当前位置: 仪器信息网 > 行业主题 > >

植物叶分析系统

仪器信息网植物叶分析系统专题为您提供2024年最新植物叶分析系统价格报价、厂家品牌的相关信息, 包括植物叶分析系统参数、型号等,不管是国产,还是进口品牌的植物叶分析系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合植物叶分析系统相关的耗材配件、试剂标物,还有植物叶分析系统相关的最新资讯、资料,以及植物叶分析系统相关的解决方案。

植物叶分析系统相关的资讯

  • 药物分析进展和应用专栏|植物甾醇分析技术介绍
    植物甾醇是常见的植物活性成分,同时也是人类饮食中的主要脂类成分组成部分。其结构与胆固醇类似,均具有环戊烷多氢菲母核,图1中的β-谷甾醇、菜油甾醇、和豆甾醇为较为常见的植物甾醇。由于植物甾醇与胆固醇具有相似的结构,二者均需溶于胶束后才能被人体吸收,植物甾醇能与膳食来源的胆固醇竞争进入混合胶束从而减少肠道对于胆固醇的吸收,因此有助于控制血液中的总胆固醇、低密度脂蛋白和甘油三酯水平,从而减少心血管疾病的风险(图2)[1]。近年来,随着人们对健康饮食的日益重视,越来越多的科研人员开始关注到含植物甾醇的食品及植物的分析技术的开发与运用,本文将重点介绍基于气相色谱-氢火焰离子化检测器联用技术及液相色谱-大气压化学电离质谱联用技术的植物甾醇分析方法。图1. 常见的三种植物甾醇结构图2. 植物甾醇降低血清胆固醇的示意图[1]1. 植物甾醇的分析技术食物与植物中的甾醇类成分经过前处理并富集后,可采用不同的分析技术与手段开展分析与鉴定。目前最常用于植物甾醇定量分析的技术为气相色谱法(Gas Chromatography,GC)。液相色谱法(Liquid chromatography,LC)、薄层扫描法(Thin Layer Chromatography Scanning,TLCS)等也可以进行植物甾醇组分的分离与定量分析。1.1 气相色谱-氢火焰离子化检测器联用技术(GC-FID)技术原理:氢火焰离子化检测器(Flame Ionization Detector,FID)的工作原理是基于有机化合物能够在火焰中发生自由基反应而被电离从而对待测物进行分析[2]。如图3所示,FID离子室中火焰分为A层预热层;B层点燃火焰;C层温度最高,为热裂解区,有机化合物CnHm在此发生裂解而产生含碳自由基CH:CnHm→CH含碳自由基进入反应层D层,与外面扩散进来的激发态原子或分子氧发生反应,生成CHO+及e-:CH+O→CHO++e-形成的CHO+与火焰中大量水蒸气碰撞发生分子-离子反应,产生H3O+离子:CHO++H2O→H3O++CO化学电离产生的正离子(CHO+,H3O+)和电子(e-)在外加直流电场作用下向两极移动而产生微电流,收集极与基流补偿电路间的电流作为微电流放大器的输入,微电流放大器输出的电流信号(或电压信号)经A/D转换器,将模拟信号转换成数字信号,由计算机记录下来并进行数据处理从而获得色谱峰。图3. 氢火焰离子化检测器(FID)的示意图技术特点:火焰离子化检测器(FID)是气相色谱常用的检测器,它对几乎所有有机物均有响应,特别是对于烃类化合物灵敏度高且其响应与碳原子数成正比。与此同时,它对于气体流速、压力、温度变化的细微差异相对不敏感,不易受到外界环境改变影响。通过该法对植物甾醇进行分析时,需要对样品进行衍生化处理,将游离的植物甾醇转化为适合GC分析的疏水性衍生物,如生成三甲基硅醚(TMS)衍生物。目前广泛使用于植物甾醇分析的衍生化试剂包括有:含N-甲基-N-三甲基硅烷基三氟乙酰胺(N-methyl-N-trimethylsilylfluoroacetamide,MSTFA)无水吡啶溶液、含1%的三甲基氯硅烷(Trimethylchlorosilane,TMCS)的双三甲基硅基三氟乙酰胺(Bis-trimethylsilyltrifluoroacetamide,BSTFA)等。通过GC-FID对植物甾醇进行定量时,常使用的内标包括有白桦脂醇(Betuline)、5α-胆甾烷醇和5α-胆甾烷-3β-醇等。分析仪器:1957年,澳(大利亚)新(西兰)帝国化学工业公司(Imperial Chemical Industries of Australia and New Zealand,ICIANZ)中央研究实验室的McWilliam和Dewar开发了第一台FID。目前FID检测器已经成为应用最广泛的气相色谱检测器之一,其获取、操作成本、维护要求均相对较低。市面上的气相色谱仪基本上均可配置FID检测器,包括安捷伦9000、8890、8860和7890气相色谱系列,赛默飞 TRACE 1300、1100系列,岛津Nexis GC-2030,珀金埃尔默 2400等进口气相色谱系统以及福立 GC9790、GC 9720,常州磐诺GC1949,上海仪电分析GC 128、北分瑞利 GC3500系列等国产气相色谱仪。1.2 液相色谱-大气压化学电离质谱联用技术(LC-APCI-MS)技术原理:大气压化学电离化(Atmospheric Pressure Chemical Ionization,APCI)原理与化学离子化相同,但离子化在大气压下进行。流动相在热及氮气流的作用下雾化成气态,经由带有几千伏高压的放电电极时离子化,产生的试剂气离子与待测化合物分子发生离子-分子反应,形成单电荷离子,正离子通常是(M+H)+,负离子则是(M-H)-。大气压化学离子化能在流速高达2 ml/min下进行,常用于分析分子质量小于1500道尔顿的小分子或弱极性化合物,主要产生的是(M+H)+或(M-H)-离子,很少有碎片离子,是液相色谱-质谱联用的重要接口之一。图4. 大气压化学电离源(APCI)的示意图技术特点:植物甾醇的发色团数量少,因此不适合通过紫外检测器检测;同时植物甾醇质子亲和力较小、酸性较弱、不宜在溶液中形成质子化的离子或去质子化生成阴离子,因此通过电喷雾电离(Electron Spray Ionization,ESI)的电离效率相对较差。由于植物甾醇亲脂性较强,分子量一般小于1000 Da,采用APCI离子源可以提供更高的植物甾醇检测灵敏度,且无需对样品进行衍生化,极大地缩短了分析所需的时间。研究人员还发现植物甾醇分析过程中,采用正离子模式能够提供了比负离子模式更高的灵敏度,且易于生成准分子离子峰[M+H]+、[M+H-H2O]+ [4]。分析仪器:目前国内外均有大量厂商生产搭配有APCI离子源的液相色谱质谱联用系统,已运用于药物研究、食品安全检测、生命科学和分子生物学等多个领域。Agilent 6470、6490系列三重四极杆液质联用系统,Bruker EVOQ LC-TQ液相色谱质谱联用系统,PerkinElmer QSight 400系列三重四极杆质谱仪,SHIMADZU LCMS-2020、LCMS-2050液相色谱质谱联用系统以及国产的江苏天瑞LC-MS 2000液质联用系统,杭州谱育科技EXPEC 5310LC-MS/MS、EXPEC 5250 气相/液相色谱-三重四极杆质谱联用仪、EXPEC5510LC-MS/MS、禾信仪器LC-TQ5100等均配置有APCI离子源。国产的江苏天瑞LC-MS 2000液质联用系统,杭州谱育科技EXPEC 5310系列质谱仪等均配置有APCI离子源。2. 应用实例2.1 基于GC-FID快速分析橄榄油中的植物甾醇在对特级初榨橄榄油样本进行皂化处理后,国际橄榄理事会(International Olive Council,IOC)方法采用乙醚对皂化样本多次液液萃取以提取植物甾醇;研究人员优化后前处理方法采用反相聚合物基质固相萃取柱对皂化样品中的植物甾醇进行提取。同时研究人员基于GC-FID建立了同时快速定量17种脂质(含内标胆甾烷醇)的分析方法,其中包括16种植物甾醇,这17种脂质的GC-FID色谱图如图4所示[5]。通过分析比对不同前处理方法结果,研究人员发现优化后前处理方法简单、省时,并减少了溶剂的使用量,但是与IOC官方方法获得的结果较为一致。通过GC-FID快速定量17种脂质的分析方法也有助于评估高价值且容易掺假的特级初榨橄榄油的真实性。图5. 特级初榨橄榄油样品采用IOC方法(A)及优化前处理方法(B)处理后,分别经由GC-FID分析得到色谱图。(1)胆固醇;(2)菜籽甾醇;(3)24-亚甲基胆固醇;(4)菜油甾醇;(5)菜油烷甾醇;(6)豆甾醇;(7)Δ7-菜油甾醇;(8)赪桐甾醇; (9)β-谷甾醇;(10)谷甾烷醇;(11)Δ5-燕麦甾醇;(12)Δ5,24-豆甾二烯醇;(13)Δ7-豆甾醇;(14)Δ7-燕麦甾醇;(15)高根二醇;(16)熊果醇;(IS)胆甾烷醇。2.2 基于LC-APCI-MS/MS快速分析饲料中的植物甾醇相较于GC-FID或GC-MS,LC-APCI-MS/MS无需进行样品衍生化即可完成植物甾醇的定量分析,极大地缩短了样品前处理时间。研究人员建立了基于LC-APCI-MS/MS的植物甾醇分析方法,并可在8分钟内快速定量6种目标植物甾醇[6],图6为胆固醇与6种植物甾醇混合标准溶液(500 ng/mL)的MRM提取离子流色谱图。该方法提供了一种适用于大豆、向日葵、草料、犊牛成品饲料和上述饲料混合物在内的不同类型饲料中的植物甾醇定量的方法。同时将实验结果与其他相关研究结果进行比较,显示出良好的一致性。该方法简单、快速,可以将其应用于其他饲料和食品中的植物甾醇分析。图6. 不同研究化合物混合标准溶液的MRM提取离子流色谱图。①麦角甾醇;②胆固醇;③岩藻甾醇;④Δ5-燕麦甾醇;⑤菜油甾醇;⑥豆甾醇;⑦β-谷甾醇3.小结与展望植物甾醇是植物中的生物活性化合物,同时因其在降低血液胆固醇水平方面有着重要意义,植物甾醇可作为保健食品中的功效成分用于调节人体机能。在这种情况下,有必要建立适合于保健食品中植物甾醇类化合物的分析方法,以评估保健食品质量。同时随着分析技术的发展和相关研究的不断深入,更多快捷、灵敏的分析技术也将成为植物甾醇分析的有力工具,并为更多不同的植物甾醇类化合物在降低血脂、预防心血管疾病等健康领域的运用提供支持与保障。参考文献:[1] Zhang R, Han Y, McClements D J, et al. Production, characterization, delivery, and cholesterol-lowering mechanism of phytosterols: A review[J]. Journal of Agricultural and Food Chemistry, 2022, 70(8): 2483-2494.[2] 胡坪, 王氢. 仪器分析(第五版)[M]. 北京:高等教育出版社,2019.[3] 国家药典委员会. 中华人民共和国药典(2020版):四部[M]. 北京:中国医药科技出版社,2020.[4] Mo S, Dong L, Hurst W J, et al. Quantitative analysis of phytosterols in edible oils using APCI liquid chromatography–tandem mass spectrometry[J]. Lipids, 2013, 48: 949-956.[5] Gorassini A, Verardo G, Bortolomeazzi R. Polymeric reversed phase and small particle size silica gel solid phase extractions for rapid analysis of sterols and triterpene dialcohols in olive oils by GC-FID[J]. Food chemistry, 2019, 283: 177-182.[6] Simonetti G, Di Filippo P, Pomata D, et al. Characterization of seven sterols in five different types of cattle feedstuffs[J]. Food Chemistry, 2021, 340: 127926.
  • Resonon | WinRoots:用于土壤胁迫下植物表型研究的高通量栽培和表型分析系统
    土壤是重要的自然资源,地球上95%的食物来源于土壤,土壤保存了至少四分之一的全球生物多样性,不仅是粮食安全、水安全和更广泛的生态系统安全的基础,更是为人类提供多种服务、帮助抵御和适应气候变化的重要因素。由土壤组成造成的胁迫,例如盐、重金属和养分亏缺是作物减产的主要原因。作物土壤耐逆性是一种复杂性状,涉及植物形态、代谢和基因调控网络等多种遗传和非遗传因素的调控。传统的作物表型研究通常在田间进行,费事费力、劳动密集、低通量、且受研究人员无法控制的自然环境因素的影响。在此情形下,难以获得高精度的表型数据以满足表型组学的研究需求。在过去几十年,已经开发了几种HTP(高通量表型)平台在现场或可控条件下使用,但其运维成本极高。此外,作物表型相关研究通常只关注植物地上部分,而对根系形态数据的获取有限。然而,根系是植物吸收水分和养分的主要途径,也是碳水化合物的储存器官和土壤胁迫的直接感知器官。因此,根系表型是土壤胁迫条件下植物表型研究的重要组成部分。就通量、环境可控性和根系表型获取而言,现有的植物表型平台无法完全满足植物对土壤胁迫响应的表型组学研究的特定需求。基于此,在本文中,来自山东大学生命科学学院和潍坊农科院的一组研究团队描述了其最近开发的高通量植物栽培和表型系统—WinRoots平台。以大豆植物为研究对象,将其暴露在盐胁迫中,证明了土壤盐胁迫条件的一致性和可控性以及WinRoots系统的高通量。他们开发了优化的盐胁迫条件,以及适用于大豆耐盐性的高通量表型指数。此外,高通量多表型分析表明,子叶特征可作为大豆全苗耐盐性的非破坏性指标。在本研究中,Canon EOS 700D数码相机和Resonon Pika L高光谱成像仪分别用于获取RGB和高光谱图像。相机位于植物材料上方1.5 m的可滑动水平导轨上。每天收集大豆冠层和整株幼苗的图像。栽培第九天,获取离体叶片图像,每个品种重复3次。WinRoots系统:高通量根系和整株植物表型平台。系统使用示意图。【结果】盐胁迫相关性状之间的相关分析。(A)盐胁迫相关性状之间的相关矩阵。(B)预测值和观测值之间的回归曲线。大豆盐胁迫相关性状的合成聚类。(A)大豆盐胁迫相关性状的合成聚类剖面图。(B)聚类1和聚类2代表性栽培品种表型。(C)聚类1和聚类2指标比较。【结论】WinRoots系统为幼苗生长提供了均一可控的土壤胁迫条件,可用于土壤胁迫下高通量栽培和表型分析,有助于提供准确多样的土壤胁迫相关的表型数据。因此,WinRoots提供了一种分析诸如土壤胁迫之类的复杂性状的改进方法。HPPA(Hyperimager Plant Phenomics Analysis)高光谱植物表型成像系统由北京依锐思遥感技术有限公司与美国RESONON公司联合研制生产,整合了高光谱成像测量分析、RGB真彩色图像、无线自动化控制系统、线性均匀光源系统等多项先进技术;最优化方式实现大量植物样品的数据采集工作,可用于高通量植物表型成像分析测量、植物胁迫响应成像分析测量、植物生长分析测量、遗传组学与表型组学、遗传育种、生态毒理学研究、性状识别及植物生理生态分析研究等。请点击以下链接,阅读原文:https://mp.weixin.qq.com/s?__biz=MjM5NjE1ODg2NA==&mid=2650311205&idx=3&sn=ffe393bdf01d664cab05b92572691916&chksm=bee1a6da89962fccef8eae610681ac22d2239e59d016db96cd911d103186c3459c4061ca30bf&token=1489736406&lang=zh_CN#rd
  • 新品力荐|植物根系分析仪功能强大,操作简单
    植物根系分析仪是一套用于洗根后专业根系分析系统,还可以用于根盒培养植物的根系表型分析,可以分析根系长度、直径、面积、体积、根尖记数等,功能强大,操作简单,软件可分析植物根系的形态分析及根系的整体结构分布等,广泛运用于根系形态和构造研究。产品链接https://www.instrument.com.cn/netshow/SH104275/C510092.htm 这种植物根系分析仪还有助于发现根系的问题。当植物遭遇病害、营养不良或其他生长障碍时,其根系往往会出现异常。植物根系分析仪能够及时发现这些异常,帮助科研人员找出问题的根源,为植物的治疗和复苏提供指导。 植物根系分析仪在农业生产中的应用也不容忽视。通过对不同种类或不同生长阶段的植物根系进行研究,科研人员可以为农民提供更加科学的种植建议,如合适的灌溉量、最佳的施肥方案等,从而提高农作物的产量和质量。 植物根系分析仪为科研人员提供了一个全新的视角来探索植物的生长奥秘。它深化了我们对植物生理学的理解,同时为农业生产提供了有力的技术支撑。在未来,随着技术的进步和普及,植物根系分析仪有望在更多领域得到应用,为人类的生活和生态环境带来更大的益处。
  • 1300万!中国科学院分子植物科学卓越创新中心单细胞原位空间蛋白组表型分析系统采购项目
    一、项目基本情况项目编号:OITC-G230302470项目名称:中国科学院分子植物科学卓越创新中心单细胞原位空间蛋白组表型分析系统采购项目预算金额:1300.000000 万元(人民币)最高限价(如有):1300.000000 万元(人民币)采购需求:包号货物名称数量(台/套)是否允许采购进口产品采购预算(人民币)1单细胞原位空间蛋白组表型分析系统1套是 1300万元合同履行期限:详见采购需求本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年12月01日 至 2023年12月08日,每天上午9:00至11:00,下午13:00至17:00。(北京时间,法定节假日除外)地点:www.oitccas.com方式:登录“东方招标”平台www.oitccas.com注册并购买售价:¥600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国科学院分子植物科学卓越创新中心     地址:上海市枫林路300号        联系方式:021-64318161/010-68290551      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:杨帆 陈小舫 赵倩,021-64318161/010-68290551            3.项目联系方式项目联系人:杨帆 陈小舫 赵倩电 话:  021-64318161/010-68290551
  • PlantScreen植物表型成像分析技术全球快讯
    北京易科泰代理的PlantScreen植物表型分析平台在荷兰植物生态表型中心(NPEC)安装运行,这是该中心成立后安装运行的首套植物表型分析系统,整套系统由光适应室、叶绿素荧光成像单元、RGB 3D成像单元、3D激光扫描成像单元等组成,有轮子可以方便移动,被称为“可移动的高通量表型成像分析平台”。 美国橡树岭国家实验室(ORNL)生物能源创新中心设计安装大型PlantScreen植物表型分析平台,包括如下成像分析功能模块:1)RGB 3D成像分析单元,用于植物三维形态结构分析和颜色分析2)3D激光扫描成像分析单元,用于植物三维形体结构测量和3D建模3)脉冲调制(PAM)叶绿素荧光成像分析单元,用于植物生理性状及胁迫等成像分析4)高光谱成像分析单元,用于植物生化结构组成及代谢组学研究分析5)NIR近红外成像分析单元,用于植物水分分布成像分析6)高分辨率红外热成像分析单元,用于气孔导度动态分析该大型平台计划于2019年6月安装完毕并运行。 另一大型PlantScreen植物表型平台将于2019年上半年在匈牙利科学院生物科学研究中心(BRC)安装运行,该平台建设包括大型FytoScope植物生长室、紧凑型PlantScreen植物表型成像分析系统(安装在FytoScope内)、PlantScreen高通量根系表型成像分析系统(安装于FytoScope内)、大型模块式PlantScreen植物表型成像分析平台(安装在温室内)。该平台包括如下成像分析功能单元:1)根系与地上茎叶(root and shoot)表型分析单元,包括RGB 3D成像技术和3D激光扫描技术,对植物及其根系形态结构性状和生物量等进行高通量分析测量2)光合作用、胁迫耐受性、生理状态成像分析及GFP/YFP成像分析,采样脉冲调制(PAM)叶绿素荧光成像技术3)生化组成及代谢成像测量,采用VNIR高光谱成像分析技术4)气孔导度动态测量分析,采用高分辨率红外热成像技术 易科泰生态技术公司为您提供植物表型分析全面解决方案:?手持式或便携式叶绿素荧光测量与成像技术?手持式或便携式植物光谱与高光谱成像测量技术?手持式或便携式红外热成像技术 ?FluorCam叶绿素荧光成像全面解决方案?FluorCam多光谱荧光成像技术全面解决方案?FKM多光谱荧光动态显微成像技术方案——细胞亚细胞水平分析植物性状?Specim高光谱成像技术全面解决方案?PlantScreen高通量植物表型成像分析技术?叶绿素荧光成像、高光谱成像、红外热成像、多光谱成像、RGB成像综合集成技术方案
  • 托普云农高通量植物表型采集分析平台全新上线!
    随着智慧农业发展,植物表型研究成为农业科技创新的前沿阵地。深耕智慧农业十余年,托普云农基于在植物表型领域的深厚积累,隆重推出高通量植物表型采集分析平台,实现植物表型测量的高通量、高精度、无损化、可复现。01 重磅上线盆栽植物数字表型采集分析系统左:盆栽植物二维/三维数字表型采集分析系统右:高光谱植物数字表型采集分析系统温室型植物表型采集分析平台左:逆境模拟及植物生长监测平台右:温室型高通量植物表型采集分析平台田间植物表型采集分析平台左:田间无人机式高通量植物表型采集分析平台右:田间轨道式高通量表型采集分析平台左:田间无人车式高通量植物表型采集分析平台右:田间固定式植物表型监测系统02 核心优势高通量可进行植物单器官、单株到群体的表型分析实现自动化传送、自动化采集自动解析识别,一次可获得上百种参数单器官表型分析单株表型分析群体表型分析高精度在可见光、高光谱成像基础上通过自研算法与计算机技术实现植物快速、高精度测量提升株高、冠幅、生物量等参数的测量准确性可见光二维成像可见光三维成像高光谱成像高效率二维单株分析时间小于5秒三维单株解析时间小于2分钟高光谱单株分析时间小于5秒三维单株动态展示无损化采用无接触测量法能够全程监测作物从出苗到成熟的每一个生长阶段实现精准的重复对比分析辣椒缺水状态的重复对比实验多维度对植物的器官-单株-群体从二维图像解析/三维高精度重构/高光谱曲线交互分析等维度解析植物的形态结构和生理功能满足多维度综合型实验数据需要让结果更全面、更精准三维、高光谱成像下植物病害识别展示高光谱成像下30个植被指数可视化动态展示应用广托普云农高通量植物表型采集分析平台,能够测量不同生境下,植物器官-单株-群体等表型数据,并提供智能分析、数据挖掘等功能。广泛适用于遗传育种、分子生物学植物生理学、植物病理学生态学、环境科学、植物保护等研究领域多年深耕精研,托普云农以科研端、产业端真实需求为导向,运用先进的光谱成像、图像识别、深度学习等技术,精心打造多元化植物表型仪器,并与多家科研机构携手,推动表型产品快速落地应用。托普云农期待与更多伙伴携手,以科技力量洞察生命之秘!
  • 中国学者运用Bionano光谱分析研究此类植物
    被子植物分为四大核心分支,即ANA被子植物基部类群、木兰类植物、单子叶植物和真双子叶植物。马兜铃属(Aristolochia)是木兰类植物,该属的植物具有极强欺骗性的“诱捕—囚禁—释放”传粉系统,独特的花形态是引诱传粉者的重要“诱饵”,同时还具有备受争议的药用价值。马兜铃属植物因此备受争议和关注,鉴于马兜铃属植物的进化位置,对于马兜铃属植物基因组的解析就十分重要。  针对上述问题,中科院植物研究所焦远年研究组利用Nanopore、Bionano光学图谱和Hi-C等测序技术,对流苏马兜铃(Aristolochia fimbriata)进行了基因组测序和组装,获得了高质量的参考基因组,注释到了21,751个蛋白编码基因。研究人员通过基因组进化分析,发现流苏马兜铃自现存被子植物起源后未经历过全基因组加倍事件,是目前发现的、除ANA基部的无油樟(Amborella trichopoda)外第二个未经历过全基因组加倍的测序物种。它也因独特的基因组进化历史成为比较基因组学研究的一个重要对象,为解析其他被子植物基因组的进化及被子植物祖先基因组特征等提供了重要参考。  前期大量基于序列的研究,一直都难以获得高可信度的系统发育关系。该研究通过对被子植物主要类群的代表物种进行基因组结构比较,发现木兰类植物和单子叶植物共享了一次染色体易位事件,而真双子叶植物则缺失了这一演化的特征,研究结果支持了木兰类植物和单子叶植物可能互为姐妹群,而双子叶植物在二者分化之前已经形成的观点。  该研究还进一步挖掘了马兜铃花发育和次生代谢产物合成相关的遗传基础。通过基因组及转录组等的整合分析,发现花发育相关的同源基因冗余度极低,且多数基因的序列、结构和表达模式均较为保守,流苏马兜铃花特化的形成可能与相关基因特定的表达模式及其下游调控网络的变化有关。另外,该研究还分析了萜类和马兜铃酸等次生代谢产物合成相关的遗传基础,并构建了AA I的合成通路,为后续相关基因的功能研究奠定了基础。鉴于流苏马兜铃基因组冗余度极低,还具有生长周期短、易于大规模种植和基因组小等特征,它有被发展为木兰类模式植物的潜力,用于花发育、发育遗传学及次生代谢产物合成等方面的研究。  该成果于9月2日在线发表于国际学术期刊Nature Plants上。植物所博士研究生秦刘玉、胡昳恒、王金朋、王晓亮和助理研究员赵然为该论文的共同第一作者,焦远年研究员为通讯作者。植物所孔宏智研究员以及国外Claude dePamphilis,Douglas Soltis,Pamela Soltis,James Leebens-Mack,John Bowers,Stefan Wanke教授参与了该项工作。该研究得到了中国科学院战略性先导项目和王宽诚教育基金会的资助。染色体结构变异推测木兰类植物、单子叶植物和双子叶植物的系统发育关系
  • 【CEM】植物基替代肉类的近似组成和金属分析
    01 摘要 随着人口增长和环境问题的日益突出,对可持续且营养丰富的替代蛋白质来源的需求持续上升。为了应对这一挑战,工业界和监管机构一直在关注如何跟上这个不断变化的市场。基于植物的蛋白质几十年来一直是替代蛋白质来源的首xuan选。然而,为了增加消费者的接受度,仍需要进行大量研究。行业必须考虑这些基于植物的蛋白质的口感、质地、外观和营养成分,以便制定出与传统肉类相当的选择。这一点进一步强调了在新规定和测试协议进入市场时进行多组分测试的必要性。在此,我们介绍了一种测试水分、脂肪、蛋白质、灰分和微量金属(包括金属和盐)的方法,该方法采用高精度技术,适合在线结果快速反馈,以便批次可以发布。这项技术遵循现有的 AOAC 和 FDA 方法学,为替代蛋白质,特别是基于植物的蛋白质,设定了遵循类似协议的先例。+02 引言随着对动物养殖对环境的影响、动物福利以及传统肉类产品的营养质量问题日益关注,基于植物的替代产品正引起人们越来越浓厚的兴趣。然而,让消费者完荃接受基于植物的替代品一直是个挑战。对于生产商来说,复制传统肉类产品的口感和质地被证明是非同小可的难题。尽管各公司致力于确保其提供的产品营养密集且价格合理,但监管机构和标准组织则在努力监控和评估当前分析技术的有效性。从内部近似分析和营养标签测试,到遵循 FDA 对污染物的要求等,与分析替代蛋白产品相关的所有事项仍在探讨中。03 植物基产品的近似分析 除了需满足监管要求外,生产高品质植物基产品还需进行必要的近似分析测试。对原材料、生产过程中及最终产品的水分、脂肪、蛋白质和灰分含量进行准确测定,对于在制造阶段适时调整产品至关重要。尽管外部实验室通过精细的方法分析可提供可靠结果,但由于耗时较长,在产品急于上市的情况下,时间成本显得尤为昂贵。 水分 水分含量对于口感、保质期以及许多产品的一致生产至关重要。由于许多替代蛋白选项旨在复制传统基于肉类的产品,因此模仿动物肉的一致质地极为重要。此外,正确的水分含量确保了更长的保质期,有助于市场可行性。水分分析是一个简单过程,在传统测试中没有太多变化。现有方法非常适合新的和新奇的替代产品;无论是使用烘箱法进行批量干燥,还是使用卤素或 IR 水分天平在 10-20 分钟内获得结果,或者像 CEM 的 SMART 6&trade 这样的微波/IR干燥,在 2 分钟内获得结果,基本方法保持不变。从样品中去除水分含量,然后确定差异。方法理论之间主要的区别是所需的时间和结果的精确度。来自 SMART 6 的结果,一种 2 分钟的水分测试,呈现在表1-4(见文末)中,并与传统的参考方法如 AOAC 950.46 和 934.01 进行了准确性比较。精度可以通过重复样本或范围看出。 灰分 为了模拟动物肉的感官体验,植物基肉类中添加了粘合剂、矿物质、盐、调味料和色素,这些添加剂通常占产品总成分的 0-15%。1随着对口感和质地改进的持续研究与开发,测定新成分添加后剩余的无机材料百分比灰分变得必要。采用如 Phoenix BLACK&trade 这样的微波炉式马弗炉,能够快速升温,使企业能在一个系统中使用多种温度,避免了长时间加热。Phoenix BLACK&trade 的独牛寺设计在于其腔体内的气流,配合 CEM 石英纤维坩埚使用,可以显著减少烧灰所需的时间。如同水分测试一样,传统的烧灰程序可以很好地应用于替代肉制品的测试。然而,在面对更为复杂的技术挑战,如脂肪和蛋白质测试时,我们可能会遇到各种难题。 脂肪 植物基肉类替代产品通常天生脱脂,其脂肪含量较动物衍生产品为低。因此,在加工过程中需添加脂肪或油分。这种添加对纤维结构的形成影响深远,可能导致挤压过程中的问题并对大分子排列产生不利影响。2此外,植物基脂质的熔融特性、化学组成、饱和度、链长、分子性质及整体性质与动物来源的脂质存在显著差异,1这增加了另一层复杂性。尽管如此,脂肪仍是健康、均衡饮食的重要组成部分。脂肪是人体无法自行产生的必需脂肪酸的来源,同时还是吸收维生素 A、D 和 E 等必需维生素的必需品。油脂还能增强风味、质地和口感,这对消费者偏好产生极大影响。由于油脂是一种成本较高的成分,对最终产品有很大影响,因此严格控制其含量对于管理成品的总成本以及最终的利润至关重要。 传统动物肉类拥有悠久的验证历史,有大量数据支持已定义的方法。这些脂肪分析方法包括经典的索氏提取参考方法和通过先进技术如 NIR、X 射线和 NMR 进行的快速校准方法。 蛋白质 在比较传统肉类与其植物基替代品时,营养密度是两者之间最大的差异所在。为了提高植物基肉类替代品的总蛋白含量,生产商必须利用水解、发酵、分离和提取的植物蛋白产品。这些经过深度加工的蛋白产品的添加可能会影响味道、气味、外观和质地。3这也正是准确和可重复测试的重要性所在。在经过验证的 Udy 染料结合法的基础上,CEM 创造了全自动化快速蛋白分析仪 Sprint。通过使用一种只与蛋白质相互作用的染料结合分子,而非游离氨基酸或非蛋白氮,Sprint 不仅能够为植物基食品的原料提供更准确的蛋白结果,也能够对过程中和最终产品本身进行测定。 对多种植物基肉类替代品的水分、灰分、脂肪和蛋白进行了测试。一式三份的数据呈现在表 1-4 中(见文末),这些表格还显示了通过 AOAC 950.46/934.01、954.02 和 2001.11 获得的水分、脂肪和蛋白的参考结果,以验证快速方法的精确度和准确性。同时,快速获取结果的能力使得可以在生产过程中或作为新产品研发的一部分进行调整。04 植物基产品中痕量金属的分析 植物基替代产品的另一个发展阶段是对质量控制测试的需求增加,如金属探测。像 Prop 65 这样的立法旨在更好地调整食品和其他消费品中的重金属测试。这为消费者提供了安心,确保他们食用的食品是安全的。然而,对于植物基替代产品的制造商来说,这可能是一把又又刃剑。例如,鱼中的汞含量一直是一个长期关注的问题。植物基产品旨在减少汞的问题,同时减轻商业捕鱼对环境的影响,但众所周矢口,植物会从地面吸收金属。因此,与动物基产品相比,植物基产品可能具有更高的金属本底水平。更进一步,制造商可能会引入某些成分和添加剂,这些成分可能会贡献这些升高的水平,所有这些都是为了改变最终产品的外观或味道,使消费者从传统肉类过渡到植物基替代品更加容易。 处理 FDA 及其他立法要求可能较为复杂。CEM 一直是 AOAC 和 FDA 传统食品样品制备和分析方法的关键合作者和参与者。MARS 6&trade 微波消解系统和协议被 AOAC 方法 2015.01 和 FDA EAM 方法 4.7 引用。作为行业令页导者和创新者,CEM 与许多主要的植物基公司合作,就金属测试的适当方法和要求提供咨询,并就如何避免可能导致审计、召回和失去消费者信任的重大错误提供指导。 以下是 CEM 收集的数据简要概述,包括植物基牛肉末、鸡肉条替代品、大豆基热狗和植物基金枪鱼。选择这些产品是因为它们易于获得,可以以最少加工(研磨)的形式购买,或作为一件后来被捣碎以获得更均匀样品的件。作为比较,还测试了三种不同类型的金枪鱼,提供了一种常见的消费鱼类样本的基线比较。基于营养、添加和毒性分析了十四种元素,以提供广泛的分析物范围。还制备并分析了三种标准参考材料(SRMs),以验证分析性能。这些包括 NIST 参考材料,SRM 1568c 米糠、SRM 1547 桃叶和 SRM 1947 密歇根湖鱼。 SRM 元素的恢复率均在 85-100% 之间,验证了方法学(微波消解和分析)。一般来说,四大毒性元素(Pb、Cd、Hg和As)的含量较低,如表 5 和表 6 (见文末)所示,这在消费品中是可以预期的。目前 FDA 没有为食品中的重金属设定限制。然而,如果我们查看世界卫生组织(WHO)对植物材料的允许限制,我们发现铅的限制在 ppm 范围内,而镉是 1.30 ppm。WHO 没有列出砷或汞。与动物基产品相比,植物基产品被发现含有略高的铅水平(但在监管限制内4),但其他四大重金属的含量较低。这与预期一致,由于土壤样本中通常发现高水平的铅。植物基蛋白质将从其生长的土壤中吸收重金属。另外,与传统的金枪鱼样本相比,传统的金枪鱼样本的砷和汞水平显著高于其他测试的植物基替代品,这对金枪鱼来说并不意外。 在植物基样本中的盐分含量(钠、钾和钙)普遍高于传统金枪鱼产品。这些通常是作为替代蛋白产品的调味剂添加的,以帮助它更接近模仿其肉类产品,但也可能因从土壤中吸收而存在。测试的锰、铜、钼和铝在植物基样本中也较高,这同样可能是由于土壤吸收,因为这些元素在土壤样本中非常常见。Mn 和 Mo 也用于各种植物喂养周期(如光合作用和氮固定5),因此在植物中比动物中更为常见。 05 结论 随着配方的发展和市场上出现更多可供选择的替代蛋白来源,消费者接受度和监管机构的监管力度都在增加。这导致了对可靠测试方法需求的增加。准确且及时交付的结果可以在制造和研发过程中节省资金和资源。CEM 产品在食品行业中的应用已超过 45 年,提供了快速且可靠的结果。CEM 致力于替代蛋白行业,正在与他人合作开发、测试和制定规章制度。将传统上用于动物基蛋白源的技术用于植物基蛋白源的独牛寺能力,将有助于平稳过渡到监管要求。06 结论 1.Chen, Q., Chen, Z., Zhang, J., Wang, Q., & Wang, Y. Application of Lipids and Their Potential Replacers in Plant-based Meat Analogs. Trends in Food Science & Technology [Online] 2023.138, 645-654. 2.Ahmad, M., Qureshi, S., Akbar, M. H., Siddiqui, S. A., Gani,A., Mushtaq, M., Hassan, I., Dhull, S. B. Plant-based Meat Alternatives: Compositional Analysis, Current Development and Challenges. Applied Food Research [Online] 2022, 2(2),100154. 3.Kiczorowski, P., Kiczorowska, B., Samolinska, W., Szmigielski,M., & Winiarska-Mieczan, A. Effect of Fermentation of Chosen Vegetables on the Nutrient, Mineral, and Biocomponent Profile in Human and Animal Nutrition. Scientific Reports [Online] 2022, 12(1), 13422. 4.Osmani, M., Bani, A., Hoxha, B. Heavy Metals and NiPhytoextractionin in the Metallurgical Area Soils in Elbasan.Albanian J. Agric. Sci. [Online] 2015, 14 (4), 414-419. 5.Alejandro, S., Holler, S., Meier, B., Peiter, E., Manganese in Plants: from Acquisition to Subcellular Allocation. Front. Plant.Sci. [Online] 2020, 11 (300), 1. 表1. 植物基鸡肉替代品的水分、脂肪、蛋白质和灰分含量 表2. 植物基热狗替代品的水分、脂肪、蛋白质和灰分含量 表3. 植物基牛肉替代品的水分、脂肪、蛋白质和灰分含量 表4. 植物基金枪鱼替代品的水分、脂肪、蛋白质和灰分含量 表5. 标准参考材料的金属分析 表6. 植物基和传统肉类样品的金属分析
  • IVIS视角—IVIS系统在植物领域的应用(二)
    在上一期IVIS视角中我们和大家分享了IVIS系统如何在活体状态监测植物氮代谢水平,并基于转基因植物开发分子传感器(IVIS系统在植物领域的应用(一)(点击前方蓝字直达文章内容)),其实除通过构建生物发光的转基因植物之外,IVIS系统还能通过化学发光或者荧光染料探针等方式研究植物领域的多种应用。本期将带领大家继续拓展在植物活体光学领域的应用。活性氧(ROS)是有氧生物在进化过程中产生的一类含氧基团,具有较高的生物活性。除了作为一种氧代谢副产物会导致细胞氧化应激甚至凋亡之外,随着近年来研究的深入,ROS也被发现参与植物的正常生长进和代谢过程,是许多基本生物过程的关键调节因子,包括细胞增殖分化、器官成熟发育、植物应激抗逆等。在往期分享(点击前方蓝字直达文章内容)中,我们介绍过一种纳米探针用于检测动物体内炎症及肿瘤发生时活性氧水平。而在植物中,虽然许多ROS成像技术已经得到了发展和应用,但目前还缺乏一个动态检测植物体内ROS的植物成像平台。近期出现了一种可靠和直接的方法来对植物中的活性氧进行全植物活体成像,该方法发表在《Molecular Plant》期刊上。该方法是利用荧光探针的氧化来直接检测ROS,并且研究人员结合IVIS Lumina活体成像系统,开发了一个用于整株植物活体成像的工作流程。通过该工作平台,可以完成荧光染料探针对整株植物的染色、植株刺激处理以及处理后的ROS定量评价。系统工作流图解说明:A-B 植物在合适的光照周期和湿度的培养环境中培养 C 植物在玻璃熏蒸箱里用雾状染料熏蒸30分钟 D 植物进行相应的刺激(强光照射、植株损伤、病菌感染)E 整株植物在IVIS Lumina成像系统中拍摄 F 利用IVIS LivingImage软件分析植株ROS信号利用该工作平台,研究人员测试了一系列包括DHE、H?DCFDA、H?HFF-OxyBURST、Amplex red、SOSG和PO1在内的多种荧光探针,通过整株植物ROS信号积累数据分析筛选出了一个最有效,最敏感,能够响应多种外界刺激所产生的ROS的荧光探针——H?DCFDA,该探针能够表现出最强的信噪比和应用广泛性。这些不同的外界刺激包括局部强光照刺激、损伤或病原体感染,未来也可以拓展到其他种类的应激反应研究中。此外,通过rbohD和apx1突变体中ROS信号的减弱和增强以及DPI(ROS生产抑制剂)处理后ROS信号传播的减少,进一步证明了该成像系统的有效性,并且表明该方法不受外界因素的影响。拟南芥在不同外界刺激下30分钟内的ROS积累情况(A 局部强光刺激;D 叶片损伤刺激;G 病菌感染)这个新方法可用于研究不同遗传变异体的局部和植株整体积累的ROS信号,进行表型分析来发现新的ROS信号通路,监测不同植物和突变体的应激水平,揭示ROS参与到植物应激、生长调节和发育过程的新途径。文章中探讨了这种新方法在不同拟南芥突变体系统以及小麦、玉米等谷物创伤反应研究中的应用。综上,该研究所报道的方法可以快速有效的对植物进行整体的ROS活体成像,这为今后ROS代谢,系统信号传导等的研究提供了十分有利的科学工具。
  • 全方位植物叶片光学监测和评估系统在黑龙江农垦科学院投入运行
    “万物生长靠太阳”。作物产量的高低归根结底取决于叶片对太阳辐射,特别是光合有效辐射的利用。全面监测和评估高等植物对光的吸收、利用、反射和传播,既能从整体上了解植物对光合有效辐射的吸收情况和光合作用的,又能具体分析叶绿体对光能的转化途径及电子传递状况,并且能够衡量作物冠层的结构变化。 由北京易科泰生态技术有限公司提供的全方位植物叶片光学监测和评估系统目前在黑龙江农垦科学院正式安装并组织了培训学习。该系统由开放式叶绿素荧光成像系统FC800-O、手持式叶绿素荧光仪FP100、全自动便携式光合仪LCPro-SD、植物冠层分析系统SunScan、AM350便携式叶面积仪组成,能够对黑龙江农垦科学院的主要研究作物水稻、玉米、大豆的形态及光合生理特性做全方位、多角度的监测和评估。 设备的安装、演示、培训和上手操作在6月末连阴雨天气下的哈尔滨进行。北京易科泰生态技术有限公司的技术工程师为参加培训的师生进行了详细的讲解和演示。理论铺垫和口头讲解仪器的使用&应用开放式叶绿素荧光成像系统FC800-O演示Rfd叶绿素荧光衰减率成像 PAR吸收率成像手持式叶绿素荧光仪FP100讲解FluorPen应用案例:番茄的臭氧处理在不同时期的OJIP快速荧光动力学曲线变化(Thwe and Kasemsap, 2014)全自动便携式光合仪LCPro-SD操作演示应用案例:调亏灌溉对柑橘叶片光合速率、气孔导度及叶绿素荧光强度的影响(Zarco-Tejada et al., 2016;LCPro-SD &FP100测定)ET:100%满足水分需求;RDI 1 :调亏灌溉,水分供给降低到37%;RDI 2:调亏灌溉,水分供给降低到50%。箭头指向水分胁迫开始施加的日期。AM350便携式叶面积仪操作演示植物冠层分析系统SunScan演示讲解Soilbox-343土壤碳通量观测系统讲解
  • 根系扫描仪-一款对植物根系生长状况分析的仪器2024实时更新
    型号推荐:根系扫描仪-一款对植物根系生长状况分析的仪器2024实时更新,根系扫描仪作为现代农业科技与植物研究的重要工具,通过非侵入性的方式,为植物根系生长状况的分析提供了前所未有的精准度和便利性。以下将从四个方面详细阐述根系扫描仪对植物根系生长状况分析的帮助。 一、精准测量根系参数 根系扫描仪能够精准测量根系的长度、直径、面积、体积以及根尖数量等关键参数。这些参数的获取,不仅为研究人员提供了详尽的根系生长数据,还使得定量分析根系生长状况成为可能,有助于揭示根系的生长规律和发育机制。 二、三维重建根系结构 根系分析系统利用高质量图形扫描仪获取高分辨率植物根系彩色图像或黑白图像,该扫描仪在扫描面板下方和上盖中安装有专门的双光源照明系统,并且在扫面板上预留了双光源校准区域。此外,还配备有不同尺寸的专用、高透明度根系放置盘。扫描时,扫面板下的光源和上盖板中的光源同时扫过高透明度根盘中的根系样品,这样可以避免根系扫描时容易产生的阴影和不均匀等现象的影响,有效地保证了获取的图像质量。研究人员可以更加全面地了解根系的生长状况,为优化植物种植结构和提高作物产量提供科学依据。 三、提升研究效率与准确性 根系扫描仪的操作简单,软件界面友好,用户可以通过软件轻松地进行数据分析和处理。此外,根系扫描仪还可以与计算机连接,实现数据的快速传输和存储,大大提升了研究效率。同时,非侵入性的检测方式减少了对植物根系的破坏,保证了测量结果的 准确性和可靠性。 四、广泛应用于植物研究与农业生产 根系扫描仪广泛应用于植物生长发育、植物营养状况、植物逆境耐受性等领域的研究。在农业生产中,根系扫描仪可用于实时检测作物根系的生长情况,为作物提供适宜的养分和水分管理方案;同时,通过根系结构分析,可以筛选具有优良根系特征的作物品种,提高作物的抗逆性和产量。 五、仪器用途 根系分析系统用于洗根后专业根系分析,还可以用于根盒培养植物的根系表型分析,可以分析根系长度、直径、面积、体积、根尖记数等,功能强大,操作简单,软件可分析植物根系的形态分析及根系的整体结构分布等,广泛运用于根系形态和构造研究。 综上所述,根系扫描仪以其精准测量、三维重建、提升研究效率与准确性以及广泛应用的优势,为植物根系生长状况的分析提供了强有力的支持。随着技术的不断进步和应用领域的拓展,根系扫描仪有望在植物研究和农业生产中发挥更加重要的作用。
  • 恒美新品|植物根系图像分析仪自动杂质剔除
    植物根系图像分析仪是一种专门用于分析植物根系图像的仪器。它通过高清晰度相机和计算机视觉技术,能够实现对植物根系图像的自动识别、测量和分析。 产品链接https://www.instrument.com.cn/netshow/SH104275/C510092.htm 植物根系图像分析仪具有多种功能,包括但不限于以下几点: 1.自动识别和测量根系参数:仪器可以通过图像处理算法自动识别和测量根系的长度、直径、分支等参数,大大提高了测量效率和准确性。 2.分析根系生长状况:仪器可以根据测量的根系参数,分析根系的生长状况,如生长速度、生长趋势等,为植物生长研究提供重要依据。 3.研究根系与土壤环境相互作用:仪器可以用于研究根系与土壤环境的相互作用,如根系对土壤水分的吸收、土壤质地对根系生长的影响等。 4.评估植物对环境的适应能力:仪器可以通过分析根系的结构和生长状况,评估植物对环境的适应能力,为植物育种和栽培提供参考。 总之,植物根系图像分析仪是一种强大的工具,对于研究植物生长和环境适应性具有重要意义。它有助于提高农业生产的效率和可持续性,为科研和农业生产提供有力支持。
  • 蓝菲光学积分球光谱分析仪在植物照明灯中的应用
    近几年来,随着LED技术与全球植物工厂、垂直农场等现代设施农业的发展,植物照明市场迎来了新的发展机遇,成为众多照明厂商走差异化竞争之选。 图1 植物照明由于LED灯具有光效高、发热低、体积小、寿命长灯特点,因此非常受植物照明生产厂商的青睐。不同植物生长过程中对不同光谱的光需求量不同,为此所选的补偿光也有差异。。 图2 LED灯具植物工程可分为种植设备技术和植物工艺技术,其中植物照明光谱技术是种植设备技术和植物工艺技术的关键。好的光谱设计可保证种植工艺所要求的光质能达到高效利用。 图3 光谱制造商设计植物照明系统,通常根据植物所需的光质、光密度,然后对植物照明光源进行选择。植物灯光谱设计需要依据植物种植工艺要求而设计,植物灯光谱分析和设计能力对制造商市场竞争至关重要。而这些都需要精确的光源光谱分析方法和设备。 蓝菲光学40年光学测量生产设备经验,可提供精确的光源光谱分析方法和积分球光谱分析设备,有效的计算PAR/PPF/PPFD值。 图4 蓝菲光学积分球光谱分析仪不同植物或者同一植物不同时期吸收光谱不同,通过确定种植工艺确定植物照明光谱范围和峰值波长,植物照明的光谱和峰值波长均可通过蓝菲光学积分球光谱分析仪获得。蓝菲光学(Labsphere)illumiaPlus2积分球光谱分析仪积分球尺寸 25 cm -3 m可选,具有 2π 和 4π 几何方式。三种光谱仪可选、特定的应用模块在保证生产效率最大化的同时也保证了非常高的精确度、可重复性。图5 蓝菲光学积分球光谱分析仪结构图提高生产力改进后的积分球设计允许待测灯在点亮的情况下放进,保证更高的效 率、缩短测量时间。 新增了兼具功能性与简易性的电控模块,符 合 IES LM-79-19、IES LM-78 等相关标准。图6 蓝菲光学积分球光谱分析仪系统图Integral 软件驱动设备搭配的 Integral 软件支持任何平台、任何设备、 任何地点、多种语言。符合 LM-45 标准要求进行稳定,自动执行校准程序。 符合 LM-79-19 和 LM-78 测量方法和行业标准颜色计算。 图7 Integral软件图概念:太阳辐射中对植物光合作用有效的光谱成分称为光合有效辐射(PAR,photosynthetically active radiation),波长范围400~700纳米,与可见光基本重合。标注单位有两种:一是用光合辐照度表示(w/m2),主要用于太阳光的光合作用的广义研究。二是用光合光子通量密度PPFD表示(umol/m2s),主要用于人造光源和太阳光对植物光合作用的研究。采用每秒辐射到植物表面的光子流量的这个方法表示辐射源的辐射能力,称为PPF_PAR法。PPF光合光子通量(Photosynthetic Photon Flux)是指波长在400-700nm波段里,人造光源每秒辐射出光子的微摩尔数量,单位umol/s。PPFD光合光子通量密度(Photosynthetic Photon Flux Density)是每平方米每秒光源辐射出的微摩尔数量,单位umol/m2s。
  • CEM-难以消化你的牛奶?植物基奶类中重金属的检测分析
    01 引言植物基奶类产品作为传统牛奶的替代品,其受欢迎程度正在迅速上升。虽然像大豆奶和杏仁奶这样的品种已经在市场上占据了一席之地,但其他如椰奶和燕麦奶的选择也在需求激增。这些非乳制奶类产品来源于坚果、种子以及其他植物性原料。它们之所以日益受到欢迎,是因为越来越多的消费者倾向于选择无乳制品、无乳糖和纯素产品。值得注意的是,所有植物都是在土壤中生长的,而土壤天然就含有金属元素。许多植物和坚果树都是无机化合物的有效生物累积者。它们通过根系和维管系统从土壤中吸收金属,并将这些元素集中在叶子、果实和花朵中。因此,当这些植物被加工成下游产品(例如非乳制奶类)时,那些在受污染土壤中生长的植物可能会积累重金属,从而增加了消费者接触这些重金属的风险。特别令人关注的是被称为“四大”重金属(砷、铅、镉、汞),因为它们具有潜在的毒性。在这项研究中,我们测量并比较了植物基奶类产品和牛奶中的金属浓度。这些金属是通过微波消解和电感耦合等离子体质谱(ICP-MS)分析奶样后进行量化的。02 方法和材料样本(使用 CEM MARS&trade 6 一式三份进行消解):&bull NIST SRM 1575A 松针&bull 牛奶2%脂&bull 全脂牛奶&bull 杏仁奶&bull 大豆奶&bull 燕麦奶&bull 椰奶&bull Hemp Milk*对杏仁奶、大豆奶、燕麦奶和椰奶测试了三个不同品牌。消解方法:1. 在 MARSXpress&trade Plus TFM 容器中称量 2 克样品或 0.25 克 SRM。2. 向容器中加入 5 毫升 HNO3 + 1 毫升 HCl 的痕量级酸。3. 盖上容器并放入转盘。消解参数:所有消解液都是清澈无色的。使用安捷伦 7850 型 ICP-MS 对消解液进行了分析。03 结果图1. 使用SPEX CLMS-2和NIST SRM 1575A Pine Needles(n=3)的10 ppb加标酸空白回收率表1. 牛奶和多种植物基奶类的平均元素浓度(ppb)(n=3)04 结论正确的监测和分析奶制品中的元素杂质对于确保消费者安全至关重要。高效的样本制备,为分析提供均匀的解决方案,在这一过程中起着至关重要的作用。在这项研究中,SRM 和高加标酸样本的强回收率显示了消解和分析协议的适用性。在所研究的奶类中,人们发现牛奶的砷、镉和铅含量低于植物基奶类。此外,在加工过程中发现的金属,如铬、镍和铁,在植物基奶类中的含量较高。总体而言,不同品牌之间的差异最小,对所有测试的奶类而言,检测到的金属含量都在规定范围内。
  • 应用案例 | J200 LIBS元素分析仪在植物组织元素空间分布研究中的应用
    化学元素空间分布制图(Mapping)及深度剖析分析法在生物组织、法证分析、生物医学等领域,有着十分广泛的应用前景,如植物修复(利用绿色植物来转移、容纳或转化环境中的污染物,是当前植物学、生态学、环境科学等领域研究的热点)。基于激光剥蚀技术的激光诱导击穿光谱(LIBS)法成功地应用于生物样品化学元素空间分辨分析,实现多种元素同时检测,且不需或仅需简单样品制备,同时避免了污染物的产生及误差的引入。Kaiser等采用LIBS和LA-ICP-MS技术(J200 Tandem系统)检测处理后的向日葵叶片上元素Pb、Mg、Cu的空间分布情况,来探寻和验证样品元素分布研究手段。 1 实验方法 将向日葵水培,按0、100、250、500 μM的浓度梯度加入Pb-乙二胺四乙酸溶液进行处理,处理后的幼苗定期进行取样。采用LIBS和LA-ICP-MS方法对叶片的Pb、Mg、Cu元素分布进行测量,并采用AAS对三种元素的总量进行检测。 2 实验结果 下图为LIBS光谱图a)及LA-ICP-MS信号图b)。在LIBS光谱中,选择283.31nm及277.98nm分别作为Pb和Mg的特征峰,用以检测两种元素。 下图为Pb和Mg在样品取样区域内的元素分布情况。处理过的叶片,在叶脉周围组织中有更高的目标元素的含量。LIBS和LA-ICP-MS两种方法得到的元素分布有所不同,这是由于他们的剥蚀采样方式不同造成的。 Kaiser对不同时期收获的样品,分别进行了LIBS和LA-ICP-MS累计定量分析,得到元素的平均信号强度。下图显示Mg含量随着Pb含量的变化而变化。 下图为空白处理叶片上1×1cm取样区域内Cu元素分布情况。采用的Cu的特征峰为324.75nm。在取样区域内,进行20×20的单次剥蚀。 Kaiser认为LIBS激光技术非常适合样品的元素空间分析工作,例如用于监测元素在植物样品中的迁移及空间分布等研究。
  • 2019版《珀金埃尔默中药及天然药用植物分析文集》发布
    珀金埃尔默最新推出《珀金埃尔默中药及天然药用植物分析文集》,基于珀金埃尔默独具优势的原子光谱、分子光谱、色谱与质谱等技术在中药和药用植物分析中的深入应用,精选出涉及杂质元素、营养元素和活性成分分析,指标成分定量,农药残留和真菌毒素检测,复杂药物样品前处理,分析方法验证和药物生产中的质量控制等领域的相关文献,为中药与药用植物的安全性、有效性使用提供强有力的支持!内容先睹为快!第 1 篇《ICP-MS测定糖尿病人药膳常用中药中的微量元素》本文通过NexION ICP-MS准确、快速分析糖尿病人药膳中经常添加的川贝、知母、麦冬、党参、葛根、黄芪、桑叶、山楂、生地、熟地、太子参、天花粉和薏苡仁等13种常用中药中的铬 (Cr)、锰 (Mn)、铜 (Cu)、锌 (Zn)、硒 (Se) 和钒 (V) 等6种微量元素,探讨各种微量元素与其降血糖活性的关系,为药膳或中药治疗糖尿病提供可靠的实验方法依据,并为药理研究提供方法参考。第 2 篇《ICP-MS 分析啤酒花中的有毒和营养元素》珀金埃尔默 NexION ICP-MS结合Titan MPS微波消解样品制备系统能够对啤酒花样品中的30种有毒和营养元素进行准确可靠的分析,分析采用标准和碰撞模式,完成每个样品分析仅需 100 秒,并通过分析相应NIST 标准植物材料验证所用方法的准确度。第 3 篇《药用工业大麻中重金属的消解、测定和方法验证》本文按照USP 通则233中所述方案,使用珀金埃尔默NexION 1000 型ICP-MS结合Titan MPS微波消解样品制备系统,对药用工业大麻样品中的重金属进行了准确可靠的分析,并在方法准确性、重复性、耐用性等方面按照USP 通则233的要求进行了验证,分析结果全面符合USP 通则 233检验方案的接受标准。第 4 篇《GC-FID 和 GC-MS 定性定量分析药用工业大麻中的活性成分四氢大麻酚和大麻二酚》使用Clarus 690氢火焰 (FID) 气相色谱快速、准确测定工业大麻中的活性成分四氢大麻酚 (THC) 和大麻二酚 (CBD),以用于评定用于药用性质的工业大麻植物材料;Clarus SQ8 气相色谱与质谱联用 (GC-MS) 快速、准确识别确定THC 和CBD,用于大麻性质及含量确认的法律安全测试。第 5 篇《满足工业大麻农药残留和真菌毒素监管要求的液质联用分析方法》使用珀金埃尔默QSight三重四级杆液质联用(LC-MS/MS)分析添加在工业大麻提取物中的所有66种农药(含典型的需要GC-MS/MS方法分析的强疏水性农药和含氯农药)和 5 种真菌毒素。采用电喷雾离子源(ESI)和大气压化学电离源(APCI)以及简单的乙腈溶剂提取方法,所有分析物的测定回收率在70% - 120%,符合美国加州相关法规规定。第 6 篇《HPLC 测定人参根茎中的皂苷》本文介绍了一种同时测定7种皂苷的高效液相色谱(HPLC)方法,7种皂苷在6分钟内实现基线分离,方法线性相关系数0.997,方法精密度RSD≤ 1.2%,回收率97% - 108%。第7 篇《中药黄连的红外光谱快速质量控制》使用傅里叶变换红外光谱法与衰减全反射(ART)附件技术,确认中药黄连中小檗碱的存在,对含有小檗碱的三种药材进行区分鉴别。测定过程简单快速,无需对样本进行复杂繁琐的分离提取。第 8 篇《正红花油指标成分的红外光谱定量分析》使用傅里叶变换红外光谱结合偏最小二乘法建立校正模型,对正红花油中的水杨酸甲酯、丁香酚和 α-蒎烯含量进行准确测定,结果与气相色谱方法一致。傅里叶变换红外光谱结合衰减全反射(ART)附件技术,在保证成分含量测试准确度的前提下,达到缩短测定时间,降低检测成本,是对正红花油及类似产品进行简单快速质控的有效方法。资料下载扫描下方二维码,即可获取珀金埃尔默中药及天然药用植物分析文集关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn。
  • 大连化物所痕量植物激素分析研究获得进展
    p  近日,中国科学院大连化学物理研究所微型分析仪器研究组研究员关亚风、副研究员耿旭辉团队在微量样品中痕量植物激素分析检测研究中取得新进展。该团队发展了一种微型基质固相分散(microscale MSPD)萃取的前处理方法,能够有效地处理亚毫克级植物样品,方法简单、重复性好且收率高。同时,研究团队研发了一种新型的衍生试剂用于柱前衍生,从而极大地提高了赤霉素的质谱检测灵敏度。相关研究成果发表在Analytical Chemistry上。/pp  植物激素是植物体内合成的调控植物生长发育的信号分子,准确检测植物体内激素的种类和含量对于深入揭示植物生命现象具有至关重要的作用。近年来,随着“植物激素作用的分子机理”自然科学基金重大研究计划的启动,国内大批的研究机构投身到植物激素的分析研究中来。但由于某些激素,尤其是赤霉素在植物体内的含量极低,而且植物体内的代谢物组成非常复杂,基质干扰严重,使得样品前处理过程变得十分繁琐。加之,激素调控的信号传导和生物化学过程通常具有组织(或器官)特异性,因此,测定激素在植物体内的时空分布具有重要意义。解决这一问题的关键在于测定微量样品中的痕量植物激素。/pp  研究团队针对极少量植物样品(亚毫克级),发展了一种新型的micro-scale MSPD方法,这种方法集研磨、浸提、净化于同一离心管中,不需要任何样品转移步骤,有效地降低了前处理过程中的损失。同时,针对赤霉素本身离子化效率低,研究人员研发了一种新型的衍生试剂3-溴丙基三甲基溴化铵(BPTAB),通过化学衍生后,检测灵敏度提高3至4个数量级,是目前的最好水平。这种衍生试剂具有低毒性,这一性质使得其在后续的研究中具有很好的应用潜力。该团队将此方法运用到单片拟南芥叶中赤霉素分布的分析中,实现其空间分布测定,空间分辨率达2X2mm2。此外,该方法对于其他酸性植物激素的时空分布测定也具有适用性。/pp  上述研究工作得到国家自然科学基金委的资助。/pp style="text-align: center "img title="1.jpg" src="http://img1.17img.cn/17img/images/201709/insimg/a8f9dc25-9b87-4d68-b0cb-809b6717f3e1.jpg"//pp style="text-align: center "strong大连化物所痕量植物激素分析研究取得进展/strong/pp/pp 论文题目:Spatial Profiling of Gibberellins in a Single Leaf Based on Microscale Matrix Solid-Phase Dispersion and Precolumn Derivatization Coupled with Ultraperformance Liquid Chromatography-Tandem Mass Spectrometry/pp/p
  • 岛津应用:基于ICPMS-2030 的植物分析
    食品中含有多种元素,其种类和浓度各不相同。人们不仅可根据食品的营养成分来控制摄取量,还可通过有害元素的信息进行健康管理,因此掌握元素的浓度十分重要。目前,市场上有多种进行元素分析的仪器。其中,ICP质谱仪可进行多元素同时检测,并进行高灵敏度的分析,因此在食品分析领域发挥着重要作用。 本文向您介绍使用岛津ICP质谱仪ICPMS-2030,对植物进行多成分同时分析的示例。ICPMS-2030内置全元素数据库,对没有标准样品的元素也可以得到其浓度信息。利用这一特长,我们还进行了定性分析。可知使用ICPMS-2030可对植物中的矿物质成分和微量有害成分进行同时分析。对于未进行定性分析的数据,使用ICPMS-2030可根据谱图计算定性结果。因此,只需进行后处理即可获得定量元素以外的元素信息。亮相第八届慕尼黑上海分析生化展(analytica China 2016)的岛津电感耦合等离子体质谱仪ICPMS-2030ICPMS-2030由于采用了Mini炬管和Eco模式,ICPMS-2030运行成本低,在业界前所未有。两大软件助手功能实现快速分析,具备高稳定性、优异的灵敏度和低干扰,LabSolution DB/CS ICPMS满足FDA 21 part11,支持实验室网络化管理。 了解详情,敬请点击《使用ICPMS-2030 进行植物分析》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • XRF在农学中的应用——植物组织和肥料分析
    p style="text-indent: 2em text-align: justify "strong对于分析植物组织的元素组成,一般都会使用ICP-OES或ICP-MS进行检测,/strong它们的优势很明显:前处理实现了标准化,仪器也提供了所需的灵敏度和准确度,且测量的过程也可以实现快速和自动化,分析肥料样品时也是如此。/pp style="text-indent: 2em text-align: justify "strong但在很多场景下,没有条件进行ICP的检测/strongstrong,且ICP的另一个缺点便是化学废物/strong,消化样品需要大量的酸,污染环境且花费大量时间。strong因此,对于植物组织的现场快速检测,便携式能量色散XRF(EDXRF)是非常合适的工具。/strong/pp style="text-indent: 2em text-align: justify "strong/strong/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/C256877.htm" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/32212f98-06f1-4b66-94ab-6d0e985d4616.jpg" title="1.jpg" alt="1.jpg"//a/pp style="text-align: center text-indent: 0em "a href="https://www.instrument.com.cn/netshow/C256877.htm" target="_blank"strongspan style="color: rgb(84, 141, 212) "德国斯派克 SPECTRO XEPOS 能散X荧光光谱仪(点击查看)/span/strong/a/pp style="text-indent: 2em text-align: justify "strong过去,EDXRF受精度限制,对某些关键的痕量元素的检出限不够低,/strong无法满足很多需求高精度和低检出限的实验室研究。strong如今,基于数字信号处理和先进的检测器技术,EDXRF仪器对于植物组织中的某些关键微量元素,已经可以实现非常低的检出限,样品制备也非常简便,/strong仪器操作简单,更加适合现场快速对植物组织和肥料的分析。a href="https://www.instrument.com.cn/zc/75.html?SampleId=&IMShowBigMode=&IMCityID=&IMShowBCharacter=&SidStr=" target="_blank"strongspan style="color: rgb(84, 141, 212) "(点击进入EDXRF专场,查看更多仪器)/span/strong/a/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/C239457.htm" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/1cb82b6e-23cf-4716-8c5d-e277e4b3041e.jpg" title="2.jpg" alt="2.jpg"//a/pp style="text-align: center text-indent: 0em "a href="https://www.instrument.com.cn/netshow/C239457.htm" target="_blank"span style="color: rgb(84, 141, 212) "strong Niton XL5 手持式X荧光光谱仪(点击查看)/strong/span/a/pp style="text-indent: 2em text-align: justify "strong在植物组织和肥料的各项成分中,微量元素和重金属的含量非常重要。/strong农作物想要实现高产,必须保证充足的营养成分(如磷、钾等)以及必须的微量元素(如铜、锌等)。同时,也要将可能有害的重金属(如铅、镉、镍、砷等)的含量维持在较低的水平,以避免其在土壤中累积并进入食物链中。/pp style="text-indent: 2em text-align: justify "strong2018年12月,欧盟决定对某些肥料引入有毒污染物限值进行限定,其中镉含量限值为60mg/kg,且为了限制植物对铀的吸收,德国环境署建议磷酸盐最高浓度为50mg/kg。/strongstrongXRF可以直接测定肥料中钾和磷的浓度,且它还适合作为检测微量元素含量的快速筛选工具。/strong/pp style="text-align: center text-indent: 0em "strong表1 植物组织XRF推荐测试条件/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/44d56850-7970-48db-8c7d-f212a626a7f9.jpg" title="T1_web.jpg" alt="T1_web.jpg"//pp style="text-align: center text-indent: 0em "strong表2 肥料XRF推测测量条件/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/6f625749-2fc4-45a3-8f2e-b5c62869c320.jpg" title="T2_web.jpg" alt="T2_web.jpg"/span style="text-indent: 0em " /span/pp style="text-indent: 2em text-align: center "a href="http://www.spectroscopyonline.com/xrf-agronomy-applications-analysis-plant-tissues-and-fertilizers" target="_blank"span style="text-decoration: underline color: rgb(84, 141, 212) "strong获取此方法准/strongstrong确度检测等详细信息请点击此处/strong/span/a/pp style="text-indent: 2em text-align: justify "由于样品制备(特别是在分析粉末样品时)仅需少量工作,因此在strong没有配备ICP-OES或ICP-MS等其它基础设施的较小实验室中,可以使用EDXRF进行分析。/strong/pp style="text-indent: 2em text-align: justify "EDXRF对植物组织和肥料中主要元素和次要元素的含量可以精确地完成确定,对于需要检测大量样品的实验室,ICP检测可以更加自动化,较为有优势。因此,strongEDXRF非常适合样品通量低及中等的实验室。/strong/pp style="text-align: center text-indent: 0em "/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/C113896.htm" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/391a9a4b-b793-4df1-941e-8521124b08ab.jpg" title="3.jpg" alt="3.jpg"//a/pp style="text-align: center text-indent: 0em "a href="https://www.instrument.com.cn/netshow/C113896.htm" target="_blank"span style="color: rgb(84, 141, 212) "strong天瑞仪器 EDX1800BS X荧光光谱仪(点击查看)/strong/span/astrong/strongbr//pp style="text-indent: 2em text-align: justify "与此同时,strongEDXRF对一些关键痕量元素的检出限足以进行快速筛选分析,但其并非可以应对每种元素。/strongstrong从德国联邦风险评估研究所的建议来看,/strongstrong铀的最大容许限量为每千克磷酸盐50毫克,/strong肥料中的铀含量为2.5至5毫克/千克,达到2.5mg/kg。strong这意味着样品将达到 1mg/kg的检出限,这对XRF来说是一个挑战。/strong/pp style="text-align: justify text-indent: 0em "strong/strong/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/C279244.htm" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/6e893214-96c5-43d1-9a30-9f945182adee.jpg" title="4.jpg" alt="4.jpg"//a/pp style="text-align: center text-indent: 0em "a href="https://www.instrument.com.cn/netshow/C279244.htm" target="_blank"span style="color: rgb(84, 141, 212) "strong岛津 能量色散型X射线荧光分析装置 EDX-8100(点击查看)/strong/span/astrong/strongbr//p
  • WIWAM高通量植物表型成像分析平台-拟南芥研究
    不同的细胞策略决定了10种拟南芥天然种质对轻度干旱的敏感性拟南芥种质的全球分布施加了不同类型的进化压力,这有助于这些种质对环境胁迫的各种反应。干旱胁迫反应已经得到很好的研究,特别是在哥伦比亚的一种常见拟南芥种质。然而,对干旱胁迫的反应是复杂的,我们对这些反应中哪些有助于植物对轻度干旱的耐受性的理解是非常有限。本文研究了自然种质在早期叶片发育过程中在生理和分子水平上对轻度干旱的反应机制。记录了自然种质之间轻度耐旱性的差异,并使用干旱敏感种质ICE163和耐旱种质Yeg-1的转录组测序来深入了解这种耐受性的潜在机制。这表明ICE163优先诱导茉莉酸和花青素相关途径,这有利于生物胁迫防御,而Yeg-1更明显地激活脱落酸信号,即经典的非生物胁迫反应。还研究了相关的生理特征,包括脯氨酸、花青素和ROS的含量、气孔关闭和细胞叶参数,并将其与转录反应相关联。结论是这些过程中的大多数构成了一般干旱响应机制,在耐旱和敏感的种质中受到类似的调控。然而,在轻度干旱下关闭气孔和维持细胞扩张的能力似乎是在轻度干旱下促进叶片更好生长的主要因素。图1.不同拟南芥种质在轻度干旱下表现出不同的叶片生长减少为了探索拟南芥的遗传多样性如何影响对轻度干旱胁迫的反应,我们在自动称重、成像和浇水机(WIWAM)上筛选了来自不同来源的15份自然材料(图1A)。当第三片真叶(L3)开始出现时,在层积(DAS)后6天开始对一半植株进行轻度干旱(MD)处理。另一半的植物保持在充分浇水(WW)的条件下作为对照。在22 DAS收获植株,并测量成熟L3的面积。在WW条件下,各材料的平均叶面积(LA)已经有所不同(图1),但除EY15-2外,所有材料在MD条件下的LA相对显著减少(图1B)。值得注意的是,LA的减少程度因加入量的不同而有很大差异,从14%到61%不等(图1B,补充表S2)。在WW条件下,对MD的敏感性并不取决于叶片的大小,因为WW条件下的LA与MD的相对减少之间没有相关性。我们鉴定了干旱敏感材料,如Oy-0、Ler-0、ICE97和ICE163,以及更具耐旱性的材料,包括C24、Yeg-1、An-1、Sha和EY15-2。图2.轻度干旱胁迫下脯氨酸、花青素和活性氧的积累通过在WW和MD条件下进行3,3-二氨基联苯胺(DAB) 染色来检查H2O2的丰度。除了EY15-2和ICE163(图2A),在MD下的大多数种质的子叶中,H2O2水平(可视化为深棕色沉淀物)增加。然而没有观察到耐受和敏感种质之间一致的显著差异。为了保持 ROS 的稳态,植物进化出复杂的酶促和非酶促抗氧化系统,已知脯氨酸积累在非生物胁迫中发挥积极作用。除了脯氨酸外,在本文的GO分析中,花青素相关基因的比例过高。因为脯氨酸和花青素都能够清除ROS,我们在保水后五天测量了它们在幼苗中的丰度。除了Sha外,大多数种质在MD处理后积累的脯氨酸水平相似(图2B)。另一方面,花青素测量显示,积累较少H2O2的生态型,ICE163和EY15-2,在MD期间花青素含量显着增加(图2C)。这些结果表明,在我们的MD条件下,花青素可有效抵消ROS,而脯氨酸在敏感和耐受性种质中充当一般干旱响应因子。在保水后五天测量了干旱对耐受性和敏感种质气孔关闭的影响。在WW条件下,Oy-0和ICE163(干旱敏感种质)已经显示出比ICE97和三个耐受种质更高的开放气孔比率(图3,A和B)。在MD下,所有种质的气孔开放显着减少(图3,A和B),但我们发现耐受性种质的开放气孔少于敏感种质(图3B)。在MD条件下,具有较低气孔密度(SD,每平方毫米气孔数)的植物表现出较低的蒸腾作用和较高的水分利用效率。因此,在22DAS时分析了所有敏感和耐受种质的SD。值得注意的是,敏感种质ICE163和ICE97在MD处理期间显示出SD显着增加(图3D),而在耐受种质中SD未改变。并计算了22 DAS时的气孔指数(SI,每表皮细胞总数的气孔数)。在所有种质中,Sha在WW和MD条件下的SI最高(分别为32%和29%),而Oy-0的SI最低(分别为23%和22%)(图 3C)。然而,我们在所有六个种质中都没有观察到MD处理对SI的任何显着影响(图3C),这表明气孔的发育在干旱期间没有改变。图3.轻度干旱处理后的气孔开度、指数和密度本文发现大多数种质在干旱期间平均路面细胞数量显着减少,除了EY15-2(图4A),其中L3的最终区域不受干旱的显着影响(图1B)。在所有生态型中,细胞数量减少到相似的程度(图4A)。另一方面,敏感种质中的MD处理显着减少了平均路面细胞面积,而在耐受种质中没有观察到减少(图 4B)。更具体地说,敏感种质在MD处理期间显示出较小细胞比例增加或大路面细胞比例降低,但在耐受种质中未观察到显着差异(图4C)。这些数据表明,细胞扩增的减少是这些生态型中对MD的耐受性和敏感性之间的主要区别因素。图4.轻度干旱对敏感和耐受种质的路面细胞数量和面积的影响不同
  • 植物提取物的前景分析--“它”具有权威发言权
    p style="text-align: center "img width="598" height="148" title="4444.jpg" style="width: 539px height: 118px " src="http://img1.17img.cn/17img/images/201704/insimg/cb2775ae-cfc0-49d9-aa29-dedf08ad738f.jpg"//pp  产品定义/pp  植物提取物是以植物为原料,按照对提取的最终产品的用途的需要,经过物理化学提取分离过程,定向获取和浓集植物中的某一种或多种有效成分,而不改变其有效成分结构而形成的产品。按照提取植物的成份不同,形成甙、酸、多酚、多糖、萜类、黄酮、生物碱等 按照性状不同,可分为植物油、浸膏、粉、晶状体等。[2]/pp  市场供求/pp  植物提取物有许多不同品种[3] ,这些产品供需随年份及各种市场因素不断变化,供需不平衡的情况时有发生。/pp  ① 产品供给影响  由于植物提取物行业原材料为农林产品,容易受天气、病虫害、播种面积等因素影响,不同年份的原材料收购价格及数量会出现波动,原材料价格波动使天然植物提取物产品的价格、产量会有一定程度的变动,发生市场供需失衡。/pp  ② 市场需求影响/pp  多数生产企业对海外市场需求认识有限,可能对市场需求缺乏科学和长期准确判断。当某一产品市场需求较好时,短期内会出现供不应求的市场失衡情况,但随着市场信息的传播,大量企业会一拥而上重复生产,导致产品供大于求。/pp  生物碱/pp  是一类复杂的含氮有机化合物,具有特殊的生理活性和医疗效果。如麻黄中含有治疗哮喘的麻黄碱、莨菪中含有解痉镇痛作用的莨菪碱等。/pp  苷类又称配糖体/pp  由糖和非糖物质结合而成。苷的共性在糖的部分,不同类型的苷元有不同的生理活性,具有多方面的功能。如洋地黄叶中含有强心作用的强心苷,人参中含有补气、生津、安神作用的人参皂苷等。/pp  挥发油/pp  又称精油,是具有香气和挥发性的油状液体,由多种化合物组成的混合物,具有生理活性,在医疗上有多方面的作用,如止咳、平喘、发汗、解表、祛痰、驱风、镇痛、抗菌等。药用植物中挥发油含量较为丰富的有侧柏、厚朴、辛夷、樟树、肉桂吴茱萸、白芷、川芎、当归、薄荷等。/pp  单宁(鞣质)/pp  多元酚类的混合物。存在于多种植物中,特别是在杨柳科、壳斗科、蓼科、蔷薇科、豆科、桃金娘科和茜草科植物中含量较多。药用植物盐肤木上所生的虫瘿药材称五倍子,含有五倍子鞣质,具收敛、止泻、止汗作用。/pp  其他成分/pp  如糖类、氨基酸、蛋白质、酶、有机酸、油脂、蜡、树脂、色素、无机物等,各具有特殊的生理功能,其中很多是临床上的重要药物。/pp  综合各国的立法范畴和概念及使用情况,植物提取物这个概念是可以被各国所接受与认可的,也是传播草药在各国通用的共性表达方式。中国植物提取物的出口额早在1999年就已超过中成药的出口额。在欧美国家,植物提取物及其制品(植物药或食品补充剂)有着广泛的市场前景,已发展成一个年销售额近80亿美元的新兴产业。/pp  中国的植物提取物总体上是属于中间体的产品,目前的用途非常广泛,主要用于药品、保健食品、烟草、化妆品的原料或辅料等。用于提取的原料植物的种类也非常多,目前进入工业提取的植物品种在300种以上。/pp  产品功效——遏制癌症/pp  美国科学家说,他们通过对膀胱癌的研究,证实了绿茶提取物能有效遏制癌肿瘤发展,同时不损害健康细胞。由美籍华人科学家领导的这个研究小组认为,绿茶提取物可能成为一种有效的抗癌药物。/pp  这一成果当天发表在《临床癌症研究》杂志上。主持这项研究的加利福尼亚大学洛杉矶分校副教授饶建宇说,他们的成果“增进了对绿茶提取物作用机理的理解”。如果人们对绿茶提取物遏制肿瘤的机理有所了解,就能确定哪种类型的癌症患者能从绿茶提取物中受益。/pp  研究人员在论文中写道,癌肿瘤的发展与癌细胞的扩散运动密切相关,癌细胞要运动,就必须启动一个被称为“肌动蛋白重塑”的细胞进程。一旦这一进程被激活,癌细胞就能够侵入健康的组织,导致肿瘤扩散。而绿茶提取物能破坏“肌动蛋白重塑”进程,使得癌细胞粘附在一起,其运动受到阻碍,此外它还能使癌细胞加快老化。/pp  饶建宇说,癌细胞具有“侵略性”,而绿茶提取物打破了它“侵略”的路径,能限制癌细胞,使其“局部化”,使癌症治疗和预后工作都变得相对简单。/pp  此前,已经有一些研究成果揭示了绿茶提取物对包括膀胱癌在内的许多癌症具有效果,它能够引起癌细胞过早凋亡,并阻断肿瘤组织的血液供应。饶建宇对新华社记者说,他们研究小组的一些成员正在验证绿茶提取物对胃癌等其他癌症的效力。/pp  他说,与以前类似的研究不同,他们使用的绿茶提取物,其成分和饮用的绿茶非常相似,这意味着常饮绿茶可能有某种抗癌效果,至少可以增强人体对癌症的防御能力。不过研究人员也认为,目前他们只实验了有限的几个膀胱癌细胞系,要揭示绿茶的抗癌机理还有待进一步的研究。/pp  其他科学家当天评论说,这一研究成果进一步证实了绿茶在预防和治疗癌症方面所具有的潜力。尤其在膀胱癌治疗方面,新成果有助于发现膀胱癌的易感者,降低发病率。/pp  产品功效——抗氧化性/pp  自1900年Gomberg提出自由基(tripheylemthylradical)学说以来,人们对自由基的研究逐渐加深。传统合成的抗氧化剂虽然抗氧化能力比较强,但长期食用有潜在的毒性,有的甚至会产生致畸、致癌作用,因此愈来愈受到人们的排斥 而蜂花粉是蜜蜂从花朵上采集的花粉粒,含有黄酮类、维生素、激素、核酸、酶类和微量元素等,具有抗衰老作用,是良好的抗氧化食品。葛 根 、杜仲叶、 枸 杞 、 枳 椇 子 、 茯 苓 、 五 味 子 、 银 杏 、 竹叶、柠檬、柑橘和蜂胶的抗氧化作用均已得到实验证明。因此,从天然产物中筛选具有抗氧化和清除自由基活性的物质对食品和医药工业都有重要意义。/pp/p
  • 国外成功研发用于植物养分分析的拉曼传感器
    p style="text-align: justify text-indent: 2em "据外媒报道,如果作物植物没有获得足够的养分,它们的氮含量通常会低于正常水平。一种便携式的新设备可以让农民当场检查这些水平,这样他们就可以尽快开始解决这个问题。由新加坡-麻省理工学院研究与技术联盟(SMART)的一个团队开发的原型小工具实际上是一个紧凑的拉曼光谱传感器。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 399px height: 218px " src="https://img1.17img.cn/17img/images/202012/uepic/610d7f1c-19c1-4071-9a68-109fd8377391.jpg" title="79f92a47fc824f5786e8686235fe7efa.png" alt="79f92a47fc824f5786e8686235fe7efa.png" width="399" height="218"//pp style="text-align: justify text-indent: 2em "与全尺寸的同类产品一样,它的工作原理是将单色激光照射到样品上--在本例中是一片活叶。该材料中的分子随之振动,以独特的方式散射光。因此,通过分析该散射光,可以确定样品中存在哪些化学物质。/pp style="text-align: justify text-indent: 2em "在农业应用中使用这种技术时,通常必须将植物样品从田间带到实验室的台式拉曼光谱仪上。相比之下,新设备可以携带到田间,并在众多正在生长的植物叶子上使用。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 408px height: 559px " src="https://img1.17img.cn/17img/images/202012/uepic/22582d3a-42f6-4506-a135-b0b5e991eab5.jpg" title="d3478038db854101bc6e2f8a8e9e0fdb.png" alt="d3478038db854101bc6e2f8a8e9e0fdb.png" width="408" height="559"//pp style="text-align: justify text-indent: 2em "除了通过低氮水平检测养分不足,该传感器还可以通过测量其他代谢物的水平来识别其他问题。例如,如果一株植物被称为类胡萝卜素的色素水平异常低,那么它可能患有“避荫综合征”--出现这种情况时会阻碍植物叶片的发育,并在此过程中产生结构上的缺陷。/pp style="text-align: justify text-indent: 2em "“该传感器在多个蔬菜品种上进行了演示,并支持生产营养丰富的低成本蔬菜的努力”,该研究的共同首席作者Nam-Hai Chua教授说。“将这项工作推广到更多种类的作物上,可能有助于在全球范围内提高作物产量,增强气候适应性,并通过减少化肥使用量来减轻环境污染。”/pp style="text-indent: 2em text-align: justify "strong相关阅读:/strong/pp style="text-indent: 2em text-align: justify "a href="https://www.instrument.com.cn/news/20201214/567512.shtml" target="_blank"span style="color: rgb(84, 141, 212) "strong便携式拉曼光谱仪在投毒案件现场毒物快检应用—食药环侦局/strong/span/a/pp style="text-indent: 2em text-align: justify "a href="https://www.instrument.com.cn/news/20201120/565338.shtml" target="_blank"span style="color: rgb(84, 141, 212) "strong邮票毒品走私防不胜防,手持式拉曼助力海关守护国门安全/strong/span/a/pp style="text-indent: 2em text-align: justify "a href="https://www.instrument.com.cn/news/20201109/564212.shtml" target="_blank"span style="color: rgb(84, 141, 212) "strong拉曼光谱法在16种多环芳烃(PAHs)检测快检解决方案/strong/span/a/p
  • 222万!自然资源部第四海洋研究所计划采购植物培养生长监测系统、碳同位素分析仪等仪器设备
    一、项目基本情况项目编号:0633-2240126E4297项目名称:海洋自然资源开发利用与保护修复平台建设项目-植物培养生长监测系统、碳同位素分析仪采购预算金额:222.0000000 万元(人民币)最高限价(如有):222.0000000 万元(人民币)采购需求:标项名称:海洋自然资源开发利用与保护修复平台建设项目-植物培养生长监测系统、碳同位素分析仪采购数量:2套预算金额(元):人民币贰佰贰拾贰万元整(¥2,220,000.00)简要规格描述或项目基本概况介绍、用途:本项目需采购植物培养生长监测系统1套、碳同位素分析仪1套;如需进一步了解详细内容,详见招标文件。合同履行期限:国产设备自签订合同之日起1个月内交付安装使用并验收合格。进口设备自签订合同之日起3个月内交付安装使用并验收合格。本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:无。3.本项目的特定资格要求:(1)资质要求:无。(2)业绩要求:无。(3)单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加本项目同一合同项下的政府采购活动。为本项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加本项目的采购活动。(4)未被列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单。(5)按照招标公告规定获得招标文件。招标文件有规定时按要求提交投标保证金。三、获取招标文件时间:2022年04月27日 至 2022年05月06日,每天上午8:30至12:00,下午14:30至17:30。(北京时间,法定节假日除外)地点:广西机电设备招标有限公司北海分公司(广西北海市北海大道与西藏路交汇处银河产业城B1栋5层508)现场获取或线上邮箱(下载)。方式:潜在供应商可以自行选择以下方式之一获取招标文件:方式一:现场购买招标文件,潜在供应商应于本公告有效期内到获取招标文件地点购买招标文件,招标文件以纸质版发放或以电子邮件形式发送至供应商邮箱。方式二:线上购买招标文件,将材料以电子邮件(邮件标题注明供应商名称+所投项目名称;邮件内注明联系人及联系方式;因未按要求发送邮件而导致的后果由供应商自行承担)发送到zhengshuxin@gxbidding.cn。资料审核通过后,供应商以电汇、转账等非现金形式将标书款交至以下银行账号,并将汇款底单以电子邮件发送至上述邮箱,代理机构在核查完毕后把招标文件以电子邮件发送至供应商邮箱。银行账号信息:开户名称:广西机电设备招标有限公司开户银行:广西北部湾银行南宁市金湖支行账号:1705012090027723联行号:313611017053 资料需提供以下文件(以下资料未注明原件的均为复印件,要求加盖公章):(1)主体资格证明(如营业执照、事业单位法人证书、执业许可证、个体工商户营业执照等);(2)法定代表人及委托代理人身份证;(3)法定代表人授权书原件。售价:¥200.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年05月17日 09点30分(北京时间)开标时间:2022年05月17日 09点30分(北京时间)地点:广西机电设备招标有限公司北海分公司(广西北海市北海大道与西藏路交汇处银河产业城B1栋5层508)开标室。投标文件递交方式:邮寄或现场方式,具体要求详见供应商须知前附表。五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1.公告发布媒体:中国政府采购网(http://www.ccgp.gov.cn/)、中国招标投标公共服务平台(http://bulletin.cebpubservice.com/)、广西壮族自治区招标投标公共服务平台(http://ztb.gxi.gov.cn/)。2.需落实的政府采购政策:本项目适用政府采购促进中小企业、监狱企业发展、促进残疾人就业、节能环保、信息安全产品等有关政策,具体详见招标文件。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:自然资源部第四海洋研究所     地址:北海市银海区海景大道海洋科研创新园自然资源部第四海洋研究所联系方式:刘老师 0779-2260528      2.采购代理机构信息名 称:广西机电设备招标有限公司            地 址:广西北海市北海大道与西藏路交汇处银河产业城B1栋5层508联系方式:吴仁晖、郑舒心、李妍茜 0779-3900996             3.项目联系方式项目联系人:吴仁晖、郑舒心、李妍茜电 话:  0779-3900996
  • PlantScreen高通量植物表型系统火热安装中”系列报道(一)
    癸卯春节 安装启动! 2023年农历春节,各地沉浸在轻松欢快的节日氛围,而在中国农科院作科所的温室里,中国农科院的研究人员、PSI公司和北京易科泰公司的工程师投身于PlantScreen高通量植物表型系统——作物高光效高效筛查与鉴定表型平台的安装工作中,现场一片火热繁忙的景象。 从正月的初三到十四,短短的两周时间里,PlantScreen高通量植物表型系统平地而起。庞大的规模、现代感十足的外观、火热的安装场面,吸引假期期间仍在温室里辛苦劳作的研究人员纷纷驻足观看,询问安装进度,热切表达了希望未来能够使用这套系统开展实验的愿望。 PlantScreen高通量植物表型系统由国际知名的表型系统制造厂商PSI研发,整合了LED植物智能培养、自动化植物传送、多种光学成像传感器(FluorCam叶绿素荧光成像、多光谱荧光成像、可见光近红外及短波红外高光谱成像、植物热成像、RGB真彩3D成像、激光雷达3D成像、根系成像等)、自动条码识别管理、自动称重与浇灌、电脑自动控制及数据处理等多项先进技术,能够以最优化的方式对大量植物样品的生理状态、生化组分、形态结构的进行自动成像分析。 系统有效解决了传统植物表型分析技术中存在的精度低、费时费力、适用性差等问题,具备高效准确的特点,并可实现全生育期的无损动态监测;被广泛用于研究不同环境因子及基因型对植物生长、产量、质量的影响,揭示可控环境下基因组与环境等因素互作进而调控作物表型的分子机理。截止2020年底,PlantScreen在全球累积销售/装机量超过50台。主要用户有荷兰瓦格宁根大学、德国莱布尼茨植物遗传和作物研究所、芬兰赫尔辛基大学、澳大利亚国立大学等全球知名的农业学府和顶级研究机构(下图中的PlantScreen系统于2020年安装在都柏林大学),也不乏杜邦先锋、孟山都、巴斯夫等农业企业巨头。 作为PSI公司的合作伙伴和大中华区技术服务中心,成立20年来北京易科泰生态技术有限公司致力于精密、高端植物和藻类实验设备和技术的引进推广及自主研发,迄今为止已为中科院植物所、中国农科院、中科院水生所、中国农业大学、西北农林科技大学等国内知名农业院校和机构提供了大量仪器设备及技术支持。此次安装的PlantScreen高通量植物表型系统通量为4000株种苗/200株成体,配备FluorCam叶绿素荧光成像、RGB真彩3D成像、激光雷达3D成像、植物热成像和高光谱成像等传感器,具备自动称重与浇灌功能,将主要用于水稻等作物高光效高效筛查与鉴定、作物高光效机理研究及新材料创制。 立春已过,农耕将始。今年春天,除了位于北京的中国农科院生物技术研究所,中国水稻研究所(杭州)和东北地理与农业生态研究所(长春)也正在或者即将紧张有序地进行PlantScreen系统的安装。高通量作物表型监测被称为育种的加速器。毫无疑问,PlantScreen高通量植物表型系统的安装运行能够帮助中国作物遗传育种学家深入剖析与产量和胁迫耐受性相关的遗传学数量性状,必将为具有国家战略意义的分子设计育种和种质资源开发应用提供强有力的技术支撑。截止发稿前,农科院生物所PlantScreen系统的安装工作已基本完成,即将进入调试和试运行环节,并将合作举办培训研讨。
  • “植物源性食品分析检测技术新进展” ——主题约稿函
    植物源性食品是指以植物的种子、果实或组织部分为原料,直接或加工以后为人类提供能量或物质来源的食品。其主要包含谷物、薯类、豆类及其制品、水果蔬菜制品、茶叶等。近年来,随着消费理念的升级、素食文化的兴起、对环境保护与动物福祉责任感的增强等,让植物源性食品自带光环,成为食品领域讨论的焦点。不过,植物源性食品的生长的生态环境、贮藏、加工、运输、销售等环节中带来的安全问题也引发大众讨论。为了进一步促进植物源性食品质量安全检测工作的交流与合作,仪器信息网特别发起“植物源性食品分析检测技术新进展”主题约稿,欢迎各位行业协会/学会、高校/科研院所的专家老师,以及领域内仪器厂商们积极投稿。一、专家约稿主题聚焦植物源性食品分析检测技术新进展,可选择谷物、茶叶、水果、植物奶、坚果等植物源性食品中的某一种具体食品展开讨论:(1)目前有哪些常用的植物源食品分析检测技术或方法?请列举并简要介绍。(2)您认为有哪些新兴的技术或方法可以应用到植物源食品分析检测中?(3)您认为目前植物源食品分析检测面临的主要挑战是什么?又有哪些机遇?(4)您对未来植物源食品分析技术发展有哪些预测或建议?(5)政策法规、标准解读:如,对于目前某一重要的植物源食品的质量标准或分析检测方法标准解读;(6)或其它相关主题。二、厂商约稿提纲(1)贵司在植物源性食品分析检测领域主推的仪器产品是什么?请您谈谈该产品的核心竞争力。(2)在植物源食品分析检测中,您公司是否有针对特定食品营养成分的定制解决方案?(3)目前植物源食品中有毒有害物质检测的主要技术有哪些?有哪些新技术新方法会有较大影响?(4)当前植物源食品中有毒有害物质分析的难点是什么?哪些检测项目是值得特别关注?(5)您如何看待当前植物源食品检测市场及前景?未来看好哪些细分领域? 备注:• 您可以根据上述某一个问题或多个问题进行稿件撰写,也可以由此展开相关话题。• 稿件字符数不少于1000字,如有图片,图片像素应不低于300DPI;• 稿件无抄袭、署名排序无争议,文责自负,请勿一稿多投;• 投稿须为Word文档,本网编辑有权对文稿进行修改,如不同意请注明。• 稿件内容会择时在仪器信息网资讯栏目发布显示(单独成文或/整合综述文章),同时在专题中推送宣传。• 回稿时间:2023年9月30日• 投稿邮箱:caixf@instrument.com.cn
  • 中科院大化所痕量植物激素分析研究取得新进展
    p  近日,中科院大连化物所关亚风研究员、耿旭辉副研究员带领微型分析仪器研究团队在微量样品中痕量植物激素分析检测研究中取得新进展。该团队发展了一种微型基质固相分散(microscale MSPD)萃取的前处理方法,能够有效地处理亚毫克级植物样品,同时研发了一种新型的衍生试剂用于柱前衍生,从而极大地提高了赤霉素的质谱检测灵敏度。相关研究成果发表在美国化学会上。/pp  植物激素是植物体内合成的调控植物生长发育的信号分子,准确检测植物体内激素的种类和含量对于深入揭示植物生命现象具有至关重要的作用。近年来,随着“植物激素作用的分子机理”自然科学基金重大研究计划的启动,国内大批的研究机构投身到植物激素的分析研究中来。但由于某些激素,尤其是赤霉素在植物体内的含量极低,而且植物体内的代谢物组成非常复杂,基质干扰严重,这就使得样品前处理过程变得十分繁琐。加之,激素调控的信号传导和生物化学过程通常具有组织(或器官)特异性,因此,测定激素在植物体内的时空分布具有重大意义。解决这一问题的关键在于测定微量样品中的痕量植物激素。/pp  该团队针对极少量植物样品(亚毫克级),发展了一种新型的micro-scale MSPD方法,这种方法集研磨、浸提、净化于同一离心管中,不需要任何样品转移步骤,方法简单、重复性好且收率高,有效地降低了前处理过程中的损失。同时,针对赤霉素本身离子化效率低,研发了一种新型的衍生试剂3-溴丙基三甲基溴化铵(BPTAB),通过化学衍生后,检测灵敏度提高3至4个数量级,是目前的最好水平。而且这种衍生试剂具有低毒性,这一性质使得其在后续的研究中具有很好的应用潜力。该团队将此方法运用到单片拟南芥叶中赤霉素分布的分析中,实现其空间分布测定,空间分辨率达2X2mm2。此外,该方法对于其他酸性植物激素的时空分布测定也具有适用性。/pp/p
  • FluorCam荧光成像系统落户中国科学院分子植物科学卓越创新中心
    近日,北京易科泰生态技术有限公司在中国科学院分子植物科学卓越创新中心安装了FluorCam封闭式GFP/Chl. 荧光成像系统,用于植物叶绿素(Chl)荧光成像分析和GFP绿色荧光蛋白成像分析。FluorCam封闭式叶绿素荧光成像系统是目前世界上功能最为完备的叶绿素荧光成像设备,其主要功能特点如下:?是唯一可以进行OJIP快速荧光动力学及QA再氧化成像分析的叶绿素荧光成像系统?可运行如下protocols:üFv/FmüKautsky诱导效应(Kautsky induction)ü荧光淬灭分析(Quenching analysis)ü光响应曲线(Light curve)üQA再氧化动力学(QA-reoxidation)üOJIP快速荧光动力学(OJIP fast fluorescence induction with 1 μs resolution)ü多光谱荧光成像分析(Multi-color fluorescence)?可同时进行GFP荧光成像分析(选配)?可进行紫外光激发多光谱荧光成像分析易科泰生态技术公司提供植物表型组学研究全面解决方案:l从FKM细胞亚细胞水平叶绿素荧光成像、便携式FluorCam,到大型FluorCam叶绿素荧光成像平台l从台式、模块式FluorCam叶绿素/多光谱荧光成像,到移动式、样带式及自动扫描式叶绿素荧光成像
  • 1474万!中国农业科学院农业基因组研究所基因分析仪、步入式植物生长室等一批仪器采购项目
    一、项目基本情况1.项目编号:0868-2346ZD1262H项目名称:中国农业科学院农业基因组研究所基因分析仪等一批仪器采购项目预算金额:669.000000 万元(人民币)采购需求:基因分析仪等设备一批采购,具体如下:序号采购设备标的明细数量(台/套)是否允许进口产品投标1基因分析仪1否2细胞/微生物双用型生物反应器2否3高通量全自动基因克隆工作站1否4生物反应器1否5微生物中试发酵罐1否6单细胞自动制备系统1否7DNA合成仪1否8全自动生化分析仪1否9超纯水仪1否合同履行期限:(交货期):合同签订后6个月交货本项目( 不接受 )联合体投标。2.项目编号:0868-2346ZD1263H项目名称:中国农业科学院农业基因组研究所步入式植物生长室等仪器设备一批采购项目预算金额:805.000000 万元(人民币)采购需求:步入式植物生长室等设备一批采购,具体如下:序号采购设备标的明细数量(台/套)是否允许进口产品投标1步入式植物生长室3否2植物幼苗高通量动态表型组学分析系统1否3人工气候室智能控制系统2否合同履行期限:(交货期):详见招标文件。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年11月02日 至 2023年11月08日,每天上午9:30至11:30,下午14:00至17:30。(北京时间,法定节假日除外)地点:深圳市罗湖区桂园街道老围社区红宝路139号蔡屋围金龙大厦10楼1003室方式:在线获取售价:¥800.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国农业科学院农业基因组研究所     地址:深圳市大鹏新区布新路97号        联系方式:李老师 0755-28398801      2.采购代理机构信息名 称:深圳市振东招标代理有限公司            地 址:深圳市罗湖区红宝路京基金融中心D座(蔡屋围金龙大厦)10楼03号-06号            联系方式:张先生 0755-82786018/82786038-808            3.项目联系方式项目联系人:张先生电 话:  0755-82786018/82786038-808
  • 一正科技携智能化学分析仪及全自动消解仪参加中国科学院武汉植物园学术交流会
    近年来,武汉植物园分子生物学以及理化仪器逐渐趋于饱和或者已经更新换代结束, 无论从事分子生物学研究或者从事育种等研究,最终都离不开对植物光合等生长生理上的研究以及植物土壤营养盐的测定。为了进一步加强和与用户之间的技术交流与沟通,我公司携手汉莎科技集团定于2018年2月1日在中国科学院武汉植物园召开学术交流会,介绍生理生态仪器以及连续流动分析仪,全自动间断化学分析仪等理化分析仪器及全自动消解仪等样品前处理设备在植物研究中的应用。时间内容主讲人13:30-14:00签到14:00-15:00汉莎科仪生理生态仪器在研究中的应用及介绍姚广15:00-15:15有奖问答15:15:15:30休息15:30-16:30AMS & alliance理化分析仪器及Questron样品前处理设备在植物科学研究中的应用及介绍张晓君16:30-16:50有奖问答交流会时间:2018.02.01(星期四)下午14:00-17:00交流会地点:武汉植物园光谷园区行政楼2008会议室关于全自动间断化学分析仪自动取样器+ 自动稀释器+ 反应控制器+ 比色计+工作站全自动间断化学分析仪沿用经典的比色法,并借助最新机器人技术,其自动取样针可将试剂和样品精确地加入比色杯中,待反应完成,再通过高精度双光束数字检测器直接测量生成颜色物质的吸光度,以此确定待测样品的浓度。对于不同的常规测量参数,无需购买或更换模块,Smartchem 仪器可以自动进行方法切用户只需要编排测试顺序,选择好相应方法,并装载对应的试剂和样品,然后进入仪器自动测量模式,便可一次进行多参数测量。土壤及植物应用:氨氮、硝酸盐、亚硝酸盐、硼、钙、磷酸盐、氯化物、总氮、总磷、镁、赖氨酸、尿素关于连续流动化学分析仪连续流动分析仪(CFA)是将比色分析自动化的一种分析测试系统。样品溶液泵入分析模块后可以自动进行样品前处理如消解,蒸馏,透析,萃取,前处理过的样品溶液被均匀的小气泡分割成连续的片段,再将试剂以特定的比例和顺序加入到每个片段的样品中,然后边流动,边混合,边反应,最后生成颜色物质通过比色计检测吸光度,得到相应的峰值电信号,再通过与标准曲线比较自动计算得到相应的浓度。土壤植物应用:实现土壤,植物,化肥中多种检测项目的自动分析,广泛应用于各高校农科院,林科院;农产品检测站;肥料检测站;粮油检测站等,符合GB或行业标准测量参数:总氮、总凯氏氮、铵态氮、总磷、磷酸盐、硝酸盐、亚硝酸盐、钾、氯化物、硅酸盐、硫酸盐、生物量、硼、CEC、碳酸盐、碳、电导率、铜、铁、苯酚、钙、镁、锰、钼、铝、锌关于全自动消解仪Questron全自动样品消解仪在电热消化炉的基础上集成了全塑通风橱、酸液添加以及液位传感定容模块组件,并配备了符合流体力学的排酸系统和PC软件,可一站式完成消解样品时的酸液添加、消解、赶酸、冷却、定容、混匀和转移等操作。应用领域:适用于土壤、水、固废、食品、药品、海产品、谷物等多种样品的消解处理;适用于ICP、AAS、AFS、连续流动分析仪、全自动间断化学分析仪等检测设备的样品预处理工作关于一正科技:一正科技代理产品主要包括:荷兰Chemtrix公司微通道反应器、英国AM公司连续搅拌多级反应器、催化加氢系统、英国NiTech公司连续结晶反应器和英国AWL连续过滤干燥仪、意大利AMS公司的连续流动分析仪、全自动间断化学分析仪、消化炉和全自动蒸馏器及加拿大Questron全自动消解工作站、全自动液体工作站、消化炉等。此外,一正科技已取得了Ezone 商标,持续为广大客户提供更多自主研发产品。关于汉莎科仪汉莎科学仪器有限公司隶属于汉莎科技集团有限公司,是一家专业致力于生命科学、植物生理、农业生态、环境生态等领域先进科研仪器推广及前沿技术咨询服务的公司。公司作为美国PP SYSTEMS和英国HANSATECH公司中国总部,近二十年来一直全面负责其产品在中国大陆、香港及澳门地区的销售及相关产品的技术支持;同时也是美国SPECTRUM、美国WESCOR、意大利LSI等多家国际知名科学仪器生产厂在中国的销售代表。
  • 北京林业大学植物细胞壁拉曼光谱大数据分析取得新突破
    近期,北京林业大学材料学院许凤教授团队在植物细胞壁拉曼光谱大数据处理技术上取得新突破。该技术成果构建了基于主成分分析的植物细胞壁拉曼光谱聚类分析方法,相关研究成果“Method for Automatically Identifying Spectra of Different Wood Cell Wall Layers in Raman Imaging Data Set”发表在《Analytical Chemistry》上。该期刊为美国化学会旗下国际分析化学领域顶级期刊,最新影响因子5.636,五年影响因子5.966。  拉曼光谱成像技术具有信息丰富、制样简单、对样品无损伤等特点,近年来已成为研究植物细胞壁局部化学的重要工具。然而,拉曼光谱分类技术落后,严重制约了光谱数据的深入挖掘及科学运用。传统的分类技术通过导出实验数据进行手动分析,不但费时费力,人为因素干扰严重,更会造成数据浪费,甚至丢失重要信息。针对这一问题,许凤教授团队经过探索创新,基于细胞壁超微结构特点,率先采用数学统计学结合自主研发的计算机程序分析处理植物细胞壁拉曼光谱数据,建立了快速分辨细胞壁不同形态学区域拉曼光谱的新方法。该方法能够根据植物拉曼光谱的自身特点,对所获海量拉曼光谱数据进行自动、准确、快速分类,将为植物细胞壁化学组分拉曼光谱定量研究提供理论依据。论文投稿期间,审稿人一致评价该方法创新性突出,对生物质相关领域的研究具有重要意义。  发表在《Analytical Chemistry》上的论文第一作者为北京林业大学材料学院林产化学加工工程学科2014级博士研究生张逊,论文发表获得国家杰出青年科学基金的资助。目前,在许凤教授的指导下,张逊正开展基于该技术的相关研究,希望在植物细胞壁拉曼光谱的定量分析上能有新的突破。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制