当前位置: 仪器信息网 > 行业主题 > >

紫外激光荧光计

仪器信息网紫外激光荧光计专题为您提供2024年最新紫外激光荧光计价格报价、厂家品牌的相关信息, 包括紫外激光荧光计参数、型号等,不管是国产,还是进口品牌的紫外激光荧光计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合紫外激光荧光计相关的耗材配件、试剂标物,还有紫外激光荧光计相关的最新资讯、资料,以及紫外激光荧光计相关的解决方案。

紫外激光荧光计相关的论坛

  • 我国自主研制科研装备获重大突破 实用化深紫外全固态激光器唯我独有

    2013年09月07日 来源: 科技日报 作者: 李大庆 http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130907/011378496864671_change_hzp3951_b.jpg9月4日,中科院工作人员在检查深紫外非线性光学晶体的光透度。新华社记者 马宁摄 科技日报北京9月6日电(记者李大庆)由中国科学院承担的国家重大科研装备研制项目“深紫外固态激光源前沿装备研制项目”今天在北京通过验收。这个系列科研装备的研制成功,使我国成为世界上唯一一个能够制造实用化深紫外全固态激光器的国家。 经过10多年的努力,中科院的科研人员在深紫外激光非线性光学晶体方面实现突破,在国际上首先生长出大尺寸氟硼铍酸钾晶体,并发现该晶体是第一种可用直接倍频法产生深紫外波段激光的非线性光学晶体。在此基础上,科研人员又发明了棱镜耦合技术(已获中、美、日三国专利),率先发展出直接倍频产生深紫外激光的先进技术,并全面开展新型深紫外激光科研装备的研制和学科应用研究。 2007年,财政部设立专项,对中科院深紫外固态激光源前沿装备研制予以支持。经过5年多的持续攻关,利用大尺寸氟硼铍酸钾晶体和棱镜耦合专利技术,中科院理化技术所、物理所、大连化物所和半导体所的科研人员在世界上首次研制成功8类8台集实用化、精密化于一体的深紫外固态激光源,实现了一系列关键指标的突破。利用这8台深紫外固态激光源,科研人员成功研制出了深紫外激光拉曼光谱仪、深紫外激光光化学反应仪、深紫外激光光发射电子显微镜、深紫外激光光致发光光谱仪、深紫外激光自旋分辨角分辨光电子能谱仪、光子能量可调深紫外激光光电子能谱仪、深紫外激光原位时空分辨隧道电子谱仪、基于飞行时间能量分析器的深紫外激光角分辨光电子能谱仪等8台科学仪器。 据了解,目前这8台仪器已经在石墨烯、高温超导、拓扑绝缘体、宽禁带半导体和催化剂等一系列重大研究领域中获得了重要结果:证实了Pb、O等原子可通过单层石墨烯岛的开放边界进行插层反应,实现石墨烯与衬底之间去耦合;首次发现拓扑绝缘体Bi2Se3的自旋结构和轨道结构是固定在一起;首次观测到Bi2212能量/动量谱与不同激发光子能量关系。相关研究成果已发表在国际顶级科学期刊上。 今天通过验收的包括两个平台——深紫外非线性光学晶体与器件平台和深紫外全固态激光源平台,以及深紫外激光拉曼光谱仪等8台科学仪器。验收委员会的专家认为,这些仪器设备的研制成功及在石墨烯、高温超导、拓扑绝缘体、宽禁带半导体和催化剂等研究中获得的重要成果,“使我国深紫外领域的科学研究水平处于国际领先地位,并在物理、化学、材料、信息等领域开创了一些新的多学科交叉前沿。”“该项目取得的研究成果属于原始创新工作,具有重要意义,并对继续开拓深紫外激光的应用具有十分重要的意义。” 据介绍,深紫外全固态激光源前沿装备研制项目的实施,初步打造了我国“晶体-光源-装备-科研-产业化”的自主创新链。在科技部的支持下,中科院新启动了深紫外仪器设备的产业化开发工作;在财政部的支持下,中科院也启动了深紫外固态激光源前沿装备的二期研制项目。 中科院院长白春礼在验收会上说,科研装备创新能力是衡量一个国家科技创新能力的重要标志。现代科技的进步越来越依靠科学仪器的创新和发展,科研仪器装备的突破,往往催生新的科研领域,产出重大创新成果。迄今为止,至少有1/3的诺贝尔物理和化学奖授予了那些在测试仪器和实验方法方面有重要创新的科学家。所以,我国要实现重大科学突破,不仅要有创新自信,要善于提出原创科学思想和方法,而且要发展出新的试验手段,研制出新的仪器装备。

  • 荧光光谱与紫外吸收光谱重叠积分

    [color=#444444]请问大家做荧光光谱和紫外吸收光谱重叠时,是单独用BSA的荧光光谱和药物小分子的紫外吸收光谱重叠,还是按1:1把二者混合在一起相互作用后的荧光光谱和紫外吸收光谱重叠,谢谢![/color]

  • 美造出67阿秒迄今最短极紫外激光脉冲

    中国科技网讯 美国中弗罗里达大学(UCF)一个研究小组9月5日(北京时间)表示,他们造出了仅67阿秒(1阿秒=10-18秒)的极紫外激光脉冲,这是迄今为止最短的激光脉冲,之前纪录是80阿秒。该技术有望带来一种新工具,帮助科学家研究亚原子世界和迄今未知的量子力学行为。这一成果也标志着近4年来激光脉冲领域的首个重大突破。研究结果提前发表在《光学通信》网站上。 该成果的非凡意义还在于他们并没有使用特殊设备,如英里级的粒子加速器、体育场那么大的圆形同步加速器。UCF物理系教授常增虎(音译)和光学与光子学院同事们在该校弗罗里达阿秒科技(FAST)实验室,利用迄今最强激光在更小空间进行了高水平的研究。 常增虎的小组发明了一种叫做“双光栅”的技术,能将极紫外线以特殊方式切断,在尽可能最短的光脉冲内凝聚大量能量。除了生成了激光脉冲,他还制造了迄今最快的摄像机对光脉冲进行了检测。 “该研究造出了迄今最短的激光脉冲,为理解亚原子世界打开新的大门,让我们看到电子在原子、分子中的运动,跟踪化学反应过程。”UCF理学院院长、物理学家迈克尔·约翰逊说,“设想一下,现在我们可能看到量子力学过程了,这是令人震撼的。” 量子力学是研究微观物理学,尤其是微观水平的能量和物质。这一技术能帮助科学家理解构成世界的最小物质是怎样运作,还能帮助研究在特殊物理、生理过程中,如数据传输过程、治疗癌症或诊断疾病时递送标靶药物的过程中是如何利用能量的。 2001年时,科学家首次演示了阿秒级脉冲。自那时起,全世界科学家就在致力于制造这种最短脉冲激光,以往纪录是2008年德国马克斯·普朗克研究院创造的80阿秒脉冲。“自50多年前发明激光以来,人们对激光脉冲的要求越来越短。” UCF光学与光子学中心院长巴哈·萨雷说,“最新进展不仅让中弗罗里达大学跻身该领域前沿,也为人们打开了研究超快动态原子现象的新视野。”(记者毛黎 常丽君) 总编辑圈点 研究小尺度世界的运动规律,需要“超小号工具”。要干预和观察那些稍纵即逝的现象,就需要能量集中在极短时间的光脉冲。如果人们制造不出相应的光学机器,就没办法监测单个粒子,只能对粒子运动做出统计学意义上的描述;而在人们脑海中,基本粒子世界也只能是全景图,而不是精细的工笔画。美国研究小组的成果,让科学家向着观察量子尺度的运动又走近了一步。微观世界不为人知的景色,有望在极短激光的照射下现出真相。 《科技日报》(2012-09-06 一版)

  • 紫外拉曼光谱仪研制和在催化研究中的应用

    紫外拉曼光谱仪研制和在催化研究中的应用“UV Raman Spectrograph and Its Applications in Catalysis 拉曼光谱是鉴定物质分子结构的有力工具,它已应用于化学、物理、生物和材料科学等领域。传统的拉曼光谱在可见区极易产生荧光,而荧光的强度往往是拉曼强度的几万倍乃至百万倍,因此常规拉曼光谱受到荧光的严重干扰,常常得不到拉曼光谱。这一难题成为拉曼光谱应用的主要制约因素。传统拉曼光谱的另一个弱点是其本征灵敏度很低,这也限制了它的广泛应用。 上述两个难题在催化研究中尤其突出,因为催化剂表面极易产生荧光,特别是有碳氢物种存在时,表面荧光往往非常强,而绝大部分石油化工过程的催化剂在工作状态下不可避免地生成各种表面碳氢物种。所以,消除或避开表面荧光的干扰和提高灵敏度是拉曼光谱成功应用于原位催化研究的关键所在。 针对荧光干扰和灵敏度低这两个难题,提出研制采用连续波紫外激光作为激发光源的紫外拉曼光谱仪的想法,克服一系列实验上的困难,于1997年建成我国第一台紫外拉曼光谱仪并将其应用于催化研究。 经过大量的实验和理论分析,发现催化剂表面的荧光主要出现在可见区,即300-700nm。因此将激发波长从可见区移开,则有可能避开荧光干扰。我们提出将激发波长从传统拉曼光谱的可见或近红外向紫外和深紫外波段位移以避开催化剂表面荧光干扰的想法,即研制采用紫外激光作为光源的紫外拉曼光谱仪。从理论上分析紫外拉曼光谱有以下几个优势:①由于荧光主要出现在可见区,将激发波长向紫外波段移可以有效地避开荧光;②由于光散射强度与波长的四次方成反比,将激发波长向紫外区移可以提高灵敏度;③很多化合物的电子吸收带在紫外区,因此可以进行紫外共振拉曼光谱,使仪器灵敏度提高几个数量级。 在上述想法的基础上,结合催化原位研究,采用紫外激光光源、三光栅和紫外区灵敏的CCD探测器研制了收集紫外拉曼散射光的椭圆内反射镜、外光路系统和催化研究的高温高压装置、用于催化反应研究的特殊拉曼光谱池以及适用于动态和原位紫外拉曼研究的吸附和原位反应装置。最后,研制成功用于催化原位研究的紫外拉曼光谱仪。

  • 如何计算荧光光谱和紫外光谱重叠后的积分

    我在做小分子化合物与蛋白质的相互作用实验,其中计算两者集合距离时,需要知道供体和受体两者间荧光光谱和紫外光谱重叠后的积分,请问如何计算呢?是通过origin软件做的吗?

  • 网络讲堂:9月25日 真空紫外光谱技术及其应用

    http://img3.17img.cn/bbs/upfile/images/20100518/201005181701392921.gif真空紫外光谱技术及其应用讲座时间:2014年09月25日 10:00 主讲人:毛峥乐现任光学光谱技术主管,负责OEM、光栅、光谱系统、真空紫外技术咨询和系统应用支持。http://img3.17img.cn/bbs/upfile/images/20100518/201005181701392921.gif【简介】真空紫外光谱技术专指为1-200nm光学光谱研究设计、开发的技术和光学系统。相对于200nm以上,真空紫外光谱系统对光学元件、光路设计,尤其是光谱仪核心元件——光栅,提出了极其苛刻的要求。真空紫外光谱技术作为一种经典技术,早已为同步辐射装置广泛使用。同时作为一种新兴技术,它也越来越多地应用于独立实验室,如1-200nm的荧光、光致发光、材料吸收谱反射谱、高次谐波、等离子体发射、极紫外激光表征、探测器表征等前沿科学应用领域之中。真空紫外光谱技术作为一种经典技术,早已为同步辐射装置广泛使用。同时作为一种新兴技术,它也越来越多地应用于独立实验室,如1-200nm的荧光、光致发光、材料吸收谱反射谱、高次谐波、等离子体发射、极紫外激光表征、探测器表征等前沿科学应用领域之中。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名并参会用户有机会获得100元手机充值卡一张哦~3、报名截止时间:2014年09月25日 9:304、报名参会:http://simg.instrument.com.cn/meeting/images/20100414/baoming.jpg

  • 【原创】紫外拉曼光谱仪技术 技术转让

    4月28日,中国科学院大连化学物理研究所和北京卓立汉光仪器有限公司“紫外-可见区拉曼光谱仪技术”技术转让合同正式签字在京举行。参加签字仪式的有大连化物所李灿院士、冯兆池研究员;卓立汉光公司苏大明厂长等。 这是自4月8日中国科学院大连化学物理研究所和北京卓立汉光仪器有限公司共同成立“现代仪器联合实验室”后的又一重要合作。标志着双方的合作再上台阶。 李灿院士是中国科学院大连化学物理研究所研究员、催化基础国家重点实验室主任,中法催化联合实验室中方主任,中国科学院大连化学物理研究所学位委员会主任。中国化学会催化委员会主任、中国物理学会光散射委员会主任、国际催化学会理事会副主席、英国皇家化学会Fellow。2003年当选中国科学院院士、2005年当选第三世界科学院院士。辛勤耕耘,不断进取, 李灿院士和他领导的试验室取得了多项重大科技成果。是在国际上最早利用紫外拉曼光谱应用于催化研究, 筹建了具有自主知识产权的国内第一台用于催化材料研究的紫外共振拉曼光谱仪,获得国家发明二等奖。激光拉曼光谱是一项重要的现代分子光谱技术,是研究物质分子结构的强有力工具,已应用于物理、化学、材料、生物、环境和能源等各个领域中。可见激光作为激发光源的常规拉曼光谱由于存在灵敏度低和荧光干扰的困难,使许多领域的拉曼光谱研究工作无法开展。紫外激光拉曼光谱能成功地避开了荧光干扰大幅度提高了灵敏度,是进行催化、材料和生物等领域原位光谱研究的强有力的手段。例如,在过渡金属杂原子分子筛、担载型高分散过渡金属氧化物催化剂、催化剂表面积炭失活以及固体氧化物超强酸体系等多个研究领域中,陆续取得了一系列引人注目的研究成果。通过紫外共振拉曼光谱首次获得了TS-1分子筛中有关骨架钛物种存在的直接证据。紫外拉曼光谱的另一重大应用研究领域是生物科学。利用深紫外拉曼光谱可以获得蛋白氨基酸残基之间的相互作用,辽宁信息网蛋白质的二级结构,如蛋白的折叠和解折叠,蛋白质侧链的构象变化等重要结构信息。北京卓立汉光仪器有限公司于2000年首先推出国内第一台量产型三光栅光谱仪,通过不断努力,卓立的光谱仪系列产品已经拥有了多种规格的光谱仪和配套完善的光谱仪组件。成为国内知名的仪器生产厂商,其中光谱仪有Omni-λ、PalmSpeZ、SSM 三个系列;光谱仪组件包括:多种光源和相应的电源、各种探测器、样品室、数字采集器、光子计数器及连接附件。形成了产品模组化,配套齐全,灵活性强,自动化程度高,软件实用,可组成各种光谱仪应用系统,多年来已经为多个科研院所配置开发了多套如(● 光源(灯,LED,LCD, PDP等)特性(辐射光谱、色座标、相关色温、显色指数等)光谱测试系统;● 光学/光纤元器件,材料透射率光谱、反射率光谱系统;● 光电探测器(或CCD)的光谱响应测量系统;● 发射(Emission)光谱系统;● 吸收(Absorption)光谱系统;● 荧光(Fluorescence)光谱仪系统;● 拉曼(Raman)光谱系统;● LIBS - Laser-Induced Breakdown Spectroscopy 光谱仪系统;● LIF Laser Induced Fluorescence光谱仪系统;● 环境监测光谱仪分析系统;● 镀膜监测光谱仪分析系统。)光谱系统;现在产品已经成功登陆欧美市场,并与多家国外光电公司建立了合作关系。这次技术转让使双方共同得益,大连化物所通过转让使得科研成果确实的转变成产品,实现了为提升中国科学仪器的设计生产水平并进一步研发具有国际先进水平的仪器设备,为国家科学仪器的研究与生产的现代化做出贡献宏愿的第一步。卓立汉光通过转让使得光谱产品线日趋完善,可以为客户提供更多的服务,同时也为赶超国际水平,迈出了坚实的一步;签字仪式结束后,李院士一行饶有兴趣的参观了卓立汉光的研发部、光谱试验室以及全部生产线。

  • 紫外光耐气候试验机的工作原理

    紫外光耐气候试验机的工作原理

    紫外光耐气候试验机是模拟自然光照环境下的紫外线照射和冷凝环境,对试验材料或物品进行加速耐气候试验,最后观察试验材料的老化情况。[url=http://www.dongguanruili.com/product/27.html][color=#333333]紫外光耐气候试验箱[/color][/url]主要可以模拟自然气候环境中的紫外光照射、雨淋、高温、潮湿、凝露、黑暗等气候环境条件,通过模拟这些环境,加速测试试验物品或材料的物理、化学稳定性。[align=center][img=紫外光耐气候试验机,545,399]http://ng1.17img.cn/bbsfiles/images/2017/06/201706191800_01_3225823_3.jpg[/img][/align][align=center]紫外光耐气候试验机[/align]  紫外光耐气候试验机的主要工作原理是模拟了日光中UV段光谱的荧光紫外光,并结合温度、湿度等调节装置,对材料造成变色、亮度、强度下降、开裂、剥落、粉化、氧化等损害试验,通过紫外光与湿气之间的协同作用,使得实验材料的单一耐光能力或耐湿能力减弱和失效,从而能够以最快速的情况测试材料的耐气候性能。  紫外光耐气候试验机主要分为四个功能系统,分别是光照系统、喷淋系统、凝露系统、加热系统。  光照系统采用了8只40W的紫外线荧光灯管作为发光源,平均分布在箱体两侧。由于荧光灯的光能量输出会随着时间的增长而逐渐衰减,会影响的试验的效果,所以在本紫外光耐气候试验机内部采用了灯管轮替的方式来将旧灯替换成新灯。所有的8只灯管中每隔四分之一的荧光灯寿命衰减时就由新灯来替换旧灯,这样以达到稳定的光能量输出。单支荧光灯的有效使用寿命可达1600~1800小时。  喷淋系统采用了人工控制功能,可自由调节喷淋强度及大小,也可以更换不同的喷头。此喷淋装置主要用于模拟下雨时雨水侵蚀的情况。  凝露系统采用了饱和水蒸气加湿冷凝的方法,在试验箱体中装有盛水盘,加热盛水盘以后使水受热蒸发成水蒸气。  加热系统采用了钛合金的加温电热管,可以快速升温加热。温度控制由微电脑自动控制,与光照系统独立,并结合使用。加热系统具备预防超温的功能。  紫外光耐气候试验机设备具有提供的阳光UV模拟,使用维护成本低廉,易于使用,设备采用控制自动运行,试验周期自动化程度高,灯光稳定性好,试验结果重现率高等特点。原文来自于瑞力检测http://www.dongguanruili.com/news/224.html

  • 【资料】紫外光谱仪与分子荧光的比较

    分子荧光与紫外光谱虽然从原理上来说是不同的,但从测定精度来说,分子荧光较紫外的精度要高,且它们所测定的成份很大一部分是相同的,测定的波数范围也基本上一致,那么分子荧光是不是有替代紫外的趋势?在购置了分子荧光的基础上还要不要紫外?

  • 【讨论】紫外灯检测荧光剂

    最近这两天广东这边的新闻台都在报道纸制品含荧光剂的事情结果让人很吃惊 很多大企业产品都被爆含有荧光剂其中就有KFC ABC等~~~~请教一下各位这个紫外灯测荧光剂准确率如何呢?下次出门买东西时是否应该随身带一个小紫外灯既可识别真假钱还能查荧光剂http://simg.instrument.com.cn/bbs/images/brow/emyc1010.gif

  • 【科技前线】激光二极管制造难题破解,能产生从近紫外到近红外更广泛波长

    [B][center]英破解塑料激光二极管制造难题新材料在提高导电性能的同时不影响发光性能[/center][/B]  英国帝国理工学院科学家在近期《自然• 材料》杂志上发表文章称,他们通过对一种被称为PFO的塑料材质的分子结构进行改进,最终解决了塑料激光二极管的制造难题。这意味着以塑料半导体作为材质的激光二极管有望很快应用于CD播放器等电子产品中。  目前在各类电子产品中被广泛应用的激光二极管都是由无机半导体材料制成的,如砷化镓、氮化镓及其相关合金等。电流的正负电荷在激光二极管的材料内部相结合产生出激光发生需要的初始光,之后,初始光被驱动多次来回穿梭于半导体材料,并且每穿过一次光强都会增加,那么一段时间以后,一束发散性小、强度高、定向性好的激光束就产生了。  在过去的20年里,尽管在有机分子半导体领域里也取得了很多的成就,例如一系列特别塑料的产生以及很多基于该类塑料的重要设备都得到了成功的应用,其中包括发光二极管、场效应晶体管以及光敏二极管等。然而,塑料激光二极管却在近十几年里没有取得任何的突破。直到现在,人们仍然普遍认为塑料半导体激光二极管几乎不可能生产出来,主要因为这一领域有一个重大阻碍:一种既可以维持足够大电流又可以提供有效初始光的塑料材质至今没有被发现或发明。  现在,帝国理工学院的科学家们找到了符合要求的材料。他们对日本住友化学公司合成的、与蓝光塑料PFO密切关联的塑料进行了研究,通过轻微改变该塑料的化学结构生产出一种新型材料,可以比原材料多传递200倍的电荷却不会损耗它的发光效能,同时也提高了激光的产生能力。  该研究小组带头人,帝国理工学院物理系多纳尔• 布拉德利教授说:“这是一次真正的突破。此前的研究大多是为电子设备和光电子设备设计聚合物,只涉及到加强材料的一种特质。然而,结果并不理想,因为当人们尝试去提高塑料半导体的发光性能时,导电性能会受到损害,而提高导电性能就会影响其发光性能。”  研究小组成员保罗• 斯塔夫里诺补充说,对PFO结构的修改则使研究人员成功地协调了这两个先前水火不容的特性,这意味着塑料发光二极管将成为现实。  塑料激光二极管的优势并不仅仅在于它的生产成本低廉以及其易整合的特性,它将比目前的激光二极管拥有更多优点。目前可用的激光二极管不能涵盖所有的可见光谱,这限制了显示器和分光镜的应用,而应用于波导和光学纤维的标准塑料则可以覆盖全部波长。这种新型塑料激光二极管也能够产生从近紫外到近红外的更广泛的波长。

  • 【求助】荧光和紫外的峰面积出现异常

    配置一个10mg/L的分析物标准溶液,用荧光和紫外检测器同时检测,荧光峰面积大于紫外峰面积,但是,把10mg/L的分析物标准溶液稀释到0.01mg/L,用一种萃取剂进行萃取,然后进样,结果是紫外的峰面积大于荧光的峰面积,萃取剂在停留时间处均没有特征峰出现,这怎么解释呢?

  • 【求助】如何求算药物的紫外光谱与如何求算药物的紫外光谱与牛血清白蛋白(BSA)荧光发射光谱的重叠积分?

    [size=4]我正在做一种生物碱与[/size][size=3][font=宋体]牛血清白蛋白(BSA)结合作用的荧光光谱研究,需要求算[/font][/size][size=3][font=宋体]生物碱分子的紫外光谱与牛血清白蛋白(BSA)[/font][/size][size=3][font=宋体]荧光发射光谱的重叠积分,以便求算药物分子与BSA结合的距离,文献上说明可以采用矩形分割法求出两光谱重叠区域的积分值,但用何软件如何求算我还不会。肯请此间高人出手指点,不胜感激!最好能将方法发到我的邮箱[email]zhongming2613@163.com[/email] 谢谢![img]http://ng1.17img.cn/bbsfiles/images/2010/03/201003121811_205351_1889038_3.gif[/img][/font][/size]

  • 【求助】测紫外吸收确定荧光物质激发波长范围?

    一种紫外激发荧光物质,不知道具体的激发波长,据说可先用紫外吸收谱确定一下。那么测紫外吸收的时候,样品被紫外线激发同时会产生荧光,荧光会不会被检测器一起检测到计入光强啊?要是被计入的话岂不有可能出现紫外不仅没吸收反而发射的结果?要是荧光不被计入,检测器之前就需要用单色器过滤的吧新手,大家多多指教!!!

  • X射线测硫和紫外荧光测硫

    X射线测硫和紫外荧光测硫同样是测定激发态回到基态的能量,根据测得能量与硫原子数成正比而得到硫含量。但对于二者的差别我搞不清楚。1、用X射线和紫外光让样品达激发态再跃迁回基态产生的荧光有区别吗?2、X射线测硫对进样量不苛刻要求,紫外荧光需要精准的进样量:X射线不需对样品做处理而紫外荧光需要将硫氧化成二氧化硫的形式再进检测器。造成这些差别的原因是什么?3、在二氧化硫从激发态跃迁回基态的同时氮氧化物也应该发生同样的过程产生荧光,那紫外荧光仪是怎么将二者分开的?

  • 【讨论】物质的紫外最大吸收波长是否可以作为荧光激发波长?

    【讨论】物质的紫外最大吸收波长是否可以作为荧光激发波长?

    荧光检测器是高压液相色谱仪常用的一种检测器。用紫外线照射色谱馏分,当试样组分具有荧光性能时,即可检出。其特点是选择性高,只对荧光物质有响应;灵敏度也高,最低检出限可达10-12g/ml,适合于多环芳烃及各种荧光物质的痕量分析。也可用于检测不发荧光但经化学反应后可发荧光的物质。如在酚类分析中,多数酚类不发荧光,为此先经处理使其变为荧光物质,而后进行分析。荧光属于光致发光,需选择合适的激发光波长(Ex)以利于检测。激发波长可通过荧光化合物的激发光谱来确定。激发光谱的具体检测办法是通过扫描激发单色器,使不同波长的入射光激发荧光化合物,产生的荧光通过固定波长的发射单色器,由光检测元件检测。最终得到荧光强度对激发波长的关系曲线就是激发光谱。在激发光谱曲线的最大波长处,处于激发态的分子数目最多,即所吸收的光能量也最多,能产生最强的荧光。当考虑灵敏度时,测定应选择最大激发波长。1、很多版友都因为没有荧光分光光度计而无法得到荧光扫描光谱,不知道如何选择激发波长,那么是否可以通过紫外扫描图谱的最大吸收波长来选择呢?2、荧光激发波长与荧光发射波长之间存在什么样的关系,发射波长又要如何选择呢?http://ng1.17img.cn/bbsfiles/images/2010/11/201011191150_260635_1638724_3.jpg

  • 荧光分光光度计和紫外可见分光光度计的区别

    1、荧光分光光度计有两个单色器,而一般紫外可见分光光度计只有一个单色器。2、荧光分光光度计的光源和检测器是成直角分布的,而紫外可见分光光度计是成一条直线的。3、荧光分光光度计是以氙灯做为光源,而紫外可见分光光度计是以氘灯作为紫外区光源,钨灯或卤钨灯作为可见光区的光源。4、荧光分光光度计的比色皿是四壁均为光学面,而紫外可见分光光度计仅为两面为光学面。

  • 分享下紫外可见分光光度计的组成和应用

    紫外可见分光光度计的组成和应用紫外-可见分光光度计由5个部件组成:①辐射源。必须具有稳定的、有足够输出功率的、能提供仪器使用波段的连续光谱,如钨灯、卤钨灯(波长范围350~2500纳米),氘灯或氢灯(180~460纳米),或可调谐染料激光光源等。②单色器。它由入射、出射狭缝、透镜系统和色散元件(棱镜或光栅)组成,是用以产生高纯度单色光束的装置,其功能包括将光源产生的复合光分解为单色光和分出所需的单色光束。③试样容器,又称吸收池。供盛放试液进行吸光度测量之用,分为石英池和玻璃池两种,前者适用于紫外到可见区,后者只适用于可见区。容器的光程一般为0.5~10厘米。④检测器,又称光电转换器。常用的有光电管或光电倍增管,后者较前者更灵敏,特别适用于检测较弱的辐射。近年来还使用光导摄像管或光电二极管矩阵作检测器,具有快速扫描的特点。⑤显示装置。这部分装置发展较快。较高级的光度计,常备有微处理机、荧光屏显示和记录仪等,可将图谱、数据和操作条件都显示出来。仪器类型则有:单波长单光束直读式分光光度计,单波长双光束自动记录式分光光度计和双波长双光束分光光度计。应用范围包括:①定量分析,广泛用于各种物料中微量、超微量和常量的无机和有机物质的测定。②定性和结构分析,紫外吸收光谱还可用于推断空间阻碍效应、氢键的强度、互变异构、几何异构现象等。③反应动力学研究,即研究反应物浓度随时间而变化的函数关系,测定反应速度和反应级数,探讨反应机理。④研究溶液平衡,如测定络合物的组成,稳定常数、酸碱离解常数等。

  • 化妆品中荧光剂的检测难道真的能用紫外灯检测出来吗?

    化妆品中荧光剂的检测难道真的能用紫外灯检测出来吗?

    前天在中国教育频道职来职往上看到一名学生蒋超,中大测试中心的,在舞上求职和化学相关的工作。在节目上这位同学谈了很多关于化妆品检测的内容,这位学生总体表现还算不错,特别是他对于产品质量这关态度非常明确,但是对于这位学生的一些化妆品荧光剂的检测常识方面还是存在部分错误,所以在这里想和大家谈一下本人对于化妆品的检测的一点己见。http://ng1.17img.cn/bbsfiles/images/2015/01/201501311944_533709_2983327_3.jpg首先关于这位学生提到的荧光增白剂可以直接简便检测,但其实这种物质的检测在《化妆品卫生规范2007版》中是没有明显提到的。但是对于大多数女性朋友在购买化妆面膜时,首要的还是在考虑这种物质的简易检测方法。根据国家标准《染料名词术语》(GB/T 6687-2006)2.21条款的规定,荧光增白剂是一种荧光染料,在紫外光照射下,可激发出蓝、紫光与基质上黄光互补而具有增白效果。荧光增白剂是能发出荧光,且具有“增白”效果的一大类物质的统称,涵盖了众多的化合物。据有关资料显示,世界上荧光增白剂的商品牌号有近2500个,分属15个基本结构类型。我国研究开发的不同结构的荧光增白剂有40多个。荧光增白剂通过光学上的补色作用起到“增白”效果。 “增白”效果是通过物理的光学现象而产生的,而非化学或生物反应。通过特定的紫外光源照射,可以判断试样是否能产生荧光现象,但是如果要检测试样是否含有荧光增白剂、含有哪种荧光增白剂、含量是多少,则要复杂得多,对试样处理、实验条件和环境、检测仪器和实验操作等都有更高和更严格的要求。很多人会直接用紫外线照射来进行的检测,但是这个方法是不科学的,紫外线照射能显示的是荧光反应,而有荧光反应的物质并不一定都是荧光剂。很多在自然界存在的天然物质,都有荧光反应,比如植物中的叶绿素、天然植物提取物、或是虾蟹的甲壳素、甚至于常喝的绿茶等等,在紫外线的照射下都会有荧光反应,这是天然的反应,却又不是荧光剂。所以这点我不赞同市场上的荧光剂是直接通过紫外灯能检测出来的。http://ng1.17img.cn/bbsfiles/images/2015/01/201501311947_533710_2983327_3.jpg

  • 【资料】紫外光耐候实验的原理

    紫外光耐气候试验设备是一种模拟光照的光老化试验设备,它主要模拟阳光中的紫外光。同时它还可以再现雨水和露水所产生的破坏。设备通过将待测材料曝晒放在经过控制的阳光和湿气的交互循环中,同时提高温度的方式来进行试验。设备采用紫外线荧光灯模拟阳光,同时还可以通过冷凝或喷淋的方式模拟湿气影响。 只需要几天或几周时间,设备可以再现户外需要数月或数年所产生的破坏。所造成的损害主要包括退色、变色、亮度下降、粉化、龟裂、变模糊、脆化、强度下降及氧化。设备提供的测试数据在对新材料的选择、对现有材料的改进或评估影响产品耐用性的组成变化等方面有极大的帮助。设备可以极好地预测产品将在户外遭遇的变化。 尽管紫外光(UV)只占阳光的5%,但是它却是造成户外产品耐用性下降的主要光照因素。这是因为阳光的光化学反应影响随着波长的减少而增加。因此在模拟阳光对材料物理性质的破坏影响时,不需要再现整个阳光光谱。在大多数情况下,只需要模拟短波的UV光即可。紫外光加速耐候试验机之所以采用UV灯的原因在于它们比其他的灯管更为稳定,并且能更好的再现试验结果。采用荧光UV灯模拟阳光对物理性质的影响,例如亮度下降、龟裂、剥落等方面,是最好的方法。有几种不同的UV灯可供选择。大多数的这些UV灯主要产生紫外光,而不是可见光和红外光。灯的主要差别体现在它们在各自波长范围内产生的UV总能量上的不同。不同的灯会产生不同的测试结果。实际的曝晒应用环境可以提示应选用哪种类型的UV灯。 UVA-340,模拟阳光紫外线的最佳选择 UVA-340,可极好地模拟临界短波波长范围的阳光光谱,即波长范围为295-360nm的光谱,UVA-340只产生在阳光中能找到的UV波长的光谱。 UVB-313,用于最大程度的加速试验 UVB-313可以很快地提供试验结果。它们所采用的短波长UV比目前地球上通常找到的UV光波更为强烈。尽管这些比自然波长短许多的UV光能够最大程度地加速试验,但它同时也会对某些材料造成不符和实际的退化破坏。 标准定义发射300nm以下的光能低于总输出光能2%的一种荧光紫外灯,通常称为UV-A灯;发射300nm以下的光能大于总输出光能10%的一种荧光紫外灯,通常称为UV-B灯;紫外区分UV-A波长范围为315-400nm;UV-B波长范围为280-315nm; 在户外的材料与湿气接触的时间,每天可以长达12小时,研究结果表明造成这种户外潮湿的主要原因是露水,而不是雨水。紫外光加速耐候试验机通过一系列独特的冷凝原理来模拟户外的湿气影响。在设备的冷凝循环圈中,在箱体的底部有一蓄水箱,并对其进行加热来产生水汽。热蒸汽使试验箱内的相对湿度维持在100%,并且保持一个相对高温。产品的设计确保测试试件实际上构成试验箱的侧壁,从而试件的背面则暴露在室内环境空气中。室内空气的冷却效用导致试件表面温度下降到低于蒸汽温度几度的水平。这一温差的出现导致试件在整个冷凝循环过程中,其表面始终有冷凝生成的液态水。这种冷凝产物是很稳定的纯净蒸馏水。这种纯净水提高了试验的再现率,而同时避免了水渍问题。 由于户外曝晒接触潮湿的时间每天可以长达12小时,因此紫外光加速耐候试验机的潮湿周期一般持续几小时。我们建议每一冷凝周期至少持续4小时。注意到设备中的UV曝晒和冷凝曝晒是分别进行的,与实际气候条件是一致的。 对于某些应用过程而言,水喷淋能更好的模拟最终使用的环境条件。水喷淋在模拟由于温度剧变和由于雨水冲刷所造成的机械侵蚀是极其有用的。紫外光加速耐候试验机/喷淋型就是为再现这种条件而专门设计的。 由于经常遭到来自雨水的冲刷,木材的涂料层,包括油漆和着色剂,会出现相应的侵蚀现象。近期研究结构表明,这种雨水冲刷动作可以将材料表面有防降解作用的涂料层冲刷掉,从而将材料本身直接曝晒在UV和水分的破坏性影响之下。这一过程可以重复多次,从而导致一种材料退化现象,而单靠冷凝方式是无法再现的。 荧光灯的优点在于:快速获得试验结果;简化的光照度控制;稳定的光谱;只需很少的维护;价格便宜,运行费用合理。 地球上的陆地只有很少一部分,一大半的面积是海洋,因此海洋气候是对人类生活和材料产品影响很大的一种气候环境。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制