当前位置: 仪器信息网 > 行业主题 > >

原位薄膜应力计

仪器信息网原位薄膜应力计专题为您提供2024年最新原位薄膜应力计价格报价、厂家品牌的相关信息, 包括原位薄膜应力计参数、型号等,不管是国产,还是进口品牌的原位薄膜应力计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合原位薄膜应力计相关的耗材配件、试剂标物,还有原位薄膜应力计相关的最新资讯、资料,以及原位薄膜应力计相关的解决方案。

原位薄膜应力计相关的资讯

  • 微纳加工薄膜应力检测的国产化破局
    1.为什么要检测薄膜应力?薄膜应力作为半导体制程、MEMS微纳加工、光电薄膜镀膜过程中性能测试的必检项,直接影响着薄膜器件的稳定性和可靠性,薄膜应力过大会引起以下问题:1.膜裂;2.膜剥离;3.膜层皱褶;4.空隙。针对薄膜应力的定量化表征是半导体制程、MEMS微纳加工、光电薄膜制备工艺流程中品检、品控和改进工艺的有效手段。(见图一)图一、薄膜拉/压内应力示意图(PIC from STI 2020: Ultraviolet to Gamma Ray, 114444N)2.薄膜应力测试方法及工作原理目前针对薄膜应力测试方法主要有两种:X射线衍射法和基片轮廓法。前者仅适用于完全结晶薄膜,对于纳米晶或非晶薄膜无法进行准确定量表征;后者几乎可以适用于所有类型的薄膜材料。关于两种测试方法使用范围及特点,请参考表一。表一、薄膜应力测试方法及特点测试方法适用范围优点局限X射线衍射法适用于结晶薄膜1.半无损检测方法;2.测量纯弹性应变;3.可测小范围表面(φ1-2mm)。1.织构材料的测量问题;2.掠射法使射线偏转角度受限;3.X射线应力常数取决于材料的杨氏模量E;4.晶粒过大、过小影响精度。基片轮廓法几乎所有类型的薄膜材料激光曲率法:1.非接触式/ 无损;2.使用基体参数,无需薄膜特性参数;3.大面积测试范围、快速、简单。1.要求试样表面平整、反射;2.变形必须在弹性范围内;3.毫米级范围内平均应力。探针曲率法(如台阶仪):1.使用基体参数,无需薄膜特性参数;2.微米级微区到毫米级范围。1.接触式/有损;2.探针微米级定位困难导致测量数据重复性不够好。速普仪器自主研发生产的FST5000薄膜应力测量仪(见图二)的测试原理属于表一中的激光曲率法,该技术源自于中国科学院金属研究所和深圳职业技术学院相关研究成果转化(专利号:CN204854624U;CN203688116U;CN100465615C)。FST5000薄膜应力测量仪利用光杠杆测量系统测定样片的曲率半径,参见图三FST5000薄膜应力测量仪技术原理图。其中l和D分别表示试片(Sample)和光学传感器(Optical Detector)的移动距离, H1和H2分别表示试片与半透镜(Pellicle Mirror),以及半透镜与光学传感器之间的光程长。 图二、速普仪器FST5000薄膜应力测量仪示意图图三、FST5000薄膜应力测量仪技术原理图3.速普仪器FST5000薄膜应力测量仪技术特点及优势a.采用双波长激光干涉法,利用Stoney公式获得薄膜残余应力。该方法是目前市面上主流测试方法,包括美、日、德等友商均采用本方法,我们也是采用该测量方法的国内唯一供应商。并且相较于进口友商更进一步,速普仪器研发出独特的光路设计和相应的算法,进一步提高了测试精度和重复性。通过一系列的改进,使我们的仪器精度在国际上处于领先地位。(参考专利:ZL201520400999.9;ZL201520704602.5;CN111060029A)b.自动测量晶圆样品轮廓形貌、弓高、曲率半径和薄膜应力分布。我们通过改进数据算法,采用与进口友商不同的软件算法方案,最终能够获得薄膜应力面分布数据和样片整体薄膜应力平均值双输出。(参考中国软件著作权:FST5000测量软件V1.0,登记号:2022SR0436306)c.薄膜应力测试范围:1 MPa-10 GPa,曲率半径测试范围:2-20000m。基于我们多年硬质涂层应力测试经验,以及独特的样品台设计和持续改进的算法,FST5000薄膜应力测量仪可以实现同一台机器测试得到不同应用场景样品薄膜应力。具体而言,不但可以获得常规的小应力薄膜结果(应力值<1GPa,曲率半径>20m),同时我们还能够测量非常规小曲率半径/大应力数值薄膜(应力值>1GPa,曲率半径<20m)。目前即使国外友商也只能做到小应力测试结果输出。d.样品最大尺寸:≤12英寸,向下兼容8、6、4、2英寸。FST5000薄膜应力测量仪能够实现12英寸以下样品测试,主要得益于我们独特的样品台设计,光路设计及独特的算法,能够实现样品精准定位和数据结果高度重复性。(参考专利:ZL201520400999.9;ZL201520704602.5;CN111060029A)e.样品台:电动旋转样品台。通过独特的样品台设计,我们利用两个维度的样品运动(Y轴及360°旋转),实现12英寸以下样品表面全部位置覆盖及精准定位。(参考专利:ZL201520400999.9)f.样品基片校正:可数据处理校正原始表面不平影响(对减模式)。通过分别测量样品镀膜前后表面位形变化,利用原位对减方式获得薄膜残余应力面型分布情况。同样得益于我们独特的样品台设计和光路设计,保证镀膜前后数据点位置一一对应。4.深圳市速普仪器有限公司简介速普仪器(SuPro Instruments)成立于2012年,公司总部位于深圳市南山高新科技园片区,目前拥有北京和苏州两个办事处。速普仪器是国家高新技术企业和深圳市高新技术企业。公司拥有一群热爱产品设计与仪器开发的成员,核心团队来自中国科学院体系。致力于材料表面处理和真空薄膜领域提供敏捷+精益级制备、测量和控制仪器,帮助客户提高产品的研发和生产效率,以及更好的品质和使用体验。速普仪器宗旨:致力于材料表面处理和真空薄膜领域提供一流“敏捷+精益”级制备、测量和控制仪器。速普仪器核心价值观:有用有趣。
  • 显微拉曼光谱在测量晶圆(多晶硅薄膜)残余应力上的应用
    在半导体生产过程中,退火、切割、光刻、打线、封装等多个生产工序都会引入应力,而应力分为张应力和压应力;应力也分有益的和有害之分。应变 Si(strained Silicon 或 sSi)是指硅单晶受应力的作用,其晶格结构和晶格常数不同于未应变体硅晶体。应变的存在,使 Si 晶体结构由立方晶体特征向四方晶体结构特征转变,导致其能带结构发生变化,从而最终导致其载流子迁移率发生变化。研究表明,在 Si 单晶中分别引入张应变和压应变,可分别使其电子迁移率和空穴迁移率有显著的提升因而,从 Si CMOS IC 的 90nm 工艺开始,在 Si 器件沟道以及晶圆材料中引入应变,提高了器件沟道迁移率或材料载流子迁移率,从而提升器件和电流的高速性能。多晶硅薄膜是MEMS(micro-electro-mechanical systems)器件中重要的结构材料,通常在单晶硅基底上由沉积方法形成。由于薄膜与基底不同的热膨胀系数、沉积温度、沉积方式、环境条件等众多因素的综合作用,多晶硅薄膜一般都存在大小不一的拉应力或者压应力。作为结构材料多晶硅薄膜的材料力学性能在很大程度上决定了MEMS器件的可靠性和稳定性。而多晶硅薄膜的残余应力对其断裂强度、疲劳强度等力学性能有显著的影响。表面及亚表面损伤还会引起残余应力,残余应力的存在将影响晶圆的强度,引起晶圆的翘曲如图1所示。所以准确测量和表征多晶硅薄膜的残余应力对于生产成熟的MEMS器件具有重要的意义。图 1 翘曲的晶圆片图 2 Si N 致张应变 SOI 工艺原理示意图,随着具有压应力 SiN 淀积在 SOI 晶圆上,顶层 Si 便会因为受到 SiN 薄膜拉伸作用发生张应变应力的测试难度非常大。由于MEMS中的多晶硅薄膜具有明显的小尺度特征,准确测量多晶硅薄膜的残余应力并不是一件容易的事情。目前在对薄膜的残余应力测量中主要采用两种方法:一种是X射线衍射,通过测量薄膜晶体中晶格常数的变化来计算薄膜的残余应力,这种方法可以实现对薄膜微区残余应力的准确测量,但测量范围较小,且对试样的制备具有较高的要求,基本不能实现在线薄膜残余应力测量。另外一种就是显微拉曼谱测量法,该方法具有非接触、无损、宽频谱范围和高空间分辨率等优点。通过测量薄膜在残余应力作用下引起的材料拉曼谱峰的移动可推知薄膜的残余应力分布。该方法可以实现对薄膜试件应力状况的在线监测,是表征薄膜材料尤其是MEMS器件中薄膜材料残余应力的一种重要方法。用于力学测量的一般要具有高水平的波长稳定性的紫外或可见光激发光源,并具备高光谱分辨率(小于 1cm-1)的显微拉曼光谱系统。1. 测量原理1.1. 薄膜残余应力与拉曼谱峰移的关系拉曼谱测量薄膜残余应力的示意图如图2所示。激光器发出的单色激光(带箭头实线)经过带通滤波器和光束分离器以后经物镜汇聚照射到样品表面‚激光光子与薄膜原子相互碰撞造成激光光子的散射。其中发生非弹性碰撞的光束(带箭头虚线)经过光束分离器和反射滤波器后,汇聚到声谱仪上形成薄膜的拉曼谱峰。拉曼散射光谱的产生跟薄膜物质原子本身的振动相关,只有当薄膜物质的原子振动伴随有极化率的变化时,激光的光子才能跟薄膜物质原子发生相互作用而形成拉曼光谱。当薄膜存在拉或压的残余应力时,其原子的键长会相应地伸长或缩短,使薄膜的力常数减小或增大,因而原子的振动频率会减小或增大,拉曼谱的峰值会向低频或高频移动。此时,拉曼峰值频率的移动量与薄膜内部残余应力的大小具有线性关系,即Δδ=ασ或者σ=kΔδ,Δδ是薄膜拉曼峰值的频移量,σ是薄膜的残余应力,k和α称为应力因子。图 3 拉曼测量系统示意图图 4 拉曼光谱测试晶圆的示意图2. 多晶硅薄膜残余应力计算对于单晶硅,激光光子与其作用时存在3种光学振动模式,两种平面内的一种竖直方向上的,这与其晶体结构密切相关。当单晶硅中存在应变时,这几种模式下的光子振动频率可以通过求解特征矩阵方程ΔK- λI = 0获得。其中ΔK是应变条件下光子的力常数改变量(光子变形能)λi(i= 1 ,2,3)是与非扰动频率ω0和扰动频率ωi相关的参量(λi≈ 2ω0(ωi-ω0)),I是3×3单位矩阵。由于光子在多晶硅表面散射方向的随机性和薄膜制造过程的工艺性等许多因素的影响,使得利用拉曼谱法测量多晶硅薄膜的残余应力变得更加复杂。Anastassakis和Liarokapis应用Voigt-Reuss-Hill平均和张量不变性得出与单晶硅形式相同的多晶硅薄膜的光子振动频率特征方程式。此时采用的光子变形能常数分别是K11=-2.12ω02 K12=-1.65ω02 K33=-0.23ω02是光子的非扰动频率。与之相对应的柔度因子分别是S11= 6.20×10-12Pa-1S12=-1.39 ×10-12Pa-1S33= 15.17 ×10-12Pa-1对于桥式多晶硅薄膜残余应力的分析,假定在薄膜两端存在大小相等、方向相反(指向桥中心)的力使薄膜呈拉应力。此时,拉曼谱峰值的频移与应力的关系可以表达为Δω =σ(K11+2 K12)(S11+2 S12)/3ω0代入参量得Δω =-1.6(cm-1GPa-1)σ,即σ=-0.63(cmGPa)Δω (1)其中σ是多晶硅薄膜的残余应力,单位为GPa;Δω是多晶硅薄膜拉曼峰值的频移单位为cm-1。3. 应力的拉曼表征桥式多晶硅薄膜梁沿长度方向的拉曼光谱峰值频移情况如图3所示。无应力多晶硅拉曼谱峰的标准波数是520 cm-1,从图3可以看出,当拉曼光谱的测量点从薄膜的两端向中间靠拢时,多晶硅的峰值波数将沿图中箭头方向移动,即当测量位置接近中部时,多晶硅薄膜的峰值波数将会逐渐达到最小。图中拉曼谱曲线采用洛伦兹函数拟合获得。通过得曲线的洛伦兹峰值的横坐标位置,就可以根据式(1)得到多晶硅薄膜的残余应力分布情况,如图4所示。由于制造过程的偏差,多晶硅薄膜的实际梁长L=213μm。图 5 多晶硅薄膜的拉曼谱峰值频移,随着应力增大,谱峰向左漂移。图 6 多晶硅薄膜的拉曼谱峰频移和残余应力分布从图6可以明显看出,多晶硅薄膜的拉曼谱峰值频移在它的长度方向上大致呈对称分布,也就是说,多晶硅薄膜的残余应力在其长度方向上呈对称分布。通过计算可知,在多晶硅薄膜的中部存在很大的拉伸残余应力(拉曼谱峰值向低波数移动),达到0.84 GPa。4. 应力的拉曼扫描成像某半导体晶圆厂家,采用奥谱天成Optosky的ATR8800型共聚焦显微拉曼光谱扫描成像仪(www.optosky.com),测试晶圆的应力分布情况,经过数据处理后,测得了整个晶圆圆盘的应力分布。图 7 奥谱天成生产的ATR8800型共聚焦显微拉曼光谱扫描成像仪,焦距为760mm,分辨率达到0.5cm-1图 8 ATR8800共聚焦显微拉曼光谱仪的工作界面图 9 ATR8800共聚焦显微拉曼光谱仪的工作界面图 10 共聚焦显微拉曼光谱扫描成像仪测得晶圆应力分布,红色的应力越大,蓝色的应力较小。5. 总结与讨论拉曼光谱具有无损、非接触、快速、表征能力强等特点,能够清晰地表征出晶圆的应力与应力分布,为半导体的生产、退火、封装、测试的工序,提供一种非常好的测量工具。奥谱天成致力于开发国际领 先的光谱分析仪器,立志成为国际一 流的光谱仪器提供商,基于特有的光机电一体化、光谱分析、云计算等技术,形成以拉曼光谱为拳头产品,光纤光谱、高光谱成像仪、地物光谱、荧光光谱、LIBS等多个领域,均跻身于世界前列,已出口到全球50多个国家。◆ 承担“海洋与渔业发展专项资金项目”(总经费4576万元);◆ 2021福建省科技小巨人科技部;◆ 刘鸿飞博士入选科技部“创新人才推进计划”;◆ 国家高新技术企业;◆ 刘鸿飞博士获评福建省高层次人才B类;◆ 主持制定《近红外地物光谱仪》国家标准;◆ 国家《拉曼光谱仪标准》起草单位;◆ 福建省《便携式拉曼光谱仪标准》评审专家单位;◆ 厦门市“双百人才计划”A类重点引进项目(最 高等级);◆ 国家海洋局重大产业化专项项目承担者;◆ “重大科学仪器专项计划”承担者。
  • 速普仪器取得光电版薄膜应力仪国产化突破
    近日,深圳市速普仪器有限公司在西安交通大学创新港校区顺利交付光电版薄膜应力测量仪FST2000。该项目系速普仪器今年继安徽某OLED显示屏公司和宁波大学两套已交付后的第三套FST2000,另外还有三套待交付及若干套即将执行采购。成功实现业界主流光电版薄膜应力仪的国产化替代。 薄膜应力作为半导体制程、MEMS微纳加工、光电薄膜镀膜过程中性能测试的必检项,其测试的精度、重复性、效率等因素为业界所重点关注。对应产品目前业界有两种主流技术流派:1)以美国FSM、KLA、TOHO为代表的双激光波长扫描技术(线扫模式),尽管是上世纪90年代技术,但由于其简单高效,适合常规Fab制程中进行快速QC,至今仍广泛应用于相关工厂。2)以美国kSA为代表的MOS激光点阵技术(2000年代技术,曾获业界R&D100大奖),抗环境振动干扰,精于局部区域内应力测量,这在研究局部薄膜应力均匀分布具有特定意义。做一个比喻,丘陵地貌,尽管整体平均地面是平整的,但是局部是起伏的。因此,第一种路线线扫模式主要测量晶圆薄膜整体平均应力,监控工序工艺的重复性有意义。但在监控或精细分析局部薄膜应力,第二种激光点阵技术路线具有特殊优势,比如在MEMS压电薄膜的应力和缺陷监控。作为国内同类产品的唯一供货商,速普仪器创造性的提出同时兼容测试效率和细节精度的方案,即激光点阵Mapping面扫模式(适合分析局部应力分布)和L-D线扫模式(适合快速QC质检)。并采用具有自主知识产权(CN201911338140.9)的新型光路设计(更简单可靠)。FST2000薄膜应力仪采用经典的激光曲率法,利用5×5激光点阵对样品表面进行扫描测量,自动获取样品表面曲率半径数值,并自动代入内置Stoney公式获取薄膜应力数值。FST2000薄膜应力测试范围:5MPa-5GPa;曲率半径/薄膜应力重复精度:<1%(曲率半径<20m),<3%(曲率半径<100m);扫描步长:Min. 0.1mm;扫描数据点:Max. 1万点;可视化2D/3D显示。另外,针对不平整表面样品,本仪器具有对减功能模式,即镀膜前后数据点阵根据坐标点逐点对减获得真实薄膜曲率半径和应力分布,通过数据处理校正样品原始表面不平整的影响。同时,本仪器还具有直观且简单的操作界面。本地化技术团队能够提供便捷的售后服务。 深圳市速普仪器有限公司简介:
  • 速普仪器发布【SuPro】薄膜应力测试仪FST2000新品
    基于经典基片弯曲法Stoney公式测量原理,采用先进的矩阵激光点阵扫描方式和探测技术,以及智能化的操作,使得FST2000薄膜应力仪特别适合于晶圆类光电薄膜样品的曲率半径和应力测量。独特的双模扫描模式方便适应不同应用场景下需求:Mapping不同区域的薄膜应力分布或快速表征样品整体平均残余应力。 创新点:1.半导体薄膜、光电薄膜专用残余应力测试仪器;2.兼容区域性薄膜应力分布mapping结果和快速表征样品整体平均残余应力;3.通过独特对减模式算法,可数据处理校正原始表面不平影响。【SuPro】薄膜应力测试仪FST2000
  • 针对化合物半导体等市场,速普仪器展出薄膜应力检测方案
    2022年3月1-3日,由科技部、中国科学院指导,中国微米纳米技术学会、中国国际科学技术合作协会、国家第三代半导体技术创新中心(苏州)主办,苏州纳米科技发展有限公司承办的第十三届中国国际纳米技术产业博览会(CHInano 2023)在苏州国际博览中心举行。本届纳博会为期3天,聚焦第三代半导体、微纳制造、纳米新材料、纳米大健康等热门领域,众多厂商齐聚一堂,新技术、新产品、新成果集中亮相。展会期间,深圳市速普仪器有限公司(SuPro Instruments)展出了他们的薄膜应力仪。速普仪器与薄膜应力仪产品SuPro Instruments成立于2012年,位于深圳市南山高新科技园片区,公司致力于材料表面处理和真空薄膜领域提供敏捷+精益级制备、测量和控制仪器,帮助客户提高产品的研发和生产效率、品质和使用体验。据张小波介绍,本次纳博会速普仪器主推是的薄膜应力测量仪,主要是应用于MEMS、化合物半导体、microled等泛半导体市场。据了解,集成电路领域的薄膜应力产品目前仍以KLA的产品为主,市场规模是泛半导体市场的十倍。早期速普仪器为工业领域提纲应力测量解决方案,机缘巧合之下,下游半导体厂商寻找到速普仪器合作开发相关产品。而速普仪器也不负众望,成功通过了半年的验证期,最后成功进入其中,实现了泛半导体领域薄膜应力仪的国产突破。多年积累之下,速普仪器目前已占据相关市场30%的份额,打破了国外企业的市场垄断。目前相关产品已进入国内科研院所和一些重要的半导体企业。谈到未来的战略规划时候,张小波也表示未来速普仪器也将继续研发新产品,搭配其应力测量仪,为用户提供更完善的解决方案。
  • 高通量组合薄膜制备及原位表征系统
    table border="1" cellspacing="0" cellpadding="0" width="600"tbodytrtd width="122"p style="line-height: 1.75em "成果名称/p/tdtd width="526" colspan="3"p style="line-height: 1.75em "高通量组合薄膜制备及原位表征系统/p/td/trtrtd width="122"p style="line-height: 1.75em "单位名称/p/tdtd width="526" colspan="3"p style="line-height: 1.75em "中科院物理研究所/p/td/trtrtd width="122"p style="line-height: 1.75em "联系人/p/tdtd width="175"p style="line-height: 1.75em "郇庆/p/tdtd width="159"p style="line-height: 1.75em "联系邮箱/p/tdtd width="192"p style="line-height: 1.75em "qhuan_uci@yahoo.com/p/td/trtrtd width="122"p style="line-height: 1.75em "成果成熟度/p/tdtd width="526" colspan="3"p style="line-height: 1.75em "√正在研发 □已有样机 □通过小试 □通过中试 □可以量产/p/td/trtrtd width="122"p style="line-height: 1.75em "合作方式/p/tdtd width="526" colspan="3"p style="line-height: 1.75em "√技术转让 √技术入股 □合作开发 √其他/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong成果简介: /strongbr/ /pp style="text-align:center"img src="http://img1.17img.cn/17img/images/201603/insimg/981cbfad-b9ec-4aa9-875a-12197e3c1fb1.jpg" title="LIBE-STM.jpg" width="350" height="321" border="0" hspace="0" vspace="0" style="width: 350px height: 321px "//pp style="line-height: 1.75em " br//pp style="line-height: 1.75em " 随着“材料基因组计划”的兴起,人们对新的实验手段,特别是高通量高空间分辨率的材料制备和性能测试方法提出了迫切的要求。正是针对于此,我们开发了这套“高通量组合薄膜制备及原位表征系统”,基于完全自主知识产权的新型生长机理制备高通量组合薄膜。同时,通过结合特殊设计的扫描隧道显微镜,可实现对所制备薄膜的原位超高分辨表征。尚在研发中,主要技术指标待测。/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong应用前景: /strongbr/ 应用前景尚不明确。/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong知识产权及项目获奖情况: /strongbr/ 发明专利:201510446068.7、201510524841.7/p/td/tr/tbody/tablepbr//p
  • 中科院物理所|新一代高通量薄膜制备及原位表征技术获进展!
    p style="text-align: justify text-indent: 2em "近日,中国科学院物理研究所/北京凝聚态物理国家研究中心技术部电子学仪器部郇庆/刘利团队和超导国家重点实验室金魁/袁洁团队,在新一代高通量薄膜制备及原位表征技术研发获得重大进展,该成果发表于近期的《科学仪器评论》杂志上span style="color: rgb(0, 0, 0) "【Review of Scientific Instruments 91, 013904 (2020) doi: 10.1063/1.5119686】/spana href="http://www.iop.cas.cn/xwzx/kydt/202002/P020200212416644690060.pdf" target="_self"span style="color: rgb(0, 112, 192) "(文章链接)/span/a。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/e637a6c9-3502-4446-8d0c-ea9fb16b6e59.jpg" title="图片4.png" alt="图片4.png"//pp style="text-align: justify text-indent: 2em "中国科学院物理研究所/北京凝聚态物理国家研究中心技术部电子学仪器部郇庆/刘利团队一直致力于科研仪器装备的自主研发;超导国家重点实验室金魁/袁洁团队专注于基于高通量组合薄膜技术的新超导体探索和物理研究。近些年来,两个团队密切合作、联合攻关,共同指导SC2组博士生何格(目前在德国做洪堡学者)、魏忠旭、冯中沛等同学strongspan style="color: rgb(0, 0, 0) "成功研制并搭建了一台高通量连续组分外延薄膜制备及原位局域电子态表征系统。/span/strong该系统采用的关键技术为研发团队首次提出,核心部件均自主研发,具备多项独特优点:strong1)/strong采用专利的旋转掩膜板设计,避免累积误差和往复运动的问题,大大提高了系统运行精度和稳定性;strong2)/strong特殊设计的STM扫描头能够实现大范围XY移动( 10 mm)和高精度定位(定位精度优于 1 μm);strong3)/strong完备的传递设计可实现样品、针尖、靶材的高效传递,并易于未来功能扩展。/pp style="text-align: justify text-indent: 2em "该研发团队对系统进行了反复地设计优化和改进(研发历时4年多,设计版本多达50多个),并完成了全面的性能测试。他们利用自研系统制备了高质量的梯度厚度FeSe样品,得到可靠的超导转变温度随厚度的演变关系。在HOPG样品、金单晶样品、BSCCO样品以及原位生长FeSe样品表面均获得了高清原子分辨图像,并测量了BSCCO样品局域超导能隙扫描隧道谱。strong目前,该系统已用于研究高温超导机理问题和新型超导材料探索。/strong/pp style="text-align: justify text-indent: 2em "作为目前国际上最先进的第四代高通量实验设备,审稿人和项目验收专家组均给予了高度评价,认为该设备实现了研究应用和核心技术上的创新突破,解决了现有技术的诸多缺陷和不足,将成为材料基因研究的重要工具,并有望在推动多个领域的前沿研究中发挥重要作用。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/7b2acf06-1ac6-465d-ad0a-d76ef6f1406c.jpg" title="图1 :组合激光分子束外延-扫描隧道显微镜联合系统:(a)三维设计图;(b) 实物照片.jpg" alt="图1 :组合激光分子束外延-扫描隧道显微镜联合系统:(a)三维设计图;(b) 实物照片.jpg"//pp style="text-indent: 0em text-align: center "span style="font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 14px text-align: -webkit-center "图1 :组合激光分子束外延-扫描隧道显微镜联合系统:(a)三维设计图;(b) 实物照片/span/pp style="text-indent: 0em text-align: center "span style="font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 14px text-align: -webkit-center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/bb46dd89-0b72-4f5e-a7d6-dd88e1baa05c.jpg" title="图2:梯度厚度FeSe薄膜温度依赖电阻(a)及厚度依赖Tc (b).jpg" alt="图2:梯度厚度FeSe薄膜温度依赖电阻(a)及厚度依赖Tc (b).jpg"//span/pp style="text-indent: 0em text-align: center "span style="font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 14px text-align: -webkit-center "span style="font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 14px text-align: -webkit-center "图2:梯度厚度FeSe薄膜温度依赖电阻(a)及厚度依赖Tc (b)/span/span/pp style="text-indent: 0em text-align: center "span style="font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 14px text-align: -webkit-center "span style="font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 14px text-align: -webkit-center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/ca707a08-a9a8-4ef2-8798-23266bfbc9df.jpg" title="图3:STM系统表征数据:(a) HOPG原子分辨图; (b) Au(111)原子分辨图;(c) BSCCO表面超结构;(d) BSCCO隧道谱;(e) 原位生长FeSe大尺度形貌图;(f) 原位生长FeSe原子分辨图.png" alt="图3:STM系统表征数据:(a) HOPG原子分辨图; (b) Au(111)原子分辨图;(c) BSCCO表面超结构;(d) BSCCO隧道谱;(e) 原位生长FeSe大尺度形貌图;(f) 原位生长FeSe原子分辨图.png"//span/span/pp style="text-indent: 0em text-align: center "span style="font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 14px text-align: -webkit-center "span style="font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 14px text-align: -webkit-center "span style="font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 13.3333px text-align: -webkit-center "图3:STM系统表征数据:(a) HOPG原子分辨图; (b) Au(111)原子分辨图;(c) BSCCO表面超结构;(d) BSCCO隧道谱;(e) 原位生长FeSe大尺度形貌图;(f) 原位生长FeSe原子分辨图/span/span/span/p
  • 扫描NV探针技术!国仪量子助力中国科大&南京大学反铁磁薄膜磁成像研究
    本文转载自中科院微观磁共振重点实验室官网,有部分删减。 近日,中国科学技术大学中科院微观磁共振重点实验室杜江峰、石发展等人与南京大学聂越峰、杨玉荣小组在反铁磁薄膜扫描磁成像的实验研究中取得进展,利用金刚石氮-空位色心(简称NV色心)扫描显微镜对反铁磁BiFeO3的自支撑薄膜进行原位应力调控下的扫描成像。该研究成果以“Observation of uniaxial strain tuned spin cycloid in a freestanding BiFeO3 film”为题发表在Advanced Functional Materials上[Adv. Funct. Mater. 2023, 2213725]。BiFeO3(BFO) 是一种由于Dzyalonshinskii-Moriya相互作用具备摆线序的反铁磁材料。BFO内摆线序与应力的相互作用机制是该领域的一个研究重点。当前的相关研究均利用外延方法调控BFO材料中的应力,这种方法难以原位和连续地对应力进行调控。这使得磁-应力相互作用中的一些重要问题,如任意取向应力下磁序的变化、磁序相变附近的演化过程等在实验上难以开展研究。本工作中,研究者用分子束外延和可溶牺牲层的工艺制备了一种自支撑的BFO薄膜,并用扫描NV显微镜对应力调控下的薄膜进行了扫描磁成像。成像结果表明,在应变达到1.5%时摆线序扭转约12.6°。第一性原理计算表明,实验观测倒的磁序扭转在相应应力下能量最低。 图1. (a)、(b) 自由状态和1.5%应变状态下BFO的实空间扫描磁成像结果。(c)、(d) 扫描成像数据的傅里叶变换结果。(e) 自由状态和1.5%应变状态下傅里叶变换结果角分布统计结果显示12.6°的扭转。这一工作首次对BFO自支撑薄膜的磁序进行研究,原位调控和高空间分辨率的扫描成像技术提供了一种新的对磁-应力相互作用进行研究的思路。这一成果对反铁磁薄膜的理论研究以及新型磁存储器件的应用均有重要价值。图2.第一性原理计算得出的能量-摆线序周期关系曲线。摆线序方向平行于晶向的计算结果用蓝色曲线表示,与晶向夹角为7°、14°、18°、27°的能量曲线分别用不同颜色表示,见图例。计算结果表明,摆线序偏离14~18°的摆线序较为稳定。中科院微观磁共振重点实验室博士后丁哲、博士生孙豫蒙以及合作组博士生郑宁冲、马兴越为此工作共同第一作者,杜江峰院士、聂越峰教授和杨玉荣教授为此工作的共同通讯作者。该研究得到了科技部、国家自然科学基金委、中国科学院和安徽省等资助。论文链接:https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202213725CIQTEK量子钻石原子力显微镜在论文致谢中,作者提到:NV扫描探针由国仪量子提供(The NV scanning probe was provided by CIQTEK )。国仪量子目前已推出了商用的量子钻石原子力显微镜(扫描NV显微镜),这是一台基于NV色心自旋磁共振和AFM扫描探针技术的量子精密测量仪器,可实现样品磁学性质的定量无损成像,具有纳米级的高空间分辨以及单个自旋的超高探测灵敏度,是研究材料磁学性质的新利器,在磁畴成像、二维材料、拓扑磁结构、超导磁学、细胞成像等领域有着广泛应用。点此登记关注量子精密测量仪器
  • 薄膜拉力试验机常见的几种试验方法
    薄膜拉力试验机是一种专门用于测试薄膜材料拉伸性能的设备。它能够模拟实际生产和使用过程中的拉伸条件,以评估薄膜的力学性能和封口强度。这种试验机广泛应用于塑料薄膜、复合材料、软质包装材料、塑料软管、胶粘剂、胶粘带、不干胶、医用贴剂、保护膜、组合盖、隔膜、无纺布、橡胶等材料的力学性能检测。一、单轴拉伸试验单轴拉伸试验是评估薄膜材料拉伸性能最基本且最常用的方法。在试验过程中,薄膜样品被固定在拉力试验机的两个夹具之间,并通过施加拉力使其沿一个方向均匀伸长。通过测量拉伸过程中的应力和应变数据,可以计算出薄膜的弹性模量、抗拉强度、断裂伸长率等关键力学参数。二、双轴拉伸试验双轴拉伸试验是在两个相互垂直的方向上同时对薄膜样品施加拉力的测试方法。这种试验方法更接近于薄膜在实际应用中的受力状态,因此能更准确地反映其力学性能。双轴拉伸试验常用于评估薄膜材料在复杂应力状态下的性能,如抗皱性、抗撕裂性和尺寸稳定性等。三、循环拉伸试验循环拉伸试验是一种模拟薄膜在实际使用过程中经受反复拉伸和松弛的测试方法。在试验过程中,薄膜样品会被周期性地拉伸到一定的应变水平,然后松弛到初始状态。通过多次循环拉伸,可以评估薄膜材料的疲劳性能、弹性恢复能力和耐久性。四、撕裂试验撕裂试验是评估薄膜材料抗撕裂性能的重要方法。在试验过程中,薄膜样品会被固定在特定的夹具上,并在其一端施加撕裂力。通过测量撕裂过程中的力和位移数据,可以计算出薄膜的撕裂强度和撕裂扩展速度等参数。撕裂试验有助于了解薄膜在受到外力作用时的破坏机制和失效模式。五、剥离试验剥离试验主要用于评估薄膜与基材之间的粘附性能。在试验过程中,薄膜被粘贴在基材上,并在一定角度下施加剥离力。通过测量剥离过程中的力和位移数据,可以计算出薄膜与基材之间的粘附强度和剥离速率等参数。剥离试验有助于了解薄膜在不同基材上的粘附性能和适用范围。六、蠕变试验蠕变试验是一种评估薄膜材料在长时间恒定应力下变形行为的测试方法。在试验过程中,薄膜样品会被施加一定的拉伸应力,并保持一段时间以观察其变形情况。通过测量蠕变过程中的应变和时间数据,可以了解薄膜材料的蠕变行为和长期稳定性。蠕变试验对于评估薄膜材料在高温、高湿等恶劣环境下的性能具有重要意义。七、应力松弛试验应力松弛试验是一种评估薄膜材料在恒定应变下应力随时间变化的测试方法。在试验过程中,薄膜样品会被拉伸到一定的应变水平,并保持该应变不变以观察应力的变化情况。通过测量应力松弛过程中的应力和时间数据,可以了解薄膜材料的应力松弛行为和应力稳定性。应力松弛试验有助于了解薄膜材料在受到外力作用后的恢复能力和长期稳定性。
  • 材料基因研究仪器——高通量连续组分外延薄膜制备及原位局域电子态表征系统
    p  strong仪器信息网讯/strong 材料对于推动生产力发展和社会进步起着举足轻重的作用。关键材料的研发周期更是直接决定了相关领域的发展进程。材料基因组技术的出现为快速构建精确的材料相图,缩短材料的研发周期带来了希望。/pp  中国科学院物理研究所/北京凝聚态物理国家研究中心技术部电子学仪器部郇庆/刘利团队一直致力于科研仪器装备的自主研发 超导国家重点实验室金魁/袁洁团队专注于基于高通量组合薄膜技术的新超导体探索和物理研究。两团队经多年合作成功研制并搭建了一台高通量连续组分外延薄膜制备及原位局域电子态表征系统。作为目前国际上最先进的第四代高通量实验设备,审稿人和项目验收专家组均给予了高度评价,认为该设备实现了研究应用和核心技术上的创新突破,解决了现有技术的诸多缺陷和不足,将成为材料基因研究的重要工具,并有望在推动多个领域的前沿研究中发挥重要作用。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/042ce1da-8ab9-46b9-8bb1-eb602327463f.jpg" title="组合激光分子束外延-扫描隧道显微镜联合系统:(a)三维设计图;(b) 实物照片.jpg" alt="组合激光分子束外延-扫描隧道显微镜联合系统:(a)三维设计图;(b) 实物照片.jpg"//pp style="text-align: center "组合激光分子束外延-扫描隧道显微镜联合系统:(a)三维设计图;(b) 实物照片/pp  该系统采用的关键技术为研发团队首次提出,核心部件均自主研发,具备多项独特优点:/pp  1)采用专利的旋转掩膜板设计,避免累积误差和往复运动的问题,大大提高了系统运行精度和稳定性 /pp  2)特殊设计的STM扫描头能够实现大范围XY移动( 10 mm)和高精度定位(定位精度优于 1 μm) 3)完备的传递设计可实现样品、针尖、靶材的高效传递,并易于未来功能扩展。/pp  该仪器研发历时4年多,设计版本多达50多个,并完成了全面的性能测试。他们利用自研系统制备了高质量的梯度厚度FeSe样品,得到可靠的超导转变温度随厚度的演变关系。在HOPG样品、金单晶样品、BSCCO样品以及原位生长FeSe样品表面均获得了高清原子分辨图像,并测量了BSCCO样品局域超导能隙扫描隧道谱。目前,该系统已用于研究高温超导机理问题和新型超导材料探索。/pp  组合薄膜制备技术作为材料基因组核心技术之一经历了三个发展阶段,即共磁控溅射技术、阵列掩膜板技术和组合激光分子束外延技术。目前,组合薄膜生长往往采用往复平行位移掩膜板的方式,这样不可避免造成累积误差,直接影响到薄膜制备过程中组分控制的精度。此外线性掩膜板反复变向及加减速操作也会加速机械部分磨损,降低系统稳定性。另一方面,目前对组合薄膜高通量快速表征技术也存在不足,很多传统方法无法直接用于组合薄膜表征。以扫描隧道显微镜(STM)为例,其对样品表面清洁度具有很高的要求,通常需要原位解理或制备样品 此外,有限的样品移动范围和不具备精确定位功能限制了STM在组合薄膜表征上的应用:大多数商业化STM样品移动范围一般仅为数毫米且不具备定位功能。对于连续组分薄膜性质的研究来说,实际的测量位置与样品组分是一一对应的,失去了位置坐标就失去了组分的信息。因此,发展更加精确的高通量薄膜制备和原位表征手段十分必要,并对包括超导材料在内的多个前沿研究领域具有重要意义。/pp  /ppbr//p
  • 1950万!武汉大学采购原子层薄膜沉积仪等
    项目编号:HBT-13210048-225732项目名称:武汉大学原子层薄膜沉积仪、三维激光扫描测振仪、原位光电热催化真空红外分析平台采购项目预算金额:1950.0000000 万元(人民币)最高限价(如有):1950.0000000 万元(人民币)采购需求:本项目为3个项目包,接受同一供应商多包投标与中标。具体内容见下表。主要技术及服务要求等详见第三章货物需求及采购要求。包号序号货物名称是否接受进口产品单位数量是否为核心产品项目包预算(万元)011原子层薄膜沉积仪是台1是350021三维激光扫描测振仪是台1是500031原位光电热催化真空红外分析平台是台1是1100 合同履行期限:交货期:01包合同签订后 270 日内;02包合同签订后 180 日内;03包合同签订后 240 日内。本项目( 不接受 )联合体投标。
  • 薄膜沉积工艺和设备简述
    薄膜沉积(Thin Film Deposition)是在基材上沉积一层纳米级的薄膜,再配合蚀刻和抛光等工艺的反复进行,就做出了很多堆叠起来的导电或绝缘层,而且每一层都具有设计好的线路图案。这样半导体元件和线路就被集成为具有复杂结构的芯片了。化学气相沉积(CVD)化学气相沉积(CVD)通过热分解和/或气体化合物的反应在衬底表面形成薄膜。CVD法可以制作的薄膜层材料包括碳化物、氮化物、硼化物、氧化物、硫化物、硒化物、碲化物,以及一些金属化合物、合金等。化学气相沉积是目前很重要的微观制造方法,因为它有如下的这些特点:1. 沉积物种类多: 可以沉积金属薄膜、非金属薄膜,也可以按要求制备多组分合金的薄膜,以及陶瓷或化合物层。2. CVD反应在常压或低真空进行,镀膜的绕射性好,对于形状复杂的表面或工件的深孔、细孔都能均匀镀覆。3. 能得到纯度高、致密性好、残余应力小、结晶良好的薄膜镀层。由于反应气体、反应产物和基材的相互扩散,可以得到附着力好的膜层,这对表面钝化、抗蚀及耐磨等表面增强膜是很重要的。4. 由于薄膜生长的温度比膜材料的熔点低得多,由此可以得到纯度高、结晶完全的膜层,这是有些半导体膜层所必须的。5. 利用调节沉积的参数,可以有效地控制覆层的化学成分、形貌、晶体结构和晶粒度等。6. 设备简单、操作维修方便。7. 反应温度太高,一般要850~ 1100℃下进行,许多基体材料都耐受不住CVD的高温。采用等离子或激光辅助技术可以降低沉积温度。化学气相沉积过程分为三个重要阶段:1、反应气体向基体表面扩散2、反应气体吸附于基体表面3、在基体表面发生化学反应形成固态沉积物及产生的气相副产物脱离基体表面CVD的主要有下面几种反应过程:i). 多晶硅 PolysiliconSiH4 — Si + 2h2 (600℃)沉积速度 100 - 200 nm /min可添加磷(磷化氢)、硼(二硼烷)或砷气体。多晶硅也可以在沉积后用扩散气体掺杂。ii). 二氧化硅 DioxideSiH4 + O2→SiO2 + 2h2 (300 - 500℃)SiO2用作绝缘体或钝化层。通常添加磷是为了获得更好的电子流动性能。当硅在氧气中存在时,SiO2会热生长。氧气来自氧气或水蒸气。环境温度要求为900 ~ 1200℃。氧气和水都会通过现有的SiO2扩散,并与Si结合形成额外的SiO2。水(蒸汽)比氧气更容易扩散,因此使用蒸汽的生长速度要快得多。氧化物用于提供绝缘和钝化层,形成晶体管栅极。干氧用于形成栅极和薄氧化层。蒸汽被用来形成厚厚的氧化层。绝缘氧化层通常在1500nm左右,栅极层通常在200nm到500nm间。iii). 氮化硅 Siicon Nitride3SiH4 + 4NH3 — Si3N4 + 12H2(硅烷) (氨) (氮化物)化学气相沉积CVD 设备CVD反应器有三种基本类型:◈ 大气化学气相沉积(APCVD: Atmospheric pressure CVD)◈ 低压CVD (LPCVD:Low pressure CVD,LPCVD)◈ 超高真空化学气相沉积(UHVCVD: Ultrahigh vacuum CVD)◈ 激光化学气相沉积(LCVD: Laser CVD,)◈ 金属有机物化学气相沉积(MOCVD:Metal-organic CVD)◈ 等离子增强CVD (PECVD)物理气相沉积(PVD)在真空条件下,采用物理方法,将材料源(固体或液体) 表面材料气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术。物理气相沉积不仅可沉积金属膜、合金膜, 还可以沉积化合物、陶瓷、半导体、聚合物膜等。物理气相沉积技术基本原理可分三个工艺步骤:(1)镀料的气化:即使镀料蒸发,升华或被溅射,也就是通过镀料的气化源。(2)镀料原子、分子或离子的迁移:由气化源供出原子、分子或离子经过碰撞后,产生多种反应。(3)镀料原子、分子或离子在基体上沉积。物理气相沉积技术工艺过程无污染,耗材少。成膜均匀致密,与基体的结合力强。该技术广泛应用于航空航天、电子、光学、机械、建筑、轻工、冶金、材料等领域,可制备具有耐磨、耐腐蚀、装饰、导电、绝缘、光导、压电、磁性、润滑、超导等特性的膜层 。物理气相沉积也有多种工艺方法:◈ 真空蒸度 Thin Film Vacuum Coating◈ 溅射镀膜 PVD-Sputtering◈ 离子镀膜 Ion-Coating
  • “曼”谈光谱 | 熟悉又陌生的金刚石薄膜
    一提到金刚石这个词想必大家都不陌生了,今天要说的也是金刚石家族的一个成员——金刚石薄膜。什么是金刚石薄膜?金刚石薄膜是20世纪80年代中后期迅速发展的一种优良的人工制备材料。通常以甲烷、乙炔等碳氢化合物为原料,用热灯丝裂解、微波等离子体气相淀积、电子束离子束轰击镀膜等技术,在硅、碳化硅、碳化钨、氧化铝、石英、玻璃、钼、钨、钽等各种基板上反应生长而成。几乎透明的金刚石薄膜(图片来源:网络)集诸多优点于一身的金刚石薄膜,它不仅具有金刚石的硬度,还有良好的导热性、良好的从紫外到红外的光学透明性以及高度的化学稳定性。在半导体、光学、航天航空工业和大规模集成电路等领域拥有广泛的应用前景。至今为止,已在硬质切削刀具、X射线窗口材料、贵重软质物质保护涂层等应用中具有出色的表现。随着金刚石薄膜的研发需求和生产规模不断壮大,是否有一套可靠的表征方法呢?当然有!拉曼光谱用于碳材料的分析已有四十多年,时至今日也形成了很多比较完善的理论。对于不同形式的碳材料,如金刚石、石墨、富勒烯等,其拉曼光谱具有明显的特征谱线差异。此外,拉曼光谱测试是非破坏性的,对样品没有太多要求,不需要前处理过程,可以直接检测片状、固体、微粉、薄膜等各种形态的样品。金刚石薄膜的应力值是非常重要的质量指标。金刚石薄膜和基体之间热膨胀的差异以及其他效应(如点阵错配、晶粒边界的成键和薄膜生长过程中的成键变化等)导致了生长后的薄膜存在残余应力。典型可见光激光激发的拉曼光谱在1000-2000cm-1包含了金刚石薄膜的应力信息。对于较小的应力,拉曼谱图表现为偏离本征频率的一个单峰,并且谱峰会变宽。在高达140GPa的压力下,拉曼位移甚至能够偏移到1650cm-1,与此同时线宽增加了2cm-1。下图是安东帕Cora5001拉曼光谱仪检测的一张典型的非有意掺杂的金刚石薄膜的拉曼谱图。图中可以发现,除了位于1332cm-1的一阶拉曼谱线以外,也能够观测到其他很多拉曼谱峰,典型谱峰的位置和指认如表1中所示。Cora 5001系列拉曼光谱仪在金刚石材料的检测中具备很大优势:碳材料分析模式:智能分析软件中的Carbon Analysis Model可以自动进行寻峰、进行峰形拟合,再计算碳材料特征拉曼峰的信息。一级激光:金刚石材料的拉曼检测多使用532nm激发,有时也需要使用785nm激光激发,Cora5001可以做到一级激光的安全性能。自动聚焦:Cora5001 (Direct)样品仓室内配置了自动聚焦调整样品台,根据仪器自带的聚焦算法可以轻松实现聚焦,使拉曼测试变得简单便捷。双波长可选:金刚石家族的拉曼光谱与入射激光波长密切相关,多一种波长选择也许会得到不同的信息,这为信息互补提供必要条件。“双波长拉曼”每个波长都配置独立的光谱系统,只需按一下按键即可从一个波长轻松切换到另一个波长,无需额外调整样品。
  • 使用电子拉力试验机检测薄膜拉伸性能时如何避免夹具对测试结果的影响
    一、引言  在材料科学领域中,薄膜材料的拉伸性能检测是一项至关重要的工作。通过准确的拉伸性能测试,我们可以了解材料的强度、延展性等关键参数,为材料的开发、优化和应用提供有力支持。电子拉力试验机作为一种先进的力学测试设备,广泛应用于薄膜拉伸性能的测试。然而,在测试过程中,夹具对测试结果的影响往往被忽视,这可能导致测试结果的失真。因此,本文将探讨如何在使用电子拉力试验机检测薄膜拉伸性能时避免夹具对测试结果的影响。  二、夹具对测试结果的影响分析  1. 夹具夹持力不均匀  在薄膜拉伸性能测试中,夹具的夹持力需要均匀分布,以确保薄膜在拉伸过程中受力均匀。然而,由于夹具设计、制造和安装等方面的原因,夹持力往往难以做到完全均匀。这会导致薄膜在拉伸过程中受力不均,从而产生局部应力集中或拉伸变形,进而影响测试结果的准确性。  2. 夹具材料的影响  夹具的材料也是影响测试结果的一个重要因素。如果夹具材料与薄膜材料之间存在较大的摩擦系数或粘附力,那么在拉伸过程中,夹具可能会对薄膜产生额外的阻力或拉力,从而影响测试结果的准确性。此外,夹具材料的硬度、弹性模量等物理性能也可能对测试结果产生影响。  3. 夹具形状和尺寸的影响  夹具的形状和尺寸也是影响测试结果的重要因素。如果夹具的形状和尺寸与薄膜不匹配,那么在拉伸过程中,夹具可能会对薄膜产生不均匀的应力分布,导致测试结果的失真。此外,夹具的开口宽度、夹持长度等参数也可能对测试结果产生影响。  三、避免夹具对测试结果影响的措施  1. 选择合适的夹具  在进行薄膜拉伸性能测试时,应根据薄膜的材料、厚度、宽度等参数选择合适的夹具。夹具的夹持力应均匀分布,且夹具材料应与薄膜材料相匹配,以减少夹具对测试结果的影响。同时,夹具的形状和尺寸也应与薄膜相匹配,以确保测试结果的准确性。  2. 夹具的校准和调试  在使用电子拉力试验机进行薄膜拉伸性能测试前,应对夹具进行校准和调试。通过校准,可以确保夹具的夹持力、形状和尺寸等参数符合测试要求。通过调试,可以消除夹具与薄膜之间的摩擦力和粘附力等干扰因素,确保测试结果的准确性。  3. 优化测试方法  在测试过程中,可以采用一些优化方法来减小夹具对测试结果的影响。例如,可以采用多次测试取平均值的方法来提高测试结果的准确性 可以在夹具与薄膜之间加入润滑剂来减小摩擦力和粘附力 可以采用非接触式夹具来避免夹具对薄膜的直接接触等。  四、结论  在使用电子拉力试验机检测薄膜拉伸性能时,夹具对测试结果的影响是不可忽视的。为了避免夹具对测试结果的影响,我们需要选择合适的夹具、对夹具进行校准和调试、优化测试方法等措施。通过这些措施的实施,我们可以提高测试结果的准确性和稳定性,为薄膜材料的开发、优化和应用提供有力支持。
  • 上海光机所在提升电子束蒸发沉积激光薄膜的长期性能稳定研究中取得新进展
    近期,中国科学院上海光学精密机械研究所薄膜光学实验室在提升电子束蒸发沉积激光薄膜的长期性能稳定研究中取得新进展,实现了低应力、光谱和机械性能长期稳定的电子束激光薄膜制备。相关研究成果发表在《光学材料快报》(Optical Materials Express)。电子束蒸发沉积薄膜因其激光损伤阈值高,光谱均匀性好且易实现大口径制备而广泛应用于世界上各大型高功率激光系统中。然而,电子束蒸发沉积薄膜的多孔结构特性易与水分子相互作用,使得薄膜的各项性能极易受环境条件(尤其是湿度)的影响。即便是在可控的环境下,电子束蒸发沉积薄膜的性能也会随时间而变化。该项成果提出了等离子体辅助沉积的致密全口径包覆水汽阻隔技术,覆盖多孔电子束蒸发沉积薄膜的上表面和侧面,有效地将其与水汽隔离,制备出了低应力、光谱和机械性能长期稳定的电子束蒸发沉积薄膜。同时,该水汽阻隔技术显著提升了电子束蒸发沉积薄膜的耐划性能,且提供了一种离线获得无水吸附时薄膜应力的方法。该项成果为提升电子束沉积薄膜的光谱和面形稳定性提供了途径,有助于解决高功率激光应用中电子束沉积薄膜随时间和环境变化性能不稳定问题。相关工作得到了国家自然科学基金、中科院青促会基金、中科院先导专项(B类)等支持。(薄膜光学实验室供稿)原文链接图1 等离子体辅助沉积的致密全口径包覆水汽阻隔技术示意图图2 有、无全口径水汽阻隔膜的多层膜性能对比(a)峰值反射率处波长随时效时间变化(b)应力随时效时间变化
  • 微观丈量,“膜”力无限——马尔文帕纳科薄膜测量专题网络研讨会成功举办
    仪器信息网讯 2022年10月14日,由马尔文帕纳科携手仪器信息网联合主办的“微观丈量,‘膜’力无限——X 射线分析技术应用于薄膜测量专题网络研讨会”成功举办。本次活动吸引500余人报名参加,直播间气氛活跃,提问不断。马尔文帕纳科先进材料行业销售经理程伟为活动致开场词。程伟讲到,马尔文帕纳科隶属于英国思百吉集团,为微观领域材料表征技术专家,聚焦基础材料、先进材料、医药与食品三大市场,致力于释放微观世界的力量,促进宏观世界的改变。马尔文帕纳科的XRD、XRF产品可以为薄膜材料分析提供全面解决方案,帮助客户获得薄膜材料的元素构成、物相、厚度、取向、残余应力等关键信息。会议特邀高校资深应用专家及马尔文帕纳科技术专家分享精彩报告。同济大学朱京涛教授作《X射线衍射仪在纳米多层薄膜表征中的应用》主题报告,系统介绍国内外多层薄膜研究进展,并结合其团队研究实例,围绕X射线衍射仪在纳米多层薄膜表征中的应用开展探讨,采用掠入射X射线反射、X射线衍射、X射线面内散射等测试方法,表征周期、非周期、梯度多层膜,以及膜层厚度、界面宽度、薄膜均匀性、结晶特性、粗糙度等信息。从1954年飞利浦第一台用于薄膜分析的X射线衍射仪诞生以来,马尔文帕纳科X射线分析技术应用于半导体薄膜材料测量已有非常悠久的历史,目前可为世界各地的半导体制造商提供完整的物理、化学和结构分析解决方案,从薄膜厚度和晶向到组分、应力、结晶度、密度和界面形态等。马尔文帕纳科亚太区半导体销售经理钟明光详细介绍了公司X射线衍射及X射线荧光分析技术在半导体薄膜领域的整体解决方案,包括新一代X'Pert3 MRD(XL)高分辨X射线衍射仪、2830ZT波长色散X射线荧光圆晶分析仪等。多晶薄膜材料的晶型、残余应力和织构影响着薄膜的物理和力学性能,对这些参数进行测量和分析可以为薄膜沉积工艺的调整和优化提供依据。在衍射仪中构建适合薄膜分析的光路,在常规的晶型分析外,还可以对薄膜材料进行无损的残余应力和织构分析。马尔文帕纳科中国区XRD产品经理王林带来题为《多晶薄膜应力和织构分析》的报告,结合多晶薄膜分析示例,分享了马尔文帕纳科X射线衍射技术在多晶薄膜的物相、应力、织构表征方面的应用。Aeris台式衍射仪的演示短片通常,X射线衍射仪分析薄膜材料,都是在大型落地式的XRD上实现的,但马尔文帕纳科在2021年推出了新一代的Aeris台式XRD,可以通过增加掠入射功能附件,实现在占地面积更小的台式衍射仪上进行薄膜的物相和掠入射残余应力分析。报告间隙,特插播Aeris台式衍射仪演示短片,让用户更直观了解这款“一机多能”的多功能型台式X射线衍射仪。X射线荧光光谱通常被认为是一种成分分析技术,广泛应用于各类工业过程控制。追本溯源,其分析原理来自于X射线与物质的相互作用,因此该技术的应用也被延伸至各类薄层样品的表征,获取涂层和镀层中的层厚和薄层成分信息。在薄层样品的分析上,XRF具有无损分析、测量速度快、层间界面要求较低、样品尺寸灵活和适用多层分析的特点,被广泛用于半导体、金属、电子等领域。报告中,马尔文帕纳科中国区XRF产品经理熊佳星先生分享了X射线荧光技术用于涂层镀层分析的原理、方案及典型应用,并演示了实际样品的测量过程;视频中,Epsilon4台式XRF搭配专用的薄膜分析软件Stratos可以实现对涂层和镀层的快速、准确的无损分析。台式荧光仪镀层分析演示视频本次专题活动,马尔文帕纳科还为用户准备了丰富的礼品,随着第三轮抽奖活动的结束,会议进入尾声。未来仪器信息网和马尔文帕纳科也将一如既往为薄膜材料等先进材料用户提供更多更优质的服务。更多活动详情请点击下方专题。
  • 直播预告| 聚焦薄膜测量 马尔文帕纳科X射线分析技术荟萃
    薄膜,通常是指形成于基底之上、厚度在一微米或几微米以下的固态材料。薄膜材料广泛应用于不同的工业领域,譬如半导体、光学器件、汽车、新能源等诸多行业。沉积工艺是决定薄膜成分和结构的关键,最终影响薄膜的物性;对薄膜成分、厚度、微结构、取向等关键参数进行测量可以为薄膜沉积工艺的调整和优化提供依据,改善薄膜材料性能。马尔文帕纳科的X射线衍射(XRD)和X射线荧光光谱(XRF)分析设备,可以对不同类型的薄膜材料进行表征。从1954年飞利浦第一台用于薄膜分析的X射线衍射仪诞生以来,马尔文帕纳科X射线分析技术应用于半导体薄膜材料测量已有非常悠久的历史。无论是针对单晶外延、多晶薄膜、非晶薄膜都有对应的专业分析解决方案,利用对称衍射、非对称衍射、反射率、摇摆曲线、双周扫描、倒易空间Mapping和正空间Mapping等测量方式,表征薄膜材料的厚度和超晶格周期、应力和弛豫;失配和成分;曲率半径;衬底材料取向;组分分析等等。马尔文帕纳科新推出的衍射超净间系统套件,搭配自动加载装置,可在1分钟内评估面内缺陷,最大程度降低生产成本,提高检测效率。此外,马尔文帕纳科全自动XRF晶圆分析仪,可以快速分析晶片或器件多层膜的成分及厚度,具有非常稳健的工作方式且符合超净间环境要求,在晶圆厂圆晶质量在线控制的环节倍受认可。(更多解决方案详见活动专题)基于此,马尔文帕纳科联合仪器信息网将于10月14日举办微观丈量▪“膜”力无限——X 射线分析技术应用于薄膜测量主题活动,特邀高校资深应用专家及马尔文帕纳科技术专家分享薄膜表征技术与应用干货,全面展示马尔文帕纳科针对薄膜材料测量的解决方案。此外,活动直播间还特别设置了答疑及抽奖多轮福利环节。专题页面:https://www.instrument.com.cn/topic/malvernpanalytical.html活动日程:时间环节嘉宾14:00-14:10开场致词,公司介绍与薄膜应用概述程伟马尔文帕纳科 先进材料行业销售经理14:10-14:50X射线衍射仪在纳米多层薄膜表征中的应用朱京涛同济大学 教授14:50-15:00答疑 & 第一轮抽奖定制马尔文帕纳科公仔一对15:00-15:30多晶薄膜应力和织构分析王林马尔文帕纳科 中国区XRD产品经理15:30-15:40答疑 & 第二轮抽奖定制午睡枕15:40-16:25X射线衍射及X射线荧光分析技术在半导体薄膜领域的应用钟明光马尔文帕纳科 亚太区半导体销售经理16:25-16:35答疑16:35-16:55X射线荧光光谱在涂层镀层分析中的应用熊佳星马尔文帕纳科 中国区XRF产品经理16:55-17:00答疑 & 第三轮抽奖&结束语倍思车载无线充电器活动直播间,同济大学朱景涛教授将分享X衍射仪在纳米多层薄膜表征中的应用,主要采用掠入射X射线反射、X射线衍射、X射线面内散射等测试方法,表征周期、非周期、梯度多层膜,以及膜层厚度、界面宽度、薄膜均匀性、结晶特性、粗糙度等信息;马尔文帕纳科中国区XRD产品经理王林将分享X射线衍射法测量多晶薄膜的残余应力和织构分析方法;马尔文帕纳科亚太区半导体销售经理钟明光将展示马尔文帕纳科在半导体薄膜领域的专业分析解决方案;马尔文帕纳科中国区XRF产品经理熊佳星将分享X射线荧光光谱在涂层镀层无损分析中的应用。扫码免费报名抢位点击下方专题页面,详细了解马尔文帕纳科X射线薄膜测量技术沿革及相关产品。
  • 薄膜拉伸强度测试仪如何区分弹性变形和塑性变形
    在薄膜拉伸强度测试中,准确区分弹性变形和塑性变形对于材料工程师、物理学家以及产品开发者而言,是至关重要的一环。这两种变形类型不仅决定了材料的基本性能,还直接关系到产品的使用寿命和安全性。本文旨在深入探讨薄膜拉伸强度测试中弹性变形与塑性变形的区分方法,以及它们在材料科学领域的应用。一、弹性变形与塑性变形的基本概念弹性变形,指的是材料在外力作用下产生变形,当外力消失时能够恢复到原始形状和尺寸的现象。这种变形是可逆的,不涉及材料的内部结构变化。而塑性变形则是指材料在外力作用下产生变形后,即使外力消失也不能完全恢复到原始形状和尺寸的现象。塑性变形是不可逆的,通常伴随着材料内部结构的改变。二、薄膜拉伸强度测试中的变形观察在薄膜拉伸强度测试中,我们可以通过观察材料的应力-应变曲线来区分弹性变形和塑性变形。在弹性变形阶段,应力与应变之间呈线性关系,即应力增加时,应变也按一定比例增加。当应力达到弹性极限时,材料开始进入塑性变形阶段,此时应力-应变曲线呈非线性关系,应变继续增加但应力增长缓慢或不再增长。三、区分弹性变形与塑性变形的具体方法应力-应变曲线分析:如前所述,通过分析应力-应变曲线的形状和变化,可以判断材料是否进入塑性变形阶段。在弹性变形阶段,曲线呈直线状;而在塑性变形阶段,曲线则呈现弯曲或平坦的趋势。卸载试验:在拉伸测试过程中,当材料达到一定的应力水平时,可以突然卸载并观察材料的恢复情况。如果材料能够迅速恢复到原始长度,则说明之前的变形主要是弹性变形;如果材料不能完全恢复,则说明存在塑性变形。残余应变测量:在拉伸测试结束后,通过测量材料的残余应变可以判断塑性变形的程度。残余应变越大,说明塑性变形越显著。四、弹性变形与塑性变形在材料科学中的应用材料选择:了解材料的弹性变形和塑性变形特性有助于选择合适的材料以满足特定需求。例如,在需要高弹性的场合(如橡胶制品),应选择弹性变形能力强的材料;而在需要承受大变形而不破裂的场合(如金属薄板),则应选择塑性变形能力强的材料。产品设计:在产品设计过程中,考虑到材料的弹性变形和塑性变形特性,可以优化产品结构以提高其性能和安全性。例如,在设计弹性元件时,需要充分利用材料的弹性变形能力;而在设计承力结构时,则需要考虑材料的塑性变形特性以确保结构的稳定性和安全性。质量控制:通过测量材料的弹性模量、屈服强度等力学性能指标,可以评估材料的性能是否满足要求。同时,通过观察材料的变形行为(如弹性变形和塑性变形)可以判断材料是否存在缺陷或质量问题。五、结论在薄膜拉伸强度测试中准确区分弹性变形和塑性变形对于材料科学领域具有重要意义。通过分析应力-应变曲线、进行卸载试验和测量残余应变等方法可以判断材料的变形类型。了解材料的弹性变形和塑性变形特性有助于选择合适的材料、优化产品设计和提高产品质量。未来随着材料科学的发展和技术的进步相信我们将能够更加深入地理解材料的变形行为并开发出更多高性能的材料。
  • 物理所铜锌锡硫硒薄膜太阳能电池研究取得进展
    铜锌锡硫硒太阳能电池(CZTSSe)是一种新型薄膜太阳能电池,因吸光系数高、弱光响应好、稳定性高、组成元素储量丰富、环境友好且价格低廉而颇具发展潜力,从而备受关注。中国科学院物理研究所/北京凝聚态物理国家研究中心孟庆波团队多年来在该类薄膜太阳能电池方面开展了系统研究,在高质量铜锌锡硫硒薄膜制备、界面调控、器件载流子动力学分析和电池效率提升等方面取得了系列研究成果。例如,基于二甲亚砜(DMSO)体系,发展了一种可以同时调控背界面和吸收层体相缺陷的Ge掺杂策略,所制备的CZTSSe电池认证效率为12.8%;在界面研究方面,引入有机电子传输层(PCBM)增强电荷抽取与传输,实现了12.9%的电池效率;在溶剂工程方面,发展了一种环境友好的水溶液体系,探索了小分子配体与金属离子相互作用对前驱膜、硒化膜晶体生长、薄膜微结构及器件性能的影响,获得了12.8%的电池认证效率。该团队已在CZTSSe电池材料及器件方面申请国家发明及实用新型专利13项。  近日,该团队与南京邮电大学教授辛颢合作,从硒化动力学角度出发,通过调节腔室压强来改变半封闭石墨盒中的硒化反应速率,进而调节铜锌锡硫硒薄膜的相演变过程。增加腔室压强后,研究通过原位实时硒分压监测发现,在硒化早期,硒分压被抑制,从而降低了硒化升温阶段(200-400 ℃)中前驱膜与气态硒蒸汽的碰撞几率;同时,正压条件下硒化能够抑制元素的非均匀扩散。在以上两点共同影响下,相演变过程在相对更高的温度下开始(>400 ℃),前驱膜表面经常出现的CuxSe、Cu2SnSe3等中间相被抑制,因此,实际相演变过程一步完成。由此获得的银替位CZTSSe(ACZTSSe)吸收层晶体质量高、内部孔洞少、表面缺陷浓度显著降低。所制备电池体相缺陷浓度降低了约一个数量级,电学性能也得到明显改善,并实现了全面积14.1%效率(认证全面积13.8%)的太阳能电池,是目前报道的最高效率。这一工作为进一步理解和调控铜锌锡硫硒相演变过程提供了动力学调控思路,并为其他类型多晶薄膜生长制备提供借鉴意义。  相关研究成果以Control of the Phase Evolution of Kesterite by Tuning of the Selenium Partial Pressure for Solar Cells with 13.8% Certified Efficiency为题,发表在《自然-能源》(Nature Energy,DOI:10.1038/s41560-023-01251-6)上。研究工作得到国家自然科学基金的支持。图1.(a)铜锌锡硫硒的相演变路径示意图;(b)原位监测获得的不同腔压下反应过程中的硒分压曲线;(c)铜锌锡硫硒太阳能电池认证报告(国家光伏产业计量测试中心)。图2.(a)对比组吸收层的SEM正面和截面图像;(b)实验组吸收层的SEM正面和截面图像;(c)对比组吸收层的能带结构;(d)实验组吸收层的能带结构。
  • 分子束外延占主流——共享化合物半导体薄膜沉积与外延设备盘点
    随着半导体市场,,特别是化合物半导体市场的逐步开放和增长,作为化合物半导体研发中相关材料制备的关键仪器,MBE、MOCVD等薄膜沉积与外延设备的市场也在逐年增长和扩大中,不论是海外品牌还是国产品牌,近几年的市场规模都在逐年扩大。由于高校的管理模式及制度,这些仪器设备大多养在“深闺”,大量科研资源潜能没有得到充分发挥。为解决这个问题并加速释放科技创新的动能,中央及各级政府在近几年来制订颁布了关于科学仪器、科研数据等科技资源的共享与平台建设文件。2021年1月22日,科技部和财政部联合发布《科技部 财政部关于开展2021年度国家科技基础条件资源调查工作的通知(国科发基〔2020〕342号)》,全国众多高校和科研院所将各种科学仪器上传共享。其中,对化合物半导体薄膜沉积与外延设备的统计分析或可一定程度反映科研领域相关仪器的市场信息(注:本文搜集信息来源于重大科研基础设施和大型科研仪器国家网络管理平台,部分仪器品牌信息不全则根据型号等信息补全,不完全统计分析仅供读者参考)。共享化合物半导体薄膜沉积与外延设备分布北京市共享化合物半导体薄膜沉积与外延设备分布本次统计,共涉及化合物半导体薄膜沉积与外延设备的总数量为184台,涉及23省(直辖市/自治区),73家单位。其中,北京市共享设备数量最多达64台,占比35%,涉及14所高校院所,北京如此高的占比主要是由于其科研院所较多,产品也主要用于科研领域。共享仪器平台主要来自科研用户上传并服务于科研用户,也因此该类仪器设备主要分布于科研院所众多的北京市。从北京市的分布情况来看,其主要分布于高校集中的海淀区,该地区共有60台共享设备。化合物半导体材料制备设备主要有MBE和MOCVD。从统计中可以看出,MBE在科研领域中的占比较大,高达73%,MOCVD占比为21%。MBE由于其外延生长时间长,大批量生产性差,对真空条件要求高,目前还无法大规模用于工业化生产中,又由于其可原位观察单晶薄膜的生长过程等优势,主要用于进行生长机制的研究,图中比例仅代表科研领域中的分布情况。虽然MBE成膜质量好,但生产效率低,因此在工业领域中,MOCVD占据主流。不过近年来,众多厂商和科研人员一直在致力于MBE技术的产业化,信息显示,北京意莎普科技发展中心有限公司近年来在推进MBE分子束外延片研发及产业化建设项目。还有知情人士称,深圳地区有人做相关产业化,一次性买入几十台MBE,做2寸的晶圆,做出来多少,就有人收多少。相关仪器设备所属学科领域分布从仪器所属学科领域分布可以看出,这些仪器设备主要用于物理学和材料科学研究,占比分别为36%和32%。需要注意的是,以上统计存在交叉分布的情况,即该仪器同时属于多类学科领域,实际上材料科学和物理学研究具有很大的重合度。化合物半导体薄膜沉积与外延设备TOP5品牌MOCVD设备中Aixtron占比那么这些仪器主要有哪些品牌呢?整体来看,化合物半导体薄膜沉积与外延设备中,沈阳科仪、Aixtron和Omicron占比最高,其中沈阳科仪MBE和MOCVD产品均有涉及,Aixtron则聚焦MOCVD设备,Omicron聚焦MBE产品。MBE产品的品牌占比可参考【这类仪器本土品牌在崛起——全国共享MBE盘点】。进一步统计分析了MOCVD的品牌构成,发现MOCVD主要以德国Aixtron的产品为主,占比高达49%。需要注意的是德国Aixtron集团在英国有子品牌Thomas Swan,本次统计未归入Aixtron中。Aixtron是一家总部位于德国的欧洲技术公司,专门为半导体行业的客户制造金属有机化学气相沉积(MOCVD)设备。2016年10月,中国福建大芯片投资基金LP希望收购Aixtron,但德国经济部撤回了对该收购的批准。Axitron与SemiLEDs在2009年5月就合作开发出6寸蓝光LED芯片,在6x6寸AIX 2800G4 HT MOCVD反应炉的结构上,产量增加约30%(相较于传统42x2-inch的架构),不但均匀性较好,也减少了边缘效应。不过就现阶段而言,大多数的困难仍然在于6寸的基板价格偏高与外延片切割技术的挑战。AIXTRON公司最先进的独特的行星转盘技术应用在大型G4 2800HT 42*2”以及Thomas Swan(1999年被AIXTRON收购) CCS Crius 30*2” MOCVD系统,使得Aixtron的MOCVD设备被公认为世界上技术和商业价值最完美的结合。设备品牌所属国家分布那么这些仪器主要来自于哪些国家呢?统计结果表明,此类产品以德国品牌居多,占比达32%,其次为国产品牌,可以看出中国产品正在崛起。本次统计主要涉及牛津、Aixtron、Thomas Swan、沈阳科仪、Emcore、中科宏微、Veeco、Omicron、TSST、SPECS、MBE-Komponenten GmbH、DCA、VG、Unisoku、SVTA、国成仪器、RIBER、Neocera、大连齐维科、上海实路、KurJ.Lesker、青岛精诚华旗、湖南顶立、EPGRESS等品牌。
  • “冻”中有静,细思极“孔” ——Moorfield薄膜生长设备助力冷冻电镜研究新进展登上Science
    科研进展moorfield薄膜生长设备的用户英国剑桥大学christopher j. russo教授研究组利用高质量的薄膜生长与加工技术制备了用于冷冻电镜样品制备的“hexaufoil”金属网,该金属网使得冷冻电镜观察生物大分子样品时样品的位置漂移小于1埃米,进一步提高了冷冻电镜的成像质量,该结果刊登在2020年10月的science杂志上。“hexaufoil”金属网制备过程中的关键环节就是采用moorfield提供的高精度电子束蒸发技术以及液氮冷却的低温样品台,使得au膜当中的粒径更小,在大缩小金属网圆孔直径的情况下仍保证了金属网孔的圆度和质量。图1:生长在si 片上的“hexaufoil”金属网阵列(图片由分子生物学mrc实验室的neil grant提供) 说到冷冻电镜,近几年在分子生物学方向可谓是大放异彩,我国生物学家利用冷冻电镜技术在结构生物学方面也做出了许多举世瞩目的重要成果。冷冻电镜技术几乎的实现了对生物大分子的高精度观察。但在实际应用中仍有很多因素限制了冷冻电镜观测精度的进一步提升。其中重要因素之一是由于电子束照射导致金属网上的玻璃态的水膜发生移动从而影响观测精度。英国剑桥大学的christopher j. russo研究组对金属网上玻璃态水膜的移动建立了物理模型,通过分析得出水膜的直径和厚度存在一个临界比值,超过临界比值,水膜在快速冷冻过程中会由于应力作用发生弯曲,并有部分应力冻结在内部。而在电子束照射时,由于电子束照射作用提高了水膜中水分子的扩散系数(~1046倍),玻璃态的水膜便成为了一个“超粘流体”,水膜的应力会进一步的释放使得水膜的曲率发生变化,从而导致了生物大分子的位移,而这个位移只发生在电子束照射时,从而影响成像质量。图2:a冷冻电镜在观测时样品的位置移动,b、c不同角度,不同孔径对位移的影响,d水膜曲率变化导致样品位移的示意图。e孔径比的临界值(孔的直径/水膜厚度) 如果缩小金属网孔的直径,使水膜的直径和厚度比值在临界以内,在冷冻时水膜内聚集的能量不足以使水膜发生弯曲,电子束照射的能量也不会引发水膜曲率的变化,仅仅会引起水分子的扩散,而扩散对成像的影响远小于曲率的变化。从而可以提高冷冻电镜的成像质量。因此制备高精度小孔径金属网格就显得尤为重要。christopher j. russo课题组利用了高精的光刻和电子束蒸发薄膜制备技术在硅片上成功的批量制备出了孔径在200 nm尺度的金属支撑网,使得冷冻电镜测量时样品的位移小于1埃米。图3:利用“hexaufoil”金属网的冷冻电镜观测结果 后作者利用制备的“hexaufoil”金属网对223-kda dps蛋白质进行了冷冻电镜的观测。结果表明,采用“hexaufoil” 金属网可以有效减小样品的移动,使得分辨率轻松突破2埃米(更多细节请参考原文)。该篇文章介绍了一种减小样品位置漂移提高冷冻电镜精度的有效途径。moorfield薄膜制备与加工设备moorfield nanotechnology是英国材料科学领域高性能仪器研发公司,成立26年来专注于高质量的薄膜生长与加工技术,拥有雄厚的技术实力,推出的多种高性能设备受到科研与工业领域的广泛好评。moorfield公司近十年来与曼彻斯特大学诺奖技术团队紧密合作,推出的台式高精度薄膜制备与加工系列产品由于其体积小巧、性能、易于操作更是受到很多科研单位的赞誉。moorfield nanotechnology推出的大型系列设备具有更大的配置自由度,可以满足各种用户的特殊功能需求,并且接受设备的特殊定制化设计。 冷冻电镜背景介绍2017年诺贝尔化学奖颁给了发明冷冻电镜(cryo-em)的三位科学家,哥伦比亚大学教授joachim frank、苏格兰分子生物学家和生物物理学家richard henderson、以及瑞士洛桑大学生物物理学荣誉教授jacques dubochet以表彰他们在冷冻显微术领域的贡献。严格来说,其实这次化学奖是颁发给了三维“物理学家”以表彰他们对生物领域做出的贡献。richard henderson在20世纪90年代改进了电子显微镜,实现了原子分辨率;joachim frank在70、80年代开发了一种图像合成算法,能将电子显微镜模糊的二维图像解析合成清晰的三维图像;jacques dubochet发明了迅速将液体水冷冻成玻璃态以使生物分子保持自然形态的技术。这些发明使低温冷冻电子显微镜得到很大的优化。为什么观察蛋白质等生物大分子需要冷冻电镜呢?这是由于蛋白质等生物大分子往往只能保存在水溶液中无法满足电镜的真空要求,并且这些生物大分子是通过氢键链接的,电子的轰击会导致氢键断裂破坏分子结构,此外蛋白质等活性物质是运动的,不是一个静止状态。由于以上原因,普通电镜是不能用于观察蛋白质等生物活性物质的。科学家们经过探索发现,快速冷冻可使水在低温状态下呈玻璃态,减少冰晶的产生(水凝结成冰晶体积会膨胀从而会破坏生物分子结构),从而不影响样品本身结构,生物大分子就可以冷冻在这个玻璃态的水里,通过冷冻传输系统保证在样品始终保持在低温状态下,这样就可以对样品进行电镜观察了。然后利用计算软件通过大量的二维照片解析出生物大分子的三维结构,这便实现了对生物大分子的高精度观测。近些年来,冷冻电镜在结构生物学领域大放异彩,使得对蛋白质等生物大分子的研究取得了长足的发展。我国生物学家去年在新冠病毒研究方面取得的诸多进展中也有很多重要的工作都用到了冷冻电镜技术。 【参考文献】[1]. naydenova k , jia p , russo c j . cryo-em with sub–1 specimen movement[j]. science, 370.
  • 福建厦门市质检院塑料薄膜拉伸强度检测能力通过验证
    近日,福建省厦门市质检院塑料薄膜拉伸强度检测能力以“满意”结果通过验证。据悉,塑料薄膜拉伸性能是用来评价分析材料静态力学性能的参数,拉伸强度是用来判定材料初次出现破坏的应力点。影响塑料薄膜拉伸性能试验结果的因素有很多,除了样品本身,试验仪器、试样的状态调节处理和试验环境、操作过程等对结果影响也很大。此次厦门市质检院塑料薄膜拉伸性能测定的能力验证顺利通过,客观准确地反映出该院在技术水平和质量管理等方面的综合实力,说明该院在包装材料领域检验检测能力可为生产企业控制质量提供良好的技术支持、为使用单位提供强有力的技术保障,有效保证产品的质量安全。据悉,厦门市质检院将以参加国内外能力验证为契机,进一步提高业务水平,为社会各界提供更全面、更高效、更优质的技术服务,为包装材料行业高质量发展提供可靠的技术支撑。
  • ETT-01电子拉力试验机除了可以测试薄膜的拉伸强度还能测试薄膜的哪些性能
    在当今这个科技日新月异的时代,薄膜材料因其优良的物理和化学特性,在包装、医疗、电子等众多领域得到了广泛应用。然而,如何准确评估薄膜的各项性能,确保其在各种应用场景下的可靠性,成为了摆在科研人员和生产企业面前的重要课题。幸运的是,ETT-01电子拉力试验机的出现,为薄膜性能的全面检测提供了强大的支持。ETT-01电子拉力试验机,作为一款专业的力学性能测试设备,不仅可以测试薄膜的拉伸强度,更能深入探索薄膜的剥离强度、断裂伸长率、热封强度、穿刺力等多项关键性能。这些性能参数对于评估薄膜的耐用性、密封性以及在实际应用中的表现至关重要。首先,剥离强度是衡量薄膜材料间粘附力的重要指标。通过ETT-01的精确测试,我们可以了解到薄膜与不同材料之间的粘附性能,为产品设计和生产工艺提供有力依据。其次,断裂伸长率是反映薄膜材料在受到外力作用时变形能力的关键参数。ETT-01能够准确测量薄膜在拉伸过程中的伸长率,帮助我们判断薄膜的柔韧性和抗拉伸能力。此外,热封强度也是薄膜性能中不可忽视的一环。ETT-01电子拉力试验机能够模拟薄膜在实际应用中的热封过程,测量热封后的强度,确保薄膜在包装、密封等应用场景下具有良好的密封性能。值得一提的是,ETT-01电子拉力试验机还具备测试薄膜穿刺力的功能。通过模拟实际使用中可能出现的穿刺情况,我们可以评估薄膜的抗穿刺能力,为产品设计和质量控制提供重要参考。除了以上提到的性能参数外,ETT-01电子拉力试验机还能测试薄膜的压缩、折断力等多项性能,实现对薄膜性能的全面解析。这一功能的实现,得益于ETT-01的高精度测试系统和先进的位移控制技术。通过这些技术手段,ETT-01能够确保测试结果的准确性和重复性,为用户提供可靠的数据支持。在实际应用中,ETT-01电子拉力试验机已经成为了众多薄膜材料生产企业、科研机构以及质检部门的得力助手。它不仅能够帮助用户全面了解薄膜的各项性能参数,还能为产品设计和生产工艺提供改进方向,推动薄膜材料行业的持续发展和创新。总之,ETT-01电子拉力试验机以其全面的测试功能和精准的测试结果,成为了薄膜性能全面解析的利器。它不仅能够满足科研人员和生产企业对薄膜性能评估的需求,还能为产品的质量控制和工艺改进提供有力支持。在未来的发展中,我们有理由相信,ETT-01电子拉力试验机将继续在薄膜材料性能测试领域发挥重要作用,为行业的进步和发展贡献力量。
  • 顶刊速递,北航研究团队制备并表征高性能MXene纳米片薄膜!
    【科学背景】随着纳米科技的迅猛发展,二维纳米材料作为一类重要的新兴材料,因其独特的电子、光学和机械性能,引起了广泛的关注。其中,钛碳化物(Ti3C2Tx)MXene纳米片由于其优异的机械性能和电导率,显示出在航空航天和电子器件等领域的巨大应用潜力。然而,将MXene纳米片从单层的优异性能扩展到宏观尺度的应用中却面临着诸多挑战。目前报道的组装方法如真空过滤、刮刀涂布和空间限制蒸发等,虽然在一定程度上可以制备MXene薄膜,但仍然存在诸如取向度不高、孔隙率较大以及界面相互作用弱等问题。例如,通过真空过滤制备的MXene薄膜取向度仅为0.64,其机械性能显著低于单层MXene的理论值。有鉴于此,北京航空航天大学的程群峰教授团队在“Science”期刊上发表了题为“Ultrastrong MXene film induced by sequential bridging with liquid metal”的研究论文。一种新的制备策略——利用液态金属(LM)和细菌纤维素(BC)依次桥接MXene纳米片,被提出并成功实施。这种方法不仅通过LM纳米粒子有效减少了MXene薄膜的孔隙,还通过BC提供的氢键和LM提供的配位键显著增强了MXene纳米片之间的界面相互作用。研究结果表明,这种LBM薄膜不仅具有极高的拉伸强度,还表现出优异的电磁屏蔽效率,为MXene纳米片在宏观尺度应用中的进一步开发提供了新的思路和方法。【科学图文】 图1:LBM薄膜的制备原理及表征。图2. LBM薄膜的界面相互作用表征。图3. LBM薄膜的力学性能和断裂机理。图4. 电磁干扰屏蔽效能的表现。【科学结论】本文克服钛碳化物(Ti3C2Tx)MXene纳米片组装过程中的关键挑战,提出了一种创新的策略,即利用液态金属(LM)和细菌纤维素(BC)依次桥接MXene纳米片,成功制备了超强的宏观LBM薄膜。通过LM纳米粒子的引入,有效减少了薄膜的空隙,同时利用BC提供的氢键和LM提供的配位键显著增强了MXene纳米片之间的界面相互作用。这些改进不仅显著提高了MXene纳米片在薄膜中的应力传递效率,还赋予了LBM薄膜优异的电磁屏蔽性能。这一研究不仅为MXene纳米片及其他二维纳米材料在高性能材料领域的应用提供了新的设计思路和解决方案,还展示了多层次、多材料协同作用的重要性和潜力。未来的研究可以进一步探索和优化这种组装策略,以扩展其在能源存储、传感器技术和柔性电子设备等领域的应用,从而推动纳米材料设计和制备技术的发展,实现更广泛的实际应用和产业化转化。文献信息:https://www.science.org/doi/10.1126/science.ado4257
  • 德祥成功参加国际薄膜材料大会 Thin Film 2010
    德祥成功参加国际薄膜材料大会 Thin Film 2010 7月11日至14日,德祥科技有限公司(Tegent Technology Ltd.)一行代表参加了在哈尔滨举办的第五届国际薄膜材料大会(ThinFilms2010)和*届国际先进树脂基复合材料大会(Compo2010)。本次会议由哈尔滨工业大学与国际薄膜学会(Thin Films Society)共同主办,哈尔滨工业大学航天学院副院长赫晓东和新加坡南洋理工大学张善勇教授共同担任大会主席。大会名誉主席杜善义院士、副校长周玉、张善勇和赫晓东出席了开幕式并致辞,周玉还代表中国工程院副院长干勇院士致辞。本次会议吸引了来自中国、韩国、新加坡、印度、马来西亚、美国、德国、英国、日本、澳大利亚、俄罗斯、荷兰等100多个国家或地区的800余名专家学者参加,其中国外学者500余名,国内学者200余名,收录学术论文逾千篇,其中口头报告500余篇、墙报550余篇。 德祥与会代表与Hysitron宋博士在一起 (左起:Dr. Shuangxi Song (Application Scientist, Hysitron Inc.), Ms. Karen Zhao (Product Manager, Tegent Technology Ltd.), Mr. Daniel Liu (Sales Supervisor, Tegent Technology Ltd.)) 德祥的合作伙伴美国Hysitron(海思创)公司在大会现场进行了纳米压痕仪产品展示,得到与会代表的广泛关注。Hysitron(海思创)公司是*的纳米力学检测仪器的设计和制造商。Hysitron(海思创)的纳米力学测试仪器可以在微纳尺度下对压痕、划痕、磨损过程中的硬度、弹性模量、等力学参数进行原位成像检测,是认识和探索材料的微纳米尺度结构、形貌和性能的重要设备。 德祥是Hysitron(海思创)公司系列产品在中国大陆和香港的独家总代理商。 德祥与会代表与Hysitron宋博士在一起 左起:Dr. Shuangxi Song (Application Scientist, Hysitron Inc.), Mr. Daniel Liu (Sales Supervisor, Tegent Technology Ltd.), Ms. Karen Zhao (Product Manager, Tegent Technology Ltd.)更多产品详情,敬请垂询: 客服热线:4008 822 822 德祥网站:www.tegent.com.cn 邮箱:info@tegent.com.cn
  • Veeco举办CIGS薄膜太阳能电池技术研讨会
    Veeco日前与中国电子科技集团公司第十八研究所、中国化学与物理电源行业协会共同举办了铜铟镓硒(CIGS)薄膜太阳电池技术研讨会,议题涵盖CIGS薄膜太阳能电池的最新生产设备、测试设备及目前中国光伏产业发展现状等。 Veeco主要为高亮度LED、太阳能、半导体用户提供技术解决方案。Veeco大中华区总经理王克扬表示,Veeco是业界目前唯一可将热源整合到CIGS Web镀膜系统上的薄膜沉积设备供应商,因此公司的FastFlex卷绕镀膜系统能够给客户带来卓越的高吞吐量的沉积方案,帮助客户快速完成从研发到量产的过程。 FastFlex Web镀膜系统,由Veeco于2008年5月收购的Lowell生产,具有吞吐量高、性能卓越、拥有成本低,并且具有紧凑的外形尺寸等特点。通过其灵活的结构设计可实现溅射,反应溅射和热蒸发镀膜,是Mo(钼),TCO(透明导电氧化物)和CIGS等太阳能薄膜制备的理想工具。王克扬介绍,系统可在多个沉积区实现旋转或平面磁场分布,用户可根据自身需要选用表面预清洗和多种泵系统。CIGS 系统配备有Veeco拥有专利并已在业界广为使用的PV系列热蒸发源,通过选用合适的沉积系统并优化工艺条件,可极大提高原料的利用率和降低镀层厚度的不均匀性(NU)。 Veeco目前针对薄膜太阳能电池的大规模生产向客户提供钼、CIGS及TCO沉积层的集成制造解决方案。经生产验证的CIGS热沉积源,因能高产量生产出超高质量薄膜,并转化成更高效、高成品率的多结太阳能电池,从而有效地新降低太阳能电池每瓦成本。TurboDisc E475是行业内领先的最大产能的MOCVD系统,针对大批量化合物材料的生产而设计,采用RealTemp 200技术可直接实现闭环原位晶片温度控制,并通过快速地开/关气体实现弯道处的严格控制,这两项技术的处理可带来优质的材料以及很高的工艺率,相较于前代产品E450提高了15%的产能并进一步降低了成本。 除多结太阳能电池外,该系统还可用于HBT、pHEMT器件,以及红、橙和黄光高亮度LED、激光二极管等。其TurboDisc K系列GaN MOCVD系统,主要用于大批量生产GaN基绿光LED和蓝色激光器,并对增加GPI的高亮度蓝光LED的产量也有明显作用。 王克扬介绍,Veeco目前在上海外高桥建有保税仓库,在北京和上海设立了多个联合实验室,为用户提供直接和周到的市场和技术支持。而薄膜太阳能电池和LED照明领域,是公司在中国重点拓展的目标市场,并且已有了实质性进展。 --------------------------------------------------------------------------------------------------------------------------------全文引自《光伏国际》网络版,版权归《光伏国际》及Veeco公司所有
  • 宁波材料所在耐蚀石墨烯薄膜缺陷修复方面取得进展
    石墨烯以其优异的化学稳定性和不透过性被认为是最具潜力且已知最薄的防腐材料。化学气相沉积法(CVD)常用来制备大面积和高品质的石墨烯薄膜,但研究人员发现CVD法生长石墨烯的过程中不可避免地会引入不同类型和不同尺寸的本征缺陷,如空位、针孔、裂纹和石墨烯岛晶界等。缺陷的存在,导致金属基体直接暴露在腐蚀介质中,引发金属基体和石墨烯之间的电偶腐蚀,加速了金属基体的腐蚀速度。缺陷除了会降低石墨烯薄膜的防腐性能外,还会降低电学性能,尤其是在腐蚀发生以后。目前已有一些修复石墨烯缺陷的方法,比如通过原子层沉积(ALD)方法在石墨烯上沉积钝化氧化物(例如ZnO和Al2O3)。氧化物覆盖整个石墨烯表面,可以提升石墨烯膜层的耐腐蚀性能。但是,ALD方法需要数小时且对缺陷不具有高的选择性,沉积在石墨烯的无缺陷区域的氧化物往往会显著降低石墨烯的电学性能。到目前为止,修复石墨烯缺陷的最大挑战是高效性和精准性,同时又不影响其化学稳定性和电学性能。近期,中国科学院宁波材料技术与工程研究所海洋实验室苛刻环境材料耦合损伤与延寿团队设计了一种快速、精准修复石墨烯缺陷的方法,可以在15分钟内高效地修复石墨烯上多尺度和多类型缺陷,在提高石墨烯膜层腐蚀防护性能的同时不影响石墨烯优异的导电性能。研究人员基于溶液蒸发过程中1H,1H,2H,2H-全氟辛硫醇(PFOT)分子在石墨烯缺陷位置的原位自组装(图1),通过硫醇与缺陷位点暴露的铜基底形成化学键快速修复缺陷。采用原子力显微镜和拉曼光谱联用技术验证PFOT修复石墨烯缺陷的精准度,发现PFOT选择性吸附在不同类型和尺寸的石墨烯缺陷上,在石墨烯完整区域没有出现PFOT分子。图1 CVD石墨烯涂层缺陷的快速修复过程示意图研究人员通过显微红外、XPS和DFT计算(图2)揭示了化学键的形成机制,实验表征和DFT计算得出的结果具有非常好的一致性。PFOT分子与暴露在缺陷位置的基底铜原子和石墨烯缺陷边缘的碳原子形成非常强的共价键,并且,PFOT分子与完整无缺陷的石墨烯表面形成弱的范德华键,在清洗过程中很容易去除,这就是PFOT精准修复石墨烯缺陷的原因。图2 PFOT修复石墨烯缺陷的六种吸附构型此外,硫醇与基底铜原子和缺陷边缘碳原子之间的化学键导致PFOT分子扩散到缺陷位置的Ehrlich-Schwoebel势垒降低。这就使得PFOT分子可以很快(仅在15分钟内)且精准的修复石墨烯缺陷。研究人员进一步使用FIB制样并采用TEM观察修复后缺陷位置石墨烯与PFOT分子的微观结构,发现PFOT分子只在石墨烯缺陷处的铜基底上生长,与无缺陷完整石墨烯具有明显且精确的分界,这充分验证了上述PFOT修复石墨烯缺陷机制和化学键合机制(图3)。图3 PFOT修复石墨烯缺陷的显微机制该铜基石墨烯缺陷精准修复的方法展现出普适性,除了PFOT分子以外,高效且长效的修复石墨烯缺陷需要满足以下三个关键要求:(1)修复物质必须与金属基底有牢固的化学键合,确保长期的化学稳定性,使得修复缺陷具有长效性;(2)修复物质不会与完整无缺陷的石墨烯表面形成化学键,确保修复不会影响石墨烯优异的电学性能;(3)修复物质含有疏水性官能团,以降低腐蚀性介质在表面的润湿性从而提升石墨烯膜层的腐蚀防护性能。
  • 打造半导体制造薄膜沉积设备领军企业 拓荆科技助力产业链发展
    目前的科创板上市公司中,大都是各自领域的“领跑者”,即将正式登陆科创板的拓荆科技股份有限公司(以下简称“拓荆科技”、“公司”)就是典型代表。  拓荆科技成立于2010年4月,是辽宁省及沈阳市重点培育的上市后备企业和中国半导体设备五强企业,主要从事高端半导体专用薄膜沉积设备的研发、生产以及技术服务,产品包括等离子体增强化学气相沉积(PECVD)设备、原子层沉积(ALD)设备和次常压化学气相沉积(SACVD)设备三个产品系列,是目前国内唯一一家产业化应用的集成电路PECVD、SACVD设备厂商。公司产品已广泛应用于中芯国际、华虹集团、长江存储、长鑫存储、厦门联芯、燕东微电子等国内晶圆厂14nm及以上制程集成电路制造产线,在不同种类芯片制造产线的多道工艺中得到商业化应用。同时已展开10nm及以下制程产品验证测试,在研产品已发往国际领先晶圆厂参与其先进制程工艺研发。  薄膜沉积设备技术门槛高,研发难度大。拓荆科技立足自主创新,先后承担多项国家重大科技专项课题,在半导体薄膜沉积设备领域积累了多项研发及产业化的核心技术,并达到国际先进水平。其中,公司先进的薄膜工艺设备设计技术、反应模块架构布局技术、半导体制造系统高产能平台技术等核心技术,不仅解决了半导体制造中纳米级厚度薄膜均匀一致性、薄膜表面颗粒数量少、快速成膜、设备产能稳定高速等关键难题,还在保证实现薄膜工艺性能的同时,提升客户产线产能,减少客户产线的生产成本。  拓荆科技的产品已基本全面实现了我国芯片制造产业在介质薄膜沉积设备领域摆脱对海外厂商的依赖,补强了我国在集成电路产业链关键环节的实力,为我国建立芯片体系贡献力量。  公司聚焦的半导体薄膜沉积设备与光刻机、刻蚀机共同构成芯片制造三大主设备。拓荆科技经过十多年的技术积累,已形成覆盖二十余种工艺型号的薄膜沉积设备产品,可以适配国内最先进的28/14nm逻辑芯片、19/17nm DRAM芯片和64/128层3D NAND FLASH晶圆制造产线,满足下游集成电路制造客户对于不同材料、不同芯片结构薄膜沉积工序的设备需求。其中,PECVD设备已全面覆盖逻辑电路、DRAM存储、FLASH闪存集成电路制造各技术节点产线多种通用介质材料薄膜沉积工序,并研发了LokⅠ、LokⅡ、ACHM、ADCⅠ等先进介质材料工艺,一举打破了薄膜沉积设备长时间被欧美和日本厂商垄断的局面。凭借长期技术研发和工艺积累,拓荆科技已经成为可与国际巨头直接竞争的半导体高端设备制造厂商。  作为注册制改革的“试验田”和定位于支持“硬科技”产业的融资板块,科创板成立近三年以来,基础制度不断完善,上市条件的包容度和适应性不断提升和增强,吸引了一大批硬科技企业选择到科创板发行融资,其中不乏大量尚未盈利、存在特殊股权结构的硬科技企业。在科创板这块“试验田”支持硬科技发展的示范引领作用下,拓荆科技选择到科创板发行股票上市获得融资支持,持续加大研发投入。  拓荆科技在科创板发行上市主要是为开展配适10nm以下制程的PECVD产品研发、开发Thermal ALD和大腔室PE ALD,以及升级SACVD设备,研发12英寸满足28nm以下制程工艺需要的SACVD设备募集社会资金,并借助募集资金开发中国台湾市场。在加强产品技术研发的同时,拓荆科技上市后,还将逐步培育和完善国内相关产业链,通过与国内供应商的深度合作与磨合,推动设备关键部件的开发及验证,提高设备零部件的国产化率以及产品品质。同时,公司还将利用国产设备厂商的综合优势,为客户提供定向的技术开发与服务,以此助力半导体产业链发展,保障产业链的技术先进性。
  • 针对不同类型的薄膜,拉力试验机应如何选择合适的夹具?
    在进行薄膜材料的拉力试验时,选择合适的夹具是至关重要的。夹具不仅影响到测试的准确性,还直接关系到试验过程的安全性和效率。以下是根据不同类型的薄膜,拉力试验机应如何选择合适的夹具的详细分析。一、了解薄膜特性首先,需要明确待测试薄膜的材质、厚度、硬度、韧性等物理特性。这些特性将直接影响夹具的选择和设计。例如,柔软且易变形的薄膜可能需要更柔软的夹面以减少夹伤;而较硬或高韧性的薄膜则可能需要更强的夹持力来确保测试过程中的稳定性。二、夹具类型选择1. 平推夹具适用薄膜类型:柔软且不易滑动的薄膜。特点:平推夹具通过平直的夹面接触并夹持薄膜,适用于大多数常规薄膜材料的拉伸测试。其设计简单,操作方便,能够有效减少薄膜在夹持过程中的变形和损伤。2. 锯齿夹面夹具适用薄膜类型:表面较为粗糙或需要增加摩擦力的薄膜。特点:锯齿夹面能够增加与薄膜之间的摩擦力,防止在拉伸过程中薄膜滑动或脱落。这种夹具特别适用于哑铃型样条等不易断钳口的薄膜样品。3. 橡胶面夹具适用薄膜类型:软质、易变形的薄膜。特点:橡胶面夹具通过柔软的橡胶材质与薄膜接触,能够有效减少夹持过程中对薄膜的夹伤。同时,橡胶的弹性也能提供一定的缓冲作用,保护薄膜在拉伸过程中不受过度冲击。4. 气动/液压夹具适用薄膜类型:大尺寸、高强度的薄膜。特点:气动或液压夹具通过油压或气压控制夹紧力度,能够提供更加稳定和准确的夹持效果。在高强度或大尺寸薄膜的拉伸测试中,这种夹具能够确保测试过程中的稳定性和安全性。三、夹具选择注意事项夹持力度:根据薄膜的材质和厚度选择合适的夹持力度,避免过紧导致薄膜变形或破裂,过松则可能导致薄膜滑动或脱落。夹持位置:确保薄膜被夹持在夹具的中间部位,以减少因位置偏差导致的测试误差。夹具材质:选择与薄膜相似或相兼容的夹具材质,以减少对薄膜的潜在损伤。夹具保养:定期对夹具进行检查和保养,确保其处于良好的工作状态,延长使用寿命并提高测试准确性。四、结论针对不同类型的薄膜,拉力试验机应选择合适的夹具以确保测试的准确性和安全性。在选择夹具时,需要综合考虑薄膜的材质、厚度、硬度等特性以及夹具的类型、夹持力度、夹持位置等因素。通过合理的夹具选择和使用,可以获得更加准确和可靠的薄膜拉伸测试数据。
  • 纳米薄膜材料制备技术新进展!——牛津大学也在用的薄膜沉积系统,有什么独特之处?
    一、纳米颗粒膜制备日前,由英国著名的薄膜沉积设备制造商Moorfield Nanotechnology公司生产的套纳米颗粒与磁控溅射综合系统在奥地利的莱奥本矿业大学Christian Mitterer教授课题组安装并交付使用。该设备由MiniLab125型磁控溅射系统与纳米颗粒溅射源共同组成,可以同时满足用户对普通薄膜和纳米颗粒膜制备的需求。集成了纳米颗粒源的MiniLab125磁控溅射系统 传统薄膜材料的研究专注于制备表面平整、质地致密、晶格缺陷少的薄膜,很多时候更是需要制备沿衬底外延生长的薄膜。然而随着研究的深入,不同的应用方向对薄膜的需求是截然不同。在表面催化、过滤等研究方向,需要超大比表面积的纳米薄膜。在这种情况下,纳米颗粒膜具有不可比拟的优势。而传统的磁控溅射在制备纯颗粒膜方面对于粒径尺寸,颗粒均匀性方面无法实现控制。气相沉积法、电弧放电法、水热合成法等在适用性、操作便捷性、与传统样品处理的兼容性等方面不友好。在此情况下,Moorfield Nanotechnology推出了与传统磁控溅射和真空设备兼容的纳米颗粒制备系统。不同条件制备的颗粒粒径分布(厂家测试数据)不同颗粒密度样品(厂家测试数据)纳米颗粒制备技术特点:▪ 纳米颗粒的大小1 nm-20 nm可调;▪ 多可达3重金属,可共沉积,可制备纯/合金颗粒;▪ 材料范围广泛,包括Au、Ag、Cu、Pt、Ir、Ni、Ti、Zr等▪ 拥有通过控制气氛制造复合纳米粒子的可能性(类似于反应溅射)▪ 的纳米颗粒层厚度控制,从亚单层到三维纳米孔▪ 纳米颗粒结构——结晶或非晶、形状可控纳米颗粒膜的应用方向:▪ 生命科学和纳米医学: 癌症治疗、药物传输、抗菌、抗病毒、生物膜▪ 石墨烯研究方向:电子器件、能源、复合材料、传感器▪ 光电研究:光伏研究、光子俘获、表面增强拉曼▪ 催化:燃料电池、光催化、电化学、水/空气净化▪ 传感器:生物传感器、光学传感器、电学传感器、电化学传感器 二、无机无铅光伏材料下一代太阳能电池的大部分研究都与铅-卤化物钙钛矿混合材料有关。然而,人们正不断努力寻找具有类似或更好特性的替代化合物,想要消除铅对环境的影响,而迄今为止,这种化合物一直难以获得。因此寻找具有适当带隙范围的无铅材料是很重要的,如果将它们结合起来,就可以利用太阳光谱的不同波长进行发电。这将是提高未来太阳能电池效率降低成本的关键。近期,牛津大学的光电与光伏器件研究组的Henry Snaith教授与Benjamin Putland博士研究了具有A2BB’X6双钙钛矿结构的新型无机无铅光伏材料。经过计算该材料具有2 eV的带隙,可用做光伏电池的层吸光材料与传统Si基光伏材料很好的结合,使光电转换效率达到30%。与有机钙钛矿材料相比,无机钙钛矿材料具有结构稳定使用寿命更长的优势。而这种新材料的制备存在一个问题,由于前驱体组分的不溶性和复杂的结晶过程容易导致非目标性的晶体生长,因此难以通过传统的水溶液法制备均匀的薄膜。Benjamin Putland博士采用真空蒸发使这些问题得以解决。使用Moorfield Nanotechnology的高质量金属\有机物热蒸发系统,通过真空蒸发三种不同的前驱体,研究人员成功沉积制备出了所需要的薄膜。真空蒸发具有较高的控制水平和可扩展性,使得材料的工业化制备成为可能。所制备的薄膜在150℃退火后,XRD图。所制备的薄膜在150℃退火后,表面SEM图 三、Moorfield 薄膜制备与加工系统简介Moorfield Nanotechnology是英国材料科学领域高性能仪器研发公司,成立二十多年来专注于高质量的薄膜生长与加工技术,拥有雄厚的技术实力,推出的多种高性能设备受到科研与工业领域的广泛好评。高精度薄膜制备与加工系统 – MiniLab旗舰系列和nanoPVD台式系列是英国Moorfield Nanotechnology公司经过多年技术积累与改进的结晶。产品的定位是配置灵活、模块化设计的PVD系统,可用于高质量的科学研究和中试生产。设备的功能和特点:▪ 蒸发设备:热蒸发(金属)、低温热蒸发(有机物)、电子束蒸发▪ 磁控溅射:直流&射频溅射、共溅射、反应溅射▪ 兼容性:可与手套箱集成、满足特殊样品制备▪ 其他功能设备:二维材料软刻蚀、样品热处理▪ 设备的控制:触屏编程式全自动控制
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制