当前位置: 仪器信息网 > 行业主题 > >

时间分辨荧光光谱仪

仪器信息网时间分辨荧光光谱仪专题为您提供2024年最新时间分辨荧光光谱仪价格报价、厂家品牌的相关信息, 包括时间分辨荧光光谱仪参数、型号等,不管是国产,还是进口品牌的时间分辨荧光光谱仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合时间分辨荧光光谱仪相关的耗材配件、试剂标物,还有时间分辨荧光光谱仪相关的最新资讯、资料,以及时间分辨荧光光谱仪相关的解决方案。

时间分辨荧光光谱仪相关的资讯

  • “低温高分辨激光光谱测试系统的研制”通过验收
    2009年11月25日,由中科院福建物构所陈学元研究员主持完成的中国科学院科研装备研制项目“低温高分辨激光光谱测试系统的研制”,通过中国科学院计划财务局组织的现场技术测试及专家验收。  该项目创新性地提出模块化和开放式光路设计方案,采用了多光栅组合、快响应微通道板型光电倍增管和时间相关单光子计数等技术,集成多种激光光源,成功地研制了低温高分辨激光光谱测试系统,实现了高灵敏度和高分辨率(时域和频率域)的超微弱荧光信号探测。所研制仪器的分辨率比最好的商用光谱仪提高了近20倍,可达到0.0057 nm 可测荧光寿命最短极限为11 ps 采用了闭循环交换气型低温光学恒温器和自主设计的低温样品杆,克服了常规谱仪低温下无法换样品的弊端,低温下换样品时间仅需5分钟,实现了3 K下皮秒瞬态荧光的快速检测。项目执行期间,申请相关专利7件,利用该仪器取得的实验数据已发表了SCI论文50多篇。  验收专家组对该仪器研制给予很高评价,认为其总体技术指标达到国际先进水平,其中3 K下皮秒瞬态荧光的快速检测等关键技术指标处于国际领先水平,标志着我国在高分辨激光光谱学领域的仪器研制创新能力取得了重要进展,为我国物理、化学和材料学等学科领域提供了一个先进的分析和研究平台。
  • “低温高分辨激光光谱测试系统的研制”通过专家验收
    11月25日,由中科院福建物构所陈学元研究员主持完成的中国科学院科研装备研制项目“低温高分辨激光光谱测试系统的研制”,通过中国科学院计划财务局组织的现场技术测试及专家验收。  该项目创新性地提出模块化和开放式光路设计方案,采用了多光栅组合、快响应微通道板型光电倍增管和时间相关单光子计数等技术,集成多种激光光源,成功地研制了低温高分辨激光光谱测试系统,实现了高灵敏度和高分辨率(时域和频率域)的超微弱荧光信号探测。所研制仪器的分辨率比最好的商用光谱仪提高了近20倍,可达到0.0057 nm 可测荧光寿命最短极限为11 ps 采用了闭循环交换气型低温光学恒温器和自主设计的低温样品杆,克服了常规谱仪低温下无法换样品的弊端,低温下换样品时间仅需5分钟,实现了3 K下皮秒瞬态荧光的快速检测。项目执行期间,申请相关专利7件,利用该仪器取得的实验数据已发表了SCI论文50多篇。  验收专家组对该仪器研制给予很高评价,认为其总体技术指标达到国际先进水平,其中3 K下皮秒瞬态荧光的快速检测等关键技术指标处于国际领先水平,标志着我国在高分辨激光光谱学领域的仪器研制创新能力取得了重要进展,为我国物理、化学和材料学等学科领域提供了一个先进的分析和研究平台。
  • 300万!华东师范大学时间-空间-角度分辨综合光谱检测仪项目
    项目编号:招案2022-3863项目名称:华东师范大学时间-空间-角度分辨综合光谱检测仪项目预算金额:300.0000000 万元(人民币)最高限价(如有):300.0000000 万元(人民币)采购需求:采购一套时间-空间-角度分辨综合光谱检测仪,主要用于全面研究微纳米材料的性质,包括材料形貌、结构、成分、电子能级、缺陷、光学响应等综合信息。同时可控的光学调控则需要获得样品全面的发光信息,包括发光位置、发光方向、发光时刻、发光波长、发光偏振等多维度信息。系统性能指标需满足共焦显微拉曼光谱,荧光光谱,角分辨光谱,以及时间分辨瞬态吸收光谱的单独和联合检测,具有多维度,多功能的精密光谱检测能力。(具体内容及要求详见招标文件第三部分-采购需求)合同履行期限:项目完成时间为合同签订后260天。本项目( 不接受 )联合体投标。
  • 120万!福建省立医院全自动时间分辨荧光免疫分析仪采购项目
    项目编号:[3500]FJYS[GK]2022183项目名称:福建省立医院全自动时间分辨荧光免疫分析仪采购项目预算金额:120.0000000 万元(人民币)采购需求:品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)中小企业划分标准所属行业1-1A02321900-临床检验设备全自动时间分辨荧光免疫分析仪1(套)是本项目为福建省立医院全自动时间分辨荧光免疫分析仪采购项目。具体详见招标文件1,200,000.00工业合同履行期限:自合同生效之日起至合同约定的合同义务履行完毕本项目( 不接受 )联合体投标。
  • 阿基米德发布Archimed X6时间分辨荧光定量PCR新品
    Archimed是鲲鹏基因汲取定量PCR技术发展之精华,由国际化资深技术团队匠心打造的全球首款时间分辨实时荧光定量PCR系统。基于菲涅尔透镜的新型光路系统、专利的时间分辨信号采集技术及独特的控温技术,使Archimed在检测灵敏度、光路串扰、温度均一性及准确性等方面引领国际先进水平。同时,基于全球视野的产品设计理念及制造工艺,赋予Archimed国际水准的优异品质。 精益求精,恒久品质Constant Perfection,Constant Quality 卓越品质:• 创新的光学检测系统——更高的灵敏度• 专利的时间分辨信号采集技术——更少的光路串扰• 独特的镂空式温控模块——更稳定快速的热循环控制• 人性化且功能完备的软件——更全面的应用、更简易的操作• 高性价比——更新的技术、更合理的价格• 即装即用——无需调试校正,更低维护成本• 全方位的售后服务——更值得信赖的合作伙伴 广泛应用:• 基因表达分析 • 基因分型 • 基因突变检测 • 病原体检测• 转基因检测 • 蛋白热稳定性分析 • miRNA研究 • 遗传分析技术创新,引领未来Innovation for Excellence Archimed光学检测系统核心优势:• 高灵敏 • 防串扰 • 快速检测 • 免校正 • 免维护 光路系统示意图Archimed温控模块核心优势:• 杰出的温度均一性及准确性,孔间温度均一性及准确性可达±0.2℃;• 极佳的升降温速率,模块最大升降温速率6℃/秒,样品最大升降温速率2.7℃/秒;• 无温度边缘效应 温控模块示意图性能优异,结果可靠Excellent Performance,Reliable Results 极佳的性能表现:• 温度均一性和准确性达到±0.2℃,确保极高的数据重复性(SD0.05)。• 低至1.33倍的高分辨率和宽广的线性范围(10 logs),确保优异的数据准确性。• 杰出的防串扰多色检测性能,确保日益增长的多重数据需求。 高重复性(Ct SD≤0.05) 高分辨率(低至1.33倍) 宽广的线性范围(10 Logs) 多色防串扰 智能分析,多样应用Intelligent Analysis,Multiple Applications 智能便捷的软件系统:• 灵活的程序设定和操作向导; • 完备的数据分析方法; • 一键式数据导出;• 全中文界面,针对中国用户使用习惯而设计; • 无限制的安装拷贝次数;• 软件版本终身免费升级。 人性化导航实验设置 数据结果自动分析 快捷数据导出全面的功能:• 定性检测 • 绝对定量 • 相对定量 • 熔解曲线• 基因分型 • 蛋白热稳定性 • 梯度PCR 绝对定量-标准曲线 熔解曲线分析 定性分析 相对定量-表达差异柱状图创新点:光学检测方面,Archimed采用菲涅尔透镜结合大尺寸PMT这一专利的新型信号检测系统,PMT高检测灵敏度结合菲涅尔透镜体薄、焦距短的特点,辅以特殊的光路设计,缩短检测光路,让检测器最大程度接近样品。扫描方式上,Archimed创新地采用时间分辨逐孔扫描检测技术,隔行排布扫描头的设计,高精度扫描头按时间顺序(时间分辨)让每个荧光检测通道遍历每个样品孔,从空间角度最大程度规避孔间串扰。温控方面,Archimed采用最新型Peltier元件,保证质量和性能最佳。镂空式反应模块设计减少导热金属质量,提升升降温速率;镂空式孔槽有助于空气流通;利用导热碳膜及辅助加热板,实现边缘孔的温度补偿,提高整板温度均一性。Archimed X6时间分辨荧光定量PCR
  • 中科院物理所成功研制高精度脉冲升温-纳秒时间分辨中红外瞬态光谱仪
    &ldquo 十年磨一剑,不敢试锋芒,再磨十年剑,泰山石敢挡&rdquo 。每一位从事实验研究的科研人员都梦想手中有一把利器,能够和侠客一样在科学的天地里纵横天下,快意恩仇。然而当看准一个研究方向后,手头不可能都有现成的设备,尤其是遇到国外设有技术壁垒的时候。  5月27日,Review of Scientific Instruments 发表了中科院物理研究所软物质物理重点实验室翁羽翔研究组的一篇题为A Q-switched Ho:YAG laser assisted nanosecond time-resolved T-jump transient mid-IR absorbance spectroscopy with high sensitivity的仪器研制论文,便是一项磨剑之作。  蛋白质的动态结构信息是理解其生物学功能的基础。为此国际上发展多种蛋白质动态结构的测量方法,各有千秋。脉冲升温-纳秒时间分辨瞬态红外光谱便是其中的一种,相比较而言,该方法的特点时具有高的时间分辨率。其中涉及的关键设备之一为可调谐连续工作中红外激光源,用于蛋白质二级结构变化的红外指纹光谱指认。由于其在军事用途方面的敏感性,在2009年之前一直属于对华出口限制物资。  翁羽翔研究组长期致力于脉冲升温纳秒时间分辨红外光谱技术的发展及其在蛋白质动态结构方面的应用研究。该课题组与大连理工大学于清旭教授开展长期合作,于2005年建立了基于国内一氧化碳气体中红外激光技术的宽谱带脉冲升温-时间分辨瞬态光谱仪(测量精度为千分之一的吸光度差10-3&Delta OD ,Chin. Phys. 2005, 14, 2484),并用于蛋白质动态结构的研究,取得了系列成果(Biophysical Journal, 2007,93, 2756-2766  2009, 97, 2811-2819  Scientific Reports, 2014, 4,4834)。在前期大量工作的基础上,该课题组意识到只有将已有设备的测量精度再提高一个数量级,即到达万分之一的吸光度差(10-4&Delta OD)之后才能满足普适性要求,由此对脉冲升温光源和一氧化碳气体红外激光光源提出更高的要求。  为此该课题组在2008年申请了中科院科研装备研制项目,提出研制新一代具有国际先进水平的脉冲升温-纳秒时间分辨中红外吸收差光谱仪 包括研制高稳定连续输出可调谐一氧化碳中红外激光探测光源,以及研制新型的脉冲激光加热光源,即空间模式稳定、输出能量稳定的纳秒调Q的Ho:YAG脉冲近红外激光光源(2.1微米,与安徽光机所吴先友研究员合作)。该设备对蛋白质细胞色素c的脉冲升温-时间分辨中红外光谱测量结果表明,在蛋白质酰胺I' 光谱范围(1600-1700 cm-1)内达到的平均测量精度为2× 10-4&Delta OD 。该指标目前领先于国际上同类设备。论文第一作者为物理所博士研究生李得勇,署名单位为中科院物理所,安徽光机所和大连理工大学,并申请了国家发明专利。  该工作的意义在于,通过对高性能设备的自主研发,不仅能够满足基础研究的需求,同时还带动了国内特种激光技术的发展。  此项工作得到了中科院科研装备研制项目和国家自然科学基金委的资助。  图例. 脉冲升温诱导的细胞色素c在重水中温度由25℃阶跃到35℃、温度跳跃2微秒后在酰胺I' 内的瞬态吸收谱。作为比较,实线为35℃和25℃间测得的傅里叶红外吸收差谱。
  • 220万!华东师范大学时间分辨荧光显微镜采购项目
    项目编号:0773-2241SHHW0153项目名称:华东师范大学时间分辨荧光显微镜项目预算金额:220.0000000 万元(人民币)最高限价(如有):220.0000000 万元(人民币)采购需求:设备名称:时间分辨荧光显微镜;数量及单位:1套;简要技术参数:3.2、像元:1×1—4096×4096;3.3、镀银高反射率的xy光学振镜扫描系统;★3.3.1、扫描频率0~5KHz,最短单点停留时间0.5µs, 最长单点停留时间无限;其余内容详见本项目招标文件。合同履行期限:自合同签订之日起120天内;本项目( 不接受 )联合体投标。
  • 新品推出 | IRsweep: 微秒级时间分辨超灵敏红外光谱仪
    瑞士IRsweep公司成立于2014年,脱离苏黎世联邦理工学院,由Dr. Andreas Hugi,Dr. Markus Mangold,Dr. Markus Geiser三位创始人联合创立。该公司提供基于中红外光谱的量子联激光器(QCL)双频率梳的的光学传感解决方案,致力于为多种应用提供快速的、实时的、选择性强的和宽带光谱的激光光谱解决方案。 微秒时间分辨超灵敏红外光谱仪IRis-F1 传统光谱仪由于光源、测量方式等限制,需要几秒钟或者更长的测量时间来获取一个完整的光谱。然而,生物医学、化学动力学等许多过程都是发生在微秒的时间内,这些传统技术的光谱仪是无法观察到的。 IRsweep公司推出的微秒时间分辨超灵敏红外光谱仪IRis-F1是一种基于量子联激光器频率梳的红外光谱仪,能实现高达1 μs时间分辨的红外光谱快速测量,该技术结合了高测量速度(微秒时间分辨率)、高光谱分辨率和宽光谱范围的解决方案,这种高速的测量方案开启了生物医药、化学反应动力学光谱分析的全新可能。 主要特点: 1 μs时间分辨率 高达0.25 - 0.5 cm-1波数分辨率 双量子联激光频率梳技术提供高能量光源 测量数据信噪比高 易于微量及痕量光谱分析 方便易用、可靠性高 IRsweep公司目前主要提供的商业化产品还包括IRcell超长光程激光样品池。 适用于红外激光吸收光谱 工业、医疗、环境领域的痕量气体检测 工业过程控制 安全监控 微量样品测试更低容量更高灵敏度 光程长度:349 cm 样品池体积:38 ml 低边噪声水平:0.2‰ rms 2018年8月,套新一代的微秒时间分辨超灵敏红外光谱仪IRis-F1在德国自由柏林大学( Free University of Berlin) Joachim Heberle教授组完成安装验收。Quantum Design中国子公司也于2018年正式将该产品引进中国,为中国客户提供高效的技术支持和解决方案,欢迎广大科研工作者垂询。 相关产品及链接:1、 IRsweep微秒时间分辨超灵敏红外光谱仪IRis-F1:https://www.instrument.com.cn/netshow/C305345.htm2、 neaspec纳米傅里叶红外光谱仪nano-FTIR:https://www.instrument.com.cn/netshow/C194218.htm3、 neaspec超高分辨散射式近场光学显微镜:https://www.instrument.com.cn/netshow/C170040.htm
  • 飞秒荧光光谱技术在生命科学中的应用
    近年来,随着超快激光技术的发展以及相关光电子设备的升级和更新,尤其是飞秒激光的出现,频率上转换技术的时间分辨率达到了飞秒量级,为生物、化学和医学等领域的研究带来了新的发展契机。荧光光谱学被广泛应用于研究生物大分子的结构及功能,特别是蛋白质与水环境、蛋白质与蛋白质之间相互作用的动力学等等。  华东师范大学精密光谱科学与技术国家重点实验室陶占东等研究人员在汉斯《生物物理学》学术期刊上发表的文章中强调,在生命科学领域,包括生物物理和生物化学,将频率上转换技术应用于时间分辨荧光光谱探测已经成为研究生物大分子的结构、功能及动力学的重要技术手段。  作为一项高时间分辨率的测量技术,非线性光学频率上转换技术日益成熟。事实上,频率上转换荧光光谱技术的原理并不复杂,但所涉及领域甚广,包括激光技术、非线性光学技术、泵浦探测技术、光谱测量与分析技术以及蛋白质样品制备、定点突变技术等等。此外,频率上转换荧光光谱实验系统是庞大而复杂的,只有认真细致地调整和优化系统的各个环节,才能获取良好的探测效果,这往往需要研究者耗费大量的时间和精力。  飞秒频率上转换技术的出现,将时间分辨荧光的探测精度提高到了飞秒量级,引起了生命科学领域研究人员的普遍关注。荧光基团(如色氨酸)在极性溶剂或极性环境中的溶剂弛豫、激发态的能量转移以及其他与荧光发光相关的动力学往往反映了荧光基团所处环境的情况。这些过程大多数都在很短的时间内完成(飞秒至皮秒),对荧光的影响一般只出现在荧光起始端很窄的时域内,超出了一般的时间分辨荧光技术(如TCSPC)的分辨极限。因此,飞秒分辨频率上转换技术常常用于研究超快荧光动力学。  文中表示,色氨酸荧光具有较长的寿命、较强的发射峰值、可观的量子产率和明显的旋转各向异性,同时色氨酸的吸收波段很宽,其荧光发射光谱有明显的斯托克斯位移,因此色氨酸及其衍生物常被用在荧光探究性实验中。水是天然的溶剂,几乎所有的生物大分子,如蛋白质、DNA等,离开水都会失去活性。很多研究小组利用飞秒分辨频率上转换荧光光谱系统分别研究了色氨酸在水溶液中的动力学。飞秒分辨蛋白质荧光方面取得了成果。  其次,利用飞秒频率上转换荧光系统探测蛋白质(带有荧光探针)的时间分辨荧光,可以获取蛋白质不同位点上的环境特征。通过对不同位点或不同状态下的蛋白荧光进行综合比较,可以研究蛋白质的结构和功能。许多国内外实验小组已在飞秒分辨蛋白质荧光方面取得了成果。而且,DNA动力学也可以利用频率上转换荧光光谱技术来探测,尤其是在频率上转换的飞秒时间分辨下,精确地获取DNA的超快动力学特征将有助于更进一步地研究DNA的结构及功能。  总之,随着人类对物质世界认知的不断深入以及各种技术手段的不断发展成熟,目前已经达到飞秒时间分辨的频率上转换荧光光谱技术为生物、化学、医学等领域的研究提供了有力的技术支持和广阔的发展前景。  原文链接:http://www.hanspub.org/Journal/PaperInformation.aspx?paperID=13200  注:本文由龚珊编译,本文版权属于汉斯出版社,转载请注明出处。
  • 国产分子荧光光谱仪的“差异化”竞争路线
    p style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai "  随着科研需求的发展,分子荧光光谱相关的新技术和新应用也在不断的深入拓展中,尤其是在附件的多样化、联机,以及其他功能性拓展方面表现得越来越明显。为了多方位展现分子荧光光谱领域的最新成果,仪器信息网特别策划制作《不可或缺 分子荧光光谱技术及应用进展》网络专题,旨在展现分子荧光光谱仪的最新技术及应用情况。/span/pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai "  作为国产分子荧光光谱领域的代表企业,北京卓立汉光仪器有限公司(简称:卓立汉光)不仅推出了科研用稳态瞬态荧光光谱仪,而且从“差异化”竞争的角度寻求更长远的发展。日前,我们特别邀请了卓立汉光荧光光谱产品经理杨泽鑫来分享其在分子荧光光谱产品方面的战略布局。/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 200px height: 257px " src="https://img1.17img.cn/17img/images/202012/uepic/97ef1194-9083-4420-a287-4aad1c4b8f87.jpg" title="微信图片_20201216145530.png" alt="微信图片_20201216145530.png" width="200" height="257" border="0" vspace="0"//pp style="text-align: center "strong北京卓立汉光仪器有限公司荧光光谱产品经理 杨泽鑫/strong/pp style="text-align: justify " strong 仪器信息网:与其他分析仪器相比,分子荧光光谱新产品的推出不是很活跃,市场也略显“沉寂”,请问您如何评价该类仪器的市场活力及竞争格局?/strong/pp style="text-align: justify "strong  卓立汉光:/strong分析型分子荧光产品推出很早,技术难度不大,不论是国内还是国外都有多个厂家在做,可以说分析型分子荧光光谱市场已经是一个非常成熟的市场。/pp style="text-align: justify "  换个角度,相比于分析型市场,我国对科研的投入力度越来越大,科研端应用需求广且差异较大,市场活力实际上是只增不减,传统荧光分析必然竞争激烈,“复制”市面上已有的产品难免让自己处于不走量又回报低的境地,寻求差异化竞争推出针对应用的专用方案可以补充市面上没有或者是和需求不匹配的产品。例如,现在闪烁晶体比较热门,闪烁体的荧光测试必不可少,但是进口设备中暂时没有可以耦合X射线作为激发源的厂家,很多从事此类研究的用户都是以自己搭建为主,卓立汉光推出针对性的解决方案,包含了X射线源,样品架及收集光路,并充分考虑了使用的安全性,用铅箱将这部分整合,目前良好地掌握了这一块的市场。另外例如钙钛太阳能电池,荧光寿命的测量对于其异质结的研究非常有帮助,卓立汉光针对该市场也有推出专用方案。/pp style="text-align: justify " strong 仪器信息网:从技术的角度出发,您认为目前分子荧光光谱有哪些新的技术值得期待?/strong/pp style="text-align: justify "strong  卓立汉光:/strong基于光学显微镜的显微荧光光谱目前能做到的空间分辨率能达到微米、亚微米尺度,高空间分辨比如纳米、几十纳米尺度的荧光光谱、荧光寿命、荧光寿命成像测量,对于生物成像、化合物半导体的载流子动力学研究意义非凡,普渡大学的Libai Huang教授在超快显微光谱动力学的实验搭建上已经实现了50nm空间分辨率的惊人成果,是否有机会转换为商用产品,这部分值得期待。/pp style="text-align: justify "  strong仪器信息网:从应用的角度出发,当前分子荧光光谱仪器的应用和研究热点分布在哪些领域?在科研过程中能给大家带来哪些“惊喜”?/strong/pp style="text-align: justify "strong  卓立汉光:/strong当前分子荧光研究热点主要集中在发光材料、光电半导体、有机溶解物等领域,对于研究材料合成结果、组分分析,机理研究具有重要的作用。举个例子,目前相当火热的钙钛矿型太阳能电池,就有相关课题组采用显微时间分辨光谱的表征方法,在空间尺度上揭示了有机-无机混合钙钛矿型CH3NH3PbI3(Cl)薄膜的光致发光衰减动力学,类似的光物理研究对于解释材料性能起到至关重要的作用,对于基础科学研究意义非凡。我司的OmniFluo900系列稳态瞬态荧光光谱仪就可以搭配显微光路,耦合皮秒脉冲激光器,搭配TCSPC板卡,实现这些亚微米空间尺度的荧光寿命测量。/pp style="text-align: justify "  strong仪器信息网:分子荧光光谱仪相关的应用标准情况怎样?在应用拓展方面,有哪些制约因素?/strong/pp style="text-align: justify "strong  卓立汉光:/strong事实上我司的客户开发方向和群体主要在科研市场,对于应用快检类的市场接触较少,三维荧光光谱技术确实有应用于石油炼化行业,我们也给针对石油做快检设备的公司提供OEM。三维荧光方法涵盖的信息比较丰富,是比较有可能用于行业快检的分子荧光测量手段,但是目前出现的标准还是比较少,我们接触到的仅有石油领域,其他的比如酒、饮料、水污染这些也是有高校课题组在研究,我司推出的SmartFluo-Pro系列三维荧光光谱仪,体积小且可快速现场测样,极大提高现场初步筛选的效率,我们也期待其他领域能够建立完善的标准。/pp style="text-align: justify "  strong仪器信息网:贵公司当前主推的产品?今年刚推出的或者即将推出的新品?最具优势的领域?/strong/pp style="text-align: justify "strong  卓立汉光:/strong目前我司的荧光产品线主推科研级稳态瞬态荧光光谱仪和三维荧光专用光谱仪。/pp style="text-align: justify "  稳态瞬态荧光光谱仪是开放性设计的大科研平台,目前最具备优势的领域主要是稀土发光材料、闪烁体的稳态光谱、瞬态光谱测量,针对一些薄膜光电材料/器件如第三代半导体、二维材料、钙钛矿薄膜电池、铜基薄膜电池,硅基锗材料进行Micro-PL以及Micro-TRPL的测量。/pp style="text-align: justify "  三维荧光专用光谱仪是我们设计的一台以150W氙灯为激发源,阵列探测器作为荧光信号探测的快速三维荧光光谱仪,通过优化光路结构,达到极优信噪比,期望能为石油、DOM、CDOM、水污染、海洋海水成分等物质的三维荧光分析提供快速检测,提高检测效率,为日后三维荧光在快检领域广泛应用提供支持。/pp style="text-align: justify "  strong仪器信息网:针对当前的市场格局,贵公司在分子荧光光谱产品方面有什么样的定位和布局?/strong/pp style="text-align: justify "strong  卓立汉光:/strong我司的分子荧光产品定位在高端科研级别,以稳态功能为基础,瞬态功能为主导,提供变温台、显微光谱模块、量子产率等多种附件,是国内第一台商用的达到科研级灵敏度且能够测量荧光寿命的荧光光谱仪。我们期望建立一个大的平台满足多种测量需求,再根据科研市场应用需求做差异化的调整,这里我们所说的差异化主要是针对某些应用提供一个合适又简化的方案,比如钙钛矿电池的TRPL几乎是必测的,但是TRPL的测量对于电池性能表征毕竟还是辅助为主,不是必要设备,购买五六十万甚至上百万的瞬态系统投入产出比太低,这时候对大荧光平台做减法就显得很有必要,客户也乐于接受。再比如,目前深紫外AlGaN量子效率很低,用常规宏光路的方式想要测得好的信号,就得借助功率较高的激光器,这时候激光器的价格可能成倍增加,如果我们将激光器耦合到显微镜里,改用显微光路将激光光斑聚焦到微米尺度,就可以大大提高激发效率,显微光路增加的成本显然比深紫外激光器增加的成本低,这也是我们根据应用的特点会做的一些差异化调整。/pp style="text-align: justify "  简单来说我们通过调整,在保证性能的前提下,把设备的性价比调高,更多客户容易接受,市场也就活跃了。近年来我国对科研投入力度越来越大,想要覆盖市场,产品必须是有层次的,有差异的,不能太单一,作为国产设备厂商我们最大的优势就是可以敏锐接触到市场需求和动向并及时做出响应,我们后续会持续关注各类应用并尽可能全的覆盖发光材料如稀土掺杂材料、量子点发光、有机发光二极管、聚集诱导发光材料、闪烁晶体、激光晶体,光电半导体如第三代宽禁带半导体材料器件、二维材料、微腔、钙钛矿型太阳能电池、钙钛矿型X射线探测器、石墨烯复合材料等应用。2020年12月23日,卓立汉光稳态瞬态荧光光谱仪全球同步发布,线上线下同步直播,尽在中建雁栖湖景酒店:三大环节,四大亮点,让我们一起揭秘国产荧光好仪器,让更多人一起共享荧光大平台!/p
  • 鲲鹏基因新品发布会:推出两款时间分辨荧光定量PCR仪
    p  2018年12月7日,鲲鹏基因(北京)科技有限责任公司(以下简称:鲲鹏基因)在北京西郊宾馆举办“未来丨有你才行”新产品发布会,隆重推出旗下最新款Archimed(阿基米德)系列荧光定量PCR系统Archimed X6和Archimed X4。参会人员有来自医疗机构、疾控中心、科研院所、高等院校等单位的专家学者,以及来自华东、华南、华中、西南及西北地区的近40家仪器行业经销商。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/6af45bd6-dc0f-44f3-9f25-561fb0503cdb.jpg" title="1.jpg" alt="1.jpg"//pp style="text-align: center "span style="color: rgb(127, 127, 127) "阿基米德系列发布会现场/span/pp  img src="https://img1.17img.cn/17img/images/201812/uepic/49ad3799-ab0c-42fb-b0ae-651b13125060.jpg" title="2.jpg" alt="2.jpg" style="text-align: center "//pp style="text-align: center "span style="color: rgb(127, 127, 127) "阿基米德系列定量PCR仪/spanbr//pp  据了解,本次推出的Archimed系列荧光定量PCR系统,是鲲鹏基因历时两年研发而成,旨在填补国产高端荧光定量PCR仪的空白。该系统将瞄准同类进口产品,志在打破进口品牌对该领域的长期垄断,为中高端分子诊断及科研市场提供国际一流水平的“仪器+试剂耗材+软件”的闭环产品及服务,实现分子诊断领域中实时荧光定量PCR技术平台的国产替代。/pp  发布会伊始,鲲鹏基因创始人及CEO郭求真先生代表公司诚挚欢迎与会人员的到来,并详细介绍了公司的创业历程、发展思路及未来的愿景。郭求真先生表示:“公司自创立以来,始终以技术研发为基点,以 “保持潜心研发与市场判断的独立性”为基本原则,开发具有自主知识产权,国际领先的科研与分子诊断产品,并将“提升品牌价值、仪器+试剂+软件形成产品闭环“作为战略发展方向。”/pp  img src="https://img1.17img.cn/17img/images/201812/uepic/74450953-98fd-4f35-b81d-0945d81e6f76.jpg" title="郭求真.jpg" alt="郭求真.jpg" style="text-align: center "//pp style="text-align: center "span style="color: rgb(127, 127, 127) "鲲鹏基因CEO 郭求真/spanbr//pp  荧光定量PCR作为一种较成熟的基因研究工具,已发展超过20年时间。在谈到为什么将该产品作为公司的第一款自主研发产品时,郭先生表示:“首先,我们将快速增长的分子诊断市场作为公司的目标参与市场,而PCR技术及产品无论目前还是未来仍将占据分子诊断市场的大部分份额,这将是公司长期发展的源动力 其次,作为PCR技术平台核心产品的实时荧光定量PCR仪仍然被少数几家国外厂商所垄断,严重影响行业的健康发展,虽然国内厂商已陆续开发出相关产品,但由于设计理念、水平等原因,现有国产产品基本定位于低端市场,无法真正实现该类产品的国产替代 再次,作为一家初创型企业,我们需要一步一个脚印地做事情,通过Archimed荧光定量PCR仪这种市场需求广,用户认知感强的产品,我们可以更好的“以用户为师,以市场需求为标杆”,踏踏实实地将产品的研发、生产、销售及服务体系建立完善,为后续分子诊断产品的开发奠定坚实的基础。”/pp  作为鲲鹏基因合伙创始人及产品总监王梓先生为与会人员详述了产品的特色及优势:”Archimed较现有同类产品主要具备三大亮点:1、基于菲涅尔透镜、高效PMT及免维护LED的新型光信号检测系统,进一步提升检测灵敏度 2、创新的检测通道排布及独特的时间分辨采集技术,有效避免荧光多色串扰及边缘效应 3、独特的边缘补偿辅助控温技术,实现极佳的温度均一性及准确性。”  /pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/93c02dc8-a12d-4891-8a9f-68bdd9d4e79a.jpg" title="4.jpg" alt="4.jpg"//pp style="text-align: center "span style="color: rgb(127, 127, 127) "鲲鹏基因合伙创始人及产品总监 王梓/spanbr//pp  鲲鹏基因合伙创始人及销售总监戴涛先生热情地欢迎了与会代表,并详细介绍了Archimed产品的市场及销售策略。作为资深的业内职业经理人,戴涛先生表示:“Archimed产品的推出就是响应国家的《“十三五”国家战略性新兴产业发展规划》的号召,“加速发展体外诊断仪器、设备、试剂等新产品,推动高特异性分子诊断、生物芯片等新技术发展,支撑肿瘤、遗传疾病及罕见病等体外快速准确诊断筛查”。鲲鹏基因以真正的国产精品为国人提供 “中国智造”的选择,全面提升国产仪器在市场中的竞争力”。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/dea0ed12-3543-446c-a736-bd54d5c6d76f.jpg" title="5.jpg" alt="5.jpg"//pp style="text-align: center "span style="color: rgb(127, 127, 127) "鲲鹏基因合伙创始人及销售总监 戴涛/span/pp  关于产品详情,请关注仪器信息网后续报导。/p
  • 预算680万元!兰州大学时间分辨双光子荧光显微成像仪采购项目公开招标
    p  近日,中国政府采购网发布公告称,兰州大学化学化工学院时间分辨双光子荧光显微成像仪采购项目进行公开招标,预算金额680万元,投标截止时间为2019年8月4日。以下为招标公告部分内容:/pp  一、项目名称:兰州大学化学化工学院时间分辨双光子荧光显微成像仪采购项目/pp  二、项目编号:LZU-2019-079-HW-GK/pp  三、项目联系方式:/pp  项目联系人:唐老师/pp  项目联系电话:13893196375/pp  四、采购单位联系方式:/pp  采购单位:兰州大学/pp  地址:兰州市城关区天水南路222号/pp  联系方式:曹老师0931-8912932/pp  五、预算金额:680.0 万元(人民币)/pp  六、招标文件的发售时间及地点等:/pp  时间:2019年07月09日 15:09 至 2019年07月15日 15:09(双休日及法定节假日除外)/pp  地点:自行通过兰州大学采购管理办公室网页公告链接下载/pp  招标文件获取方式:自行通过兰州大学采购管理办公室网页公告链接下载/pp  七、投标截止时间:2019年08月04日 08:45/pp  八、开标时间:2019年08月04日 08:45/pp  九、开标地点:/pp  兰州大学贵勤楼103室/p
  • HORIBA发布收购PTI后的首款荧光光谱仪新品
    2014年2月,HORIBA宣布收购PTI(Photon Technology International, Inc.)及其附属子公司的全球资产。收购PTI两年多以后,日前HORIBA发布了PTI QuantaMaster系列产品的新成员——PTI QuantaMaster 8000系列光谱仪。  PTI QuantaMaster 8000系列模块化研究级荧光光谱仪具有世界上最高的灵敏度,水的拉曼信噪比(SNR)为30000:1,目前只有HORIBA 的Fluorolog-3能与之相媲美。PTI QuantaMaster 8000  作为一款模块化、研究级荧光光谱仪,PTI QuantaMaster 8000可以用于稳态和荧光寿命的测量。它配备了四个激发光源和六个检测通道,采用三光栅系统拓展波长范围,使用一个单色仪或双单色仪进行杂散光的抑制。同时,通过TCSPC增加灵活性和适应性,提供最快的速度,并提供260nm到2000nm之间可调的UV/Vis/NIR超连续激光。此外,该产品还可以实现覆盖到5500nm的光谱和磷光寿命检测。  PTI QuantaMaster 8000是一款完全自动的仪器,FelixGX软件控制所有的硬件功能, 为光谱和动态测量提供了一套完整的数据采集协议。使用SSTD转换器或VCI可以进行激发和发射光谱扫描、时间扫描、光谱和时间偏振扫描、同步激发/发射扫描、TCSPC寿命和磷光衰减以及时间分辨激发和发射光谱的扫描等。  “PTI QuantaMaster 8000系列产品是下一代稳态和寿命荧光光谱仪的代表,同时也是HORIBA收购PTI后发布的第一款荧光光谱仪新品,”HORIBA荧光部门全球产品经理Cary Davies说,“现在,研究人员拥有了一款从UV到NIR (280 to 5500 nm)的高度灵活性,同时具有超高灵敏度以及许多其它很多独特优势的荧光光谱仪。”HORIBA荧光产品发展历史
  • 多项新技术写入《分子荧光光谱分析方法通则》
    日前,全国教育装备标准化技术委员会印发教育行业标准《分子荧光光谱分析方法通则》修订版的征求意见稿,实施了20年的《JY/T025-1996光栅型荧光分光光度方法通则》(JY/T 002—1996)迎来了一次"大修订"。说是“大修订”,是因为新《通则》增加了多项分子荧光光谱的新技术和新方法。  《JY/T025-1996光栅型荧光分光光度方法通则》编写于1996年,1997年4月1日实施。原有标准主要是针对传统有机荧光化合物的分析,而在近20年的发展中,荧光分析的范畴得到了极大的拓展,包括荧光粉体材料、量子点等一大批的新型荧光材料不断涌现,它们均能够用分子荧光的技术进行分析和测试。  此外,20年来,荧光光谱仪性能有了较大的发展,荧光寿命和绝对量子产率、时间分辨发射(激发)光谱等技术不断完善。  为了更有效地发挥标准的作用,指导用户利用荧光光谱仪正确地实施检测分析,并作为制定具体分析方法标准的主要指导性技术文件,修订组根据原有标准的内容和荧光光谱分析在上次标准发布后的技术更新,并区分X-射线荧光分析,将标准名称更新为“分子荧光光谱分析方法通则”。  与原通则相比,新通则增加了荧光偏振、荧光寿命和量子产率、同步荧光扫描、三维荧光光谱、时间分辨发射(激发)光谱测试等新的方法原理、分析步骤和结果表述。  在原有试剂和材料的基础上,新《通则》补充了Nd-YAG、罗丹明101、Ludox、毛玻璃等,分别用于近红外区发射波长确认、绝对光致发光量子产率确认和校正、荧光寿命测试中灯谱测定、激发波长和发射波长精度的确认等。  此外,在仪器方面,新《通则》还分别介绍了稳态荧光光谱仪、瞬态荧光光谱仪的相关情况,并给出了稳态荧光光谱仪的技术指标。  本标准修订编写建议稿由四川大学分析测试中心作为主持修订单位,北京大学分析测试中心、东华大学分析测试中心、兰州大学分析测试中心作为辅助修订单位一起完成。具体来说,四川大学吴鹏负责范围、定义、方法原理和仪器 北京大学陈明星负责试剂和材料、分析步骤、仪器 东华大学徐洪耀负责样品和仪器 兰州大学巨正花负责分析结果的表述、安全注意事项、仪器。而且,工作组还邀请了Horriba Jobin Yvon公司技术中心应用专家对初稿进行审定和修正。  详细内容参见附件:分子荧光光谱分析方法通则(征求意见稿).doc
  • 全球首创的时间分辨发射光谱(TRES)新型系统横空出世
    日前,德国PicoQuant、意大利NIREOS和Micro Photon Devices公司联合开发了一种基于干涉仪记录时间分辨发射光谱(TRES)的全新紧凑型系统,而该系统搭建的模块分别由这三家公司提供。时间分辨发射光谱(TRES)新型系统是基于NIREOS研发的超稳型干涉仪GEMINI,它能直接将样品的荧光发射光谱和荧光寿命进行Mapping,具有高时间和高光谱分辨率(即TRES)等特点,也正是因为这些特点时间分辨发射光谱(TRES)新型系统将光谱的变化过程直接提升到了ps量级的分辨率。该系统功能非常强大,但光路却极其简单。在样品测试中,信号光通过NIREOS 的紧凑和超稳定的GEMINI干涉仪获得高分辨率的全光谱信息;然后由Micro Photon Devices的PDM系列探测器进行单光子检测;最后,经过PicoQuant的时间相关单光子计数器(TCSPC)PicoHarp 300获得高时间分辨率的荧光寿命信息,最终获得时间分辨发射光谱(TRES)。具体光路示意和探测及分析,请参见下图所示:图1:光路示意 图2:功能简介 图3:软件界面 如需了解更多该系统的完整实验光路和功能演示视频等相关资料,请联系我们!
  • 新品速递| 油品专用型X荧光光谱仪—SPECTROCUBE
    德国斯派克分析仪器公司推出了SPECTROCUBE ED-XRF台式X荧光光谱仪,用于燃油和润滑油的简便、准确和可靠的分析,其分析速度是同类分析仪的两倍。炼油厂、润滑油调合厂、独立检测实验室及监管机构在各种石油精炼和石化应用中都要求精准的元素分析。其范围包括验证气体、柴油或其他燃料是否满足硫含量的规定限值;分析新润滑油中的添加剂元素以及废油中的添加剂和微量元素浓度;测试原油中硫、镍、钒和铁的浓度。新型SPECTROCUBE X荧光光谱仪采用了先进的无损ED-XRF检测技术,包括非常高的分辨率和计数率,并具有从取样到获取分析结果的最快周转时间。SPECTROCUBE对不同的的浓度水平均能获得卓越的精度。在具有其他品牌光谱仪的最佳检测限的同时,SPECTROCUBE的检测速度更快。此外,当需要时,SPECTROCUBE可以达到其他品牌分析仪无法达到的检测限,并在其他分析仪需要进行标准分析的时间内提供结果。SPECTROCUBE是高通量操作的理想选择。在大多数情况下,不需要用户校准或决定。SPECTROCUBE的设计符合所有相关的精炼和石化分析标准。其燃料油硫含量测试符合ISO 13032、ASTM D7220、ASTM D4294、ISO 20847和ISO 8754等测试方法。它能够根据ASTM D7751对润滑油进行精确分析。01简单、快速、直观SPECTROCUBE能够实现快速、平稳的工作流程,即使对于没有培训过的用户也是如此,确保了无与伦比的易用性。只需三个简单快捷的步骤,即可完成样品分析,直观的软件在一个屏幕上显示相关信息。其紧凑的占地面积适合紧凑的工作台空间,但可容纳各种各样的从小到大样本。02分析元素范围Na-USPECTROCUBE仪器的设计非常灵活,满足全谱分析的相关应用。凭借最新的高分辨率硅漂移探测器(SDD)和超高计数率,SPECTROCUBE可以轻松处理微量元素。该分析仪提供了该行业最广泛的元素选择之一,针对钠(Na)到铀(U)范围内的元素浓度测试进行了优化。例如,其润滑油方法涵盖了24个元素。03坚固耐用SPECTROCUBE X荧光光谱仪采用经过用户测试的顶级组件,可在高要求、高吞吐量的质量控制操作中持续使用,坚固耐用,同时运行和维护成本低,使用寿命长。04AMECARE服务德国斯派克分析仪器公司通过完善的AMECARE服务确保仪器不间断的性能和最大的投资回报。机器对机器(M2M)支持,允许主动警报,备份,与远程光谱服务专家的PC连接。如果您想深入咨询SPECTROCUBE在以下领域中的具体应用:原油(渣油,蜡油)中镍、铁、钒、钙、砷、钾等使催化剂中毒元素分析;汽油中快速测试锰、铁、铅、硅等非法添加元素;石油炼制催化剂成分分析;润滑油添加剂常规24元素成分分析;废油回收过程中有害元素分析;请联系我们!了解详细信息,敬请浏览德国斯派克分析仪器公司展台:https://www.instrument.com.cn/netshow/SH100429/C377966.htm
  • 新品来袭 | “空间和时间的结合”— 纳米分辨和飞秒级别的光谱
    时间是和客观实体的运动相联系的,对时间认识的广度和精度反映的是人类对客观认识的广度和精度。从孔夫子的“逝者如斯夫”到现代科学限普朗克时间,人类从未放弃对时间的不断思索。1923年,H. Hatridge等人次通过液相反应流动管实现了优于秒时间分辨的实验,由此发展而来的停-流法将时间分辨进一步提高到数十毫秒并延用至现今诸多科学实验。1960年代开始,随着红宝石激光器技术的广泛应用,超短脉冲技术不断突破,人类对光谱研究的时间分辨也正式步入皮秒乃至飞秒,激发态分子内能量转换过程、液相化学反应过程、激发能的系间跃迁速率、振动态弛豫等一系列相关科学方向的研究因此得以蓬勃发展。时间和空间是相互关联的,根据爱因斯坦的狭义相对论,任意运动过程是通过速度将空间和时间联系在一起的,只有在限速度下我们才可以确认时空分割的精度。随着超快时间光谱研究的深入,科学家们自然地将空间分辨纳入到了时间分辨的讨论范围,于是一种同时结合高时间分辨和高空间分辨的技术手段应运而生。德国neaspec公司在10纳米空间分辨光谱技术上,利用的双光路设计,集成二路超快激发光,实现了高50飞秒的超快光谱测量,次将超高的时间分辨和空间分辨进行了统一。 图一:AFM探针上的双光路设计确保时间分辨光谱的实现 2014年,该设计理念在实验室成功搭建并商业化后,先在红外光谱领域中被广泛应用于半导体载流子激发-衰减过程,黑磷表面化电子-空穴生成,相变材料光诱导响应速度等一系列微纳领域超快过程的研究。近年来,太赫兹光谱技术逐渐兴起,由于其具有能量低,生物友好,兼有电子学和光子学特点等特性而受到广泛关注。neaspec公司也于今年推出了一款全新的基于太赫兹TDS技术的纳米超快光谱,实现了在太赫兹波段的pump-probe集成。图二:A. 纳米超快光谱在一维纳米线中对载流子衰减过程的研究;B. 纳米超快光谱在多层石墨烯中泵浦激发消逝过程的研究 参考文献:[1]《超快激光光谱学原理与技术基础》,2013,北京化学工业出版社[2] Artifact free time resolved near-field spectroscopy, 2017, Optics Express, 24231[3] Ultrafast and Nanoscale Plasmonic Phenomena in Exfoliated Graphene Revealed by Infrared Pump?Probe Nanoscopy, 2014, Nano Letter, 894[4] Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution, 2014, Nature Photonics, 841
  • 帕纳科12台X射线荧光光谱仪交付用户
    仪器信息网讯 2010年12月20日,内蒙古地矿局与帕纳科公司在呼和浩特市内蒙古地矿局会议室举行了“内蒙古自治区地质矿产勘查开发局购买帕纳科移动式X射线荧光光谱仪货物到货交付仪式”。内蒙古地矿局副局长郑翻身、内蒙古地质矿产(集团)公司副总经理张峰、副总工葛昌宝、生产技术部长赵士宝、计划财务处处长顾旭东,帕纳科亚太区执行总裁Anant Bhide先生、中国区总经理薛石雷等出席交付仪式。交付仪式现场  交付仪式上,内蒙古地矿局副局长郑翻身、帕纳科亚太区执行总裁Anant Bhide先生分别代表仪器交付双方讲话。内蒙古地矿局副局长郑翻身  郑翻身局长讲话中说道,随着国家、内蒙古自治区经济建设的快速发展,经过过去几十年的探测、开采,我国尤其内蒙古境内的地表矿产正在逐渐减少,地质勘查、矿业开发已经向深部找矿发展,深部找矿、探测工作迫在眉睫,是今后找矿新突破的重要方向。相应的对于高品质的测试设备的需求也在逐步增加。  内蒙古地矿局始建于1956年,是自治区境内从事地质勘查、矿业开发、工程勘察施工以及岩矿化学分析与测试鉴定、国土资源测量、水文地质和环境地质勘察工作的一支最大的专业地质勘查队伍。但作为一个成立50多年的地质勘查单位,内蒙古地矿局的找矿、测试等仪器设备已经有些陈旧、落后。大规模更换矿产探测、检测仪器设备已经势在必行,所以从本世纪初开始,内蒙古地矿局开始逐步更换仪器设备,这次交付的12台帕纳科X射线光谱仪器就是其中的一部分。  最后郑翻身局长说道,在内蒙古地矿局这次大规模采购探测、测试仪器设备过程中,帕纳科公司是第一个举办仪器到货交付仪式的公司,体现了帕纳科公司对这次合作的重视。郑翻身局长代表内蒙古地矿局对帕纳科公司表示感谢。并希望今天交接的12台帕纳科X射线光谱仪器运作良好,为内蒙古自治区的地矿事业做出贡献,也为帕纳科公司打开地矿行业市场。帕纳科亚太区执行总裁Anant Bhide先生  Anant Bhide先生首先代表帕纳科公司向内蒙古地矿局对帕纳科公司给予的信任表示感谢,很高兴能和内蒙古地矿局合作。  Anant Bhide先生讲话中说道,帕纳科公司是世界上最大的X-射线光谱仪和相关软件及服务的供应商之一,具有70多年的行业经验。这次内蒙古地矿局采购帕纳科12台移动式X射线荧光光谱仪Minipal 4,对于内蒙古地矿局来说可能只是一件小事情,但对于帕纳科公司来说确是迈出了一大步,地矿行业一次性购买这么大数量的帕纳科仪器,对于帕纳科公司来说还是第一次。  Minipal的含义是“小朋友”,帕纳科希望这个“小朋友”能够帮助内蒙古地矿局找到想找的矿产,而帕纳科公司将全力负责让“小朋友”更好的运转。Anant Bhide先生将象征12台X射线荧光光谱仪的12把钥匙、仪器证明文件交付郑翻身局长双方开香槟庆祝交付完成  据了解,内蒙古地矿局此次购买的帕纳科12台移动式X射线荧光光谱仪Minipal 4为台式能量色散式X射线荧光光谱仪。其外形小巧,并且光管的最大功率仅为9W;具有世界上无需液氮冷却且能量分辨率最高的探测器—硅漂移探测器;可对固体、液体、油漆类样品直接进行分析,12个样品自动进样系统,节省人力和时间,适合企业大批量样品分析。  这12台移动式X射线荧光光谱仪将配备给内蒙古地矿局下属的矿产勘查单位,作为车载或移动实验室的检测仪器。
  • 爱丁堡荧光光谱仪新变化 无需低温液体温度可降至3K
    爱丁堡仪器最近升级了FLS980荧光光谱仪,使其可以在一个比较大的温度范围内(从 3 K到300 K)进行测量,而不需要液氮,甚至是液氦等低温液体,这是通过集成牛津仪器的光谱学恒温器Optistat Dry实现的。Optistat Dry利用氦气闭合回路的Gifford-McMahon冷却器,可以不需要持续供应液氦的条件下,将稳态和时间分辨光致发光测量的温度降到3 K。这样的温度对半导体和非线性晶体的研究至关重要,因为在室温和液氮温度条件下光致发光是非常微弱的。  牛津仪器的Optistat Dry在仪器的易用性和运行成本方面有比较大的好处。此外,新开发的 F980软件可以让FLS980荧光光谱仪直接控制低温恒温操作。通过使用这种新技术,爱丁堡仪器可以使客户在较宽的温度范围内进行各种各样样品的研究,而不需要低温耗材,并可以保证长时间实验的不间断运行。  此外,据悉,爱丁堡仪器也正在考虑将Optistat Dry集成到FS5荧光谱仪中,让更多的用户可以使用到这项技术。  FLS980系列稳态瞬态荧光光谱仪是爱丁堡公司于2012年推出的产品,可以根据用户的需要进行模块化搭建,型号丰富,用户购买后也可以根据科研项目的进展和具体需求进行各种附件和波长扩展的升级。
  • 波长色散X射线荧光光谱仪精度测定标准制订完成
    近日,国家标准《铁矿石 波长色散X射线荧光光谱仪 精度的测定》完成草案编制并公开征求意见,截止时间为2021年10月12日。该标准由广州海关技术中心、钢研纳克检测技术股份有限公司、宁波海关技术中心等单位起草,使用翻译法等同采用ISO/TR 18231:2016(E)《铁矿石 波长色散X射线荧光光谱仪 精度测定》。 波长色散X射线荧光光谱仪是X射线光谱仪的两大分类之一,适用于各种固体材料或液体,如金属、玻璃、陶瓷、岩石、矿物、燃油、水质及沉积物的定量分析及未知样品的无标样半定量分析,广泛应用于钢铁、冶金、石化、地质、环保、材料、电子等领域。  与只需激发源和探测器和相关电子与控制部件能量色散X射线荧光光谱仪相比,波长色散X射线荧光光谱仪的主要部件还包括分光晶体和测角仪,虽然灵敏度更高,但是结构更复杂,在测定时对精度的影响因素更多。  为保证检测结果的精度,波长色散型光谱仪的各个部件都需要符合要求正常运行。与仪器各种功能相关的误差都会改变检测结果的精度。不同领域的应用对于波长色散型光谱仪的精度要求有很大区别,因此为了确定光谱仪能否提供符合要求的精度,需要测量与仪器某些部件操作相关的误差。  《铁矿石 波长色散X射线荧光光谱仪 精度的测定》的制订就是建立这样的测试方法。这些试验方法不是用于检查光谱仪的每个部件,而是只检查那些可能带来常见误差源的部件。该标准以国际标准ISO/TR 18231:2016(E)《铁矿石 波长色散X射线荧光光谱仪 精度测定》为蓝本进行编制,技术内容与ISO/TR 18231:2016(E)基本相同。  标准明确了波长色散X射线荧光光谱仪精度领域所涉及的测试项目,包括计数器的分辨率(流气式正比计数器、烁计数器和封闭式正比计数器)、流气式正比计数器窗膜电导率、脉冲漂移校正、光谱仪([精密度、测试样品、仪器条件、稳定性、样品旋 转测试、转盘再现性试验等)设备静止时间和最大可用计数率等。同时对测试频率和测试方法确定了统一的规范。  该标准的制定建立了我国在铁矿石和直接还原铁领域使用的波长色散X 射线荧光光谱仪精度所涉及的测试项目标准,为铁矿石贸易依据的检验方法奠定基础。同时为我国铁矿石和直接还原铁各类标准的更好应用提供了技术保证。
  • 日本电子收购超快时间分辨电镜商IDES:补强时间分辨TEM技术
    p style="text-indent: 2em "strongspan style="text-indent: 2em "仪器信息网讯/span/strongspan style="text-indent: 2em " 2020年1月17日,日本电子(JEOL Ltd.)消息,日本电子完成收购INTEGRATED DYNAMIC ELECTRON SOLUTIONS,INC.(总部位于美国加利福尼亚,以下称IDES)的所有股份,IDES是一家专门从事与透射电子显微镜(TEM)相关技术的创业型企业。收购后,IDES将成为日本电子全资子公司。/span/pp style="text-indent: 2em "strong背景与目的/strong/pp style="text-indent: 2em "正如日本电子正在实施的新的中期业务计划“三角计划2022”中概述——strongspan style="color: rgb(0, 32, 96) "公司将通过实施加速业务扩张的举措来推动持续和可持续的增长/span/strong。日本电子的旗舰产品TEM系统旨在观察原子分辨率的材料并检查其静态结构。strongspan style="color: rgb(0, 32, 96) "IDES的独特技术将把这些TEM系统升级为“超快时间分辨的TEMs”,能够在纳秒(十亿分之一秒(10-9))到飞秒(一千万亿分之一秒(10-15秒)之间捕捉静止和动态图像,并用纳米级的空间分辨率进行记录。/span/strong/pp style="text-indent: 2em "span style="color: rgb(0, 32, 96) "strong这些创新的系统可用于探索常规TEM无法触及的动力学和量子现象。将来,该系统还可以升级以支持在生命科学领域中的应用,如蛋白质运动研究。/strong/span/pp style="text-indent: 2em "IDES还提供与高速静电偏转和压缩感测有关的独特技术。span style="color: rgb(0, 32, 96) "strong这些技术可以作为附件集成到TEM中,以微秒级的分辨率提供最小的损坏、高通量的TEM图像采集。/strong/span/pp style="text-indent: 2em "此外,span style="color: rgb(0, 32, 96) "strongIDES的当前技术及其正在开发的未来技术将使升级冷冻电子断层扫描_、扫描和扫描透射成像技术成为可能。/strong/span/pp style="text-indent: 2em "span style="color: rgb(255, 255, 255) background-color: rgb(112, 48, 160) "strong关于IDES/strong/span/pp style="text-align: left text-indent: 2em "img style="max-width: 100% max-height: 100% width: 200px height: 57px " src="https://img1.17img.cn/17img/images/202001/uepic/2de2900a-ac7f-40e8-9020-a5963f29bf1e.jpg" title="ides.png" alt="ides.png" width="200" height="57" border="0" vspace="0"//ppbr//pp style="text-indent: 2em "strong名称:/strongINTEGRATED DYNAMIC ELECTRON SOLUTIONS, INC.(集成动态电子解决方案公司)/pp style="text-indent: 2em "strong地址:/strong美国加利福尼亚州普莱森顿市117单元5653号/pp style="text-indent: 2em "strong成立时间:/strong2009年/pp style="text-indent: 2em "span style="color: rgb(255, 255, 255) background-color: rgb(112, 48, 160) "strong关于日本电子/strong/span/pp style="text-align: left text-indent: 0em "img style="max-width: 100% max-height: 100% width: 200px height: 92px " src="https://img1.17img.cn/17img/images/202001/uepic/1b59b8a7-58ee-4a52-8926-50da7ac0baa7.jpg" title="img_logo_en.png" alt="img_logo_en.png" width="200" height="92" border="0" vspace="0"//pp style="text-indent: 2em "日本电子株式会社(JEOL Ltd., 董事长:栗原 权右卫门)成立于1949年,公司的业务包括三个部分:科学/计量仪器、工业设备以及医疗器械。主要产品如下:/pp style="text-indent: 2em "strong科学/计量仪器/strong/pp style="text-indent: 2em "电子光学设备(透射电子显微镜、 扫描电子显微镜、电子探针、 俄歇电镜、光电子谱仪和电子显微镜周边设备等)/pp style="text-indent: 2em "分析仪器(核磁共振谱仪、 电子自旋共振谱仪、质谱仪、(飞行时间质谱仪, 气相色谱-质谱联用仪, 液相色谱-质谱联用仪) 、 便携式气相色谱仪、气体监测仪等)/pp style="text-indent: 2em "计量检查仪器(扫描电子显微镜、 分析型扫描电子显微镜、电子显微镜周边设备、 复合电子束加工观察设备、 聚焦离子束加工观察设备、截面抛光仪、离子切片仪、半导体缺陷分析仪 、X射线荧光元素分析仪、手持式X射线荧光元素分析仪等)/pp style="text-indent: 2em "strong工业设备/strong/pp style="text-indent: 2em "半导体设备(电子束光刻系统(可变矩形束电子束光刻)、电子束光刻系统(圆形电子束光刻)等)/pp style="text-indent: 2em "工业设备(电子束蒸镀用的电子枪及电源、大功率电子枪及电源、 内置等离子体枪及电源、产生等离子体的高频电源、高频感应热等离子体装置等)/pp style="text-indent: 2em "strong医疗设备/strong/pp style="text-indent: 2em "医疗设备(自动分析仪、 样品传输系统、临床检查信息处理系统、 全自动氨基酸分析仪等)/ppbr//p
  • HORIBA荧光光谱仪DeltaFlex荣膺“2014科学仪器优秀新品奖”
    HORIBA Scientific的DeltaFlex超快时间分辨荧光光谱仪在第九届中国科学仪器发展年会(ACCSI 2015)中荣膺&ldquo 2014科学仪器行业优秀新产品&rdquo 一奖,这也是HORIBA连续第5年蝉联该奖项,为可喜的是,这也是分子荧光寿命系统获得该奖项,填补了历史空白。颁奖现场(右一为HORIBA北京办公室总经理Susumu Hayashi)DeltaFlex获奖奖牌ACCSI年会由中国仪器仪表行业协会、中国仪器仪表学会、中国仪器仪表学会分析仪器分会、仪器信息网主办,每年会邀请到来自于高校、研究所和企业内长期从事仪器研制、制造和应用等方面的60位评委,他们将从仪器整机创新、性能、设计等方面评选出优秀新产品。作为Delta系列产品之一的DeltaFlex,之所以能够从253家公司共申报的587台新仪器中脱颖而出,是因为它具有全球同类产品中快的寿命衰减采集时间(低至1ms)和超宽的寿命测试范围(25ps~1s)等性能。HORIBA Scientific(Jobin Yvon光谱技术)作为荧光光谱仪器的全球,可以提供全套稳态、瞬态和稳-瞬态以及各种耦联技术的解决方案。自上世纪70年代开始就一直专注于TCSPC系统的开发,保持着荧光系统设计和生产的世界。新一代荧光寿命测试系统-Delta系列在40年的寿命系统研发和生产经验基础上开发而成,其的高性能以及简单实用的特点,赋予了TCSPC系统新的定义。它也将成为科研深入应用开发的高效利器,被广泛用于物理、化学、材料、信息、生物和医学等领域。该系统一经推出,就受到了业界关注,并发表了数篇文献,其中仪器仪表类的国际一流期刊&ldquo Measurement science and technology&rdquo 文章显示:&ldquo 全球将百兆赫兹级半导体激光和超短10ns死时间TCSPC计时单元完美匹配,避免了样品的再激发和信号丢失问题,可快至1ms收集荧光衰减曲线。&rdquo 2014年刊登在&ldquo Spectrochimica acta part A: molecular and biomolecular spectroscopy&rdquo 的文章显示:&ldquo 基于新技术的DeltaFlex系统,在无需更换检测器和电子器件条件下实现了纳秒至毫秒的宽寿命测试,利用内源氨基酸监测了不同温度对蛋白变性转换的动态影响。&rdquo 来自科研工作者们新学术成果的肯定,鼓励着HORIBA Scientific不断优化仪器性能、创新产品,给所有科研工作者们带来更多的惊喜。历届获奖新品2008:Auto SE(一键式可见椭圆偏振光谱仪)2010:LabRAM XploRA INV(多功能拉曼及成像光谱仪)2011:Aqualog(同步吸收-三维荧光光谱仪,分子荧光光谱仪获得该奖项)2012:LabRAM HR Evolution(新一代高分辨拉曼光谱仪)2013:MicOS(显微光谱仪)2014:DeltaFlex(超快时间分辨荧光光谱仪,荧光寿命系统获得该奖项) 附:产品简介DeltaFlex超快时间分辨荧光光谱仪 创新点:1. 开创性地将百兆赫兹级皮秒寿命光源、超短10ns死时间TCSPC计时单元和皮秒寿命检测器高效地耦合于一体,成为市场上快的寿命测试系统,适用于超快超宽范围寿命测试;2. 100MHz超快皮秒脉冲激光光源,超宽波长范围覆盖250-1310nm;3. 25ps~10s超宽寿命测试范围,无需更换电子设备或检测器;4. 新一代TCSPC计时单元,死时间10ns,完美匹配100MHz脉冲光源,无损记录;5. 高度集成化皮秒寿命检测器,完美匹配皮秒级单光子检测;6. 全部件由电脑软件控制,无需手动,整机操作简单;7. 新F-Link技术,无限升级、附件即插即用;8. 先进的寿命拟合软件,免费开放数十种主流专业拟合功能,可独立于仪器操作;9. 配置荧光寿命动力学功能,采集时间低至1ms,支持1ms~ 10,000min无间断寿命动态监测;10. 配置时间分辨发射谱功能,Uv-Vis-NIR全谱覆盖,支持100条发射波长连续监测,软件自动获得衰减相关光谱参数; 关注我们HORIBA光谱学院:www.horibaopticalschool.com邮箱:info-sci.cn@horiba.com微信二维码:
  • 李福生教授团队:手持式能量色散X射线荧光光谱仪及其应用研究
    手持式能量色散X射线荧光光谱仪及其应用研究(李福生,电子科技大学教授、博士生导师)摘要光谱分析及信息科学被广泛应用于工业检测、污染防治等领域。X射线荧光光谱(X-Ray Fluorescence spectrometry, XRF)由于具有快速、无损、精确等优点,在环境污染监测、中草药鉴别、金属回收等方面具有十足的研究潜力和广阔的应用前景。人工智能及高端装备研究团队立足于自主研发的手持式X射线荧光光谱元素分析仪(TS-XH4000),利用X射线荧光光谱分析技术结合先进的人工智能算法开展土壤污染监测、土壤质量综合评价、铁粉元素测量等研究工作。团队研发的新一代手持式X射线荧光光谱仪采用具有可实现盲测,检出限低,可测微量元素等优势。1.引言能量色散X射线荧光光谱分析技术由于其快速、无损和精确的检测优点,目前已经被广泛应用于煤质分析、安检过程、资源勘采、货物通关、环境检测和中草药检测等领域[1][2][3]。能量色散X射线荧光光谱采用脉冲高度分析器将不同能量的脉冲分开并测量。能量色散X射线荧光光谱仪可分为具有高分辨率的光谱仪,分辨率较低的便携式光谱仪,和介于两者之间的台式光谱仪[4]。目前国内外同类手持式X射线荧光光谱分析仪主要包括美国品牌Niton生产的分析仪[5],日本生产的Olymbus光谱仪[6]和日立光谱仪[7]等。这些光谱仪普遍存在精准度一般、采购成本较高、难以单独定制等问题。而本团队设计的X射线荧光光谱仪历经几代研发,采用智能AI算法,可实现盲测,检出限低,可测微量元素;采用全球首创9mm*5mm腰形窗口,保护探头、便于测细小物品及不规则物品;安全性高,所有仪器均配有已申请专利的探头保护盖,自检安全保护;且工作状态有灯带提示,配有物料感应功能,利于物体识别,很好保护操作者的安全。本团队光谱仪的所有核心技术都归自己所有,不受国外任何技术限制。本团队所设计和研发的型号为TS-XH4000-SOIL的手持式能量色散XRF光谱仪(基于 AMPTEK INC.的 SDD 探测器)利用智能能量色散荧光分析法可以同时得到检测样品的X荧光光谱图及样品中所含元素种类和含量,测量元素范围为Na(11)-U(92)。此外,团队结合新型人工智能算法,例如BP神经网络[8]、支持向量回归[9]、贝叶斯优化算法等[10],设计了计算机校正软件,实现了基于X射线荧光光谱的中草药真伪鉴别,基于X射线荧光光谱的土壤重金属元素含量和铁粉含量的精确定量分析。2. 仪器组成本团队自主研发的手持式X射线荧光光谱仪集成先进智能算法、人体学设计外观结构、各型接口等,可在合金回收、土壤污染检测、中草药鉴别等众多领域应用。该光谱仪主要由激发源(X射线光管)、探测器、滤光片、多道脉冲幅度分析器等部分组成,结构示意图如图1所示。X射线管配有电源(最大电压50kV,最大电流200mA)。在仪器测量之前,需要先根据死时间、光谱信号噪声、光谱分辨率等指标将仪器的相关参数调整至最佳,然后通过检测纯元素的X射线光谱,完成能量刻度的定标,实现从通道数到能量刻度数的转换。接着,将定量模型算法需要的变量、算法参数、补偿系数、预处理流程等设定到主控内存中,完成采集完信号后并解析信号,最终反演物质的元素含量等信息,并通过WIFI或蓝牙将仪器所测量的精度显示到PC端。图1 手持式X射线荧光光谱仪的结构示意图本团队还设计了谱图预处理及模拟谱图生成的软件,其软件界面如图2所示。其主要功能包括:能量刻度转换、初级光源预处理、初级光源生成、Sigma计算、 XRF光谱模拟等功能。该程序可以生成多元素样本的 XRF光谱图及光谱大数据,为人工智能对样品的定性和定量分析提供数据支持,旨在实现元素的无标样的定性定量分析。图2 X射线荧光光谱分析仪控制程序主界面3. 土壤元素实验分析土壤质量综合评价与土壤中各种元素的含量有着密切的联系。因此本实验研究了XRF技术结合SVR算法定量分析土壤中铜(Cu)元素含量的可行性。如图3所示,本实验使用的设备是由课题组研究生产制造的手持式ED-XRF光谱仪,型号为TS-XH4000-SOIL,该设备的X射线管在45KV和25uA下正常工作。实验中采用了55个国标样品作为土壤标准样品,样本中每个待测元素都具有足够宽的含量范围和适当的含量梯度。图3 土壤样本与XRF光谱仪在验证中,将实验样品分为训练集和测试集两个集合,分别用于外部验证和内部验证。然后,基于灵敏度分析得出Cu元素主要受到Fe、Co、Ni、Cu等组分信息的影响,选择最优输入特征为该4种元素。使用最优输入特征和全部特征作为输入,基于贝叶斯优化算法找到最优模型参数,分别建立了预测土壤样品Cu元素含量的SVR定量预测模型。同时以全部特征作为输入建立了单参数PLS模型,通过5倍交叉验证(CV)选择单参数PLS模型的最优主成分个数为9。基于校准集数据分别建立了三种模型,利用这些模型对13个测试集和42个训练集数据中的Cu元素含量进行预测,结果如图4所示。图4 Cu元素的预测结果 (a):经过特征降维的SVR模型 (b):全部特征作为输入的SVR模型 (c):PLS模型可以看到,对训练集数据进行直接预测时,采用全部特征作为输入的SVR模型取得了最好的效果,其预测结果和原数据几乎一致(R2C= 0.9988, RMSEC = 6.9356),然而,对于测试集数据采用全部特征作为输入的SVR模型获得了非常差的结果(R2P= 0.9146, RMSEP = 73.8296)。基于4个高灵敏度特征的SVR在预测测试集时获得了非常好的效果(R2P= 0.9918, RMSEP = 22.8803),预测数据的一致性较好。在XRF技术结合SVR定量分析中,变量选择对于测试集的预测精度有关键作用。4. 中草药元素实验分析本实验采用30份金银花样品主要选择产地为山西、河南、湖南与广西省,其中每个产地各选择5份,共20份,并将样本命名为JYH-01~JYH-30。7份外观相似的山银花样品,产地为湖南省,样本命名为SYH01~SYH-07。3份粉末相似的商陆、多穗金粟兰、宽叶金粟兰样本,命名为DB-01~DB-03。三类真伪中药材的XRF数据集各有其特有的性质,本文使用t-SNE算法可以提取出三组XRF数据集的前350 维特征,将这些特征降维映射至二维图片中进行可视化分析,如图5所示。可以明显的看出这三组真伪中药材的 XRF数据集在图片二维空间中位于三簇不同的位置。从而三组样本在含有以上5种元素重要相关信息的350维数据在映射至二维中有了明显的区分,比原始XRF光谱图更容易理解与分析。图5 基于金银花、外观相似伪样本、粉末相似伪样本三组XRF样本集的t-SNE特征降维可视化图为更直观地了解这土壤和中草药XRF数据集的固有特性,利用t-SNE算法将350维的XRF特征映射到二维空间并在同一幅图中进行可视化分析。如图6所示,两个数据集在二维空间聚集成了两个分布位置不同的簇。首先,两组样本在含有重要相关信息的350维数据在二维图中有了明显的区分,比原始XRF反射光谱图更易于分辨。图6 两组XRF样本集的t-SNE特征降维可视化图5. 铁粉元素测量及实验分析针对手持式X射线荧光分析技术在铁粉行业的应用,本团队开展X射线荧光背景散射内标法用于铁粉元素测量的应用研究。首先,通过低电压高电流、高电压低电流、不同采集板的增益,选择合适的设备参数获取较优的特征X射线信号。接着,分别采用SiPIN、SDD类型探测器的手持式X射线荧光分析仪建模,Si-Kα峰、Fe-Kβ峰加背景散射线内标对铁粉中的元素含量进行建模。最后,根据含量已知的铁粉样品对所建立模型的确定度系数R2和均方根误差RMSE进行评估,选出不同场景情况下合适的应用模型。表1 SiPIN探测器时铁粉中Fe元素预测结果表2 SiPIN探测器时铁粉中Si元素预测结果表3 SDD探测器时Fe元素预测结果表4 SDD探测器时Si元素预测结果如表1和表2所示,为采用SiPIN探测器的建模结果。Si-Kα峰加背景散射线内标的结果,R2为0.9070, RMSE为0.0007; Fe-Kβ峰加背景散射线内标法的结果,R2为0.88,RMSE为0.0037。如表3和表4所示,为采用SDD探测器的建模结果。Si-Kα峰加背景散射线内标的结果,R2为0.9869,RMSE为0.0002; Fe-Kβ峰加背景散射线内标的结果,SDD探测器Fe建模结果,R2为0.9099,RMSE为0.0033。采用SDD探测器定量结果验证结果更好,这与SDD探测器性能良好有关。6. 总结本团队基于自主设计和研发的手持式ED-XRF光谱仪,结合人工智能算法对土壤重金属元素含量、中草药成分和铁粉元素含量进行准确定性、定量分析。所设计的TS-XH4000-SOIL光谱仪具有高精度和高可靠性,提出的先进人工智能算法框架可以有效校正土壤和铁粉XRF光谱和待测元素含量的复杂映射关系。因此,本团队研发的光谱仪和相应的人工智能算法软件在环境监测和保护、冶金行业及其他分析化学领域都有着广泛重要的应用。参考文献[1] 甘婷婷, 赵南京, 殷高方, et al. 水体中铬,镉和铅的X射线荧光光谱同时快速分析方法研究简[J]. 光谱学与光谱分析, 2017, 37(6):7.[2] 王袆亚, 詹秀春, 袁继海,等. 偏振能量色散X射线荧光光谱测定地质样品中铷锶钇锆元素不确定度的评估[C]// 第八届全国X射线荧光光谱学术报告会. 0.[3] 张辉, 刘召贵, 殷月霞,等. 能量色散X射线荧光光谱法测定中草药中的Cd元素[J]. 分析测试技术与仪器, 2019, 25(3):5.[4] 张颖, 汪虹敏, 张辉,等. 小型台式EDXRF现场快速测定深海沉积物中稀土元素[J]. 海洋科学进展, 2019, 37(1):11.[5] Ene A, Bosneaga A, Georgescu L. Determination of heavy metals in soils using XRF technique[J]. Rom. Journ. Phys, 2010, 55(7-8): 815-820.[6] Adame A. Development of an automatic system for in situ analysis of soil using a handheld Energy Dispersive X-Ray Fluorescence (EDXRF)[J]. 2020.[7] Antunes V, Candeias A, Carvalho M L, et al. GREGÓRIO LOPES painting workshop: characterization by X-ray based techniques. Analysis by EDXRF, μ-XRD and SEM-EDS[J]. Journal of Instrumentation, 2014, 9(05): C05006.[8] Li F, Yang W, Ma Q, et al. X-ray fluorescence spectroscopic analysis of trace elements in soil with an Adaboost back propagation neural network and multivariate-partial least squares regression[J]. Measurement Science and Technology, 2021, 32(10): 105501.[9] Yang W, Li F, Zhao Y, et al. Quantitative analysis of heavy metals in soil by X-ray fluorescence with PCA–ANOVA and support vector regression[J]. Analytical Methods, 2022, 14(40): 3944-3952.[10] Lu X, Li F, Yang W, et al. Quantitative analysis of heavy metals in soil by X-ray fluorescence with improved variable selection strategy and bayesian optimized support vector regression[J]. Chemometrics and Intelligent Laboratory Systems, 2023, 238: 104842.作者简介李福生,电子科技大学教授,博士生导师。在核粒子能谱分析、蒙特卡洛模拟、人工智能与云计算技术、模式识别及智能系统、控制科学及多智能体、智能制造及智慧工厂等方面的研究与应用成果斐然,具有丰富的理论研究基础和工程应用经验。曾就职于美国GE-贝克休斯公司、荷兰皇家壳牌集团等国际 500强企业的科研院,并兼任美国北卡罗莱纳州立大学客座教授。近年来在国际权威杂志发表高水平论文30多篇,拥有2项国际发明专利和50多个国内专利,出版学术专著1册,参与多个国际重大研发项目。在仪器研制方面,成功研发了多代高精度手持式X射线光谱成分分析仪,且已经过上海市计量测算技术研究中心的专业鉴定,具有高灵敏度、高准确度、快速无损等特性,可广泛应用于石油、天然气煤层气勘探与开采,铀矿探测以及金属、食物、植物、土壤的检测等,对实现我国在地质考古、公共安全、环境保护、食品安全等领域的探测设备核心部件的升级及市场国产化产生了重大影响。e-mail:lifusheng@uestc.edu.cn
  • 极端反应“探索者”—— 微秒级时间分辨超灵敏红外光谱仪助力高温反应动力学研究
    高温、高压和快速反应相关的高能反应系统常常依赖于吸收光谱学进行反应动力学基础研究及在线监控。对于这样的端环境,高带宽的吸收光谱测量可以为非平衡环境中的物质形成、温度测量和量子态种群的研究提供丰富的信息。通常此类反应时间短,且经常伴随复杂的热化学反应,因此在高带宽基础上,光谱测量速度至关重要。然而在如此端的条件下直接进行快速光谱测量是一个具挑战的技术难题。现有的宽带测量技术,例如傅立叶变换红外光谱仪或快速调谐的宽扫描外腔量子联激光光谱,虽然能提供令人满意的光谱覆盖范围,达到宽光谱的测量要求,但由于其原理上低时间分辨率的特点,无法达到快速测量的目的。通常,快速测量解决方法是使用一系列激光测量系统在特定范围波长下获取物质的光谱信息,然后组合形成混合的光谱信息。这种方法虽然可以较快速地实现光谱测量,但其所能提供的频谱信息十分有限,限制了其在相关高能反应系统体系下进行反应动力学研究的应用。针对这一技术难题,IRsweep公司基于快速发展的量子联激光(QCL)双频率梳技术开发了红外固态快速双光梳红外光谱仪 (DCS)。DCS突破了传统傅里叶红外光谱仪受其工作原理和光源限制所带来的时间分辨率低、高的分辨率下信噪比低、红外透射方法难以测量厚度大及毫米尺度的样品等缺点。可同时满足高测量速度(微秒时间分辨率, 1 μs)、高光谱分辨率(3x10-4 cm-1)和宽光谱范围的要求,能够成功用于高温、高压、快速反应的端条件下的快速红外光谱研究。因此,该双光梳光谱仪在相关应用和文献报道中引起了研究者的广泛关注。近期,斯坦福大学的NICOLAS H. PINKOWSKI研究团队与IRsweep公司合作成功利用微秒时间分辨超灵敏双光梳红外光谱仪-IRis-F1(Dual-comb spectrometer, DCS)为我们演示了中红外QCL的双梳状光谱仪在高能气相反应中的微秒分辨单次测量的应用。实验中配备了两个频率梳和多套立的验证测量系统,在压力驱动下的高温、高压反应釜中研究了一种剧烈的丙炔氧化化学反应 (图1)。具体而言,作者在1225 K,2.8 大气压和2%p-C3H4 / 18%O2的预点火条件下,测量了丙炔与氧气之间1.0 毫秒高温反应的详细动力学光谱(图2)。实验所采用的量子联激光的双梳状光谱仪(DCS)是由两个立运行的,非固定频率的频率梳组成,其发射波长带宽为179 cm-1 (1174 cm-1-1233 cm-1), 具有9.86 GHz的自由频谱范围和5 MHz的频梳间距,可实现实测4 μs的时间分辨率(理论时间分辨率 2 μs)。同时,作者使用另一套立的带间联激光(ICL)光谱仪对DCS测量的精度做了仔细的对比研究,确认了DCS测量的准确性。研究结果表明,单脉冲DCS可以以4 μs时间分辨测量速率解析丙炔氧化动力学(图3),DCS数据清楚显示:在反应早期(0-0.6 ms)能观察到宽带丙炔吸收特征峰,而在0.75 ms之后可以观察到水的精细特征光谱。在剧烈的高温高压反应中(1 ms 内约2500K和60倍的温度和压力变化)DCS数据显示了出良好的信噪比,其信号的自然噪声抑制和时间分辨率在高焓测试环境中显示出明显优势。同时,立的辅助激光测量光谱(ICL)结果与DCS系统测量结果具有良好的一致性(图4)。此外,DCS能够解析与温度直接相关的量子态信息。并且,随着光谱模型和高温截面数据库的改进,将来DCS系统的测量准确性会进一步提升。 随着中红外双梳光谱技术的出现,为超灵敏双光梳红外光谱仪在高焓反应和非平衡环境的反应动力学研究中提供了广阔的研究机遇。研究者坚信超灵敏双光梳红外光谱仪在高能反应动力学研究中将会有更多应用前景。图1 高能反应系统实验装置示意图A:QCL双光梳快速红外光谱系统(DCS)包括相应的探测器;B:立的ICL激光系统用于探测p-C3H4反应;C:立的ICL激光探测系统,用于探测反应中水的变化 图2 2% p-C3H4 / 18% O2/ 80% Ar 在1225 K,2.8 大气压条件下丙炔氧化反应动力学研究结果(a)测量和模拟反应的热力学条件;(b)DCS测量的吸收光谱随时间的变化关系。 白色虚线区域表示具有高信噪比的两个区域 图3 丙炔氧化反应动力学DCS研究结果( 1215 cm-1-1225 cm-1)图4 p-C3H4 / Ar在 1120 K、3大气压条件下的高温扫描QCL激光(ICL, 灰色)和DCS(蓝色)光谱对比 参考文献:[1] Nicolas H. Pinkowski et al., Dual-comb spectroscopy for high-temperature reaction kinetics, 2020, Meas. Sci. Technol. 31 055501, https://doi.org/10.1088/1361-6501/ab6ecc.
  • 分子荧光光谱的新方法、新视角、新探索
    p style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai "  随着科研需求的发展,分子荧光光谱相关的新技术和新应用也在不断的深入拓展中,尤其是在附件的多样化、联机,以及其他功能性拓展方面表现得越来越明显。为了多方位展现分子荧光光谱领域的最新成果,仪器信息网特别策划制作《不可或缺分子荧光光谱技术及应用进展》网络专题,旨在展现分子荧光光谱仪的最新技术及应用情况。/spanbr//pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai "  作为分子荧光光谱领域的代表企业,HORIBA一直在推陈出新,推出了一系列分子荧光光谱新产品、新技术,给相关的科研用户提供了新的方法和视角。今天,我们特别邀请了HORIBA荧光产品经理周磊博士给大家分享HORIBA在分子荧光产品方面的布局和规划。/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 230px height: 256px " src="https://img1.17img.cn/17img/images/202012/uepic/936d099b-37f2-46a1-87fb-50a656e98b66.jpg" title="周磊.jpg" alt="周磊.jpg" width="230" height="256" border="0" vspace="0"//pp style="text-align: center "strongHORIBA荧光产品经理 周磊博士/strong/pp style="text-align: justify "strong  仪器信息网:与其他分析仪器相比,不少人认为分子荧光光谱新产品的推出不是很活跃,甚至市场也略显“沉寂”,请问您如何评价该类仪器的市场活力及竞争格局?/strong/pp style="text-align: justify "strong  周磊:/strong 分子荧光光谱确实是比较经典成熟的方法,不过仪器的核心技术水平一直在不断提升,应用领域也在不断扩大。HORIBA的分子荧光产品就一直在推陈出新,这些产品技术不仅得到了仪器信息网各位专家和用户的好评,甚至多次获得仪器信息网“优秀新品奖”,对于整个荧光光谱仪的创新起到了积极鼓励的作用。/pp style="text-align: justify "  例如Aqualog(同步吸收-三维荧光光谱仪),基于A-TEEM专利技术,在荧光内滤效应消除问题、超快三维荧光采集、复杂样品多组分分析等关键问题上具有全新突破,已在环境有机污染物、食品分析、医药等市场方面有突出的表现;另一款荧光寿命光谱仪Delta系列,具有全球同类产品中最快的寿命衰减采集时间(低至1ms)和超宽的寿命测试范围(25ps~1s)等性能。该系统一经推出,就受到了业界高度关注,发表了数篇重量级文献,其中仪器仪表类的国际一流期刊“Measurement science and technology”文章显示:“全球首次将百兆赫兹级半导体激光和超短10ns死时间TCSPC计时单元完美匹配,避免了样品的再激发和信号丢失问题,可快至1ms收集荧光衰减曲线。” 2014年刊登在“Spectrochimica acta part A: molecular and biomolecular spectroscopy”的文章显示:“基于最新技术的DeltaFlex系统,在无需更换检测器和电子器件条件下实现了皮秒至秒的宽寿命测试,首次利用内源氨基酸监测了不同温度对蛋白变性转换的动态影响。”另外,去年推出的小型荧光光谱仪Duetta也收到了良好反馈,解决了市场上小型荧光在近红外一区波长检测的短板,并且吸收和荧光功能二合一,因此在生物、医药等领域广受欢迎。/pp style="text-align: justify "strong  仪器信息网:从技术的角度出发,您认为目前分子荧光光谱有哪些新的技术值得期待?/strong/pp style="text-align: justify "strong  周磊:/strong随着稳瞬态荧光光谱技术的发展及多种硬件扩展附件的开发,如低温变温附件(液氮、液氦)、荧光显微镜耦合分析、各种激发源(白光激光器,OPO激光器、X射线源等)荧光光谱仪在不同科研实验室中发挥着重要作用。同时我们发现,在一些仪器功能上,市场正在逐渐接受新技术带来的新方法、新视角,还是以HORIBA几项新技术为例:/pp style="text-align: justify "  Duetta的近红外一区高效检测能力解决了常规设备700nm以后的检测短板,拍照式的CCD检测技术带来了全新动态荧光光谱采集功能,可以在磷光材料、长余辉样品、易光漂白样品等应用上获得全新视角。/pp style="text-align: justify "  Delta荧光寿命光谱仪中的荧光寿命动力学技术,带来了全新的动力学研究视角,解决了光漂白样品不能直接用于动力学研究的问题以及常规寿命技术采集速度慢而不能用于动力学的困难局面,该技术已经成功的被用于蛋白质和药物的相互作用研究(Photochemistry and Photobiology, 2013, 89: 1071–1078)。TRES时间分辨发射光谱技术让我们能够观察到样品分子在某一时刻的发射光谱,并且可以按照很短的时间内(皮秒、纳秒)依次观察光谱的变化,从而说明发光机理。解决了常规寿命测试技术,因为测试速度慢,光源能量低,重复频率低以及高级拟合软件分析的问题,进而造成该技术没有很好地被利用起来的问题。Delta荧光寿命光谱仪可以同时配备多个检测器(最多可配置四个检测器),实现多通道检测,同时检测多个波长在物质作用变化时寿命的动态变化,提供全新的分析方向。/pp style="text-align: justify "  在时间分辨发射光谱中还有一个重要分支,延迟光谱(或磷光光谱)技术,其特点是通过门控技术(或单脉冲实时采集SSTD技术)对信号采集时间控制,有效分离不同时刻的发射光信号,譬如OLED材料中的荧光、磷光光谱分析,常规技术只是采用虚拟或者电子的门控进行采集,其是将荧光和磷光信号一并采集,最终按照时间输出,这样存在样品中的强荧光信号造成检测器饱和,而弱磷光信号又没有得到有效采集的问题。真正的门控技术,可以有效控制硬件设备的采集时间,避开荧光信号,特别适用于弱的磷光信号采集,这对于揭示磷光材料的真实发射光谱和发光机理是非常必要的手段。/pp style="text-align: justify "  此外,在寿命成像方面,常规技术中的逐点扫描技术,在获得一张寿命成像上花费很长的时间,HORIBA最新推出的FLIMera是一款大视场成像相机,可以实现视频级的荧光寿命成像。FLIMera不是单点共聚焦扫描成像,其每个像素点均包含4096的时间通道,24576个像素点可实现基于TCSPC的荧光寿命成像,完成快速荧光寿命成像,满足动态寿命成像的需求。/pp style="text-align: justify "  在日益受到客户关注的近红外区域,HORIBA模块化荧光光谱仪也有着其独有的优势,通过同一检测器就可完成稳态与瞬态的测试,并且相比较于采用常规的PMT而言,红外测试范围可以扩展至5500nm。/pp style="text-align: justify "strong  仪器信息网:从应用的角度出发,当前分子荧光光谱仪器的应用和研究热点分布在哪些领域?在科研过程中能给大家带来哪些“惊喜”?/strong/pp style="text-align: justify "strong  周磊:/strong荧光作为一个热门技术,一直以来被广泛用于生物医学研究、制药、化工、半导体材料、太阳能电池等领域。如今通过荧光信息给出物质相互作用时能量传递的证据,比如载流子寿命,还可以评价材料改性的影响,这在太阳能、光催化材料开发中有重要意义。/pp style="text-align: justify "  例如,在OLED发光材料中,已经不局限于过去的激发/发射光谱、量子产量的测定。随着第三代OLED的进展,TADF得到了重点关注,在TADF机理阐述中对于延迟光谱(或磷光光谱)的表征显得尤其重要,这对荧光光谱仪提出了更高的要求,不仅仅局限于常规功能上的采集,还需要延迟光谱能力,以及极短微妙寿命测试。太阳能材料中的钙钛矿作为明星材料已经得到跨越式发展,在太阳能电池研究过程中,对于载流子传输的表征尤其重要。寿命技术是一种便捷、易于使用的方法,但是太阳能钙钛矿层极其薄(nm级别)、发射波长偏红外、表面散射光强以及怕水和氧气,这些对于寿命设备的灵敏度、检测能力、光路设计、测试速度和气氛保护装置都提出了更高的要求。/pp style="text-align: justify "  荧光影像技术在生物医学研究和临床诊断检测中已经被广泛使用。近红外探针的开发在荧光影像技术中具有广阔的应用前景。近红外探针分为近红外一区和近红外二区探针,在常规的荧光光谱仪中很难满足这两个区的波长范围,特别是近红外一区的检测,典型的PMT检测波长范围难以达到,而科研大型模块化设备需要定制化配置和高成本、操作复杂的近红外PMT(例如型号R5509的PMT,需要预热2h,续流型消耗液氮)。/pp style="text-align: justify "  中红外材料在通信、环境监测及医学等领域具有重要的应用价值,因为其发光的波长范围处于中红外段,常规的荧光设备很难实现这个波长范围检测,并且过去的技术中又很难检测发光寿命。提供适用波长范围的高灵敏度检测器,并且同时能够检测寿命的检测器尤为重要。/pp style="text-align: justify "strong  仪器信息网:分子荧光光谱仪相关的应用标准情况怎么样?在应用拓展方面,有哪些制约因素?/strong/pp style="text-align: justify "strong  周磊:/strong分子荧光光谱仪相关的一些国家标准正在制定,HORIBA也参与到了一些标准的制定中去,例如教育部的行业标准“荧光光谱分析方法通则”等。作为HORIBA用户,美国NIST还基于HORIBA的荧光光谱仪制定了荧光标准方法。/pp style="text-align: justify "  我也从HORIBA用户国家计量科学院的贾志立副研究员那了解到:现在分子荧光光谱仪相关的应用标准,主要针对的是分光光度计,一方面是仪器相关的标准,包括仪器的分级、技术要求和试验方法等:另一方面是检测方法的标准,如叶绿素含量测定、炭黑分散性和刑事技术的微量物证的检测方法等,检测方法中关于发光物质荧光检测相关的标准较少。/pp style="text-align: justify "  另外,分子荧光光谱仪不仅包括分光光度计,还包括光学显微镜与光谱仪相结合的微区荧光系统,微区荧光系统在研究荧光材料的显微光谱信息方面应用广泛,但目前缺乏相关的标准。/pp style="text-align: justify "  目前在分子荧光光谱的应用拓展方面,还受到一些因素的制约:一方面可能是相关标准的宣贯方面不足:另一方面是一些仪器客户如高校、研究所的科研人员,对相关标准不熟悉,没有认识到标准在科研应用中的重要性:除此之外,相关标准物质的缺乏也会限制校准方法类标准的应用拓展。/pp style="text-align: justify "strong  仪器信息网:贵公司当前主推的产品?最具优势的领域?/strong/pp style="text-align: justify "strong  周磊:/strongHORIBA是唯一研发设计生产全系列科研荧光光谱仪的厂家,型号涵盖了稳瞬态光谱仪,覆盖了紫外-可见、近红外、中红外光谱范围。针对不同应用领域,HORIBA会根据客户的实际应用需求特点,来推荐相应的特色配置,可以说我们并不会强调说主推某款产品。/pp style="text-align: justify "  譬如:Aqualog主要针对于复杂水环境,大气颗粒物中的发光基团等的整体研究,无论是软件功能或者硬件设计,都从环境工作者的角度出发,解决环境科研分析的需求。例如通过专业软件,进行化学计量学分析;Duetta针对于生物荧光探针等具有近红外一区快速检测需求的应用时(量子点,有机荧光探针、金纳米团簇等),由于其配备的CCD具有一次性采谱与宽检测范围(250~1100nm)的特点,在连续监测范围上十分具有优势,按压式的样品仓方面客户在实验室环境中操作时的便捷性,不开盖加样的设计满足了客户在测试过程中去添加样品,以此来查看两种或多种物质在反应过程中全谱的变化信息;荧光寿命光谱仪具有高能量窄脉宽寿命光源,皮秒稳瞬态检测器及自动拟合寿命软件,在太阳能钙钛矿,光催化研究中得到了广大科研用户的认可;模块化荧光光谱仪产品,通用性强,采用开放式模块化光路设计,根据用户的需求定制系统,并且在近红外光谱和寿命采集上具有其独有优势,可以同时检测近红外光谱与寿命。全新软件可以实现稳瞬态功能同时控制,内含特质化功能,同时包含多种数据处理方式,融合多种寿命测试技术,多元化满足客户寿命测试需求。模块化荧光光谱仪等主要针对于多功能,高灵敏度,定制化的科研领域在近红外研究领域,如稀土元素掺杂的材料中更有其独有的优势(碳管,三维荧光需求),同一检测器就可实现近红外光谱与寿命的测量,性价比更高);DeltaFlex和DeltaPro专注于荧光寿命的表征,在表征钙钛矿材料中载流子等方面(分子互作,比率荧光),有着很大的应用优势;视频级的荧光寿命成像技术(FLIMera荧光寿命成像相机),在研究神经传导,分子微环境(如pH值、离子浓度的不同)等领域有着非常广泛的潜在应用。/pp style="text-align: justify "strong  仪器信息网:针对当前的市场格局,贵公司在分子荧光光谱产品方面有什么样的定位和布局?/strong/pp style="text-align: justify "strong  周磊:/strongHORIBA是以客户的需求为导向,不断开发满足客户不同应用需求的产品,并且针对不同热点研究领域,提供针对性的配置方案。HORIBA着重于科研应用市场,并且深入工业分析、研发市场。如果说HORIBA以往产品技术更加专注和擅长于高端科学研究领域,将来,更多领域的应用都需要更专业的仪器,我们会向专业化方向发展,新品Duetta的更快捷测试技术、更小巧的外观设计等也使该产品从科学研究领域向分析测试、工业应用市场的拓展成为可能,分析测试、工业领域等未来潜力市场也将得到HORIBA的重点关注。/ppbr//p
  • 詹求强教授课题组《自然通讯》新成果:非线性荧光损耗机理及超分辨成像技术获进展
    作者:朱汉斌 来源:中国科学报华南师范大学华南先进光电子研究院教授詹求强课题组在非线性荧光损耗机理及超分辨荧光显微成像领域取得重要进展。相关研究5月23日在线发表于《自然通讯》(Nature Communications)。该研究在荧光损耗物理机理上,提出了受激辐射诱导激发损耗新机理,“拔本塞源”式对敏化能级进行损耗,从源头阻断荧光的激发能量,新机理带来的“荧光损耗放大效应”大幅降低了超分辨所需要的激光光强,在低光强条件下实现了9种不同光谱探针的荧光损耗。在超分辨成像技术上,由此发展了一种通用性强的基于单对低光强、近红外、连续波激光的多色超分辨显微成像技术,克服了传统多色STED超分辨系统所依赖的多对超快脉冲光束协同工作的复杂系统、高成本、低稳定性等问题。受激发射损耗(Stimulated emission depletion, STED)超分辨显微镜的概念由德国科学家Stefan W. Hell于1994年提出,该技术于2014年获得了诺贝尔奖。然而,传统STED显微镜存在原理性局限和问题:受激辐射作用如果要在与自发辐射(寿命有机染料通常为纳秒级)竞争中占主导,通常需要高功率的超短脉冲(飞秒/皮秒)激光作为损耗激光,这往往会导致严重的光漂白、光毒性和重激发背景等问题。此外,多色STED超分辨技术和系统复杂度高、成本高、维护难。詹求强自2017年起带领研究生探索新机理,最终以STED原理性缺陷为突破口,提出全新机理解决了关键问题。上转换荧光纳米颗粒是一种纳米荧光探针,具有近红外激发、反斯托克斯位移大、无背景荧光、发光极其稳定等独特优势。上转换纳米探针通常是一个敏化-发光二元系统,敏化离子负责吸收激发光能量,然后传递给发光离子辐射波长更短的荧光。为解决STED面临的上述难题,詹求强课题组基于上转换荧光技术提出了全新的思路:抑制敏化离子和发光离子间的能量传递过程就可以切断对发光离子的能量补给,使得发光离子被“釜底抽薪”,即受激辐射诱导激发损耗(Stimulated-emission induced excitation depletion, STExD)机理。结合上转换发光的多光子非线性泵浦依赖特性(非线性效应随泵浦的光子数增多而不断增强),实现了光子数越高的荧光能级电子损耗越强烈,STExD机理具有传统STED所不具有的对荧光损耗进行非线性放大的独特效应,与之伴随的技术意义就是可以逐级降低高能级荧光损耗所需要的饱和光强,这突破了传统STED中的饱和光强理论的限制(实验测得值显著低于传统理论值)。基于此,课题组使用740 nm的激发光和1064 nm的损耗光,在钕掺杂的上转换荧光探针中实现了高达99.3%的超高损耗效率,损耗饱和光强降低至23.8 kW/cm2,比传统STED探针降低了3个数量级。结合上转换发光一对多的敏化-发光特性,STExD可以实现一对激光实现对多种UCNPs探针的光开关控制。钕离子是上转换发光常用的敏化离子,可以单独或与镱离子联合敏化多种发光离子,课题组利用镱离子的能量传递桥梁作用,仅使用一组固定波长的激光器就成功实现了铒离子,钬离子的高效荧光损耗,损耗效率分别超过90%和80%。进一步地,也分别在镨、铕、铥、铽掺杂的体系中实现了高效的荧光损耗效应,总计实现9种不同光谱探针的同时荧光损耗。以此新机理STExD为基础,课题组发展了一种基于单对低光强、近红外、连续波激光的多色超分辨显微成像技术,分别对钕(黄色),铒(红色),钬(绿色)掺杂的上转换荧光探针实现了不同颜色的超分辨成像,原始图像分辨率达34 nm,并进一步实现了钕、钬掺杂的上转换荧光双色超分辨成像。通过荧光探针的表面改性和特异性修饰,课题组成功将上转换荧光探针免疫标记到HeLa癌细胞的肌动蛋白纤维,实现了亚细胞结构的超分辨生物成像。该工作提出的STExD通用发光损耗策略巧妙地利用了上转换荧光的传能发光特性,为解决传统STED技术的问题、开发新型探针提供了新的方案,为开发低光毒性、深层组织(近红外II区损耗激光)的多色超分辨成像技术奠定了基础,在突破衍射极限的光传感、光遗传学、光刻等前沿领域也具有广泛的应用前景。华南师范大学博士研究生郭鑫、蒲锐为该论文共同第一作者,来自瑞典皇家理工学院(KTH)的刘海春博士、Jerker Widengren教授等人以及詹求强课题组2016级黄冰如、2015级吴秋生等硕士生对该课题的完成做出了重要贡献,詹求强教授为论文通讯作者,华南师范大学为论文第一完成单位。该研究得到了国家自然科学基金、广东省自然科学基金等项目经费的支持。相关论文信息:https://www.nature.com/articles/s41467-022-30114-z
  • 分子荧光光谱仪的“惊喜”亟待发掘——访天美(中国)分析产品经理覃冰女士
    1997年,天美开始代理日立的分子荧光产品,近20年的时间里,F-7000、F-4600等已入驻很多实验室 2013年,天美又将爱丁堡仪器公司的分子荧光产品揽入旗下,之后FLS980、FS5也被越来越多的人了解、熟悉......  作为为数不多的主力做分子荧光光谱仪的企业,天美坐拥爱丁堡、日立两大品牌,在分子荧光领域“深耕细作”。说天美“深耕细作”,一方面是因为其在品牌的选择上独具慧眼,爱丁堡的收购就是很好的说明 另一方面,在市场培育和拓展方面,天美也兢兢业业,包括培训、用户会等一直带领着用户深挖分子荧光光谱仪的应用和市场。  相对于其他分析仪器来说,分子荧光光谱仪并不特别“热”,用户的熟悉度也不是很高,那么天美为什么会如此重视?分子荧光光谱仪的技术发展又何去何从?带着这些问题,仪器信息网编辑采访了天美(中国)分析产品经理覃冰女士。天美(中国)分析产品经理覃冰女士  覃冰2009年入职天美,一直负责分子荧光方面的工作。目前主要负责爱丁堡光谱类产品、日立分子光谱产品的技术支持、用户培训和相关市场宣传。对分子光谱仪器在科研中的应用和样品测试有十分丰富的经验。  爱丁堡,天美收购史上的“大丰收”  天美一路走来,收购了很多品牌,但是谈起对爱丁堡的收购,天美人都说,这是一个巨大的成功。  据介绍,一方面,对爱丁堡的收购、整合并没有花太多的时间,2013年年底就捋顺了销售、售后等整个流程 另一方面,收购之后,爱丁堡的分子荧光产品在国内的业绩获得了快速增长。  “FS5已经至少占据了国内同一级别产品一半的市场份额,而2015年FLS980的增长高达50%,可谓是大丰收!目前,在天美分析产品线上,这两类产品的销售积极性和热情也是很高的。”覃冰介绍到。其实,从中国政府采购网的中标信息我们也会看到,不少高校及科研单位已经陆续购置了FLS980或FS5。 FLS980(左)、FS5(右)  爱丁堡的FLS980和FS5荧光光谱仪,都定位高端产品,用户主要是科研单位和高校。其中FS5是天美收购爱丁堡之后发布的第一款新产品。  高端分子荧光光谱仪增长潜力更“诱人”  收购爱丁堡之前,天美主要代理日立的分子荧光产品,两个品牌是否会有冲突?目前如何布局?这可能是很多人都想问的问题。  对此,覃冰介绍到,“这个完全不是问题,因为爱丁堡和日立两个品牌的市场定位不同,各自有用户团体,这两个产品是相互补充的。日立的分子荧光产品,主要定位在分析型市场,如分析测试机构,甚至企业等,这些客户的工作多是日常的测试,他们需要准确的数据 而爱丁堡的仪器定位高端,主要面向专门做科研的、对测试有比较高要求的用户,他们在实验过程中,有自己的想法,并希望把这些想法融入到光谱仪中,其中最明显的一点是这些客户经常需要我们提供一些仪器的搭建服务。”  不过,对于分析型和科研级两类荧光光谱仪的市场发展态势,覃冰更看好后者,对此覃冰给出了如下分析:  “从仪器本身来说,分析型荧光市场比较平稳,日立的分子荧光在稳定性和测试准确性方面来说都非常不错,F-7000、F-4600等已经深入人心,比较皮实,一直以来以口碑打市场。自1997年开始,天美与日立的合作已经20年,一直是独家代理,合作非常愉快,这方面不需要担心。”  “而从增长潜力上来说,相对于分析型的分子荧光,高端荧光的增长趋势比较明显。随着科研水平的提高,科研上已经不满足于稳态荧光的测试,时间分辨、量子产率等数据都是非常重要的。此外,千人计划/万人计划等国家的人才引进计划也吸引了越来越多海外留学人士的回归,他们在科研上更青睐于科研级别的仪器,这也是很大的机会。”  定制化、联用需求凸显  谈到分子荧光光谱仪,很多人可能会反馈技术比较成熟,各厂商新品的推出速度也比较慢。对此,覃冰介绍到,“一方面,分子荧光光谱仪的指标改进可能没有定量分析仪器的需求那么大,虽然教科书上写到荧光的灵敏度很高,但是用荧光定量只能在浓度比较稀的范围内实现线性,要求还是比较严格的,目前分子荧光光谱仪主要用来定性,定量的不是很多 另一方面,虽然与其它分析仪器相比,分子荧光光谱仪新品的推出速度不是那么快,但实际上一直在改进,只是很多时候不需要更改型号。以爱丁堡为例,虽然仪器型号没有改变,但是一直在探索与第三方附件的联用以及特殊应用。”  而随着科研工作的深入,与第三方部件/附件/仪器的联用已经成为分子荧光光谱仪未来发展的一个重点方向。据介绍,现在的用户对高端荧光光谱仪的需求越来越高,他们往往不满足于只是用荧光光谱仪去测试样品,很多人希望将光源、检测器等第三方部件与光谱仪联用以达到自己的科研目的,比如做上转换材料研究的用户不能用传统的氙灯进行激发,就必须配备第三方的激光器 此外,基于荧光光谱仪的应用拓展也愈发明显,圆偏振荧光功能的加入可以测量激发态的手性信息,显微镜、单细胞仪与光谱仪联用,可以在微观尺度进行荧光的表征,据悉爱丁堡已经做过不少这样的案例。  值得注意的是,仪器联用便会涉及耦合接口和系统控制等,这些对仪器厂家也提出了更高的要求。在这些方面,爱丁堡会提供相关的耦合接口,或者外购一些附件(部件)联接好之后再提供给用户,并根据用户的需求进行仪器改造。爱丁堡工厂有专门的软件工程师负责编写第三方附件与光谱仪的通讯,用户只需要通过操作光谱仪的软件就可以自动控制第三方的附件,在所设置的条件下自动进行相关光谱的扫描,这样可以把用户从繁琐的重复劳动中解放出来。今年爱丁堡就在其FLS980荧光光谱仪上集成了牛津仪器的光谱学液氦低温恒温器Optistat Dry,并通过FLS980的软件进行控制。  当前,虽然这种定制化或联用不能作为标准化的配置,但是用户的需求明显增多。覃冰介绍到,“这同时也是爱丁堡的优势所在,一方面爱丁堡的仪器模块化搭建本来就比较灵活,爱丁堡的工程师在仪器联用和定制方面的经验也非常丰富 另一方面,爱丁堡与第三方厂家的合作非常友好。”  天美在分子荧光领域继续“深耕细作”  虽然做分子荧光光谱仪的厂商不是很多,但是市场压力一样存在。覃冰分析到,“有竞争就会有压力,竞争对手会推出一些新的型号,仪器及参数的更新换代,你追我赶的态势不可避免 此外,用户的需求呈现多样化,对厂商也提出了更多的要求。”  覃冰坦言,“对天美来说,日立和爱丁堡的仪器相对都比较贵,这也是压力的一个重要方面。不过爱丁堡不会打价格战,未来会通过产品的不断升级以及附件的开发等来迎战市场。”  对于如何提高产品的市场竞争力?覃冰谈到,要提高在中国市场的竞争力,就要充分了解中国市场,尽可能的与用户多接触,了解用户对产品的改进需求等。其实,一直以来爱丁堡都特别重视与中国用户的互动,之前在FLS980研发的时候就曾征询过福建物构所、厦门城市环境研究所等用户的意见。现在,平均每个月都有来自英国的工程师过来中国,有问题大家可以更方便沟通。  另一方面,为了更好的服务客户、拓展市场,天美在分子荧光光谱仪的培训和技术交流方面也可谓兢兢业业,比如:每年针对日立和爱丁堡的分子荧光产品分别有两次用户培训 爱丁堡中国区的用户会每年一次 此外,每年天美的质量千里行活动中都会邀请爱丁堡英国的工程师到各所大学进行技术讲座。  对于未来的推广计划,覃冰说,“对于用户培训和用户会我们肯定会一直坚持办,我们重视每一个用户,希望能通过用户会把我们国内这么多的用户紧紧联系起来,提供一个相互交流的平台,让好的仪器口碑一直相传下去。只是每年会侧重不同的领域,形式上会稍微变化,也希望能给大家带来耳目一新的体验。”同时,覃冰也表示天美希望与协会等一起合办用户会。  后记:相比很多分析仪器,分子荧光市场不是那么活跃,相关的仪器厂家也不是特别多,甚至有些用户会混淆分子荧光光谱仪和XRF等其它的荧光光谱仪。不少人可能都有过这样的疑问,分子荧光光谱仪的未来发展空间和市场到底有多大?  在交流过程中,覃冰给我们介绍到,“如果仅局限于分子荧光光谱仪本身,产品、技术的更新确实没有其他分析仪器那么快,但是同时我们也要看到,分子荧光的可扩展性非常大,第三方的光源、检测器、显微镜等多种部件/仪器都可以联接到光谱仪上。如果这样说来,它就不再是一个小众的群体,科研的精神可以使这个平台更好的运转起来。”  此外,值得一提的是,实施了20年的《JY/T025-1996光栅型荧光分光光度方法通则》(JY/T 002—1996)今年迎来了一次"大修订",增加了荧光偏振、荧光寿命和量子产率、同步荧光扫描、三维荧光光谱、时间分辨发射(激发)光谱测试等新的方法原理、分析步骤和结果表述,其中为了区分X-射线荧光分析,还特别将标准名称更新为“分子荧光光谱分析方法通则”。相信,在各方面的推动之下,分子荧光光谱仪可以带给大家更多的惊喜,不只是科研上的,市场增长的惊喜同样也值得期待。  附覃冰个人简介  教育背景  2002--2006理学学士,北京师范大学,化学专业;  2006--2009理学硕士,中国科学院国家纳米科学中心;  工作经历  2009至今天美(中国)科学仪器有限公司,分析产品经理:  负责天美公司分子光谱产品,主要有英国爱丁堡稳态瞬态荧光光谱仪、激光闪光光解光谱仪,日立公司光谱仪产品线。  负责国内与国外工厂之间的售前售后的技术交流及产品推广;  曾赴美国及英国工厂培训,在样品的应用和测试上有十分丰富的经验;  组织相关产品的销售培训、用户培训及维修培训,爱丁堡年度用户会等;  市场及销售资料资料的翻译及整理,协助各种市场活动及会议报告。  项目经历  2013 爱丁堡仪器被天美收购后,主要负责爱丁堡产品,推进其在中国市场的销量增长;  联系第三方附件厂家建立合作关系,通过测试实际耦合之后的效果,增强产品竞争力;  新产品发布用户推介会;  参与 JJF1382-2012荧光分光光度计型式评价大纲制定;  JY-T025 荧光光谱分析方法通则专家评审。  发表文章  1. Reversible Photoswitchable Fluorescence in Thin Films of Inorganic Nanoparticle and Polyoxometalate Assemblies  Bing Qin et al, J. Am. Chem. Soc., 2010, 132 (9), 2886–2888  2. A temperature-driven reversible phase-transfer of 2-(Diethylamino)-ethanethiol-Stabilized CdTe nanoparticles  Bing Qin et al, Angew. Chem. Int. Ed., 2008, 47, 9875-9878
  • 超高分辨率荧光显微镜的应用
    超高分辨率荧光显微镜正在不断改变我们对细胞内部结构及运作的认识。不过在现阶段,显微镜技术还是存在着种种不足,如果人们希望显微镜能在生物研究领域发挥重要作用,就必须对其加以改进和提高。  光学显微镜的出现及其影响  自荷兰博物学家、显微镜创制者Antonie van Leeuwenhoek(1632-1723)在17世纪第一次将光线通过透镜聚焦制成光学显微镜并用它观察微生物(microorganisms or animalcule)以来,显微镜就一直是生物学家从事研究工作、探寻生命奥秘必不可少的利器。正是因为有了Leeuwenhoek的这项伟大发明及其后继者对显微镜技术的不断改进和发展,人们才能够对细胞内部错综复杂的亚细胞器等结构的形态有了初步的了解。  此后,研究人员对显微镜技术的追求从未停歇过,他们总是希望能得到分辨率更高的显微镜,从而更好地观察细胞内部更细微的结构。最近,《自然-方法》(Nature Methods)杂志上报道的超高分辨率成像技术(super-resolution imaging, SR imaging)终于使得人们可以在单分子水平上进行观察研究。  SR技术的发展过程  在达到今天SR技术水平的过程中,承载了许许多多研究人员辛勤劳动的汗水,也面临着诸多亟待解决的难题。  在以上这些光学SR成像技术中有两种技术&mdash &mdash 受激发射减损显微镜(stimulated emission depletion microscopy, STED)和饱和结构光学显微镜(saturated structured illumination microscopy,SSIM)最受关注。  最近,基于探针SR成像技术的光敏定位显微镜(PALM)和随机光学重建显微镜(STORM),以及借助荧光基团随机激活特性的荧光光敏定位显微镜(FPALM)都已经取得了成功。  通过基于探针的SR成像技术,可以获得多张原始图像。在每一张原始图像中,细胞内只有一部分被荧光标记的分子能发出荧光,即这些荧光分子都处于不断激活和灭活的交替状态,每一次都只有部分分子能被观察并成像。而且由于每次发出荧光的分子都分散得较为稀疏,因此相互之间不会受到影响,也就避免了因相邻分子发出荧光而无法分辨的问题。最后将这些原始图片叠加、重合在一起就得到了最终的高分辨率图像。这样,就能使得那些以前由于荧光点太密以至于无法成像的结构的分辨率达到纳米级水平,而且成像的分子密度也相当高,可以达到105个分子/&mu m2。  这种分辨率对于生物学家来说,意味着现在可以在分子水平上观察细胞内的结构及其动态过程了。  虽然显微镜技术已经发展到了如此高度,但它仍然只是生物学家研究中使用的一种工具。因此还需要将显微镜获得的图像与其它的试验结果互相参照,才能获得准确的结果。人们需要认清SR显微镜的优势与劣势,为操作以及判断SR图像制定出标准化的操作规范,只有这样才能最大限度地发挥SR显微镜的作用。  现在,由于人们对细胞内各组份的组织结构以及它们的动态变化过程都只有一个概念上的认识,因此,借助显微镜从纳米水平上对这些结构及过程进行真实的观察能让人们发现许多以往所不了解的东西。例如,以前人们通过电镜发现细胞骨架是由大量丝状网格样组织构成时,就有人对此现象持怀疑态度。那些认为细胞骨架是一种用来稀释细胞内生化物质浓汤这样一种结构的细胞生物学家把这种观测结果称作僵化的人为试验结果。  除非最新的SR显微镜图像或者其它的试验结果都能证明细胞骨架是由大量的丝状网格样组织构成的,否则还会有人持上述的怀疑观点。不过已经有其它的生化试验结果证实了早期的电镜观察结果是正确的。当然新兴的SR技术也需要其它传统的生化试验结果予以佐证才有价值,同时还需要电镜的辅助。因为电镜能提供纳米级的观察结果,这对于佐证具有同样分辨率的SR显微镜观测结果来说是最有价值的。  今后,大家在逐步了解、接受和广泛使用SR显微镜的同时,需要注意将会出现的各种问题,以下的表格列出了部分与SR显微镜使用相关的缺点及其目前的解决方法。  最近几年,就如何处理图像已经有了非常严格的操作规范。不过迄今为止,对于怎么处理SR图像还没有一个标准的操作规范。尤其需要指出的是,PALM和STORM数据在某些重要因素上,graph方面的共性要多于image方面。在一张SR图像上,分子的不确定性和密度都能用颜色表示出来,这种图像把细胞内该分子有可能出现的任何地点都标示出来了。而且只有被标记的分子按照一定的标准(发出的光子数)判断它的确是一个单分子并且定位准确之后才显示出来。必须对获得的图像进行这样的标准化处理之后才能分析结果。同样,对于试验数据也需要如此进行标准化处理。要提高分辨率不仅需要分子定位、分布得比较好,还需要分子数目够多,以致能达到尼奎斯特判断法(Nyquist criterion)的要求,即分子间的平均距离要小于显微镜分辨率的一半。虽然上述问题都不会影响SR显微镜的应用,但由于存在这些问题,所以我们应该时刻提醒自己,一定要仔细判读、分析SR显微镜的图像结果,只有这样才能得到有价值的生物学结论。  SR荧光显微镜在生物学研究中的应用  到目前为止,人们还很难得知,SR荧光显微镜会对生物学界的哪一个领域带来重大变革,但已经有几个领域出现了明显的改变。这些研究领域是动态及静态的细胞组织结构研究领域、非均质分子组织研究领域、蛋白动态组装研究领域等。这几个领域都有一个共同的特点,那就是它们研究的重点都是分子间如何相互作用、组装形成复合物。因此,能在纳米水平观察这些分子对它们来说具有重大的意义。  通过观察蛋白质之间的组合关系来了解它们的作用,并能为后续的细胞功能试验打下基础  结构生物学研究在这方面已经取得了很大的进展,目前已经发现了4-8纳米大小的分子间相互作用组装成细胞微管、肌丝、中间丝这些超过10微米大小聚合物的机制。不过对于核孔复合体、中心体、着丝点、中间体、粘着斑这些由许多不同蛋白经过复杂的三维组装方式组合起来的复合体,还需要更好的办法来进行研究。目标就是要达到分子水平的分辨率,这样就可以观察大复合体形成过程中的单个分子,也就能对这些分子的化学计量学有所了解了。要得到更多的生物学信息就需要SR显微镜这样的三维成像技术,例如可以使用活体细胞SR成像捕捉细胞骨架的动态重构过程等等。  SR成像有助于人们更好地了解分子间的差异  细胞膜蛋白组织方式的经典模型已经从随机分布的液态镶嵌模型转变成了脂筏模型、穴样内陷模型或特殊蛋白模型。这种差异与细胞不同功能相关,例如在高尔基体、cargo蛋白和高尔基体酶蛋白之间必须发生相互作用,但最终它们会按照各自的功能分开,发挥各自的作用。有很多试验手段,例如免疫电镜技术、荧光共振能量转移技术(FRET)等都已经被用来研究这种膜不均一性问题了。多色PALM技术(Multicolor PALM)为人们提供了一种新的手段用来观察膜蛋白集合、组织的过程,并且还能定量分析不同蛋白间的空间距离关系。因为有了PALM提供的单分子信息,人们就可以清楚地了解蛋白分子间的空间关系,甚至有可能计算出相隔某一距离的分子之间发生相互作用的可能性。这种方法除了用于研究膜蛋白之外,还能用于许多非随机分布的生物系统研究,例如研究微管上的马达蛋白。  SR成像技术还能用于在单分子水平研究蛋白动态组装过程  细胞对外界刺激信号的反应起始于胞膜,在胞膜上受体蛋白之间发生动态的集合,用来调节细胞的反应活性。像HIV这种有被膜病毒也是在细胞膜上完成病毒颗粒组装过程的病毒,也是利用了细胞的物质转运机制。尽管现在蛋白组装的物理模型还远远没有完成,但研究人员知道膜蛋白的动态组装过程是不均一的,所以通常使用荧光试验手段很难获得分子水平上的信息。同样,单分子测量技术(Single molecule measurements)也存在着类似的局限,因为单分子测量技术只能观察细胞内的几个分子,所以缺乏整体的信息。因此由于缺乏空间分辨率,很难动态地研究蛋白质组装过程。SR荧光成像技术与活细胞成像技术和单分子示踪技术(sptPALM)结合就能解决这一问题。我们可以借助分子密度准确地看出PALM图像中的蛋白质簇,蛋白质簇动态的统计数据和形态学数据能帮助我们了解蛋白质动态组装的机制。  上面只是选了生物学研究中的3个方面来说明SR技术的用途,但这已经很好的展示了我们是如何从Leeuwenhoek最初对于生命组成的假设一步一步走到了今天,使用SR显微镜来证实构成生命体的最基本材料&mdash &mdash 分子的组合过程。STED和PALM的商业化产品已经上市了,这标志着SR显微镜的时代来临了。我们相信SR显微镜在充满创造力的生物学家们手中,一定会充分发挥它的作用,帮助我们发现更多生命的奥秘。  原文检索:  Jennifer Lippincott-Schwartz & Suliana Manley. Putting super-resolution fluorescence microscopy to work. Nature Methods, 17 December 2008 doi:10.1038/nmeth.f.233
  • 钢研纳克:光电直读、能量色散X荧光光谱新品
    仪器信息网讯 2012年5月9日-12日,由中国钢铁工业协会、中国铸造协会、中国国际贸易促进委员会冶金行业分会、中国机械工程学会工业炉分会、中国耐火材料行业协会、中展集团北京华港展览有限公司主办的第十三届中国国际冶金工业展览会、第十一届中国国际铸造博览会、第五届中国铸造零部件展览会、第九届中国国际耐火材料及工业陶瓷展览会、第十一届中国国际工业炉展览会同期在中国国际展览中心(北京顺义新馆)隆重举行。钢研纳克检测技术有限公司展位  钢研纳克检测技术有限公司参加了此次展会,并向广大用户展示了:ONH-3000脉冲红外热导氧氮氢分析仪、CS-3000碳硫分析仪、SparkCCD 500火花直读光谱仪、NT-200微机控制电子万能试验机、PORT-X 100手持式能量色散X荧光光谱仪等仪器。其中于2011-2012年推出的新产品主要有以下三款产品。SparkCCD 500火花直读光谱仪  自2011年钢研纳克推出Lab Spark 1000火花直读新产品后,2012年纳克又推出了SparkCCD 500火花直读光谱新品,该仪器采用双光电转换及检测系统:CCD检测系统实现光谱的全谱分析(波长范围覆盖220-340nm,390-420nm) 光电倍增管检测系统灵敏度高,采用单火花的单次放电数字解析技术以及数据采集积分延时技术进行分析,用于测量短波元素,CCD和光电倍增管的分析数据一次性同时输出 SparkCCD 500光栅焦距500mm,光室体积小,采用直射式光室结构,灵敏度高,整机体积小,可放于工作台上进行操 采用系统监控软件实现计算机对仪器系统状态的监测和开关控制,包括负高压、温度及真空度状态显示和光源及负高压的开关控制 分析对象范围广,一台仪器可同时分析铁、铝、铜等基体样品,增改通道无须改变硬件。PORT-X 100手持式能量色散X荧光光谱仪  PORT-X 100手持式能量色散X荧光光谱仪是钢研纳克于2012年最新推出的一款新产品,采用电制冷Si-PIN光X探测器,分辨率小于等于180eV,重量为1.3kg。可应用于合金钢铁、地质勘探、矿山冶金、金属回收、贵金属检测等领域,可用于钠(Na)到铀(U)之间所有元素的检测。该仪器操作方便、检测速度快、安全性能高、对检测体无损。AUTO 50自动进样器及CS-3000碳硫分析仪  AUTO 50自动进样器适用于样品量较大的实验室,可以帮助用户节省劳动时间,减轻工作量。目前,主要和纳克的碳硫分析仪器相配套使用。  钢研纳克检测技术有限公司其他参展仪器照片:ONH-3000脉冲红外热导氧氮氢分析仪涡轮探伤仪NT-200微机控制电子万能试验机
  • 8212万 南开单光子时间分辨成像光谱仪器专项获批
    日前,科技部下发了&ldquo 科技部关于2013年度国家重大科学仪器设备开发专项项目立项的通知&rdquo ,南开大学牵头的&ldquo 单光子时间分辨成像光谱仪研发与应用&rdquo 获得正式立项。  &ldquo 单光子时间分辨成像光谱仪研发与应用&rdquo 由南开大学作为项目牵头单位,联合中国科学院空间科学与应用研究中心、北京理工大学、北京东方锐镭科技有限公司等13家单位合作承担。项目起止时间为2013年10月至2018年9月。批复项目预算总经费8212万元,其中国家重大科学仪器设备开发专项经费5952万元。  项目的总体目标是通过一系列关键技术攻关、系统集成、软件开发和应用开发,形成具有自主知识产权的单光子时间分辨成像光谱仪。项目验收后3年内,建立单光子时间分辨成像光谱仪整机生产基地,形成整机批量生产能力,为我国材料科学和生命科学研究提供测试技术支撑。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制