当前位置: 仪器信息网 > 行业主题 > >

自聚焦测头系统

仪器信息网自聚焦测头系统专题为您提供2024年最新自聚焦测头系统价格报价、厂家品牌的相关信息, 包括自聚焦测头系统参数、型号等,不管是国产,还是进口品牌的自聚焦测头系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合自聚焦测头系统相关的耗材配件、试剂标物,还有自聚焦测头系统相关的最新资讯、资料,以及自聚焦测头系统相关的解决方案。

自聚焦测头系统相关的资讯

  • 德国研发聚焦镜头制造和质量检测新技术
    p  光学系统的应用范围主要在制造工业。由于需要聚焦(射线引导)镜头,目前在医疗或航天技术方面的应用还常常受限。因为新的脉冲激光源产生的辐射强度,超过常规的玻璃透镜和阵列器件。石英玻璃或钻石等替代光学材料则能提供更好的传输性能,耐受高辐射强度和机械环境影响的能力更强。然而,要加工这些材料很难,而且对自由成型镜头的质量检测大多只能依赖抽样进行。/pp  德国弗劳恩霍夫制造技术研究所(IPT)近日称,将承担由德国教研部资助的“数字光子生产”研究园区子项目“MaGeoOptik”,研究如何能使要求苛刻的石英玻璃或钻石聚焦镜头的生产成本降低、质量更高,从而开拓新的更大的光学产品市场。这种镜头主要用于高功率激光器。/pp  研发内容分三部分:一是研制石英玻璃镜头的高精度模具。迄今为止,精密光学器件主要通过研磨和抛光技术生产,但也可通过冲压加工工艺,采用高达1400℃的温度,以复杂的几何形状被制成。“MaGeoOptik”项目的核心是研究这种高温玻璃的性能,并结合新的模具替代材料,如碳化硅或氮化硼陶瓷以及玻璃碳。/pp  二是制定新的钻石镜头抛光控制方案。目前,制造单晶金刚石光学元件只能通过研磨工艺,因为其结构特性,这种极硬的材料很难被改造,因此,磨具在加工过程中磨损严重。研发人员计划研发新的应用模型,制定相应的机轴控制软件方案,使得生产具有复杂几何形状的钻石镜头更快,成本更低,更适应商业市场。/pp  三是建立对超精密自由成型镜头的100%无损检测方法。该方法将是一种新的高精准的光学测量系统,用于检测由石英玻璃或钻石制造的镜头的特性。与现有的触摸式方法相比,该方法的测量速度可提高六至十倍。此外,该方法可在生产现场直接使用,并能被集成到自动化生产过程中。/pp  该项目的研究结果不仅可用于测试高功率激光器及其它未来应用领域的光学新材料,而且符合工业用途。/p
  • 再度升级!​安捷伦 BioTek 共聚焦微孔板成像检测系统引入水镜和新型共聚焦转盘技术
    安捷伦近日宣布在 BioTek Cytation C10 共聚焦微孔板成像检测系统中引入水镜和新型共聚焦转盘技术。这些技术通过减少对活细胞样品的有害影响来提高组织和 3D 细胞球体等较厚样品的成像清晰度,从而改善图像质量和数据结果。在光学显微镜中,水镜技术是在物镜和样本之间自动注水并形成稳定持续的水层。与空气相比,水的折射率更高,能够有效地增加物镜的数值孔径,提高 Z 轴分辨率,从而获得更高的图像质量和更真实的细胞和组织三维模型。水镜技术还可减少曝光时间,从而降低传统方法在这些实验中通常会产生的光毒性作用,帮助越来越多的研究人员得以开展能直接反映生理生化水平变化的活细胞实验,此类实验与固定细胞实验大为不同。转盘式共聚焦成像技术通过阻挡非焦平面的光到达图像传感器,从而改善显微成像质量。适用于深层组织成像的新型共聚焦转盘(DSD)现作为 Cytation C10 的全新选配件,能够帮助研究人员更清晰更深入地观察厚样品。通过 DSD 获得清晰且锐利的图像非常适合定量分析应用。上图为使用标准 60 µ m 转盘(左)和 60 µ m DSD(右)采集的细胞球体 Z 轴切片图像。深层切片转盘让有厚度的生物样本内部细节清晰可见,适用于深层组织穿透的共聚焦转盘(DSD)减少了厚组织样本内的信号干扰,从而可以清晰地观察厚组织样本和细胞球体。从具有挑战的(厚)样本类型中获得更详细的数据。安捷伦细胞分析事业部市场营销助理副总裁 Caleb Foster 表示:“Cytation C10 新增了水镜和适用于深层组织穿透的共聚焦转盘,为需要更好成像性能来实现活细胞和 3D 应用的研究人员提供了重要的新功能。随着人们对更复杂的生理学相关活细胞模型的需求不断增长,Cytation C10 将是一款极具价值且能够带来变革的研究工具,用以支持相关领域的成像应用。”Cytation C10 作为一款经济实惠的高性能共聚焦显微镜系统,采用了高质量设备组件,包括 Hamamatsu(滨松)科学级 CMOS(sCMOS)相机、奥林巴斯物镜和激光照明。机载环境控制、宽场荧光、明场和相差光学模块进一步增强了系统的成像性能。此外,将其与 Agilent BioTek BioSpa 8 全自动培养箱集成,可实现高效的多板位活细胞分析。Cytation C10与Biospa8整合实现多板位活细胞分析
  • 重磅升级!​安捷伦BioTek共聚焦微孔板成像检测系统引入水镜和新型共聚焦转盘技术
    安捷伦今日宣布在BioTek Cytation C10 共聚焦微孔板成像检测系统中引入水镜和新型共聚焦转盘技术。这些技术通过减少对活细胞样品的有害影响来提高组织和 3-D 细胞球体等较厚样品的成像清晰度,从而改善图像质量和数据结果。在光学显微镜中,水镜技术是在物镜和样本之间自动注水并形成稳定持续的水层。与空气相比,水的折射率更高,能够有效地增加物镜的数值孔径,提高Z轴分辨率,从而获得更高的图像质量和更真实的细胞和组织三维模型。水镜技术还可减少曝光时间,从而降低传统方法在这些实验中通常会产生的光毒性作用,帮助越来越多的研究人员得以开展能直接反映生理生化水平变化的活细胞实验,此类实验与固定细胞实验大为不同。转盘式共聚焦成像技术通过阻挡非焦平面的光到达图像传感器,从而改善显微成像质量。适用于深层组织成像的新型共聚焦转盘(DSD)现作为 Cytation C10的全新选配件,能够帮助研究人员更清晰更深入地观察厚样品。通过DSD获得清晰且锐利的图像非常适合定量分析应用。安捷伦细胞分析事业部市场营销助理副总裁Caleb Foster表示:“Cytation C10 新增了水镜和适用于深层组织穿透的共聚焦转盘,为需要更好成像性能来实现活细胞和3D应用的研究人员提供了重要的新功能。随着人们对更复杂的生理学相关活细胞模型的需求不断增长,Cytation C10将是一款极具价值且能够带来变革的研究工具,用以支持相关领域的成像应用。”Cytation C10作为一款经济实惠的高性能共聚焦显微镜系统,采用了高质量设备组件,包括 Hamamatsu (滨松)科学级 CMOS(sCMOS)相机、奥林巴斯物镜和激光照明。机载环境控制、宽场荧光、明场和相差光学模块进一步增强了系统的成像性能。此外,将其与Agilent BioTek BioSpa 8 全自动培养箱集成,可实现高效的多板位活细胞分析。12月20-22日生物显微技术大会预告:点击图片报名报名链接:https://www.instrument.com.cn/webinar/meetings/swxw2023/
  • 响应设备更新政策 | 2024 WITec多功能联用共聚焦拉曼系统选型指南
    WITec 专业研发制造高分辨率、高灵敏度的共聚焦、快速拉曼成像显微系统。WITec 模块化的产品设计,可实现与 AFM、SEM、SNOM、SHG、超低温强磁场等多场技术联用,实现对同一样品进行光学分析、化学组分分析及2D/3D 结构表征,不仅能按需满足您当前的科研需求,还可以扩展功能助您应对未来挑战。1alpha300 系列 拉曼成像显微镜alpha300 系列:拉曼成像( alpha300 R )、原子力( AFM )、扫描近场光学显微镜( SNOM )及其联用系列高共聚焦、高分辨率、高灵敏度拉曼显微系统,以其优异前沿的成像技术倍受认可。灵活的模块化设计,还可以结合更多成像技术,为您定制个性化解决方案,实现原位化学组分分析和纳米级别表面形貌分析等科学研究。alpha300 SHG 将偏振谐波显微成像结合非线性光学效应与偏振共聚焦显微系统,已经广泛应用于科研领域。基于模块化的产品设计,不仅可以实现常规偏振 SHG / THG 测量及成像分析,还可以拓展为低温与磁场等极端条件下的非线性分析,实现传统及新型二位铁电材料与器件的精细分析表征。实验室排布2alpha300 apyron - 全自动拉曼成像显微镜alpha300 apyron 采用高精度自动化硬件控制和预设置光路模块,将易用性和高性能结合起来,扁平化实验工作流程,适用于:兼具不同操作水平和多功能需求的实验室要求高重复性试验场景、注重时效性的工业实验室有高级成像需求的拉曼新手寻求更高性能标准的资深拉曼光谱学家需远程操作的研究人员,如密闭环境操作3alpha300 Ri - 倒置拉曼成像显微镜alpha300 Ri 采用倒置光路对样品从下到上进行化学表征,既保留了 alpha300 系列共焦拉曼成像显微镜的功能,又引入全新的倒置光路设计,便于观察研究水溶液和大尺寸样品。 其独特的几何学设计,尤其适用于生命科学、生物医学和地质领域的研究。4alpha300 Semiconductor Editionalpha300 Semiconductor Edition 半导体定制版是一款专门为半导体材料行业研发的高端共聚焦拉曼显微镜。它能帮助研发人员加速对半导体晶圆和器件的晶体质量、应力与掺杂以及失效分析的表征工作。该款拉曼显微镜搭载大尺寸扫描台,可满足12英寸(30厘米)晶圆的大面积拉曼图像,配备主动隔振台和自动聚焦模块,保证其在测量期间可以对不同形貌样品进行大面积扫描或长时间采集。整套系统全部自动化,可远程控制,以保障工业标准流程测量。关键特性:高性能共聚焦拉曼显微镜,同时兼具快速、高灵敏度和高分辨率高端波长优化光谱仪 ,高信号灵敏度和光谱分辨率大面积扫描 (300 x 350 mm) ,适用于大尺寸晶圆检测大面积测量时实时追踪聚焦 (TrueSurface)主动隔振高度自动化远程控制和可重复性工作流程高级数据处理与分析软件5RISE - Raman - SEM 联用显微镜RISE 显微镜将拉曼成像与扫描电子显微镜功能集成到一台设备,可以进行超微结构表面特性与分子化合物信息关联分析。RISE 显微镜的应用领域可涵盖:材料科学纳米技术高分子地质科学生命科学制药产业6cryoRaman - 超低温强磁场拉曼显微镜cryoRaman 将极限空间分辨率的拉曼成像带到超低温-强磁场研究领域,强势助力低温磁场下材料新物理特性的研究,可轻松进行低至 1.8K 的强磁场实验。多功能关联成像测量:拉曼光谱及成像,荧光及其寿命及成像,二次谐波成像、微区光电流等。多领域应用:量子光学材料的磁光效应拉曼效应磁光材料结构相变、磁相变和磁振子激发研究低温磁场下材料相变的光谱特性磁场对光电材料的能带及载流子漂移影响半导体量子点发光的多体问题7alphaCART: 移动式光纤耦合共聚焦拉曼系统alphaCART 是一款移动式共聚焦拉曼系统,该系统可实现将“实验室”搬到检测现场,为您拓展特殊样品环境下的更多科研应用。alphaCART系统延续了alpha300系列拉曼显微镜的先进光学和模块化设计,并同样受益于WITec在光纤耦合技术方面的长期专业积累。通过光纤将激光器、探头和光谱仪连接,确保系统的高光通量和最佳的光束形状。因此,alphaCART 能提供与 WITec alpha300系列系统相媲美的衍射极限空间分辨率、高共聚焦性和优越的信号灵敏度。alphaCART 可搭载不同配置,以满足您对激发波长和光谱仪设置的特定要求。系统配备白光照明和彩色摄像机,以实现样品观察与定位,通过最新的 WITec Suite 软件 采集数据并完成数据后处理。alphaCART 系统还可以完整装入定制的可移动外箱(可选配)中,方便且安全地带到测试现场。此外,也可将系统的拉曼探头连接到实验室的标准 alpha300显微系统上,以拓展更多应用。
  • 盈盛恒泰-NHK热点聚焦INSENT新品:味觉分析系统
    广播作为三大媒体之一曾一度辉煌,纵使在信息化高度发达的今天,日本广播产业也方兴未艾,听众群依旧庞大。谈到日本广播,NHK将无一例外被人提及,因为NHK是日本唯一的公共广播电视机构,其广播节目开播于1925年。旗下NHK世界台则是日本放送协会的英语电视频道,以播放新闻、纪录片和文化节目等形式向 介绍日本。 NHK -Science View J-Innovators Special 2015 鉴于“日本料理”刚被加入到联合国科教文组织的非物质文化遗产名录,此事件社会影响力大。近期NHK在Science View J-Innovators Special 2015中将依托该事件推出一期节目,即《2015食品科技的世界》。 目将热点聚焦日本料理以及带动日本食品工业发展的4项创新技术,其中一项创新技术是由日本INSENT公司研发的电子舌-味觉分析系统,该系统采用了同人舌头味觉细胞工作原理相类似的人工脂膜传感器技术,可以将看不见味道转化成可视化的数值数据,从而用来制造匹配每个国家的偏好食物。 日本INSENT公司总裁池崎秀和 电子舌-味觉分析系统是世界上唯一一款可以同人类味觉感官相匹配的仪器 ,适用于食品药品等产品质量控制、新品研发、投诉处理、产品打假等各种对味觉评估有要求的场合,是一款非常难得的有效工具!该系统也大大推动了日本食品领域的发展。 《2015食品科技的世界》节目将于3月28日日本时间09:10(国内时间08:10分)播放,之后以6小时为单位滚动播放4次,敬请大家关注。 另附:预告片网址:http://www3.nhk.or.jp/nhkworld/english/tv/scienceview/ 播 放 网 址:http://www3.nhk.or.jp/nhkworld/index.html
  • 海能技术北交所过会:聚焦实验分析仪器行业 牵头或参与起草6项国家及行业标准
    8月19日消息,在今日召开的北交所2022年第37次审议会议上,海能技术(430476)过会。资料显示,公司聚焦实验分析仪器行业,牵头或参与起草了包括“全(半)自动凯氏定氮仪”、“微波消解装置”在内的6项国家标准及行业标准。据北交所官网显示,海能技术申报材料于2022年6月1日获受理,6月24日收到审核问询函,8月4日完成回复,8月19日过会,公司从材料获受理到过会用时79天。资料显示,海能技术是为食品营养与安全检测、药物及代谢产物分离分析、农产品及加工制品质量与安全检测、环境污染物监测、大学及职业院校科研与教学提供分析仪器及方法的科学仪器服务商。公司自成立以来坚持技术驱动的发展策略,聚焦实验分析仪器行业,通过持续的研发投入,在有机元素分析、样品前处理、色谱光谱和通用仪器等领域,形成了一批具有自主知识产权的核心技术。据介绍,公司核心技术包括:基于无人值守进样的凯氏定氮仪智能化技术、基于 RGB 颜色传感器滴定终点判定算法技术、气路快速连接技术、光纤测温微波消解及远程控制技术等,已充分运用于凯氏定氮仪、微波消解仪、固相萃取仪、高效液相色谱仪、电位滴定仪等核心产品。截至2022年5月25日,海能技术及其子公司已获得发明专利25项、实用新型专利76项、外观设计专利3项以及软件著作权59项,已受理的发明专利申请41项。另外,公司牵头或参与起草了包括“全(半)自动凯氏定氮仪”、“微波消解装置”在内的6项国家标准及行业标准。通过多年持续的技术攻关和工艺革新,公司形成了有机元素分析、样品前处理、色谱光谱、通用仪器四大系列产品。招股书显示,2019年推出的第一代高效液相色谱仪K2025系列,产品关键性能参数及可靠性、稳定性达到国内先进水平,在定位上对标进口厂商主要相关产品。海能技术拟IPO募资约1.1亿元,用于海能技术生产基地智能化升级改造项目、补充流动资金。招股书显示,募投项目之一的海能技术生产基地智能化升级改造项目将对现有的山东海能生产基地进行智能化升级改造,结合公司在实验分析仪器产品生产制造方面积累的丰富经验,拟在生产基地引进先进的生产设备和信息化管理系统,拟由海能技术全资子公司山东海能实施。
  • 聚焦视觉技术!岛津参加第三届国际摄像头技术应用大会
    2021年7月23日,第三届国际摄像头技术应用大会在深圳隆重开幕。会议聚焦垂直腔面发射激光器技术、光学镜头、摄像头、无人驾驶&感知技术。 岛津企业管理(中国)有限公司分析计测事业部市场部刘舟先生在“光学镜头技术应用”会场发表了《镜头的光学力学及异物表征评价》,他介绍了岛津仪器在光学镜头领域的整体解决方案,包括超小光学透镜,滤光片的透过反射率,镜头模组透过率,光学玻璃的力学性能评价,镜头异物及电路版的失效分析,异物分析。岛津分析计测事业部市场部刘舟先生 岛津自1875年创立以来始终坚持“以科学技术向社会做贡献”,不断钻研领先时代、满足社会需求的科学技术,开发生产具有高附加值的产品。岛津拥有丰富多样的分析检测设备,及完善的售后服务体系,可多方位应对光学镜头测试需求。
  • 首期20亿!聚焦精准医学,中南大学牵头建设芙蓉实验室
    推荐阅读:盘点|湖南以“四大实验室”为牵引,重构实验室体系日前,湖南省人民政府办公厅正式印发《芙蓉实验室建设方案》,中南大学牵头建设芙蓉实验室。  这是湖南省深入贯彻落实习近平总书记关于“四个面向”重要指示精神,全面落实“三高四新”战略定位和使命任务的重要举措,也是推动健康湖南建设、强省会战略的有力支撑。  芙蓉实验室聚焦精准医学领域,是以保障人民生命健康为目标,以重大临床问题为导向,以精准医学前沿基础研究为核心,以精准诊疗技术创新为抓手的新型实验室。  总体建设思路为“1341”:即围绕“保障人民生命健康,不断提升医疗水平,不断降低治疗费用”1个初心 聚焦临床,在精准检测与诊断、精准药物与治疗、精准器械与干预等3大研究方向集中发力 开展精准医学“原创理论体系、前沿交叉技术、国产替代技术和产业升级”等4个研究任务 完成“统筹力量、形成合力,建设一流的精准医学实验室”1个使命。  芙蓉实验室按照“总部+基地”进行布局,总部由功能研究部、公共创新平台和重大疾病研究中心组成,基地包括创新诊断试剂、创新器械和创新药物产业基地。  实验室以院士、国医大师等战略科学家为核心团队,先期组建创新药物与前沿治疗、分子诊断与智能制造和中医药精准医学等7个研究部,同时将打造公共卫生风险预警防控平台、生物样本资源和临床试验技术等9个公共创新平台和肿瘤、皮肤与免疫疾病、妇科、生殖健康、老年病等18个重大疾病研究中心。  实验室第一期总投资预计20亿元,主要用于人才队伍建设、实验室升级改造、日常运行、科研仪器设备和维护、重大科研项目攻关。目前,中南大学已经启动芙蓉实验室核心区建设地点湘雅医学院东校区整体规划,成立了工作专班,实行“周调度、月讲评”工作机制。  芙蓉实验室将集成全省优势资源,以打造一流创新平台,培养一流人才队伍,培育一流产业生态圈,产出一流科研成果,锻造一流医疗水平为目标,与中南大学4月获批牵头建设的个体化诊疗技术国家工程研究中心、国家医学中心及国家区域医疗中心协同建设,进一步擦亮“湘雅”品牌,全面提升湖南省医学研究、医疗技术水平,成为体现国家意志、实现国家使命、代表国家水平的战略科技力量。  国家医学中心和国家区域医疗中心  据悉,2021年4月,湖南省政府与国家卫生健康委通过电视电话会议形式,签订了委省共建国家医学中心和国家区域医疗中心协议。  根据协议,湖南省10家高水平医院将承担具体创建任务,中南大学3所附属医院承担其中10项:湘雅医院、湘雅二医院、湘雅三医院会同湖南省人民医院联合创建综合性国家区域医疗中心。湘雅医院牵头创建神经、骨科、呼吸国家区域医疗中心,联合省人民医院创建老年病国家区域医疗中心。湘雅二医院牵头创建国家创伤区域医疗中心,联合湖南省人民医院、南华大学附属第一医院创建国家心血管区域医疗中心,联合长沙市第一医院创建传染病国家区域医疗中心 国家精神心理疾病临床医学研究中心(中南大学湘雅二医院)联合湖南省脑科医院等优质医疗资源创建国家精神医学中心。湘雅三医院联合湖南省妇幼保健院创建国家妇产区域医疗中心。  中南大学湘雅医学院附属长沙医院  中南大学在校地合作、深化校医教研协同方面也迈上了新台阶。  7月5日下午,中南大学与长沙市人民政府签署共建中南大学湘雅医学院附属长沙医院合作协议,中南大学校长田红旗,市委副书记、市长郑建新出席签约仪式并见证签约。  依据合作协议,中南大学与长沙市政府将共建长沙市第一医院为中南大学湘雅医学院附属长沙医院,以此为基础全面深化校医教研协同战略合作。本次合作一方面将推动长沙市跨越式提升医疗卫生服务水平和防范处置重大疫情及突发公共卫生风险能力 另一方面也将推动中南大学扩展医学人才培养体系,拓展临床医学学科发展维度。  田红旗指出,此次双方签约共建是全面贯彻落实国务院决策部署,推动公立医院高质量发展、加快医学教育创新发展的重要举措,也是推进医教协同、深化医药卫生体制改革、贯彻落实“三高四新”战略定位和使命任务的重要举措。中南大学将集全校资源,推动双方在医疗服务、学科建设、科学研究、人才培养等方面开展深入合作,推动双方共同为建设现代化新湖南与“健康中国”战略实施作出新的贡献。  郑建新指出,此次签约标志着双方携手开启了校地合作发展新篇章,必将让健康福祉更好更广泛地惠及人民群众。期盼中南大学湘雅医学院发挥专业优势,加强专业指导,提高配置效能,加快推动附属长沙医院综合实力迈上新台阶。
  • 630万!吉林大学采购超分辨共聚焦显微成像系统
    近日,某采购平台发布吉林大学2022年8至10月政府采购意向,其中预算630万计划采购一套超分辨共聚焦显微成像系统,要求为包括4个波长以上的激光光源、显微镜系统、成像检测器系统、操作软件、电脑主机、显示器。可实现进行细胞亚结构的动态成像,细胞或组织内部的超细微荧光特性解析,观察细胞或组织内部的微细结构和形态学变化,记录细胞的生理特性。实现“高清”、“动态”的活细胞高分辨观察要求。 具体要求详见采购文件。供货期:签订合同之日起,6个月货到采购人指定地点并安装验收完毕。(包括供货,安装,调试,验收合格所需时间)。具体事宜由成交供应商按采购人指定地点及时间安排要求执行。详细情况如下超分辨共聚焦显微成像系统项目所在采购意向:吉林大学 2022年8至10月政府采购意向采购单位:吉林大学采购项目名称:超分辨共聚焦显微成像系统预算金额:630.000000万元(人民币)采购品目:A02100301显微镜采购需求概况 :超分辨共聚焦显微成像系统,1套。要求为包括4个波长以上的激光光源、显微镜系统、成像检测器系统、操作软件、电脑主机、显示器。可实现进行细胞亚结构的动态成像,细胞或组织内部的超细微荧光特性解析,观察细胞或组织内部的微细结构和形态学变化,记录细胞的生理特性。实现“高清”、“动态”的活细胞高分辨观察要求。 具体要求详见采购文件。供货期:签订合同之日起,6个月货到采购人指定地点并安装验收完毕。(包括供货,安装,调试,验收合格所需时间)。具体事宜由成交供应商按采购人指定地点及时间安排要求执行。预计采购时间:2022-10备注:本次公开的采购意向是本单位政府采购工作的初步安排,具体采购项目情况以相关采购公告和采购文件为准。
  • 聚焦碳监测!Sercon同位素检测系统助力温室气体精准溯源
    引言我国的碳达峰碳中和是国际上排放规模最大、排放降速最快、转型任务最重、投入成本最高的复杂系统工程。为贯彻2021年全国生态环境保护工作会议精神,生态环境部编制了《碳监测评估试点工作方案》(环办监测函〔2021〕435号),推进碳监测评估体系建设,为落实减污降碳总要求作出积极贡献。方案选取上海、杭州太原等16个城市,试点开展大气中主要温室气体浓度监测,探索自上而下的碳排放量反演方法,形成技术指南,构建温室气体监测量值溯源体系。并试点开展盐沼、红树林、海草床和海藻养殖海洋碳汇监测,构建典型海岸带生态系统和海藻养殖碳汇监测技术体系。检测项目包括:高精度CO2、高精度CH4、高精度气象参数,碳同位素(13CO2)和碳同位素(14CO2)等。 Cercon CryoFlex- HS2022 IRMS:高效准确的温室气体同位素检测系统二氧化碳(CO₂)、氧化亚氮(N₂O)、甲烷(CH₄)是大气中主要的温室气体。产生温室气体的因素复杂多样,且排放主体难以确定。与过去更注重末端降碳减排相比,如今越来越多的城市开始将功课前移,对温室气体的“精准溯源”成为治理的第一步,实现精细化排查。英国Sercon公司开发的CryoFlex-HS2022 IRMS系统为温室气体的同位素检测提供了全面的解决方案。图1 CryoFlex-HS2022 IRMS系统左侧为CryoFlex-CryoGas系统,包含 GC柱、CO/CO2 化学捕集器及开放式杜瓦瓶液氮系统;右侧为HS2022稳定同位素比质谱其中CryoFlex是一款多功能痕量气体净化富集装置,基于冷冻富集聚焦及色谱分离原理,并借助化学捕集和热解/燃烧技术,对温室气体(CO2、CH4、N2O)以及CO、N2、NO等多种气体进行富集净化,并与HS2022稳定同位素比质谱联机,用于测定C、H、O、N等多元素的稳定同位素比值。图2 CryoFlex系统原理结构示意δ13C-CH4 测定:样品经CO/CO2化学捕集,通过低温回路T1(-196℃),去除可冷凝气体后进入热解炉将CH4燃烧生成的CO2冷凝保留在T2中,升温使CO2蒸发转移到T3,并从T3 转移到色谱柱中进行痕量气体分离。最后通过 HS2022-IRMS测定δ13C-CH4。性能测试结果图3测试表明HS2022-IRMS系统可精确测量100 mL空气样品中的δ13C-CH4和δ2H-CH4值,可达理想的识别精度(分别为0.3‰和3.0‰)。图 3 δ13C-CH4 (A)和δ2H-CH4(B), 100 and 0.8 nmol CH4天然样品中CH4同位素比值变化极大,而HS2022- IRMS系统较宽的动态范围,可将样品记忆效应的影响降至最低。图4显示HS2022-IRMS系统系统用于测定δ13C-CH4和δ2H-CH4,结果均在允许误差范围内,且未观察到明显的样品残留。 图4 同位素残留试验Sercon CryoFlex- HS2022 IRMS稳定同位素比质谱系统的优势:l HS2022稳定同位素比质谱采用全不锈钢和金属垫圈结构的质谱飞行管,确保高真空度,最小化本底;l 离子源采用高稳定性、长寿命镀钍灯丝;l 真正的差动泵真空系统,真空度低至1×10-9mbar,确保离子传输效率;l 离子源配备额外真空泵,保证离子化效率,减少副反应;l 卓越的灵敏度及联机精度;l CryoFlex痕量气体富集净化系统采用一体化设计,集转化炉和冷阱与一体,无需额外管路连接,可轻松完成痕量气体的净化富集;l CryoFlex可配置1500℃高温的裂解炉,用于CH4中H的转化;l 自动进样器可适配 6 /12/30/60/125/ 250 mL等多种规格的样品瓶;l CryoFlex也可作为多功能接口与多种外设(如TOC、LA)联机使用。
  • 当WITec共聚焦系统遇见非线性二次谐波(SHG)成像
    WITec共聚焦拉曼系统采用模块化设计,拥有强大的性能扩展空间,有利于多种显微光学技术的联合分析测试。近来,华中科技大学翟天佑教授课题组将超快fs激光引入到alpha 300R共聚焦拉曼显微镜,如下图a。利用拉曼系统的高共聚焦性,实现二维层状材料MoS2的衍射极限SHG非线性光学成像,如下图c。对比光学图像b,SHG图像提供了非常丰富的样品生长取向与晶界等信息,如光学图像不可见的晶界1,晶畴i与ii区域。二维层状材料MoS2的衍射极限SHG非线性光学成像 a) SHG显微成像系统光路示意图:800 nm fs脉冲激光为SHG激发源;拉曼光谱系统探测400 nm二次谐波强度. b) CVD生长的单层MoS2. c)MoS2的SHG图像,提供了非常丰富的样品生长取向与晶界等信息,如光学图像不可见的晶界1,晶畴i与ii区域。d) SHG与光学图像叠加图,可明显观测到样品晶界与晶畴的空间分布。结合了SHG非线性成像, alpha300R共聚焦拉曼系统进一步扩展了自身的功能与应用领域,在同区域的拉曼、荧光及非线性光学(SHG, THG, TPPL等)多种成像联用方面表现出极大的技术优势,非常有利于全面理解与掌握样品的晶格振动、晶格取向、晶界及发光等重要性质。另附:2014年宾夕法尼亚州立大学Prof.Venkatraman Gopalan在alpha300R系统上自行搭建SHG成像系统,并应用于传统铁电材料的热致相变与边界分析,该工作发表在NatureCom.( DOI: 10.1038/ncomms4172)。铁电材料BaTiO3单晶SHG成像分析二次谐波(也被称为倍频或简称SHG)是一种非常重要的二阶非线性光学效应。两个相同频率光子(w0)与物质相互作用后淬灭,产生一个两倍频率的新光子(2w0),属于和频非线性效应中的一种。SHG二阶效应产生机制要求物质及晶体结构不具备中心对称性。目前,通过与共聚焦光学显微镜联用,二维/三维二次谐波成像(SHG imaging)是非常热门的成像技术,并已广泛应用于众多领域。在材料方面,SHG成像可以用于探索材料晶体取向、对称性与界面效应等,如传统非对称性的铁电材料(BaTiO3等)的热致相变问题;新型磁性拓扑绝缘体(Bi2Se3等)的晶格对称性与表面电荷;多相催化与晶体外延生长(MoS2)等。SHG成像技术在生物医学领域的潜在应用也受到广泛关注,如高度极化的胶原蛋白,微管,肌球蛋白、活体细胞与组织的病理分析。由表面等离子体(plasmonics)金属微纳米结构或电磁场的不对称性引起的SHG非线性效应也是该领域的研究热点。
  • 315万!天津大学AIE研究院超快系统-共聚焦荧光显微成像系统采购项目
    项目编号:TDZC2022J0013项目名称:天津大学AIE研究院超快系统-共聚焦荧光显微成像系统采购项目预算金额:315.0000000 万元(人民币)最高限价(如有):315.0000000 万元(人民币)采购需求:序号产品名称数量简要技术规格备注1超快系统-共聚焦荧光显微成像系统1该系统具有双光子成像和单光子共聚焦成像功能,能够对特定厚度材料及特定量子点探针进行激发成像,成像深度是普通单光子共聚焦10倍左右,在活体高分辨成像中广泛应用。单光子共聚焦具有高分辨成像能力,能够对材料、细胞及生物组织样品进行3D高分辨切片扫描及重构。应能够通过可见激光对,活细胞、组织和切片进行连续扫描,获得精细的单个细胞或一群细胞的各个层面结构(包括染色体等)的三维图像。可利用荧光标记测定细胞内如钠、钙、镁等离子浓度的比率、动态变化及pH值的动态变化。 合同履行期限:收到信用证后120天内交货及到货15天内完成安装调试并具备验收条件等本项目( 不接受 )联合体投标。
  • 必达泰克公司正式推出共聚焦显微拉曼光谱仪系统
    经过必达泰克公司技术人员的不懈努力,现正式推出BWS435共聚焦显微拉曼光谱仪系统。该产品采用了新一代背照式CCD致冷光谱仪,独特的光路设计,使光通量大大的加强,具有最佳的信噪比和分辨率。同时配备了高性能的显微镜,可以分析物质微区环境的拉曼光谱信号。该系统的光谱范围是65cm-1到3100cm-1,分辨率可达3cm-1,激光器波长532和785nm可选,并且激光功率可调。该显微拉曼光谱仪性能优异,性价比高,操作方便,是拉曼光谱检测的理想选择。美国必达泰克公司一直致力于微型光纤光谱仪和激光器的研发生产。由于在激光器和光谱仪这两个拉曼光谱仪的重要组成部分上都有丰富的研发经验,美国必达泰克公司(B&W TEK INC.)的便携式拉曼光谱仪在同类产品中性能一直处于领先地位。随着研发的深入,必达泰克公司还将推出性能更优异的的拉曼光谱仪以及更多的相关附件,从而满足各种不同应用场合的需要,为拉曼研究应用发展提供更好的平台。
  • 聚焦环境领域,蚂蚁科仪推出智能化土壤样品制备系统
    仪器信息网讯 2021年9月27日-29日,第十九届北京分析测试学术报告会暨展览会(BCEIA 2021)在北京中国国际展览中心(天竺新馆)召开。作为一家专业致力于实验室通用仪器的研发、生产、销售、服务为一体的创新型企业,本次展会蚂蚁源科学仪器(北京)有限公司携多款特色产品精彩亮相。仪器信息网特别采访了蚂蚁源科学仪器(北京)有限公司总经理孟岩,请他就参展仪器特点、公司当前发展情况及未来发展规划等方面作了详细介绍。蚂蚁科仪展位本届展会,蚂蚁科仪向业界推介展示了智能化土壤样品制备系统等产品。据介绍,这款土壤样品制备系统是集研磨、筛分、称重、混样、分样和样品后期自动封装为一体的高科技产品,申请了包括软件著作权证书等近20项专利。具体来讲,研磨粉碎功能可以对样品进行粒度控制,减少样品的循环研磨造成的时间浪费和样品损失;筛分系统采用低噪音、传导、三维的筛分模式;混样模块严格遵守行业标准的提拉法的要求;封装模块可以完成自动封装和自动打标,实现样品的信息溯源。此外,这款设备还能防止样品的交叉污染。通过在设备的吹扫系统和样品的输送过程中营造负压环境,解决了一部分样品的残留问题,在后续的样品吹扫过程当中,采取边吸边吹的模式,大大降低了如毛刷清洁等带来的样品二次交叉污染问题。谈到今年的业绩表现时,孟岩透露,近几年,蚂蚁科仪的业绩一直在稳中上升,今年上半年业绩增长量在30%左右。蚂蚁科仪今年主要聚焦环境领域,未来将逐步转向材料、医药等领域并推陈出新。采访最后,孟岩也谈了自己关于国产仪器的一些看法,并表示推动国产仪器市场竞争向良性发展还是要靠创新,未来公司将向智能化的方向迈进,更好的服务于科学仪器行业。关于蚂蚁科仪蚂蚁源科学仪器(北京)有限公司(简称“蚂蚁科仪”)是一家专业致力于实验室通用仪器的研发、生产、销售、服务为一体的创新型企业。蚂蚁科仪的产品主要应用在高校、科研院所、政府单位、企业等,涵盖范围大,领域广。蚂蚁科仪以前处理系列研磨设备为发展基础,逐步实现实验室通用仪器的研发生产。目前蚂蚁科仪拥有一系列的研磨粉碎筛分设备,为客户提供实验咨询,技术培训,样品处理等服务。
  • 810万!华中农业大学超高分辨率激光共聚焦显微成像系统等设备采购项目
    一、项目基本情况项目编号:ZCZB-2307-ZH080项目名称:华中农业大学超高分辨率激光共聚焦显微成像系统等设备购置项目(产教融合第三批)预算金额:810.0000000 万元(人民币)最高限价(如有):810.0000000 万元(人民币)采购需求:01包:超高分辨率激光共聚焦显微成像系统,详见附表;02包:荧光定量PCR仪(384通道),详见附表;03包:超高速冷冻离心机,详见附表;04包:全自动细胞计数仪等设备,详见附表。合同履行期限:1.交货期:详见附表2.质保期:详见附表3.质量目标:全新合格产品本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年07月16日 至 2023年07月21日,每天上午9:00至12:00,下午14:00至17:00。(北京时间,法定节假日除外)地点:湖北嘉汇志诚招标咨询有限公司官网(网址:www.zczbzx.com)方式:凡有意参加本项目的潜在供应商,通过互联网在“湖北嘉汇志诚招标咨询有限公司官网”(网址:www.zczbzx.com)进行投标人/供应商注册。完成注册后,通过“投标人/供应商登录”(网址:https://cloud.zczbzx.com/tender/login.html),明确所投项目及项目包段,通过网上下载获取招标文件。咨询电话027-86652085-801;系统技术服务QQ为263482602售价:¥1600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:华中农业大学     地址:武汉市洪山区狮子山街1号        联系方式:许老师、027-87282631      2.采购代理机构信息名 称:湖北嘉汇志诚招标咨询有限公司            地 址:武汉市武昌区和平大道513号绿地铭创大厦2005室            联系方式:陶丹、高雅、廖寿杰 027-86652085-801            3.项目联系方式项目联系人:陶丹、高雅、廖寿杰电 话:  027-86652085-801
  • 690万!常州大学采购聚焦离子束-电子束双束电镜与飞行时间二次离子质谱仪联用系统
    项目概况聚焦离子束-电子束双束电镜与飞行时间二次离子质谱仪联用系统采购项目的潜在投标人应在常州润邦招标代理有限公司前台获取招标文件,并于2022年2月18日14点00分(北京时间)前递交投标文件。一、项目基本情况1.项目编号:常润公2022-0001号2.项目名称:聚焦离子束-电子束双束电镜与飞行时间二次离子质谱仪联用系统采购3.预算金额:人民币690万元4.最高限价:人民币690万元5.采购需求:本项目采购内容为聚焦离子束-电子束双束电镜与飞行时间二次离子质谱仪联用系统采购,包括设备及系统的采购、供货、安装、调试、测试、售后服务、质保、技术培训等,直至通过采购人验收。具体参数详见采购需求。序号设备名称数量单位1聚焦离子束-电子束双束电镜与飞行时间二次离子质谱仪联用系统1套7.合同履行期限:合同签订,免表办理好后6个月内完成供货、安装调试、经采购人验收合格并投入使用。8.本项目不接受联合体。9.本项目接受进口产品。二、申请人的资格要求1.满足《中华人民共和国政府采购法》第二十二条规定:(1)具有独立承担民事责任的能力;(2)具有良好的商业信誉和健全的财务会计制度;(3)具有履行合同所必需的设备和专业技术能力;(4)有依法缴纳税收和社会保障资金的良好记录;(5)参加政府采购活动前三年内,在经营活动中没有重大违法记录;(6)无其他法律、行政法规规定的禁止参与招投标或采购活动的行为,含下列情形:a.未被“信用中国”网站(www.creditchina.gov.cn)和 “中国政府采购网”网站(www.ccgp.gov.cn)列入失信被执行人、重大税收违法案件当事人名单、政府采购严重失信行为记录名单;b.单位负责人为同一人或者存在直接控股、管理关系的不同投标人,不得参加同一合同项下的政府采购活动。2.落实政府采购政策需满足的资格要求:无。3.本项目的特定资格要求:本项目接受进口产品投标,投标人所投设备为进口产品的,应提供以下之一的证明材料:(1)投标人为所投设备的授权经销(代理)商,必须提供生产(制造)商或上级经销(代理)商授权供应商的授权书,并提供逐级经销(代理)商的营业执照复印件。(2)投标人为本项目的授权投标人,必须提供生产(制造)商或授权经销(代理)商对本次招标的项目或所投产品的授权书,并提供逐级经销(代理)商的营业执照复印件。三、获取招标文件时间:2022年1月28日至2022年2月9日17:00时(北京时间,法定节假日除外)地点:常州市飞龙东路108号-304室(翠园世家商业街三楼)方式:(投标人可采取以下任一种方式获取招标文件)(1)线上申领:投标人在规定的时间内将相关材料扫描PDF文档发至本公司邮箱“2406652663@qq.com”并按邮箱回复要求交纳费用后,招标文件以邮件形式发送至投标人邮箱。报名咨询电话:0519-81882063。(2)现场申领:至常州润邦招标代理有限公司前台领取。(3)投标人获取招标文件时应提供如下材料:①招标文件获取申请表(格式见公告附件1)②投标人为企业的,提供企业营业执照(三证合一复印件加盖公章);投标人为事业单位的,提供事业单位法人证书(三证合一复印件加盖公章);投标人为自然人的,提供自然人身份证明文件(复印件及签名)。售价:人民币伍佰元/份。招标文件售后一概不退,未获取招标文件的投标人不得参与本项目投标。四、提交投标文件截止时间、开标时间和地点截止时间:2022年2月18日14点00分(北京时间)地 点:常州润邦招标代理有限公司开标室(一)五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1.本项目不组织现场踏勘。2.对招标文件需要进行澄清或有异议的投标人,均应在2022年2月10日12:00前按招标公告中的通讯地址,以书面形式(加盖公章)提交采购代理机构,否则视为无效澄清或异议。3.有关本次采购的事项若存在变动或修改,采购代理机构将通过补充或更正形式在相关网站上发布,因未能及时了解相关最新信息所引起的失误责任由投标人自负。4.费用缴纳账户信息如下(汇款请备注项目名称或编号)户名:常州润邦招标代理有限公司开户银行:江南农村商业银行龙虎塘支行账号:01080012010000003610财务电话(付款、开票咨询):0519-81882063七、对本次招标提出询问,请按以下方式联系1.采购人信息名称:常州大学地址:江苏省常州市武进区滆湖中路21号 联系方式:丁老师155012902882.采购代理机构信息名称:常州润邦招标代理有限公司地址:常州市飞龙东路108号-304室(翠园世家商业街三楼)联系方式:0519-818829933.项目联系方式项目联系人:周叶电话:0519-81882993网址:cg.czrbzb.com
  • 450万!上海交通大学全光谱激发共聚焦显微镜系统采购项目
    项目编号:0705-2240JDSMTXDK/02/招设2022A00210项目名称:上海交通大学全光谱激发共聚焦显微镜系统预算金额:450.0000000 万元(人民币)最高限价(如有):450.0000000 万元(人民币)采购需求:序号货物名称简要技术规格数量交货期1全光谱激发共聚焦显微镜系统1)脉冲激光器:脉冲白激光器:在485nm-685nm范围内,步进精度≤1nm,自由选择激发谱线进行成像,同时输出脉冲激光谱线≥8条;2)光谱检测装置:高效率棱镜分光系统, 要求配备发射光调节步进1nm或更优, 连续检测荧光波长范围不少于410~850nm或高效率反射光栅分光系统,光子回收系统及不少于34 条通道的内置光谱检测装置;3)其他技术要求详见第八章第二部分《技术规格》。1套签订合同后10个月内合同履行期限:签订合同后10个月内交货本项目( 不接受 )联合体投标。
  • ECHO 转盘共聚焦国内首发,重新定义共聚焦成像,让拍照触手可得
    ECHO 共聚焦可阻挡离焦光,提供比传统宽场显微镜更高分辨率的图像。共聚焦为最小的样品带来更好的清晰度,并能够对较厚的样品进行成像。该系统还减少了光漂白,适合活细胞应用。ECHO 共聚焦采用更小的占地面积、直观的软件和易于观察的设计,线缆更少,重新定义了传统的、复杂的共聚焦体验。转盘共聚焦具有以下优点:• 速度快:可以高速获取活细胞共聚焦显微图像,与扫描式激光共聚焦系统相比,可以立即捕获整个视野,扫描式激光共聚焦一次只能扫描一个点。而转盘共聚焦平铺扫描和z轴堆叠的速度更快,更具优势。• 极具竞争力的转盘共聚焦价格:可以同时兼顾转盘共聚焦和宽场自动显微镜的优势,也能够实现96孔平板转盘共聚焦高内涵(HCS)功能,而且操作更加简便,一机多用。• 光毒性小:ECHO转盘共聚焦对样品更温和,有效减少漂白和对细胞的损伤,帮助用户延长实验时间。• 更便捷:通过简化设计,我们制造了一种比同类其他系统更便捷的共聚焦。ECHO转盘共聚焦结合了ECHO自己的宽场显微镜Revolution的软件,使用极其简单,同时兼具Revolution的所有功能。Revolution的用户可直接上手,过渡平滑无压力;其他用户经过简单的培训也可以快速上手,操作简单化和便捷性完全区别于市面上其他共聚焦,让共聚焦操作不再复杂。搭载ECHO培养箱的共聚焦活细胞样品观察系统ECHO 共聚焦也可搭配培养箱进行活细胞实验,搭配延时摄影可进行长时间活细胞观察。ECHO培养箱完全无风扇,利用对流来加热和循环暖空气。这样可以消除振动,防止外部灰尘进入样品和光学元件。透明结构为用户提供了清晰的视野,并且方便轻松取用样品。轻巧的设计使安装和拆卸变得非常快速和容易。ECHO转盘共聚焦已在美国上市近一年,产品已经过美国市场验证,如今终于走进国内。2024年1月23日,美国工程师同ECHO Confocal一同来到艾普拜苏州技术示范中心,为我们的国内合作伙伴进行了展示和讲解。这也是ECHO Confocal的国内首秀。如您想了解更详细信息欢迎致电艾普拜,我们将竭诚为您服务。
  • Sunny发布SUNNY CSIM 100共聚焦扫描成像模块(系统)新品
    SUNNY CSIM 100共聚焦扫描成像模块(系统)桑尼全新自主研发 CSIM 100共聚焦扫描成像模块(系统),为您提供高性价比荧光显微镜升级解决方案。一台简单的荧光显微镜,搭配 CSIM 100共聚焦扫描成像模块(系统),即可方便、快速地升级为激光扫描(单点)共聚焦成像系统,获取高分辨率图像。使用进口元件保障成像质量、提供全面的技术支持和售后服务。通用性好 适用各品牌显微镜使用标准C型接口,无需额外配件即可与显微镜连接,搭建激光扫描共聚焦成像系统,获取高品质图像。激光器直调 超长使用寿命使用COHERENT OBIS 固体或半导体激光器,通过外部调节激光器功率和开关,延长激光器使用寿命,有效降低售后成本。激光器稳定性好,8小时功率变化<2%。即开即用,操作方便,可同时搭载4个激光器。高灵敏度PMT标配Hamamatsu新一代高性能多碱PMT,量子效率超过25%,相比国外前代共聚焦产品,灵敏度提高超过一倍。可升级为磷砷化镓(GaAsP),进一步提高图像的信噪比: GaAsP 的量子效率可达45%。Sunny XY高速扫描振镜使用本公司生产制造的XY高速扫描振镜,扫描512*512成像速度可达4fps。 响应速度快、重复精度高、发热量低、温度漂移小。其他配件:共聚焦/宽场切换接口接口可同时连接共聚焦和相机,可自由选择共聚焦成像或相机成像。 电动Z轴马达使手动显微镜实现自动调焦功能,实现XYZ三维扫描。 DIC功能可定制升级,加载DIC(微分干涉)模块。 软件功能全中文界面,简单易用全软件控制完成多维图像采集,实现多通道扫描、时间序列和Z轴序列成像多色荧光、DIC图像叠加,添加标尺全软件控制数据记录,支持成像参数管理导出支持多种图像输出格式 技术参数应用实例 创新点:采用标准C接口与显微镜连接,可与任意荧光显微镜对接,为宽场显微镜提供便捷的升级方案通过调制的方式控制激光器的开关和功率,延长激光器寿命,降低仪器的售后成本光路使用圆形针孔,避免多边形针孔对成像质量的不良影响SUNNY CSIM 100共聚焦扫描成像模块(系统)
  • 钢研纳克申请用于三重四极杆ICPMS的聚焦传输透镜装置专利
    2024年1月9日,钢研纳克检测技术股份有限公司公开了“一种用于电感耦合等离子体质谱仪的聚焦传输透镜装置”的发明专利,公开号为CN117373899A。发明人为:沈学静 王雷 李凯 任立志 方哲 王超刚 王立平 王海舟。  发明内容  本发明的目的是提供一种用于电感耦合等离子体质谱仪的聚焦传输透镜装置,能够在三重四极质谱仪结构基础上增设三个透镜,通过灵活施加三个透镜的电压使其有助于离子沿离子光轴集中和聚焦,有效提高离子传输效率,从而提高质谱仪的灵敏度。  为实现上述目的,本发明提供了如下方案:  一种用于电感耦合等离子体质谱仪的聚焦传输透镜装置,所述电感耦合等离子体质谱仪为三重四极质谱仪,所述聚焦传输透镜装置设置在所述三重四极质谱仪的第一级四极杆与第二级多极杆之间或第二级多极杆与第三级四极杆之间   所述聚焦传输透镜装置包括:依次设置的透镜一、透镜二、透镜三,所述透镜一、透镜二、透镜三之间互不接触且相对距离可调节,所述透镜一、透镜二、透镜三的中心均开设有通孔,且所述透镜一、透镜二、透镜三的通孔的中心处于同一水平轴 通过直流电压施加装置分别对所述透镜一、透镜二和透镜三施加零电压、正电压或负电压。  专利内容为:本发明涉及电感耦合等离子体质谱仪技术领域,公开了一种用于电感耦合等离子体质谱仪的聚焦传输透镜装置,应用于三重四极质谱仪,设置在所述三重四极质谱仪的第一级四极杆与第二级多极杆之间或第二级多极杆与第三级四极杆之间 所述聚焦传输透镜装置包括:依次设置的透镜一、透镜二、透镜三,透镜一、透镜二、透镜三之间互不接触且相对距离可调节,所述透镜一、透镜二、透镜三的中心均开设有通孔,且通孔的中心处于同一水平轴 通过直流电压施加装置分别对透镜一、透镜二和透镜三施加零电压、正电压或负电压。本发明提供的聚焦传输透镜装置,能够实现对电压的灵活施加,实现离子的有效传输与聚焦,从而提高质谱仪的灵敏度。
  • AACC2022|优利特流式细胞仪新品发布!共聚焦光学系统,双激光四至八色
    因新冠疫情中断三年的美国AACC展会将于2022年7月26日在美国芝加哥迈考密展览中心(McCormick Place)举办,AACC - Clinical Lab Expo,成立于1949年,是世界上临床检验领域内最高质量和最大规模的年度盛会,也是世界临床检验领域内的一个非常重要的国际学术会议和临床检验医疗设备博览会。每年7月份在美国不同城市巡回举行,展示大量最新的世界临床试验室检验科技设备和体外诊断产品,吸引来自110多个国家的50000多名国际医学界的专业人员共赴盛会。此次展会,优利特将首次在美洲市场推广小身材大智慧的流式细胞仪BF-700、一机多用的全自动尿液分析系统US-500人用机及动物机。优利特BF-700流式细胞仪优利特敏锐洞察市场需求, 重磅推出小身材大智慧的BF-700流式细胞仪,超高的灵敏度以及设计简捷的CyTour操作软件,适用于各类临床和科研实验室。BF-700流式细胞仪主要特点:共聚焦光学系统,检测性能优异;双激光四至八色配置,灵活选择;机身小巧,可适应各种试验环境;体积法绝对计数,降低检测成本;无需预热,开机即用,一键质控。US-500全自动尿液分析系统主要特点:一机多用:干化学分析+尿有形成分分析,新增电导率、渗透压项目;人工智能:深度学习,精准分析,130万像素还原真实镜检;轻便高效:内/外置试剂可选,10.4英寸全面触摸屏,操作简便高效。根据调查数据显示,2021年全球动物诊断市场容量约370亿美元。其中北美市场规模最大,达到130亿美元。动物诊断包括宠物诊断和家禽诊断,产品包括诊断仪器,试剂盒和试剂,软件和服务。诊断技术包括免疫诊断,临床生化分子诊断和血液学等。此次展会,优利特将推广非常适合美洲动物实验室的尿液分析仪一体机US-500动物机。US-500全自动尿液分析系统动物机主要特点:专用的动物软件+动物试剂;AI智能分析尿有形成分,尿沉渣检测金标准;内置试剂包,轻便高效。
  • 435万!山东大学超高分辨荧光共聚焦活体成像系统采购项目
    项目编号:SDQDHF20220129-H076项目名称:山东大学超高分辨荧光共聚焦活体成像系统采购项目预算金额:435.0000000 万元(人民币)最高限价(如有):435.0000000 万元(人民币)采购需求:标包货物名称数量简要技术要求1超高分辨荧光共聚焦活体成像系统 1套详见公告附件合同履行期限:详见招标文件要求。本项目( 不接受 )联合体投标。山东大学超高分辨荧光共聚焦活体成像系统采购项目公开招标公告.pdf
  • 360万!同济大学高分辨共聚焦荧光寿命显微成像与分析系统采购项目
    项目编号:0811-234DSITC0412项目名称:高分辨共聚焦荧光寿命显微成像与分析系统预算金额:360.0000000 万元(人民币)最高限价(如有):360.0000000 万元(人民币)采购需求:高分辨共聚焦荧光寿命显微成像与分析系统/壹套(项目预算:人民币360万元,可以采购进口产品)合同履行期限:合同签订之日起至合同内容履行完毕止本项目( 不接受 )联合体投标。获取招标文件时间:2023年02月28日 至 2023年03月07日,每天上午9:00至11:30,下午13:00至16:30。(北京时间,法定节假日除外)地点:微信公众号“东松投标”方式:关注微信公众号“东松投标”,完成信息注册,即可购买招标文件。售价:¥700.0 元,本公告包含的招标文件售价总和对本次招标提出询问,请按以下方式联系。1.采购人信息名称:同济大学地址:上海市四平路1239号联系方式:黎老师 021-659853912.采购代理机构信息名称:上海东松医疗科技股份有限公司地址:中国上海市宁波路1号申华金融大厦11楼联系方式:林之翔、张智岚 0086-21-63230480转8610、86213.项目联系方式项目联系人:林之翔、张智岚电话:0086-21-63230480转8610、8621
  • 435万!山东大学超高分辨荧光共聚焦活体成像系统采购项目
    项目编号:SDQDHF20220129-H076项目名称:山东大学超高分辨荧光共聚焦活体成像系统采购项目预算金额:435.0000000 万元(人民币)最高限价(如有):435.0000000 万元(人民币)采购需求:标包货物名称数量简要技术要求1超高分辨荧光共聚焦活体成像系统 1套详见公告附件合同履行期限:详见招标文件要求。本项目( 不接受 )联合体投标。对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:山东大学地址:山东大学中心校区明德楼联系方式:王老师 0531-883697972.采购代理机构信息名 称:海逸恒安项目管理有限公司地 址:山东省济南市历下区华润置地广场A5-6号楼27层联系方式:李雨莹 0531-826619973.项目联系方式项目联系人:李雨莹电话:053-182661997;13964159515山东大学超高分辨荧光共聚焦活体成像系统采购项目公开招标公告.pdf
  • 1180万!海南大学采购共聚焦显微镜、高内涵系统等仪器,部分仅限国产!
    7月7日,某招标采购网站上发布海南大学采购激光共聚焦显微镜、高内涵成像系统、流式细胞仪等仪器的项目,项目总计金额超过1180万元。其中全自动生化分析仪,二氧化碳培养箱到水浴箱要求为国产。以下为详细招标信息:招标单位:海南大学招标产品:液相色谱质谱联用仪 ,石英晶体微天平 ,切片机 ,水浴/油浴/恒温槽 ,移液器/移液枪 ,共聚焦显微镜 ,生物显微镜 ,流式细胞仪/细胞分析仪 ,动物麻醉机 ,生化分析仪 ,液氮罐 ,生物安全柜 ,CO2培养箱/二氧化碳培养箱 ,血液分析系统 招标编号:HD2022-1-027流式细胞分析仪等招标公告招标编码为【HD2022-1-027】,招标项目内容包括【流式细胞分析仪、激光扫描共聚焦显微镜、高内涵筛选系统、全自动生化分析仪、移液器、液相色谱/三重串联四极杆质谱联用系统、全自动模块式动物血液体液分析仪、电子天平、生物显微镜、二氧化碳培养箱、生物安全柜、小动物麻醉机、液氮罐、水浴锅、切片机】,投标截止到【2022-07-26 08:30】,欢迎合格的供应商前来投标。项目编号:HD2022-1-027项目名称:药学院美安实验平台设备购置一、采购需求:包号采购品目名称数量预算(万元)A激光扫描共聚焦显微镜1260B高内涵筛选系统1265流式细胞分析仪198.8C超高效液相色谱/三重串联四极杆质谱联用系统1260D全自动模块式动物血液体液分析仪170全自动生化分析仪131.5E自发行为记录分析系统127F包:171.35 万元序号采购品目名称数量预算(元)1全自动脱水机13120002石蜡包埋机11840003全自动石蜡切片机12090004倒置显微镜1990005体视显微镜1620006生物显微镜1960007二氧化碳培养箱2398008生物安全柜3395009双开门冰箱2450010灭菌锅14200011烘箱1580012显微镜17500013台式低速离心机2750014水浴锅2180015掌上离心机5160016涡旋仪2120017液氮罐2780018防爆柜1450019大容量离心机22000020培养箱12000021二氧化碳培养箱12000022生物安全柜13500023小动物麻醉机23500024小动物呼吸机22500025大小鼠耳标钳3100026大鼠脑模具2300027小鼠脑模具2300028大鼠心模具2350029小鼠心模具2350030大鼠气管插管套装2230031小鼠气管插管套装2210032小鼠固定装置650033大鼠固定装置650034兔固定装置1030035犬固定装置3400036小型无影灯11000037消毒喷雾机5100038电子天平(1g)250039电子天平(0.1g)3100040电子天平(0.001g)1400041电子台秤(10g)2200042电子体温计410043电子数显游标卡尺1100044冰箱(4度)11190045冰箱(-20度)11060046冰柜(-20度)1980047单道可调量程移液器1170048单道可调量程移液器1170049单道可调量程移液器1170050单道可调量程移液器1170051单道可调量程移液器1170052单道可调量程移液器1170053电动移液器1280054水浴箱15000包D中的全自动生化分析仪,包F中的二氧化碳培养箱到水浴箱国产,其余允许进口。本项目不接受联合体投标。合同履行期限: 非进口产品合同签订后30天内交货且安装调试完毕,进口产品合同签订后90天内交货且安装调试完毕。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定 2.本项目的特定资格要求:1、如投标人不是所投产品生产厂家的,属于三类医疗器械的须具有医疗器械经营许可证,属于二类医疗器械的须具有医疗器械经营备案凭证 2、所投产品属于二、三类医疗器械产品的须具有医疗器械注册证、医疗器械生产许可证(若所投产品为进口产品,则无需提供医疗器械生产许可证) 属于一类医疗器械产品的须具有产品备案登记凭证、生产企业备案登记凭证(若所投产品为进口产品,则无需提供生产企业备案登记凭证)。三、获取招标文件时间: 2022年07月06日00时00分 至 2022年07月12日23时59分(提供期限自本公告发布之日起不得少于5个工作日)(北京时间,法定节假日除外)。地点:全国公共资源交易平台(海南省)(http://zw.hainan.gov.cn/ggzy/)方式: 网上购买售价: 0元四、提交投标文件截止时间、开标时间和地点2022年07月26日08时30分(北京时间) 地点: 海南省公共资源交易服务中心(海口市国兴大道9号)202 开标室。五、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:海南大学企业信息 地 址:海南省海口市美兰区人民大道58号联系方式:赵老师0898-662790302.采购代理机构信息名 称:中科高盛咨询集团有限公司地 址:海南省海口市龙华区金贸中路1号半山花园海天阁第32层3238房联系方式:蔡广杰0898-685910773.项目联系方式项目联系人:蔡广杰电 话:0898-68591077六、采购项目需要落实的政府采购政策:《政府采购促进中小企业发展管理办法》、《财政部印发通知进一步加大政府采购支持中小企业力度》、《财政部 发展改革委 生态环境部 市场监管总局关于调整优化节能产品、环境标志产品政府采购执行机制的通知》、《关于信息安全产品实施政府采购的通知》、《关于促进残疾人就业政府采购政策的通知》、《财政部 司法部关于政府采购支持监狱企业发展有关问题的通知》、《关于政府采购支持绿色建材促进建筑品质提升试点工作的通知》、《财政部国务院扶贫办关于运用政府采购政策支持脱贫攻坚的通知》、《海南省财政厅关于印发《海南省绿色产品政府采购实施意见(试行)》的通知》、《海南省财政厅 海南省工业和信息化厅关于落实超常规举措加大对中小企业政府采购支持的通知》。
  • 预算485万采购类器官/活细胞共聚焦微孔板成像系统系统!苏州大学附属第一医院发布招标公告
    6月28日,苏州大学附属第一医院发布类器官/活细胞共聚焦微孔板成像系统等设备招标公告,预算为485万元人民币。项目概况类器官/活细胞共聚焦微孔板成像系统等设备 JSZC-320000-SZWK-G2024-0186 招标项目的潜在投标人应在苏州市干将西路1296号(深业姑苏中心)1幢17层 获取招标文件,并于2024-07-19 13:30 (北京时间)前递交投标文件。采购需求:采购包名称数量简要说明是否接受进口产品投标预算金额(万元)1类器官/活细胞共聚焦微孔板成像系统1台成像模式:激光共聚焦成像、宽场荧光成像、明场及真彩色明场成像,相差成像。成像方式:单色,多色,图像拼接,时间延迟,Z-轴层切叠加和触发模式等等。是4852中央纯水处理系统1台可应用于生化流水线、免疫流水线、全自动凝血分析仪流水线、血细胞分析仪、化学发光仪等的常规检测用水。是100获取招标文件时间:2024年06月28日至2024年07月05日,每天上午08:30-11:30,下午13:00-17:00(北京时间,法定节假日除外)地点:苏州市干将西路1296号(深业姑苏中心)1幢17层方式:提供以下材料现场获取 (1)营业执照副本复印件; (2)法人授权委托书; 上述材料每页均须加盖单位公章。售价:500.00元提交投标文件截止时间、开标时间和地点2024-07-19 13:30 (北京时间)地点:苏州市干将西路1296号(深业姑苏中心)1幢17层详情点击查看
  • 聚焦离子束(FIB)技术原理与发展历史
    20世纪以来,微纳米科技作为一个新兴科技领域发展迅速,当前,纳米科技已经成为21 世纪前沿科学技术的代表领域之一,发展作为国家战略的纳米科技对经济和社会发展有着重要的意义。纳米材料结构单元尺寸与电子相干长度及光波长相近,表面和界面效应,小尺寸效应,量子尺寸效应以及电学,磁学,光学等其他特殊性能、力学和其他领域有很多新奇的性质,对于高性能器件的应用有很大潜力。具有新奇特性纳米结构与器件的开发要求开发出具有更高精度,多维度,稳定性好的微纳加工技术。微纳加工工艺范围非常广泛,其中主要常见有离子注入、光刻、刻蚀、薄膜沉积等工艺技术。近年来,由于现代加工技术的小型化趋势,聚焦离子束(focused ion beam,FIB)技术越来越广泛地应用于不同领域中的微纳结构制造中,成为微纳加工技术中不可替代的重要技术之一。FIB是在常规离子束和聚焦电子束系统研究的基础上发展起来的,从本质上是一样的。与电子束相比FIB是将离子源产生的离子束经过加速聚焦对样品表面进行扫描工作。由于离子与电子相比质量要大的非常多,即时最轻的离子如H+离子也是电子质量的1800多倍,这就使得离子束不仅可以实现像电子束一样的成像曝光,离子的重质量同样能在固体表面溅射原子,可用作直写加工工具;FIB又能和化学气体协同在样品材料表面诱导原子沉积,所以FIB在微纳加工工具中应用很广。本文主要介绍FIB技术的基本原理与发展历史。离子源FIB采用离子源,而不是电子束系统中电子光学系统电子枪所产生的加速电子。FIB系统以离子源为中心,较早的离子源由质谱学与核物理学研究驱动,60年代以后半导体工业的离子注入工艺进一步促进离子源开发,这类离子源按其工作原理可粗略地分为三类:1、电子轰击型离子源,通过热阴极发射的电子,加速后轰击离子源室内的气体分子使气体分子电离,这类离子源多用于质谱分析仪器,束流不高,能量分散小。2、气体放电型离子源,由气体等离子体放电产生离子,如辉光放电、弧光放电、火花放电离子源,这类离子源束流大,多应用于核物理研究中。3、场致电离型离子源是利用针尖针尖电极周围的强电场来电离针尖上吸附的气体原子,这种离子源多应用于场致离子显微镜中。除场致电离型离子源外,其余离子源均在大面积空间内(电离室)生成离子并由小孔引出离子流。故离子流密度低,离子源面积大,不适合聚焦成细束,不适合作为FIB的离子源。20世纪70年代Clampitt等人在研究用于卫星助推器的铯离子源的过程中开发出了液态金属离子源(liquid metal ion source,LMIS)。图1:LMIS基本结构将直径为0.5 mm左右的钨丝经过电解腐蚀成尖端直径只有5-10μm的钨针,然后将熔融状态的液态金属粘附在针尖上,外加加强电场后,液态金属在电场力的作用下形成极小的尖端(约5 nm的泰勒锥),尖端处电场强度可达10^10 V/m。在这样高电场作用下,液尖表面金属离子会以场蒸发方式逸散到表面形成离子束流。而且因为LMIS发射面积很小,离子电流虽然仅有几微安,但所产生电流密度可达到10^6/cm2左右,亮度在20μA/Sr左右,为场致气体电离源20倍。LMIS研究的问世,确实使FIB系统成为可能,并得到了广泛的应用。LMIS中离子发射过程很复杂,动态过程也很复杂,因为LMIS发射面为金属液体,所以发射液尖形状会随着电场和发射电流的不同而改变,金属液体还必须确保不间断地补充物质的存在,所以发射全过程就是电流体力学和场离子发射相互依赖和相互作用的过程。有分析表明LMIS稳定发射必须满足三个条件:(1)发射表面具有一定形状,从而形成一定的表面电场;(2)表面电场足以维持一定的发射电流与一定的液态金属流速;(3)表面流速足以维持与发射电流相应的物质流量损失,从而保持发射表面具有一定形状。从实用角度,LMIS稳定发射的一个最关键条件:制作LMIS时保证液态金属与钨针尖的良好浸润。由于只有将二者充分持续地粘附在一起,才能够确保液态金属很好地流动,这一方面能够确保发射液尖的形成,同时也能够确保液态金属持续地供应。实验发现LMIS还有一些特性:(1) 存在临界发射阈值电压。一般在2 kV以上;电压超过阈值后,发射电流增加很快。(2) 空间发射角较大。离子束的自然发射角一般在30º左右;发射角随着离子流的增加而增加;大发射角将降低束流利用率。(3) 角电流密度分布较均匀。(4) 离子能量分散大(色差)。离子能散通常约为4.5 eV,能散随离子流增大而增大,这是由于离子源发射顶端存在严重空间电荷效应所致。由于离子质量比电子质量大得多,同一加速电压时离子速度比电子速度低得多,离子源发射前沿空间电荷密度很大,极高密度离子互斥,造成能量高度分散。减小色差的一个最有效的办法是减小发射电流,但低于2uA后色差很难再下降,维持在4.5eV附近。继续降低后离子源工作不稳定,呈现脉冲状发射。大能散使离子光学系统的色差增加,加重了束斑弥散。(5) LMIS质谱分析表明,在低束流(≤ 10 μA)时,单电荷离子几乎占100%;随着束流增加,多电荷离子、分子离子、离子团以及带电金属液滴的比重增加,这些对聚焦离子束的应用是不利的。以上特性表明就实际应用而言,LMIS不应工作在大束流条件下,最佳工作束流应小于10μA,此时,离子能量分散与发散角都小,束流利用率高。LMIS最早以液态金属镓为发射材料,因为镓熔融温度仅为29.8 ºC,工作温度低,而且液态镓极难挥发、原子核重、与钨针的附着能力好以及良好的抗氧化力。近些年经过长时间的发展,除Ga以外,Al、As、Au、B、Be、Bi、Cs、Cu、Ge、Fe、In、Li、Pb、P、Pd、Si、Sn、U、Zn都有报道。它们有的可直接制成单质源;有的必须制成共熔合金(eutectic alloy),使某些难熔金属转变为低熔点合金,不同元素的离子可通过EXB分离器排出。合金离子源中的As、B、Be、Si元素可以直接掺杂到半导体材料中。尽管现在离子源的品种变多,但镓所具有的优良性能决定其现在仍是使用最为广泛的离子源之一,在一些高端型号中甚至使用同位素等级的镓。FIB系统结构聚焦离子束系统实质上和电子束曝光系统相同,都是由离子发射源,离子光柱,工作台以及真空和控制系统的结构所构成。就像电子束系统的心脏是电子光学系统一样,将离子聚焦为细束最核心的部分就是离子光学系统。而离子光学与电子光学之间最基本的不同点:离子具有远小于电子的荷质比,因此磁场不能有效的调控离子束的运动,目前聚焦离子束系统只采用静电透镜和静电偏转器。静电透镜结构简单,不发热,但像差大。图2:聚焦离子束系统结构示意图典型的聚焦离子束系统为两级透镜系统。液态金属离子源产生的离子束,在外加电场( Suppressor) 的作用下,形成一个极小的尖端,再加上负电场( Extractor) 牵引尖端的金属,从而导出离子束。第一,经过第一级光阑后离子束经过第一级静电透镜的聚焦和初级八级偏转器对离子束的调节来降低像散。通过一系列可变的孔径(Variable aperture),可以灵活地改变离子束束斑的大小。二是次级八极偏转器使得离子束按照定义加工图形扫描加工而成,利用消隐偏转器以及消隐阻挡膜孔可以达到离子束消隐的目的。最后,通过第二级静电透镜,离子束被聚焦到非常精细的束斑,分辨率可至约5nm。被聚焦的离子束轰击在样品表面,产生的二次电子和离子被对应的探测器收集并成像。离子与固体材料中的原子碰撞分析作为带电粒子,离子和电子一样在固体材料中会发生一系列散射,在散射过程中不断失去所携带的能量最后停留在固体材料中。这其中分为弹性散射和非弹性散射,弹性散射不损失能量,但是改变离子在固体中的飞行方向。由于离子和固体材料内部原子质量相当,离子和固体材料之间发生原子碰撞会产生能量损失,所以非弹性散射会损耗能量。材料中离子的损失主要有两个方面的原因,一是原子核的损失,离子与固体材料中原子的原子核发生碰撞,将一部分能量传递给原子,使得原子或者移位或者与固体材料的表面完全分离,这种现象即为溅射,刻蚀功能在FIB加工过程中也是靠这种原理来完成。另一种损失是电子损失:将能量传递给原子核周围的电子,使这些电子或被激发产生二次电子发射,或剥离固体原子核周围的部分电子,使原子电离成离子,产生二次离子发射。离子散射过程可以用蒙特卡洛方法模拟,具体模拟过程与电子散射过程相似。1.由原子核微分散射截面计算总散射截面,据此确定离子与某一固体材料原子碰撞的概率;2.随机选取散射角与散射平均自由程,计算散射能量的核损失与电子损失;3.跟踪离子散射轨迹直到离子损失其全部携带能量,并停留在固体材料内部某一位置成为离子注入。这一过程均假设衬底材料是原子无序排列的非晶材料且散射具有随机性。但在实践中,衬底材料较多地使用了例如硅单晶这种晶体材料,相比之下晶体是有晶向的,存在着低指数晶向,也就是原子排列疏密有致,离子一个方向“长驱直入”时穿透深度可能增加几倍,即“沟道效应”(channeling effect)。FIB的历史与现状自1910年Thomson发明气体放电型离子源以来,离子束已使用百年之久,但真正意义上FIB的使用是从LMIS发明问世开始的,有关LMIS的文章已做了简单介绍。1975年Levi-Setti和Orloff和Swanson开发了首个基于场发射技术的FIB系统,并使用了气场电离源(GFIS)。1975年:Krohn和Ringo生产了第一款高亮度离子源:液态金属离子源,FIB技术的离子源正式进入到新的时代,LMIS时代。1978年美国加州的Hughes Research Labs的Seliger等人建造了第一套基于LMIS的FIB。1982年 FEI生产第一只聚焦离子束镜筒。1983年FEI制造了第一台静电场聚焦电子镜筒并于当年创立了Micrion专注于掩膜修复用聚焦离子束系统的研发,1984年Micrion和FEI进行了合作,FEI是Micrion的供应部件。1985年 Micrion交付第一台聚焦离子束系统。1988年第一台聚焦离子束与扫描电镜(FIB-SEM)双束系统被成功开发出来,在FIB系统上增加传统的扫描电子显微系统,离子束与电子束成一定夹角安装,使用时试样在共心高度位置既可实现电子束成像,又可进行离子束处理,且可通过试样台倾转将试样表面垂直于电子束或者离子束。到目前为止基本上所有FIB设备均与SEM组合为双束系统,因此我们通常所说的FIB就是指FIB-SEM双束系统。20世纪90年代FIB双束系统走出实验室开始了商业化。图3:典型FIB-SEM 双束设备示意图1999年FEI收购了Micrion公司对产品线与业务进行了整合。2005年ALIS公司成立,次年ZEISS收购了ALIS。2007年蔡司推出第一台商用He+显微镜,氦离子显微镜是以氦离子作为离子源,尽管在高放大倍率和长扫描时间下它仍会溅射少量材料但氦离子源本来对样品的损害要比Ga离子小的多,由于氦离子可以聚焦成较小的探针尺寸氦离子显微镜可以生成比SEM更高分辨率的图像,并具有良好的材料对比度。2011年Orsay Physics发布了能够用于FIB-SEM的Xe等离子源。Xe等离子源是用高频振动电离惰性气体,再经引出极引出离子束而聚焦的。不同于液态Ga离子源,Xe等离子源离子束在光阑作用下达到试样最大束流可达2uA,显著增强FIB微区加工能力,可以达到液态Ga离子FIB加工速度的50倍,因此具有更高的实用性,加工的尺寸往往达到几百微米。如今FIB技术发展已经今非昔比,进步飞快,FIB不断与各种探测器、微纳操纵仪及测试装置集成,并在今天发展成为一个集微区成像、加工、分析、操纵于一体的功能极其强大的综合型加工与表征设备,广泛的进入半导体行业、微纳尺度科研、生命健康、地球科学等领域。参考文献:[1]崔铮. 微纳米加工技术及其应用(第2版)(精)[M]. 2009.[2]于华杰, 崔益民, 王荣明. 聚焦离子束系统原理、应用及进展[J]. 电子显微学报, 2008(03):76-82.[3]房丰洲, 徐宗伟. 基于聚焦离子束的纳米加工技术及进展[J]. 黑龙江科技学院学报, 2013(3):211-221.[3]付琴琴, 单智伟. FIB-SEM双束技术简介及其部分应用介绍[J]. 电子显微学报, 2016, v.35 No.183(01):90-98.[4]Reyntjens S , Puers R . A review of focused ion beam applications in microsystem technology[J]. Journal of Micromechanics & Microengineering, 2001, 11(4):287-300.
  • 聚焦最新质谱技术在食品安全检测中的应用
    第六届中国北京国际食品安全高峰论坛:质谱技术分论坛  仪器信息网讯 2013年4月1日,由北京食品学会、北京食品协会主办,太平洋国际展览(北京)有限公司承办的“第六届中国北京国际食品安全高峰论坛”在国家会议中心召开。本次高峰论坛为期两天,旨在从科学和技术的角度来探讨如何确保全国13亿人民的食品安全。论坛吸引了1000余名业内人士参加、60余家企业参展,仪器信息网作为合作媒体亦参加了本次会议。  作为论坛的重要组成部分之一——“食品安全—质谱分析技术”分论坛于2013年4月1日下午召开,北京莱伯泰科、AB SCIEX、布鲁克等公司为参会嘉宾介绍了其公司的最新质谱技术及应用。“食品安全—质谱分析技术”专题研讨会现场  莱伯泰科:移动式气质联用系统Griffin 460,可对液体、固体和气体样品进行直接进样分析  北京莱伯泰科介绍了由美国Griffin公司推出的移动式气质联用系统Griffin 460,其专门为现场应用设计,能够对复杂样品基质中的化学物质提供实验室级别的化学分析,并可以24小时全天候对大气进行连续监测。  据悉,Griffin 460采用内部独立减震技术对整个系统进行保护,由于所有的减震系统都在系统内部,所以整机可以方便快速的在固定实验室、移动实验室、现场应急实验室、移动检测车之间进行移动。  值得一提的是,丰富的进样附件使得Griffin 460可以对液体、固体和气体样品进行直接分析:单独系统可以接受进样针直接进样或者固相微萃取进样;在进行气体样品分析时,专为现场大气采样设计的X-Shorber大气采样器,可以与Griffin 460系统通过其通用接口直接快速连接,进行样品分析;水样可以通过Griffin 460吹扫捕集附件进行分析;对于固体、液体或气体样品,还可以采用其独特的PSI-Probe进样技术,即可实现无需样品前处理的直接进样分析,其包括TAG PSI-Probe和TWISTER PSI-Probe两种技术,为现场分析的复杂样品前处理过程提供了革命性的解决方案。  AB SCIEX:6500系列质谱仪,灵敏度提高10倍  AB SCIEX公司则介绍了其在2012年推出的6500系列质谱仪。AB SCIEX Triple Quad™ 6500 和 QTRAP 6500系统是新一代质谱仪,与目前市场上最畅销的高性能三重四极杆系统相比,其灵敏度提高了10倍。  据了解,AB SCIEX 6500系列采用新的IonDrive™ 技术,能够离子化、传输以及检测更多的离子,实现了高灵敏度。该技术包含新的IonDrive Turbo V离子源、新型的IonDrive™ QJet 导入技术以及性能提高20倍的IonDrive™ HED检测器。新型IonDrive Turbo V离子源,使样品的离子化效率更好;而且新的IonDrive QJet 离子导入具有两级设计,具有更高的离子聚焦和传输效率;全新的IonDrive HED检测器,大幅提高了动态线性范围,可达6个数量级,因此大大提高了6500的灵敏度。  布鲁克:LC-QQQ和LC-(Q)TOF农残分析解决方案,全面满足定性定量需求  布鲁克公司则介绍了其采用液质联用技术的最新农药残留分析解决方案。包括“专为定量应用而设计的LC-QQQ液质分析方案”和“LC-(Q)TOF食品与药品质量控制系统研究方案”。  LC-QQQ液质分析方案——EVOQ系列液质联用型三重四极杆质谱,布鲁克公司2012年推出的质谱新品,可对数以千计的实际样品进行快速且可靠地定量分析,并提供样品管理到检测报告的全自动工作流程。  该系统采用创新的交错式四级杆(IQ)设计的双重离子漏斗,使小分子和生物分子的分析能够轻易达到超高的灵敏度。其具有两大优势:(1)简单,漏斗形式的设计,并且只有射频电压,使得这个系统可以无需对化合物进行调节就可以很好的对化合物离子进行聚焦;(2)非常显著地减少了仪器维护的次数,从而增加的仪器正常使用时间。相对于传统的层叠式透镜漏斗设计,IQ双重离子漏斗的空间几何学设计改善了背景气的移动,从而减少了表面污染。  LC-(Q)TOF系统研究方案:LC-(Q)TOF不仅应用于常规分析,还可应用于未知物剖析,以及差异性比较、代谢组学研究等扩展研究方面。与LC-QQQ相比,ESI-(Q)TOF具有“能够推测未知物;不受通道数限制,方法开发简单;全数据记录,便于风险评估;具有高分辨峰型图,适用于质量相近的化合物分析”等优点。布鲁克公司的LC-(Q)TOF农残检测方案基于全灵敏度高分辨数据,结合专业的分析软件和数据库,可以实现已知物/未知物定性(半)定量分析。(编辑:萧然)
  • 声学影响图(AIM)建模工具,让无损检测全聚焦方式(TFM)如虎添翼
    全聚焦方式(TFM)在无损检测(NDT)中引进全聚焦方式(TFM)全聚焦方式(TFM)已经在无损检测(NDT)领域中引起了很大的轰动。但是,在使用全聚焦方式(TFM)进行检测时,仍然有些难题尚未解决,例如:如何为某个特定的检测选择适当的传播模式(声波组)。一些在早期采用这种方法进行检测的人员很快地注意到,使用了错误的模式,可能意味着使某些缺陷从显示屏幕上完全消失,从而会造成显而易见的严重影响。为全聚焦方式(TFM)检测选择适当设置的挑战在为某种检测选择传播模式(声波组)时,检测人员需要了解待检工件中可能会存在哪种缺陷。了解了缺陷类型,有助于了解有关反射体方向的信息,而这些信息在使用超声技术(UT)进行检测时至关重要。使用常规UT、相控阵UT或全聚焦方式(TFM)进行检测的基本原理保持不变。当发射声束的入射角等于目标反射体的反射角时,检出率(POD)会达到最高。另一个要考虑的是探头参数。根据所使用探头的不同,声波可能没有足够高的波幅,无法达到目标缺陷。即使已经将全聚焦方式(TFM)区域限定在某个区域,仍然有可能因为物理方面的原因,某种特定探头无法在被测工件内较深的位置处聚焦。有很多因素需要考虑,那么我们要如何简化检测过程,并确保有效完成检测呢?图1:为一系列横通孔成像所使用的不同模式。在本例中,样件非常厚,而且串列模式(TTT和LLL)的适应性较差。使用声学影响图建模工具的解决方案OmniScan X3相控阵探伤仪配备有一个内置扫查计划工具。扫查计划工具中有一个专用于全聚焦方式(TFM)检测的声学影响图(AIM)建模工具。声学影响图(AIM)建模工具可以帮助用户为他们的检测选择正确的传播模式或声波组。图2:OmniScan X3的扫查计划在TFM模式下显示由图1中的探头、楔块和参考标准试块生成的声学影响图(AIM)。声学影响图预测了检测的覆盖范围,并给出了TT声波组的灵敏度指数值(41.42)。所获得的全聚焦方式(TFM)图像也显示在图1中(左图)。上面热图中浅橙色的方块代表TFM区域,即由用户划定的关注区域。图3(点击放大):声学影响图(AIM)模型表明TTT和LLL声波组在串列模式下的覆盖范围和灵敏度:TTT声波组的灵敏度指数(SI)为13.89,LLL声波组的灵敏度指数为2.18。这些对应于图1中的TTT声波组(中图和右图)及LLL声波组的全聚焦方式(TFM)图像。声学影响图(AIM)建模工具考虑多种参数,其中包括:探头和楔块、声速、厚度、样件的几何形状、检测技术、声波组,当然还有检测人员在“影响区”菜单中输入的用于描述目标缺陷类型的参数。缺陷的方向是影响声束探测效果的主要因素。声学影响图(AIM)模型可以为用户清楚地演示针对某个特定的缺陷,使用哪个角度可使声束信号更好地探测到缺陷。使用声学影响图建模(AIM)工具确定最适合的传播模式用户配置所需的关注区域,然后输入预期的缺陷方向(单位为度),对于那些一般来说小于检测波长的缺陷,如:孔隙或其他较小的体积型缺陷,选择“全向”。调色板的不同颜色可以清晰地区分出影响区域中各部分的灵敏度性能。每种颜色覆盖3分贝范围,而且可以表明相对于最大波幅的超声响应。下图,为一个声波组的3个扫查计划屏幕截图,表明随着对缺陷方向从5度到15度再到25度的调整,声学影像图(AIM)所产生的变化。滑动查看灵敏度指数的重要性需要注意的是,每种颜色的实际值在不同的声学影响图中各不相同。这是因为在每个声学影响(AIM)模拟图中,颜色的分贝范围从归一化之后所预测的最大波幅向后测量。为了使用户在不同的声学影响图之间进行比较,我们提供了灵敏度指数(SI)值。灵敏度指数(SI)是一个以任意单位表示的值,代表在归一化之前为某个给定声波组的整个模拟图所估算的最大灵敏度。如图2和图3所示,灵敏度指数值如下:TT声波组为41.42TTT声波组为13.89LLL声波组为2.18只需参考图2和图3的热图,您就可以清楚地看到,TTT声波组在TFM区域(橙色框)中所预测的覆盖范围不足,但是,LLL声波组和TT声波组似乎是同样好的选择。在这两张图中,红色和橙色区域都充分覆盖了TFM区域。但是,如果比较TT和LLL声波组声学影响图的灵敏度指数值(分别为41.42和2.18),则可以计算出TT声波组图中红色和橙色区域的灵敏度比LLL声波组强19倍。预测的灵敏度越高,在全聚焦方式(TFM)检测中,这些区域的期望信噪比(SNR)就越好。在全聚焦方式)(TFM检测中使用声学影响图(AIM)建模工具优势特性的总结在我们给出的例子中,通过比较三个声波组(TT、LLL和TTT)的AIM模拟图,我们可以预测TT声波组会提供最高的灵敏度,并会最好地覆盖TFM区域。使用相应的声波组获得的TFM图像(图1)表明,建模工具正确模拟了这些声波组探测参考试块中缺陷的成像能力。这说明声学影响图(AIM)建模工具有助于用户在选择TFM传播模式时,消除某些不确定的猜测成分。全聚焦方式(TFM)在工业检测应用中的发展前途光明,大有作为,但是,如果没有适当的建模工具,则很难预测到实际的声波覆盖范围和灵敏度水平。OmniScan X3探伤仪的扫查计划工具带有声学影响图(AIM)建模工具,可使检测人员充满信心地确定哪种全聚焦方式(TFM)模式更适合于当前的检测。
  • 电镜-拉曼联用技术—共聚焦分析应用篇
    电镜-拉曼联用技术除了在二维材料中有着得天独厚的应用优势,在拉曼共聚焦三维分析中的应用也十分广泛。TESCAN电镜-拉曼一体化系统(RISE显微镜)配备了独有的共聚焦功能,共聚焦不仅仅是可以减少背底,提高拉曼谱图质量及拉曼分布图的空间分辨率,还可以针对不同试样做很多新的拓展分析工作。透明试样分析通常,SEM只能观察到非常表面的信息,而EDS一般也只能分析到表面以下一两微米左右的元素信息,再深层的位置只能靠FIB切开制样或者其他手段了。但是对于透明膜层来说,只要对激光透明,拉曼光谱可以分析到非常深处的信息。如果试样具有多层膜并且都是透明的话,可以利用拉曼的共聚焦功能,通过移动物镜的上下位置进行逐层的分析,从而得到在不同深度位置所对应的拉曼光谱,进而对试样进行全面三维分析。如下图,通过在Z方向进行逐层扫描,获得了不同膜层的拉曼光谱。TESCAN RISE显微镜在深度上的共聚焦分辨率优于1um。而对于传统的电镜,只能分析到最外层膜层的成分信息。在Z方向进行逐层扫描,得到样品截面的光镜图(左)和拉曼光谱图(右)三维立体扫描除了针对透明材料的分析,TESCAN RISE显微镜还可以利用共聚焦进行三维立体扫描。众所周知,普通的拉曼光谱仪是通过光学物镜进行信号采集的,而光学物镜的景深远小于电镜,所以对于表面不是很平整的试样,拉曼光谱无法得到大景深的图像,因此无法定位分析位置。此外,非共焦拉曼在对样品进行面扫描时会掺杂非焦面的信息,无法消除背底信息的干扰,分析的灵敏度和空间分辨度均有大幅下降。而针对此种情况,可以利用TESCAN RISE显微镜的共聚焦立体三维扫描功能,从试样的顶部到底部,逐步改变焦距,进行一层一层的面扫描。这样就可以保证选择区域的每个测试点都可以落在焦面上,不掺杂非焦面的任何信息。最后把平面的拉曼图像转换为空间立体的三维示意图,不但可以得到平面的拉曼特征光谱的分布信息,还得到了试样的三维立体形貌信息。如下图,试样为在空间交叉错落有致的纤维,焦距相差较大,进行三维立体扫描后获得了立体的拉曼图像。纤维试样,SEM图像TESCAN RISE显微镜对试样进行三维立体扫描纤维试样的三维立体扫描结果非透明样品的拉曼三维重构前面所述的共聚焦立体扫描只能对透明试样的内部进行三维立体分析,如果试样表面对激光的吸收很强而不透明,那共聚焦扫描就不能对试样内部结构进行拉曼成像,这就影响了其应用领域。但是TESCAN RISE显微镜不仅仅是基于常规的钨灯丝和场发射扫描电镜平台,同样可以完美的加载于SEM-FIB双束电镜平台上。我们知道,双束电镜可以利用Ga+或Xe+的离子束对试样进行加工,将试样的内部暴露出来。然后即可对加工出的内部表面进行形貌观察、元素分析,以及拉曼光谱分析。每切出一个表面,便可进行拉曼面分析,然后离子束再切出一个表面,再进行拉曼面分析。如此,就可以得到一系列的SEM图像,EDS mapping数据以及拉曼面分布图,最后三维重构成立体示意图。样品截面FIB加工的示意图样品截面的拉曼面分布图由二维分析转向三维分析是测试表征的重要趋势,加载在双束上的RISE显微镜也突破了传统拉曼光谱受试样透明度影响的限制,为拉曼光谱的三维分析开辟了全新的途径。聚苯乙烯粒子镀膜的拉曼三维重构关于TESCANTESCAN发源于全球最大的电镜制造基地-捷克Brno,是电子显微镜及聚焦离子束系统领域全球知名的跨国公司,有超过60年的电子显微镜研发和制造历史,是扫描电子显微镜与拉曼光谱仪联用技术、聚焦离子束与飞行时间质谱仪联用技术以及氙等离子聚焦离子束技术的开拓者,也是行业领域的技术领导者。更多拉曼-电镜联用技术应用案例,请关注“TESCAN公司”微信公众号查看:无机材料分析应用篇碳材料分析应用篇有机材料分析应用篇二维材料分析应用篇
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制