当前位置: 仪器信息网 > 行业主题 > >

自动酵母细胞计

仪器信息网自动酵母细胞计专题为您提供2024年最新自动酵母细胞计价格报价、厂家品牌的相关信息, 包括自动酵母细胞计参数、型号等,不管是国产,还是进口品牌的自动酵母细胞计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合自动酵母细胞计相关的耗材配件、试剂标物,还有自动酵母细胞计相关的最新资讯、资料,以及自动酵母细胞计相关的解决方案。

自动酵母细胞计相关的论坛

  • 【第三届原创参赛】啤酒酵母细胞自溶技术破壁研究

    【第三届原创参赛】啤酒酵母细胞自溶技术破壁研究

    维权声明:本文为gl19860312原创作品,本作者与仪器信息网是该作品合法使用者,该作品暂不对外授权转载。其他任何网站、组织、单位或个人等将该作品在本站以外的任何媒体任何形式出现均属侵权违法行为,我们将追究法律责任。 本实验室主要工作就是:微生物发酵与代谢调控 、蛋白的分离纯化 、生物材料的研发与生产( 化妆品 、面膜、人工血管 、人工骨................)http://ng1.17img.cn/bbsfiles/images/2010/12/201012061858_264950_2019107_3.jpg啤酒酵母细胞自溶技术破壁研究摘要:研究了PH、温度、食盐浓度三个因素对啤酒酵母细胞破壁的影响,确定出最佳的自溶法破壁条件 。进而为分离啤酒废酵母中的有效活性成分奠定了基础。关键词:啤酒酵母;破壁;自溶The Research of Autolysis on the Beer Yeast Cells wallAbstract:This paper researched the condition of autolysis on the waste yeast cells wall with three factors (pH 、Temperature 、Salt density) and determined the best condition based on autolysis. And build basis for separating the activity forms from beer waste yeasts.Key words: The beer yeast; Breaking Cells wall; Autolysis引言啤酒酵母(S.csrsviside)属于真菌门酵母属,多数为单细胞微生物,细胞呈圆形或卵圆形,革兰氏染色呈阳性G+。啤酒酵母细胞是由细胞壁、细胞膜、液泡、颗粒和线粒体等部分组成,细胞年幼的时候细胞壁很薄,所以不明显;细胞年老时,细胞壁较厚。啤酒酵母细胞内不但含有丰富的蛋白质、维生素、葡聚糖及甘露聚糖等营养及保健成分,可作为食用单细胞蛋白,此外还含有辅酶I、细胞色素,卵磷脂、RNA,,这些物质或其降解产物及衍生物如氨基酸制剂和核苷酸及核酸制剂等在生物化学、医药及保健食品中最有重要的作用。由于啤酒废酵母价格便宜,因此可利用啤酒废酵母来提取、制备这些物质。啤酒废酵母(waste brewer's yeast)是啤酒生产的副产物,是指啤酒酿造后沉降的酵母泥,主要是由大量的弱细胞和死细胞组成。在啤酒生产过程中,每生产 100吨啤酒大约有1-1.5吨废酵母 (以干重计)产生。传统的处理方法,是弃置不用或作为饲料处理,直接排放到河流湖泊中,将造成环境污染,同时也是对财富的浪费;因其具有坚韧的细胞壁和特有的酵母臭,适口性差,不易消化和吸收,故烘干作为饲料用的经济效益不高。充分利用啤酒废酵母可以有效地减轻污染,实现资源的二次转化,也可产生巨大的经济效益,如开发酵母抽提物。 为了增加酵母抽提物产量国内外同行做出不同努力,开展了有些研究。目前关于啤酒酵母破壁的研究很多,大体可归纳为:化学破壁(酸解、碱解)、物理破壁(液体剪 切、固体剪切等)、生物破壁(酶解、自溶)。其中,化学破壁不仅会造成一些营养成分的破坏,而且为有效成分的提取增加困难;物理破壁虽然方法简单、成本低,能完好保存营养成分,但其破壁效果较差;生物破壁中的酶解法会增加提取成本,故均不能大规模广泛的应用。而采用自溶法进行细胞破壁是一种简便易行的操作过程,通过确定啤酒酵母细胞最适合的自溶条件,可以建立一套利用酵母细胞生产酵母抽提物的工艺和方法,旨在为啤酒酵母的综合利用寻求一种新的方法,为工业化生产提供理论基础和实践指导。1.4实验方法 工艺流程 啤酒废酵母(保藏)—— 活化、两次斜面培养—— 接种、平板划线——摇瓶培养——取对数期的酵母细胞——做稀释梯度——做影响因素(温度、食盐浓度、pH并固定时间60分钟)的实验-——做正交试验——镜检(血球计数法)——计算啤酒酵母细胞的破碎率——得到自溶的最佳工艺参数1.5啤酒废酵母自溶条件的确定酵母自溶的实质是酵母细胞内的蛋白质在自身蛋白酶的作用下,降解为游离的氨基酸,那么,一切影响酶促反应的因素均影响酵母细胞的自溶,如自溶温度、食盐浓度、pH值、自溶时间等。自溶法是以存在酶活性的新鲜活酵母为原料,利用酵母细胞本身的酶系,在一定条件下,将酵母体内的糖类物质、蛋白质和核酸分解为还原糖、氨基酸、肤类、核昔酸等小分子物质并从酵母细胞内抽提出来的一种方法。利用自溶法生产的酵母抽提物,蛋白质分解率高,游离氨基酸含量高,风味好,成本较低,但呈味核昔酸含量低.目前,欧美及我国所生产的酵母抽提物绝大部分都是采用这种方法。[font=仿宋_GB2

  • 【原创大赛】微流控芯片中的酵母细胞

    【原创大赛】微流控芯片中的酵母细胞

    http://ng1.17img.cn/bbsfiles/images/2011/12/201112312345_343455_1705310_3.jpg拍摄时间:2011年8月样品名称:微流控芯片中的酵母细胞所使用的显微镜:倒置显微镜以及数码相机的生产厂家和型号:北京奥特伟业光学仪器有限公司 奥特三目倒置生物显微镜 BDS200物镜及目镜放大倍数:10×10照明方式:明场

  • 【转帖】阿凡达的触须?酵母细胞“生物电路”研制成功

    《科技日报》报道据美国物理学家组织网12月15日(北京时间)报道,瑞典和西班牙科学家使用转基因酵母细胞制造出了能够互相交流的“生物电路”,未来,科学家有望使用人体细胞构建出更复杂的系统,来检测人体健康状况。相关研究发表在12月9日出版的《自然》杂志上。  作为欧盟“分子计算机”项目的一部分,瑞典哥德堡大学和西班牙巴塞罗那庞培法布拉大学的科学家在哥德堡大学施特芬·霍曼教授的领导下进行了该项研究。  哥德堡大学细胞和分子生物学系肯塔罗·弗瑞卡瓦表示,尽管经过重新编程的细胞不能像真正的计算机做同样的工作,但该研究为使用这样的细胞建立复杂的系统铺平了道路。未来人体健康状况有望通过这种“分子对分子”的交流系统来探测,将疾病消灭在萌芽阶段;或者将其作为生物传感器来探测污染物,分解环境中的有毒物质等。  合成生物学是一个方兴未艾的研究领域,其中的一个应用是设计出自然界中不存在的生物系统。例如,研究人员已经成功地使用转基因细胞构建出许多不同的人工连接装置,诸如电路断路器、振荡器和传感器等。尽管这些人工连接器具有很大的潜力,但迄今为止还存在很多技术限制,主要原因是,分处不同细胞中的人工系统很少能按科学家的期望来工作,因此影响了最终结果。  该研究团队使用酵母细胞制造出了合成电路,细胞之间可通过基因调控进行连接。他们对这些酵母细胞进行了基因修改,使它们能够基于设定的标准来感应周遭环境,并通过分泌出分子向其它酵母细胞发送信号。因此,这些不同的细胞能像乐高玩具的积木块一样连接在一起,产生更复杂的电路。与使用一种转基因酵母细胞制成的结构相比,这种由不同转基因酵母细胞组成的结构能完成更复杂的“电子功能”。   尽管迄今世界上还没有一台真正意义上的生物计算机,但许多实验室都在以极大热情追逐这个梦想。在如何实现生物计算这个根本问题上众口异词,以有机分子元件代替目前的半导体逻辑、存储元件便是其中之一。用酵母细胞制成“生物电路”当然是一种有益尝试,不过今天来判断其前景还为时太早。也许现有方案将来都派不上用场,最终脱颖而出的却是基于某种新材料的全新设计。完成这一伟大工程即使跨越到下个世纪,也不能算长。

  • 【转帖】Nature:转基因酵母细胞制造出能互相交流的“生物电路”

    Nature:转基因酵母细胞制造出能互相交流的“生物电路”生物电路, 转基因, Nature, 酵母, 细胞典和西班牙科学家使用转基因酵母细胞制造出了能够互相交流的“生物电路”,未来,科学家有望使用人体细胞构建出更复杂的系统,来检测人体健康状况。相关研究发表在12月9日出版的Nature杂志上。作为欧盟“分子计算机”项目的一部分,瑞典哥德堡大学和西班牙巴塞罗那庞培法布拉大学的科学家在哥德堡大学施特芬·霍曼教授的领导下进行了该项研究。哥德堡大学细胞和分子生物学系肯塔罗·弗瑞卡瓦表示,尽管经过重新编程的细胞不能像真正的计算机做同样的工作,但该研究为使用这样的细胞建立复杂的系统铺平了道路。未来人体健康状况有望通过这种“分子对分子”的交流系统来探测,将疾病消灭在萌芽阶段;或者将其作为生物传感器来探测污染物,分解环境中的有毒物质等。合成生物学是一个方兴未艾的研究领域,其中的一个应用是设计出自然界中不存在的生物系统。例如,研究人员已经成功地使用转基因细胞构建出许多不同的人工连接装置,诸如电路断路器、振荡器和传感器等。尽管这些人工连接器具有很大的潜力,但迄今为止还存在很多技术限制,主要原因是,分处不同细胞中的人工系统很少能按科学家的期望来工作,因此影响了最终结果。

  • 天津工生所等通过构建人工酵母细胞合成药用萜类化合物

    萜类化合物是分子式为异戊二烯单位的倍数的烃类及其含氧衍生物,在自然界广泛存在。目前发现的萜类就超过5万多种,其中许多是生物活性成分,如单萜(薄荷醇、芳樟醇)、倍半萜(青蒿素、圆柚酮)、二萜(紫杉醇、丹参酮ⅡA、银杏内酯)、三萜(人参皂苷、三七皂苷、甘草皂甙)、四萜 (胡萝卜素类)、萜类生物碱(石斛碱、龙胆碱、乌头碱和利血平)等。药用植物来源的萜类化合物有巨大的应用潜力和市场前景,尤其是二萜化合物(丹参酮ⅡA、雷公藤内酯醇、芫花酯甲、芫花酯乙、冬凌草甲素、紫杉醇)和三萜化合物(人参皂苷Rh2、人参皂苷Rg3)。目前萜类化合物的生产方法主要有三种:植物提取法、化学合成法和微生物发酵法。萜类化合物在植物中的含量通常很低,植物提取法对野生植物资源易造成严重破坏;化学合成法工艺流程复杂、能耗高、污染大;相比之下,微生物发酵法不受原料的限制、生产过程绿色清洁,具有很大的优势。  合成生物学的发展为实现微生物发酵生产药用萜类有效成分提供了有力的支撑。中科院天津工业生物技术研究所张学礼研究员课题组与中国中医科学院中药研究所黄璐琦研究员课题组合作,结合自身优势,共同开展人工细胞合成药用萜类化合物的研究。目前在萜类化合物的合成途径鉴定、异源基因表达的密码子优化、合成途径的标准化组装、合成途径的精细调控、发酵工艺的优化等方面进行了深入的研究,成功设计开发了一套组合调控酿酒酵母萜类合成途径的功能模块(tHMGR-upc2.1和ERG20-BTS1-SaGGPS)。通过合理搭配,显著提高了人工酵母细胞合成二萜及三萜化合物的能力(如图)。丹参酮ⅡA合成前体次丹参酮二烯(Miltiradiene)的产量达488 mg/L,三萜角鲨烯(Squalene)产量达852 mg/L。  该研究为药用二萜和三萜化合物的生物合成途径解析和异源生物合成提供了坚实的基础。  研究成果已经被Biotechnology & Bioengineering接受发表。该研究获得973项目(2011CBA00806)、中科院百人计划和国家自然科学基金(81072990)的支持。(天津工业生物技术研究所)

  • JXFSTPRP高通量组织研磨仪在低温破碎酵母细胞中的使用说

    JXFSTPRP高通量组织研磨仪在低温破碎酵母细胞中的使用说

    条形酵母是将酵母通过小孔注入到装有液体氮的气罐中压缩制成的。将有1mm的筛子扣入到装有10-20 ml球状酵母的50ml破碎罐的顶部,经过离心破碎变成了2L的条状物。压力是由人工用60ml的自由活塞注射器注入罐内,条状可以在-80C°下被保存。 使用上海净信JXFSTPRP全自动样品快速研磨仪对酵母进行研磨,将不锈钢钢珠和样本分别装入研磨钢罐中,然后放入到用聚苯乙烯盒子盛放的液氮中,当预冷冻过程结束后,时间一分钟左右,或者直到原来沸腾的液体氮恢复平静,将破碎罐从液氮中取出,并要将破碎罐沾有的液体全部清理干净,以避免在破碎过程中发生爆炸。研磨钢罐最好用坩埚钳或大镊子夹取出来,而且通常要带经过冷冻的手套,冻伤以免。 研磨钢罐中酵母量不要太多,否则可能会研磨不充分,留有残渣,一般为研磨钢罐的1/3左右为宜,把刚从液氮中取出的钢罐安装在净信JXFSTPRP全自动样本快速研磨仪中,分5次进行研磨,设置频率55hz,20s,每次间隔都把研磨罐放入液氮中冷却。 在每次破碎后都要将破碎罐取下,放入到液氮中进行冷冻,当液氮不在沸腾时,可以将钢罐取出,破碎可以继续进行。 经过100秒的破碎后,我们通过显微镜观察可以发现95%的酵母已经达到破碎效果,用于下一步的实验过程。剩余的酵母可以储存,备用。研磨钢罐和钢珠都可重复利用,破碎罐和破碎球可以用温的乙醇清洗,放到干燥处贮存。http://ng1.17img.cn/bbsfiles/images/2015/02/201502051131_534361_2983531_3.jpg http://ng1.17img.cn/bbsfiles/images/2015/02/201502051131_534362_2983531_3.jpg

  • 酵母菌细胞壁

    下列哪类物质是酵母菌细胞壁主要的成分()。 A、甘露聚糖 B、脂质 C、无机盐 D、蛋白质

  • 【原创】酵母葡聚糖

    β-葡聚糖的活性结构是由葡萄糖单位组成的多聚糖,它们大多数通过β-1,3结合,这是葡萄糖链连接的方式。它能够活化巨噬细胞、嗜中性白血球等,因此能提高白细胞素、细胞分裂素和特殊抗体的含量,全面刺激机体的免疫系统。那么,机体就有更多的准备去抵抗微生物引起的疾病。β-葡聚糖能使受伤机体的淋巴细胞产生细胞因子(IL-1)的能力迅速恢复正常,有效调节机体免疫机能。大量实验表明,β-葡聚糖可促进体内IgM抗体的产生,以提高体液的免疫能力。这种葡聚糖活化的细胞会激发宿主非专一性防御机制,故应用在肿瘤、感染病和治疗创伤方面深受瞩目。经特殊步骤萃取且不含内毒素的β-1,3-葡聚糖在美国FDA已认定是一种安全的物质,可添加在一般食品,许多报导显示老鼠口服酵母β-1,3-葡聚糖,可增加强腹膜细胞抗菌之吞噬作用。酵母葡聚糖是存在于酵母细胞壁中的一种具有增强免疫力活性的多糖——β-葡聚糖。β-葡聚糖广泛存在于各种真菌和植物,如香菇、灵芝、燕麦中,是它们发挥保健作用的主要功效物质。而酵母葡聚糖的免疫增强活性更强,并具有改善血脂、抗辐射、改善肠道功能的作用。

  • 【资料】德国科学家成功获取酵母菌细胞高清三维图片

    德国科学家日前成功获取了显示单细胞酵母菌内部构成的高分辨率三维图片,为研究更高级别的生物提供了新的依据。 据此间媒体30日报道,位于海德堡的欧洲分子生物实验室的科学家们使用电子束从不同角度照射酵母菌细胞,再通过电脑组合完成了这张细胞内部结构高清图片。图片除了显示细胞核 及其他组成部分外,还可以显示细胞内细微的丝状物。通过类似的方式,科学家也获取了人脑细胞内部结构的图片。 科学家认为,如同人体由骨骼支撑一样,一个细胞内部的组成部分也决定了细胞的结构和形状。单细胞的酵母菌被认为能够为研究包括人类在内的高级生物提供依据。来源:新华网

  • 【信息】转基因酵母能进行多种糖分混合发酵

    据美国物理学家组织网12月27日报道,美国伊利诺伊大学香槟分校食品科学与人类营养系、加州大学劳伦斯伯克利国家实验室和英国石油公司(BP)的科学家表示,他们对酿酒酵母进行了基因改造,新得到的酵母菌株可以发酵葡萄糖、纤维二糖(葡萄糖的前体物,由两个结合在一起的葡萄糖组成)和木糖,能更好更多地把植物发酵成替代燃料乙醇。相关研究发表在最新一期的美国《国家科学院院刊》上。酵母以糖为生,并在这个过程中能产生很多对人来说是“宝物”的废物——乙醇和二氧化碳,因此生物燃料工业也使用酵母将植物糖转变为生物乙醇。然而,大多数酵母无法将植物中的葡萄糖、纤维二糖和木糖这三种糖全部转化成有用的燃料,比如,酿酒酵母能很好地发酵葡萄糖,但对木糖却有心无力,这使得利用酵母制造生物燃料的成本居高不下。之前,科学家对酵母菌种进行基因改造,让其代谢木糖,但速度很慢,效率过低。研究小组成员之一、伊利诺伊大学食品科学和人类营养学教授金泳恕(音译)表示,经过基因改造的酵母无法发酵木糖的主要问题是,它接触木糖之前会吸收所有葡萄糖,酵母表面的葡萄糖转运蛋白更愿意同葡萄糖依附在一起。在此项新研究中,基因改造后的酿酒酵母可以同时将纤维二糖和木糖转化为乙醇。转化效率和转化得到的乙醇数量都提高了一倍,这主要归结于混合发酵的协同作用。金泳恕表示,新酵母菌种将木糖转化为乙醇的效率至少比目前已知酵母菌高20%,使其成为最好的发酵木糖的细菌。研究团队通过对酿酒酵母做出几个关键的改进而获得了这样的结果。首先,他们给予这种酵母一个纤维二糖转运蛋白,这意味着其能将纤维二糖直接带入细胞中,而只有当纤维二糖进入到细胞内部时,它才会被转化为葡萄糖。这种方法可以战胜酿酒酵母本身对葡萄糖的偏好,从而专注于将木糖吸收进酵母细胞中。接着,研究人员将从一个消耗木糖的酵母中提取的3种蛋白质插入酿酒酵母中,由此提高了新酵母菌种代谢木糖的速度和效率。他们也对一种人造的同功酶进行了基因修改,让木糖代谢的正常中间产物木糖醇积聚的数量最少。最后,该研究团队使用“进化工程”让新菌种利用木糖的能力达到最大。研究人员表示,混合发酵的成本优势也很明显,其乙醇产量也高于工业标准,这种研究很快将被商业化。

  • 【转帖】酵母双杂交系统的发展和应用

    随着对多种重要生物的大规模基因组测序工作的完成,基因工程领域又迎来了一个新的时代---功能基因组时代。它的任务就是对基因组中包含的全部基因的功能加以认识。生物体系的运作与蛋白质之间的互相作用密不可分,例如:DNA合成、基因转录激活、蛋白质翻译、修饰和定位以及信息传导等重要的生物过程均涉及到蛋白质复合体的作用。能够发现和验证在生物体中相互作用的蛋白质与核酸、蛋白质与蛋白质是认识它们生物学功能的第一步。   酵母双杂交技术作为发现和研究在活细胞体内的蛋白质与蛋白质之间的相互作用的技术平台,在近几年来得到了广泛运用。酵母双杂交系统是在真核模式生物酵母中进行的,研究活细胞内蛋白质相互作用,对蛋白质之间微弱的、瞬间的作用也能够通过报告基因的表达产物敏感地检测得到,它是一种具有很高灵敏度的研究蛋白质之间关系的技术。大量的研究文献表明,酵母双杂交技术既可以用来研究哺乳动物基因组编码的蛋白质之间的互作,也可以用来研究高等植物基因组编码的蛋白质之间的互作。因此,它在许多的研究领域中有着广泛的应用。本文就酵母双杂交的技术平台和应用加以介绍。  酵母双杂交系统的建立是基于对真核生物调控转录起始过程的认识。细胞起始基因转录需要有反式转录激活因子的参与。反式转录激活因子,例如酵母转录因子GAL4在结构上是组件式的(modular),往往由两个或两个以上结构上可以分开,功能上相互独立的结构域(domain)构成,其中有DNA结合功能域(DNA binding domain,DNA-BD)和转录激活结构域(activation domain,DNA-AD)。这两个结合域将它们分开时仍分别具有功能,但不能激活转录,只有当被分开的两者通过适当的途径在空间上较为接近时,才能重新呈现完整的GAL4转录因子活性,并可激活上游激活序列(upstream activating sequence, UAS)的下游启动子,使启动子下游基因得到转录。  根据这个特性,将编码DNA-BD的基因与已知蛋白质Bait protein的基因构建在同一个表达载体上,在酵母中表达两者的融合蛋白BD-Bait protein。将编码AD的基因和cDNA文库的基因构建在AD-LIBRARY表达载体上。同时将上述两种载体转化改造后的酵母,这种改造后的酵母细胞的基因组中既不能产生GAL4,又不能合成LEU、TRP、HIS、ADE,因此,酵母在缺乏这些营养的培养基上无法正常生长。当上述两种载体所表达的融合蛋白能够相互作用时,功能重建的反式作用因子能够激活酵母基因组中的报告基因HIS、ADE、LACZ、MEL1,从而通过功能互补和显色反应筛选到阳性菌落。将阳性反应的酵母菌株中的AD-LIBRARY载体提取分离出来,从而对载体中插入的文库基因进行测序和分析工作。在酵母双杂交的基础上,又发展出了  酵母单杂交、酵母三杂交和酵母的反向杂交技术。它们被分别用于核酸和文库蛋白之间的研究、三种不同蛋白之间的互作研究和两种蛋白相互作用的结构和位点。  基于酵母双杂交技术平台的特点,它已经被应用在许多研究工作当中。 1、利用酵母双杂交发现新的蛋白质和蛋白质的新功能  酵母双杂交技术已经成为发现新基因的主要途径。当我们将已知基因作为诱饵,在选定的cDNA文库中筛选与诱饵蛋白相互作用的蛋白,从筛选到的阳性酵母菌株中可以分离得到AD-LIBRARY载体,并从载体中进一步克隆得到随机插入的cDNA片段,并对该片段的编码序列在GENEBANK中进行比较,研究与已知基因在生物学功能上的联系。另外,也可作为研究已知基因的新功能或多个筛选到的已知基因之间功能相关的主要方法。例如:Engelender等人以神经末端蛋白alpha-synuclein 蛋白为诱饵蛋白,利用酵母双杂交CLONTECH MATCHMARKER SYSTEM 3为操作平台,从成人脑cDNA文库中发现了与alpha-synuclein相互作用的新蛋白Synphilin-1,并证明了Synphilin-1与alpha-synuclein 之间的相互作用与帕金森病的发病有密切相关。为了研究两个蛋白之间的相互作用的结合位点,找到影响或抑制两个蛋白相互作用的因素,Michael等人又利用酵母双杂交技术和基因修饰证明了alpha-synuclein的1-65个氨基酸残基和Synphilin-1的349-555个氨基酸残基之间是相互作用的位点。研究它们之间的相互作用位点有利于基因治疗药物的开发。  2、利用酵母双杂交在细胞体内研究抗原和抗体的相互作用  利用酶联免疫(ELISA)、免疫共沉淀(CO-IP)技术都是利用抗原和抗体间的免疫反应,可以研究抗原和抗体之间的相互作用,但是,它们都是基于体外非细胞的环境中研究蛋白质与蛋白质的相互作用。而在细胞体内的抗原和抗体的聚积反应则可以通过酵母双杂交进行检测。例如:来源于矮牵牛的黄烷酮醇还原酶DFR与其抗体scFv的反应中,抗体的单链的三个可变区A4、G4、H3与抗原之间作用有强弱的差异。Geert等利用酵母双杂交技术,将DFR作为诱饵蛋白,编码抗体的三个可变区的基因分别被克隆在AD-LIBRARY载体上,将BD-BAIT载体和每种AD-LIBRARY载体分别转化改造后的酵母菌株中,并检测报告基因在克隆的菌落中的表达活性,从而在活细胞的水平上检测抗原和抗体的免疫反应。  3、利用酵母双杂交筛选药物的作用位点以及药 物对蛋白质之间相互作用的影响  酵母双杂交的报告基因能否表达在于诱饵蛋白与靶蛋白之间的相互作用。对于能够引发疾病反应的蛋白互作可以采取药物干扰的方法,阻止它们的相互作用以达到治疗疾病的目的。例如:Dengue病毒能引起黄热病、肝炎等疾病,研究发现它的病毒RNA复制与依赖于RNA的RNA聚合酶(NS5)与拓扑异构酶NS3,以及细胞核转运受体BETA-importin的相互作用有关。研究人员通过酵母双杂交技术找到了这些蛋白之间相互作用的氨基酸序列。如果能找到相应的基因药物阻断这些蛋白之间的相互作用,就可以阻止RNA病毒的复制,从而达到治疗这种疾病的目的。  4、利用酵母双杂交建立基因组蛋白连锁图(Genome Protein Linkage Map)众多的蛋白质之间在许多重要的生命活动中都是彼此协调和控制的。基因组中的编码蛋白质的基因之间存在着功能上的联系。通过基因组的测序和序列分析发现了很多新的基因和EST序列,HUA等人利用酵母双杂交技术,将所有已知基因和EST序列为诱饵,在表达文库中筛选与诱饵相互作用的蛋白,从而找到基因之间的联系,建立基因组蛋白连锁图。对于认识一些重要的生命活动:如信号传导、代谢途径等有重要意义。

  • 【原创】超微量细胞自动分析技术

    超微量细胞自动分析技术在常规的细胞学实验中,无论是对于细胞培养中的细胞数量检测,还是药物对于细胞的毒性杀伤作用研究,或者是在下游实验前的细胞密度确认,都需要对细胞进行计数,有些时候还需要以染色的方法进行细胞存活率分析。目前,大部分实验室仍旧采用的是显微镜结合细胞计数板的计数方法,虽然成本低廉,但是操作繁琐,大部分细胞需要先稀释再计数,并且计数结果因人而异,系统偏差较大,另外计数板需要清洗,一旦清洗不够彻底会带来样品的交叉污染,因此,一旦样品较多就会消耗大量时间,影响研究的效率。也有一些实验室购置了能够自动进行细胞计数的仪器,可是当前的细胞计数仪均存在需要专门的试剂清洗以及样品进样针容易被细胞团堵塞等问题,无论是使用成本还是维护成本都居高不下。这些问题的存在不仅影响了自动化细胞计数的普及,同时也继续使细胞计数成为常规研究中的速度瓶颈。一款使用维护成本低,自动化程度高的细胞计数仪成为了许多细胞学研究者的呼声。根据这些用户的需求,GE Healthcare Life Sciences 最新推出了具有革命性进化设计的全自动细胞计数分析仪--Cytorecon,该仪器采用了高分辨率的CCD成像技术及自動軟件分析功能,仪器可以快速完成包括贴壁细胞、悬浮细胞、白细胞、培养细胞、酵母细胞等细胞样品的计数和浓度计算,结合成熟的台盼蓝染色技术,还可以快速完成细胞存活率的分析。除了细胞样品以外,仪器出色的性能甚至支持一些细菌和微生物样品的浓度计算。在进样的设计上,Cytorecon采用了20孔的特制样品盘设计,只需要用[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff][url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url][/color][/url]在样品盘上点上11ul样品,即可直接检测。即使超过107浓度的细胞,也能不需稀释即完成浓度分析。采用样品盘进样不仅通量高,而且一次规避了后续运行需要购买专门试剂、样品需要稀释、进样针会堵塞、不能同时测多个样品等一系列传统细胞计数仪器存在的问题。仪器内置了方便上手的控制分析软件,通过简单的参数设置就可以设定拍摄的样品数量,以及完成细胞大小、对比度和存活性的定义。有了如此方便的帮手,相信细胞计数将会变得无比轻松,您再也无需枯燥地对着显微镜,以损耗视力的代价通过人工逐个逐个进行细胞计数了。

  • 【讨论】酵母葡聚糖的抗辐射作用详解

    【讨论】酵母葡聚糖的抗辐射作用详解

    http://ng1.17img.cn/bbsfiles/images/2011/03/201103211307_284139_1641058_3.jpg 以上这个图是酵母葡聚糖对致死剂量的辐射的保护作用研究,小鼠经致死剂量的辐射后,观察其存活率。红色曲线是服用了酵母葡聚糖的小鼠存活率,蓝色是只用生理盐水的空白对照样小鼠。可以看到10天以后,服用了酵母葡聚糖的小鼠存活率显著高于空白对照样。到第16天后,空白样组小鼠没有存活,而服用酵母葡聚糖的小鼠还有50%左右存活。http://ng1.17img.cn/bbsfiles/images/2011/03/201103211308_284140_1641058_3.jpg 人在遭受辐射后,白细胞水平会大大降低,严重影响免疫系统。这是酵母葡聚糖对辐射后白细胞水平恢复的作用研究。可以看到,服用酵母葡聚糖后,第10天开始,白细胞水平开始恢复,而空白对照样在第15天才开始恢复。http://ng1.17img.cn/bbsfiles/images/2011/03/201103211309_284143_1641058_3.jpg 以下是我们酵母多糖胶囊对辐射小鼠白细胞计数的影响研究。可以看到辐照后小鼠的白细胞数都会显著降低,而服用酵母多糖的小鼠白细胞数比空白对照组较高,说明酵母多糖对辐射有保护作用。在30天后,酵母多糖组的小鼠白细胞数恢复较快,比对照组显著高。

  • 毕氏酵母氯化锂转化法

    试剂1M LiCl 50% PEG3350 (氯化锂转化法只能PEG3350,不能用PEG8000,PEG3350在北京莱博生物有售,80元/100克)2mg/ml salmon sperm DNA / TE(10mM Tris-Cl, pH8.0, 1.0mM EDTA)-20℃保存注:醋酸锂对毕氏酵母无效,对酿酒酵母有效,仅氯化锂有效;PEG3350可屏蔽高浓度LiCl的毒害作用。感受态毕氏酵母的制备1. 接种Pachia pastoris到50ml YPD培养基中,30℃摇菌过夜(约24~28h)培养到OD值为0.8~1.0(约108 Cells/ml);培养基里有流沙样的菌体在流动2. 收获细胞,用25ml无菌水洗涤一次,室温下1500g离心10min;3. 重悬细胞于1ml 100mM LiCl溶液中,将悬液转入1.5ml离心管;4. 离心机最大速度离心15秒沉淀菌体,重悬菌体于400ul 100mM LiCl溶液中;5. 按50ul/管分装,立即进行转化;注:不要将感受态酵母菌冰浴;

  • 首个哺乳动物单细胞计算器问世

    多功能血细胞计数器是由数字处理芯片、集成电路,以及显示屏、按键组成,与各种显微镜配合使用,由微电脑进行自动分类计数的数字化专用产品,能对骨多功能血细胞计数器髓细胞、外周血细胞、小巨核细胞进行全面的分类计数并自动计算出各项指标,能对细胞化学染色后的积分进行计算,并兼有常用的四则运算。 哺乳动物细胞现在能够执行电子计算机的功能:进行逻辑运算。来自瑞士的研究人员给细胞装配了一个复杂的基因网络使得它不仅仅能完成如1加1的简单任务。相关研究论文发表在6月3日的《自然》(Nature)杂志上。 这项研究由来自瑞士苏黎世联邦理工学院生物系统系生物技术与生物工程学教授Martin Fussenegger领导。在文章中,研究人员构建了一个能够执行逻辑运算的基因网络,并由此启动了特异的代谢步骤。“我们开发出了第一个真正的细胞计算器,”Fussenegger说。 利用生物成分,研究人员开发出了一套不同的元件可在不同的组合中相互连接,并随后执行逻辑运算。这些术语称之为“逻辑门”的电路元件利用了苹果分子根皮(phloretin)和抗生素红霉素作为输入信号。基于布尔逻辑(Boolean logic)进行计算。 通过组合和相互连接几个逻辑门,生物技术人员最终获得了“半加器”( “half-adder)和“半减器”( half-subtractor),这两种计算机技术中的中心电路元件。半加器是一种基本的数字电路可以合计二进制数;另一方面,半减器负责减去它们。这两种元件存在于每个数字计算器中,负责执行大部分的运算。在细胞结构试验中,两个生物计算机元件生成了实质的结果。 其他一些科学家已经在酵母和细菌中实现了不同的电路元件。在新系统中,所有都存在于单个细胞里,基于哺乳动物细胞的复杂性其轻易就超越了酵母和细菌。 相比于改变细菌或酵母细胞,研究人员因此更加接近治疗应用。对于Fussenegger教授而言,可以想象如果有必要,细胞计算器可在遥远的未来和步骤中用于监控患者的新陈代谢。可将这些智能细胞植入到糖尿病患者体内,例如通过开发一个电路识别疾病相关代谢产物,调控具治疗效应物质的释放,例如胰岛素。然而目前研究人员离这样的应用仍相距甚远。

  • 【讨论】酵母检测仪器

    生产过程中,酵母浓度的控制是产品质量的一个关键因素,为了控制酵母浓度,最好的方式就是在线快速测定。目前国内外有哪些公司生产或代理酵母在线活性检测仪,就是那种生产发酵过程中能在线快速准确测定酵母活细胞数的仪器。在网上查了一下美国Aber公司有酵母监测仪,法国FOGALE公司有活细胞浓度在线检测议,请问各位有用过吗?哪家好用一些呢?

  • 面包酵母问题

    面包制作中添加了酵母,出厂检验还是以7099的微生物标准执行或不执行,酵母属不属于7099中的未熟制的发酵配料,要是按7099执行,出厂检验菌落总数不合格,大概率就是酵母在熟制过程中未杀死了是不是

  • 走进乳品胀包的凶手

    走进乳品胀包的凶手

    酵母菌在自然界中分布很广,尤其喜欢在偏酸性且含糖较多的潮湿环境中生长,例如,在水果、蔬菜、花蜜的表面和在果园土壤中最为常见。我们的酸奶和乳酸菌饮料就是偏酸性且含糖量较多的产品,所以酸奶和乳酸菌饮料特别适宜酵母菌繁殖的营养基。 所以说酵母菌在自然界中无处不在,这就是为什么我们不允许把个人物品带入车间,且不允许在车间内吃食物的原因之一。再看看被酵母菌虐过的奶http://ng1.17img.cn/bbsfiles/images/2014/04/201404041049_495358_2227357_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/04/201404041050_495359_2227357_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/04/201404041050_495360_2227357_3.jpg 酵母可以通过出芽进行无性生殖,也可以通过形成子囊孢子进行有性生殖。酵母菌有多种繁殖方式,有人把只进行无性繁殖的酵母菌称作"假酵母",而把具有有性繁殖的酵母菌称作"真酵母"。酵母菌的无性繁殖酵母菌的无性繁殖分为:芽殖和裂殖芽殖芽殖发生在细胞壁的预定点上,此点被称为芽痕,每个酵母细胞有一至多个芽痕。成熟的酵母细胞长出芽体,母细胞的细胞核分裂成两个子核,一个随母细胞的细胞质进入芽体内,当芽体接近母细胞大小时,自母细胞脱落成为新个体,如此继续出芽。如果酵母菌生长旺盛,在芽体尚未自母细胞脱落前,即可在芽体上又长出新的芽体,最后形成假菌丝状http://ng1.17img.cn/bbsfiles/images/2014/04/201404041050_495361_2227357_3.jpg裂殖:是少数酵母菌进行的无性繁殖方式,类似于细菌的裂殖。其过程是细胞延长,核分裂为二,细胞中央出现隔膜,将细胞横分为两个具有单核的子细胞。http://ng1.17img.cn/bbsfiles/images/2014/04/201404041051_495362_2227357_3.jpg影响酵母菌繁殖的因素营 养 酵母菌同其它活的有机体一样需要相似的营养物质,象细菌一样它有一套胞内和胞外酶系统,用以将大分子物质分解成细胞新陈代谢易利用的小分子物质 水 分 像细菌一样,酵母菌必须有水才能存活。但酵母需要的水分比细菌少,某些酵母能在水分极少的环境中生长,如蜂蜜和果酱,这表明它们对渗透压有相当高的耐受性 (控制环境中的水分) 氧 气 酵母菌在有氧和无氧的环境中都能生长,即酵母菌是兼性厌氧菌,在缺氧的情况下,酵母菌把糖分解成酒精和二氧化碳。在有氧的情况下,它把糖分解成二氧化碳和水。

  • 中国科学家利用酵母菌实时在线监测PM2.5毒性

    空气污染特别是PM2.5是当前人类面临的重要的环境问题之一。北京大学课题组研究人员近期在此问题上取得跨学科进展,首次以荧光标记酵母菌的微流控装置取代现有方法中的半导体传感器,实现了对PM2.5多方面毒性的实时在线监测。据了解,目前对于大气颗粒物的毒性研究,大多采用离线的方式,不能及时知晓其毒性;而细胞染毒或动物暴露实验灵敏度偏低,一些健康效应不易检测到。在颗粒物致病机理方面,目前也存在类似“盲人摸象”的现象,不能够全方面地了解PM2.5的毒性机理。受酵母菌相关研究的启发,由北大环境科学与工程学院研究员要茂盛、物理学院副教授罗春雄领导的研究团队,集成利用空气采样、微流控、荧光蛋白标记的酵母菌以及单酵母菌蛋白荧光自动检测平台,用活体酵母菌替代传统半导体传感器,创建了大气PM2.5毒性实时在线监测系统。要茂盛介绍,课题组先将PM2.5颗粒物采集到液体中,再将样品实时输送至放有酵母菌的微流控芯片里。由于酵母菌会对来自颗粒物的刺激发生反应,通过用不同荧光蛋白标记酵母菌的所有基因,就可实时看到酵母菌的哪些基因对颗粒物的刺激发生了响应,就好像可“实时监测不同地区车辆行驶状况”。据悉,这种酵母菌俗称酿酒酵母,繁殖快,其基因序列于1996年测序完成,是第一个完成基因测序的真核生物,被广泛地应用在人类疾病研究中。研究人员认为,这种方法对于颗粒物对人体健康效应机制的研究提供了开创性的研究思路和方法,可从分子水平理解PM2.5对人体的可能损伤情况。目前,此项研究成果已申请国家发明专利。课题组正在利用该体系对不同国家、地区颗粒物的毒性进行研究,同时也在筛查更多有响应的酵母菌蛋白,并研究其灵敏度、响应的毒性标定,以进一步揭示PM2.5对人体的具体致病毒性机制。

  • 不使用kit:手工提取酵母DNA的方法

    1) 使用YPD培养基10ml酵母菌30℃培养过夜;2) 离心收集细胞,离心管放置冰上,轻轻倒出上清液,用0.5ml水重悬沉淀。转移细胞悬液至1.5ml罗盖管内,再次离心收集细胞沉淀;3) 轻轻倒出上清液,在振荡器上剧烈震荡使残余的液体重悬细胞沉淀;4)加入 0.3 ml Solution C: 2% TritonX-100, 1% SDS, 100 mM NaCl, 10 mM Tris-HCl (pH 8), 1mM EDTA;5) 加入 0.3 ml 酚:氯仿;6) 加入酸化玻璃粉或锆珠,液体会高于玻璃粉2-3mm处,使用漩涡振荡器破碎细胞;7) 加入0.2 ml TE (pH 8.0)溶液,震荡15秒,确保混合均匀;8) 13,000 rpm 离心5分钟,转移上层液体至新离心管(原离心管应弃置于苯酚中);9) 吸取水状层至新离心管,加入1ml 100%乙醇,反复颠倒混匀,于-20°C 放置30 分钟;10) 13,000 rpm离心10 min, 弃去上清,用0.4ml TE重悬沉淀(此时含有大量的RNA,TE溶液中加入3µl 10mg/ml RNAse A溶液;11) 于37°C孵育15分钟,加入10µl 3M 醋酸盐(pH 5.2),混合均匀,加入1ml100%乙醇,反复颠倒混匀12) 13,000 rpm 离心10 min,弃上清,风干沉淀,用70%乙醇洗涤,再次离心去除乙醇,风干用 50 µl 水重悬。至此结束,最终DNA浓度能达0.5 µg/µl。作者后记:本秘籍迅速在本实验室以及其他酵母小组流传开来,从此江湖上又多了一个方便、强大、回收率高的DIY传说!

  • 【每日一贴】饲料酵母粉

    【中文名称】饲料酵母粉【英文名称】feed yeast powder【性状】 有浓香气味。【用途】 是一种蛋白质含量高,氨基酸齐全,且含有B族维生素、微量元素及各种酶,是一种营养价值高的单细胞蛋白。能促进禽畜的新陈代谢,可增强禽畜的抗病能力,提高禽畜的生长速度、繁殖能力、肉质和毛皮质量,特别适宜以气味觅食得鱼虾喂养。【制备或来源】 用酒糟液发酵而成。其工艺路线有三种:(1)酒糟经冷却、净化、增殖、浓缩、质壁分离后,再干燥、粉碎得产品;(2)将酒糟接种发酵后,经干燥,去杂质粉碎得产品;(3)将酒糟沉渣加营养盐液,以酵母为微生物源,发酵后,经分离、干燥、粉碎得产品。【生产单位】 杭州长征化工厂;河南南阳酒精总厂酵母厂;

  • 【资料】酵母菌:发酵之旅

    我们平常所吃的馒头、面包,都是面经过发酵而制成的,它们蓬松有弹性,口感很好,还带有特殊的香味。而用来发酵的无论是从前的酵头,还是现在的发酵粉,其实都是添加剂酵母菌。现在酵母菌的作用已经不仅仅只停留在发酵作用上了,由于其独特的品性,酵母菌的用途也越来越广,成为一种多功能的食品添加剂。 酵母菌功用之一发酵 发酵是酵母菌最主要的功用。人类很早就开始将酵母菌应用于食品生产中,例如酒精饮料、酱油、食醋、馒头和面包的发酵等等。在面包和馒头的生产中,酵母发酵产生大量二氧化碳.使面团膨胀,形成松软的组织。 在食品工业上常见的酵母菌有啤酒酵母,用于生产啤酒、白酒和酒精,以及制做面包;葡萄酒酵母,也称酿酒酵母,用于酿造葡萄酒和果酒,也用于啤酒和白酒的酿造。其中啤酒酵母是食品工业上应用最为广泛的微生物之一,啤酒酵母菌体内维生素、蛋白质含量很高,其药用价值也很高,还可以用于做饲料,提取核酸、麦角醇、谷胱甘肽、凝血质和三磷酸腺苷等。

  • 【原创大赛】霉菌酵母计数的实验室操作规程

    [b]1. 目的[/b] 对《食品安全国家标准 食品生生物学检验 霉菌和酵母计数》GB4789.15-2016进行细化,指导微生物实验室霉菌和酵母计数检测具体操作。[b]2. 适用范围[/b]本操作规程适用于食品、化妆品及一次性筷子中霉菌和酵母菌的计数。[b]3. 设备及材料[/b]冰箱、霉菌培养箱、拍击式均质、显微镜、电子天平、高压灭菌器及其他灭菌和常规检测用器皿、材料。[b]4. 培养基及试剂[/b] 生理盐水(0.85%氯化钠溶液) 孟加拉红培养基或马铃薯葡萄粮琼脂[b]5. 检验程序 [/b] [table][tr][td=1,1,35] [/td][/tr][tr][td] [/td][td][img=,527,469]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181712248843_5332_3247208_3.png[/img][/td][/tr][/table][b] 6. 操作步骤6.1 1:10样品匀液制 [/b]以生理盐水做样品稀释液。6.1.1食品样品 样品适宜时,取25g/ml样品加入装有225ml稀释液的均质袋中,用拍击式均质器充分混匀;如果样品硬度较大,不宜使用拍击式均质器时,取25g样品加入装有225ml稀释液的椎形瓶中充分振摇,制成1:10样品匀液。6.1.2 化妆品样品 油性液体,取10g/ml样品,先加入5ml灭菌石腊混匀,再加10 ml灭菌吐温80,42℃水浴,加75ml灭菌生理盐水,拍击均质1min,制成1:10样品匀液; 水溶性液体、膏、霜、粉剂等,称10 g样品加90ml灭菌生理盐水,拍击均质1min,制成1:10样品匀液 疏水性膏、霜及眉笔、口红等,称10 g/ml样品加10 ml灭菌液体腊和10 ml灭菌吐温80,再加入70 ml灭菌生理盐水,拍击均质3 min,制成1:10样品匀液。6.1.3 一次性筷子样品 取一次性筷子25g(通常取6双,表面积约为50平方厘米)加入装有225ml稀释液的无菌袋中充分振摇,作为1:10的样品匀液。[b]6.2 样品匀液稀释[/b]用[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff][url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url][/color][/url]取1ml 1:10的样品匀液注入装有9ml稀释液的试管中,另换一个枪头,反复吹吸,制成1:100样品匀液。按此法依次制备10倍递增稀释的系列样品匀液。根据对样品污染状况的估计,选择2-3个适宜稀释度(液体样品可包括原液),在进行10倍递增稀释的同时,每个稀释度分别吸取1ml样品匀液加入2个无菌平皿内。同进分别取1ml样品稀释液加入2个平皿作空白对照。[b]6.3 倾注平皿[/b] 将冷却至46℃的孟加拉红培养基倾注平皿,及时转动平皿使培养基和样品匀液混合均匀。[b]注意:[/b]孟加拉红培养基可置46±1℃的水浴箱中保温,但不应超过4小时。凝固后的培养基只可复溶一次,否则将影响培养基质量。[b]6.4 培养[/b] 待琼脂凝固后,将平皿倒置,于28±1℃霉菌培养,3天后观观察,5天记录结果。[b]6.5 计数[/b] 肉眼观察,选取菌落数在10-150CFU的平板计数。根据检测要求,计数霉菌和酵母的总和或分别计数霉菌数和酵母数。霉菌、酵母和细菌的菌落鉴别可参照以下方法。[align=left]6.5.1肉眼观察菌落特征[/align][align=left]通常情况下肉眼观察,霉菌、酵母、细菌三种菌落在孟加拉红培基上的特征如下:[/align] [table][tr][td=1,1,83] 霉菌菌落[/td][td=1,1,482] 绒毛状、棉絮状、蛛网状。具有菌丝体,菌落较大,扁平,较干燥。颜色多样,白色、黑色、黄色多见,菌落正反面的颜色和边缘与中心的颜色常不一致,菌落周围有晕圈。[/td][/tr][tr][td=1,1,83] 酵母菌菌落[/td][td=1,1,482] 菌落较细菌大且厚,质地均匀,正反面和边缘、中央部位的颜色均一。光滑、湿润、常带黏性,菌落多为乳白色,少数为红色,个别为黑色。培养时间较长时可呈皱缩状,表面较干燥。位于琼脂内的菌落,可呈铁饼形、三角形及多角形。[/td][/tr][tr][td=1,1,83] 细菌菌落[/td][td=1,1,482] 由于受到抑制,通常会很小,红色,常呈橄榄形。[/td][/tr][/table]6.5.2 低倍镜观察菌落边缘形态肉眼观察菌落形态无法区别孟加拉红培养基上酵母和细菌时,可用低倍普通光学显微镜观察平板表面菌落边缘较薄较透光的部分,在边缘能看到细胞的是酵母,看不见的则是细菌。 [table=565][tr][td=1,1,83] 霉菌菌落[/td][td=1,1,482] 边缘可见明显的菌丝体。[/td][/tr][tr][td=1,1,83] 酵母菌菌落[/td][td=1,1,482] 边缘较规整,调节聚焦螺旋可见到细腻如细沙的结构。若无法确认可用接种针从边缘稍稍刮开菌落,即可在镜下见到卵圆形的细胞。[/td][/tr][tr][td=1,1,83] 细菌菌落[/td][td=1,1,482] 菌落紧密,边缘整齐,不易透光,看不到细沙粒样的结构。[/td][/tr][/table]6.5.3 染色法观察挑取菌落用亚甲基蓝或革兰氏染色,酵母菌霉菌在低倍镜下即可见到细胞或菌丝,而细菌不可见,无菌丝的酵母体积较大,在40倍显微镜下清晰可见,细菌则需在油镜下才能清楚观察。[b]7. 结果记录与报告[/b]7.1 结果记录计算两个平板菌落的平均值,再将平均值乘以相应的稀释倍数计算。7.1.1 若所有平板上菌落数均大于150CFU,则对稀释度最高的平板进行计数,其他夹板可记录为多不可计,结果按平均菌落数乘以最高稀释倍数计算。7.1.2 若所有平板上菌落数均小于10CFU,则按稀释度最低的平均菌落数乘以稀释倍数计算。7.1.3 若所有稀释度平板均无菌落生长,则以小于1乘以最低稀释倍数计算;如为原液,则以小于1计数。7.2 报告7.2.1 菌落数在100以内时,按“四舍五入”原则修约,采用两位有效数字报告。7.2.2 菌落数大于或等于100时,可将前3位数字采用“四舍五入”原则修约,取前两位数字,后面用0补齐位数表示结果(例如:结果为1210可表示为1200);也可采用两位有效数字乘以10的指数形式来表示(例如:结果为1210可表示为1.2*10[sup]3[/sup])。7.2.3 称重取样以CFU/g为单位,体积取样以CFU/ml为单位。7.2.4 根据检测要求分别报告霉菌和酵母数,或报告霉菌和酵母总数。[b]8. 参考文件[/b]《食品安全国家标准 食品微生物学检验 霉菌和酵母计数》 GB 4789.15-2016《一次性筷子 第1部分 木筷》 GB19790-2005《化妆品微生物标准检验方法》 GB 7918-1987

  • 面包里的酵母

    最近遇到一个问题,我们面包产品(冷加工)做霉菌检测时平板上会培养出很多酵母菌,正常吗,看到贴的朋友,可以交流一下

  • Cell:发现细胞中mRNA自我摧毁机制

    美国叶史瓦大学艾伯特-爱因斯坦医学院研究人员发现细胞利用第一个已知的机制控制mRNA的存活。这些关于mRNA的发现可能对逆转癌症不受调控的细胞分裂提供启示。2011年12月22日,该研究发表在《细胞》期刊上。该研究通信作者Robert Singer博士说,“我们研究的mRNA分子命运类似希腊悲剧。它们的命运在诞生那一刻就被决定了。”该研究是利用Singer博士之前开发出的高级显微镜技术在酵母细胞中开展的,该技术也是第一次允许科学家在单个细胞中实时观察单个分子。制造蛋白的指令编码在基因的DNA序列上,而基因则是位于每个细胞核染色体中。但是要制造蛋白,基因的DNA编码必须拷贝或者说转录到mRNA分子上,然后mRNA从细胞核迁移到细胞蛋白制造工厂所在的细胞质。因为一旦mRNA存在,它就能够作为模板制造蛋白。因此科学家长期以来就怀疑当一种蛋白水平积累到危害的程度时细胞必须存在降解mRNA的方法。Singer博士说,“细胞在这个时候会以某种方式摧毁的mRNA,但是没有人知道这是如何发生的。”在他们寻求这种机制时,Singer博士和他的同事们集中注意在两种基因SWI5和CLB2,它们编码的蛋白调节细胞周期---细胞分裂期间复杂的一系列步骤,首先复制它的遗传物质,然后将遗传物质均匀地分配到两个子细胞中。为了合适地规划细胞周期,SWI5和CLB2基因编码的蛋白水平必须得到精致控制,这就意味着这两种基因制造的mRNA将是有目的降解的首要候选物。引人注目的是,研究人员发现这些mRNA事实上携带着最终将自己摧毁的分子“自我摧毁定时器(self-destruct timer)”。当基因被转录时,称作启动子区域的基因部分起着打开基因的作用,这样DNA将被拷贝到mRNA上。这些艾伯特-爱因斯坦医学院研究人员发现SWI5和CLB2启动子区域也有其他作用:它们招募一种蛋白 Dbf2p,这样当mRNA分子被合成时,Dbf2p就与它们结合。这些mRNA--由 SWI5和CLB2基因转录而来而且携带Dbf2p蛋白---就使得它们从细胞核运输到细胞质。在细胞质中,蛋白Dbf20p通过与Dbf2p连接在一起以便搭上mRNA分子,而且这两种蛋白一起就导致这些mRNA分子快速降解。Singer说,“我们的发现表明蛋白水平必须得到仔细控制,制造蛋白的基因含有启动子区域,正是该启动子区域在mRNA分子刚产生的时候就决定着它们死亡的命运,而且启动子区域是通过招募蛋白Dbf2p---mRNA合成和它的最终降解之间常见因子---来标记新制造的mRNA来行使的。 Dbf2p在mRNA诞生开始就与mRNA附着在一起,然后在接收到指示不应当制造更多蛋白的信号后作出应答,从而下达摧毁mRNA的命令。”Singer说,尽管这些观察都是与酵母细胞相关,但是他相信这种控制人mRNA降解的过程“将也是非常类似的”,可能用于对抗癌症。他注意到,“人们一旦获得对控制细胞周期和细胞分裂的机制新认识,就可以提出针对性的治疗方法来调节癌症中不受控制的细胞分裂。”

  • 关于酵母抽提物

    [b][color=#646464][color=#1a1a1a]酵母抽提物,英文Yeast Extract,简称YE。[/color][/color][/b][color=#1a1a1a]酵母抽提物可以说是食物风味诱惑的原动力,让吃货们欲罢不能的味道,很多时候其实是YE在起作用。[/color][color=#1a1a1a][color=#1a1a1a]对于食品工业生产和餐饮门店,是非常熟悉的。家庭厨房中一般不会见到,其实他是隐藏的。[color=#1a1a1a]回家看看家里酱油瓶子的配料表上,不管是老抽、生抽、味极鲜,都能看到他的名字。[/color][/color][/color][color=#1a1a1a]它的神奇之处,在于包含了人体可直接吸收利用的可溶性营养及风味物质的浓缩物,[color=#1a1a1a]如20种氨基酸和多肽、核苷酸、维生素、有机酸和矿物质等等。[color=#1a1a1a]复杂成分带来多种丰富而饱满的味道。[/color][/color][/color][color=#1a1a1a]家用时,假如手抖放多了,除了味道太重,也没别的危害。[color=#1a1a1a]而且素食者也可以用,是难得的同时营养、调味和保健三大功能的食品调味料。[/color][/color][color=#1a1a1a]酵母抽提物的原料是啤酒酵母、葡萄酒酵母和面包酵母为原料。[color=#1a1a1a]主流产品是啤酒酵母,很大一部分产量是啤酒酿造的副产品。[color=#1a1a1a]这个以前是当做废弃物的,后来发现这个宝贝的味道太浓郁,再稍作加工大有可为。[/color][/color][/color]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制