤靶向 1.1 类原创新药及伴随诊断试剂44620200822215113001机器人时代的建筑设计与规划研究44720200818121348001可穿戴生理监测数据分析算法研究与慢病管理应用44820200821100123001乏燃料干法贮存用高温高强高导热铝基复合材料设计与制备44920200820173710001基于毛囊生成单元的皮肤再生及药物筛选系统研发45020200824091903001二维氮化硼的规模化制备与应用研究45120200819105831001我国大规模海上风电场建设影响局地海洋大气过程和季风气候的可能途径和预期效应的研究45220200821141349001高通量自动化结肠类器官微流控评价装备系统研制45320200820160650001基于时间拉伸脉冲的高速激光雷达光电集成系统的研究45420200817152115001面向数字孪生的制造装备状态追踪预测技术45520200818092033001柔性可穿戴光电子器件用于心血管健康监测的研究45620200817144218001深圳市生活垃圾跨介质污染规律与环境风险研究45720220812222043002群智感知网络的激励机制和资源分配关键技术研究45820220812171109001复杂工况下航空航天复合材料结构在线健康监测技术研究45920220811103716001电化学辅助MIL(Fe)/PVDF复合MOFs阴极膜强化去除水中持久性有机物及原位控制膜污染机制研究46020220811141844002基于MOFs的无负极锂金属电池集流体界面设计及电化学性能调控46120220815163819003构建植物-功能微生物光和系统修复重金属污染场地同步合成 纳米金属材料研究46220220814205518001基于抗APAP肝损伤的EGCG结构衍生物分子设计、结构优化及机制研究46320220815100042003单萜吲哚生物碱Alstonlarsine A的高效全合成及抗糖尿病结构基础研究46420220812165832002基于低维钙钛矿表面钝化策略的新型钙钛矿太阳能电池研究46520220814224343001长链非编码RNA MEG3在高效制备胰岛β细胞中的应用和机制研究46620220811224429001软脆材料超声辅助加工系统及其关键技术研究46720220811205532001二维钙钛矿晶体的调控机理与光伏性能研究46820220813171052002基于主-客体策略的金属有机框架材料手性光电性质调控研究46920220812102547001基于领域自适应和集成优化的多模态遥感图像高精度配准研究47020220811173316001基于无人机高光谱遥感的海岸带滩涂亚表层土壤有机碳估算研究47120220814133504001电动汽车无线充电系统电磁环境主动安全防护技术47220220813001358001基于结构化稀疏表示的大规模工业过程故障定位技术研究473202208151747230013D打印技术下的经济与运营问题47420220818160834002蛋白酶抑制剂的理论研究47520220817162136002利用定量合成生物学研究糖尿病低血糖的新机理及急救策略47620220817002906001低噪声多模式毫米波压控振荡器技术研究47720220818085550001生物材料学中偏微分方程解的的结构以及性质47820220817163520001编码理论在秘密分享中的应用47920220817171811004可变构型的超大跨度悬索桥主缆攀爬检测机器人关键技术研究48020220816102040001细胞色素P450酶的药物代谢及其抑制机制的计算化学研究48120220818103715001面向增材制造技术的拓扑优化方法研究48220220817144726001面向目标端智能反射面的无线感知理论与技术研究48320220817155829004循环肿瘤细胞和细胞外囊泡的同步分离和联合诊断技术48420220818094918001例外群幂幺表示的几个问题48520220815184428001高血压脑出血智能化辅助诊疗系统的研制48620220817185604001新型拓扑光学材料48720220818081458001匹配理论及算法在智慧城市网络搭建中的应用研究48820220818145554005量化粤港澳大湾区的疾病负担48920220818153500001数据驱动的电子商务供应链管理49020220818190731003社交网络中的事件发生时间数据统计建模分析49120220818182508001基于智能反射面的抗干扰盲波束赋形理论与方法49220220816151603001可降解生物材料联合外泌体微创治疗心肌梗死的应用研究49320220815115039001基于生理药代动力学模型的吡咯里西啶类生物碱暴露风险评估49420220816193626001数字健康背景下饮食与体重相关问题的防控策略研究49520220817164553007扩散算子的主特征值问题49620220818121954003雌激素类化合物保护细胞氧化性铁死亡的研究49720220817152429002氢化酶燃料电池49820220816165920001光波导的复特征值问题的快速高精度算法49920220817023311001针对高维数据尖峰协方差矩阵的两样本检验和变点检测方法50020220817200154001复杂区域和介质下频域波方程的可扩展求解器50120220817220146001水面强扰动环境中机械臂抓取的关键技术研究50220220817171303001分子聚集诱导簇发光体系的多尺度理论模拟50320220818130906001基于行为理论的智能投资决策问题研究50420220818200133001基于研发数据知识图谱的日志异常分析关键技术研究50520220818105454004我国居民低碳消费包容性碳减排研究50620220816175304001柔性智能响应电解质及其应用研究50720220817222144001多组分氧化物材料光热催化二氧化碳转化50820220815125443001靶向抗耐药性结核杆菌药物的作用机制研究50920220717180742002面向智慧城市摄像头的仿生高透自清洁玻璃微纳阵列结构制造51020220719141014001新型涡旋“突然自聚焦”光束在介质中的传输演化研究51120220717180823001飞秒激光加工梯度纳米结构材料制备微模具工艺机理研究51220220715211524001基于数据驱动的锂电池组热故障诊断机理研究51320220718110918001基于移动端深度网络的视频黑烟车辆抓拍算法设计与优化51420220720162254001基于近红外二区荧光活体成像技术的脑瘤诊疗一体化研究51520220717223051001基于知识与数据融合驱动的异构集群控制与诊断51620220717215521001柔性微梳印刷的光栅增强型 PbS 量子点短波红外光电探测器研究51720220715183602001蛋白质序列远同源性搜索方法关键技术研究51820220718111409001智慧城市车辆全向移动线控底盘系统设计及其运动协调域控制51920220715114600001基于移动轨迹预测的超低功耗窄带物联网资源管理方法研究52020220718100823002探索胰岛素受体异构体在乳腺癌发展中的作用机制52120220716111838002基于大数据搜索增强的磁共振图像重建技术研究52220220718183230002基于深度学习的复杂背景织物瑕疵检测研究52320220715114836001排序任务软件缺陷预测的算法研究52420220717183323001用于循环回收钴酸锂的低共熔溶剂合成及反应机理研究52520220719115545001车轨耦合模型-多元地面监测数据混合驱动的动车组小径跳车轮多边形化识别方法研究52620220718173849001基于3D打印水凝胶涂层的长期稳定性连续血糖传感器的设计与优化52720220717173443001超大网络子图挖掘与应用52820220717104706001基于定量相位显微技术的透明样品三维成像技术研究52920220717181409001三阴性乳腺癌中双靶向BRD4/PAK1的小分子抑制剂的设计合成及机制研究53020220717174112001铅冷快堆用ODS-FeCrAl选区激光熔化形性调控研究53120220716001753001用于高效水分解产氢的 BiVO4/BDD 异质结光阳极的制备及其载流子输运机制研究53220220719104008001高功率时空锁模碟片激光器研究533202207171614520013D打印皮肤表面可穿戴多波长光电探测器系统的开发53420200820202845001先进金刚石材料的合成工艺与多领域应用技术开发535202008202140520018K 裸眼 3D 电视机53620200820185250001智能汽车性能评估系统研制53720220618104457001基于中长期规划的新型自适应多阶段随机优化模型研究53820220618114319001面向早期乳腺癌筛查的通用无创光声层析成像技术53920220618160306001社交媒体信息传播动力学机制与演化博弈方法研究54020220618114250001高功率可见光光纤飞秒激光技术54120220618110244001滤池生物降解嗅味物质2-MIB的机理研究54220220618105642001基础设施智慧终端数字生态系统价值共创机理研究54320220619105202001基于街道的自行车基础设施友好性评估研究54420220618155811001污水中氮磷精准分离机理及精准分离纳滤膜系统研究54520220817155416005基于激光致热梯度液滴操控平台的 DNA 甲基化检测54620220817204433001分数阶微分方程高阶无记忆方法及应用研究54720220818122054001企业贸易网络、信息摩擦与中国企业贸易行为54820220816113416001水氮胁迫下水稻根际微生物区系特征及其构建机制54920220817175048002工程提速等优化问题的高效算法的设计55020220816094256002对撞机上的长寿命粒子研究55120220816152743007基于多平台和热红外遥感的城市蒸散发及其生态水文效应研究55220220818182334001“捕光捉影”式太阳能驱动解水制氢材料与器件55320220815155101002折展式张拉整体结构的形态设计与动力学试验研究55420220818100717002基于跨代孟德尔随机策略解析妊娠期宫内环境暴露对儿童生长发育的因果影响55520220817153451002血药浓度筛查用高通量微流控便携式质谱开发55620220817201129001“一城多站”布局下的高铁站可达性优化研究55720220818100233002干扰素刺激基因LY6E通过干扰受体介导的病毒颗粒内化抑制乙肝病毒感染和复制的机制研究55820220816162653003国家重点保护野生植物的分布格局和保护现状评估55920220818145540004金属卤化物钙钛矿量子点固体的激子扩散性能56020220818183014003(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C高熵超高温陶瓷的仿竹木结构设计及增韧机理研究56120220817160049006肿瘤脂质重编程纳米盘系统的构建及逆转耐药性机制研究56220220815233029001近临界CO2微流控芯片内流动沸腾实验探究56320220817122906001DNA与RNA双重结合蛋白检测方法的开发及其在癌症研究中的应用56420220817165030002受昆虫净角器启发的仿生高空清洁机器人56520220817234712001基于沉浸式虚拟现实技术的ADHD定量评估方法研究56620220817185259001固溶氢与表面划伤耦合作用下蒸汽发生器传热管在高温高压水中应力腐蚀开裂机制研究56720220815111354002深圳中生代古生物多样性及古环境重建56820220816161126002基于大规模磁导柔性电极阵列的脑神经调控与读取技术的研究56920220818153519003激光通信装置中大口径反射镜支撑系统关键技术研究57020220818153719001面向MEMS电容式加速计的低功耗高分辨率delta-sigma型ADC研究57120220817134430001DNA复制后新生核小体的展开状态的动态变化57220220817180954005基于异构图嵌入的跨域学习与推荐方法研究57320220816102553004天然有机质介导的生物炭纳米颗粒与藻类相互作用机制研究57420220815095750002果胶修饰对生菜品种间镉积累差异的调控机制57520220816120505001孕前-孕期压力与婴幼儿情感和社会行为特征的关联及其表观遗传机制研究57620220816233305001RAG同源转座子的功能演化与应用研究57720220816162849005亚热带森林精细尺度物候多样性遥感监测和成因分析57820220816225523001面向复杂形态的文字检测与识别研究57920220818231644001基于冷热综合利用的高效碳捕获系统优化研究58020220817094427001基于强化学习的全景视频智能传输算法研究58120220815171723002机载高低频曲线SAR成像处理与检测识别关键技术研究58220220817184157001信号分析、机器学习和矩阵分解中的稀疏优化问题研究58320220817200513001多边市场下网约车聚合平台的运营策略与优化研究58420220816231330001空间机器人抓捕逃逸目标的自主控制58520220817214511001囊泡主动转运药物载体的设计及跨上皮细胞转运机理研究58620220818181805001铁性材料畴结构电输运特性及其神经形态器件机理58720200830225317001基于类脑机理的无人系统智能可信导航技术58820200830220051001基于人工智能的仿生飞行器关键技术及机理研究58920220818143907001无线通信物理层智能信道预测和下行传输关键技术研究59020220819092520001自然科学中几类控制优化问题的算法分析59120220818175108005新形势下中国企业国际化的影响因素及对策研究59220220819093313002超低频宽禁带力学超材料智能优化设计和力学性能分析59320220819092934001基于距离矩阵分析的基因组研究59420220818111540004用于骨组织再生的功能化丝素蛋白基支架59520220818180206001工业机器人用伺服电机关键技术研究59620220818193126001企业研发支出在内生成功率的情境下资源配置的最优化研究59720220818150511001高效率蓝光钙钛矿电致发光器件研究59820220817194158001铝离子电池负极沉积行为与电解液添加剂优化研究
  • 一招教会你快速制备稳定的微液滴!
    在基于液滴的微流控系统中,微液滴的稳定生成且不融合对后续实验操作有很大影响。本文将逐步探讨如何制备稳定的微液滴。图1.不同液滴生成油的效果对比介绍基于液滴的微流控技术正在成为生化分析筛选的有力工具。液滴微流控生成的液滴体积小至皮升级,且液滴单分散性极高,每个液滴都可作为独立的微反应器。此外,在这些液滴形成后,还可对其进行连续操作,如孵育、液滴融合和基于荧光的活化分选。高频率(kHz)的操作可以在小体积的反应器中进行,这使得这项技术非常适合小分子合成、药物发现和定向进化等领域的高通量筛选。这些应用通常基于荧光测定完成,而在测定之前荧光产物必须被有效的限制在液滴中。然而,在实际操作过程中,水相中化合物成分,如盐、微生物和细胞分泌物,均会对液滴的稳定性造成一定的影响,进而导致液滴间交叉污染或液滴间相互融合。因此,在制备液滴时,保证液滴的稳定生成且不融合至关重要。以油包水的液滴为例,常见的方法是在油相中添加表面活性剂降低液滴表面张力,以避免其融合。然而,不同的液滴生成油体系(油+表面活性剂)展现出的效果差异较大。本文以FluidicLab提供的微滴生成仪结合配套的PDMS标准芯片,以DMEM培养基为水相,以三种不同体系的液滴生油为油相,制备生成液滴并考察其稳定性。试剂与方法三种液滴生成油依次是在矿物油中加入6%Span-80的液滴生成油,在棕榈酸异丙酯中加入6%EM-180的液滴生成油,在HFE-7500电子氟化液中加入2%全氟表面活性剂的液滴生成油(Drop-Surf氟油);水相为DMEM培养基。FluidicLab提供的微滴生成仪结合配套的PDMS-FF-100标准芯片,以上述三种液滴生成油为油相,以DMEM培养基为水相,通过调整合适的流速生成100μm左右的液滴。随后,将生成的液滴收集到疏水的基底上,通过显微镜观察液滴形态。液滴稳定性对比由实验可知,在同一芯片中生成100μm左右的液滴,所用油相体系不同,稳定生成液滴的流速也很有大差异。以Drop-Surf氟油为油相制备液滴,可以实现极高的流速稳定生成液滴(Vwater=40μL/min)。这一结果由图2可知,在同一曝光时间和帧率下,相比于其他两种油相体系,相机更难捕捉到以Drop-Surf氟油为油相时液滴生成运动轨迹(图2.C)。图2.A、B、C三图分别为矿物油、棕榈酸异丙酯、Drop-Surf氟油三种体系的液滴生成状态在将生成的液滴接收到疏水的基底上后,通过显微镜可以准确观察到液滴的形态,且随着时间的延长,液滴的稳定性也有很大变化。由视频1可知,以矿物油体系为油相制备的液滴稳定性较差,高密集度液滴下融合显著;以棕榈酸异丙酯体系为油相制备的液滴,具有相对较好的稳定性,且随时间延长并未出现明显融合(有小部分大液滴存在);而以Drop-Surf氟油为油相制备的液滴,表现出极好的稳定性,高密集度下随时间延长无任何融合现象出现。结论在采用不同的油相体系(油+表面活性剂)制备油包水液滴时,液滴生成频率、水相流速和液滴稳定性有明显差异。采用矿物油体系制备的液滴不仅稳定性差,液滴生成频率和水相流速慢且后期收集的液滴更易融合;采用棕榈酸异丙酯体系制备的液滴稳定性虽相对较好,但同样存在液滴生成频率和水相流速慢的问题,此外,棕榈酸异丙酯熔点高(11~13℃),低温易凝固,这也很有可能影响液滴的正常生成。而采用Drop-Surf氟油制备的液滴则具有极高的稳定性,具有剪切频率、流速快等优点。
  • 新版《中国药典》:原料药稳定性试验条件更严格
    p  2015年版《中国药典》第四部通则9001《原料药物与制剂稳定性试验指导原则》中规定了相关药物稳定性试验条件要求。具体如下:/pp  原料药物要进行以下试验。/pp  (一)影响因素试验/pp  此项试验是在比加速试验更激烈的条件下进行。其目的是探讨药物的固有稳定性、了解影响其稳定性的因素及可能的降解途径与降解产物,为制剂生产工艺、包装、贮存条件和建立降解产物分析方法提供科学依据。供试品可以用1批原料药物进行,将供试品置适宜的开口容器中(如称量瓶或培养皿),摊成厚的薄层,疏松原料药物摊成 10mm厚的薄层,进行以下试验。当试验结果发现降解产物有明显的变化,应考虑其潜在的危害性,必要时应对降解产物进行定性或定量分析。/pp  (1) 高温试验/pp  供试品开口置适宜的洁净容器中,60℃温度下放置10天,于第5天和第10天取样,按稳定性重点考察项目进行检测。若供试品含量低于规定限度则在40℃条件下同法进行试验。若60℃无明显变化,不再进行40℃试验。/pp  (2) 高湿试验/pp  供试品开口置恒湿密闭容器中,在25℃分别于相对湿度90%± 5%条件下放置10天,于第5天和第10天取样,按稳定性重点考察项目要求检测,同时准确称量试验前后供试品的重量,以考察供试品的吸湿潮解性能。若吸湿增重5%以上,则在相对湿度75%± 5%条件下,同法进行试验 若吸湿增重5%以下,其他考察项目符合要求,则不再进行此项试验。恒湿条件可在密闭容器如干燥器下部放置饱和盐溶液,根据不同相对湿度的要求,可以选择NaCl饱和溶液(相对湿度75%± 1%, 15.5-60℃),KNOsub3/sub饱和溶液(相对湿度92.5%, 25℃)。/pp  (3) 强光照射试验/pp  供试品开口放在装有日光灯的光照箱或其他适宜的光照装置内,于照度为4500lx± 500lx的条件下放置10天,于第5天和第10天取样,按稳定性重点考察项目进行检测,特别要注意供试品的外观变化。关于光照装置,建议采用定型设备“可调光照箱”,也可用光橱,在箱中安装日光灯数支使达到规定照度。箱中供试品台高度可以调节,箱上方安装抽风机以排除可能产生的热量,箱上配有照度计,可随时监测箱内照度,光照箱应不受自然光的干扰,并保持照度恒定,同时防止尘埃进人光照箱内。此外,根据药物的性质必要时可设计试验,探讨pH值与氧及其他条件对药物稳定性的影响,并研究分解产物的分析方法。创新药物应对分解产物的性质进行必要的分析。/pp  (二)加速试验/pp  此项试验是在加速条件下进行。其目的是通过加速药物的化学或物理变化,探讨药物的稳定性,为制剂设计、包装、运输、贮存提供必要的资料。供试品要求3批,按市售包装,在温度40℃± 2℃、相对湿度75%± 5%的条件下放置6个月。所用设备应能控制温度± 2℃、相对湿度± 5%,并能对真实温度与湿度进行监测。在试验期间第1个月、2个月、3个月、6个月末分别取样一次,按稳定性重点考察项目检测。在上述条件下,如6个月内供试品经检测不符合制订的质量标准,则应在中间条件下即在温度30℃± 2℃、相对湿度65%± 5%的情况下(可Nasub2/subCrOsub4 /sub饱和溶液,30℃,相对湿度64.8%)进行加速试验,时间仍为6个月。加速试验,建议采用隔水式电热恒温培养箱(20-60℃) 。箱内放置具有一定相对湿度饱和盐溶液的干燥器,设备应能控制所需温度,且设备内各部分温度应该均匀,并适合长期使用。也可采用恒湿恒温箱或其他适宜设备。对温度特别敏感的药物,预计只能在冰箱中(4-8℃)保存,此种药物的加速试验,可在温度25℃± 2℃、相对湿度60%± 10%的条件下进行,时间为6个月。/pp  (三)长期试验/pp  长期试验是在接近药物的实际贮存条件下进行,其目的是为制定药物的有效期提供依据。供试品3批,市售包装,在温度25℃± 2℃,相对湿度60%± 10%的条件下放置12个月,或在温度30℃± 2℃、相对湿度65%± 5%的条件下放置12个月,这是从我国南方与北方气候的差异考虑的,至于上述两种条件选择哪一种由研究者确定。每3个月取样一次,分别于0个月、3个月、6个月、9个月、12个月取样按稳定性重点考察项目进行检测。12个月以后,仍需继续考察,分别于18个月、24个月、36个月,取样进行检测。将结果与0个月比较,以确定药物的有效期。由于实验数据的分散性,一般应按95%可信限进行统计分析,得出合理的有效期。如3批统计分析结果差别较小,则取其平均值为有效期,若差别较大则取其最短的为有效期。如果数据表明,测定结果变化很小,说明药物是很稳定的,则不作统计分析。对温度特别敏感的药物,长期试验可在温度6℃± 2℃的条件下放置12个月,按上述时间要求进行检测,12个月以后,仍需按规定继续考察,制订在低温贮存条件下的有效期。长期试验采用的温度为25℃± 2℃、相对湿度为60%± 10%,或温度30℃± 2℃、相对湿度65%± 5%,是根据国际气候带制定的。国际气候带见下表。/pp  温带主要有英国、北欧、加拿大、俄罗斯 亚热带有美国、日本、西欧(葡萄牙—希腊) 干热带有伊朗、伊拉克、苏丹 湿热带有巴西、加纳、印度尼西亚、尼加拉瓜、菲律宾。中国总体来说属亚热带,部分地区属湿热带,故长期试验采用温度为25℃± 2℃、相对湿度为60%± 10% ,或温度30℃± 2℃、相对湿度65%± 5%,与美、日、欧国际协调委员会( ICH )采用条件基本是一致的。原料药物进行加速试验与长期试验所用包装应采用模拟小桶,但所用材料与封装条件应与大桶一致。/pp  br//pp /p
  • 分析仪器稳定可靠的光电技术保障:详解 BCEIA 2017 滨松新品
    由中国分析测试协会主办的第十七届北京分析测试学术报告会暨展览会(bceia 2017)于10月10日-13日在北京国家会议中心举办,现场可谓是红红火火,人从众众!而滨松展台上也聚集了新老朋友,人潮攒动在一个不大的透明展柜周围,而在这个展柜中,就是这次滨松为分析仪器应用准备的新惊喜!按照分析技术手段的不同,分析仪器一般可分为光、电、色、质四大板块,那针对不同领域,此次滨松带去的“新惊喜”——新产品和新的解决方案到底是怎样的呢?下面让我们重返会场,打开展柜的玻璃罩,一个一个地拿起来详细解读,同时也将分享各种分析仪器应用的小知识哦!here we go~滨松中国展台质谱质谱技术发展至今已逾百年,一百多年来,质谱工作者们站在彼此的肩头,将一个简单的物理现象在理论和实践上推到今天的高度。从一开始对元素同位素的辨别、相对原子量的测定,到第二次世界大战用于分离核燃料铀235制造原子弹,乃至今天广泛应用于化学、环境、医学及生命科学研究,质谱技术的每一次进步,都推动了其他相关领域,如原子物理学、化学、材料科学、核技术、环境科学、生命科学乃至地球和天体科学的发展。 质谱技术的核心是“制造离子”和“检测离子”,其他所有的一切都是为这个目的服务。上图是质谱仪的基本工作流程,在本次bceia中,图中所示的几个重要元件就是滨松展台的重头戏之一。1、电离源要在质谱仪上检测到某种化合物,前提是这种化合物必须被电离,因此离子源的发展一直影响着质谱技术的发展,反过来质谱技术的发展也对离子源不断提出着更高的要求。 常见的质谱离子源包括电子电离源(ei)、化学电离源(ci)、大气压化学电离源(apci)、大气压光致电离离子源(appi)、快原子轰击电离子源(fab)、基质辅助激光解析电离源(maldi)等。 大气压光致电离源(atmospheric pressure photoionization,appi)是由前苏联的i. a. revel’ skii在1986年推出的,其最初的目的是取代放射性的ni63来提供分子电离的能量,出乎意料的是,这一改变使仪器的线性范围得到扩展并提高了灵敏度。之后通过对结构的不断改进,这种技术逐渐应在了那些难于被esi和apci技术离子化的化合物上。而且,由于appi不仅能够将非极性分子离子化,其应用还能扩展到极性化合物,因此取得了快速发展。 光致电离是使用波长在真空紫外区(vacuum-ultraviolet, vuv)的光子所携带的高能量使待测化合物电离,此次出展的全新光致电离离子源——vuv氘灯 l13301,就可以很好的担起这个任务。带有驱动电路的vuv氘灯l13301 基于mgf2窗材的滨松vuv氘灯可以促成一种高电离效率、碎片离子峰产生量少的新型软电离方式。 它的电离能可达到10.78ev,电离效率提高,且相对于传统pid灯可以电离出更多的离子,使仪器整体灵敏度有数倍提高,此外还具备低成本、易安装等特点。2、探测器探测器作为质谱仪的“眼睛”,和质量分析器一起在检测端担当起双核之一的重要作用:如何将微弱的离子信号放大到能够使人顺利辨别的水平并将其背景干扰排除。 从最初的无极质谱时代的手工描绘到干版照相感光,再到有机质谱出现后的长条记录仪和光束示波仪直至各种不同的电子倍增器,质谱仪的探测系统经历了漫长的发展过程。因为探测器的主要任务是检测质谱仪产生的离子信号,因此灵敏度、精确度和反应时间就成为衡量探测器的重要指标。电子倍增器电子倍增器(electron multiplier, 下称em)是目前使用最多的质谱探测器,其形式多样,基本原理是对带电粒子产生的次级电子进行放大。从质量分析器出来的离子根据其极性不同被施加正/负高压,在此高压下离子被加速进入em。em可分为非连续式(discrete dynode electron multiplier,下图a)和连续式倍增电极(channel electron multiplier, cem,下图b)。其通常有13~23级表面涂布有良好次级电子发射能力的金属氧化物(如cu-be的氧化物)的倍增电极。从质量分析器出来的离子束被聚集在第一级(或转换打拿极)上之后从其表面会发射一次电子,一次电子的数目和离子束的性质(质量、携带电荷、结构等)、撞击速度、倍增极表面金属合金氧化物的功函数等因素有关。根据电子轨迹的设计,一次电子之后打到之后的倍增极产生二级电子,最后阳极部分负责将经过各级倍增的二次电子进行收集,并通过外接电路将电流信号进行输出。 而从本质上来说,em就是没有光阴极面的光电倍增管(pmt)。(下图中蓝色线标注部分)传承了pmt的工艺,滨松em也已有40年的历史。因为em一般作为四级杆及四级杆相关串联质谱仪的探测器去应有,需要进行定量分析,因此要求em具有宽动态范围、长寿命、高增益等特性。除了具有上述特征外,滨松的em还能够根据客户不同需求提供丰富的产品线:小体积紧凑型、低噪声结构型、双极性探测型、大动态范围双模式输出型等。 近年来,针对冶金、环保、地质矿产、食品等领域越来越多的痕量重金属检测需求,icp-ms得到更加广泛的应用,因为icp-ms面向的是痕量无机元素的测定(检出限ppt级别),本次展会上的具有大动态范围双模式输出(模拟输出和计数输出)的em r13733就十分合适了。当入射离子量很小时,可以选择高增益的技术模式对输出脉冲进行计数;当入射离子量增加较多后,可以选择较低增益的模拟输出模式。这样探测器就可提供更宽的动态范围,避免饱和输出。不同模式下r13733的增益曲线 双模式输出工作示意图 荧光屏 在电子光学聚焦系统中,为把光电子图像转换为可见的光学图像,通常需要荧光屏。荧光屏是由发光材料的微晶颗粒沉积或喷涂而成的薄层,可以将电子动能转换成光能。 某些金属的硫化物、氧化物或硅酸盐等粉末状晶体在适当处理后具有受激发光的特性,这些材料称之为晶态磷光体,当高速光电子轰击荧光屏时,晶态磷光体基质中的价带电子受激跃迁到导带,所产生的电子和空穴分别在导带和价带中扩散。当空穴迁移到发光中心的基态能级上时,就相当于发光中心被激发了,而导带中的受激电子有可能迁移到这一受激的发光中心,产生电子和空穴的符合而释放光子。 展会上具有极短衰减时间(仅为3.5ns)的滨松快速荧光屏j13550-09d,可以与微通道板结合构成组件,使得待测离子打出的电子在荧光屏上进行显像。微通道板(组件)微通道板(microchannel plate, mcp)是一种蜂窝状的二维平面真空电子器件,其板面上有数目巨大的直径为4~25μm、长度在数十μm到数mm之间的微孔,实际上是一块通道内壁具有良好二次发射性能和一定导电性能的微细空心通道玻璃纤维面板。 mcp表面由高电阻的材料构成,为连续式的倍增电极,其工作原理和电子倍增器类似,首先是离子或光子撞击倍增电极表面产生一次电子或光电子,而后反射撞击下一表面产生多次倍增的二级电子使信号放大。将微通道板集成了阳极、电压接线、电容、法兰、螺孔等功能器件后即是微通道板组件,可作为独立功能的探测器件对飞行时间质谱仪(tof-ms)的离子信号进行测量。 飞行时间(time of flight, tof)质量分析器自上世纪50年代出现在质谱领域,其基本思想是测量离子离开离子源后,在通常为1~2m长的真空飞行管中飞行到达检测器所需的时间。基本工作原理 因为飞行路径中没有电场/磁场影响,尽管所有的离子在离开离子源时具有同样的动能,但由于不同的离子具有不同的质荷比(m/z)从而影响其飞行速度,到达探测器的时间也就有先后,m/z小的离子先到,m/z大的离子后到。 在tof-ms发展的早期,因为缺少能使大分子离子化的电离源,主要使用的离子源是ei,但是ei源产生的离子动能基本一致,tof中离子飞行动能受到初始动能的影响使其飞行时的速度差别不大,导致tof-ms的仪器解析能力不高,再加上当时使用的光束示波记录仪赶不上仪器数据产生的速度,制约了tof-ms的应用。 tof-ms的重生是上世纪80年代伴随解析离子源,特别是maldi技术的发展而开始的。再加之探测器及数据采集技术的发展,使得tof能够在更大的m/z范围内以更快的速度、更高的解析能力来获取完全的数据。 tof-ms较其他质谱仪具有灵敏度好。分辨率高、分析速度快、高质量检测限等优点,再配合基质辅助激光解析离子源(maldi)/电喷雾电离源(esi)/大气压化学电离源(apci)/大气压光电离源(appi),使之成为当今最具发展前景的质谱仪。 现在tof-ms已被用于很多国际前沿和热门课题的研究:小分子领域,如结合气溶胶采样系统或vuv真空紫外光源,应用于环保pm2.5或是vocs在线源监测及应急监测;大分子领域,结合maldi应用于蛋白质组学、药物代谢、基因及基因组学、微生物检验等领域,特别是在大通量、分析速度要求快的生物大分子分析中,tof-ms成为唯一可以实现要求的分析手段。 针对tof-ms的特点及对mcp探测器的要求,最新的f12396-11、f13446-11、f1094-11作为代表在bceia中登场,他们诠释了如下几个滨松mcp的突出特征: a、相应速度快b、极小的后脉冲c、鲁棒性,无畸变滨松的mcp组件对于环境有很好的耐受度,即使长期使用依然能够保持良好的平坦度,长时间保持很好的“jitter time”表现。d、漏斗型mcp,保持更高探测效率漏斗型mcp接受通道可使更多的离子进入mcp通道内,保持更高的探测效率 除以上特征以外,其还可结合荧光屏进行电光转换,后端加ccd相机可显图像。滨松拥有mcp裸片及组件在内的丰富产品线,可根据科研、产业等不同的需求,选择合适的型号(也提供定制化服务)。 光谱在原子光谱(原子吸收、原子发射、原子荧光等)及分子光谱(紫外可见分光光度计、红外光谱仪、分子荧光光谱仪、激光拉曼光谱仪、光纤光谱仪等)应用中,都经常出现滨松pmt、各类半导体器件及光源的身影。 相比于传统的电子真空器件,近年来半导体类器件在分析仪器中得到了广泛应用,比如最近刚揭晓的2017年诺贝尔化学奖——冷冻电镜硬件部分的高峰,即是利用4k*4k的ccd图像传感器作为直接电子探测器得到应用。此次bceia中,两个近红外新半导体器件也是光谱应用中的必看点。 我们都知道,近红外(NIR)光谱仪和拉曼光谱仪近年来备受关注,特别是在食品安全、农业畜牧业、药物质检、国土安全等领域,便携式手持式近红外、拉曼光谱仪得到越来越多的应用。针对市场对于小型化便携化及特别应用的需求,这样的产品即呈现了出来:lcc(leadless chip-carrier)封装线阵ingaas图像传感器g13913系列(近红外应用)相比于DIP封装的InGaAs图像传感器,g13913系列具有更小更紧凑的体积,功耗低,便于客户集成到便携式近红外光谱仪中。基于mems法布里-珀罗干涉(fpi)的微型近红外光谱探测器c14272、c13272-02(近红外应用) 关于这款产品想必都不陌生了,c13272系列是滨松推出的笔尖大基于mems-fpi近红外光谱探测器、曾入围国际光学“棱镜奖”,并获得了本届“bceia新产品奖”的荣誉。因为其极致紧凑的身躯、低成本、以及可工作在近红外波段等特征,一经面世便获得巨大关注。 系列还在不断扩展中,最新的c14272系列也即将上市。相比于c13272系列,c14272具有不同的波长范围(1350nm~1650nm)和更大的单点探测器面积,将为近红外光谱仪开发应用提供更多的可能性。c14272系列分光光谱图 InGaAs近红外探测器G14237系列(1064nm拉曼应用) 拉曼光谱可以高灵敏度分析化学物质的结构和组成,具有非接触、非侵入性和无损性,无需样品制备(或者只需简单样品制备)等特点。随着仪器开发和分析方法等方面的突破,如荧光校正技术等,拉曼光谱得到越来越广泛的应用,包括药物分析、爆炸物探测、文物检测、医疗诊断等多个领域。 发展高效和易于使用的小型便携式或手持式拉曼系统,是拉曼光谱一个重要方向。大多数这样的手持系统能够直接分析容器和包装袋中的样品,不需要任何样品制备,同时也避免了对化学物质的接触。 一般商用化的小型便携或手持拉曼系统多采用532nm、785nm、1064nm的激光器,但对于一个特定的应用来说,通常只有一种可以提供最好的解决方案。所以选择最佳激发波长时要考虑多方面的因素:每个激发波长对应的分析速度和准确度、样品的荧光背景、样本基质的透明度(容器壁、溶剂、被测物等)。在面对具有很强荧光信号的待测物时,为了降低背景荧光信号,1064nm激光器拉曼无疑是最佳选择。苏丹红的1064nm vs 785nm激光拉曼信号 但拉曼强度与激发波长的四次方成反比,针对1064nm激光拉曼的信号较弱,因此需要具有更低噪声和暗电流的InGaAs图像传感器。考虑到很多测试中2500cm-1拉曼位移已经可以满足应用,此时对应的波长在1450nm左右,因此滨松推出了具有更低暗噪声、长波截止波长在1450nm的ingaas图像传感器。InGaAs近红外探测器G14237系列 液相色谱 紫外可见(UV-Vis)检测器/二极管阵列检测器(DAD)是高效液相色谱(HPLC)中应用最多的检测器。其检测器的光源紫外部分为氘灯。此次出展的X2D2氘灯L9518的中心部分亮度是常规氘灯的2倍,为检测器灵敏度的提升提供了更优选择。针对UV-Vis或DAD检测器的探测器端,升级后的PPS(passive pixel sensor)型cmos图像传感器s10121系列则带来了更好的表现。HPLC中对检测限和动态范围要求较高,相比于APS(active pixel sensor)型cmos,PPS型cmos具有更低的噪声和更高的动态范围。aps和pps型cmos图像传感器对比 而s10121系列相比于之前的PPS型cmos图像传感器,具有更高的紫外响应和紫外响应平滑度,且针对紫外区域探测,滨松的cmos图像传感器无需镀膜,没有多步光电转换的损耗且没有薄膜损耗,给仪器应用提供更优化的探测端使用体验。以上就是bceia2017滨松展台中的主要看点啦,滨松中国在本届BCEIA中继续展示了“光电使能”的力量,并结合中国市场和客户的需求,提供稳定可靠的光电技术保障。参考文献:massspectrometry: a textbook (second edition), j.h.gross现代质谱与生命科学研究,科学出版社,赖聪仪器信息网:532、785还是1064nm?手持拉曼激发光选择有讲究!
  • 药品稳定性试验箱的故障如何判断?
    药品稳定性试验箱的故障判断需要从外到内药品稳定性试验箱是一种针对性很强的环境试验设备,主要适用于制药企业对药品及新药的加速试验、高温试验和强光照射试验,是制药企业进行药品稳定性试验选择方案。药品稳定性试验箱在试验运行过程中突然出现故时,控制仪表上出现对应的故障显示提示并有声讯报警提示,操作人员可以对照设备的操作使用中的故排除一章中快速检查出属于哪一类故,即可请专业人员快速排除故,以确保试验的正常进行 其它环境试验设备在使用中还会有其它的现象,那就要具体现象 具体分析和排除.环境试验设备还要定期进行维护保养,制冷系统的冷凝器定期清理,对于活动部件应按说明书加油润滑,电器控制系统定期维护检查等等,这些工作是不可少的.药品稳定性试验镇低温达不到试验的指标,那你就要观察温度的变化,是温度峰的很慢,还是温度到一定值后温有回升的超势,前者就要检查一下,做低温试验前是否将工作室烘干,使工作室保持干燥后再将试验样品放入工作室内再做试验,工作室内的试验样品是否放置的过多,使工作室内的风不能充分循环,在排除上述原因后,就要考虑是否是制冷系统中的故煌了,这样就要请厂家的专业人员进行检修。后者的现象是设备的使用环境不好所致,设备放置的环境温度,放置的位置(箱体后与墙的距离)要满足要求(在设备操作使用说明中都有规定)。一般来说分析判断的过程可以先”外”后”里”,即首先排除外部因素后,根据故障现象对设备进行先系统分解,后对系统综合的分析与判断,或可以采用倒推的方法查找障原因:首先按照电气接线图查找是否电气系统有问题,最后查找是否制冷系统的问题,在没弄清故障原因前,切不可盲目拆卸或更换零部件,以免造成不必要的麻烦。药品稳定性试验箱是以科学的方法创造一个对药品失效评测所需长时间稳定的温度、湿度环境,适用于制药企业对药品及新药的加速试验、长期试验、高湿试验,是制药企业进行药品稳定性试验最佳选择方案。 仪器特点◆ 配备进口带刹万向脚轮,外形精巧,承重性好,双轮设计转动顺畅,移动安全便捷。◆ 门与箱体之间采用耐高温之高张性密封条以确保测试区的密闭,保证测试数据的精度和稳定性。◆ 以高质量抗菌不锈钢材质和经圆边处理而制成的光滑表面.易于清洁和保持完美的清洁度。◆ 独特的风道结构,进口风扇马达搭配耐高低温的多翼式结构循环搅拌风叶,以达到空气的强制对流垂直扩散循环效果。◆ 大容量外部水箱对整个水路进行自动补水,省却频繁人工手动加水的繁琐作业。同时水位控制采用机械式浮球水阀感应水位,杜绝了电子式误操作。◆ 采用模糊PID智能控制方式,具有可编程的程序运行模式,温湿度控制输出功率均由微电脑演算,以达高精度及高效率之用电效益。◆ 配备外部RS485通讯接口及USB输出存储端口,方便用户连接外部PC机对试验数据进行监控显示和数据导出存储。加强了人机对话功能,有效确保了试验的直观性。◆ 具备超大可视观察窗,能在外门不被开启的情况下,全方位、立体式观察设备内部各个区域的实验情况。◆ 标配有漏电保护、独立的可调温度安全装置、水路缺水及防溢流保护、压缩机过压保护、冷却风机过热保护、开门报警、停电报警、传感器报警等功能确保用户使用的绝对安全性。◆ 配置进口品牌压缩机和德国EBM散热风机,选用瑞士ROTRONIC原装进口湿度传感器,霍尼韦尔PT1000三芯高精度温度传感器。◆ 控制系统具有自动除霜和手动除霜两项除霜功能供用户选择(做长期试验时建议选择自动除霜功能),可有效避免设备运行中因蒸发器结霜严重而造成设备箱体内温湿度产生漂移等现象。◆ 可拆卸温.湿度传感器防护罩能有效避免意外碰触而导致温.湿度传感器故障的可能。
  • 生物制药稳定性论坛邀请函
    生物制药稳定性论坛邀请函2020 生物制药稳定性论坛将于2020 年 09 月 10 日-12 日,中国杭州上城区长生路 18 号梅地亚宾馆举行以重组蛋白、单抗药物、疫苗、基因治疗、细胞治疗等为代表的生物制药是 当前世界医药研发的热点和发展方向,但这些生物制药普遍面临不稳定的问题, 不仅影响药物的有效性,更会产生包括免疫原性在内的毒副作用。生物药物的稳 定性问题直接决定生物药能否成功应用于临床。生物药物稳定性问题的解决需要 多学科的紧密协作,包括基础机理研究、工艺开发、制剂开发和质量分析。大昌华嘉仪器部专业提供分析仪器及设备,代理众多欧美先进仪器,其中就包括与生物制药稳定性有关具备光阻法功能的流式颗粒成像分析系统,全自动旋光仪,纳米颗粒跟踪/NTA,稳定性分析仪。即将亮相本次展会的仪器具备光阻法功能的流式颗粒成像分析系统,全自动旋光仪,纳米颗粒跟踪/NTA,稳定性分析仪等会议内容:1、生物药降解机理研究2、生物 药稳定性表征方法的开发与应用3、新型生物药(如疫苗、细胞疗法等)制剂 开发策略4、生物药在生产过程中的稳定性展品介绍Fluid Imaging Technologies(FlowCam)公司成立于1999年美国缅因州斯卡伯勒市,其研发并生产的FlowCam系列仪器是将流式细胞法组合到数字成像显微镜中,基于图像分析法的流式动态成像颗粒分析仪,它使颗粒分析变得更快,更简单美国鲁道夫公司(Rudolph Research Analytical)是一家著名的旋光仪专业制造产家,早在1940年起就致力于旋光仪的研发和制造。多年来鲁道夫公司不断创新改进,相继推出了Autopol II、III、IV、V型自动旋光仪,在化工、制药、制糖及香精香料等行业拥有众多的用户,在中国已成功应用在国家药检所,上海药检所,浙江药检所等众多药检部门及各大制药厂,科研机构。德国Particle Metrix(简称PMX)是一家专业研发和制造表征胶体特征和生命科学研究的仪器公司。PMX公司拥有两条专业的产品线,针对不同的应用提供不同的专业仪器。在生命科学研究领域,PMX公司的ZetaView产品采用了激光光源照射纳米颗粒悬浮液,利用全黑背景可以观察到单个纳米颗粒的布朗运动和电泳现象,能够实现单个纳米颗粒的跟踪,粒度测量,Zeta电位测量,浓度测量等。专为大批量研发部门和质检部门设计。TurbiScan Lab 与全自动机械手的完美结合。全自动机械手包括3个独立的恒温槽和一个样品输送的机械臂。每个恒温槽中有18个样品槽,一共可以存储54个样品依次测量。恒温槽温度控制从室温+5℃到60℃,样品输送的机械臂每小时运行60次,可连续7天不间断工作。展位图展位号:6号
  • TissUse多器官串联芯片用于结核病疫苗开发和候选药物的测试
    TissUse多器官串联芯片用于结核病疫苗开发和候选药物的测试翻译整理:北京佰司特贸易有限责任公司 New Multi-Organ-Chip project towards vaccine & drug candidate testing for Tuberculosis TissUse获得比尔和梅琳达盖茨基金会的资助,在HUMIMIC芯片上开发人类临床前肺-肝-淋巴结串联共培养物,用于研究感染结核分枝杆菌的结核病疫苗开发和候选药物的测试。这一合作将有助于开发结核病候选疫苗和治疗模式。TissUse今天宣布,它已经从比尔和梅琳达盖茨基金会获得了一个为期3年的项目的资金。联合研究活动的目标是开发一种血管化的微生理系统,将人肺、肝和淋巴结类器官串联起来,用于筛选结核疫苗候选药物和治疗模式。“我们很高兴在这一项目中与结核疫苗行动(TBVI)作为协调员和国家科学研究中心(CNRS)作为科学伙伴进行合作。- Uwe Marx教授,TissUse CSO。微生理模型将支持组织稳态,并将在数周内对治疗效果进行监测。空气传播感染结核分枝杆菌后,新模型系统旨在展示结核分枝杆菌"吞噬受阻"、气血屏障破坏、淋巴结组织活化及肉芽肿形成和维持等疾病特异性表型。然后,该疾病模型将用于测试结核病候选疫苗的筛查。 “我们很高兴能够借助这一项目为开发结核病新疫苗和未来治疗方法作出贡献,并感谢比尔和梅琳达盖茨基金会支持我们的愿景并资助这一项目。- Reyk Horland博士,TissUse的首席执行官。 原文:Berlin, Germany, November 7th, 2022TissUse will receive funding from the Bill & Melinda Gates Foundation to develop a human preclinical lung-liver-lymph node co-culture on a HUMIMIC Chip infectable with Mycobacterium tuberculosis. This collaboration will contribute to the development of Tuberculosis vaccine candidates and treatment modalities.TissUse announced today that it has received funding from the Bill & Melinda Gates Foundation for a 3-year project. The joint research activities have the goal to develop a vascularized microphysiological system interconnecting human lung, liver and lymph node organoids capable of screening Tuberculosis vaccine candidates and treatment modalities.“We are pleased to collaborate in this project with the TuBerculosis Vaccine Initiative (TBVI) as a coordinator and the Centre National de Recherche Scientifique (CNRS) as a scientific partner.” – Prof. Dr. Uwe Marx, CSO of TissUse.The microphysiological model will support tissue homeostasis and will be monitorable for treatment efficacy over weeks. After airborne infection with Mycobacterium Tuberculosis, the new model system aims to show the disease-specific phenotype of “frustrated” phagocytosis, air-blood barrier damage, activated lymph node tissue and granuloma formation and maintenance. The disease model will then be used to test screening of TB vaccine candidates.“We are excited to be able to contribute with this project to the development of new vaccines and future treatments for Tuberculosis and would like to thank the Bill & Melinda Gates Foundation for supporting our vision and funding this project.” – Dr. Reyk Horland, CEO of TissUse. 北京佰司特贸易有限责任公司:类器官串联芯片培养仪-HUMIMIC;单分子质量光度计-TwoMP;灌流式细胞组织类器官代谢分析仪-IMOLA;光片显微镜-LSM-200;超高速视频级原子力显微镜-HS-AFM;蛋白质稳定性分析仪-PSA-16;全自动半导体式细胞计数仪-SOL COUNT;农药残留定量检测仪(台式)—BST-100;农药残留定量检测仪(手持式)—BST-10A;蓝光/绿光LED凝胶成像;台式原子力显微镜-ACST-AFM;微纳加工点印仪-NLP2000/DPN5000;
  • 药品稳定性试验箱的安全性如何保障?
    药品稳定性试验箱的安全性如何保障?药品稳定性试验箱是一种用来测试药品稳定性的仪器,虽然模拟的环境并不像高低温箱那么恶劣,但是也有可能发生触电、火灾等安全事故。为了避免这些事故造成的损失,在操作药品稳定性试验箱之前,最好对设备的操作方法有所了解。1、在试验之前我们需要确保没有覆盖物遮挡在设备上,因为设备发热会引起烟雾或是火灾等情况。2、不能将易燃易爆或是带有腐蚀性的样品放进工作室内进行检测,不然无法保证设备以及操作人员的安全。3、不能将设备放置在易燃易爆或是带有麻醉气体的环境中进行使用,不然可能会在试验的过程中发生意外。4、如果打算长时间不继续使用药品稳定性试验箱的话,最好将设备的电源切断,然后做好清洁保养工作。5、在关闭设备之后至少要间隔5分钟以上才能重新开启试验设备,否则会对设备的压缩机造成非常严重的影响。6、在每次试验之前都需要检查设备的电源线以及其他部分,以避免在试验的过程中出现漏电的情况,从而导致操作人员因触电受伤或是死亡。如果想要药品稳定性试验箱的维护保养起到作用,那么不断的坚持下去是非常重要的,当然如果有遇到不清楚的地方最好尽快联系试验箱厂家进行咨询,以避免因为错误的处理方法而引起更加严重的问题。 该仪器配备进口带刹万向脚轮,外形精巧,承重性好,双轮设计转动顺畅,移动安全便捷。◆ 门与箱体之间采用耐高温之高张性密封条以确保测试区的密闭,保证测试数据的精度和稳定性。◆ 以高质量抗菌不锈钢材质和经圆边处理而制成的光滑表面.易于清洁和保持完美的清洁度。◆ 独特的风道结构,进口风扇马达搭配耐高低温的多翼式结构循环搅拌风叶,以达到空气的强制对流垂直扩散循环效果。◆ 大容量外部水箱对整个水路进行自动补水,省却频繁人工手动加水的繁琐作业。同时水位控制采用机械式浮球水阀感应水位,杜绝了电子式误操作。◆ 采用模糊PID智能控制方式,具有可编程的程序运行模式,温湿度控制输出功率均由微电脑演算,以达高精度及高效率之用电效益。◆ 配备外部RS485通讯接口及USB输出存储端口,方便用户连接外部PC机对试验数据进行监控显示和数据导出存储。加强了人机对话功能,有效确保了试验的直观性。◆ 具备超大可视观察窗,能在外门不被开启的情况下,全方位、立体式观察设备内部各个区域的实验情况。◆ 标配有漏电保护、独立的可调温度安全装置、水路缺水及防溢流保护、压缩机过压保护、冷却风机过热保护、开门报警、停电报警、传感器报警等功能确保用户使用的绝对安全性。◆ 配置进口品牌压缩机和德国EBM散热风机,选用瑞士ROTRONIC原装进口湿度传感器,霍尼韦尔PT1000三芯高精度温度传感器。◆ 控制系统具有自动除霜和手动除霜两项除霜功能供用户选择(做长期试验时建议选择自动除霜功能),可有效避免设备运行中因蒸发器结霜严重而造成设备箱体内温湿度产生漂移等现象。◆ 可拆卸温.湿度传感器防护罩能有效避免意外碰触而导致温.湿度传感器故障的可能。
  • 【阿拉丁】连接子 - 抗体与药物结合的关键因素
    连接子 - 抗体与药物结合的关键因素抗体-药物偶联物(Antibody-drug conjugate, ADC)结合了抗体的高特异性和小分子药物的强细胞毒性。这种组合结合了抗体的独特和非常敏感的目标能力,可以区分健康组织和癌组织。它还具有细胞毒性药物的细胞杀伤能力,可能最大限度地减少剂量限制性毒性,同时最大限度地提高所需的治疗效果。ADC的主要优点是可以在体循环中作为药物使用,最终在靶肿瘤细胞中释放游离药物。在这一过程中,连接子在释放有效药物靶向肿瘤细胞,决定ADC的药代动力学特性、治疗指标和选择性,甚至整体成功方面发挥着关键作用。目前使用的连接子可分为可切割连接子和不可切割连接子两大类,它们之间的区别在于它们在细胞内是否会被降解。一、用于连接的可切割连接ADC连接子的主要类别是可切割连接子。可切割连接子被设计为对细胞外和细胞内环境差异(pH、氧化还原电位等)表现出化学不稳定性,或者可以被特定的溶酶体酶切割。在大多数情况下,这种连接子被设计成在键断裂后释放有效载荷分子。这种无迹可循的药物释放机制使研究人员能够根据已知的游离有效载荷的药理学参数估计共轭有效载荷的细胞毒性。2.1 可切割接头的类型可裂解接头腙是一种酸不稳定基团,当ADC被转运到核内体(pH 5.0-6.0)和溶酶体(pH约4.8)时,它被用作可切割的连接子,通过水解释放游离药物。组织蛋白酶B响应连接子组织蛋白酶B是一种溶酶体蛋白酶,在多种癌细胞中过表达,参与人类许多致癌过程。组织蛋白酶B的底物范围相对较广,但它优先识别某些序列,如苯丙氨酸-赖氨酸(Phe-Lys)和缬氨酸-瓜氨酸(Val-Cit)。这种序列的c端切割肽键。Val-Cit和Val-Ala连接物偶联p -氨基苄氧羰基(Val-Cit- pabc和Val-Ala- pabc)是adc最成功的可切割连接物。PABC片段使自由有效载荷分子以无迹方式释放。双硫键连接子谷胱甘肽敏感连接子是另一种常见的裂解连接子,其策略依赖于细胞质中较高浓度的还原分子(如谷胱甘肽)(1-10 mmol/L)。二硫键嵌入在连接子中,在循环中抵抗还原性裂解。然而,内化后,大量细胞内谷胱甘肽减少二硫键,释放自由有效载荷分子。为了进一步提高循环中的稳定性,通常在二硫键旁边安装一个甲基。焦磷酸二酯连接子该阴离子连接子具有比传统连接子更高的水溶性和优良的循环稳定性。此外,在内化后,焦磷酸二酯通过内核体-溶酶体途径快速裂解,释放未修饰的有效载荷分子。图1. 可切割连接子。(Kyoji Tsuchikama & Zhiqiang An. 2018)二、不可切割的连接子不可切割连接子由稳定的键组成,抵抗蛋白质水解降解,确保比可切割连接子更高的稳定性。不可切割连接子依赖于细胞质和溶酶体蛋白酶对ADC抗体成分的完全降解,并最终释放与降解抗体衍生的氨基酸残基连接的有效载荷分子。与可切割连接子相比,不可切割连接子的最大优点是其等离子体稳定性增强,与可切割连接子相比,这可能提供更大的治疗窗口。此外,与可切割的偶联物相比,它有望降低脱靶毒性,因为不可切割的adc可以提供更大的稳定性和耐受性。图2. 不可切割的连接子。不可切割连接的化学稳定性可以承受蛋白质水解降解。单抗的细胞质/溶酶体降解可以释放与降解的单抗衍生氨基酸残基相连的有效载荷分子。(Kyoji Tsuchikama & Zhiqiang An. 2018)三、总结结论保证游离药物在肿瘤细胞内的特异性释放是选择Linker的最终目的。该连接子对ADC的稳定性、毒性、PK特性和药效学等具有重要意义。每个环节都有其优点和缺点。在选择连接子时,必须考虑许多因素,包括单克隆抗体和细胞毒性药物中的现有基团、反应性基团和衍生功能基团。最后,需要通过个案分析确定如何优化选择合适的连接物、靶点和毒性分子,平衡ADC药物的有效性和毒性。表1. 连接子类型及优缺点比较参考文献1. Kyoji Tsuchikama & Zhiqiang An. Antibody-drug conjugates: recent advances in conjugation and linker chemistries. Protein & Cell. 2018 9:33-46.2. Jun Lu. Feng Jiang. Aiping Lu. and Ge Zhang. Linkers Having a Crucial Role in Antibody–Drug Conjugates. Int J Mol Sci. 2016 Apr 17(4):561.3. Monteiro Ide P, Madureira P, de Vasconscelos A, Pozza DH, de Mello RA. Targeting HER family in HER2-positive metastatic breast cancer: potential biomarkers and novel targeted therapies. Pharmacogenomics. 2015 16(3):257-71.阿拉丁提供相关产品,详情请见阿拉丁官网:Linkers - A Crucial Factor in Antibody–Drug Conjugates (aladdin-e.com)
  • 200万!上海交通大学分析测试中心元素分析-稳定同位素质谱仪采购项目
    项目编号:0834-2241SH22A320项目名称:上海交通大学分析测试中心元素分析-稳定同位素质谱仪预算金额:200.0000000 万元(人民币)最高限价(如有):200.0000000 万元(人民币)采购需求:序号货物名称数量简要技术规格交货期交货地点1元素分析-稳定同位素质谱仪1台2.1.1 ★质量数范围:1-96 amu;(详见第八章)合同签订后5个月内关境外货物:CIP上海交通大学指定地点关境内货物:上海交通大学指定地点合同履行期限:合同签订后5个月内本项目( 不接受 )联合体投标。
  • 阿尔塔科技稳定同位素标记物产业化基地建设成果系列报道之四:稳定同位素标记喹诺酮类化合物
    建设世界一流的国产稳定同位素标记物产业化基地,为食品安全检测提供长期可靠的保障是十三五国家重点研发计划“食品安全关键技术研发”重点专项的任务之一。作为任务承接单位,阿尔塔科技有限公司开展科研攻关,已开发十余种稳定同位素标记物制备共性关键技术,实现了上百种的稳定性同位素标记农药、兽药、食品添加剂的量产和可持续供应,提前超额完成课题指标,稳定同位素标记物产业化基地建设成果斐然,国产化和替代进口成绩显著。阿尔塔科技陆续推出了三期稳定同位素标记物产业化基地建设成果系列报道,本期向您推荐稳定同位素标记的喹诺酮类化合物,继续展示阿尔塔科研团队的研发成果,包括但不限于十三五项目开发的稳定同位素标记RM。产品的化学结构、化学纯度和同位素丰度、均匀性和稳定性均经过严格的检测和评估,质量媲美进口产品,价格较进口产品大幅降低。阿尔塔科技期待与更多的科研机构、检测实验室进行合作,持续开发市场需求的高品质产品,为我国食品安全检测提供助力。部分稳定同位素标记喹诺酮类化合物:了解更多产品或需要定制服务,请联系我们
  • 阿尔塔科技稳定同位素标记物产业化基地建设成果系列报道之三:稳定同位素标记甾体激素类化合物
    建设世界一流的国产稳定同位素标记物产业化基地,为食品安全检测提供长期可靠的保障是十三五国家重点研发计划“食品安全关键技术研发”重点专项的任务之一。作为任务承接单位,阿尔塔科技有限公司开展科研攻关,已开发十余种稳定同位素标记物制备共性关键技术,实现了上百种的稳定性同位素标记农药、兽药、食品添加剂的量产和可持续供应,提前超额完成课题指标,稳定同位素标记物产业化基地建设成果斐然,国产化和替代进口成绩显著。阿尔塔科技将陆续推出稳定同位素标记物产业化基地建设成果系列报道,展示阿尔塔科研团队的研发成果,包括但不限于十三五项目开发的稳定同位素标记RM。产品的化学结构、化学纯度和同位素丰度、均匀性和稳定性均经过严格的检测和评估,质量媲美进口产品,价格较进口产品大幅降低。阿尔塔科技期待与更多的科研机构、检测实验室进行合作,持续开发市场需求的高品质产品,为我国食品安全检测提供助力。本期向您推荐稳定同位素标记的甾体激素类化合物。部分稳定同位素标记甾体激素类化合物:了解更多产品或需要定制服务,请联系我们
  • “高稳定度光源的研制与开发”十一五国家科技支撑计划课题已验收
    2010年10月26日,由国家地质实验测试中心承担的 “十一五”国家科技支撑计划重大项目《科学仪器设备研制与开发》中的“高稳定度光源的研制与开发”(课题编号:2006BAK03A01)课题,通过了由国家质量监督检验检疫总局科技司组织的专家验收。  该课题组织了产、学、研一体的研发队伍,参加单位有:北京地质仪器厂、中国地质大学(武汉)、北京有色金属研究总院、涿州迅利达科技创新公司、复旦大学、中国广州分析测试中心、长春新产业光电技术公司、北京吉天仪器有限公司、上海光谱仪器有限公司等九个单位。课题组经过三年努力,采用新技术、新材料、新工艺完成了分析仪器用光源——全固态ICP光源、光谱仪器用高性能元素灯、光谱仪器用长寿命氘灯、光谱仪器用短弧氙灯、光谱仪器激光光源、低温等离子体原子化器、高性能石墨炉原子化器七类产品的研发。  课题在国内率先研发完成的具有自主知识产权的40.68MHz和27.12 MHz两种全固态ICP光源,稳定地实现了正常的ICP功率输出,为我国高端电感耦合等离子体光/质谱仪的研发和维护打下了坚实的基础。  完成的光谱仪器用短弧氙灯和长寿命氘灯以及高性能元素灯,解决了主要部件规格化以及能量提高和稳定性问题,其中绝大部分关键设备具有自主知识产权,产品质量和使用寿命达到国外同类产品先进水平。研发的光谱仪器激光光源,采用具有自主知识产权的激光器谐振腔偏心调整机械技术和半导体激光泵浦全固态低噪声内腔倍频激光谐振腔技术,通过模块化设计、封装和系统集成,提高了产品稳定性和生产效率,成功研制了266nm、355nm、532nm全固态激光器和405nm、445nm、635nm三种半导体激光器系统。  课题组首先在国内成功研制了两类高效原子化器,其中研制的低温等离子体原子化器,采用基于介质阻挡放电的技术,具有原创性,操作温度接近室温,功耗50W,同时解决了批量生产中的工艺技术问题,为实现原子荧光仪器小型化、便携化打下了基础;研制的另一类高性能石墨炉原子化器,在国内首创了具有低电压、大电流直流开关型石墨炉电源系统,其重量轻、体积小,可同时适用于高阻与低阻石墨管,该电源能自动补偿和校正石墨管电阻变化,延长了石墨管使用寿命,保证了瞬变电流的快速响应和运行可靠性,产品已应用在相关高端原子吸收仪产品中。上述研发成果都进行了产业化建设,新建和扩建了相应的生产线,形成了批量生产能力。  课题申报了国内专利25项,其中实用新型专利19项(已授权11项),发明专利6项(已授权1项),软件著作权1项。完成论文6篇(其中2篇被SCI收录)。
  • 同位素 | 利用稳定同位素研究亚高山生境植物水源差异
    水分是植物生长不可或缺的因素,水分有效性的波动直接影响植物的生长、数量和空间分布。在全球气候变化下,区域降水格局已经发生了改变。植物不同水源的贡献率反映了生态系统对气候变化的响应程度。因此,追踪和分析植物水源可以为研究全球气候变化提供参考。祁连山位于青藏高原东北缘,是中国西北地区重要的生态屏障。因此,研究亚高山生境植物水源对于理解祁连山生态和水文过程具有重要意义。已有很多学者利用氢氧稳定同位素(δ2H和δ18O)进行了诸如此类的研究,但关于亚高山生境不同坡向植物水源的研究鲜少报道。基于此,在本研究中,来自西北师范大学和中科院西北生态环境资源研究所的研究团队监测了青藏高原东北缘祁连山东段冷龙岭北坡的上池沟(37°38′10″N,101°51′9″E,3080 m a.s.l.,图1)的降水、土壤水、木质部水、降水和泉水的稳定同位素组成以及相关环境变量(气象和土壤水变量),利用LI-2100全自动真空冷凝抽提系统(北京理加联合科技有限公司)提取土壤和木质部中的水分,并利用ABB LGR T-LWIA-45-EP液态水同位素分析仪测定所有水样的δ2H值和δ18O值。基于这些数据,分析了不同水体稳定同位素的变化,并利用多源线性混合模型(IsoSource)计算不同水源对植物的相对贡献率。本研究目标是:(1)观察相同和不同生境下亚高山灌木的水源以及(2)研究亚高山灌木对水源变化的适应性。图1 研究区和采样点位置。【结果】图2 不同水体δ2H和δ18O之间的关系。图3 半阳坡和半阴坡不同亚高山灌木的水源。表1 亚高山灌木主要水源及其贡献率。图4 5-12月半阳坡不同亚高山灌木的植物水源。图5 5-12月半阴坡不同亚高山灌木的植物水源。【结论】青藏高原东北缘的亚高山生境中灌木的水分吸收特征相似。特别是灌木木质部水分主要来源于0-30cm土壤水。在降水量少或需水量大的月份,同一生境的亚高山灌木争夺浅层土壤水。在此期间,为了满足生长所需的水分,一些亚高山灌木增加了对深层土壤水的利用,导致同一生境中亚高山灌木水源存在明显差异。同样,在旱季或生长季,半阳坡或半阴坡的亚高山灌木对深层土壤水的利用增加,导致不同生境中同一亚高山灌木物种水源存在显著差异。与其他亚高山灌木相比,杯腺柳(Salix cupularis),山生柳(Salix oritrepha),金露梅(Potentilla fruticosa),硬叶柳(Salix sclerophylla),烈香杜鹃(Rhododendron anthopogonoides)和 陇蜀杜鹃(Rhododendron przewalskii)根据降水和土壤水条件改变了其水分利用模式,表明其具有较强的环境适应性。在全球变化背景下,为了恢复亚高山生态环境,应选择能够在旱季或生长季调整其水分利用策略的灌木树种。请点击下方链接,阅读原文https://mp.weixin.qq.com/s?__biz=MjM5NjE1ODg2NA==&mid=2650310499&idx=1&sn=50381317af5c0f25d0739b6cbcdcfa3f&chksm=bee1ab9c8996228a367dd8cc6f778f80a7deff7b49c807bac194f912428231318b4544693e27#rd
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制