当前位置: 仪器信息网 > 行业主题 > >

自旋共振波谱仪

仪器信息网自旋共振波谱仪专题为您提供2024年最新自旋共振波谱仪价格报价、厂家品牌的相关信息, 包括自旋共振波谱仪参数、型号等,不管是国产,还是进口品牌的自旋共振波谱仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合自旋共振波谱仪相关的耗材配件、试剂标物,还有自旋共振波谱仪相关的最新资讯、资料,以及自旋共振波谱仪相关的解决方案。

自旋共振波谱仪相关的资讯

  • 国仪量子即将亮相北京波谱年会,共商顺磁共振波谱仪最新进展
    “2021年度北京波谱年会”将于2021年5月14日-16日在京召开。国仪量子将携电子顺磁共振波谱仪、量子钻石单自旋谱仪等产品设备及相关解决方案亮相本届年会,与此同时,国仪量子磁共振事业部总经理许克标博士将带来主题为《国仪量子顺磁共振波谱仪最新进展》的报告,干货满满,不容错过!为了进一步促进波谱学的健康发展,加强学术交流与合作,了解波谱新技术和交叉学科的最新进展,由北京理化分析测试技术学会波谱专业委员会主办,中国科学院大学协办的“2021年度北京波谱年会”将于2021年5月14日-16日在京召开。本次会议以“不断进步的磁共振波谱”为主题,在液体、固体、低场和成像核磁共振波谱、连续波和脉冲电子顺磁共振波谱以及国产化仪器研发等方面进行经验交流报告。会议交流形式包括大会报告、分会报告和墙报等,旨在提高波谱学开发和应用水平,推动波谱技术交流与推广。电子顺磁共振(EPR)波谱技术是现代高新技术材料的性能测试手段之一,是一项检测具有未成对电子样品的波谱方法。即使是正在进行的化学和物理反应,电子顺磁共振也能获得有意义的物质结构信息和动态信息。目前电子顺磁共振已在物理学、化学、生物学、生物化学、医学、环境科学、地质探矿等许多领域得到广泛应用。光探测磁共振技术(ODMR)以 NV 色心自旋磁共振为原理,通过控制光、电、磁等基本物理量, 实现对钻石中氮—空位(NV 色心)发光缺陷的自旋进行量子操控与读出,与传统顺磁共振、核磁共振相比,具有初态是 量子纯态、自旋量子相干时间长、量子操控能力强大、量子塌缩测量实验结果直观等独特优势。报告精彩看点报告主题:国仪量子顺磁共振波谱仪最新进展报告时间:2021年5月16日 11:35-11:45报告地点:北京世纪金源香山商旅酒店金都厅讲师简介:许克标中国科学技术大学博士国仪量子磁共振事业部总经理内容概要:电子顺磁共振波谱技术是一种研究含有未成对电子物质的结构、动力学以及空间分布的谱学方法,能够提供原位和无损的电子自旋、轨道和原子核等微观尺度的信息。本报告以顺磁共振的仪器开发和应用为主线,介绍国仪量子(合肥)技术有限公司的顺磁共振波谱仪和基于金刚石NV色心的单自旋磁共振谱仪的最新进展。电子顺磁共振波谱仪电子顺磁共振(Electron Paramagnetic Resonance, EPR) 波谱技术是一种研究含有未成对电子物质的组成、结构以及动力学等信息的谱学方法,能够提供原位和无损的电子自旋、轨道和原子核等微观尺度的信息。X波段脉冲式电子顺磁共振波谱仪EPR100当含有未成对电子的物质置于静磁场中时,如果对样品施加一定频率的电磁波信号,会观测到物质对电磁波能量的发射或者吸收。X波段连续波电子顺磁共振波谱仪EPR200-Plus通过对电磁波信号的变化规律进行分析,可以简析出电子以及其周围环境的特性,从而可以进行物质结构的分析以及其他应用。含有未成对电子的物质分布广泛,如孤立单原子、导体、磁性分子、过渡金属离子、稀土离子、离子团簇、掺杂材料、缺陷材料、生物自由基、金属蛋白等;许多物质本身不含有未成对电子,在受到光激发后会产生未成对电子。因此电子顺磁共振技术广泛应用于物理、化学、生物、材料、工业等领域。 台式电子顺磁共振波谱仪EPR200M量子钻石单自旋谱仪量子钻石单自旋谱仪是一台以NV 色心自旋磁共振为原理的量子实验平台。该谱仪通过控制光、电、磁等基本物理量,实现对钻石中氮—空位(NV 色心)发光缺陷的自旋进行量子操控与读出,与传统顺磁共振、核磁共振相比,具有初态是 量子纯态、自旋量子相干时间长、量子操控能力强大、量子塌缩测量实验结果直观等独特优势。 量子钻石单自旋谱仪量子钻石单自旋谱仪具有超高灵敏度与纳米级超高分辨率,可以完成单分子、单细胞的微观磁共振谱学和成像,同时可以运行在室温大气条件下,对于生物样品有良好的兼容性。该谱仪具备高保真度量子自旋态调控技术,通过自主研发的50 ps 时间精度脉冲发生器以及宽带高功率微波调制器件,能够实现对自旋低噪声、高效、快速的量子相干操控。与谱仪配套的高智能化控制与信号采集软件,能够实现自动光路调节、自动磁场调节以及长时间的无人值守自动测样实验,是科研实验的最好搭档。
  • 北京师范大学珠海校区理工实验平台低温电子自旋共振波谱仪等设备采购项目公开招标
    一、项目基本情况项目编号:BMCC-ZC22-0660项目名称:北京师范大学珠海校区理工实验平台低温电子自旋共振波谱仪等设备采购项目预算金额:620.0000000 万元(人民币)采购需求:序号名称简要技术需求预算(万元)数量是否接受进口1低温电子自旋共振波谱仪磁体分辨率≦10 mG…5001套是2多相碳分析仪H2O:独立的H2O红外检测器一个…1201套是合计:620万元合同履行期限:自合同签订生效后开始至双方合同义务完全履行后截止。本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:本项目是否专门面向中小企业采购:否3.本项目的特定资格要求:(1)单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得同时参加本项目;(2)为本项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得参加本项目;(3)通过“信用中国”网站(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)和国家企业信用信息公示系统(www.gsxt.gov.cn)查询信用记录(截止时间点为投标截止时间),被列入失信被执行人、重大税收违法案件当事人名单或政府采购严重违法失信行为记录名单的供应商,没有资格参加本项目的采购活动。(4)投标人必须购买招标文件并登记备案,否则没有资格参加本项目的投标。三、获取招标文件时间:2022年11月15日 至 2022年11月22日,每天上午9:00至11:30,下午13:00至16:30。(北京时间,法定节假日除外)地点:北京市海淀区学院路30号科大天工大厦B座17层1709室(北四环学院桥东北角)。方式:电汇购买或现场购买(只接受现金)(具体方式详见“其他补充事宜”)售价:¥200.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年12月06日 09点30分(北京时间)开标时间:2022年12月06日 09点30分(北京时间)地点:北京市海淀区学院路30号科大天工大厦B座17层1706室第一会议室。(提示:楼层较高,请供应商预留递交文件时间提前到场)五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜(1)详细报名及获取采购文件方式,请完整阅读以下全部内容:1)电汇购买招标文件请填写下表,连同电汇底单(网银转账页面或银行回单)扫描件发送至bjmdzx@vip.163.com(未按要求操作不予登记)。邮件主题请务必为“购买标书登记+项目编号(BMCC开头)+项目名称”。报名后我司将回复邮件告知报名结果,请关注邮件及相关附件。请注意:电汇或网银必须于标书销售截止日下午4:30前到账。投标人在购买招标文件时按照招标公告的要求提供相应材料,如实完整的填写出售标书记录,尤其须明确拟投标包号。本项目本次分包进行招标,投标人必须按所投包数缴纳购买招标文件的费用。投标人在购买招标文件后,如果决定变更登记的信息,应在购买文件截止时间前补交齐相关费用并书面通知项目负责人,否则变更信息将不予认可。项目编号BMCC-XXXX报名包号汇款金额公司名称统一社会信用代码公司,发票、纸质版文件邮寄地址项目联系人联系电话联系邮箱需要快递纸质版文件是(须加收快递费100元) √否汇款/转账凭证(汇款或转账的底单扫描件或截图) 2)银行账户信息,电汇购买采购文件、投标保证金及中标服务费收取的唯一账户:汇款或转账时请务必附言“项目编号+用途”,例如:BMCC+项目编号的标书款或保证金。公司名称:北京明德致信咨询有限公司开 户 行:中国工商银行股份有限公司北京东升路支行账 号:0200 0062 1920 0492 9683)采购文件的获取:1-电子版:明德致信公司网站“招标(采购)公告”频道:http://www.zbbmcc.com/node/119。无需注册,按项目名称或编号查找对应项目,点击标题下红色“下载”按钮即可;2-纸质版:若需纸质版采购文件请在报名表中注明,须加收快递费100元。3)问题咨询联系方式的说明:1-有关采购文件购买、中标通知书领取及服务费发票、保证金交纳及退还事宜的联系电话:(010)82370045;2-有关采购文件技术部分的问题咨询:请拨打公告“项目联系方式”中项目负责人的号码。(2)本项目的公告发布媒介:中国政府采购网发布。对其他网站转发本公告可能引起的信息误导、造成供应商的经济或其他损失的,采购人及采购代理不负任何责任。(3)需要落实的政府采购政策:促进中小企业和监狱企业发展、优先采购节能产品、环境标志产品等、扶持不发达地区和少数民族地区、支持监狱企业发展、促进残疾人就业、完善中央高校科研仪器设备采购管理等。(4)如本公告内容和招标文件内容不一致,以招标文件为准。(5)投标文件请于提交投标文件截止时间(开标时间)前递交至开标地点,逾期递交文件恕不接受。(6)评分方法:综合评分法注:为加强新型冠状病毒感染的肺炎疫情防控工作,有效减少人员聚集,阻断疫情传播,保障大家的身体健康,把各项防控措施落细、落小、落实到位,采取以下措施:为有效减少人员聚集,建议电汇报名。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:北京师范大学地址:北京市海淀区新街口外大街19号联系方式:滕老师 zfcg@bnu.edu.cn2.采购代理机构信息名称:北京明德致信咨询有限公司地址:北京市海淀区学院路30号科大天工大厦B座17层1709室联系方式:张乐、王经理、吕绍山,010-82370045、186009602033.项目联系方式项目联系人:张乐、王经理、吕绍山电话:010-82370045、18600960203
  • 踏上新征程的磁共振波谱——2023年度北京波谱年会开幕
    仪器信息网讯 2023年5月20日,“2023年度北京波谱年会” 在中国科学院大学(雁栖湖校区)召开。本次会议由北京理化分析测试技术学会波谱专业委员会主办,中国科学院大学和北京分子科学交叉平台协办,旨在提高波谱学的开发和应用水平,促进波谱技术的交流与推广。会议吸引来自全国各地的100余位代表出席,仪器信息网作为合作媒体出席本次会议并进行全程报道。大会现场本次会议共安排了6个大会报告、12个技术报告、8个青年论坛报告以及13个墙报。会议特邀到第一届北京波谱会终身成就贡献奖获得者宁永成教授参加,并以“踏上新征程的磁共振波谱”为主题,邀请了活跃在我国的著名专家及青年专家作波谱前沿方法技术与应用新进展报告,组织了波谱厂家进行新产品技术报告及仪器展示,在液体、固体核磁共振波谱,电子顺磁共振波谱和成像波谱的方法学及其应用,国内外厂商最新技术进展等方面进行经验交流。其中,大会报告聚焦最新的磁共振方法和应用,技术报告以应用和技术支持为主,青年论坛以在读和刚毕业学生为主,墙报主要展示最新进展。此外,会议还将评选优秀青年报告和墙报,以及“2023年北京波谱会终身成就贡献奖”。5月21日下午13:30-15:00,会议将专门安排到北京分子科学交叉平台,参观目前国内第一台600M固体DNP。大会开幕式由中国科学院大学李剑峰教授主持,北京理化分析测试技术学会波谱分会理事长、清华大学杨海军高级工程师发表了开幕致辞。北京理化分析测试技术学会波谱分会理事长、清华大学 杨海军 高级工程师《踏上磁共振波谱的新征程》杨海军首先对所有与会人员的到来表示了感谢。其次,他提到,近几年在国家的大力经费支持下,固体核磁、低频脉冲顺磁等仪器数量大幅增长,得到普及,科研人员的队伍在不断扩充,涌现出了许多优异的成果。以国仪量子、纽迈科技等为代表的国产仪器,已经有了自己的一席之地,并打开了国际市场,进入先进的磁共振仪器公司行列,与老牌仪器公司同台竞技,向世人展示了我国的自主研发创新能力。这些不断变化的新现象,都在表明,磁共振波谱已经进入了一个新的征程。同时,他还在会议中介绍道,大会设置了特别贡献奖、优秀青年论坛奖和优秀墙报奖,他希望与会人员可以积极参与奖项的投票,既激发年轻人的创造力,也向德高望重的前辈致以崇高的敬意。欢迎致辞之后,中国科学院化学研究所向俊锋研究员、中国科学院大连化学物理研究所侯广进研究员、中国科学院生物物理所赵保路研究员、中国科学院大学李剑峰教授、华东师范大学胡炳文教授、苏州纽迈分析仪器股份有限公司大区经理丁皓等带来了精彩的大会报告。中国科学院大学李剑峰教授、清华大学李勇副教授分别主持大会报告环节。中国科学院化学研究所 向俊锋 研究员《与所需求同行的中科院化学所核磁发展之路》报告中,向俊锋研究员回顾了核磁的发展历史,据介绍,目前,中国科学院化学研究所已经拥有从300-800兆各类核磁共振设备15台套,配备超低温宽带多核探头、高梯度宽带扩散探头、宽带高分辨魔角探头、超高转速固体MAS探头,微成像探头以及低频探头等,为支持研究所的全面发展提供技术支持。中国科学院大连化学物理研究所 侯广进 首席研究员《固体核磁共振技术及在多相催化研究中的应用》侯广进研究员主要介绍了通过先进的多核多维高分辨固体核磁共振技术,探究双功能催化体系中氧化物表界面的活性位结构、分布以及分子筛的酸性位、孔道结构等性质,以及与资源小分子活化、调控反应产物、产物选择性之间的内在关联,这对于深入理解反应机制具有重要的意义。中国科学院生物物理所 赵保路 研究员《ESR自旋捕集技术在生物学和医学中的应用》生物中的自由基大部分都是寿命极短的,难以用ESR进行测量,需要利用自旋捕捉技术。赵保路研究员团队建立了多种测量生物和医学中自由基的技术和方法等,并开展了多种细胞和生物组织中各种自由基的功能和作用,自由基在炎症、中风、帕金森病、老年痴呆症等疾病及衰老过程产生自由基的规律和作用机理等多项研究工作。中国科学院大学 李剑峰 教授《有关NO与Vitamin B12的两个故事》金属卟啉是血红素的重要模型化合物,李剑峰教授分离了首个反式双NO键合的锰卟啉单晶结构并对其做了多种波谱表征,为该类型血红素中间体的存在与性质提供了坚实的依据。此外,他还对作为Vitamin B12模型化合物的六配位钴卟啉进行了系统的几何结构与电子结构的研究,相关工作即将收尾。华东师范大学 胡炳文 教授《锂电池中的磁共振:从核磁共振到顺磁共振》胡炳文教授团队开发了一种原位顺磁共振EPR成像方法,可以得到锂在集流体上的沉积分布。同时,他们研究了锂枝晶的沉积,发现锂枝晶在局部的聚集。报告中,胡炳文教授还与大家分享了其团队取得的一系列科研进展,比如开发了微分谱技术,证实了Li枝晶生长为尖端生长;以P2-Na0.66Li0.22Mn0.78O2为基准体系,首次利用EPR技术揭露了氧化物正极材料的体相中“被圈闭”的分子O2(trapped molecular O2)的生成等。苏州纽迈分析仪器股份有限公司大区经理 丁皓《低场核磁共振技术在聚合物中的应用》基于弛豫动力学原理,结合温控技术,低场核磁可用于聚合物交联密度、结晶度、分散相容性、活化能及相转变温度等评价。由于无损、绿色、简便等优势,低场核磁具有将在橡胶、塑料、复合材料和粘合剂等行业得到应用。丁皓介绍道,低场核磁共振采用永磁体,无需制冷剂和屏蔽房,仪器及维护成本相对超导核磁低很多,且安装要求低,不仅便于科研平台使用,且适用于课题组或企业。清华大学 李勇 副教授主持会议参会人员合影本次北京波谱年会得到了12家厂商的大力支持,会议同期的仪器展吸引了参会代表驻足咨询。仪器展后续,会议还安排了技术报告、青年论坛、颁奖等多个环节,仪器信息网将持续为大家报道,敬请关注。
  • 国仪量子承办!2021年电子顺磁共振波谱高级学术研讨班圆满结束
    7月22日-31日,由中国科学院微观磁共振重点实验室和中国科学技术大学主办,国仪量子和中国科学院磁共振技术联盟协办的2021年夏季(第六期)电子顺磁共振波谱高级学术研讨班成功举行,来自全国各地30多所高校、科研院所和企事业单位的专家学者们参加了学习和研讨。作为波谱学的重要分支,电子自旋的直接表征工具,顺磁共振波谱学具有不可替代的重要作用。近年来,我国电子顺磁共振波谱学在物理、化学、材料科学、生命科学、医学和环境科学等研究领域取得许多瞩目最新研究成果,并保持着良好的发展势头。一如既往,本届研讨班由国内电子顺磁共振领域知名专家苏吉虎老师进行授课。苏吉虎老师是中国科学技术大学教授、博士生导师,主要从事电子顺磁共振在物理、生物、化学等领域的应用研究,并作为主要负责人,连续组织了2011-2020年的《全国电子顺磁共振波谱学学术研讨会》年度会议,具备丰富的教学经验。“电子顺磁共振波谱技术(以下简称EPR)是一个相对成熟的方法,这种方法曾经在国内得到比较好的发展,但改革开放以后因为各种原因造成了国内人才、学术交流等方面的断层,也导致了国内在这个领域的基础知识不够扎实,人才缺失等情况,因此开展该领域的学术交流及授课的工作也相对而言比较困难,不过目前这种现象已经得到了很大的改善。”苏吉虎表示,2010年以后,在中国科大的支持下,已连续举办了多年的学术会议,将这个领域带入一个新的高潮,经过10多年努力,国内电子顺磁共振波谱技术在应用、人才培养、学术交流、科研成果等方面都得到很大的提升,希望可以再经过10年的努力,通过学术会议、开设课程、人才培养、结合仪器的开发和推广,将该领域向前更推进一步!本次研讨课程内容包含EPR的基本原理、大量详实的实验范例、EPR谱图解析和模拟等,涵盖物理、化学、材料、生命科学和医学等学科,如过渡金属配合物的结构解析、化学合成、原位催化、高分子、磁性材料、自由基化学、自由基生物学和毒理学、自旋标记和俘获、生物催化等。研讨会期间,学员们除了学习最专业的EPR知识,还参观了国仪量子科学仪器应用中心,学习并操作国仪量子电子顺磁共振波谱仪。这种实践加理论的教学方式让学员们更加直观地感受到EPR技术的魅力,在课程结束后纷纷表示本次学习收获满满,期望能够为日后研究的开展提供指导意义。许多学员表示感受到了课程难度的同时,也推翻了之前错误的认知,有了许多新的设想,同时也对国产电子顺磁共振波谱仪发展之迅速由衷地赞叹。还有许多学员对此次国仪量子组织安排的会议服务感到非常暖心,让学员们找到了“回家”的感觉。 下面小编带您走入电子顺磁共振波谱高级学术研讨班课堂,一起来听听苏吉虎老师和学员们的感受吧!
  • 德国美嘉特电子顺磁共振波谱仪EPR样机培训—同济大学站
    德国美嘉特电子顺磁共振波谱仪EPR样机培训—同济大学站精彩回顾2018年6月29 日,德国美嘉特电子顺磁共振波谱仪MS5000 EPR样机培训在同济大学环境学院举办。上午,德国美嘉特中国独家代理-锘海生物科学仪器的工程师,就MS5000 EPR的原理、配件、耗材、软件操作及前沿应用案列等内容进行详细讲解。下午,工程师成海丽进行样机的实际操作培训,以此让每一位老师和同学都能够学会使用MS5000 EPR。 德国美嘉特电子顺磁共振波谱仪介绍电子顺磁(自旋)共振波谱仪(EPR/ESR)是唯一可以直接检测自由基的设备,其灵敏度远高于NMR(核磁共振)或光学化学分析技术,应用范围包括环境、化学、材料、生命科学、地质、辐照剂量学、食品及石油化工等领域,可用于研究自由基、过渡金属离子氧化态、配位化合物结构、化学反应动力学、催化反应机理、大气颗粒物(PM2.5)、污水处理中自由基、固体废弃物中持久性自由基EPFRs、材料缺陷、掺杂、酶活性、酶和蛋白质结构、辐射剂量、地质测年等。德国美嘉特电子顺磁共振波谱仪在实验过程中无需对样品进行复杂处理,即可进行快速准确测试。通过对EPR谱图的分析,从而得到物质的分子结构和状态等信息,可用于自由基的定性及定量分析。德国美嘉特电子顺磁共振波谱仪产品特点锘海生物代理的德国美嘉特电子自旋(顺磁)共振波谱仪EPR/ESR,型号有MS5000、MS5000X,是性价比最高的便携式台式波谱仪。来自德国美嘉特的桌上型波谱仪,具备新一代波谱仪简便易用的特点,无需特殊的知识背景即可熟练操作。该仪器外形小巧,性能可媲美大型ESR,在专业性和易用性上做了最完美的权衡。 EPR在环境领域的应用污水处理流通在线检测系统电子顺磁共振波谱仪EPR搭载流通池,可进行原位自由基检测,实时监控污水处理过程中自由基的产生及猝灭情况。EPR在环境领域的应用案例自由基反应机理;高级氧化还原反应的机理研究;TiO2光催化产生的电子空穴检测;放电等离子体处理污水过程中产生的自由基检测;芬顿反应;化学反应动力学监控;大气颗粒物(PM2.5)反应机制;环境中持久性自由基(EPFRs)等。 EPR应用于光催化机理研究 EPR应用于电化学高级氧化工艺 Photocatalytic water-splitting using TiO2 Electrochemical advanced oxidation processes (EAOPs) EPR应用于环境中持久性自由基EPFRs 检测 EPR应用于芬顿反应中产生的羟基自由基检测Environmentally persistent free radicals (EPFRs) Hydroxyl radicals (OH) in Fenton reaction
  • 350万!同济大学电子顺磁共振波谱仪采购项目
    项目编号:3109-234Z20233010 (项目编号:Z20230358)项目名称:同济大学电子顺磁共振波谱仪采购项目预算金额:350.0000000 万元(人民币)最高限价(如有):350.0000000 万元(人民币)采购需求:序号产品名称数量简要技术规格1电子顺磁共振波谱仪 1套1. *可检测最小绝对自旋数≤1*10^9 spins/G线宽;2. 信噪比S/N ≥3000:1;3. 数字化分辨率32 bit;4. 磁场噪声(短时间稳定性): ≦5 mG5. 磁场稳定性(长时间稳定性):≦10 mG;(详见采购需求)合同履行期限:合同签订之日起330个工作日内完成并验收合格交付使用本项目( 不接受 )联合体投标。获取招标文件时间:2023年02月28日 至 2023年03月07日,每天上午9:00至11:00,下午13:00至16:00。(北京时间,法定节假日除外)地点:中国上海市天目中路380号11楼方式:现场或邮件获取售价:¥500.0 元,本公告包含的招标文件售价总和对本次招标提出询问,请按以下方式联系。1.采购人信息名称:同济大学地址:中国上海四平路1239号联系方式:段老师 86-21-659826702.采购代理机构信息名称:上海政采项目管理有限公司地址:上海市静安区天目中路380号11楼联系方式:戴小军、朱逸元 8621-620912733.项目联系方式项目联系人:戴小军、朱逸元电话:8621-62091273
  • 布鲁克成功安装世界最高场527GHz核磁共振波谱仪
    2013年3月18日,Bruker宣布在荷兰的Utrech大学首次成功安装和验收了最新527 GHz固态DNP-NMR(核磁共振波谱仪)。527 GHz系统是世界上频率最高的波谱仪,有望开辟新的固态核磁共振应用研究领域。  DNP通过电子自旋向核自旋极化转移,大大提高了固态核磁共振波谱仪的灵敏度。DNP-NMR通过提供更详细的信号和对分子水平的相互作用更全面的理解,可以对全新样品种类进行研究。  对于此次仪器安装带来的新机遇,Utrech大学生物分子研究中心NMR部门负责人Marc Baldus教授评论到,“新仪器将进一步提高复杂生物分子和材料领域进行核磁共振研究的可能性。”  Bruker BioSpin公司Hyperpolarization产品经理Melanie Rosay博士分享了对该产品的预期。“我们非常兴奋在Utrech大学第一次成功安装了该仪器设备,因为它包括了代表Bruker最新技术的各种新器件”,她补充道。“在短短几年中,我们已经看到了DNP-NMR在生物固体和材料科学等研究领域应用的一个巨大增长。新兴DNP-NMR领域受惠于Bruker在德国、瑞士、法国和荷兰安装的4个263 GHz系统,和在德国和加拿大安装的两个395 GHz系统,并于刚刚在Utrech安装的世界上第一个527 GHz系统得到了进一步加强。”  由Bruker商业化的、创新的固态DNP-NMR技术,它的起源来自于麻省理工学院Robert Griffin 和Richard Temkin教授的开创性工作。固态DNP-NMR系统采用了Bruker著名的回旋振荡管作为高功率微波源, Ascend™ 800宽孔超导磁体,超快速AVANCE™ III HD检测。编译:刘丰秋
  • 国内首台脉冲式电子顺磁共振波谱仪在合肥高新区发布!
    p style="text-indent: 2em text-align: justify "近日,国仪量子(合肥)技术有限公司在合肥高新区召开发布会,宣布国内首台脉冲式电子顺磁共振波谱仪诞生。该产品具有自主知识产权、填补国内空白,在微波脉冲产生、高精度时序控制器、任意波形发生器、探头设计等核心技术上达到国际领先水平,并在科研和产业等方面具有广泛应用前景。/pp style="text-indent: 2em text-align: justify "电子顺磁共振是当代重要的物质科学研究手段。对于自旋标记的生物分子样品,可通过顺磁共振技术获取分子的动力学、结构等重要信息。这些信息主要源于电子自旋的精细和超精细结构,它们均可以从顺磁共振谱中提取。国仪量子发布的国内首台脉冲式电子顺磁共振波谱仪,具有国际领先的微波脉冲产生技术,原创性的复杂脉冲调制功能,可实现多种复杂的脉冲实验,能产生500瓦高功率、高相位稳定性的微波脉冲,微波脉冲的时间分辨率为50皮秒。该产品具有个性化、可定制、易扩展、高集成度、高稳定性等特性,且具有灵活的波形产生和数据处理方式。/pp style="text-indent: 2em text-align: justify "科学仪器装置,被誉为“国之重器”。国仪量子源于中科大中科院微观磁共振重点实验室,是一家以量子精密测量为核心技术的高新技术企业,今年已获批国家重点研发计划“重大科学仪器设备开发”重点专项。该公司专注大型科学仪器平台的研制开发,发展全球领先的量子精密测量技术,瞄准突破极限指标的仪器,为各行各业物质科学研究提供尖端科学装置平台。/p
  • 2022年夏季(第七期)电子顺磁共振波谱高级研讨班第二轮通知
    由中国科学技术大学、中国科学院微观磁共振重点实验室、中国科学院自主研制科学仪器应用示范中心联合主办的2022年夏季(第七期)电子顺磁共振波谱高级研讨班将于2022年7月22日-31日在合肥举行。本期研讨班将由国仪量子(合肥)技术有限公司、中国科学院磁共振技术联盟、《波谱学杂志》协办,同仁化学提供支持,为参会学员带来全方位的升级体验。2021年第六期电子顺磁共振波谱高级研讨班合影作为波谱学的重要分支,电子自旋的直接表征工具,顺磁共振波谱学具有不可替代的重要作用。近年来,我国电子顺磁共振波谱学(Electron Paramagnetic Resonance,EPR)在物理、化学、材料科学、生命科学、医学和环境科学等研究领域取得了许多令人瞩目的研究成果,并保持着良好的发展势头。为培养国内电子顺磁共振领域的专业后备人才,中国科学技术大学、中国科学院微观磁共振重点实验室已成功举办了6届电子顺磁共振波谱高级研讨班,吸引了众多国内相关领域的专家学者参加。2021年研讨班现场权威专家!全新教材!现场解谱!一如既往,本期研讨班将由国内电子顺磁共振领域知名专家苏吉虎教授进行授课,苏老师将根据最新的教材《电子顺磁共振波谱——原理与应用》,对课程进行优化升级,与学员们进行针对性研讨交流。同时,每位参会学员可携带一份样品,使用国仪量子的EPR谱仪进行测试,并接受苏吉虎老师面对面的指导解谱。扫码购买本书将作为研讨班教材,请有意参会的学员详细研读本书。研讨班日程安排017月22日14:00-20:00报到,领取学习资料,Matlab安装及兼容性检查等027月23日开班仪式引言,谱仪的原理、结构、操作,学习各种EPR数据处理和模拟软件g张量范例:根据未成对电子所占据的轨道,分成s、p、d、f四类,如p中心过氧自由基或者有机自由基、3d/4d过渡金属子EPR等参观和使用国仪EPR波谱仪037月24日A张量范例:自由基、配合物、化学配位等分析,生物和有机合成中的自由基跟踪,化学反应中的磁性同位素效应047月25日全天:个性化学习和讨论,或参观国仪量子科学仪器应用中心、学习操作国仪EPR波谱仪057月26日D、J等与磁性有关的张量范例:应用EPR研究磁性材料的电子结构,无机顺磁中心与有机自由基间的磁性相互作用,光合作用原初电子传递067月27日连续波模式具体操作及注意事项测试参数的优化脉冲EPR基本概念和主要应用077月28日上午:脉冲EPR基本概念和主要应用下午:个性化学习和讨论087月29日脉冲EPR基本概念和主要应用范例:光合作用水裂解机理,利用电子-电子双共振(DEER)技术测量自旋间距,光学探测和单分子磁共振097月30日学习和操作国仪EPR波谱仪如X波段和W波段脉冲EPR的应用,DEER、ENDOR等实验107月31日参观;培训结束,学员返程(准确课表以会议手册为准)研讨班时间地点时间:2022年7月22-31日,7月22日报到,7月31日下午培训结束,学员返程; 课时安排:上午8:30-12:00,下午14:30-18:30;报到/学习地点:合肥市高新区云飞路创新产业园一期格林豪泰动漫产业园酒店;住宿:格林豪泰动漫产业园酒店及附近酒店(可自行选择);本次研讨会收取注册费3500元,用于支付会务、资料、场地等费用。学习期间,与会人员的往返交通、食宿等需自理。报名方式请扫描下方二维码或点击文章底部“阅读原文”进行报名;截止时间:2022年7月15日上午8:00。注意事项1.参会代表来往路费及行程预订需自行解决; 2.参会代表需携带代表证方可进入会场,代表证将于签到时发放;3.如因疫情或其他不可抗力影响,研讨班将适时调整举办时间或地点,请关注“国仪量子”(ID:CIQTEK-2016)微信公众号了解最新情况;4.本期研讨班使用《电子顺磁共振波谱:原理与应用》作为教材,请学员自行购买。同时,会务组将提供英文教材《有机自由基的电子自旋共振波谱》;5.本次研讨班将严格执行疫情防控相关政策,仅接受来自国内低风险地区且“二码”(安康码、行程码)均为绿码的学员报名参会,请各位老师予以理解配合。
  • 第九届全国电子顺磁共振波谱学学术研讨会圆满举办
    华中科技大学第九届全国电子顺磁共振波谱学学术研讨会于2019年11月8-11日在华中科技大学主校区国际交流中心圆满举办,国仪量子作为本次会议的赞助方为会议的成功举办提供了大力的支持,会议期间还宣布了国仪量子将承办2020年夏季(第六期)电子顺磁共振波谱高级研讨班。EPR会议主办方代表致辞本届EPR会议由华中科技大学和中国科学技术大学联合举办。自2011年起,每年召开一届的全国电子顺磁共振波谱学学术研讨会,在各位领导、专家和社会各界的积极支持下,取得了丰硕的成果,与会人员的高水平学术报告不断涌现,从不同角度反映了当前电子顺磁共振波谱学的蓬勃发展和强劲需求,极大地促进了相关研究领域与学科的发展。参会人员合影纪念会议概要大会报告现场本届EPR会议于11月9日上午在华中科技大学国际交流中心(八号楼三楼报告厅)开幕,主办方代表致开幕辞后,来自中国科学技术大学的荣星老师作了题为《固态自旋量子控制研究实验进展》的报告,美国新墨西哥大学的刘克建老师作了题为《Application of ESR inbiomedical research: opportunities and challenges》的报告,高水平的大会报告受到与会专家老师的热烈关注。会议颁奖现场此后三天的会议里,分别举行了谱仪研制进展、《顺磁共振发展基金》2019年度专题、EPR在化学生物技术创新等领域的研究进展、EPR的拓展应用等专题报告会议。会议期间还颁发了《顺磁共振基金》“贡献奖”、“优秀青年奖”以及EPR会议优秀墙报奖。杜江峰院士会议期间,杜江峰院士宣布了2020年第十届全国电子顺磁共振波谱学学术研讨会将与“12th Asia-Pacific EPR/ESR Symposium 2020”合办。国仪量子将作为赞助方对明年的会议提供全方位的支持。EPR会议&国仪量子茶歇期间国仪量子营销总监介绍EPR谱仪8号晚,国仪量子参会代表跟随主办方参观了国家脉冲强磁场中心,9日晚国仪量子在华中科技大学国际交流中心瑜园餐厅为参会人员举办了晚宴,晚宴中,国仪量子的应用科学家为大家做了以电子顺磁共振谱仪EPR100为代表的仪器研发和应用进展的相关报告。晚宴现场晚宴报告中,国仪量子的电子顺磁共振谱仪EPR100和EPR200受到参会嘉宾的热切关注。国仪量子基于多年对顺磁共振技术和客户需求的深刻理解,为客户提供业界领先的电子顺磁测试解决方案。其中EPR100是公司推出的国内首台商用X波段脉冲式电子顺磁共振谱仪,具有科研级的连续波和脉冲EPR测量功能。EPR高级研讨班&国仪量子苏老师与大家交流中11日上午,来自中国科学技术大学中科院微观磁共振重点实验室的苏吉虎老师在华中科技大学国际交流中心一号楼会议室,主讲了“自旋捕获专题学习”的培训课,精彩的培训课受到了现场师生的热烈欢迎。第五期研讨班合影会议期间,宣布了2020年7月16日-26日(暂定)将在无锡量子感知研究所举办2020年夏季(第六期)电子顺磁共振波谱高级研讨班。届时将由国内电子顺磁共振领域知名专家苏吉虎老师进行授课,研讨内容为EPR的基本原理、大量详实的实验范例、EPR谱图解析和模拟等,涵盖物理、化学、材料、生命科学和医学等学科,如过渡金属配合物的结构解析、化学合成、原位催化、高分子、磁性材料、自由基化学、自由基生物学和毒理学、自旋标记和俘获、生物催化、辐射医学等。脉冲式电子顺磁共振波谱仪EPR100我们诚挚邀请各单位科研人员和研究生参加2020年夏天的培训和研讨,学习期间,可自由操作由国仪量子所提供的EPR100谱仪,也可以携带样品前来测试。2020年夏天,我们期待在无锡量子感知研究所与您不见不散。
  • 寰彤核磁发布寰彤核磁 90M核磁共振波谱仪新品
    HT-PNMR12-9HC 90MHz 核磁共振谱仪(H,C系统)核磁共振在众多领域应用越来越广泛,核磁共振简称NMR,是一种用来研究物质的分子结构及物理特性的光谱学方法,它是众多光谱分析法中的一员。其中“高分辨率核磁共振谱仪”主要用途是有机化学碳氢结构的表征,是化学结构分析的重要工具。NMR(核磁共振)是磁矩不为零的原子核,在外磁场作用下自旋能级发生塞曼分裂,共振吸收某一定频率的射频辐射的物理过程。核磁共振波谱学是光谱学的一个分支,目前市场主要有永磁NMR和超导NMR两大类型。超导NMR成本较高、维护费用高、维护复杂,因此我公司推出永磁90M核磁共振波谱仪。 90M核磁共振谱仪,有效提高化学位移分辨率、从中得到化学结构信息,具有维护费用低(无需液氮、液氦)、可应用于有机化学结构分析合成的检测以及普通的科研工作。主要用于有机化学结构分析和精细化工的现场检测。可以运用于化学合成药物分析等领域。主要实验功能1、观察1H,13C谱的超精细结构和化学位移2、化学结构分析以及分子结构分析3、小分子化学物的结构确定4、药物分析和化学鉴定5、简单结构的聚合物特性测定6、药物工艺开发,新药研发,药品工艺过程确认主要仪器参数1、H共振频率: 90MHz 2、1H\13C谱测量(超精细结构J-J耦合测量和化学位移测量)3.分辨率0.5HZ(0.0055ppm)4、磁极直径:10cm 5、均匀度:1Hz(0.011ppm) 6、灵敏度10000:1(以98%酒精CH3峰为准)7、恒温控制稳定度:0.001K/h 开机后 4 小时 8、信噪比 10000:1,(以98%酒精CH3峰为准) 9、旋转边带 1000:1(旋转频率100周每秒) 10、旋转频率:10-200Hz 11、谱对比系统12、质子宽带去耦13、碳谱测量部分:①、13C共振频率: 22.5MHz ②.分辨率0.2HZ(0.011ppm)③、信噪比 10:1累加1000次,(以85%二甲苯准为准) ④、1H宽带噪声去偶功率3W 14、可以观察NOE效应及去耦效应仪器尺寸重量1、磁 铁尺寸:0.7m × 0.7m × 0.8m 2、电气控制尺寸:0.5m × 0.5m × 1.2m 重量:HT-PNMR12-9 220Kg 创新点:可观察1H,13C谱的超精细结构和化学位移,特别是13C的快速采集寰彤核磁 90M核磁共振波谱仪
  • 巴西发布电子顺磁共振波谱法检测辐照食品标准
    2010年6月16日,巴西标准化协会(ABNT)发布两项新标准:ABNT NBR 15851:2010——电子顺磁共振波谱法(electron paramagnetic resonance spectrometry,EPR)检测含结晶糖的辐照食品 以及ABNT NBR 15852:2010——电子顺磁共振波谱法(electron paramagnetic resonance spectrometry,EPR)检测含骨肉类和鱼类辐照食品。  这两项标准给出了通过观察电子自旋共振谱检测辐照食品的电离辐射剂量的方法。标准由巴西标准化协会食品安全专项研究委员会(ABNT/CEE-104 Comissã o de Estudo Especial de Seguranç a de Alimentos)归口管理,自7月16日正式实施。
  • 站在磁共振的肩膀上,提升和扩展波谱分析方法——2024年度北京波谱年会开幕
    仪器信息网讯 2024年6月1日,由北京理化分析测试技术学会北京波谱学会主办,北京理工大学协办的“2024年度北京波谱年会” 在北京理工大学良乡校区正式开幕。近几年来,磁共振波谱科研成果显著,国产仪器公司发展迅速,整个领域跨入了新的阶段。本次会议旨在了解波谱新技术和交叉学科的最新进展,展示和发扬老一辈波谱科学家优良传统,促进波谱技术的交流与推广。会议吸引了来自全国各地的100余位专业代表出席,仪器信息网作为合作媒体出席本次会议并进行全程报道。大会现场本次会议以“站在磁共振的肩膀上,提升和扩展波谱分析方法”为主题,在液体、固体(包括DNP)、低场和成像核磁共振波谱、连续波和脉冲电子顺磁共振波谱以及国产化仪器研发等方面进行经验交流报告,特别邀请了活跃在我国的著名专家及青年专家作波谱前沿方法技术与应用新进展报告,期间组织波谱厂家进行新产品技术报告及仪器展示。会议共安排了8个大会报告、11个技术报告、8个青年论坛报告以及15个墙报,其中,大会报告将聚焦最新的磁共振方法和应用,技术报告以应用和技术支持为主,青年论坛以在读和刚毕业学生为主,墙报展示最新进展。此外,会议还将评选“2024年北京波谱会优秀青年论坛奖”、“2024年北京波谱会优秀墙报奖“、及“2024年北京波谱会终身成就贡献奖“。大会开幕式由清华大学教授李勇主持,北京理工大学教授黄木华发表开幕致辞。清华大学教授 李勇 主持开幕式北京理工大学教授 黄木华 致辞黄木华对北京理工大学的建设、学科发展、平台搭建等做了简单的介绍,向远道来的各位嘉宾同仁表示了热烈的欢迎和诚挚的感谢。他希望在接下来一天半的时间里,通过会议来宾的热烈交流,交换思想,共同促进波谱学的进一步的发展,并预祝本次会议能取得圆满成功。欢迎致辞之后,进入大会报告环节。此环节中,黄木华分享了题目为《从材料研究的角度发展实用的14N及15N-NMR技术》的报告。含氮物质的结构表征是一项重要的研究技术,15N核的低丰度导致的测试时间过长和14N核的四级作用导致的谱图宽化,使得基于天然丰度样品的核磁氮谱测试存在很大的挑战性。黄木华分享了其课题组近年来在多孔高分子材料、聚丙烯成核剂及含能材料研究中涉及到的典型样品进行14N及15N-NMR研究,展示了14N-NMR对于液体样品、15N-NMR对于固体样品结构解析的重要作用。大会报告期间,清华大学副教授李勇、中国科学院大学教授李剑峰分别主持大会报告。北京理化分析测试技术学会波谱分会理事长|清华大学高级工程师杨海军、天津医科大学教授刘阳平、清华大学副教授薛毅、中国科学院生物物理研究所研究员方显杨、华南理工大学副教授张容纯、武汉中科牛津波谱技术有限公司总经理宋侃、国仪量子技术(合肥)股份有限公司EPR应用工程师陆书恬分别为大家带来了精彩的内容分享。北京理化分析测试技术学会波谱分会理事长、清华大学高级工程师 杨海军报告题目:《站在磁共振的肩膀上,提升和扩展波谱分析方法》杨海军首先对为磁共振领域做出贡献的各位专家、学者和仪器厂商表达了感谢。其次,他探讨了磁共振硬件、软件等应用进展,目前,相关技术的迅速发展,对核磁共振灵敏度的提高具有重要作用。报告中,我们了解到,近几年在磁共振领域,国产仪器公司做出了巨大的努力,中科牛津核磁仪器销售量近200台;国仪量子电子信息领域产品销售额已超过60%,交付量超过100台等。最后,杨海军希望大家能够站在磁共振良好技术基础的肩膀上,继续前行,建立伟大的新时代。天津医科大学教授 刘阳平报告题目:《论Trityl自由基与超氧自由基的关系》四硫取代三苯甲基自由基是一类新型碳中心自由基(trityl),具有极窄的电子顺磁共振单线信号,较高的生物稳定性,良好的水溶性以及生理条件下长弛豫时间等优点。刘阳平围绕其课题组开展的工作,介绍了trityl自由基与超氧自由基的独特反应,着重阐释取代基对其反应机制与反应产物稳定性的影响,揭示trityl自由基在超氧自由基检测、清除及其超氧加合物在肿瘤治疗中的应用潜质。清华大学副教授 薛毅报告题目:《如何准确定位蛋白质结构中的氢原子》PDB数据库中将近85%的蛋白质结构是通过X射线晶体学解析的,但是这些结构中绝大部分缺乏氢原子坐标,准确确定氢原子坐标对于理解生物大分子互作和靶向蛋白质的药物开发具有重要意义。在相关工作中,薛毅课题组通过研究发现,使用分子动力学模拟软件Amber的力场,在隐式溶剂中进行能量最小化可以产生最好的结果。他们提出了一种基于分子动力学模拟的质子化方案,可以准确可靠地为蛋白质结构添加缺失的氢原子。中国科学院生物物理研究所研究员 方显杨报告题目:《RNA高级结构解析整合计算模拟平台的开发》目前,应用传统的结构研究方法对长链 RNA 及其蛋白质复合物的高级结构开展研究仍十分具有挑战性。截至2024年5月10 日,在 PDB 数据库219515 条结构数据中,RNA 和 RNA-蛋白质复合物的结构数据分别有1890 条和 5708 条,仅占总数的 0.9%和2.6%,因此,需要有新的方法,对RNA 及其蛋白质复合物开展结构研究。方显杨研究团队最近进行了基于非天然碱基对系统的长链 RNA 转录后位点特异性自旋标记方法等一系列研究,使得应用基于脉冲电子双共振(PELDOR)的电子顺磁共振波谱技术研究长链 RNA 的结构成为可能。华南理工大学副教授 张容纯报告题目:《增强灵敏度的多维固体NMR新方法》固体核磁共振波谱学是表征材料微观结构和动力学的有力工具,然而在很多情况下灵敏度往往限制了其广泛应用。张荣纯课题组提出了通过充分利用丰富的氢极化来增强固体NMR灵敏度的新策略,包括单通道质子多维固体NMR技术,单次扫描多次极化转移技术,以及单次扫描耗尽氢极化技术等。这些技术的应用可以大大节省实验时间,从而在单位时间内获得更加丰富的结构信息。武汉中科牛津波谱技术有限公司总经理 宋侃报告题目:《中科牛津核磁共振波谱仪研制及产业化进展》宋侃介绍了中科牛津公司的发展路线与产品技术特点,包括核心技术、关键部件等,经过十多年的研发及工程化开发的积累,公司取得了多项重大成果。截至目前,国内已服务多家院所及知名上市企业,累计装机超过170台。国仪量子技术(合肥)股份有限公司EPR应用工程师 陆书恬报告题目:《国仪量子电子顺磁共振技术进展》陆书恬介绍了国仪量子ERP谱仪系列的技术突破和新产品的性能,包括谱仪灵敏度和稳定性的提升、探头功能和自动调谐性能的升级、干式低温系统的设计改进、脉冲探测死时间结短以及瞬态功能的实现等。中国科学院大学教授 李剑峰 主持会议参会人员合影本次北京波谱年会得到了国仪量子、中科牛津、纽迈等11家厂商的大力支持,会议期间展出的仪器设备等吸引了广大参会代表驻足咨询。本次会议还安排了技术报告、青年论坛、颁奖等多个环节,仪器信息网将持续为大家报道,敬请关注。
  • 著名核磁共振波谱学家Ray Freeman教授辞世,享年90岁
    2022年5月1日,英国著名化学家、英国皇家学会会员、核磁共振波谱学家、剑桥大学耶稣学院名誉教授Ray Freeman去世,享年90岁(1932年1月6日-2022年5月1日)。Freeman教授毕生致力于核磁共振波谱技术的研究,推动核磁共振成为一种重要的分析技术,同时为核磁共振仪器设备的发展做出了重要贡献。Freeman在牛津大学度过了大部分求学生涯,师从Rex Richards教授学习化学,在其研究团队中从事非常用原子核(59Co)的核磁共振研究,取得了硕士和博士学位。1957年,Freeman加入法国的Anatole Abragam的核磁共振研究组,与其合作完成了博士后阶段的研究工作,并在核磁共振先驱Robert Pound教授的指导下研制了一台稳定的高分辨率核磁共振波谱仪。之后Freeman又在位于英国伦敦特丁顿的英国国家物理实验室(National Physical Laboratory,NPL)基础物理部工作了三年。1961年,Freeman与Wes Anderson一起加入了位于美国加利福尼亚州帕洛阿尔托的瓦里安公司(Varian Associates),从事双共振、双量子效应、自旋-晶格弛豫和傅里叶变换的相关研究,并协助研发了瓦里安核磁共振谱仪(XL-100和CFT-20)。1973年,Freeman回到牛津担任讲师和麦格达伦学院(Magdalene College)的研究员,并组建了自己的研究团队,专注于高分辨率核磁共振技术研究。开发了许多关于二维核磁共振、选择性激发和宽带去耦的新方法,这些方法至今仍在全球的核磁共振实验室广泛使用。基于他在核磁共振技术及其化学应用中发挥的重要作用,1979年,Freeman被选为英国皇家学会会员,并于2002年被授予皇家勋章。1987年,Freeman转到剑桥大学,担任核磁共振Plummer讲席教授,并继续他的核磁共振方法研究,直至1999年退休。但在退休后的很长一段时间,他仍然积极参与合作研究,并继续发表文章到80多岁。Freeman先后撰写了三本有关磁共振的专著,包括A Handbook of Magnetic Resonance、Spin Choreography: Basic Steps in High Resolution NMR、Magnetic Resonance in Chemistry and Medicine。Freeman教授还是一位出色的沟通者,是活跃在核磁共振会议上的"明星"。他的报告别具一格,会在幻灯片中加入自己手绘的图画来阐释问题,并时不时讲上几个幽默的段子,夹杂着几句自我调侃,逗得大家捧腹不已。他也是备受学生们爱戴的良师益友。他的许多学生在自己的研究领域取得了重大的成功,成为磁共振领域名闻遐迩的科学家,如美国国立卫生研究院的Ad. Bax博士、剑桥大学的James Keeler教授、曼彻斯特大学的GA. Morris教授、巴黎高等师范学院的Geoffrey Bodenhausen教授、南安普顿大学的Malcolm Levitt教授等。斯人已去,精神长存,Ray Freeman教授一路走好!
  • 假期学干货!2023年夏季(第八期)电子顺磁共振波谱高级研讨班开始报名
    2023年夏季(第八期)电子顺磁共振波谱高级研讨班开始报名会议背景作为波谱学的重要分支,电子自旋的直接表征工具,顺磁共振波谱学具有不可替代的重要作用。近年来,我国电子顺磁共振波谱学在物理、化学、材料科学、生命科学、医学和环境科学等研究领域,取得了许多令人瞩目的最新研究成果,并保持着良好的发展势头。为培养本领域高水平专业人才,中国科学技术大学、中国科学院微观磁共振重点实验室、中国科学院自主研制科学仪器应用示范中心、无锡量子感知研究所等单位,将于2023年7月21日–31日在无锡举办2023年夏季(第八期)电子顺磁共振波谱高级研讨班。诚挚邀请相关领域单位的科研人员和研究生参加培训和研讨。会议介绍为培养国内电子顺磁共振领域的专业后备人才,中国科学技术大学、中国科学院微观磁共振重点实验室已成功举办了7届电子顺磁共振波谱高级研讨班。一如既往,本届研讨班将由国内电子顺磁共振领域知名专家苏吉虎老师进行授课,研讨内容为EPR的基本原理、大量详实的实验范例、EPR谱图解析和模拟等,涵盖物理、化学、材料、生命科学和医学等学科,如过渡金属配合物的结构解析、化学合成、原位催化、高分子、磁性材料、自由基化学、自由基生物学和毒理学、自旋标记和俘获、生物催化、辐射医学等。本届研讨班将继续由国仪量子(合肥)技术有限公司、中国科学院磁共振技术联盟、《波谱学杂志》协助承办,并获得同仁化学大力支持。培训教材学习资料以苏吉虎和杜江峰著的《电子顺磁共振波谱-原理与应用》(科学出版社,2022年3月出版)为主。本书是面向实验的EPR专著。全书立足于实验,强调谱图解析和归属及其所需基础知识,不拘泥于严格地数学推导,是一部基于电子自旋地物理、化学、生物、材料等学科交叉的专著。欢迎各位老师和同学,携带实验素材来共同探讨、共同学习、共同进步,享受解谱过程的茅塞顿开、豁然开朗的感受。培训内容授课安排根据实际进度而临机调节,内容含EPR基本概念、基本理论、应用范例、谱图解析和模拟、谱仪操作注意事项等。为保证学员能基本掌握EPR的理论和应用,在整个过程中,大量穿插各种EPR数据处理和模拟软件的学习和使用。此次培训全程是以Matlab 2019a或更新版本为平台的EPR谱图解析、模拟等。尚未有谱仪实际操作经验的老师和同学们,请提前一至两天到达,国仪将提供免费学习连续波和脉冲EPR的实际操作和学习,以更好的掌握学习进程。(需先自费前往合肥市国仪量子应用中心进行学习。请在报名表备注中填写是否提前实地学习,组委会将根据备注信息与您联系确认)7月21日(星期五):报道,领取学习资料,Matlab安装及兼容性检查等7月22日(星期六):引言,谱仪的原理、结构、操作,和学习EPR数据处理、模拟软件g张量初步 范例:根据未成对电子所占据的轨道,分成s、p、d、f四类,如p中心过氧自由基或者有机自由基、3d/4d过渡金属子EPR等7月23日(星期日):上午:g张量,自由基、配合物等范例分析,和基于Matlab的模拟下午:集体个性化学习和讨论7月24日(星期一):A张量范例:自由基、配合物、化学配位等分析,生物和有机合成中的自由基跟踪,化学反应中的磁性同位素效应7月25日(星期二):A张量——自旋捕获专题下午:集体个性化学习和讨论7月26日(星期三):D、J等与磁性有关的张量范例:应用EPR研究磁性材料的电子结构,无机顺磁中心与有机自由基间的磁性相互作用,光合作用原初电子传递,兼集体个性化学习连续波模式具体操作及注意事项7月27日(星期四):连续波模式具体操作及注意事项 测试参数的优化脉冲EPR基本概念和主要应用7月28日(星期五):EPR范例7月29日(星期六):脉冲EPR基本概念和主要应用EPR范例7月30日(星期日):上午脉冲EPR基本概念和主要应用下午:集体个性化学习和讨论7月31日(星期一):学员返程滑动查看详细日程电脑配置请务必自带电脑,用于软件的学习和使用操作系统:Windows XP、7或10。为提高运行效率,请及时更新成固态硬盘,并预留至少足够的硬盘空间。Windows 8、10和苹果等,尚无法保证可运行学习所需的全部软件。如一定坚持使用,请自行检查软件的兼容性,但学习效果可能无法保证。a) Easyspin 5.2.35:支持Matlab各个版本;b) Kazan viewer 2.2.0:支持Matlab各个版本。以上两款软件是开源软件,在网络上均有下载;安装和试用,请参考课件《11 g、A、D等张量的解析和拟合》。时间地点一、具体授课时间:2023年7月22日至7月31日上午:8:30–12:00,下午14:30–18:30二、会议地点:无锡长广溪宾馆江苏省无锡市滨湖区太湖新城缘溪道1号(江南大学蠡湖校区西北门)无锡长广溪宾馆 江苏省无锡市滨湖区缘溪道1号三、住宿地点:无锡长广溪宾馆(可自行选择)酒店为参会学员提供协议价。单间/标间(双早)340元/晚;单间/标间(单早)310元/晚。报名事项扫描二维码,填写报名信息!注册费:3500元(含会务费、资料费等)。食宿自理,可代为联系住宿酒店。*注册费的转账支付,将根据报名情况,另行通知。报名时间:即日起可以报名。收到确认通知的报名者,请于7月21日缴纳现金(如需要转账的,请注明,在回执中会注明所转入的指定账户)。主办单位主办单位:中国科学技术大学、中国科学院微观磁共振重点实验室、中国科学院自主研制科学仪器应用示范中心、无锡量子感知研究所协办单位:国仪量子(合肥)技术有限公司、中国科学院磁共振技术联盟、《波谱学杂志》*注:以上均为初步安排,若有不可抗拒因素临时调整,以第二轮通知为准。关注我,了解更多行业资讯
  • 布鲁克推出新的高性能台式电子顺磁共振波谱仪系统
    pspan style="font-size: 16px "  艾斯洛玛尔,加州,——2015 年 4 月 20 日——在第56届实验核磁共振会议 (ENC)上,布鲁克 (NASDAQ: BRKR) 推出了EMXnano?系统。EMXnano?是第一台高性能台式 EPR (电子顺磁共振) 谱仪,使研究级EPR惠及到更广泛的科学家们。/spanbr//pp  EMXnano可分析各类的 EPR 样品,包括过渡金属、抗氧化剂和自由基,可深入研究生物和化学体系,提供有价值的信息。布鲁克将新型的永磁铁和新设计的高效微波谐振腔,以及基于布鲁克具有专利权的自旋计数模块的定量EPR,集合到台式电子顺磁共振谱仪中,使其拥有无与伦比的灵敏度和稳定性,也使得EMXnano可应用于广泛的分析、教学工作。/ppimg src="http://img1.17img.cn/17img/images/201511/noimg/eec5104b-64bf-40cc-b62c-285dab64b92d.jpg" style="float:right " title="布鲁克17.jpg"//pp  EMXnano以客户为中心,集合了研究级性能和易用性。该仪器定义好了快捷和方便的系统设置流程,友好的用户界面,允许非EPR专家也能够很容易地调整参数。各种配件,使EMXnano可应用扩展到特色领域。布鲁克著名的EMX波谱仪家族,已经扩展到台式机范畴,并且其具备了许多通常仅在复杂、落地式EPR谱仪上才有的功能。/pp  丹佛大学的Sandra 和Gareth Eaton教授对EMXnano赞誉有加:" 我们祝贺布鲁克在EMXnano上展现的令人印象深刻的工程和性能。EMXnano的灵敏度,扫描范围和易用性会促使更广泛的科学界使用EPR。我们尤其感到高兴的是其EPR定量分析能力。/pp  EPR用于静态和动态研究材料、化学和生物体系,包括自由基的分子结构和形成。EPR在动态测量方面有优势,EPR谱可以反映不同条件对样品的影响,如温度或光照的变化。应用范围包括高分子合成,测试太阳能电池中硅的纯度、自旋捕获方法可评估风味的抗氧化稳定性和金属蛋白的分析。在电化学、氧化还原化学、光化学和催化作用等学科,可以用 EMXnano 来研究金属中心和自由基参与的化学过程。/pp  " 新的应用已重新唤起EPR作为化学、 材料学、 生物学学科的分析工具的活力," 布鲁克 BioSpin MRS分公司的总裁Werner Maas博士这样评论道。" 我们根据客户的需求,开发出结构紧凑,然而性能卓越的 EPR 台式谱仪,EMXnano。”/pp  strongAbout Bruker Corporation/strong/pp  For more than 50 years, Bruker has enabled scientists to make breakthrough discoveries and develop new applications that improve the quality of human life. Bruker’s high-performance scientific research instruments and high-value analytical solutions enable scientists to explore life and materials at molecular, cellular and microscopic levels. In close cooperation with our customers, Bruker is enabling innovation, productivity and customer success in life science molecular research, in applied and pharma applications, in microscopy, nano-analysis and industrial applications, as well as in cell biology, preclinical imaging, clinical research, microbiology and molecular diagnostics. For more information, please visit: http://www.bruker.com./pp  Media contact:/pp  Dr. Thorsten Thiel/pp  Director of Marketing Communications Bruker Corporation/pp  T: +49 (721) 5161 – 6500/pp  thorsten.thiel@bruker.com/pp  Investor contact:/pp  Joshua Young/pp  Vice President, Investor Relations/pp  Bruker Corporation/pp  T: +1 (978) 667 – 9580, ext./pp  joshua.young@Bruker.com/ppbr//p
  • 南京新飞达为昆山杜克大学顺利交付布鲁克Micro ESR电子顺磁共振波谱仪
    2022年08月26日,我司为昆山杜克大学顺利交付一台布鲁克micro ESR,作为化学及环境专业方向的科研教学使用。 电子顺磁共振法(ESR/EPR)因其在检测含有未成对电子的顺磁性物质方面具有: 1、最直接、灵敏;2、无需复杂的前处理;3、可原位且无损测定;4、可进行定性和定量研究等优点,现已广泛应用于如下领域的科研、教学、工业生产等: a、催化(光催化、电催化、催化剂改性):光生电子和空穴中心的鉴定;催化剂中半导体过渡金属离子掺杂和表面修饰对催化性能的影响;光催化产生活性自由基的定性和定量检测; b、环境污染物检测:多环芳烃的测定;大气颗粒物(如PM2.5)、煤炭的燃烧颗粒物、生物炭、有机污染土壤、载有机物的金属纳米颗粒等环境持久性自由基( EPFRS)检测;大气中过氧自由基和硝酸根自由基的测定; c、材料掺杂:催化材料改性、材料掺杂、晶格缺陷; d、ROS活性氧:炎症反应、肿瘤物的药理学研究; e、食品及饮料的氧化/抗氧化:啤酒、食用油及饮料的保质期分析和抗氧化性能测定; f、辐照食品剂量检测:含有纤维素和骨骼食品中的辐照残留剂量的快速可靠检测(拥有欧盟标准) 布鲁克电子顺磁共振波谱仪micro ESR是一台便携式科研级电子自旋共振波谱仪,仅重 10 kg,尺寸 30.5 x 30.5 x 30.5(cm),可轻松运抵现场,不需要特殊安装或定期维护。作为一台便携可移动的连续波(CW)波谱仪,扫描范围超过500 Gauss。检测的样品可以是液体、固体或气体。 昆山杜克大学(Duke Kunshan University)是经中华人民共和国教育部批准、由武汉大学和杜克大学合作创办的具有独立法人资格的中外合作办学大学,是中外合作大学联盟成员、中国全球健康大学联盟(CCUGH)成员。学校开设14个本科专业,现有教职员工800余人,教学团队主要由美国杜克大学教授及昆山杜克大学全球聘任的教授组成。学校采用全英文授课方式;为每个本科生配备个人教授导师,为学生提供学习方法、课程和专业选择、升学深造等方面的指导;所有的本科生在大三都可去美国杜克大学学习最长半年时间。
  • BCEIA2023磁共振波谱学分会精彩预告:磁共振技术助力绿色健康生活
    第二十届北京分析测试学术报告会暨展览会(BCEIA 2023) 将于2023年9月6-8日在北京 中国国际展览中心(顺义馆)召开。作为中国分析与生化技术交流与展示的“峰会”,BCEIA2023将营造浓郁的学术会展氛围,同期举办大会报告、分会报告、高峰论坛、同期会议、墙报展等精彩学术活动,面向世界科技最前沿,邀请国内外顶尖学者分享最具前瞻性的研究进展。自20世纪40年代以来,磁共振技术的持续发展对多学科的发展起到了巨大的推动作用,核磁共振(NMR)、电子顺磁共振(EPR/ESR)、磁共振成像(MRI)等技术和新应用不断推陈出新,在生命科学、环境、材料等多个学科发挥越来越重要的作用。2023年9月7-8日,BCEIA2023学术报告会——磁共振波谱学分会将在学术会议区E-303会议室举行,会议聚焦“磁共振技术助力绿色健康生活”主题,围绕生物磁共振技术与应用、小分子磁共振技术与应用、EPR技术与应用、磁共振成像、基于核磁共振的代谢组学研究等几个专题方向,邀请到20多位国内波谱领域资深科学家及青年才俊带来精彩报告。特邀报告人报告摘要Prof. Xia, Bin is from Peking University. He graduated from the Department of Biology of Peking University in 1989 with a bachelor's degree in physiology and biophysics. In 1997, he received PhD in biophysics from University of Wisconsin-Madison in the United States. From 1997 to 2001, he did postdoctoral research at The Scripps Research Institute, USA.In 2001, he was awarded professorship of The Cheung Kong Scholars Program, and became a joint professor at College of Chemistry and Molecular Engineering and School of Life Sciences of Peking University. In the same year, he was awarded the Outstanding Youth Fund from National Natural Science Foundation of China. In December 2002, he was appointed director and chief scientist of Beijing Nuclear Magnetic Resonance Center, a national large scientific instrument center established at Peking University, jointly funded by Ministry of Science and Technology, Ministry of Education, Chinese Academy of Sciences and Department of Health of The General Logistics Department of PLA .At present, he is also a member of the professional committee of magnetic spectroscopy of Chinese Physics Society, a member of the professional committee of molecular biophysics of the Chinese Biophysics Society, a member of the professional committee of nuclear magnetic resonance instruments of the Chinese Instrumentation Society, and member of the editorial boards of Journal of Biological Chemistry and Chinese Journal of Magnetic Resonance.Professor Xia's main research direction is to study the three-dimensional structures and interactions of proteins, using nuclear magnetic resonance (NMR) technology, combined with other structural biology, biochemistry and molecular cell biology research methods, in order to understand their structure and function relationship and reveal the molecular mechanisms of their biological functions. In the past decade, he has mainly focused on studying the structure and function relationships of transcriptional regulatory factors, and the molecular mechanisms of bacterial xenogeneic silencing and counter-silencing.专家简介夏斌,北京大学教授、博士生导师。1989年毕业于北京大学生物系,获生理学与生物物理学专业学士学位。1997年,获美国University of Wisconsin-Madison生物物理专业博士学位。1997年至2001年,在美国The Scripps Research Institute做博士后研究。2001年,被聘为教育部“长江学者奖励计划”特聘教授,同时被聘为北京大学化学与分子工程学院博士生导师和北京大学生命科学学院博士生导师。同年,荣获国家自然科学基金委员会“杰出青年基金”。2002年12月,被任命为由国家科技部、国家教育部、中国科学院和总后卫生部共同出资,依托于北京大学建立的国家大型科学仪器中心“北京核磁共振中心”主任兼首席科学家。目前还担任中国物理学会波谱学专业委员会委员、中国生物物理学会分子生物物理专业委员会委员、中国仪器仪表学会核磁共振仪器专业委员会委员、《Journal of Biological Chemistry》及《波谱学杂志》杂志编委。夏斌教授主要研究方向是利用核磁共振(NMR)技术,结合其它结构生物学、生物化学及分子细胞生物学研究手段,研究蛋白质三维空间结构及相互作用,以期理解其结构与功能关系,揭示其生物学功能的分子机理。近十年来,主要研究转录调控因子选择性识别DNA的结构与功能关系,以及细菌外源基因沉默与抗沉默的分子机制。报告摘要Human metabonome contains thousands of metabolites with numerous functions, huge concentration range, diverse properties and matrices. Quantitative metabolomic analysis is essential for understanding the molecular aspects of mammalian biology, physiology, pathophysiology of various diseases. During last decades, metabolomics science has made huge progress in both technical and application areas. To achieve accurate quantitative metabolomic analysis, however, developing efficient novel analytical technologies remains to be one of the most urgent and extremely challenging tasks. NMR and MS are the dominant analytical tools. This presentation will deal with the requirements of quantitative metabonomics and strategies to fulfill such tasks followed with some recent methodological advances in NMR. We will also discuss the major challenges metabolomic analysis is facing and possible strategies to overcome such problems with some integrated multiple-omics results presented. We will report some important applications here专家简介唐惠儒,复旦大学特聘教授、国家杰青、“精准医学”及“前沿生物技术”国家重点研发计划项目首席科学家、英国皇家化学会会士。研究代谢物结构及代谢组学30余年,发表Nature、Nat Microbiol、PNAS等SCI论文210余篇,被引1.3万余次(h指数~64)。获批国内外发明专利多项。曾任英国BBSRC食品研究所及帝国理工学院医学部Senior Scientist、“中科院生物磁共振分析重点实验室”创建主任、科技部973等项目评审专家。现任中国生物物理学会代谢组学分会会长、中国生物化学与分子生物学会脂质与脂蛋白委员会常委、中国抗癌协会肿瘤代谢分会及中国营养学会基础营养分会常务理事、国际实验磁共振大会(ENC)执委,Metabolomics、Arch Pharm及《基础医学与临床》等编委,Nutrition Metabol及Phenomics等副主编。报告摘要19F NMR is a powerful technique to study the structure, dynamics and interactions of complex biological systems that are not accessible by conventional 13C, 15N or 1H spectroscopy. In the last ten years, 19F NMR has advanced significantly, both in terms of 19F labeling methods and applications. In this talk, I will demonstrate some examples of how 19F labeling can be used to probe biomacromolecular structure, interaction, dynamics, especially in living cells, which is a challenging task for other biophysical methods if not impossible.专家简介李从刚,中国科学院武汉精密测量科学与技术创新研究院(原武汉物理与数学研究所)研究员、国家杰青。1997年获武汉大学化学系学士学位;2007年获美国佛罗里达州立大学化学与生物化学系博士。2007-2011年在美国北卡罗莱纳大学(Chapel Hill)化学系从事博士后研究。目前主要从事生物大分子的核磁共振方法与应用研究,主要包括细胞内蛋白质的结构,动力学及相互作用的核磁共振方法研究及重要功能的生物大分子分子作用机理研究。报告摘要  泛素(Ub)在细胞信号传导的许多方面是不可或缺的。先前的研究得出结论,Ub折叠涉及三种状态,但未能提供折叠中间体的结构细节。在我的汇报中,我将展示点突变、磷酸化修饰以及C末端延伸对Ub毫秒动力学的各种影响,即Ub天然状态和新出现的另一种结构状态之间的相互转换。值得注意的是,凡是能促进Ub毫秒动态结构变化的突变也能够降低蛋白质的熔点,而能够抑制Ub动态变化的突变则能够提升蛋白的熔点。因此,天然状态与另一种结构状态之间互选转换的中间构象状态应该就是大家长期寻求的Ub折叠中间体,是否经过中间态决定了蛋白的稳定性。此外,我还将展示我们实验室最新筛选发现的去磷酸化泛素的酶。专家简介  唐淳,北京大学化学与分子工程学院博雅特聘教授,北京大学定量生物学中心和生命联合中心研究员,基金委杰出青年,科技部首席科学家、万人计划科技创新领军人才,以及美国霍华德休斯医学院国际青年科学家。2010-2020年任中国科学院武汉物理与数学研究所研究员,中科院生物磁共振分析重点实验室主任。唐淳实验室重点关注蛋白质及生物大分子的结构如何动态变化的,以及相对应的非平衡态能量景观,阐释蛋白质行使功能的内在原子分子机制,是国际上最早将顺磁核磁共振用于蛋白质构象可视化的实验室之一 观察和表征了存在比例不到1% 的蛋白质构象状态,捕获了蛋白之间的极弱相互作用,解析了结合常数仅为25 mM的蛋白复合体结构。实验室还发展了与单分子荧光、质谱交联等物理化学技术联用的整合方法,表征不同时间、空间尺度的生物大分子结构的级联动态变化。已发表论文80余篇,刊登在Nature、PNAS、JACS、Angew Chem等期刊,累计引用6000余次。报告摘要本报告将基于靶向BK通道beta4亚基胞外区与毒素肽MarTX及CTX突变体的NMR溶液结构,开展抗癫痫肽研制研究。报告将从结构-多肽活性-药物递送等阐述抗癫痫肽的设计与推广。专家简介2001.6博士毕业于中科院上海有机所,2001.8-2005.10,每个约翰霍普金斯大学医学院博士后,2005.10-2006.8 美国加州Salk Inst for Biological Studies 研究助理,2006.8中科院上海有机所研究员报告摘要Water is ubiquitous yet essential for the existence of known life forms. It is crucial both structurally and functionally for biomolecules, including proteins, nucleic acids, and membranes. Thus, understanding water dynamics and structure is an important topic in the biomolecular systems, as many essential biological processes take place with the aid of water. However, observing “bound” water molecules in such biosystems as well as site-specific chemical exchange between water molecules and specific proton sites in the biosystems is rather challenging, especially in the presence of strong 1H-1H dipolar interactions associated with the relatively rigid biosystems and because of the very high concentration of highly mobile “bulk” water molecules surrounding the biosystems. Here we report our recent development in solid-state MAS NMR techniques that allow us to directly detect the bound water molecules that are relatively stable over the NMR timescale (on the order of milliseconds) in an extensively hydrated lipid bilayer environment [1] and to characterize the site-specific chemical exchange between water molecules and specific proton sites in biosystems [2], an important parameter in the dynamic relationship between biomolecules and their surrounding environment. These new techniques provide an important tool for charactering the role of water in the structure and function of the biosystems.专家简介Riqiang Fu received his B.S. degree in Electrical Engineering from University of Science and Technology (USTC) of China in 1986 and his PhD degree in 1992 with Prof. Chaohui Ye at Wuhan Institute of Physics. Currently he is a Research Faculty III at National High Magnetic Field Lab, Tallahassee, Florida. He specializes in solid-state NMR methodology development and NMR applications in materials science (such as lithium ion battery materials) and biological systems (such as membrane proteins). He has authored/co-authored 200 peer reviewed papers, five of which were featured as Cover story in Journal of Magnetic Resonance (2005, 2012, and 2021) and in Journal of American Chemical Society (2014 and 2019).报告摘要RNA的结构和构象动态是其发挥正常生理功能和参与异常病理过程的关键基础。亨廷顿舞蹈症、渐冻症和脊髓小脑共济失调等是一类由短串联重复序列扩增引起的神经退行性疾病,其中RNA重复序列通过形成特殊的二级或三级结构参与病理过程,如RNA相分离和蛋白募集。因重复序列具有高度的结构多样性和构象动态性,液体核磁共振技术是研究这类特殊RNA的有力工具。本工作中,我们将报道亨廷顿舞蹈症和渐冻症中RNA重复序列的结构特点及其参与致病分子途径的结构基础。专家简介郭沛,中国科学院杭州医学研究所副研究员。2012年于华中师范大学化学系获学士学位,2016年于香港中文大学化学系获博士学位,2017至2019年在香港中文大学化学系从事博士后研究。聚焦于利用液体核磁共振技术和计算方法研究疾病相关核酸分子的结构和构象动态,以及基于结构信息指导的核酸分子生物功能和靶向治疗策略,在JACS、PNAS、STTT和NAR等期刊发表论文30余篇。报告摘要The application of highly thermostable DNA polymerases in polymerase chain reaction (PCR) has revolutionized modern molecular biology. With the rapid development of emerging technologies like synthetic biology, the demand for DNA polymerases with superior performance has increased significantly, especially for long-range DNA amplification. However, optimising long-range DNA amplification remains highly challenging. Nuclear Magnetic Resonance (NMR) is a powerful technique used for protein structure and dynamics analysis, as well as protein evolution. It provides information at the atomic level of residues under catalytic conditions without requiring complete structural characterisation. Here, we employed NMR spectroscopy using a hairpin DNA substrate and a pair of specific nanobodies against the activity of DNA polymerase to identify the active hotspots of pfu DNA polymerase (Pfu). By utilising these hotspots, we revisited the effects of betaine and Triton X-100 on the pfu polymerase. Additionally, we identified an additional chemical compound, and a Thermococcus kodakaraensis protein, enhancing the performance of Pfu. Our results significantlty aiding the optimization of the reaction bufferes, and will facilitate further directed evolution of pfu DNA polymerase.专家简介禾立春 中国科学院精密测量科学与技术创新研究院研究员博导,研究方向为NMR指导酶与抗体的定向进化。先后于2018年获中国科学院、湖北省引才计划支持,2019年入选国家科技专家库,担任科技部面向2035大科学装置调研咨询专家。目前主持国家重点研发计划战略性国际科技创新合作重点专项课题、国家自然科学基金委项目及瑞士自然科学基金委的多个项目。在PNAS、Science Advances、Angew Chem.、The EMBO Journal等期刊发表多篇论文,担任湖北省晶体学会理事,Cell 旗下 The Innovation 青年编委。报告摘要合成气(CO/H2)主要来源于煤、天然气、页岩气和生物质等,是一种重要的化学化工转化平台,催化合成气直接转化制高附加值燃料和化学品是合理利用非石油碳资源的有效途径,也是解决石油枯竭危机和清洁能源发展的的一项核心技术。然而,由于催化过程的复杂性,目前仍然缺乏对其内在反应机制的全面和深入理解。本报告中,主要介绍通过先进的多核多维高分辨固体核磁共振技术,探究双功能催化体系中氧化物表界面的活性位结构、分布以及分子筛的酸性位、孔道结构等性质,以及与资源小分子活化、调控反应产物、产物选择性之间的内在关联,这对于深入理解反应机制具有重要的意义。专家简介侯广进,中科院大连化学物理研究所首席研究员,博士生导师,入选国家中组部高层次人才引进计划。2007年博士毕业于中国科学院武汉物理与数学研究所,2007至2011年先后在德国马普高分子研究所和美国特拉华大学从事博士后研究工作;2011年受聘于美国特拉华大学开展独立研究工作。2017年回国加入中科院大连化物所,任固体核磁共振及前沿应用研究组组长。目前主要从事固体核磁共振波谱学与催化化学相关的研究工作,发展固体NMR表征技术,并应用于多相催化、能源存储等体系的研究,已在Science, Chem. Rev., Nat. Catal., Chem, PNAS, JACS, Angrew. Chem.等学术期刊上发表论文140余篇。目前担任国际磁共振协会ISMAR学术委员会委员,中国物理学会波谱专业委员会委员,及Journal of Magnetic Resonance, Solid State Nuclear Magnetic Resonance, Magnetic Resonance Letters等期刊编委。报告摘要WRKY转录因子在与生物和非生物胁迫反应相关的各种植物信号通路中起着至关重要的作用。许多WRKY成员的转录活性由一类固有无序VQ蛋白调节。虽然已知VQ蛋白与WRKY蛋白DNA结合结构域(DBD)相互作用,也称为WRKY结构域,但缺乏有关VQ-WWRKY相互作用的结构信息,调节机制仍然未知。我们利用核磁共振方法研究了拟南芥WRKY33与其调节性VQ蛋白伴侣SIB1之间相互作用。我们发现了与WRKY33 DBD形成稳定复合物所需的SIB1最小序列,该序列不仅包括共识“FxxhVQxhTG”VQ基序,还包括其前一个区域。我们证明了WRKY33 DBD的βN链和延伸的βN-β1环形成了SIB1对接位点,并基于核磁共振顺磁弛豫增强突变数据建立了复合体的结构模型。基于该模型,我们进一步确定了SIB1的N末端区域中带正电荷的残基簇对于SIB1-WRKY33-DNA三元复合物的形成至关重要。这些结果为SIB1增强的WRKY33转录活性的机制提供了框架。专家简介胡蕴菲,2010年获北京大学生物化学与分子生物学博士学位,自2019年6月起在中国科学院精密测量科学与技术创新研究院任研究员,博士生导师,从事蛋白质动态/瞬态结构、相互作用和功能关系的液体NMR研究。报告摘要界面结构和演化是物质学科和生命学科的核心科学问题。固体核磁共振是研究界面化学重要方法之一。基于化学位移的核磁共振波谱测量,通常聚焦于分子尺度的化学键结构(0.1~1 nm)分析。然而很多材料和生命体的重要界面功能体现在介观尺度(1~100 nm),比如大分子的空间构象、多分子的组装排列等。如何进一步把核磁共振的视野从分子尺寸延伸到介观尺度,是核磁共振方法学的重要挑战。基于自旋的空间耦合重建的立体结构,能够获得分子构象和介观分布形貌的图像化特征。另一方面,界面的性质和功能与分子的动力学特征密切相关。界面分子动态行为受到界面配位键和分子间弱键作用的综合影响,各个分子链段的运动模式不一,机理解读十分困难。目前,针对界面体系的动力学机制研究尚处于定性认识的初级阶段。基于链段运动的多层级动力学定量方法,能够测定界面分子的弱键作用能,为阐明界面构效关系提供重要手段。本报告将以材料化学的界面研究为例——包括多孔材料、纳米晶材料等,介绍立体结构重建和多层级动力学测量的核磁共振方法学。专家简介上海交通大学转化医学研究院 长聘教授。2005年本科毕业于中国科学技术大学化学物理系,2010年在美国爱荷华州立大学获得博士学位,2010-2013年伯克利劳伦斯伯克利国家实验室博士后,2013-2014年西部数据HGST公司高级工程师,2014-2023浙江大学化学系 百人计划研究员。2023加入上海交通大学。孔学谦课题组发展了原创的核磁测量技术和分析方法,推动了固体核磁共振技术在化学、材料、生物医学等学科中的新应用。先后发表了Science,Nature, J. Am. Chem. Soc., Angew. Chem. Int. Ed., Nat. Comm., Sci. Adv., Adv. Mater.等论文80多篇。著有《固体核磁共振原理》教材。担任国际“多孔介质磁共振会议”(Magnetic Resonance in Porous Media)大会主席,担任专业杂志《Magnetic Resonance Letters》的高级编委,受邀在Experimental NMR Conference等重要国际会议报告。获得了国家海外人才计划,基金委优秀青年基金,浙江省杰出青年基金等资助。报告摘要兼具金属中心和有机基元的新材料,如金属有机框架(MOFs)和有机无机杂化钙钛矿材料等,种类多样、功能各异,在能源、环境与化工催化等领域应用前景广阔。这些有机基元的结构与动态性质很可能密切关联甚至决定新材料的关键性能,但通常难以表征。精准表征其局域结构和框架动力学是建立MOFs动态构效关系的关键,为此亟需发展高分辨固体核磁技术在分子水平上辨析其精细结构、配体分布、动态响应等。我们发展、应用无需同位素富集的极高分辨与变温固体核磁共振(SSNMR)波谱方法,结合X射线衍射等手段,围绕基元的微观结构与动态性质,在分子尺度上表征其短程有序、长程有序和动力学特征,以深入理解结构及动态与功能的关联,指导新材料合成与应用开发。在这里,我们报告近期取得的一些进展,展现固体核磁谱学对复杂体系结构与动力学深入研究的独特优势功能。这为研究新材料结构与动态构效关系提供了无需同位素富集、灵敏度高、采集时间短、分辨率极高的普适方法。专家简介刘海铭,上海科技大学物质学院研究员。中国科学技术大学应用化学系学士,美国石溪大学博士,宾夕法尼亚大学博士后。曾任阿科玛美国公司资深科学家多年。2017年归国加入上科大物质学院,曾任分析测试中心科研主任。致力于发展高分辨固体核磁共振波谱方法,研究功能物质材料结构及动力学与效能关系。在J. Am. Chem. Soc., Angew. Chem. Int. Ed.等学术期刊发表论文三十余篇,并合作发表技术专利数项。曾多年任美国东北分子筛协会和费城催化俱乐部理事,获美国西格马赛青年杰出科研奖、阿科玛首席执行官奖、上科大社会实践优秀导师和安全教学团队行稳致远奖等,获评《磁共振快报》优秀审稿人,入选浦东人才名人堂。报告摘要Nuclear magnetic resonance (NMR) spectroscopy is a powerful and popular technique for probing the molecular structures, dynamics and chemical properties. However the conventional NMR spectroscopy is bottlenecked by its low sensitivity. Dynamic nuclear polarization (DNP) boosts NMR sensitivity by orders of magnitude and resolves this limitation. In liquid-state this revolutionizing technique has been restricted to a few specific non-biological model molecules in organic solvents. Here we show that the carbon polarization in small biological molecules, including carbohydrates and amino acids, can be enhanced sizably by in situ Overhauser DNP (ODNP) in water at room temperature and at high magnetic field. An observed connection between ODNP 13C enhancement factor and paramagnetic 13C NMR shift has led to the exploration of biologically relevant heterocyclic compound indole. The QM/MM MD simulation underscores the dynamics of intermolecular hydrogen bonds as the driving force for the scalar ODNP in a long-living radical-substrate complex. Our work reconciles results obtained by DNP spectroscopy, paramagnetic NMR and computational chemistry and provides new mechanistic insights into the high-field scalar ODNP.专家简介申请人长期从事固体核磁共振(SSNMR)特别是动态核极化增强固体核磁共振(DNP SSNMR)相关研究,围绕动态核极化增强核磁共振的技术方法开发,生物大分子体系上的深度应用和新型数据处理策略三个关键问题取得了一系列重要成果,在Nature Chemical Biology, Nature Communications, JACS, Angew. Chemie. Int. Ed.等高水平期刊上发表了一系列有影响力的文章,其中第一作者7篇,通讯作者3篇,累计发表SCI文章21篇,工作被磁共振波谱学,生物物理学,结构生物学,分子药理学,膜蛋白质科学等领域的同行广泛引用,并多次在不同领域的旗舰会议上作学术报告,首批培养的学生中已经涌现了德国化学会波谱分会Ernst奖获得者。报告摘要我们发展了一系列同时测定生物流体中的重要生物小分子如氨基酸和生物硫醇的19F-NMR方法,并能实现对D/L型氨基酸的同时定量分析。并对手性小分子中手性中心与手性19F报告基团间的柔性共价键长度和空间取向对于手性识别和定量的影响进行了系统分析。建立了在活细胞水平上实时测定GSH的含量和行为的19F-NMR方法。专家简介长期从事生物磁共振和蛋白质化学研究。在蛋白质修饰的化学选择性、顺磁探针的质量和顺磁效应的定量评价与应用方面做了大量工作,发展了一系列较为实用的蛋白质定点标记方法和应用于细胞内磁共振研究的顺磁探针。已在Acc Chem Res, Proc Natl Acad Sci USA, ACS Cent Sci和 Angew Chem Int Ed 等期刊发表论文 80 余篇。主要研究方向为蛋白质定点标记化学以及生物磁共振方法,研究细胞内蛋白质及生物大分子动态互作与结构行为。主要研究内容有:1)生物大分子定点(离体与细胞内)标记化学;2)原位环境下生物大分子动态结构与互作的高分辨磁共振研究方法;3)生物有机分析。报告摘要We report the suppression of diagonal signals in (H)N(H)(H)NH spectra through the use of untransferred signals (orphan spin operators) from cross polarization steps. In contrast to most diagonal suppression methods, there is no loss of sensitivity for cross-peaks at ultrafast MAS. For the proton-detected (H)N(H)(H)NH sequence, recorded with 55 kHz MAS, we observed approximately 50% suppression of diagonal signal after 1.08 ms mixing. A similar construction for CHHC spectra at 13 kHz MAS suppresses both the diagonal and cross-peaks, and simulations suggest proton assisted recoupling (PAR) is responsible. Alternatively, a combined PAR+CHHC spectrum can be recorded. We first demonstrated it in microcrystalline proteins and later demonstrate the methods to obtain structural information in membrane protein and amyloid fibrils.专家简介Dr Kai Xue is a senior scientist at Nanyang Technolgical university. He did his PhD in Technical University of Munich and post doctoral study in Max Planck Institute for Multidisciplinary Science. He’s specialized in NMR with biosolid applications. Recent interesting publications include:1.Xue, K. Tekwani Movellan, K. Andreas, L. B*., Orphan Spin Operator Diagonal Suppression. Journal of Magnetic Resonance Open 2022, 10-11.2.Xue, K. Sarkar, R. Tošner, Z. Reif, B*., Field and magic angle spinning frequency dependence of proton resonances in rotating solids. Progress in Nuclear Magnetic Resonance Spectroscopy 2022, 130-131, 47-61.3.Xue, K*. Nimerovsky, E. Tekwani Movellan, K. A. Becker, S. Andreas, L. B*., Backbone Torsion Angle Determination Using Proton Detected Magic-Angle Spinning Nuclear Magnetic Resonance. The Journal of Physical Chemistry Letters 2021, 13 (1), 18-24.4.Xue, K*. Movellan, K. T. Zhang, X. C. Najbauer, E. E. Forster, M. C. Becker, S. Andreas, L. B*., Towards a Native Environment: Structure and Function of Membrane Proteins in Lipid Bilayers by NMR. Chemical Science 2021, 12 (43), 14332-14342. (back cover) 报告摘要电场诱导(Electric-field-induced)化学位移是一种基本的物理现象:外加电场影响了原子核周围的电子云分布,从而改变了电子云对外部磁场的屏蔽效应。1960年,A.D. Buckingham提出了一个沿用至今的公式。根据该公式,氢原子的EF诱导位移与外加电场在连接氢原子和重原子的化学键上的投影成正比。1995年,D.A. Case重新校准了氢原子的EF参数,直到今天仍被广泛使用。然而对于重原子的EF效应,目前并没有公式可以描述。在需要计算重原子的EF化学位移时,大家往往直接“借用”氢原子的相应公式。在这项工作中,我们利用DFT的计算结果,开发了一组新公式,能够很好地描述了氢原子和重原子的EF诱导化学位移。专家简介薛毅博士是清华大学生命科学学院助理教授和研究员。薛博士在1997年和2003年分别在清华大学物理系和生物科学与技术系获得学士和硕士学位,2009年在美国普渡大学化学系获得博士学位,随后在普渡大学、密歇根大学和杜克大学从事博士后研究,并于2016年入职清华大学。薛毅课题组主要运用液态核磁共振技术和计算生物学方法来研究非编码RNA和固有无序蛋白的结构和动态特性。报告摘要  在本报告中,我们展示了一种通过固体核磁共振谱学解析体相混合金属MOF中金属离子排列的方法。以混合金属MOF-74体系为例,我们通过鉴定和定量测量与金属离子相连的有机配体羧基的化学环境随金属含量的变化解析了所有八种可能的原子尺度上Mg/Ni或Mg/Co的排列方式。我们结合磁化率测量、键合途径分析和密度泛函理论计算确定了核磁峰与羧基化学环境之间的对应关系。我们的研究结果表明尽管使用液相一锅法合成的样品在毫米到亚微米的尺度上高度均一,但是原子尺度上的金属离子排列并不是随机的。与之相反,我们发现对于掺杂镍的MOF,六种原子尺度上的混合Mg/Ni金属排列中只有一种居于主导地位,而对于掺杂钴的MOF,钴和镁都倾向于和同种金属离子连接。这种非随机的原子尺度结构排列导致混合金属MOF的宏观性质发生变化,例如对一系列具有工业价值的气体(一氧化碳、二氧化碳、乙烷、乙烯、乙炔)的吸附出现明显增强。我们预计这种非破坏性的固体核磁研究手段能够被进一步用于分析其他体相混合金属MOF体系,从而推动对MOF和其衍生材料结构——性能关系的深入了解。专家简介  徐骏副教授于2004至2008年期间就读于北京大学化学与分子工程学院,获化学学士学位。2008至2014年期间就读于加拿大西安大略大学化学系,获无机化学博士学位。2014至2017年和2017至2018年期间分别于美国加利福尼亚大学伯克利分校和瑞士苏黎世联邦理工学院从事博士后研究。2018年9月入职南开大学材料科学与工程学院,现为天津市稀土材料与应用重点实验室固定成员。徐骏副教授长期从事以固体核磁共振技术研究无机及无机-有机杂化功能材料结构——性能关系的工作,已在Sci. Adv.、J. Am. Chem. Soc.、Angew. Chem. Int. Chem.、Adv. Mater.等知名期刊上发表60余篇论文,主持国家自然科学基金2项,入选天津市人才计划2项,并荣获中华海外磁共振协会(OCMRS)“Jinshan Research Excellence Award”。报告摘要低温技术在电子顺磁共振波谱(EPR)研究中的优势主要包括以下四个方面:(1) 提高谱仪灵敏度;(2) 提高样品稳定性;(3) 减弱溶液样品极性溶剂的影响;(4) 延长样品的弛豫时间T1和T2,为脉冲顺磁自旋回波的检测提供条件。目前超低温EPR测试通常采用液氦冷却系统来实现,但受到全球氦气供应不足、气体价格不断上涨等因素的影响,低温系统运行成本高昂(一般消耗2L液氦/小时)难以长时间持续运行,致使许多低温实验无法完成。通过和国仪量子公司合作,自主研发并成功构建了干式变温单元,以氦气为循环气体,GM制冷机为冷源达到闭式循环制冷。该干式变温单元与国仪量子公司生产的X波段脉冲式电子顺磁共振谱仪(EPR100)联用,可实现6 K~300 K 温度范围内的连续波和脉冲EPR 保持100小时以上稳定测试,并且运行成本仅为液氦冷却系统的五分之一左右。利用该低温系统,对样品Coal进行了不同温度的连续波EPR研究数据表明6 K时EPR信号的二次积分面积较293 K扩大了约42倍。利用电子自旋回波包络(ESEEM)法研究了6K低温下溶液中Cu2+配合物的结构,由所得频域谱解析出了Cu2+周围存在N原子核和H原子核。与X射线吸收精细结构谱(EXAFS,)法相比,ESEEM不需要拟合,可以直接给出原子种类等结构信息。在此基础上,搭建了低温低场核磁共振波谱仪(NMR),成功的表征了6K低温下的H的T1和T2弛豫时间,为分子马达的机理研究提高强有力的工具。这种新式的干式变温单元通过闭式循环基本不消耗氦气,极大地节约了氦气并降低了谱仪的运行成本,将会大大提高我国在相关领域的研究水平。专家简介杨海军,博士,高工,北京理化分析测试技术学会波谱分会理事长,清华大学分析中心有机分析平台负责人。1994年至2011年先后在清华大学化学工程系和化学系分获工学学士、理学硕士和理学博士。2014年11月至2015年12月在美国哈佛大学医学院访学。长期致力于开发顺磁共振新技术和展开其在探究有机反应机理方面的研究,并在国产磁共振仪器应用推广方面展开工作。2011年获得国家自然科学基金青年基金资助,多次获得“清华大学实验室创新基金”重点项目资助,2019年获得全国电子顺磁波谱会“徐元植顺磁共振波谱学奖”优秀青年奖等。主持并参与国自然科学基金项目7项,发表SCI收录论文100余篇,参与编写著作1部,已经授权专利9项。论文它引3100余次,H Index为33。报告摘要The details of the POPs formation mechanism on the molecular level are important for controlling POPs formations in industrial thermal processes. Identification of the intermediates, including organic free radicals, during the thermochemical reactions of precursors, such as chlorophenol, is required. In addition, metal compounds play a pivotal role in the catalytic formation of organic pollutants during thermal processes, contributing to critical emissions of organic pollutants such as the infamous dioxins from solid waste incineration processes, secondary metal smelting processes and steelmaking processes, and so on that rich in various metal oxides. We preciously distinguished the multiple organic free radical intermediates during the organic pollutants formation through in-situ detection of electron paramagnetic resonance spectrometry. The differences of organic free radical intermediate species, concentrations and foramtion mechanisms under the catalysis of different metal compounds were uncovered, which were verified mutually with the characteristics of final organic pollutants screened by time-of-flight mass spectrometry. CuO dominated dehydrogenation reactions of PCP to form pentachlorophenoxy radicals, and the poor stability of organic free radical intermediates on CuO surface made them readily be dimerized to high chlorinated organic pollutants. The specific high proportion of semiquinone radicals and oxygen-containing derivatives in ZnO system indicated that oxidation reactions were predominant. Differently, methyl substituted organic free radical intermediates and long-chain products including the polycyclic aromatic hydrocarbons of high rings were dominant in two polymorphs Al2O3 systems, which demonstrated that Al2O3 has significant advantages for catalyzing alkylation reactions. The consistent characteristics of organic free radical intermediates and final organic pollutants suggested an essential role of free radical intermediates on the organic pollutants formation.专家简介杨莉莉,中国科学院生态环境研究中心副研究员,围绕新环境持久性污染物,包括多氯萘、溴代二噁英、环境持久性自由基的污染特征与自由基机理展开工作,通过高分辨磁质谱与电子顺磁共振波谱等技术相结合,提升了对二噁英生成机理的传统认知,阐明了前体物生成二噁英的分子机理。以第一/通讯作者发表SCI或核心收录论文30余篇,包括在环境类期刊Environ. Sci. Technol.发表论文9篇。主持国家自然科学基金(NSFC)青年基金1项,担任Ecotoxicol. Environ. Saf.特刊客座编辑,Emerg. Contam.期刊特刊客座编辑,Environ. Res.期刊青年编委会成员。报告摘要磁共振波谱(MRS)已被广泛用于探测生物活体组织/器官中各种代谢物的信号。然而,常规生物活体MRS中的信号常常重叠严重,很难实现谱图中特定分子信号的分析和量化。在本报告中,我们将报道了一种新型的分子靶向磁共振成像/磁共振波谱(MRI / MRS)方法。该方法可以选择性地探测生物活体中一系列代谢物分子,包括谷氨酸、谷氨酰胺、伽马氨基丁酸、N-乙酰天冬氨酸等。该方法还可用于核磁共振波谱系统,对来自复杂混合物中特定分子或化学基团的信号进行选择性探测。专家简介姚叶锋2007年毕业于德国美因茨大学。2008年加入中国上海华东师范大学磁共振重点实验室。现为华东师范大学材料科学系教授、上海市磁共振重点实验室主任。他的主要研究兴趣新型磁共振系统和方法研发。在磁共振方法方面,他的研究主要聚焦于核自旋单态相关的方法及其在磁共振分子成像方面的应用。报告摘要G-四链体(G4)是由富含鸟嘌呤碱基的DNA或RNA序列片段折叠而成的独特拓扑结构,主要分布在原癌基因启动子、mRNA的非编码区以及端粒等,广泛参与各种重要的生物学进程。我们主要利用高场核磁共振原子级高分辨率揭示:溶液中G4与其它富G短链探针之间自发进行基于Hoogsteen碱基配对介导的新型核酸链置换反应,实现G4的重新组装,并解析出由一条靶标链和两条富G探针构成的异三聚G4结构,为设计靶向G4的新型富G核酸探针开辟了新思路,解决目前多为相同富G链自组装的不足,有利于获得更复杂、更多功能的全新DNA纳米组装结构。专家简介张钠,1989年毕业于南开大学化学系获得学士学位。1999年在美国杨柏翰大学化学系获得有机合成硕士学位。2005年获得美国康乃尔大学/斯隆凯特琳癌症研究中心结构生物学博士学位。2005年-2007年在美国哈佛大学医学院生物化学与分子药学系做博士后;2007年-2012年在美国哈佛大学医学院/麻州总医院做资深博士后研究助理。2012年3月加入中国科学院强磁场科学中心任副研究员;2013年4月任研究员至今。主要应用液体核磁共振(NMR)技术研究核酸结构生物学:包括DNA、RNA自身,以及核酸与相关蛋白或小分子配体(天然产物/药物/代谢产物)形成的复合物三维结构并表征其动态特性,以此解释静态/动态结构与生物功能的内在相关联系。以上报告内容由BCEIA2023组委会提供欢迎扫码报名参加BCEIA2023
  • 《乳制品中乳糖的测定-核磁共振波谱法》标准征求意见中
    近日,全国特殊食品标准化技术委员会发布了关于征求《乳制品中乳糖的测定-核磁共振波谱法》行业标准(征求意见稿)意见的通知,如下图所示:附件1 行业标准(征求意见稿)乳制品中乳糖的测定 核磁共振波谱法Determination of stachyose in food by nuclear magnetic resonance spectroscopy前  言本文件按照 GB/T 1.1-2020《标准化工作导则 第1 部分标准化文件的结构和起草规则》的规定起草。本文件由全国特殊食品标准化技术委员会提出并归口。本文件起草单位:。本文件主要起草人: 。乳制品中乳糖的测定 核磁共振波谱法1  范围本文件描述了乳制品中乳糖的测定方法——核磁共振波谱法。 本文件适用于采用核磁共振波谱法测定乳制品中的乳糖,包括牛奶、发酵乳、奶片、奶酪、奶粉中乳糖的测定。2  规范性引用文件下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。GB/T 6682—2008 分析实验室用水规格和试验方法JY/T 0578—2020 超导脉冲傅里叶变换核磁共振波谱测试方法通则JJF 1448—2014 超导脉冲傅里叶变换核磁共振谱仪校准规范3  术语和定义本文件没有需要界定的术语和定义。4  原理在充分弛豫条件下,一维核磁共振波谱谱峰的积分面积与样品中所对应的自旋核的数目成正比。同时基于核磁共振信号强度(峰面积)互易原理,即给定线圈中核磁共振信号强度与90°脉冲宽度成反比,分别测定外标参考物质和待测样品的一维核磁共振氢谱(1H NMR)及90°脉冲宽度,采用外标法测定样品中乳糖的含量。5  试剂和材料5.1  一般要求除非另有说明,本方法所用试剂均为分析纯,水为GB/T 6682—2008规定的二级或二级以上水。5.2  试剂5.2.1  重水(D2O):纯度≥99.8%。5.2.2  3-(三甲基硅烷基)氘代丙酸钠[(CH3)3SiCD2CD2CO2Na,TSP-d4]。2 mol/L盐酸(HCl)。2 mol/L氢氧化钠(NaOH)。叠氮化钠(NaN3)。5.3  试剂配制5.3.1  TSP-d4溶液(10 g/L):称取0.5 g(精确至10 mg)TSP-d4(5.2.4)至50 mL容量瓶,加入5 mg叠氮化钠(5.2.5),用重水(5.2.1)定容,混匀。5.4  标准品5.4.1  柠檬酸标准品(C₆H₈O₇,CAS号:77-92-9):纯度≥99%。或国家有证标准物质。5.4.2  乳糖标准品(C12H22O11,CAS号:63-42-3):纯度≥98%。或经国家认证并授予标准物质证书的标准物质。5.5  标准溶液配制乳糖标准贮备液(51.2 g/L):称取512 mg(精确至1 mg)乳糖标准品(5.4.2)至10 mL容量瓶,用蒸馏水定容,混匀。现配现用。外标参考物柠檬酸溶液配制(2 g/L):称取200 mg(精确至1 mg)柠檬酸(5.4.1)至100 mL容量瓶,用蒸馏水定容,混匀。0℃~4℃密封保存,保值期1个月。乳糖系列标准工作液:准确量取上述乳糖标准储备液(5.5.1)5 mL于10 mL容量瓶中,用蒸馏水定容,摇匀后得到25.6 g/L的乳糖标准溶液。使用以上相同方法,分别得到12.8 g/L、6.4 g/L、3.2 g/L、1.6 g/L、0.8 g/L、0.4 g/L、0.2 g/L、0.1 g/L、0.05 g/L乳糖标准溶液。根据样品中乳糖含量适当调整乳糖标准工作液浓度范围及乳糖标准贮备液浓度。6  仪器设备 6.1  核磁共振波谱仪:氢(1H)共振频率不低于400 MHz;可控温,温度精度不低于±0.1 K。6.2  核磁共振样品管:外径5 mm,同心且均匀。6.3  分析天平:感量为0.1 mg和1 mg。6.4  旋涡震荡仪。6.5  pH计:精度为± 0.01。6.6  移液器:量程为10 μL~100 μL和100 μL~1 000 μL。6.7  水系微孔过滤膜:孔径0.45 μm。6.8  离心机:离心速度≥ 8 000 r/min。7  试验步骤8.%2.%3  上机样品制备牛奶和发酵乳准确称取10 g(精确至1mg)样品于50 mL的容量瓶中,再加入35 mL蒸馏水后涡旋震荡30分钟溶解,用稀盐酸调pH值为4.4至4.5后,再加蒸馏水至刻度。摇匀后取5mL,转速为8 000 r/min离心10 分钟,弃去上层脂肪和蛋白相,取出中间澄清的部分,用滤膜过滤,准确量取900 μL滤液,再加入100 μL浓度为10 g/L的TSP重水溶液(5.3.1),取600 µL于核磁管中待测。奶粉准确称取1 g样品(精确至1 mg)于50 mL容量瓶中,以下部分同纯奶和发酵乳(7.1.2)。奶片取适量样品,压碎研磨成粉末。以下部分同奶粉样品的配制(7.1.2)。奶酪取适量样品,压碎或用粉碎机粉碎。以下部分同奶粉样品的配制(7.1.3)标准样取900 µL样品溶液(5.5.2,5.5.3),100 μL浓度为10 g/L的TSP重水溶液(5.3.1),旋涡震荡至少1min.充分混匀,取600 µL于核磁管中待测。7.1  上机测定参考条件7.1.1  核磁共振样品管不旋转。7.1.2  检测温度:(300.0± 0.1)K。7.1.3  空扫次数:4次。7.1.4  扫描次数:64次。7.1.5  谱宽:8 000 Hz。7.1.6  采样点数:65 536。7.1.7  接收增益:16。7.1.8  弛豫延迟时间:≥4 s。7.1.9  水峰压制脉冲序列:预饱和加相位循环。7.2  上机测定7.2.1  按照JY/T 0578—2020的规定对探头温度进行校正;按照JJF 1448—2014的规定对1H谱灵敏度、分辨力、线性、1H谱定量重复性进行校准。7.2.2  将装有上机样品(7.1.3)的核磁共振样品管置于核磁共振仪检测腔内,设置样品管不旋转。7.2.3  设置待测样品温度为300.0 K,测样前需要等待样品温度稳定。7.2.4  新建氢谱标准实验文件。7.2.5  锁场与调谐。7.2.6  匀场。7.2.7  测定样品的90°脉冲宽度,并记录结果。7.2.8  调用有相位循环的预饱和水峰压制脉冲序列。7.2.9  在7.2条件下设定参数,根据记录结果(7.3.7)设定90°脉冲宽度,根据水峰压制效果优化水峰压制位置、压制功率等,保持各样品接收器增益值一致。7.2.10  采集并保存数据。9  数据处理9.1  数据预处理对原始数据进行傅立叶变换、相位校正和基线校正,并以TSP-d4中硅烷甲基的化学位移作为零点进行定标。9.2  定性分析对乳糖标准品和外标参考物柠檬酸的1H NMR谱(参见附录A)信号峰进行归属,得到乳糖和柠檬酸的定量相关参数(参见附录A),包括定量峰化学位移、耦合常数、氢原子数量及积分区域。应注意定量峰积分区域未受到干扰。9.3  定量峰积分根据定性分析(8.2)得到的积分区域进行积分,分别得到外标柠檬酸和乳糖定量峰积分面积。 10  结果计算10.1  校正因子(CF)的计算10.1.1  乳糖系列标准工作溶液上机样品质量浓度计算乳糖系列标准工作溶液(5.5.3)上机样品质量浓度按照公式(1)计算:… … … … … … (1)式中:CQ——外标柠檬酸溶液(5.5.2)上机样品质量浓度,单位为毫克每升(mg/L);MWQ——柠檬酸摩尔质量,单位为克每摩尔(g/mol);AS——上机样品中乳糖定量峰积分面积;AQ——外标柠檬酸溶液上机样品中柠檬酸定量峰积分面积;nHQ——外标柠檬酸溶液上机样品中柠檬酸积分区域对应的氢原子数量;nHS——上机样品中乳糖积分区域对应的氢原子数量;NSQ——外标柠檬酸溶液上机样品扫描次数;NSS——上机样品扫描次数;PS——上机样品1H 90°脉冲宽度;PQ——外标柠檬酸溶液上机样品1H 90°脉冲宽度;TS——上机样品检测温度,单位为开尔文(K);TQ——外标柠檬酸溶液上机样品检测温度,单位为开尔文(K);MWS——乳糖摩尔质量,单位为克每摩尔(g/mol)。10.1.2  回归方程绘制由公式(1)计算得到的乳糖系列标准工作溶液上机样品质量浓度(9.1.1)为横坐标,乳糖系列标准工作溶液(5.5.3)上机样品质量浓度为纵坐标,建立线性回归方程y=ɑx+β,校正因子(CF)为线性回归方程的斜率ɑ。10.2  结果计算样品中乳糖的含量按照公式(2)计算:… … … … … … … … … … … … … … … (2)式中:CS-S——样品中乳糖的含量,单位为克每千克(g/kg);CS——由公式(1)计算所得溶解并定容后的样品中乳糖含量,单位为毫克每升(mg/L);V——样品定容后的体积,单位为毫升(mL);ms——称取的样品质量,单位为克(g);CF——校正因子,线性回归方程的斜率ɑ。计算结果以重复性条件下获得的两次独立测定结果的算术平均值表示,小数点后保留一位有效数字。11  精密度在重复条件下获得的两次独立测定结果的绝对差值不超过算术平均值的10%。12  检出限及定量限12.1  固体样品奶片、奶酪及奶粉中的乳糖检出限为0.3 g/kg,定量限为1.1 g/kg。12.2  液体样品纯奶、发酵乳中乳糖检出限为0.03 mg/kg,定量限为0.1 mg/kg。附录A乳糖和柠檬酸1H NMR谱图及定量相关参数图A.1 标准品乳糖1H NMR谱图A.2 外标物柠檬酸1H NMR谱表A.1 定量相关参数化合物摩尔质量/(g/mol)δH(峰形,耦合常数)氢原子数量积分区域/Δδ检测温度/K乳糖342.34.45(d, J=7.8 Hz)14.359~4.503300.0柠檬酸192.143.01(d,J = 15.7 Hz)22.921~3.1432.84(d,J = 15.7 Hz)22.693~2.916编制说明.docx
  • 全球首个微型核磁共振波谱仪问世
    2010年11月10日,picoSpin公司宣布推出全球首款微型核磁共振波谱仪picoSpin-45 NMR。与以往的核磁共振波谱仪相比,picoSpin-45 NMR体积小了100倍左右,价格便宜近90%。picoSpin-45 NMR是一个强大的化学分析工具,分辨率可达100ppb,其可以应用在食品制造、医药、石油化工、法医、生物燃料、化妆品及化学教育等行业,主要用于分析液体样品。picoSpin-45 NMR  picoSpin-45 NMR装置只有鞋盒大小,其消除了核磁共振波谱仪成本和规模的障碍,极大地扩大了核磁共振波谱仪的应用范围。 45兆赫(MHz)的picoSpin NMR可以在不足40微升的样本中解决质子化学转移问题。新仪器是一个完整的液相质子核磁共振系统,包括永磁体、发射器、接收器、数据采集、可编程脉冲序列发生器、以太网接口和直观的基于Web的控制软件。  picoSpin 公司总裁兼首席执行官Price博士表示,“核磁共振波谱仪是最强大的化学分析工具.我们设计的产品,真正改变了核磁共振波谱仪的前景。凭借低价格和紧凑的外形,picoSpin -45 NMR可以应用在过去认为不可能应用的领域。现在,您可以在您的实验室台上就拥有一台核磁共振波谱仪。您可以在工厂内设置多个单元,通过一个鼠标就可以持续监测和控制过程流体。您的学生可以在化学实验室和研究项目中实际操作核磁共振波谱仪。”
  • 布鲁克核磁共振波谱仪连中两标
    日前,布鲁克核磁共振波谱仪连中两标。  根据中国政府采购网消息,7月28日,布鲁克中标东华大学600MHz核磁共振波谱仪采购项目(项目编号:0613-154122111803),中标金额USD650000。  项目名称:东华大学600MHz核磁共振波谱仪  项目编号:0613-154122111803  本项目招标公告日期:2015年06月10日  定标日期:2015年07月28日  中标供应商名称、联系地址及中标金额:  布鲁克科学仪器香港有限公司  USD650000  上海市桂平路418号新园科技广场19楼  8月4日,布鲁克由中标“上海交通大学核磁共振波谱仪”项目(项目编号:0613-154122111800),中标金额USD570,000.00。  项目名称:上海交通大学核磁共振波谱仪  项目编号:0613-154122111800  本项目招标公告日期:2015年06月19日  定标日期:2015年08月04日  中标供应商名称、联系地址及中标金额:  布鲁克科学仪器香港有限公司  中标价格:USD570,000.00  地址:上海市桂平路418号新园科技广场19楼
  • 995万!山东大学核磁共振波谱仪和脉冲式电子顺磁共振波谱仪采购项目
    一、项目基本情况1.项目编号:SDJDHD20230565-Z340/HYHA2023-2494项目名称:山东大学核磁共振波谱仪预算金额:515.000000 万元(人民币)最高限价(如有):515.000000 万元(人民币)采购需求:标包货物名称数量简要技术要求A核磁共振波谱仪1详见公告附件合同履行期限:详见招标文件要求。本项目( 不接受 )联合体投标。2.项目编号:SDJDHD20230431-Z241/SDDQ2023-222项目名称:山东大学脉冲式电子顺磁共振波谱仪预算金额:480.000000 万元(人民币)最高限价(如有):480.000000 万元(人民币)采购需求:为满足学校科研需求,拟采购脉冲式电子顺磁共振波谱仪1套合同履行期限:至本项目质保期结束之日止。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年11月17日 至 2023年11月23日,每天上午8:30至11:30,下午13:00至16:30。(北京时间,法定节假日除外)地点:山东大学招标采购管理系统方式:第一步:投标人在海逸恒安项目管理有限公司网站上录入单位名称、联系人及电话等信息;链接:http://www.sdhyha.cn/qpoaweb/prg/gys/baoming.aspx?id=37055BUdN;第二步:登录山东大学招标采购管理中心网站(http://www.cgw.sdu.edu.cn/)进行投标人注册,注册完成山东大学招标采购管理中心审核通过后,在获取招标文件截止时间前再次登录系统在线报名本项目,报名审核成功后自助下载招标文件。 注:(1)本项目不收取招标文件工本费;(2)本项目实行资格后审,获取招标文件成功不代表资格后审的通过。售价:¥0.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:山东大学     地址:山东大学中心校区明德楼        联系方式:马老师0531-88365560      2.采购代理机构信息名 称:海逸恒安项目管理有限公司            地 址:山东省济南市历下区华润置地广场A5-6号楼27楼招标三部            联系方式:陈晓楠、向忆寒0531-82667532、18780039059            3.项目联系方式项目联系人:陈晓楠、向忆寒电 话:  0531-82667532、18780039059
  • 1210万!上海交通大学500兆核磁共振波谱仪、400兆核磁共振波谱仪、X射线衍射仪等采购项目
    一、项目基本情况1.项目编号:1069-234Z20234352(项目编号:招设2023A00172)项目名称:上海交通大学500兆核磁共振波谱仪采购项目预算金额:630.000000 万元(人民币)最高限价(如有):599.000000 万元(人民币)采购需求:序号货物名称数量简要技术规格交货期1500兆核磁共振波谱仪1套超导磁体装置1.具有低液氦与液氮消耗、高稳定性、高均匀性、抗干扰超超屏蔽超导磁体。2.磁场强度:≥11.74特斯拉合同生效后10个月内合同履行期限:合同生效后10个月内本项目( 不接受 )联合体投标。2.项目编号:1639-234122240463项目名称:上海交通大学400兆核磁共振波谱仪预算金额:290.000000 万元(人民币)最高限价(如有):290.000000 万元(人民币)采购需求:序号/ No.货物名称/Name of the goods数量/Quantity简要技术规格或用途/Main Technical Data交货期/ Delivery schedule1400兆核磁共振波谱仪1套液氦维持时间≥365天 签订合同后9个月内交货。/CIP Shanghai Jiao Tong University within 9 months after signing the contract合同履行期限:签订合同后9个月内交货。本项目( 不接受 )联合体投标。3.项目编号:0705-234006001051/招设2023A00173项目名称:上海交通大学X射线衍射仪预算金额:160.000000 万元(人民币)最高限价(如有):160.000000 万元(人民币)采购需求:序号货物名称简要技术规格数量交货期1X射线衍射仪1) X射线发生器部分:最大输出功率:不小于3kW;2) 二维阵列探测器,子探测器不少于15×190个,单个探测器的像素不大于75µm.有效探测面积不小于14mm×16mm;3) 光路部分系统需兼容满足五轴尤拉环样品台薄膜测试功能要求(薄膜光路另配)和常规粉末样品测试;4) 其他技术要求详见第八章第二部分《技术规格》。1套签订合同后6个月内合同履行期限:签订合同后6个月内交货本项目( 不接受 )联合体投标。4.项目编号:0773-2341SHHW0106/校内编号:招设2023A00176项目名称:上海交通大学红外光谱仪预算金额:130.000000 万元(人民币)最高限价(如有):130.000000 万元(人民币)采购需求:项目概况上海交通大学红外光谱仪,红外光谱仪主要用于进行化合物的鉴定,通过分析化合物的结构,可以确定其分子式、结构、组成和性质等信息,从而进行化合物的鉴别。采购需求:序号设备名称数量简要技术参数交货期交货地点1红外光谱仪 1套2.1 红外主机:镀金光学系统。光学台可以同时安装3个检测器、3个分束器;可以同时安装中红外光源、可见/近红外光源、拉曼光源和外光源4种光源。所有的检测器、分束器和光源都可以自动切换、自动准直;现场升级。其余详见“第八章 货物需求一览表及技术规格”签订合同后6 个月内上海交通大学用户指定地点合同履行期限:签订合同后 6 个月内本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年11月22日 至 2023年11月29日,每天上午9:00至11:30,下午13:30至16:00。(北京时间,法定节假日除外)地点:上海市长寿路285号恒达大厦16楼方式:提供开票信息(公司名称、税号、地址电话、开户行及账号)及项目联系人的联系方式(姓名、手机及邮箱),写明申请购买项目的名称发送至邮箱13795281643@163.com,完整填写《购标书登记表》;电汇缴纳标书款;邮件领取招标文件等资料。售价:¥500.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:上海交通大学     地址:中国上海市东川路800号        联系方式:王老师/021-54747300      2.采购代理机构信息名 称:上海中世建设咨询有限公司            地 址:上海市曹杨路528弄35号            联系方式:沈思骏 陈沁雯 陈奕远 021-52555817            3.项目联系方式项目联系人:沈思骏 陈沁雯 陈奕远电 话:  021-52555817
  • “大科学装置前沿研究”重点专项2021申报指南:拟支持电子自旋共振谱仪等21个项目
    5月10日,科学技术部发布国家重点研发计划“大科学装置前沿研究”等“十四五”重点专项2021年度项目申报指南。“十四五”国家重点研发计划深入贯彻落实党的十九届五中全会精神和“十四五”规划,坚持“四个面向”总要求,积极探索“揭榜挂帅”等科技管理改革举措,全面提升科研投入绩效。有关事项通知详情点击此处链接。“大科学装置前沿研究”重点专项2021 年度项目申报指南本重点专项总体目标是:开展专用大科学装置的科学前沿研究,推动我国粒子物理、核物理、天文学等重要学科的部分研究方向进入世界先进行列;开展平台型大科学装置的先进实验技术和实验方法研究,提升大科学装置支撑科技创新、经济社会发展和国家安全的能力。继续支持我国具有特色和优势的大科学装置开展前沿探索研究,力争在世界上率先实现若干重大前沿突破。2021年度指南围绕粒子物理、核物理、强磁场、天文学、先进光源、交叉应用等6个方向进行部署,拟支持21个项目,拟安排国拨经费概算5.15亿元。同时拟支持8个青年科学家项目,拟安排国拨经费概算4000万元,每个项目500万元。本专项 2021 年度项目申报指南如下。1. 粒子物理1.1 CKM 矩阵参数与底强子非粲衰变CP破坏的精确测量研究内容:利用海量的底夸克实验数据开展CP破坏等重味 物理前沿课题研究,主要包括:精确测量CKM夸克混合矩阵参数,例如β和γ相角等;精确测量B介子非粲衰变的CP破坏,包括理解三体衰变复杂的CP破坏结构等;在底重子衰变中寻找CP破坏,包括衰变到三体或四体末态,并理解其中多体末态的CP破坏结构。考核指标:对γ相角相关的重要衰变道进行测量,并结合其他测量结果,将γ相角的测量精度提高到4度以内;在无圈图污染过程中完成sin2β测量,精度达到10%以内。若干B介子非粲衰变和底重子衰变的CP破坏的测量结果达到世界最好水平或为世界首次测量。1.2 基于中微子的反应堆监测新技术及相关物理研究研究内容:发展新型中微子探测技术,开展反应堆监测技术和物理研究,主要包括:发展极低阈值、极低本底双相氩时间投影室探测技术,寻找反应截面最大但尚未被探测到的反应堆中微子—原子核相干散射过程,以实现中微子探测器的小型化,用于反应堆监测,同时研究其相关物理;发展基于新型低温液体闪烁体的高能量分辨探测器技术,用于精确测量反应堆中微子能谱及核素谱。考核指标:发展小型化反应堆中微子探测技术,研制并运行一个极低阈值、极低本底的双相氩时间投影室探测器,采用低本底氩,有效质量不低于150kg,探测阈值达到1keV核反冲能;利用台山反应堆,成功探测到反应堆中微子—原子核相干散射信号;测量低能标下的弱混合角。研制并运行一个采用高量子效率硅光电倍增管的新型低温液体闪烁体探测器,有效质量不低于1吨, 能量分辨在3MeV时优于1%,比现有大型液闪探测器的最好水平(Borexino,~2.8%)提高2.5倍以上;利用台山反应堆,测量高精度反应堆中微子能谱和核素谱,为江门中微子实验提供有效谱形误差1%以内的数据依据,对U235和Pu239测量的有效谱形误差达到4%和8%。1.3 无中微子双贝塔衰变和太阳中微子实验关键技术研究研究内容:依托中国锦屏地下实验室,开展寻找无中微子双贝塔衰变、太阳中微子探测实验的关键技术和方法研究,并初步建立相关实验装置开展实验探测。考核指标:在无中微子双贝塔衰变实验领域开展先进高纯锗半导体探测器、极低温晶体量能器、基于Topmetal技术的高气压时间投影室等实验技术研究,确定具有中微子双贝塔衰变有效质量小于10meV灵敏度的探测器技术方案;建设百吨级太阳中微子探测平台,实现太阳B8中微子的探测,重建出太阳中微子方向,5MeV 能量区间,太阳角重建的角度分辨为35度(68%的置信区间)。1.4 依托大型国际合作装置阿尔法磁谱仪(AMS)的物理研究研究内容:依托大型国际合作装置AMS实验,开展暗物质和反物质寻找,宇宙线的起源加速和传播规律机制的物理研究工作。通过宇宙线正电子、反质子和反氘核的精确测量,进行暗物质寻找;通过宇宙线反氦核、反碳核和反氧核的测量寻找原初反物质;精确测量宇宙线各原子核的能谱以研究宇宙线的起源加速和传播规律。参与国际合作,研制满足空间环境要求的新型大面积硅探测器,应用于AMS02的探测器升级。考核指标:暗物质寻找的研究,分析AMS实验数据得到1GeV~1.4TeV的宇宙线正电子能谱测量结果700~1000GeV精度达到35%;得到1GV~500GV的宇宙线反质子能谱结果,反质子能谱500GV精度好于20%;得到宇宙线反氘研究结果。反物质寻找的研究,得到宇宙线反氦研究结果。宇宙线起源加速传播机制的研究,得到2GV~3TV的宇宙线Na、Al、S、亚铁(Z=21~25)等分析结果,100GV精度4%~5%,3TV精度20%~40%;研制成 满足空间条件的10cm×100cm硅探测器,位置分辨率好于5微米,优良通道占比超过 95%。2. 核物理2.1 STAR束流能量扫描实验中QCD相结构和临界点的实验研究研究内容:针对量子色动力学(QCD)的核物质相结构和QCD临界点的重大科学问题,依托相对论重离子对撞机(RHIC)的螺旋管径迹探测器(STAR)的第二期束流能量扫描实验,主要开展质心能量20GeV以下的重离子碰撞实验的物理分析。通过测量守恒荷的高阶矩、超子整体极化和矢量介子的自旋排列、多奇异强子的产生、同质异位核素的可能的手征磁效应分析等,建立系统的QCD相结构和临界点的实验探针与方法,研究QCD物质相结构和QCD临界点。考核指标:基于STAR实验第二期能量扫描实验数据,获得质心系7~20GeV不同能量点下的守恒荷的高阶矩的高精度实验数据,系统测量Λ、反Λ超子及矢量介子的整体极化及自旋排列的快 度依赖与能量依赖并揭示其物理起源,精确测量Ω粒子、φ粒子等 多奇异强子的产额分布并揭示其产生机制;通过测量分析同质异 位素碰撞中相关物理量给出QCD手征磁效应、手征磁波效应是否在夸克胶子等离子环境中被观测到的结论;利用以上分析得到的系统实验结果给出QCD相结构及QCD临界点的信息。2.2 低能区原子核结构与反应及关键天体核过程研究研究内容:针对 X 射线暴和超新星等爆发性天体环境中的关键核反应过程,依托北京放射性核束装置BRIF和相关核天体物 理研究装置等,在低能区开展高精度的原子核的基本性质、结构特性与反应机制及关键天体核过程研究,积极发展相关微观模型,在更广泛的同位旋和角动量维度上探索原子核有效相互作用新规律,探索宇宙元素起源和星体能量产生机制。考核指标:完善BRIF高精度核物理实验平台(带电粒子探测器阵列立体角覆盖达4Pi的40%以上,能量分辨好于50keV),测量3~5项奇特原子核的基本性质、反应截面和衰变过程,统计精度好于10%;发展结合人工智能的核理论分析方法,探索原子核有效相 互作用及其演化规律;完善BRIF和相关核天体物理实验平台(伽马探测器阵列立体角覆盖达4Pi的60%以上),发展天体核反应的 高精度实验方法,测量天体演化相关的3~5项核反应截面和放射性原子核半衰期,统计精度好于10%;结合天文观测,验证天体演化模型,理解宇宙元素起源和星体能量产生机制;建立相关微观模型,研究α团簇和核物质状态方程等在天体核过程中的关键作用。3. 强磁场及综合极端条件3.1 强磁场下的代谢性疾病发病机制及防控新方法研究研究内容:瞄准糖尿病和脂肪肝两种代谢性疾病,依托稳态强磁场大科学装置,发展高场生物磁共振波谱与成像新技术,深入研究糖尿病和脂肪肝发生发展和调控机理;探索不同参数稳态磁场对糖脂代谢、铁代谢和氧化还原等代谢性疾病关键过程的调控及机制,研究稳态磁场对肠道微生物代谢的影响,探索稳态磁场在糖尿病和脂肪肝诊疗中的新策略。考核指标:发展针对糖尿病和脂肪肝等代谢性疾病的新型核磁共振波谱与成像检测方法,开发1~2种治疗糖尿病和/或脂肪肝的候选药物;阐明稳态磁场对糖脂代谢、铁代谢和氧化还原的调控机制,明确稳态强磁场生物安全界限,开发磁场在糖尿病和脂肪肝的潜在应用,研发1~2种基于磁场防控糖尿病和脂肪肝的演示样机,血糖和脂肪肝改善达到20%。3.2 强磁场下零/窄带隙新型电子材料制备及其应用研究研究内容:依托稳态强磁场装置,针对下一代电子器件对零带隙/窄带隙新型电子材料的需求,围绕极端条件强磁场下电子材料制备的关键技术与关键科学问题,聚焦磁场对材料生长调控规律的获取,系统开展强磁场下窄带隙化合物半导体、零带隙低维碳基材料、高频碳/磁薄层材料、新型热电材料等新型电子材料制备与应用研究,开拓其量产应用。考核指标:开发出强磁场(≥18T)辅助布里奇曼单晶炉样机1台;在强磁场下研发出几种具有实用化前景的零带隙/窄带隙电子材料,包括大尺寸窄带隙化合物半导体(~1 英寸,带隙~0.62eV,霍尔电阻率2000cm2/Vs,位错密度2)、高性能碳基光热催化量子点与光电材料(吸收/发射波长1200nm,光热转换效率≥40%,纳米酶催化效率≥0.1μM/s,载流子迁移率~10cm2/Vs,光响应性~106A/W)、适应于GHz/THz 波段的轻质宽带高频吸收材料 (GHz波段:吸收20dB、带宽5GHz;THz波段:吸收20dB、 带宽1THz)、低成本高性能多元纳米复合热电薄膜(ZT 值≥2.0, 温差≥10K,成本降低 50%);探索研发材料在器件中的量产应用。3.3 强磁场回旋管高功率太赫兹波源及电子自旋共振谱仪研究内容:依托脉冲强磁场装置,针对材料电子自旋与核自旋的关联、激发和弛豫过程等研究需求,开展THz回旋管理论与技术、高精度磁场位形和波形调控方法、THz高品质波束形成与瞬态测量技术、高功率THz波激励下的电子自旋共振谱仪研究,为探索关键材料结构、性能以及动力学变化提供先进测试平台。考核指标:建立基于强磁场的高功率回旋管太赫兹波源设计理论体系,解决磁场时空分布精确调控等关键技术问题,实现高功率太赫兹脉冲波和连续波输出。(1)脉冲波辐射源:磁场强度40T,频率1THz,功率300W;(2)连续波辐射源:磁场强度15T,频率800GHz,功率30W;(3)电子自旋共振谱仪:时间分辨≤10ns,带宽1GHz,DEER空间分辨2~50nm。4. 天文学4.1 依托LAMOST、FAST的恒星稀有天体和关键物理过程研究研究内容:瞄准恒星内部结构和关键物理过程,依托LAMOST、FAST大科学装置,搜寻和发现恒星关键/稀有天体, 探测恒星内部结构,识别Ia型超新星前身星;发展恒星对流模型,研究特殊元素的形成和输运、角动量转移过程;深入探讨双星演化的走向和结局,以及超新星等重要双星相关天体的形成和演化,结合黑洞观测,多方面提高宇宙测距精度。考核指标:发现几颗双星公共包层演化阶段天体;构建贫金属星和氦星的快速物质损失模型,系统建立双星演化的关键性判据;确定对流超射和星风在物质与角动量转移中的作用; 获得下主序恒星和红巨星表面存在磁场的星震学证据;通过FAST确定几颗超新星前身星;提高超新星等宇宙标尺的测距精度。4.2 第25太阳周重大爆发活动与空间天气研究研究内容:针对太阳爆发活动及空间天气形成的重大科学问题,充分利用我国自主观测设备,探索重大爆发活动中磁场时空演化、爆发机理、能量释放机制、空间天气形成机理及影响的全链路过程。诊断太阳活动中等离子体加热、粒子加速、激波形成与演化,获得对重大太阳活动产生机理及其空间天气效应新的可靠物理理解,并建立高精度的物理和数值预报模型。考核指标:确保我国自主观测新设备,如MUSER、NVST、AIMS、WeHot、FASOT等发挥科学效益;取得第25太阳活动周重大活动事件完整观测,建立数据库,涵盖国内外磁场、光学、 射电等多波段成像及光谱/频谱数据,开发新型大数据分析方法;发展三维(辐射)磁流体力学数值模拟,建立针对重大太阳爆发事件的理论和数值模拟模型;建立灾害性空间天气的高精确度预报模式和方法。5. 先进光源、中子源及前沿探索5.1 超高功率软 X 射线光源新原理及关键技术研究研究内容:针对能源科学、超导材料科学、超快物理化学和光刻等科学和应用领域对高功率EUV/软X射线光源的具体需求,依托软X射线自由电子激光大科学装置,开展超高平均功率和超 高峰值功率EUV/软X射线光源的新原理及核心关键技术研究,包括探索基于同步辐射和自由电子激光等产生高功率软X射线脉冲的新机制,发展高功率X射线光源所需种子激光、光学传输和诊断等关键技术。考核指标:完成基于角色散机制的高平均功率EUV/软X射 线光源(平均功率100W)和基于啁啾激光增强型自放大自发辐射的高峰值功率软X射线光源(峰值功率100GW)的物理机制研究;基于软X射线自由电子激光装置实验验证高功率X射线产 生的新机制,掌握其关键技术和实验方法,为用户提供峰值功率大于1GW、光子能量大于200eV的软X射线激光;掌握超高重复频率(1MHz)紫外波段种子激光和超大带宽红外波段种子激光等关键技术;掌握超高功率软X射线的光学传输、光学元件冷却(平均热负载100W,峰值功率100GW)和光学诊断(时间测量精度好于1fs)等技术。6. 交叉科学与应用6.1 超高真空平面微纳量子器件的分子束外延直接生长和原位表征技术研究研究内容:发展选区外延生长和片上掩模外延生长等技术,实现量子材料微纳结构和平面异质器件的超高真空分子束外延直接生长;开发极低温、强磁场原子力显微镜,实现绝缘基底上的微纳结构和器件的扫描隧道谱电子态表征;改进平台扫描微波显微镜、氧化物分子束外延生长等技术设备;基于这些新发展的技术研究拓扑-超导异质结构中的马约拉纳模相关物理机理等关键科学问题。考核指标:利用分子束外延在超高真空环境直接生长出超导电极间距6.2 粒子流、先进光源新实验技术研究研究内容:依托同步辐射光源、超快强激光、先进中子源、加速器等束流装置平台,针对材料科学技术、信息科学技术、生命健康和环境保护等领域的关键科学技术问题,发展急需的先进实验技术和方法。考核指标:在选定的研究领域和研究目标,通过研究平台与相关领域研究部门的密切合作,研发在同步辐射光源、超快强激光、中子源和加速器上为解决上述瓶颈问题急需的先进实验技术和实验方法,促进大设施在材料科学技术,信息科学技术、生命健康和环境保护等领域的交叉实验研究。有关说明:本方向拟支持不超过8个项目。附件:“大科学装置前沿研究”重点专项2021年度项目申报指南.pdf形式审查条件要求.pdf指南编制专家名单.pdf
  • Bruker核磁共振波谱仪最新技术进展
    核磁共振(NMR)波谱仪作为一种重要的分析仪器,广泛应用于物理学、化学、生物、药学、医学、农业、环境、矿业、材料学等学科,越来越多的科研单位和企业装备了核磁共振波谱仪。Bruker公司一直站在核磁共振波谱技术的最前沿,秉承“持续创新”的理念,借助50 多年的丰富经验和对产品的热情与执着,将最新技术融入核磁共振波谱仪,近年来开发出了许多新产品和新功能,本文将Bruker核磁共振波谱仪最新技术进展进行简要介绍。 1.最新的磁体技术 现代核磁共振超导磁体需要液氮液氦提供的低温条件来维持磁体的超导状态,需要定时补加液氮和液氦,这无疑增加了仪器操作人员的工作负担,而且国际市场上液氦价格的波动和供应的不确定性也对超导磁体的维护产生了非常不利的影响。Bruker 最新推出的AscendTM Aeon系列磁体(见图1)则让仪器操作人员不再担忧液氮液氦的补加问题。 图1. Ascend Aeon系列磁体 Ascend Aeon系列磁体在磁体杜瓦上直接集成了制冷冷头,Bruker完美解决了靠近磁体的压缩机带来的振动和影响磁场等问题,它能将磁体内挥发出的氦气直接液化重新加注回磁体,完成氦气的循环。Bruker先进的磁体制造技术保证了Ascend Aeon系列磁体一如既往优秀的性能、极佳的磁场均匀度和最小的漏磁场,同时大大提高了Ascend Aeon系列磁体的易用性和安全性。 400MHz和500MHz的标准腔Ascend Aeon磁体无需再添加液氮,而液氦的维持时间提高到18个月,对于600MHz和700MHz的标准腔Ascend Aeon磁体,则可做到无需添加液氮并将液氦的维持时间大幅延长至8年。 Ascend Aeon系列目前提供从400MHz - 700MHz的54mm标准腔磁体,800MHz - 900MHz的54mm标准腔磁体和400MHz - 800MHz的89mm宽腔磁体则即将推向市场。 对于目前市场上常见的新一代AscendTM磁体,Bruker则提供了磁体液氮回收单元,可以将磁体挥发出的氮气收集、压缩液化后重新加注回磁体,避免了重复添加液氮的麻烦,极大地简化了磁体的维护工作,这使得核磁共振波谱仪变得更易用。 由于CryoProbes?超低温探头配备了压缩机平台,Bruker在超低温探头压缩机平台上实现了磁体液氮回收功能,这就是BSNL(Bruker Smart Nitrogen Liquefier)单元,如图3所示。 图3. BSNL单元 为了给没有配备超低温探头的仪器提供磁体液氮回收功能,Bruker最新推出了BNL(Bruker Nitrogen Liquefier)单元,如图4所示,这使得普通用户在没有超低温探头的情形下也能实现磁体液氮的回收,无需增加很大的成本即可极大简化磁体的维护工作。BNL适用于Ascend 400-700标准腔磁体。 图4. BNL单元 2. 革命性的CryoProbeTM Prodigy探头 Bruker的超低温CryoProbeTM探头由于其在提高灵敏度方面的卓越表现,在学术界和工业界都得到了广泛的应用。超低温探头把低温技术与先进的射频硬件设计和制造技术结合起来,用压缩低温氦气来冷却探头检测线圈和前放电子线圈到20K附近,最大程度降低了可检测到的电子热噪声,探头检测灵敏度提高4倍以上。目前Bruker新推出了一个革命性的低温探头方案:CryoProbeTM Prodigy探头。图5所示为安装有Prodigy探头和SampleXpress自动进样器的AVANCE III HD 400 MHz谱仪实例。 Prodigy探头几乎延续了传统氦气超低温探头的所有优点,但其购买费用和维护费用大为降低,安装、使用和维护也变得更加简单。Prodigy探头把低温氦气冷却换为液氮冷却,探头检测线圈和前放电子线圈的工作温度为80K附近,这样可以提高探头氢的灵敏度2倍左右,杂核灵敏度提高2 - 3倍。 图5. AVANCE III HD 400 MHz谱仪,安装有CryoProbeTM Prodigy探头和SampleXpress自动进样器。3. 先进的自动进样器 核磁共振波谱仪的探头一次只能容纳一个样品进行检测,当一个样品检测完成后就需要更换样品以进行下一次检测。样品的更换可由人工操作,也可由自动进样器按照预设的程序自动完成,因此自动进样器也被称为自动换样器(Auto Sample Changer)。 自动进样器已成为现代核磁共振波谱仪的一个重要部件,它不仅减轻了谱仪操作人员的体力劳动强度,也由于它能按照预设的程序自动完成大量样品的高通量实验而备受用户的青睐。 Bruker在自动进样器的研发方面有着悠久的历史。目前 Bruker提供了一系列满足不同需求的液体样品自动进样器,其中有SampleXpress Lite、SampleCase、SampleXpress、以及SampleJet,见表1。Bruker还提供一种专为高场仪器设计的液体样品换样辅助设备SampleMail。 表1. Bruker液体样品自动进样器的参数 SampleXpress Lite(见图6)提供16个带转子的样品位,取代了较老的24位NMR Case自动进样器,减少了活动机械部件,使用可靠性更高。其主要由一个可旋转的圆形样品架组成,置于磁体中心管之上。样品架可轻松取下以更方便地放置样品。 图6. SampleXpress Lite自动进样器 SampleCase(见图7)提供24个带转子的样品位。样品架为桌面高度,这使得对于高场谱仪的进样更为方便,无需再攀登梯子进样。Bruker还提供一种低温功能配置——Cooled SampleCase,通过与低温附件配合,可使样品架上的样品处于低温状态,如保存生物样品常用的6℃,特别适合生物样品的测试。 图7. SampleCase自动进样器 SampleXpress(见图8)提供60个带转子的样品位,取代了B-ACS自动进样器,减少了活动机械部件,使用可靠性更高。SampleXpress设计非常紧凑,极大提高了其与各类型磁体的适配度;配备了触摸屏式控制面板,控制更加方便;样品架可轻松取下,放置样品更加方便。 SampleXpress还可安装条码扫描设备,可实现更加复杂的程序化自动进样。样品架取下后可直接在中心管中插入固体转子导管或CryoFit,轻松支持固体探头和超低温探头-液相色谱-固相萃取-核磁联用的切换。 图8. SampleXpress自动进样器 SampleJet(见图9)是一种前所未有的方便快捷地实现高通量核磁实验的自动进样器。它有5个可放置96根核磁管的样品架,另可在外圈放置96根样品。机械手可自动完成将样品管插入转子并换样的动作。此外它还有若干带转子的样品位,总共可放置6x96个样品。SampleJet也可安装条码扫描设备,亦可实现低温功能,使样品架上的样品处于低温状态。 图9. SampleJet自动进样器 由于高场仪器的磁体都较高,人工进样时需要仪器操作人员爬上很高的梯子才能操作,SampleMail(见图10)就是一种专为高场仪器设计的液体样品换样辅助设备,它使用了SampleCase的样品传送系统,使操作人员在桌面高度就可以完成高场仪器的单次换样。 图10. SampleMail换样辅助设备 除此之外,Bruker还提供了固体样品自动进样器(7毫米20位样品,4毫米40位样品)。对半固体(HR-MAS)样品可以提供自动进样器SamplePro,可放置96个HR-MAS半固体样品转子,SamplePro还可以提供低温选件(48位样品),最低温度可到-16摄氏度,如图11所示。 图11. HR-MAS半固体样品转子自动进样器SamplePro 4. 样品变温单元 变温核磁共振实验在物质结构分析和化学反应跟踪等应用中有着重要的作用,因此,样品变温单元是现代核磁共振波谱仪中必不可少的一部分,例如Bruker最新型核磁共振波谱仪AVANCE III HD系列谱仪中集成了BSVT (Bruker Smart multichannel Temperature Control System)温控单元,其与Bruker BBFO SMART探头搭配,在不增加其他附件的情况下实现对样品温度从室温到150℃的变温控制,控温精度达+/-0.1℃。此外,Bruker还为控温提供了革命性的NMR ThermometerTM技术(选件),第一次使得在NMR实验过程中测量样品的准确温度成为了可能。 NMR Thermometer技术通过检测两种氘共振的化学位移差值来实现完全自动化温度控制,与传统的热电偶检测法相比,NMR Thermometer直接测量样品实际温度,不再依赖于热电偶,从而避免在去偶实验或控温气流变化时外部热电偶测温导致温度偏差(如图12所示)。 图12. NMR Thermometer技术的效果:上图为没有使用NMR Thermometer条件下测得的NMR谱图,化学位移偏移表现出很强的温度依赖性,下图为使用NMR Thermometer的条件下所得谱图,化学位移偏移得到了很好的补偿。 如果搭配Bruker提供的其他高温或低温附件,将可以实现更宽的样品温度控制范围。BSVTB 3500加热功率增强单元可以使得加热温度的上限提高到400℃,适用于10mm液体探头(该探头温度上限为200℃)、WVT固体探头及MASCAT固体探头的高温实验。 在低温方面,Bruker提供了更多样的选择,主要分为两大类:非液氮制冷单元和液氮制冷单元。非液氮制冷单元采用压缩机致冷剂方式制冷,可进行长时间工作,其中BCU I制冷单元可将5毫米液体样品温度冷却至0℃左右,而BCU II制冷单元可将5毫米液体样品温度冷却至-40℃左右。 液氮制冷单元则是通过液氮杜瓦中的液氮致冷,又可分为两种类型,其一是热交换式,来自压缩机的气体经过浸泡在液氮中的螺旋管而获得低温,进而冷却样品;其二是挥发式,它不需要气体供应,而是通过浸泡在液氮中的小型加热器的加热使液氮挥发为低温氮气来冷却样品。两类液氮制冷单元的分别搭配不同类型的探头。两类液氮制冷单元的气体传输管可采用不同材质制造,采用PUR材料气体传输管的液氮制冷单元可将样品温度冷却至-80℃左右,而采用不锈钢材料气体传输管的液氮制冷单元可将样品温度冷却至-120℃左右。 5. 液相色谱-核磁共振(LC-NMR)联用组件 将色谱分离技术与核磁共振技术以及其他技术进行在线的联用,使色谱分离与谱学结构确证成为一个连续的过程,这是对于复杂有机混合物成分分析的一种非常有效的方法。 Bruker是LC-NMR在线联用方法的先驱者,提供了完善的LC-NMR在线联用解决方案。作为液相色谱与核磁共振联用的最重要的部分,Bruker独家研发了多种适合两者的在线联用接口单元,并开发了集成式控制分析软件HyStar。 BSFU-HP(Bruker Stop-Flow Unit - High performance)接口单元提供了两种检测工作模式:连续流动模式(on-flow)和停流模式(stop-flow)。 BPSU-36/2接口单元不仅支持连续流动模式(on-flow)和停流模式(stop-flow)这两种检测工作模式,还配备了loop环,可实现色谱峰的捕捉、暂存和转移至核磁共振谱仪中检测等一系列在线联用功能。 LC-SPE-NMR单元(如图13所示)是Bruker公司联合Spark公司开发的一种独有的LC-NMR联用接口单元,一经问世便广受用户的欢迎。其核心部分是拥有192个柱子的SPE(固相萃取)系统,配合精密的流路设计和其他组成部分,LC-SPE-NMR单元可完成色谱峰的捕捉、进行多次富集、氘代试剂洗脱进入核磁共振谱仪中检测等一系列在线联用功能。 图13. LC-SPE-NMR单元 Bruker支持多种市面流行的液相色谱仪与核磁共振联用并实现对其完全控制;在核磁共振谱仪端,Bruker不仅提供传统的流动探头(Flow Probe),还特别为CryoProbesTM超低温探头和CryoProbesTM Prodigy液氮低温探头提供了CryoFitTM插件(如图14所示)。CryoFitTM可以直接让CryoProbesTM超低温探头和CryoProbesTM Prodigy液氮低温探头转变为具有类似流动探头的功能,可与液相色谱联用。CryoFitTM插件安装时只需将其从磁体中心管上部插入5mm探头中即可,转变过程无需拆卸更换探头。 图14. CryoFitTM插件 除此之外,Bruker的LC-NMR联用组件还可以实现与质谱仪的进一步联用,即LC-NMR-MS联用。Bruker支持多种市面流行的质谱仪的联用。HyStar软件同样可完成对三个仪器的同时控制与结果分析。Hystar软件可在同一屏幕上同时显示色谱图、指定峰的核磁共振图及对应的质谱图,这些信息足够进行复杂混合物的分析和确定被分析物的结构。 6. Assure - Raw Material ScreeningTM解决方案 在制造原料药药品和化学产品时杂质和掺杂物可能会带来责任风险。目前对全球供应链的日益依赖的现状加大了对生产所用原料和最终产品进行质量控制检测的需求。有效地检测何处出现未知掺杂物需要使用化合物特异性和非靶向方法。为此,Bruker提供了一套完整、易用的全自动化解决方案:Assure - Raw Material ScreeningTM原料检验系统。使用Assure - Raw Material ScreeningTM(Assure-RMS)可以在在合成最终产品之前检测含杂质和不纯的样品,从而减少责任风险、降低生产成本、减少可能带来的生产延误。Assure-RMS方法适用于GLP(优良实验室规范)或非GLP环境,能提供样品分析过程和结果的可溯源记录,可应用于医药和化工生产以及分析参考标准。 Assure-RMS方法只需几毫克的原料用于分析,经一次性测量即可完成原料检验,几分钟内就能得到结果和报告(如图15、图16所示),它专为生产实验室技术人员设计,能自动校准仪器性能并对仪器进行相应的维护。 图15. Assure结果示例 图16. Assure报告示例 Assure-RMS的结果可选绝对摩尔数或绝对质量数以及相对百分含量,它提供一份质量检测通过/未通过的报告,并可根据现场具体要求灵活选择报告结果,另外还提供对已知杂质和掺杂物定性和定量的专家报告,并显示存在的任何未知成分。 Assure-RMS的客户还可通过Bruker获得额外的定制和GLP认证
  • 核磁共振波谱仪常见问题解答
    p  1.元素周期表中所有元素都可以测出核磁共振谱吗?/pp  不是。首先,被测的原子核的自旋量子数要不为零 其次,自旋量子数最好为1/2(自旋量子数大于1的原子核有电四极矩,峰很复杂) 第三,被测的元素(或其同位素)的自然丰度比较高(自然丰度低,灵敏度太低,测不出信号)。/pp  2.关于样品管,要注意什么?/pp  对于 5mm 探头来说,其中探头内部隔离样品和线圈的石英管内径只有5.4mm,如果样品管过粗或者弯曲,很容易卡在探头里甚至挤碎石英管 如果样品管过细或者有裂纹,很容易造成样品管在探头内破碎,污染探头。因此在使用样品管前,首先要在平面上滚动,确定平直 然后对灯光仔细检查有无裂纹 插入转子时要注意是否过紧过松。探头故障是我们遇到最多的问题,损坏探头可能造成数百到数万欧元的维修费用,建议谱仪管理员确保所有的送样人员了解这些细节,并检查样品管质量。/pp  3.溶剂的用量多少为合适?/pp  在我们的定深量筒上都绘有相应线圈的位置及长度,一般只要保证样品的长度比线圈上下各多出3mm 即可,过少会影响自动匀场效果,过多浪费溶剂而且由于稀释了样品,减少了处在线圈中的有效样品量。这种情况下要注意将样品液柱的中心与定深量筒上的线圈中心对齐。/pp  4.高场的核磁共振仪和低场的核磁共振仪测出的谱有什么区别?/pp  首先,高场的核磁共振仪比低场的核磁共振仪灵敏度高,如果样品浓度低,低场的核磁共振仪测出的谱图信噪比低,改用高场的核磁共振仪信噪比会改善。其次,高场的核磁共振仪比低场的核磁共振仪测出的峰分得更开,谱图的解析更容易些。但是,需要准确的偶合常数时,用低场的谱仪测更好些。/pp  5.核磁共振仪有几种探头?/pp  从所测原子核的种类分,有:碳氢探头、碳氢磷氟四核探头、多核探头。还可以分为正向探头(测碳谱的灵敏度高)、反向探头(测氢谱的灵敏度高)、普通探头(每测四次完成一个循环得一个结果)和梯度场探头(不需要相循环,测一次得一个结果)。/pp  6.如果样品吹不出来,应该怎么处理?/pp  首先查看各个气压表示数,检查压缩空气是否正常。如果压缩气没问题,很可能是样品卡在探头里了。可以将探头的固定螺丝拧开,下沉约5厘米,然后装回,(或者说把探头拆下再装回去)再吹一次。一般可以吹出。/pp  7.lockdisp窗口中锁线的意义是什么?/pp  时间轴折叠的氘信号强度谱/pp  8.测试核磁共振需要多少样品量?/pp  不同场强需要的样品量不同,如300兆核磁、分子量是几百的样品,测氢谱大约需要2mg以上的样品,测碳谱大约需要10mg以上。600兆核磁测氢谱大约需要几百微克。/pp  9.配制样品为什么要用氘代试剂?怎样选择氘代试剂?/pp  因为测试时溶剂中的氢也会出峰,溶剂的量远远大于样品的量,溶剂峰会掩盖样品峰,所以用氘取代溶剂中的氢,氘的共振峰频率和氢差别很大,氢谱中不会出现氘的峰,减少了溶剂的干扰。在谱图中出现的溶剂峰是氘的取代不完全的残留氢的峰。另外,在测试时需要用氘峰进行锁场。/pp  由于氘代溶剂的品种不是很多,要根据样品的极性选择极性相似的溶剂,氘代溶剂的极性从小到大是这样排列的:苯、氯仿、乙腈、丙酮、二甲亚砜、吡啶、甲醇、水。还要注意溶剂峰的化学位移,最好不要遮挡样品峰。/pp  10.测试样品是否必须家TMS?/pp  测试样品加TMS(四甲基硅烷)是作为定化学位移的标尺,也可以不加TMS而用溶剂峰作标尺。/pp  11.怎样做重水交换?/pp  为了确定活泼氢,要做重水交换。方法是:测完样品的氢谱后,向样品管中滴几滴重水,振摇一下,再测氢谱,谱中的活泼氢就消失了。酰胺类的氨基氢交换得很慢,需要长时间放置再测谱。/pp  12.用哪些氘代溶剂测出的氢谱上看不到活泼氢的峰?/pp  甲醇、水、三氟醋酸都有重水交换作用,看不到活泼氢的峰。/pp  13.可以使用混合氘代试剂吗?/pp  可以。但是化合物在混合溶剂中由于溶剂效应,峰的化学位移和一种氘代溶剂的不同。/pp  14.为什么氘代丙酮、氘代DMSO(二甲亚砜)的溶剂峰为五重峰?/pp  溶剂峰的裂分是由于氘对氢的耦合,根据2n+1规律,两个氘对一个氢耦合裂分成五重峰。/pp  15.位移试剂有什么用途?/pp  当样品峰相互重叠时,可以用位移试剂把这些峰拉开,便于谱解析。/pp  16.不锁场可以测样品吗?/pp  为了使磁场稳定,测试样品时要进行锁场 如果不锁场也可以测试样品,但因为磁场稳定性差,测出的谱图分辨率较低。/pp  17.设置参数时,观察偏置表示什么意思?/pp  在测图谱时,我们不能同时观察0到几百兆赫的范围,所以我们先设置一个谱宽,以这个谱宽为窗口去观察共振的某一范围。设置观察偏置就是定了观察位置。所以改变观察偏置,谱中各峰的位置就会改变,实质也是观察范围改变了。/pp  18.为什么同一碳上的两个质子会有不同的化学位移?/pp  因为同碳上的这两个质子表现出了磁不等价。如有些难翻转的环上的碳位置固定,不能旋转,它上面的两个质子处于环的不同位置,受到的磁屏蔽不同,所以化学位移不同。还有的碳虽然不在环上,但是连接了两个大的集团,旋转受阻,两个质子收到的磁屏蔽不同,化学位移也不同。/pp  19.化学位移可以给出哪些结构信息?/pp  氢谱中各种基团的化学位移变化很大,不容易记忆,但只要牢记住几个典型基团的化学位移就可以解决很多问题。如:甲基0.8~1.2ppm,连苯环的甲基2ppm附近,乙酰基上的甲基2ppm附近,甲氧基和氮甲基3~4ppm,双键5~7ppm,苯环7~8ppm,醛基8~10ppm,不接氧的亚甲基1~2ppm,接氧的亚甲基3~4ppm。/pp  20.偶合常数可以给出哪些结构信息?/pp  可以从偶合常数看出基团间的关系,邻位偶合常数较大,远程偶合常数较小。还可以利用Kapulus公式计算邻位氢的二面角。对于有双键的化合物,顺式的氢之间偶合常数为6~10Hz,反式的氢之间偶合常数为12~16Hz。/pp  21.NOE效应与去偶作用有什么不同?/pp  偶合是解决氢基团之间相邻的关系,它们之间的能量是通过键传递的。NOE效应是解决氢之间的空间相近,它们之间的能量是通过空间磁场传递的。/pp  22.质子偏共振去偶可以用来确定碳的类型,为什么现在常用DEPT谱,而不同质子偏共振去偶谱?/pp  质子偏共振去偶区分伯、仲、叔、季碳的方法是根据裂分成四重、三重、二重和单峰,如果峰离得近会产生重叠,不容易解析,而DEPT区分伯、仲、叔、季碳的方法是根据峰向上或向下,峰不会重叠,并且质子偏共振去偶的灵敏度比DEPT法的灵敏度低得多,所以现在常用DEPT谱区分碳的类型。/pp  23.门控去偶和反门控去偶法有什么不同? ./pp  门控去偶和反门控去偶之间的区别是工作时去偶门和接收门打开的时间不同。门控去偶谱可以从峰的裂分计算碳-氢偶合常数,反门控去偶是使分子各碳峰的强度相同以便定量。/pp  24.DEPT谱有几种表示方法?/pp  DEPT谱有两种表示方法:一种是DEPT135° 谱,伯碳向上,仲碳向下,叔碳向上,季碳消失,DEPT90° 谱只有叔碳峰,DEPT45° 谱季碳消失 另一种是把上面的谱编辑后,一个谱只有伯碳峰,另一个谱只有仲碳峰,还有只出叔碳峰或只出季碳峰。/pp  25.都有哪些二维核磁共振谱?/pp  有:1H-1H相关COSY谱、1H-1H相关NOESY谱、13C-1H相关COSY谱、远程13C-1H相关谱、同核J分解谱、相敏COSY、与NOESY谱类似的ROESY谱(NOESY谱解决大分子效果好,ROESY谱解决中等分子效果较好)、TOCSY谱(自旋系统里所有的氢之间都出相关峰)以及HSQC谱(异核单量子相干)等。/pp  26.什么是三维谱?/pp  三维谱是一个立体图,它的相关峰是立体中间的点,用平面切开这个立体所得的平面图就是二维图。/pp  27.解析合成化合物的谱、植物中提取化合物的谱和未知化合物的谱,思路有什么不同?/pp  合成化合物的结果是已知的,只要用谱和结构对照就可以知道化合物和预定的结构是否一致。对于植物中提取化合物的谱,首先应看是哪一类化合物,然后用已知的文献数据对照,看是否为已知物,如果文献中没有这个数据则继续测DEPT谱和二维谱,推出结构。对于一个全未知的化合物,除测核磁共振外,还要结合质谱、红外、紫外和元素分析,一步步推测结构。/pp  28.用X射线晶体衍射确定蛋白质的结构与核磁共振法有什么不同?/pp  用X射线晶体衍射确定蛋白质的结构需要先把蛋白质制成晶体,在固体条件下测。核磁共振法要把蛋白质溶解在溶液中,在液体条件下测试。这两种条件测得的结果是不一样的。因为蛋白质在生物体中多以溶液状存在,所以核磁共振法测得的结果更接近实际状态。/pp/p
  • 《中国核磁共振波谱仪市场调研报告(2021)》正式发布
    核磁共振是20世纪40年代发展起来的一项分析技术。利用核磁共振技术可以确定物质的化学结构及某种成分的密度分布,其应用已迅速扩展到物理、化学领域之外的医疗、生物工程等方面,成为分析生物大分子复杂结构和诊断病情最强有力的方法之一。近年来,核磁共振仍在不断发展,除了高场核磁共振技术之外,低场及小型便携化核磁共振技术因低成本、易维护的特点,也逐渐普及。《中国核磁共振波谱仪市场调研报告(2021)》中,从用户、中标数据、厂商三个方面对中国NMR的市场情况进行了统计分析。用户常用NMR仪器频率XX NMR中标品牌分析通过调研问卷对用户信息进行采集整理,分析了NMR用户的单位性质、行业、持有NMR数量、常用NMR品牌及场强(频率)等,还有用户的采购需求、关注因素以及采购品牌倾向等采购信息的整理。仪器信息网还对千里马网站中2019年1月至2021年11月NMR的中标信息进行统计,从高场NMR、低场NMR和NMR实验仪三类仪器分别展开分析,其中包含中标数量、品牌,采购单位性质、区域,以及采购仪器类型、成交价格。根据仪器信息网专场信息及多方信息来源,盘点了NMR主流厂商及市场情况,对高场NMR和低场NMR的市场规模、采购需求、应用前景进行了分析。用户经常使用的是哪些仪器?对仪器提出了哪些建议?哪些应用上的需求目前还未能满足?未来在哪些应用领域有市场需求点?中标的仪器都有哪些品牌?哪些单位是采购大户?答案都在《中国核磁共振波谱仪市场调研报告(2021)》!报告链接:《中国核磁共振波谱仪市场调研报告》 (2021版)_市场调查报告 (instrument.com.cn)欢迎感兴趣的网友联系购买报告事宜:【服务热线】: 400-637-7886【电子信箱】: survey@instrument.com.cn 【报告目录】前言第一章 核磁共振概述 1.1 核磁共振简介 1.2 核磁共振波谱仪简介 1.3 核磁共振技术发展历程 第二章 核磁共振波谱仪用户分析 2.1 NMR用户分析 2.2 NMR使用情况分析 2.3 用户采购行为分析 第三章 2019-2021年核磁共振波谱仪中标数据分析 3.1 高场NMR中标分析3.2 低场NMR中标分析3.3 NMR实验仪中标分析第四章 核磁共振波谱仪主流厂商与市场情况分析4.1 高场NMR主流厂商及市场情况分析4.2 低场NMR主流厂商及市场情况分析第五章 核磁共振波谱仪市场调研总结
  • 核磁共振波谱仪问卷调研开奖啦!
    为更好地了解当前核磁共振波谱仪技术及市场需求,仪器信息网对使用过核磁共振波谱仪的相关人员进行了问卷调研。本次调研共收到236份问卷,其中有效问卷139份,每人将获得10元话费,话费将于1-3个工作日发放。如有疑问可扫描文章结尾的二维码,添加小编微信沟通。核磁共振市场调研获得话费人员信息.xlsx另外,本次调研有主观题,经小编审核后共有70份问卷可参与抽奖。奖品设置:一等奖200元京东卡 5份;二等奖30元话费 10份;三等奖10元话费 20份。现公布中奖名单如下:一等奖:200元京东卡姓名电话张*158****6105李*159****1836贾*亮139****6630计*柱185****5100蔡*136****7925二等奖:30元话费姓名电话姓名电话赵*150****0633徐*136****0396刘*150****2550张*贤199****8846任*188****9825顾*苹189****8429吴*峰139****8762魏*158****6940初*旭132****2509蒋*刚150****0679三等奖:10元话费姓名电话姓名电话王*155****5631孙*玉139****8507徐*军139****1779赵177****4586崔*华187****8815白*飞156****2293王*豪156****1950秦*秋158****1109吕*137****1231张*186****4368马*珺199****7362宇文*然136****8268孙*林134****1326董*丽137****7782卫*青176****0091谢*东137****937袁*151****4682李*月180****8423王*津130****9573张*雨189****5961扫描二维码添加小编微信。
  • 这段文字告诉你:布鲁克核磁共振波谱仪有多强悍
    p  众所周知,在化学化工、生命科学及医药研究等领域,对物质结构的分析和鉴定是开展科研工作最基本的要求。核磁共振波谱分析是确定小分子有机化合物、药物、聚合物以及生物分子结构最常用的分析方法,并可应用于混合物的纯度分析和鉴定,在化工、制药、材料、环境、生物和医学等各学科得到了广泛使用。/pp  目前,河南科技大学化工与制药学院正承担“国家自然科学基金”、“国家863计划”、“国家973计划”及河南省科技攻关项目等各级各类科研项目数十项,相关课题组在新型有机材料、新型药物载体、野生植物药材提取、高分子复合材料、环境污染物等方面开展了大量的研究工作,这些研究工作的顺利开展和进行都离不开核磁共振波谱分析的大力协助和密切配合,没有核磁共振波谱仪,这些研究工作的时间进度和完成质量将受到极大的影响。/pp  经充分调研,河南科技大学化工与制药学院拟以单一来源方式购买布鲁克公司生产的AVANCE III HD 400型号核磁共振波谱仪。这是因为:该仪器主要由超导磁体、射频系统、二合一宽带观察探头、计算机工作站等组成。操作软件具有强大的数据管理功能,可保证数据的完整性和安全性 原始数据、仪器条件和处理参数等关联信息由软件自动建立,采用检索方式可方便地从在数据库中调取和使用 仪器使用维护成本较低,开展分析性价比高 并为未来的谱仪升级奠定基础。该仪器的购置可满足河南科技大学化学化工、材料科学、环境科学、生物制药等学科平台的科学研究、人才培养及社会服务。/pp  1. 布鲁克公司是世界上生产NMR谱仪的最专业化厂家,在超导材料制备、电子控制、用户软件开发等方面有着雄厚的实力,其span style="color: rgb(255, 0, 0) "最新产品Avance 系列核磁共振波谱仪性能卓越、运行稳定、自动化程度高、用户界面友好,在全球占有超过70%市场份额,在中国国内拥有非常高的用户认可度,有超过80%的市场份额。/span在中国的售后服务团队技术力量雄厚,工程师拥有多年的波谱仪安装和维修经验。在北京办公室有液体和固体探头维修中心,可以在国内修理大部分常见探头故障,这样缩短了探头维修时间,节省了费用。现有技术力量雄厚的核磁应用专家和专职核磁维修工程师队伍,先进齐全的安装维修工具,在上海建有保税库,充足的零配件备份。专职应用工程师在北京应用实验室或者上海周边定期开展多层次的培训班。/pp  2. 核磁共振波谱仪的探头用于激发检测核并探测核磁共振信号,其性能对核磁共振实验至关重要。由于河南科技大学本次拟购置的核磁共振波谱仪主要为化学化工、材料科学、环境科学、生物制药等相关学科的化合物分子结构及分子之间相互作用研究提供服务,需要配备灵敏度较高的探头,并且具备检测H、P、C、F图谱的功能。在调研中发现:布鲁克公司提供的BBFO SmartProbeTM宽带二合一探头,检测范围:1H、19F及31P-15N,具有非常高的1H、19F、13C、31P灵敏度。该探头配备全自动调谐/匹配附件,极大方便了检测核之间的切换。同时,该探头的梯度场强度为50 G/cm,是同类产品中梯度场强度最高的产品。由于目前大多数核磁实验都是基于脉冲梯度场的实验,梯度场强度越高,对实验效率帮助越高。/pp  3. 布鲁克公司提供的BBFO SmartProbeTM二合一宽频探头能够提供1H/19F去偶功能。1H/19F的耦合引起的19F谱裂分将会对19F的分析造成很大困难,19F/13C去偶对含氟化合物研究意义不大,而1H/19F去偶实验对于含氟化合物的研究有很大帮助意义。目前只有布鲁克公司生产的BBFO系列探头具备具有1H/19F去偶功能。/pp  4. 超导磁体的作用是提供一个稳定均匀的高强度磁场,其稳定性和均匀性对核磁共振谱仪至关重要。在调研中发现:布鲁克400MHz核磁共振谱仪的磁场漂移 6 Hz/小时,配备36组匀场线圈保证磁场高度均匀性, 液氦消耗量 13 ml/h,液氦保持时间大于300天,配备的EDSTM外部干扰抑制系统对外部电磁干扰抑制效率超过99%。span style="color: rgb(255, 0, 0) "在磁场的稳定性和均匀性方面,布鲁克公司的400MHz核磁共振谱仪性能都要优于其他公司产品。/span并且,液氦消耗作为核磁共振谱仪日常维护最重要的一部分,布鲁克公司的产品液氦消耗量要小于一般的进口设备。因此,从超导磁体的稳定性、均匀性以及日常维护来讲,布鲁克公司产品的性能都更加优越。/pp  5. 软件支持。布鲁克除了功能强大的谱仪控制软件和数据分析软件TopSpin外,还能提供种类丰富地辅助分析软件,如:CMC-Assist辅助分析软件:能够对1H的谱峰归属、多重峰分析、定量分析、图谱与已知结构的一致性进行辅助确认;CMC-se小分子结构辅助分析软件:能够对未知结构的小分子根据测得的图谱进行结构辅助推导;NUS非均一采样软件:能够极大缩短多维谱的采样时间 /pp  6. 从今后的谱仪升级来看,布鲁克可以提供适用于半固体(凝胶、组织等)样品研究的高分辨魔角旋转探头(HR-MAS),独家生产的多种氦气超低温探头、液氮低温探头(灵敏度高,购买和使用成本较低)及全套液相-固相萃取-核磁-质谱联用附件可供升级做微量样品,天然产物或代谢产物,而且所有更高灵敏度探头都可以具备独家生产的全自动调谐功能。/pp  学校组织行业内技术专家对该项目进行了论证,一致认为AVANCE III HD 400型号核磁共振波谱仪能够满足河南科技大学化学化工、材料科学、环境科学和生物制药等学科研究的的需求且仅能从唯一供应商采购,建议进行单一来源采购。/pp  最终,布鲁克AVANCE III HD400核磁共振波谱仪中标该项目,仪器报价为205万元,产品供应商为河南朗恩仪器有限公司。/p
  • 叶朝辉院士:磁共振波谱仪产业化需完善创新链条
    p  近日,“王天眷讲坛”第八讲暨磁共振专题国际交流报告会在中国科学院武汉物理与数学研究所成功举办。中国科学院武汉物理与数学研究所刘买利所长主持会议。包括4名美国科学院院士在内的16名国际磁共振科学家分享交流了各自的最新成果。/pp  谈及国内a title="" href="http://www.instrument.com.cn/zc/43.html" target="_self"strong核磁共振/strong/a研究状况时,中国科学院院士叶朝辉欣喜地表示,“随着核磁共振技术在新药研发、肺癌早期诊断等方面取得的一系列进展,核磁共振技术在生物、医学领域的应用越来越普遍。”/pp  据叶朝辉介绍,从上世纪50年代至今,核磁共振领域的科学家已经5次获得诺贝尔奖,分别代表了学科发展的三个阶段。第一个阶段是核磁共振波谱学原理和方法的创造时期,该领域的科学家获得两次诺贝尔物理学奖 第二个阶段是核磁共振在化学学科得到应用,被广大的化学家掌握和认可,并获得两次诺贝尔化学奖 第三个阶段是核磁共振在生物和医学上的广泛应用,成为医学界一种无损的影像诊断工具,在2003年,该领域的科学家又获得诺贝尔生理学或医学奖。/pp  “它的学科跨度从物理原理、技术方法的确立,到化学和生物、医学的应用研究,发展得非常快,学科创新的脚步从未停止。”叶朝辉介绍说,“王天眷讲坛”的设立,旨在纪念我国核磁共振波谱学的奠基人王天眷先生,传承和弘扬老一辈科学家崇尚科学、献身科学的精神,同时聚集精英学者,传播创新知识,弘扬科学文化。/pp  叶朝辉表示,自1961年王天眷先生创立磁共振波谱学科以来,虽然研究内容不断发生变化,但是研究所整体的研究方向是固定的,从学科发展和科学文化上讲,也是一脉相承的。/pp  目前,中国科学院武汉物理与数学研究所已经发展成为国内领先的核磁共振研发基地,多项工作站在国际前沿,还在自主研制核磁共振谱仪方面取得了系列突破:成功研制了500MHz液体核磁共振谱仪,在“用于人体肺部重大疾病研究的磁共振成像仪器系统研制”方面进展顺利。/pp  “新仪器和新技术是创新的重要源泉。”叶朝辉表示,先进科学仪器大多被国外的大公司垄断,我们要做的工作就是大力发展自主仪器研制,让他们对中国市场重新评估。/pp  叶朝辉介绍说,目前由研究所控股的中科开物技术有限公司已入住武汉国家生物产业基地,未来将打造具有我国自主知识产权的“核磁共振波谱仪产业化基地”。/pp  在谈到自主仪器研发面临的问题时,叶朝辉认为,虽然近年来国内各大开发区的环境有了较大提升,特别是引进了很多海外人才回国创新创业,但是创新的链条还需要进一步完善。/pp  “成熟的开发区,哪怕是一个小螺丝钉或者元器件,都可以在周边找到。”叶朝辉举例说,比如美国的硅谷,它的集成度很高,创新的要素非常集中。但是我们在仪器研制方面,很多元器件和电子设备需要进行全球采购,这就会影响整体的进程。/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制