当前位置: 仪器信息网 > 行业主题 > >

蛋白结构分析

仪器信息网蛋白结构分析专题为您提供2024年最新蛋白结构分析价格报价、厂家品牌的相关信息, 包括蛋白结构分析参数、型号等,不管是国产,还是进口品牌的蛋白结构分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合蛋白结构分析相关的耗材配件、试剂标物,还有蛋白结构分析相关的最新资讯、资料,以及蛋白结构分析相关的解决方案。

蛋白结构分析相关的资讯

  • “蛋白质动态学新技术”成功解析蛋白复合体结构
    近日,中国科学院武汉物理与数学研究所研究员唐淳课题组利用基于973重大科学研究计划“蛋白质动态学研究的新技术新方法”建立的研究技术,协助华中农业大学教授殷平课题组首次解析了N6腺嘌呤甲基转移酶METTL3-METTL14蛋白复合体结构,该研究成果发表于《自然》杂志。  该工作揭示了RNA N6腺嘌呤甲基化修饰过程中的结构基础,是表观遗传学领域的一项重大突破。唐淳、武汉物数所副研究员龚洲和博士后刘主参与该项目,利用课题组发展的新技术新方法,通过结合小角X光散射与计算机模拟的手段,为该蛋白复合体的结构解析提供了研究方法上的帮助。  经过近3年的努力,唐淳课题组发展、建立了包括核磁共振波谱、小角X光散射、化学交联质谱分析、单分子荧光检测和成像等技术在内的多种生物物理化学手段,并开发相应的整合计算方法,用于蛋白质动态结构及其转换过程的研究。课题组除了完成自身的科研项目外,积极开展广泛的合作与交流,与国内外同行共享研究技术和方法。目前,得益于“蛋白质动态学研究的新技术新方法”项目的实施,课题组已助力多个重要蛋白质结构的解析,取得了一系列的研究成果,研究成果发表于《自然—化学生物学》、eLife 等国际一流杂志。
  • 世界首次!科学家完成对奥密克戎刺突蛋白分子水平的结构分析
    近日,在一项新研究中,加拿大不列颠哥伦比亚大学医学院的研究人员首次完成了对新冠奥密克戎(Omicron)变体刺突蛋白分子水平的结构分析。研究作者Sriram Subramaniam 博士说:“了解病毒刺突蛋白的分子结构很重要,因为这将使我们能够在未来开发出针对奥密克戎和相关变体的更有效的治疗方法。”研究人员表示,奥密克戎变体在其刺突蛋白上具有37个突变,是德尔塔(Delta)等变体的 3到5倍。进一步的分析结果表明,几个突变(R493、S496 和 R498)在刺突蛋白和人类细胞受体 ACE2 之间产生了新的盐桥和氢键。研究人员得出结论,这些新键似乎增加了病毒与人类细胞的亲和力—。而其他突变(如 K417N),则降低了这种键的强度。此外,奥密克戎刺突蛋白表现出更强的抗体逃逸。与之前的变体相比,奥密克戎对全部 6 种单克隆抗体显示出可测量的逃逸,并完全逃逸其中的5 种抗体。Subramaniam 博士说:“刺突蛋白突变的增加,可能是导致奥密克戎变体传播能力增加的因素。从目前来看,疫苗接种仍然最好的防御措施。”该研究论文题为“SARS-CoV-2 Omicron variant: Antibody evasion and cryo-EM structure of spike protein–ACE2 complex”,已发表在《科学》期刊上。论文原文:https://www.science.org/doi/10.1126/science.abn7760
  • 低温电镜解析蛋白结构十大进展
    结构生物学领域有一条不成文的观点:结构决定功能。只有知道生物分子的原子排布,科学家们才能了解这个蛋白的功能。几十年来,分析蛋白结构有一个无冕之王——X射线晶体衍射。在X射线晶体衍射中,科学家们让蛋白结晶,然后利用X射线照射,随后根据X射线的衍射来重建蛋白的结构。在蛋白质数据银行(Protein Data Bank)的100000多条蛋白词目里,超过90%的蛋白结构是利用X射线晶体衍射技术解析得到的。  尽管X射线晶体衍射一直是结构生物学家的最佳工具,但是它存在较大的限制。科学家们将蛋白进行大块结晶通常需要多年的时间。而很多基础蛋白分子,例如嵌在细胞膜上的蛋白,或是形成复合体的蛋白却无法被结晶。  X射线晶体衍射技术(X-ray crystallography)即将成为历史,低温电子显微技术(cryo-electron microscopy, 也称作electron cryomicroscopy, cryo-EM)引发结构生物学变革。  低温电子显微镜适用于研究大的、稳定的分子,这些分子能够承受电子的轰击,而不发生变形——由多个蛋白组成的分子机器是最好的样本。因此由RNA紧紧围绕的核糖体是最佳的样本。三位化学家用X射线晶体衍射研究核糖体溶液的工作在2009年获得了诺贝尔化学奖,但这些工作花了几十年。近几年,低温电镜研究者们也陷入了“核糖体热”。多个团队研究了多种生物的核糖体,包括人类核糖体的首个高清模型。X射线晶体衍射的研究成果远远落后于LMB的Venki Ramakrishnan实验室,Venki获得了2009年的诺奖。Venki表示,对于大分子来说,低温电子显微镜远比X射线晶体衍射要实用。  这几年,低温电子显微镜的相关文章有很多:2015年一年,这个技术就用于100多个分子的结构研究。X-射线晶体衍射只能对单个、静态的蛋白晶体成像,但低温电子显微镜能够对蛋白的多种构象进行成像,帮助科学家们推断蛋白的功能。  现在低温电镜迅猛发展,专家们正在寻找更大的挑战作为下一个解析目标。对很多人来说,最想解析的是夹在细胞膜内的蛋白。这些蛋白是细胞信号通路中的关键分子,也是比较热门的药物靶标。这些蛋白很难结晶,而低温电子显微镜不大可能对单个蛋白进行成像,这是因为很难从背景噪音中提取这些信号。  这些困难都无法阻挡加利福利亚大学(University of California)的生物物理学家程亦凡。他计划解析一种细小的膜蛋白TRPV1。TRPV1是检测辣椒中引起灼烧感的物质的受体,并与其它痛感蛋白紧密相关。加利福利亚大学病理学家David Julius等人之前尝试结晶TRPV1,结果失败。用低温电子显微镜解析TRPV1项目,一开始进展缓慢。但2013年底,技术进步使得这一项目有了重大突破,他们获得了分辨率为0.34纳米的TRPV1蛋白的结构。该成果的发表对于领域来说,无异于惊雷。因为这证实了低温电子显微镜能够解析小的、重要的分子。  尽管低温电子显微镜发展迅速,很多研究者认为,它仍有巨大提升空间。他们希望能制造出更灵敏的电子探测器,以及更好地制备蛋白样本的方法。这样的话,就能够对更小的、更动态的分子进行成像,并且分辨率更高。5月,有研究者发表了一篇细菌蛋白的结构,分辨率达到了0.22纳米。这也显示了低温显微镜的潜力。  1997年时,英国医学研究委员会分子生物学实验室结构生物学家Richard Henderson非常坚定地宣称,低温电镜会成为解析蛋白结构的主流工具。在将近20年后的今天,他的预测比当年有了更多底气。Henderson表示,如果低温电镜保持这样的势头继续发展,技术问题也得以解决,那么低温电镜不仅会成为解析蛋白结构的第一选择,而是主流选择。这个目标已经离我们不远了。  1. 施一公小组在《Science》发两篇论文报道剪接体三维结构    U4/U6.U5 tri-snRNP电镜密度及三维结构示意图。  2015年8月21日,清华大学生命科学学院施一公教授研究组在国际顶级期刊《科学》(Science)同时在线发表了两篇背靠背研究长文,题目分别为“3.6埃的酵母剪接体结构”(Structure of a Yeast Spliceosome at 3.6 Angstrom Resolution)和“前体信使RNA剪接的结构基础”(Structural Basis of Pre-mRNA Splicing)。第一篇文章报道了通过单颗粒冷冻电子显微技术(冷冻电镜)解析的酵母剪接体近原子分辨率的三维结构,第二篇文章在此结构的基础上进行了详细分析,阐述了剪接体对前体信使RNA执行剪接的基本工作机理。清华大学生命学院博士后闫创业、医学院博士研究生杭婧和万蕊雪为两篇文章的共同第一作者。  这一研究成果具有极为重大的意义。自上世纪70年代后期RNA剪接的发现以来,科学家们一直在步履维艰地探索其中的分子奥秘,期待早日揭示这个复杂过程的分子机理。施一公院士研究组对剪接体近原子分辨率结构的解析,不仅初步解答了这一基础生命科学领域长期以来备受关注的核心问题,又为进一步揭示与剪接体相关疾病的发病机理提供了结构基础和理论指导。详细新闻报道参见:施一公研究组在《科学》发表论文报道剪接体组装过程重要复合物U4/U6.U5 tri-snRNP的三维结构。(Science, 20 Aug 2015, doi: 10.1126/science.aac7629 doi: 10.1126/science.aac8159)  2. Science:HIV重大突破!史上最详细HIV包膜三维结构出炉!    这项研究首次解析出HIV Env三聚体处于自然状态下的高分辨率结构图,其中HIV利用Env三聚体侵入宿主细胞。图片来自The Scripps Research Institute。  在一项新的研究中,TSRI的研究人员解析出负责识别和感染宿主细胞的HIV蛋白的高分辨率结构图片。相关研究结果发表在2016年3月4日那期Science期刊上,论文标题为“Cryo-EM structure of a native, fully glycosylated, cleaved HIV-1 envelope trimer”。  这项研究是首次解析出这种被称作包膜糖蛋白三聚体(envelope glycoprotein trimer,以下称Env三聚体)的HIV蛋白处于自然状态下的结构图。这些也包括详细地绘制这种蛋白底部的脆弱位点图,以及能够中和HIV的抗体结合位点图。(Science, 04 Mar 2016, doi: 10.1126/science.aad2450)  3. Nature:史上最详细转录因子TFIID三维结构出炉,力助揭示人类基因表达秘密  在一项新的研究中,来自美国加州大学伯克利分校、劳伦斯伯克利国家实验室和西班牙国家研究委员会(CSIC)罗卡索拉诺物理化学研究所的研究人员在理解我们体内被称作转录起始前复合物(pre-initiation complex, PIC)的分子机构(molecular machinery)如何发现合适的DNA片段进行转录方面取得重大进展。他们史无前例地详细呈现一种被称作TFIID的转录因子所发挥的作用。相关研究结果于2016年3月23日在线发表在Nature期刊上,论文标题为“Structure of promoter-bound TFIID and model of human pre-initiation complex assembly”。论文通信作者是劳伦斯伯克利国家实验室生物物理学家Eva Nogales,论文第一作者是Nogales实验室生物物理学研究生Robert Louder。其他作者是Yuan He、José Ramón López-Blanco、Jie Fang和Pablo Chacón。  这一发现是非常重要的,这是因为它为科学家们理解和治疗一系列恶性肿瘤铺平道路。Eva Nogales说,“理解细胞中的这种调节过程是操纵它或当它变坏时修复它的唯一方式。基因表达是包括从胚胎发育到癌症在内的很多重要生物学过程的关键。一旦我们能够操纵这些基本机制,那么我们就能够要么校正应当或不应当存在的基因表达,要么阻止这种过程[即基因表达]失去控制时的恶性状态。”(Nature, 31 March 2016, doi:10.1038/nature17394)  4. Science:科学家成功解析人类剪接体关键结构   在最近发表的一篇Science研究论文中,来自德国的科学家们利用冷冻电镜技术首次在分子级分辨率水平上重现了人类剪接体中一个关键复合体——U4/U6.U5 tri-snRNP的结构。剪接体是一种由RNA和蛋白质组成的用于切掉mRNA前体中内含子的分子机器。该研究解析的U4/U6.U5 tri-snRNP是构成剪接体的一个重要组成部分,研究人员利用单颗粒冷冻电镜获得了人类U4/U6.U5 tri-snRNP的三维结构,该复合体分子量达到180万道尔顿,解析分辨率达到7埃。该研究模型揭示了Brr2 RNA解螺旋酶如何在分离的人类tri-snRNP中通过空间结构阻止未成熟的U4/U6 RNA发生解链,还展现了泛素C端水解酶样蛋白Sad1如何将Brr2固定在预激活位置。  研究人员将他们获得的结构模型与酿酒酵母tri-snRNP以及裂殖酵母剪接体的结构进行了对比,结果表明Brr2在剪接体激活过程中发生了显著的构象变化,支架蛋白Prp8也发生了结构变化以容纳剪接体的催化RNA网络。(Science, 25 Mar 2016, doi: 10.1126/science.aad2085)  5. 北京大学毛有东、欧阳颀课题组与其合作者在Science发表炎症复合体冷冻电镜结构    炎症复合体三维结构  北京大学物理学院毛有东研究员、北京大学物理学院/定量生物学中心欧阳颀院士与哈佛医学院吴皓教授合作利用冷冻电子显微镜技术解析了近原子分辨率的炎症复合体的三维结构,首次阐释了其复合物在免疫信号转导过程中的单向多聚活化的分子结构机理。该研究工作以“Cryo-EM Structure of the Activated NAIP2/NLRC4 Inflammasome Reveals Nucleated Polymerization”为题于2015年10月8日在线发表在国际期刊Science。  先天免疫是人类免疫系统的重要组成部分,炎症复合体在触发先天免疫响应的过程中起到了关键信号转导的效应器作用,从而启动细胞凋亡等免疫应答和炎症反应。炎症复合体是胞浆内一组复杂的多蛋白复合体,是胱天蛋白酶活化所必需的反应平台,其复合物单体由多个结构域构成,并在上游蛋白的激活下诱导组装形成环状复合物。炎症复合体的结构对于认识先天免疫的信号转导过程、免疫调控和病原诱导活化等免疫响应机理具有关键的核心价值,因而成为国内外一流结构生物学和免疫学实验室追捧的研究对象。(Science, 23 Oct 2015, 10.1126/science.aac5789)  6. Nature:施一公团队揭示γ -分泌酶原子分辨率结构    人体γ -分泌酶3.4埃三维结构  日前,清华大学教授施一公团队与国外学者合作,构建了分辨率高达3.4埃的人体γ -分泌酶的电镜结构,并且基于结构分析了γ -分泌酶致病突变体的功能,为理解γ -分泌酶的工作机制以及阿尔茨海默氏症的发病机理提供了重要基础。相关成果8月18日在《自然》发表。  阿尔茨海默氏症是最为严峻的老年神经退行性疾病之一,但其发病机理尚待揭示。目前研究已知β -淀粉样沉淀是该病的标志性症状之一。而β -淀粉样沉淀的产生是APP蛋白经过一系列蛋白酶切割产生的短肽聚集而来。在此切割过程中,最关键的蛋白酶是γ -分泌酶。γ -分泌酶由四个跨膜蛋白亚基组成,其中,编码Presenilin(PS1)蛋白的基因中有200多个突变与阿尔茨海默氏症病人相关。γ -分泌酶在阿尔茨海默氏症的发病中扮演着重要角色。  研究人员通过收集更多的数据、大量的计算并升级分类方法,计算构建出3.4埃原子分辨率γ -分泌酶的三维结构,可以观察到绝大部分氨基酸的侧链以及胞外区部分糖基化修饰和结合的脂类分子。在高分辨结构的基础上,施一公研究组对PS1上的致病性突变体进行了研究,发现这些突变主要集中在两个较为集中的区域内。他们对于其中一些突变体进行了生化性质的研究,发现这些突变会影响γ -分泌酶对于底物APP的酶切活性,然而对切割活性的影响却有所不同。(Nature, 10 September 2015, doi:10.1038/nature14892)  7. Nature:人类核糖体结构终于被解析!    核糖体是进行蛋白质翻译的机器,能够催化蛋白质合成。目前,许多研究已经对多种生物的核糖体结构进行了原子水平的结构解析,但获得人核糖体结构一直存在很大挑战,这一问题的解决对于人类疾病的深入了解以及治疗手段和策略的开发都有重要意义。  近日,著名国际学术期刊nature在线发表了法国科学家关于人类核糖体结构解析的最新研究进展。  在该项研究中,研究人员利用高分辨率单颗粒低温电子显微镜以及原子模型构建的方法获得了人类核糖体接近原子水平的结构。该核糖体结构的平均分辨率为3.6A,接近最稳定区域的2.9A分辨率水平。这一研究成果对人类核糖体RNA,氨基酸侧链的实体结构,特别是转运RNA结合位点以及tRNA脱离位点处的特定分子相互作用提供了深入见解,揭示了核糖体大小亚基接触面的原子细节,发现在核糖体大小亚基的旋转运动过程中,其接触面发生了强烈的重构过程。(Nature, 30 April 2015, doi:10.1038/nature14427)  8. Nature:日本科学家成功解析代谢关键因子受体结构  近日,著名国际学术期刊nature在线发表了日本科学家的最新研究进展,他们利用结构生物学方法对脂联素(adiponectin)受体,AdipoR1和AdipoR2,进行了结构解析,发现脂联素受体具有与G蛋白偶联受体不同的七次跨膜螺旋,对于靶向脂联素受体的肥胖及其相关代谢疾病治疗方法开发具有重要意义。  在该项研究中,研究人员对人类AdipoR1和AdipoR2的晶体结构进行了解析,分辨率分别达到2.9 ?和2.4 ?,他们通过解析发现脂联素受体是具有不同结构的一类新受体。脂联素受体的这种七次跨膜螺旋在构象上与G蛋白偶联受体的七次跨膜螺旋不同,在这种新的 七次跨膜螺旋中,由三个保守组氨酸残基协同一个锌离子形成了一个大的腔体。这种锌结合结构可能在adiponectin刺激的AMPK磷酸化和UCP2表达上调方面具有一定作用。(Nature, 16 April 2015, doi:10.1038/nature14301 )  9. Molecular Cell:中国科学家揭示A型流感病毒RNA聚合酶复合体的三维冷冻电镜结构  2015年1月22日,中科院生物物理所刘迎芳研究组与清华大学王宏伟研究组在著名期刊Molecular Cell杂志在线发表了题目为 “Cryo-EM Structure of Influenza Virus RNA Polymerase Complex at 4.3 ? Resolution”的论文,揭示了流感病毒RNA聚合酶复合体的结构和功能。  生物物理所刘迎芳和清华大学王宏伟课题组等中外多方参与的实验室通过使用最新的高分辨率单颗粒冷冻电镜三维重构技术,解析了含有A型流感病毒RNA聚合酶大部分成分的4.3埃分辨率的四聚体电镜结构。该复合体涵盖了流感病毒聚合酶催化活性的核心区域。从三维重构密度图中可以清晰识别出该空腔内PB1上的催化结构域以及结合的RNA复制起始链,据此,研究人员推测这是进行RNA合成反应的区域。这一活性中心结构与正链RNA聚合酶具有相似性,研究人员也因此提出了流感病毒合成新生RNA链的机制。(Molecular Cell, 5 March 2015, doi:10.1016/j.molcel.2014.12.031)  10. Cell:科学家获得首个中介体复合物精确结构图    中介体复合物(Mediator Complex)是细胞中最大也最为复杂的分子机器之一。现在,来自斯克利普斯研究所(TSRI)的科学家们在《细胞》杂志上报告称,他们利用用电镜获得了首个中介体复合物(Mediator)的精确结构图。  Mediator是所有动植物细胞中的关键分子机器,对于绝大多数基因的转录有着至关重要的调控作用。Mediator拥有二十多个蛋白亚基,解析它的结构是基础细胞生物学的一大进步。这一成果能够为许多疾病提供宝贵的线索(从癌症到遗传性的发育疾病)。论文资深作者,TSRI副教授Francisco Asturias表示:"明确这些大分子机器的结构和作用机制,可以帮助我们理解许多关键的细胞过程。"  在这项新研究中,研究人员获得了高纯度的酵母Mediator,并通过电镜成像得到了迄今为止最为清晰的Mediator3D模型,分辨率达到约18埃。随后他们又进行了多种生化分析,例如在逐个去除蛋白亚基的同时观察电镜图像发生的改变。他们由此确定了酵母Mediator25个蛋白亚基的精确定位。  项新研究获得的结构图谱,全面修正了之前的Mediator' 粗略模型。论文第一作者Kuang-LeiTsai表示:"定位了所有的蛋白亚基之后,我们发现头部模块应该位于Mediator的顶部而不是底部。"此外,研究人员还对人类Mediator进行了深入研究。Tsai说:"大体上看,人类和酵母的Mediator总体结构颇为类似。"最后研究人员在结构数据的基础上,为人们展示了Mediator调控转录时的构象变化。(Cell, 29 May 2014, doi: 10.1016/j.cell.2014.05.015)
  • 质谱技术在靶向蛋白组学及脂质结构分析研究进展
    p style="text-align: justify "  美国威斯康星大学麦迪逊分校的李灵军教授在《美国质谱学会杂志》上发表了题为" Faces of Mass Spectrometry”的文章。/pp style="text-align: justify text-indent: 2em "strong进展1:/strong/pp  本月,李教授的团队在分析化学杂志上发表了一篇文章“HOTMAQ: A Multiplexed Absolute Quantification Method for Targeted Proteomics”。/pp style="text-align: center "img title="1111111.webp.jpg" alt="1111111.webp.jpg" src="https://img1.17img.cn/17img/images/201902/uepic/04527389-10d7-4d2c-9392-40078abb0c71.jpg"//pp style="text-align: justify "  靶向蛋白组学中的绝对定量研究由于复杂背景下的低特异性、有限的分析通量及广泛的动态范围等诸多因素而具有挑战性。为解决这些问题,其课题组开发了一个混合offset-triggered多路复用绝对量化(HOTMAQ)方法。此方法结合了具有成本效益的质量差异和等压标签,能够在MS1前体扫描中同步构建内部标准曲线,在MS2水平上实时识别多肽,并在同步前体选择(SPS)-MS3光谱中对目标蛋白进行质量偏移触发的精确定量。这种方法将目标定量蛋白质组学的分析通量提高了12倍。采用HOTMAQ策略对临床前阿尔茨海默病候选蛋白生物标志物进行高精度验证。HOTMAQ的高通量和定量性能,加上样品的灵活性,使其广泛应用于靶向肽组学、蛋白质组学和磷蛋白组学的研究中。/pp style="text-align: justify text-indent: 2em "strong进展2:/strong/pp style="text-align: justify "  清华大学欧阳证和瑕瑜教授与普渡大学学者共同在《自然通讯》上发表“Online photochemical derivatization enables comprehensive mass spectrometric analyses of unsaturated phospholipid isomers” 文章。/pp style="text-align: center "img width="600" height="304" title="22222222.webp.jpg" style="width: 600px height: 304px " alt="22222222.webp.jpg" src="https://img1.17img.cn/17img/images/201902/uepic/f219c925-a096-478e-a956-d221f5b56fbd.jpg" border="0" vspace="0"//pp style="text-align: justify "  质谱技术是脂质结构分析的主要工具,但如何在不饱和脂质中有效定位碳碳双键(C=C)以区分C=C位异构体仍是一个难题。本文通过Paterno-Buchi反应与液相色谱-串联质谱联用在线C=C衍生化,开发了大型的脂质分析平台。这为脂质C=C位异构体提供了丰富的信息,揭示了牛肝脏中200多种不饱和甘油磷脂的C=C位,鉴定出55组C=C位异构体。通过对乳腺癌患者和2型糖尿病患者血浆样本的分析,其课题组发现C=C同分异构体的比例受个体丰度的影响较小,这说明同分异构体比例可能用于脂类生物标志物的发现。/pp /p
  • AI助力解析无序蛋白结构,新锐获4000万美元助力
    日前,Peptone公司宣布完成4000万美元的A轮融资。这项融资将用于支持Peptone以人工智能(AI)方式大规模解析那些悬而未解、复杂、极具挑战的内在无序蛋白(intrinsically disordered protein,IDP)结构。在人体内大约有一半的蛋白质,其序列中的一部分无法折叠成固定的结构,因此这部分结构无法通过已知的基因序列准确地预测出来。在这类蛋白质中,有许多在维持健康与疾病起源上扮演重要的角色。而缺少精确蛋白质结构信息的结果也导致了许多药物开发上的困难。自2018年创立以来,Peptone借助原子级的蛋白质分析技术,来准确地了解无序蛋白与蛋白质结构域在生理条件下的结构。这些信息能够有助于以更好的方式来预测靶向这类蛋白质的药物。Peptone的分析技术包含核磁共振(NMR)、氢氘交换质谱(HDX-MS)与机器学习(ML)、超级计算(supercomputing)等。其已经与诺华等大型药企合作建立开发管线,以改进那些靶向含部分无序结构的靶标蛋白质的药物。这项投资会使Peptone能够在瑞士建立顶尖的研究机构,协助将他们专有的原子级实验与超级计算科技进行结合。借此Peptone也将能够开启一系列针对炎症、癌症、糖尿病等疾病中独特靶标的开发管线。此项投资还会被运用在维护Peptone超级计算机运算的算法上。“无序蛋白存在于物理学转变成生物学的交界,”Peptone的共同创始人与首席执行官Kamil Tamiola博士说道,“借由使用严谨并由计算机所驱动的物理实验方式来分析蛋白质,我们能够超越传统药物发现方式,观察到那些像是AlphaFold所观察不到的蛋白质行为。这项投资会让我们能够更进一步地改善我们的平台,并支持我们对无序蛋白领域的研究。这些研究将会支持未来的药物开发。”
  • ​基于碰撞活化解离技术的非变性自上而下质谱用于蛋白复合物高级结构解析
    大家好,本周为大家分享一篇最近发表在 Journal of the American Chemical Society上文章,Native Top-Down Mass Spectrometry with Collisionally Activated Dissociation Yields Higher-Order Structure Information for Protein Complexes1。该文章的通讯作者是美国加利福尼亚大学洛杉矶分校的Joseph A. Loo教授。非变性质谱(native MS,nMS)通常用于揭示蛋白及其复合物的分子量大小和化学结合计量比,但若要进一步阐明深层次的结构信息,则需要与串联质谱结合,即非变性自上而下质谱(nTDMS),通过对母离子进行二级甚至多级碎裂可获取额外的序列、翻译后修饰(PTMs)以及配体结合位点信息。此外,nTDMS能以构象敏感的方式断裂共价键,这样就可以从碎片模式推断出有关蛋白高级结构的信息。值得注意的是,使用的激活/解离方式会极大地影响得到的蛋白质高阶结构信息。电子捕获/转移解离(ECD、ETD或ExD)和紫外光解离(UVPD)等快加热的活化方式因其能够在保留蛋白整体结构的情况下先对共价键进行断裂而被广泛应用于nTDMS分析中。而慢加热的活化方式如碰撞活化解离(CAD)会在断键前进行能量重排,导致一些较弱的非共价相互作用先发生破坏,例如:亚基的释放和展开,因此对高阶结构表征没有帮助。而此次Joseph A. Loo课题组的研究结果显示使用基于orbitrap的高能C-trap解离(HCD)同样也可以从天然蛋白复合物的中直接获得序列信息,并且碎片模式可以提供有关其气相和溶液相高阶结构信息。此外,CAD还可以生成大量的内部碎片(即不包含N-/ C-端的片段)用于揭示蛋白质复合物的高阶结构。为了研究蛋白复合物HCD的碎裂化情况,作者比较了酵母来源的乙醇脱氢酶四聚体(ADH)在Complex-down MS (psedo-MS3)和nTDMS两种分析策略下的碎片模式。如图1所示,在Complex-down MS分析中,ADH经源内解离(ISD)释放出单个亚基,该亚基经HCD碎裂生成肽段b/y离子。而在nTDMS分析中,肽段离子则可以从复合物中直接获得。如图2(上)所示,在Complex-down MS分析中总共获得了24个b离子和18个y离子,能够实现11.8%的序列覆盖率。近乎相等数目的b、y离子表明Complex-down MS分析中释放的ADH亚基N-端和C-端均具有较高的表面可及性,即亚基发生去折叠。此外,碎片模式也揭示了N-端乙酰化、V58T突变体以及Zn2+结合位点等信息。相比之下,nTDMS分析则更反映ADH的高阶结构,如图2(下)所示,在nTDMS分析中主要检测到b离子,几乎没有亚基信号,说明b离子是直接由复合物中共价键断裂产生的。ADH的nTDMS分析共产生了60个N-端b离子和3个C-端y离子(17.6%序列覆盖率)。由HCD产生的大量N端碎片类似于ADH基于电子和光子解离技术产生的nTDMS产物。将这些片段映射到ADH的晶体结构上可以看出,N端区域比C端区域更容易暴露于溶剂,而C端区域主要形成复合物的亚基-亚基界面。ADH的碎片离子中来源亚基界面断裂的仅占8%,大部分碎裂都发生在溶剂可及的N-端。图1 Complex-down MS和nTDMS分析流程图1 Complex-down MS(上)和nTDMS(下)碎片模式比较ADH的nTDMS分析充分展现了CAD在蛋白复合物高阶结构表征上的潜力,为了进一步验证,作者还选择了其他的蛋白复合物进行实验,如醛缩酶同源四聚体、谷胱甘肽巯基转移酶A1二聚体、肌酸激酶二聚体等。这些蛋白复合物在n-CAD-TDMS分析中都产生了与结构对应的碎片离子,说明基于CAD的nTDMS分析是具有普适性。当然也会存在一些例外,膜蛋白水通道蛋白(AqpZ)同源四聚体在nTDMS分析过程中产生了高丰度的单体亚基、二聚体、三聚体信号,这应该归因于AqpZ四聚体亚基之间的弱疏水结合界面,导致亚基的释放发生在共价键断裂之前,因此产生的b/y离子无法反映蛋白复合物的空间结构。相较而言,以盐桥为主要稳定作用的蛋白复合物,如ADH、醛缩酶等则更容易在nTDMS分析中产生肽段碎片离子。此外,基于CAD的nTDMS分析中还发现了大量的内部碎片,ADH产生的大部分内部碎片来源于溶剂可及区。尽管内部碎片难以辨认,但可以大幅度提高序列覆盖率,提供更精细的结构信息。一个从小分子裂解衍生到大分子解离的假设是,在实验的时间尺度内,由碰撞引起的激活是完全随机化的,并以沿着最低能量途径引导碰撞诱导的解离。然而,这些假设没有考虑到熵的要求,缓慢重排可能是释放亚基所必须的,例如重新定位盐桥将一个亚基与其他亚基相连。在碰撞次数或每次碰撞能量不足以碰撞出能释放亚基的罕见构型的情况下,以释放出更小的多肽碎片(具有更少的约束) 代替重排可能具有更高的竞争性。总之,本文展示CAD在nTDMS分析中的应用,无需基于光子或电子的活化方式,CAD可直接从蛋白复合物中获得肽段离子,并且该碎裂离子能够反映蛋白复合物的空间结构。撰稿:刘蕊洁编辑:李惠琳原文:Native Top-Down Mass Spectrometry with Collisionally Activated Dissociation Yields Higher-Order Structure Information for Protein Complexes参考文献1. Lantz C, Wei B, Zhao B, et al. Native Top-Down Mass Spectrometry with Collisionally Activated Dissociation Yields Higher-Order Structure Information for Protein Complexes. J Am Chem Soc. 2022 144(48): 21826-21830.
  • 新型蛋白质结构分析手段-氢氘交换质谱技术进展
    贾伟、陈熙沃特世科技(上海)有限公司实验中心氢氘交换质谱法是一种研究蛋白质空间构象的质谱技术。它在蛋白质结构及动态变化研究、蛋白质相互作用位点发现、蛋白表位及活性位点鉴定方面有着广泛的应用。随着氢氘交换质谱技术的不断发展,它正在成为结构生物学家及生物药物研发的重要手段。 氢氘交换质谱(HDX MS,hydrogen deuterium exchange mass spectrometry)是一种研究蛋白质空间构象的质谱技术。其原理是将蛋白浸入重水溶液中,蛋白的氢原子将于重水的氘原子发生交换,而且蛋白质表面与重水密切接触的氢比位于蛋白质内部的或参与氢键形成的氢的交换速率快,进而通过质谱检测确定蛋白质不同序列片段的氢氘交换速率,从而得出蛋白质空间结构信息[1]。这个过程就像将握着的拳头浸入水中,然后提出水面并张开手掌。这时,湿润的手背表明它在&ldquo 拳头&rdquo 的结构中处于外表面,而较为干燥的手心表明它是&ldquo 拳头&rdquo 的内部。除样品制备外,氢氘交换质谱法的主要过程包括:交换反应、终止反应、将蛋白快速酶切为多肽、液相分离、质谱检测、数据解析。其中交换步骤需要在多个反应时长下进行,如0s、10s、1min、10min、60min等,以绘制交换率曲线,得到准确全面的信息。氢氘交换质谱技术在蛋白质结构及其动态变化研究[1]、蛋白质相互作用位点发现[2]、蛋白表位及活性位点鉴定方面有着广泛的应用[3]。 与经典的蛋白质结构研究方法相比,如X射线晶体衍射(X-Ray Crystallography)和核磁共振(NMR. Nuclear Magnetic Resonance)等方法,氢氘交换质谱不能够提供精确的蛋白空间结构,它直接提供的主要信息包括哪些氨基酸序列位于蛋白质空间结构的表面位置(包括动态变化中的)、可能的活性位点和蛋白-蛋白相互作用位点等。但是氢氘交换质谱技术有着其他经典方法不具备的优点:首先,可以进行蛋白质结构动态变化的研究是氢氘交换质谱的一个突出优点,包括变化中的活性位点及表位;其次,氢氘交换质谱在蛋白复合体构象的研究中也具有独到的优势;此外,氢氘交换质谱还具有对样品需求量小、纯度要求相对较低、研究对象为溶液环境下的蛋白质的天然构象而非晶体中构象等优势[1,4,5]。自1991年第一篇研究论文发表起,氢氘交换质谱技术不断发展,已经成为结构生物学及质谱技术中一个非常重要的应用领域[6]。但是氢氘交换质谱实验的复杂的实现过程在一定程度上影响了其应用的广泛度。主要的难点有:1、如何避免交换后氘代肽段的回交现象;2、实验控制的高精确性和重现性要求;3、交换后造成的叠加的质谱峰如何准确分辨;4、简易高效的分析软件需求;5、以氨基酸为单位的交换位点辨析。沃特世公司自2005年起,针对以上难点不断进行攻关,推出了目前唯一商业化的全自动氢氘交换质谱系统解决方案&mdash &mdash nanoACQUITY UPLC HD-Exchange System(图1)。在全世界范围内,这套系统已经帮助科学家在包括Cell、Nature等顶级研究期刊中发表研究论文[7,8]。除科研需求外,沃特世氢氘交换质谱系统也受到众多国际领先制药公司的认可,并用于新药开发中蛋白药物活性位点及表位的研究工作中。氢氘交换实验中的回交现象将严重影响实验数据的可信度,甚至导致错误结果的产生。要避免回交需要做到两点:尽量缩短液质分析时间和保证液质分析中的温度和pH为最低回交反应系数所要求的环境。沃特世UPLC系统采用亚二纳米色谱颗粒填料,较HPLC使用的大颗粒填料,UPLC具有无与伦比的分离度。因此UPLC可以做到在不损失色谱分离效果的要求下,极大缩短液相分析时间的要求[9]。对于对温度和pH控制问题,在多年的工程学改进中,nanoACQUITY UPLC HD-Exchange System已经实现了对酶切、液相分离等步骤的全程控制[10]。 对氢氘交换质谱实验精确性和重现性的要求是其应用的第二个主要难点。在实验中一般需要采集0s、10s、1min、10min、60min、240min等多个时间点的数据。如果进行人工手动实验,很难做到对10S-10min等几个时间点的精确操作。再考虑到重复实验的需求,人工手动操作会对最终数据可信度产生影响。而且实验过程重复繁琐,将给实验人员带来非常大的工作压力。nanoACQUITY UPLC HD-Exchange System完全通过智能机械臂,精确完成交换、终止交换、进样、酶切等一系列实验过程,而且始终保证各个步骤所需不同的温度环境。这些自动化过程不但保证了实验数据的可靠性,提高了实验效率,也将科学家从繁琐的重复实验中解放出来。 氢氘交换实验的质谱数据中,随着交换时间的延长,发生了交换反应的多肽,由于质量变大,其质谱信号将逐渐向高质荷比方向移动。因此,这些质谱峰可能与哪些未发生交换反应的多肽质谱峰逐渐叠加、相互覆盖。相互叠加的质谱信号,不但影响对峰归属的判断,更会增加交换率数据的误差。因为交换率判断需要通过对发生交换的多肽进行定量,毫无疑问因叠加的而混乱的质谱数据将极大的影响对质谱峰的准确定量。这点对于单纯通过质荷比进行分析的质谱仪来说完全无能为力。但是,这个看似不可能完成的任务却被沃特世 nanoACQUITY UPLC HD-Exchange System攻克了。这是因为,不同于其它常见质谱,沃特世的SYNAPT质谱平台还具备根据离子大小及形态进行分离的功能(行波离子淌度分离)。在数据处理时,除多肽离子的质荷比信息外,还可以通过离子迁移时间(离子淌度维度参数)将不同离子区分。因此这种SYNPAT独有的被命名为HDMSE的质谱分析技术可以将因质荷比相同而重叠的多肽分离开,轻而易举地解决了质谱信号叠加的问题,得到准确的交换率数据[11,12](图2)。SYNPAT质谱平台一经推出就夺得了2007年PITTCON金奖,目前已经推出了新一代的SYNAPT G2HDMS、SYNAPT G2-S HDMS等型号,并具备ESI、MALDI等多种离子源。除氢氘交换技术外,SYNAPT质谱系统在蛋白质复合体结构研究中也是独具特色,已有多篇高质量应用文献发表[13,14,15]。 实现氢氘交换质谱技术的第四个关键点,是如何高效分析实验产生的多时间点及多次重复带来的大量数据。人工完成如此巨大的信息处理工作,将消耗科学家大量的时间。沃特世氢氘交换质谱解决方案所提供的DynamX软件可以为科学家提供简便直观的分析结果,并包含多种呈现方式。 在某些特殊研究中,要求对蛋白氢氘交换位点做到精确到氨基酸的测量,这是氢氘交换质谱研究的又一个难点。在常规的研究中采用CID(碰撞诱导解离)碎裂模式,可能导致氘原子在多肽内重排,而致使不能对发生交换的具体氨基酸进行精确定位。SYNPAT质谱提供的ETD(电子转移解离)碎裂模式可以避免氘原子重排造成的信息混乱,并具有良好的碎裂信号[16]。沃特世的nanoACQUITY UPLC HD-Exchange System为氢氘交换质谱实验提供了前所未有的简易的解决方案,强有力地推动了氢氘交换技术在蛋白质结构及动态变化研究、蛋白质相互作用位点发现、蛋白表位以及活性位点鉴定方面的应用,正在成为众多结构生物学科学家和生物制药企业必不可少的工作平台。参考文献(1) John R. Engen, Analysis of Protein Conformation and Dynamics by Hydrogen/Deuterium Exchange MS. Anal. Chem. 2009,81, 7870&ndash 7875(2) Engen et al. probing protein interactions using HD exchange ms in ms of protein interactions. Edited by Downard, John Wiley & Sons, Inc. 2007, 45-61(3) Tiyanont K, Wales TE, Aste-Amezaga M, et al. Evidence for increased exposure of the Notch1 metalloprotease cleavage site upon conversion to an activated conformation. Structure. 2011, 19, 546-554(4) Heck AJ. Native mass spectrometry: a bridge between interactomics and structural biology. Nat Methods. 2008, 5, 927-933.(5) Esther van Duijn, Albert J.R. Heck. Mass spectrometric analysis of intact macromolecular chaperone complexes. Drug Discovery Today. Drug Discovery Today: Technologies Volume 3, 2006, 21-27(6) Viswanat ham Katta, Brian T. C hait, Steven Ca r r. Conformational changes in proteins probed by hydrogen-exchange electrospray-ionization mass spectrometry. Rapid Commun. Mass Spectrom. 1991, 5, 214&ndash 217(7) Chakraborty K, Chatila M, Sinha J, et al. Chaperonin-catalyzed rescue of kinetically trapped states in protein folding. Cell. 2010 Jul 9 142(1):112-22.(8) Zhang J, Adriá n FJ, Jahnke W, et al. Targeting Bcr-Abl by combining allosteric with AT P-binding-site inhibitors. Nature. 2010,463, 501-506(9) Wu Y, Engen JR, Hobbins WB. Ultra performance liquid chromatography (UPLC) further improves hydrogen/deuterium exchange mass spectrometry. J Am Soc Mass Spectrom. 2006 , 17, 163-167(10) Wales T E, Fadgen KE, Gerhardt GC, Engen JR. High-speedand high-resolution UPLC separation at zero degrees Celsius. Anal Chem. 2008, 80, 6815-6820(11) Giles K, Pringle SD, Worthington KR, et al. Applications of a travelling wave-based radio-frequency-only stacked ring ion guide. Rapid Commun Mass Spectrom. 2004, 18, 2401-2414(12) Olivova P, C hen W, C ha kra borty AB, Gebler JC. Determination of N-glycosylation sites and site heterogeneity in a monoclonal antibody by electrospray quadrupole ion-mobility time-offlight mass spectrometry. Rapid Commun Mass Spectrom. 2008, 22,29-40(13) Ruotolo BT, Benesch JL, Sandercock AM, et al. Ion mobilitymass spectrometry analysis of large protein complexes. Nat Protoc.2008, 3, 1139-52.(14) Uetrecht C, Barbu IM, Shoemaker GK, et al. Interrogating viral capsid assembly with ion mobility-mass spectrometry. Nat Chem.2011, 3,126-132(15) Bleiholder C, Dupuis NF, Wyttenbac h T, Bowers MT. Ion mobility-mass spectrometry reveals a conformational conversion from random assembly to &beta -sheet in amyloid fibril formation. Nat Chem.2011, 3, 172-177(16) Kasper D. Rand, Steven D. Pringle, Michael Morris, John R., et al. ETD in a Traveling Wave Ion Guide at Tuned Z-Spray Ion Source Conditions Allows for Site-Specific Hydrogen/Deuterium Exchange Measurements. J Am Soc Mass Spectrom. 2011, in press
  • 冷冻电镜解析高血压药物设计的关键蛋白结构
    冷冻电镜(cryo-EM)解析了一种帮助调节血压的蛋白质,即血管紧张素转换酶(ACE)的详细结构。这些结构提供了迄今为止对ACE的最全面的看法,将有助于改善心脏病的药物设计。这项工作是由开普敦大学(UCT)的研究人员与英国同步辐射光源"DIAMOND"的电子生物成像中心(eBIC)合作完成的。研究人员在《EMBO Journal》上发表了他们的研究结果("冷冻电镜揭示了血管紧张素I转化酶的异构化和二聚化机制")。ACE会产生激素血管紧张素II,使血管收缩并提高血压。高血压是心脏病和中风的主要风险因素。与以前的方法相比,冷冻电镜使研究人员能够在更多的功能相关状态下观察到ACE。他们的工作为其生物功能和潜在的药物结合特性提供了关键性的见解。ACE蛋白的一个副本(即单体形式)是由两个结构相似但功能不同的结构域连接而成的。二聚体化(即两个ACE单体的相互作用)发生在一个小的表面空腔附近,改变了对ACE功能至关重要的核心氨基酸的构象。研究人员提出,这种二聚体化可能像一个 "关闭开关",触发蛋白质核心的变化,并可能抑制它。如果能设计出一种类似药物的分子在腔内结合并引起同样的效果,它就能提供一种新的手段来使该酶失活。目前,许多ACE抑制剂在临床上可用于治疗高血压。但这些抑制剂非选择性地针对两个ACE结构域,并因此会在一些患者中引发副作用。开普敦大学教授、该研究的主要研究者Edward Sturrock博士解释说:“了解这些新发现的ACE结构和动态至关重要,这可能针对结构域选择性抑制剂的设计提供新的结合位点,进而规避副作用。”ACE蛋白在Sturrock的实验室生产,在UCT的电子显微镜单元(EMU)进行成像前的准备,并在之后转运到eBIC,在Titan Krios上进行冷冻电镜成像。图像处理在南非的CSIR高性能计算中心(CHPC)和EMU进行。“即使有高分辨率的成像,ACE的独特形状、小分子量和高度动态等特征也带来了许多挑战。"该研究的共同作者之一Jeremy Woodward博士解释道。该研究的第一作者Lizelle Lubbe博士解释说:"最近开发的冷冻电镜图像处理方法对解析这些结构至关重要。"我们必须通过广泛的分类来计算分离图像,这一过程相当于' 数字纯化' ,因为生化方法无法分离ACE的单体和二聚体形式。然后,我们可以将三维细化的重点依次放在结构的不同部分,从而解析这两种ACE结构"。该研究的发现独特地揭示了ACE的高度动态特征,以及其不同结构域之间发生二聚体化和交流的机制--这可能启发治疗心脏病的新药。DIAMOND科学组组长克里斯-尼克林博士说:“我们对非洲的杰出科学家团队利用eBIC先进的冷冻电镜取得的这项研究结果感到高兴。世界迫切需要针对致命的心脏病和其他慢性健康状况的可持续解决方案。我们非常高兴的是,这项研究的结构见解可以为改进抗高血压药物设计铺平道路。”相关文献:Cryo-EM Structures of a Key Hypertension Protein to Aid Drug DesignCryo-EM揭示了血管紧张素I转化酶的异构化和二聚化的机制高血压(高血压)是心血管疾病的一个主要风险因素,而心血管疾病是全世界死亡的主要原因。血管紧张素I转化酶(sACE)的体细胞异构体在血压调节中起着关键作用,因此ACE抑制剂被广泛用于治疗高血压和心血管疾病。我们目前对sACE结构、动力学、功能和抑制作用的理解是有限的,因为截短的、最小的糖基化形式的sACE通常被用于X射线晶体学和分子动力学模拟。在这里,我们首次报告了全长的、糖基化的、可溶性的sACE(sACES1211)的冷冻电镜结构。这个高度灵活的apo酶的单体和二聚体形式都是由一个数据集重建的。单体sACES1211的N端和C端结构分别在3.7和4.1Å被解析,而负责二聚体形成的相互作用的N端结构则在3.8Å被解析。此外,观察到两个结构域都处于开放构象,这对设计sACE调节剂有意义。参考资料:"Cryo-EM reveals mechanisms of angiotensin I-converting enzyme allostery and dimerization"
  • 冷冻电镜首个新冠病毒蛋白结构解析发布:传染性为何强?
    p style="text-indent: 2em "strong style="text-indent: 2em "仪器信息网讯/strongspan style="text-indent: 2em " 2020年2月15日,美国卫生总署(NIH)与美国得克萨斯大学奥斯汀分校Jason S. McLellan研究组合作在预印本平台bioRxiv上发表论文:Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation(span style="text-indent: 2em color: rgb(127, 127, 127) "DOI: 10.1101/2020.02.11.944462/span),报道了新冠病毒(2019-nCoV)S蛋白的首个冷冻电镜结构,利用冷冻电镜技术分析了新型冠状病毒表面S蛋白的近原子结构。/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 206px " src="https://img1.17img.cn/17img/images/202002/uepic/29be9fbf-7286-475f-807a-ea01b409b72a.jpg" title="1.png" alt="1.png" width="600" height="206" border="0" vspace="0"//pp style="text-indent: 2em "span style="color: rgb(127, 127, 127) "(注:预印本网站bioRxiv的所有论文未经同行评议, bioRxiv在所有2019-nCoV相关论文页面增加了突出字体说明(上图黄底黑字):“bioRxiv收到了许多关于2019年ncov冠状病毒的新论文。提醒一下:这些是没有经过同行评审的初步报告。他们不应被视为结论性的,指导临床实践/健康相关的行为,或在新闻媒体中作为既定信息进行报道。”)/span/pp style="text-indent: 2em "作者通过生物物理以及结构方面的证据发现,新冠病毒的S蛋白结合人体ACE2(宿主细胞受体血管紧张素转化酶2)的亲和力要远高于SARS-CoV的S蛋白,或解释了新型冠状病毒传染性很强的主要原因。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 322px " src="https://img1.17img.cn/17img/images/202002/uepic/4ad16a73-5442-4584-899c-bca9a93d4e04.jpg" title="2.png" alt="2.png" width="450" height="322" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em " 预融合构象/spanspan style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "中的2019-nCoV S结构/span/pp style="text-indent: 2em "新型冠状病毒(2019-nCov)的爆发代表了一种流行病威胁,已宣布为国际关注的突发公共卫生事件。CoV突刺(S)糖蛋白是疫苗、治疗性抗体和诊断方法的关键靶标。此前的大量研究均基于2019-nCoV突刺蛋白的预测结构或相关病毒(如SARS)的突刺蛋白的已知结构展开。为促进医学对策(MCM)的开发,论文中确定了预融合构象中的2019-nCoV S蛋白三聚体冷冻电镜结构,为3.5埃分辨率。三聚体的主要状态为三个受体结合结构域(RBD)之一向上旋转为受体可及构象。同时,生物物理和结构证据表明, 2019-nCoV S以比SARS-CoV S更高的亲和力结合ACE2(宿主细胞受体血管紧张素转化酶2)。此外,作者测试了几种已发布的SARS-CoV RBD特异性单克隆抗体,发现它们与nCoV-2019没有明显的结合。这表明两种病毒RBD之间的抗体交叉反应性可能受到限制。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 200px " src="https://img1.17img.cn/17img/images/202002/uepic/96b62197-7abe-467b-b461-e70a6a2a6f3f.jpg" title="3.png" alt="3.png" width="450" height="200" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "2019-nCoV S.和SARS/spanspan style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "-CoV S.之间的结构比较(A)/span/pp style="text-indent: 2em "span style="text-align: center text-indent: 0em color: rgb(0, 0, 0) "新型冠状病毒利用高度糖基化的同源三聚体S蛋白进入宿主细胞。S蛋白经历结构变化将病毒融合进入宿主细胞的细胞膜。此过程包括病毒的S1亚基结合到宿主细胞受体上,引发三聚体不稳定性的发生,进而造成S1亚基脱落S2亚基形成高度稳定的融合后结构。/span/pp style="text-indent: 2em "通过该结构分析,作者发现S1亚基中的RBD经历铰链类似运动,此移动特点与SARS-CoV以及MERS-CoV均非常相似,但新型管冠状病毒中则RBD结构则更靠近三聚体的中央部位,其S蛋白中3个RBP中的1个会向上螺旋突出从而让S蛋白形成能够轻易与宿主受体ACE2结合的空间构象。这也说明,新型冠状病毒引发病毒的机制虽然与其他的冠状病毒科的病毒机制异曲同工,但传染性更强。/pp style="text-indent: 2em "论文受到业界的广泛关注,研究中,John Ludes-Meyers博士对细胞转染给予很大帮助,德克萨斯大学奥斯汀分校Sauer结构生物学实验室的Aguang Dai博士在显微镜对准方面做了大量工作。/pp style="text-indent: 2em "论文链接:a href="https://www.instrument.com.cn/download/shtml/932743.shtml" target="_self" style="color: rgb(127, 127, 127) text-decoration: underline "span style="color: rgb(127, 127, 127) "https://www.instrument.com.cn/download/shtml/932743.shtml/span/a/p
  • 《自然》:中国科学家解析出“肥胖基因”蛋白结构
    中国科学家解析出“肥胖基因”蛋白结构  FTO基因会抑制新陈代谢,降低能量消耗效率,从而导致肥胖  许多科学研究表明,基因与肥胖存在千丝万缕的联系。一种被形象地称为“肥胖基因”的FTO基因有可能是导致肥胖的“罪魁祸首”。近日,北京生命科学研究所和天津大学科研人员联手在国际上第一次解析出了FTO基因表达蛋白质的晶体结构,并进一步证明了该蛋白质是一类脱氧核糖核酸(DNA)去甲基化酶。该开创性的研究成果4月7日在线发表于《自然》杂志。  当前,肥胖已成为人类面临的一个严重的公共健康问题。目前我国肥胖者已超过9000万名,超重者高达2亿名。专家预测,未来10年,中国肥胖人群将会超过2亿。肥胖不但会导致糖尿病、高血压、癌症等诸多疾病,还会使人早逝。有数据表明,肥胖者早逝的危险是非肥胖者的1.3—2倍。科学研究显示,FTO基因会抑制新陈代谢,降低能量消耗效率,从而导致肥胖。因此,对于FTO基因及其表达的蛋白质的研究已经成为国际上生物医学领域的热点。  目前,北京生命科学研究所柴继杰博士实验室与天津大学药物化学系副教授雷晓光博士实验室正在进一步紧密合作,基于此项研究,通过计算机辅助药物设计和高通量药物筛选方法,寻找有效的小分子化合物,进而研制出具有我国自主知识产权、创新型治疗肥胖症的药物。专家认为,这是一项具有国际领先水平的开创性成果,为我国治疗肥胖症的创新型药物研发奠定坚实基础。
  • 科研助攻|“SDL蛋白层析系统”助力逯光文教授团队的痘苗病毒结构研究
    研究背景来自于痘病毒科,正痘病毒属家族的痘病毒是一类大的、具有囊膜的DNA病毒。在痘病毒的12个成员中,有些是重要的人类病毒,例如猴痘病毒(最近暴发的猴痘疫情,截至2023年1月30日,已传播至110个国家或地区,并造成全球范围内85449人感染,89人死亡)、天花病毒(一种可引起天花的高度传染性及致命性的病原体)、痘苗病毒(VACV,一种用于预防天花和猴痘的自然减毒活疫苗)等。正痘病毒的持续性传播及流行对全球的公共卫生安全造成了极大威胁。因此,迫切需要鉴定正痘病毒所编码的入侵相关蛋白,以促进更有效的抗病毒疗法的研发。科研速递入侵是病毒建立感染的第一步,也是机体体液免疫所靶向的重要阶段。与大多数其它囊膜病毒利用一种或少数几种病毒蛋白行使入侵功能不同,痘病毒可编码4种蛋白(A26、A27、D8、H3)和另外的11种蛋白(A16、A21、A28、F9、G3、G9、H2、J5、L1、L5、O3)来分别介导病毒的粘附和膜融合。病毒的11种融合相关蛋白还可进一步组装成一个大型复合物,称为入侵-融合复合体(EFC)。此外,先前的反向遗传学研究表明,几乎每个EFC蛋白都可在痘病毒生命周期的粘附后(半融合或完全融合)过程发挥关键作用。因此,对EFC组分或复合物的结构研究将有助于逐步揭示EFC的神秘融合机制,并进一步促进预防/治疗药物的研发。 然而,在本研究之前,仅有两个EFC组分的蛋白结构(F9和L1)得以解析。 四川大学逯光文教授团队在2023年1月在感染性疾病领域高水平期刊Emerging Microbes & Infections( IF= 19.568)上发表了题目为「Crystal structure of vaccinia virus G3/L5 sub-complex reveals a novel fold with extended inter-molecule interactions conserved among orthopoxviruses」对G3/L5两个蛋白结构做出了最新的研究!(原文地址:https://www.tandfonline.com/doi/full/10.1080/22221751.2022.2160661) 助力设备 逯光文教授团队在该研究中使用赛谱仪器SDL蛋白层析系统,用离子交换色谱,凝胶过滤色谱及蛋白质印迹法鉴定并获得了痘苗病毒G3/L5异源二聚体复合物。
  • 780万!河南大学蛋白分离纯化及结构解析平台建设项目
    一、项目基本情况1、项目编号:豫财招标采购-2023-13582、项目名称:河南大学蛋白分离纯化及结构解析平台建设项目3、采购方式:公开招标4、预算金额:7,800,000.00元最高限价:7800000元序号包号包名称包预算(元)包最高限价(元)1豫政采(2)20232179-1河南大学蛋白分离纯化及结构解析平台建设项目780000078000005、采购需求(包括但不限于标的的名称、数量、简要技术需求或服务要求等)5.1采购内容:河南大学蛋白分离纯化及结构解析平台建设(包括纳升级蛋白结晶筛选液体工作站及晶体显微成像系统、高通量荧光液相色谱、多模式微孔板检测仪、蛋白纯化与多角度光散射联用仪、超大容量离心机、液冷工作站各1套;蛋白纯化仪2套)等设备采购、施工及安装、调试、验收、培训、质保期内外服务、与货物有关的运输和保险及其他伴随的技术服务(具体数量及设备参数详见招标文件)。5.2供货及安装期:国产设备 30 日历天,进口设备90 日历天供货、安装完毕(技术参数中有特殊规定的按其规定)。5.3质量要求:符合国家或行业规定的合格标准,满足采购人提出的技术标准及要求。5.4质保期:国产设备质保期三年,进口设备质保期一年(技术参数另做要求按要求执行)。6、合同履行期限:同供货及安装期7、本项目是否接受联合体投标:否8、是否接受进口产品:是9、是否专门面向中小企业:否二、获取招标文件1.时间:2023年12月19日 至 2023年12月25日,每天上午08:00至12:00,下午12:00至23:59(北京时间,法定节假日除外。)2.地点:登录河南省公共资源交易中心(http://www.hnggzy.com)。3.方式:凭CA密钥市场主体登录并在规定时间内按网上提示下载招标文件及资料;投标人需要完成信息登记及CA数字证书办理,才能通过省公共资源交易平台参与交易活动,具体办理事宜请查阅河南省公共资源交易中心网站“办事指南”专区的《河南省公共资源交易平台市场主体信息库登记指南(工程建设、政府采购)》,投标人未按规定时间在网上下载招标文件的,其投标将被拒绝。4.售价:0元三、凡对本次招标提出询问,请按照以下方式联系1. 采购人信息名称:河南大学地址:开封市河南大学金明校区联系人:蒋老师联系方式:0371-221964182.采购代理机构信息(如有)名称:河南豫信招标有限责任公司地址:郑州市郑东新区商务外环西七街中华大厦19层联系人:王娟、任飞、杨森联系方式:0371-22307212 邮箱:hnyuxin006@163.com3.项目联系方式项目联系人:王娟、任飞、杨森联系方式:0371-22307212
  • 沃特世发布糖蛋白表征分析新技术
    沃特世将通过新型UPLC和UPLC-MS分析工作流程为蛋白糖基分析带来革命性转变 新型RapiFluor-MS标记试剂和样品制备方案将极大提升对蛋白N-糖进行分析和表征的速度、灵敏度以及简便性 华盛顿特区,2015年1月27日 – 沃特世(Waters?)公司(纽约证券交易所代码:WAT)今日隆重发布用于糖蛋白表征分析的开创性新技术。此技术将在WCBP 2015大会上介绍给公众,其内容包括新型GlycoWorks?RapiFluor-MS N-糖分析试剂盒、Waters?ACQUITY UPLC?、ACQUITY? UPLC FLR检测器和ACQUITY QDa?检测器,它们将帮助科学家们准确分析游离N-糖,使分析速度、灵敏度和简便性提升到更高水平,为科学家们提供前所未有的详细结构信息。 此项新型技术系列能够实现快速糖基释放和标记,可将工作流程中的样品制备时间从一天缩短至一小时以内;使表征和研发分析中的质谱检测灵敏度提升至当前方法的100至1000倍;还可为常规实验室提供简便可靠的方案支持,即使没有MS专家,也能顺利完成分析。“我们今天推出的新型技术为蛋白糖基分析带来了开创性的分析方法,它的出现意味着科学家们将能够对游离N-糖进行前所未有的监测和表征分析,”沃特世消耗品业务部门副总裁Mike Yelle说道,“这些全新的工作流程承担了过去专业且复杂的操作,实现了流程一体化,使科学家们和实验室在成功的道路上更近一步。” 大部分的生物治疗性蛋白质都是糖蛋白,且这些蛋白质上的特异性多聚糖群体是关键的品质属性,可对其功能、稳定性和治疗安全性概况产生影响。提交至监管机构的新药申报材料中必须包含其所含糖基侧链的详细结构信息,以及能够证明这些糖蛋白能够在生产过程中保持糖型谱图一致的信息。 支持糖蛋白工艺开发、监测和批量放行 对于从事生物治疗药物工艺开发、监测或批量放行研究的科学家们而言,全新的RapiFluor-MS标记技术与沃特世ACQUITY UPLC H-Class系统和QDa检测器的完美结合将开创游离N-糖谱图监测的新时代。沃特世所提供的试剂和方案在速度和灵敏度方面都具有非常突出的优势,将为用户带来更加简便的常规MS分析,ACQUITY QDa检测器可生成前所未有的详细信息,分析人员通过这些质量数数据即可轻松确认糖型。科学家们无需再依靠质谱专家和高分辨率的LC-MS仪器,即可对糖型分析进行方法开发、转换和执行过程中频频出现的问题作出确切的解答。此套工作流程可帮助生物制药组织更轻松地诊断问题、加快决策制定,更快速地将实验室中的分子变成药物推向临床领域。 对使用荧光检测技术的分析人员而言,将此款新型试剂盒与ACQUITY UPLC和ACQUITY UPLC FLR检测器联用时,样品制备时间可从一天缩短至一小时以内,同时荧光灵敏度也将得到有效提高。 支持蛋白糖基表征分析 蛋白糖基表征包括对连接到糖蛋白的所有多聚糖(无论其浓度有多低)进行鉴别,以及对这些多聚糖的分子结构进行确证。要高效地完成这项工作,需要UPLC-MS-MS仪器能够应对分析中的各项难题。 沃特世UNIFI?蛋白糖基分析应用解决方案于2013年推出,是更广泛的沃特世UNIFI生物制药平台解决方案的一部分,它配有高分辨率的UPLC/QTof-MS系统,可对生物制药研发实验室中以及受高度监管的后期开发和QC组织中的蛋白糖基侧链进行定性和监测。 现在,凭借RapiFluor-MS标记提供的高灵敏度,研究人员将获得更大的光谱和质谱响应值,这将有力促进低含量峰的准确质量数确认,提高MS/MS多聚糖碎裂性能,实现确定性更高的糖型指认。 此外,我们还推出了RapiFluor-MS葡聚糖校准曲线标准品和多聚糖性能测试标准品(基于混合IgG),用以支持系统性能的基准测试和执行基于葡聚糖单元数(GU)的蛋白游离糖基分析研究。沃特世公司率先将基于GU的葡聚糖校准曲线标准品保留时间归一化方法实现了商业化,此方法最初由来自爱尔兰国家生物工艺研究培训所(NIBRT)的Pauline Rudd教授提出。这种基于GU的方法使多聚糖的分析更加稳定,可以更轻松地在仪器之间和实验室之间实现UPLC-MS检测分析的转换。沃特世正在与Rudd教授及其在NIBRT的团队合作,开发全新的GU数据库,期望能够促进GU和GU+准确质量数多聚糖分配,这项工作将作为联合海报的主题于本年度的WCBP会议上展示。 更多信息: 有关GlycoWorksRapiFluor-MS N-多聚糖试剂盒的更多信息,请访问www.waters.com/glycans。 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司通过提供实用、可持续的创新,使全球范围内的医疗服务、环境管理、食品安全、水质监测、消费品和高附加值化学品领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2014年沃特世拥有19.9亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 ### Waters、RapiFluor-MS、ACQUITY、ACQUITY UPLC、UNIFI、QDa和UPLC是沃特世公司的商标。
  • AlphaFold的新对手?新AI预测微生物六亿多蛋白结构
    Meta(前身为 Facebook,总部位于加利福尼亚州门洛帕克)的研究人员使用人工智能 (AI) 来预测来自细菌、病毒和其他尚未表征的微生物的约 6 亿种蛋白质的结构。负责人Alexander Rives说:“这些是我们最不了解的神秘蛋白质结构。我认为它们为深入了解生物学提供了潜力。”该团队使用“大型语言模型”生成了预测工具——人工智能AI,这是可以从几个字母或单词预测文本的工具的基础。通常,语言模型是在大量文本上进行训练的。为了将它们应用于蛋白质,Rives 和他的同事将它们输入已知蛋白质的序列,这些蛋白质可以由 20 种不同氨基酸组成的链表达,每一种都用一个字母表示。然后,该网络学会了“自动完成”蛋白质,其中一部分氨基酸被遮蔽。蛋白质“自动完成”Rives 说,“这种培训使网络对蛋白质序列有了直观的了解,这些蛋白质序列保存了有关其形状的信息。第二步,受到 DeepMind 开创性的蛋白质结构 AI AlphaFold 的启发,将这些见解与有关已知蛋白质结构和序列之间关系的信息结合起来,从蛋白质序列中生成预测结构。Meta 的网络,称为 ESMFold,不如 AlphaFold 准确,但它在预测结构方面快了大约 60 倍,这意味着我们可以将结构预测扩展到更大的数据库。”做一个测试案例,研究人员决定将他们的模型应用于来自环境(包括土壤、海水、人类肠道、皮肤和其他微生物栖息地)的批量测序“宏基因组”DNA 数据库。其中绝大多数编码潜在蛋白质的 DNA 条目来自从未被培养过且科学未知的生物体。Meta 团队总共预测了超过 6.17 亿种蛋白质的结构。这项工作只用了 2 周时间(AlphaFold 可能需要几分钟才能生成一个预测)。Rives 说:“任何人都可以免费使用这些预测,就像模型底层的代码一样。”AlphaFold 和 AI 蛋白质折叠革命的下一步是什么在这 6.17 亿个预测中,该模型认为超过三分之一是高质量的,因此研究人员可以确信整体蛋白质形状是正确的,并且在某些情况下可以辨别更精细的原子级细节。数以百万计的结构是全新的,与通过实验确定的蛋白质结构数据库或已知生物体预测的 AlphaFold 数据库中的内容不同。首尔国立大学的计算生物学家 Martin Steinegger 说:“AlphaFold 数据库的很大一部分是由彼此几乎相同的结构组成的,而“宏基因组”数据库应该涵盖了以前看不见的蛋白质宇宙的很大一部分,即现在有一个很大的机会来解开更多的谜底。”Sergey Ovchinnikov教授对 ESMFold 做出的数以亿计的预测感到疑惑:有些可能缺乏明确的结构,至少是孤立的,而另一些可能是非编码 DNA,被误认为是蛋白质编码材料。似乎我们对仍有一半以上的蛋白质空间一无所知。更精简、更简单、更便宜德国慕尼黑工业大学的计算生物学家 Burkhard Rost 对 Meta 模型的速度和准确性印象深刻。但他质疑在预测宏基因组数据库中的蛋白质时,它是否真的比 AlphaFold 的精确度更具优势。基于语言模型的预测方法,他的团队开发了一种更适合快速确定突变如何改变蛋白质结构的方法,显然AlphaFold 无法做到这一点。据称,DeepMind 目前没有将宏基因组结构预测纳入其数据库的计划,但并未排除未来发布的可能性。Steinegger 和他的合作者已经使用了一个 AlphaFold 版本来预测大约 3000 万个宏基因组蛋白的结构。他们希望通过寻找新形式的基因组复制酶来发现新型 RNA 病毒。他认为我们很快就会对这些宏基因组结构的分析产生爆炸式的兴趣。参考资料:https://doi.org/10.1038/d41586-022-03539-1
  • 布鲁克在ASMS 2016推出蛋白质结构分析解决方案—HDX Solution
    布鲁克在第64届美国质谱年会(ASMS 2016)宣布推出布鲁克HDX Solution —氢氘交换解决方案。BHDX解决方案将LEAP H/D-X PAL自动样品处理系统与布鲁克maXis II ETD UHR-QTOF质谱系统以及HDExaminer软件相结合,提供了一套自动可靠的HDX-MS工作流。Bruker HDX解决方案通过H/D比值获得单一同位素精确定量分析结果,为深入了解生物分子结构提供可靠依据。  这些年来,生物制药表征分析需要对生物蛋白的空间构象有更加深入的了解,还要了解多种因素如pH值、温度和压力等对蛋白的影响。对于这一挑战,HDX-MS已经成为了一种有价值的分析技术。生物制药分析方法需要运用强大的分析统计工具,自动化的提供高质量数据。HDX-MS已成为生物制药领域的常规而可靠的分析方法。  关键结构的鉴定、药物/蛋白的解析以及蛋白之间相互作用、蛋白质构象变化等是目前生物治疗发展过程中面临的关键问题。Bruker HDX解决方案使得液相分离和MS/MS检测自动化,简化数据分析和解析工作,并能获得可靠的蛋白结构解析结果。  布鲁克道尔顿生物制药副总裁Bob Galvin博士评论说:“最新Bruker HDX解决方案的推出,进一步加强了布鲁克生物表征产品系列,使得生物制药领域的研究者能够更快、更准确的深入了解到蛋白质构象和相互作用。”关于HDX解决方案  Bruker HDX解决方案提供了完整的工作流程,将LEAP H / DX PAL自动进样器应用于预定标记实验,并结合了UHPLC系统与高分辨质谱系统。maXis II ETD UHR-QTOF质谱系统的质量准确度达到ppm级以下,高灵敏度与同位素保真度提高了系统获取准确H/D比值的能力。再加上HDX-MS解析软件Sierra Analytics HDExaminer的应用,创造了更大的应用空间与简便的应用环境。LEAP H / DX PAL自动进样器与maXis II ETD UHR-QTOF质谱系统  在市场处于领先的超高质量分辨率QTOF质谱与ETD(电子转移解离)能力结合,开创了布鲁克maXis II系统HDX-MS实验的新纪元。比起在肽段水平的研究,在更微量水平的探索能更容易的提供特异性识别位点。LEAP H/D-X PAL自动进样设备将稳健可靠的样品处理整合到布鲁克HDX 解决方案。革新的时间安排软件能够自动安排样品处理步骤,包括贴标签、培养、消化和灭活等,提高LC的效率与整个实验室效率。  用HDExaminer软件获得的信息可用于研究在干扰状态下蛋白质的构象变化。通过数据输出,有关这些变化的数据信息可被容易的可视化,也可通过导入如PyMol的晶体结构可视化程序更深入的了解这些变化。  海德堡大学分子生物学中心的Matthias P. Mayer教授表示:“通过布鲁克HDX解决方案,我们能够以高精度、高重复性和最小的动手时间测量氢交换反应动力学。系统的自动安排软件帮助我们充分利用仪器使用时间,从而提高我们的实验室效率”编译:郭浩楠
  • 自然通讯成果|非变性纳米蛋白质组学捕获内源性心肌肌钙蛋白复合物的结构和动态性信息
    大家好,本周为大家分享一篇发表在Nat. Commun.上的文章:Structure and dynamics of endogenous cardiac troponin complex in human heart tissue captured by native nanoproteomics ,文章的通讯作者是威斯康星大学麦迪逊分校的葛瑛教授。  蛋白质大多都是通过组装成蛋白复合物来执行特定的生物功能,因而表征内源性蛋白复合物的结构和动力学将有助于生命过程的理解。蛋白复合物在其组装、翻译后修饰(Post-translational modifications,PTMs)和非共价结合等方面是高度动态的,在native状态下通常以低丰度存在,这给研究其结构和动态性的传统结构生物学技术(如X-ray和NMR)带来了巨大的挑战。非变性Top-down质谱(nTDMS)结合了非变性质谱和Top-down蛋白组学的优势,目前已发展成蛋白复合物结构表征的有力工具,可以保留蛋白质亚基-配体间的非共价作用和PTMs等重要信息。然而,由于内源性蛋白复合物自身的低丰度特性,导致对其的分离纯化和检测非常困难,所以nTDMS目前仅限用于过表达的重组或高丰度蛋白质的表征。在本研究中,作者开发了一种非变性纳米蛋白质组学(Native nanoproteomics)技术平台,通过使用表面功能化的超顺磁性纳米颗粒(Nanoparticles,NPs)直接富集组织中的蛋白复合物,然后再利用高分辨质谱表征其结构和动态性。这里选用心肌肌钙蛋白(Cardiac troponin,cTn)异源三聚体复合物(~77 kDa)作为研究对象。cTn三聚体复合物是调节横纹肌肌动蛋白收缩的Ca2+离子调节蛋白,由TnC、cTnI和cTnT这3个亚基组成。其中,TnC是Ca2+结合亚基,cTnI是抑制肌动蛋白-肌球蛋白相互作用的亚基,而cTnT细丝锚定亚基。TnC与Ca2+的结合,以及cTnI 亚基的磷酸化,会共同引起细丝上的分子级联事件,诱导心肌收缩所必需的肌动蛋白-肌球蛋白交叉桥的形成。传统结构生物学技术不能有效捕获cTn复合物高度动态的构象变化,并且先前研究用的cTn复合物是由原核细胞表达的,缺乏PTMs的信息。因此,作者开发了native纳米蛋白组学的方法,以实现对人内源性cTn复合物结构和动力学的全面表征。作者首先使用肽功能化的超顺磁性氧化铁NPs富集了人心脏的内源性cTn复合物,同时优化了非变性蛋白提取缓冲液(高离子强度LiCl溶液,生理pH)。富集到的cTn复合物中的3种亚基的含量比例为1:1:1,真实反应了肌节cTn异源三聚体复合物的组成。作者也发现含有750 mM L-Arg,750 mM咪唑和50 mM L-Glu(pH 7.5)的溶液对蛋白复合物的洗脱效果最好,并且不会破坏亚基间的相互作用。该富集方法具有很好的重现性,proteoforms信息得到很好保留,且可以直接用于化学计量分析。总的实验流程如图1所示,洗脱后的cTn复合物经体积排阻色谱(Sze-exclusion chromatography,SEC)除盐和交换至醋酸铵溶液中,随后对cTn复合物进行多种nTDMS分析:1)在线SEC监测复合物 2)超高分辨傅里叶变换离子回旋共振质谱(FTICR-MS)表征复合物的化学计量比和proteoforms 3)捕获离子淌度质谱(TIMS-MS)解析调控复合物构象变化中的非共价作用的结构动态性。  图1. 用于表征人心脏中内源性cTn复合物的native纳米蛋白组学平台。  为了全面表征内源性cTn复合物,作者使用FTICR-MS进行proteoforms测序和复合物表征。图2展示了native状态下检测丰度最高的cTn复合物的电荷态(19+),其中包含了4种独特的proteoforms,这些复合物主要带有单磷酸化的cTnT、单磷酸化和双磷酸化的cTnI,以及结合了3个Ca2+的TnC。这些结果表明人cTn复合物在肌节中以结构多样化的分子组成存在,具有高度异质的共价和非共价修饰,可产生一系列不同的完整复合物。  图2. FTICR-MS分析展示的cTn复合物状态。红色方框中是最高丰度电荷态(19+)的放大谱图,理论同位素分布(红色圆圈)可以与谱图很好叠加,说明结果具有高质量精度(质量偏差在2 ppm 以内)。  作者接着对cTn复合物进行complex-up分析,以研究复合物的化学计量比及其组成。图3a~3b分别显示的是完整cTn三聚体复合物,以及经CAD碎裂后的蛋白亚基谱图。但这里没有检测到cTnI单体,可能是因为cTnI和TnC在native状态下的亲和力很强,且cTnI单体带的电荷不多,导致其在高m/z区域出峰,所以不易被检测到.随后,作者又对解离出的亚基进行complex-down分析。图3c展示了检测到的cTnT的多种proteoforms:未磷酸化的 cTnT、单磷酸化的cTnT(p cTnT)和 C 端 Lys 截断的磷酸化cTnT(pcTnT [aa 1-286]),CAD碎裂谱图也发现cTnT的C端较N端更易暴露在外界溶剂中。图3e则是cTn(I-C)二聚体的谱图,共检测到6种具有不同数量Ca2+结合和磷酸化的proteoforms。二级谱图可将cTnI的两个磷酸化位点准确定位在Ser22和Ser23,同时发现cTnI序列两端都较内部区域更易暴露于溶剂中。但还无法通过nTDMS准确推断Ca2+结合和磷酸化是如何影响cTn复合物的稳定性。作者在此也没有优化FTICR-MS在非常高m/z范围的离子检测,所以也会遗漏带少量电荷的cTn复合物信息。  图3.nTDMS表征人心脏来源的cTn复合物。(a~b)完整cTn复合物和经CAD碎裂后的亚基谱图 (c~d)cTnT单体及其代表性的CAD碎裂谱图 (e~f)cTn(I-C)二聚体及其代表性的CAD碎裂谱图。  人TnC蛋白含有3个钙结合EF-hand基序(结构域 II~IV)。结构域 II与Ca2+结合的亲和力较低,是触发心肌收缩的调控域。结构域 III 和 IV则与Ca2+具有强的亲和力,在心肌舒张和收缩时均始终保持与Ca2+充分结合,但结构域 II只有在收缩时才被Ca2+占据。这里观察到了TnC分别与0、1、2和3个Ca2+结合的情况,通过CAD碎裂也进一步定位了TnC与Ca2+结合的具体氨基酸序列(图4)。研究发现结构域 II的骨架最容易发生碎裂,而结构域 III的骨架最难碎裂。目前结构域 II~IV的序列在UniprotKb中分别对应65DEDGSGTVDFDE76、105DKNADGYIDLDE116和141DKNNDGRIDY152。这里分别将与1、2和3个Ca2+结合的TnC隔离出来进行CAD碎裂(m/z分别为2312、2316和2321),可以更准确地将结构域 III、II和IV的序列分别定位到113DLD115、141DKNND145和73DFDE76(图4c),表明非变性纳米蛋白组学方法在定位非共价金属结合方面具有高分辨能力。  图4.nTDMS定位 TnC与Ca2+结合的结构域。(a)FTICR-MS隔离与不同数量Ca2+结合的TnC单体 (b~c)与两个Ca2+结合的TnC的CAD碎裂谱图,蓝色、红色和黄色方框分别对应结构域 II 、III和IV。  Ca2+与TnC的结合会对cTn复合物的功能和构象有着很大影响。cTn复合物的核心区维持着构象的稳定,但当Ca2+与TnC发生结合时,其柔性区会经历广泛的构象变化,复合物结构会从“closed”状态转变成“opened”状态,这会促进肌动蛋白和肌球蛋白间的相互作用,最终导致心肌收缩。然而,传统结构生物学技术很难捕获cTn复合物与Ca2+结合时的构象变化。因此,作者使用离子淌度质谱来分析cTn复合物的构象变化。TnC亚基和与Ca2+结合的cTn(I-C)二聚体的淌度分离谱图如图5所示。与0~3个Ca2+结合的TnC的碰撞截面(Collision Cross-Section,CCS)值分别为1853、1849、1829和1844 Å2(图5a~5b),TnC构象比IMPACT预测的更为紧凑,但cTn(I-C)二聚体的CCS值与预测的非常接近(图5c~5d)。作者推测TnC与两个Ca2+结合会形成更致密的构象,是因为在静息舒张时Ca2+与结构域 III 和 IV充分结合。当第三个 Ca2+与结构域II结合时,TnC转变为“opened”构象,使其N端与cTnI的C端相结合,进而引发心肌收缩(图5e)。cTn(I-C)二聚体与Ca2+结合时的构象变化也是如此(图5f)。  图5.TnC单体(a~b)和与Ca2+结合的cTn(I-C)二聚体(c~d)的离子淌度分离谱图 (e~f)TnC和cTn(I-C)二聚体与Ca2+结合时的构象变化。  最后,作者通过添加EGTA来剥离cTn复合物中的Ca2+,以进一步研究Ca2+在维持复合物结构稳定性上的作用。图6b~6c是没有EGTA孵育时的cTn复合物的TIMS-MS谱图。cTn复合物的CCS值与理论预测值非常符合。随着EGTA孵育浓度的增加(25、50和100mM),Ca2+逐渐被螯合,cTn复合物的结构也越来越舒展,体现在平均电荷态逐渐增加,以及逐渐在较低m/z范围内出峰,这表明cTn复合物构象的稳定性丢失与EGTA浓度的增加相关(图6d~6f)。虽然100mM EGTA孵育也不敢保证Ca2+的完全剥离,并且cTnI的存在又会增强TnC与Ca2+的结合,但TIMS-MS为我们研究cTn复合物与Ca2+结合时的构象变化提供了一种切实可行的分析手段。  图6.cTn复合物与EGTA孵育时的构象变化。(a)cTn复合物的构象随EGTA孵育浓度的增加发生改变 (b~c)cTn复合物的TIMS-MS谱图 (d~f)cTn复合物与不同浓度EGTA(25、50和100mM)孵育的谱图和CCS分析。  总的来说,本研究开发了一种可用于内源性蛋白复合物富集和结构表征的非变性纳米蛋白组学方法,以获取其组装、proteoforms异质性和动态非共价结合等方面的生物信息。本文采用的功能化NPs可被灵活设计成选择性结合特定的靶蛋白,在富集和洗脱过程中可以很好保持其近似生理条件下的存在状态。更为重要的是,功能化NPs与nTDMS的整合可以作为一种强有力的结构生物学工具,可以作为传统技术的补充,用于内源性蛋白复合物的表征。  撰稿:陈昌明 编辑:李惠琳文章引用:Structure and dynamics of endogenous cardiac troponin complex in human heart tissue captured by native nanoproteomics  参考文献  Chapman EA, Roberts DS, Tiambeng TN, et al. Structure and dynamics of endogenous cardiac troponin complex in human heart tissue captured by native nanoproteomics. Nat Commun. 2023 14(1):8400. Published 2023 Dec 18. doi:10.1038/s41467-023-43321-z
  • 蛋白质结构分析新技术创测定速度纪录
    《自然-方法学》:蛋白质结构分析新技术创测定速度纪录  过去需几年时间完成的工作现在仅用几天即可完成  据美国物理学家组织网7月20日报道,隶属于美国能源部的劳伦斯伯克利国家实验室的科学家开发出一种利用小角度X射线散射技术测定蛋白质结构的新方法,大大提高了蛋白质结构研究分析的效率,使过去需要几年时间完成的工作仅需要几天即可完成,这将极大地促进结构基因组学的研究进程。  结构基因组学是一门研究生物中所有蛋白质结构的科学。通过对蛋白质结构的分析,可大致了解蛋白质的功能。结构基因组学重视快速、大量的蛋白质结构测定,而快速结构测定技术正是该学科研究面临的一个瓶颈问题。目前通常使用的两种测定技术,X射线晶体衍射和核磁共振质谱技术,虽然精确,但速度很慢,测定一个基因的蛋白质结构,动辄就需要几年的时间。随着新发现的蛋白质及蛋白质复合物越来越多,目前的分析速度远远不能满足研究的需要。  为解决这个瓶颈问题,劳伦斯伯克利国家实验室的科学家们借助了该实验室的先进光源(ALS)。他们运用一种称为小角度X射线散射(SAXS)的技术,对处于自然状态下(如在溶液之中)的蛋白质进行成像,其分辨率大约为10埃米(1埃米等于1/10纳米),足够用来测定蛋白质的三维结构。ASL产生的强光可以使实验所需材料减至最少,这使得该技术可以用于几乎所有生物分子的研究。  为了最大限度提高测定速度,研究小组安装了一个自动装置,可自动使用移液器吸取蛋白质样品到指定位置,以便利用X射线散射进行分析研究。他们还使用美国能源部国家能源研究科学计算机中心(NERSC)的超级计算资源进行数据分析。利用这一系统,研究小组取得了惊人的研究效率,在1个月内分析测定了火球菌的40组蛋白质结构。如果使用X射线晶体衍射技术,这可能需要花几年时间。同时,他们所获取的信息十分全面,涵盖了溶液中大部分蛋白质样本的结构信息。相比于在结构基因组学启动计划中使用核磁共振和晶体衍射技术仅能获取15%的信息量来说,这是十分巨大的进步。  高通量蛋白质结构分析有助于加快生物燃料的研究步伐,帮助解读极端微生物在恶劣环境中的繁荣之谜,更好地理解蛋白质的功能。研究小组之所以首先选择火球菌进行实验分析,就是因为它可用来生产清洁能源——氢。同时,在许多工业流程中都会出现高酸高热的环境状态,而这正是火球菌喜欢的生存环境。  但这种技术也有不足之处,追求速度会造成一种失衡,使成像质量相应打了折扣。与X射线晶体衍射成像的超高分辨率相比,小角度X射线散射成像的分辨率比较低,大约是10埃米。但这并不妨碍该技术的应用前景,因为并不是所有的研究都需要超高精度成像。对于结构基因组学研究来说,有时只要知道一种蛋白质与另一种蛋白质具有相似的结构,就可以了解其功能。而且,小角度X射线散射技术能够提供溶液中蛋白质形状、结构及构造变化等方面的精确信息,足以弥补其在成像精度方面的不足。  该研究成果刊登在7月20日《自然—方法学》杂志网络版上,美国斯克利普斯研究所和乔治亚州大学的科学家亦参与了该项研究。
  • 蛋白质结构解析六十年
    几种不同折叠模式的蛋白质模型(图片来源Protein Data Bank Japan )  上个世纪初,科学家们认为蛋白质是生命体的遗传物质,而具有独特的作用。随着这个理论被证伪,真正的遗传物质DNA的结构被给予了很大关注。然而,蛋白质作为生命体的重要大分子,其重要性也从未被忽视,而且在1950年代开始,科学家一直在探寻DNA序列和蛋白质序列的相关性。与此同时,蛋白质测序和结构解析蛋白质结构的努力开始慢慢获得回报。更多的生化研究揭示了蛋白质的功能重要性,因此蛋白质的三维结构的解析对于深入理解蛋白质功能和生理现象起着决定性作用。  本文简要回顾了蛋白质结构解析的重大历史事件,并总结了蛋白质结构解析的常用方法和结构分析方向。通过了解蛋白质结构,能够让我们更好地理解生物体的蛋白的理化特性,以及其相关联的化学反应途径及其机制,对于我们认识生物世界和研发治疗方法和药物都起着关键作用。在即将召开的2015高分辨率成像与生物医学应用研讨会上,各位专家学者将会进一步讨论相关议题。  蛋白质结构解析六十年来大事件  在1958年,英国科学家John Kendrew和Max Perutz首先发表了用X射线衍射得到的高分辨率的肌红蛋白Myoglobin的三维结构,然后是更加复杂的血红蛋白Hemoglobin。因此,这两个科学家分享了1962年的诺贝尔化学奖。事实上,这项工作在早在1937年就开始了。  然后在1960年代,蛋白质结构解析方法不断进步,获得了更高的解析精度。这个时期,蛋白质序列和DNA序列间关系也被发现,中心法则被Francis Crick提出,然后科学界见证了分子生物学的崛起。分子生物学(Molecular Biology)的名称在1962年开始被广泛接受和使用,并逐渐演变出一些支派,如结构生物学。然后在1964年,Aaron Klug提出了一种基于X射线衍射原理发展而来的全新的方法电子晶体学显微镜(crystallographic electron microscopy ),可以解析更大蛋白质或者蛋白质核酸复合体结构。因为这项研究,他获得了1982诺贝尔化学奖。1969年,Benno P. Schoenborn 提出可以用中子散射和原子核散射来确定大分子中固定位置的氢原子坐标。  进入1970年代,很多新的方法开始发展。存储蛋白质三维结构的Protein Data Bank(1971年) 开始出现,这对于规范化和积累蛋白质数据有着重要意义。1975年新的一种仪器叫做多丝区域检测器,让X-ray的检测和数据收集更加快速高效。次年,Robert Langride将X-ray衍射数据可视化,并在加州大学圣地亚哥分校成立了一个计算机图形实验室。同年,KeithHodgson和同事首次证明了可以使用同步加速器获得的X射线并对单个晶体进行照射,并取得了很好的实验效果。然后在1978年,核磁共振NMR首次被用于蛋白质结构的解析 同年首个高精度病毒(西红柿丛矮病毒)衣壳蛋白结构被解析。  在1980年代,更多蛋白质结构被解析,蛋白质三维结构的描述越来越成熟,而且蛋白质结构解析也被公认成为药物研发的关键步骤。在1983年,冷冻蚀刻的烟草花叶病毒结构在电子显微镜结构下得到描述。两年后德国科学家John Deisenhofer等解析出了细菌光合反应中心,因此他们共享了1988年的诺贝尔化学奖。次年,两个课题组解析了HIV与复制相关的蛋白酶结构,对针对HIV的药物研发提供了理论基础。  下一个十年,因为大量同步加速器辅助的X射线衍射的使用,数千个蛋白质结构得到解析,迎来了蛋白质结构组的曙光。1990年多波长反常散射方法(MAD)方法用于X射线衍射晶体成像,与同步辐射加速器一起,成为了近二十多年来的最常用的的方法。Rod MacKinnon在199年发表了第一个高精度的钾离子通道蛋白结构,对加深神经科学的理解起了重要作用,因此他分享了2003年的诺贝尔化学奖。Ada Yonath等领导的课题组在1999年首次解析了核糖体结构(一种巨大的RNA蛋白质复合体)。  进入新千年,更多的技术细节被加入到蛋白质解析研究领域。2001年,Roger Kornberg和同事们描述了第一个高精度的RNA聚合酶三维结构,正因此五年后他们共享了诺贝尔化学奖。2007年,首个G蛋白偶联受体结构的解析更是对药物研究带了新的希望。近些年来,越来越多的大的蛋白质结构得到解析。Cryo-EM超低温电子显微镜成像用于超大蛋白质结构成像的研究日益成熟,并开始广泛用于蛋白质结构的解析。  蛋白质结构解析的常用实验方法  1.X-ray衍射晶体学成像  X射线衍射晶体学是最早用于结构解析的实验方法之一。X射线是一种高能短波长的电磁波(本质上属于光子束),被德国科学家伦琴发现,故又被称为伦琴射线。理论和实验都证明了,当X射线打击在分子晶体颗粒上的时候,X射线会发生衍射效应,通过探测器收集这些衍射信号,可以了解晶体中电子密度的分布,再据此析获得粒子的位置信息。利用这种特点,布拉格父子研制出了X射线分光计并测定了一些盐晶体的结构和金刚石结构。首个DNA结构的解析便是利用X射线衍射晶体学获得的。  后来,获得X射线来源的技术得到了改进,如今更多地使用同步辐射的X射线源。来自同步辐射的X射线源可以调节射线的波长和很高的亮度,结合多波长反常散射技术,可以获得更高精度的晶体结构数据,也成为了当今主流的X射线晶体成像学方法。由X射线衍射晶体学解析的结构在RCSB Protein Data Bank中占到了88%。  X射线衍射成像虽然得到了长足的发展,仍然有着一定的缺点。X射线对晶体样本有着很大的损伤,因此常用低温液氮环境来保护生物大分子晶体,但是这种情况下的晶体周围环境非常恶劣,可能会对晶体产生不良影响。而且,X射线衍射方法不能用来解析较大的蛋白质。  上海同步辐射加速器外景(图片来源 上海同步辐射光源网站)  2.NMR核磁共振成像  核磁共振成像NMR全称Nuclear magnetic resonance,最早在1938被Isidor Rabi (1946年诺贝尔奖)描述,在上世纪的后半叶得到了长足发展。其基本理论是,带有孤对电子的原子核(自选量子数为1)在外界磁场影响下,会导致原子核的能级发生塞曼分裂,吸收并释放电磁辐射,即产生共振频谱。这种共振电磁辐射的频率与所处磁场强度成一定比例。利用这种特性,通过分析特定原子释放的电磁辐射结合外加磁场分别,可以用于生物大分子的成像或者其他领域的成像。有些时候,NMR也可以结合其他的实验方法,比如液相色谱或者质谱等。  RCSB Protein Data Bank数据库中存在大约11000个用NMR解析的生物大分子结构,占到总数大约10%的结构。NMR结构解析多是在溶液状态下的蛋白质结构,一般认为比起晶体结构能够描述生物大分子在细胞内真实结构。而且,NMR结构解析能够获得氢原子的结构位置。然而,NMR也并非万能,有时候也会因为蛋白质在溶液中结构不稳定能难得获取稳定的信号,因此,往往借助计算机建模或者其他方法完善结构解析流程。  使用NMR解析的血红蛋白结构建模(图片来源RCSB PDB)  3.Cryo-EM超低温电子显微镜成像  电子显微镜最早出现在1931年,从设计之初就是为了试图获得高分辨率的病毒图像。通过电子束打击样本获得电子的反射而获取样本的图像。而图像的分辨率与电子束的速度和入射角度相关。通过加速的电子束照射特殊处理过的样品表明,电子束反射,并被探测器接收,并成像从而获得图像信息。具体做法是,将样品迅速至于超低温(液氮环境)下并固定在很薄的乙烷(或者水中),并置于样品池,在电子显微镜下成像。图像获得后,通过分析图像中数量众多的同一种蛋白质在不同角度的形状,进行多次的计算机建模从而可以获得近原子级别的精度(最低可以到2.0埃)。  Cyro-EM解析TRPV1离子通道蛋白(图片来源Structure of the TRPV1 ion channel )  将电子显微镜和计算机建模成像结合在一起的大量实践还是在新世纪之后开始流行的。随着捕捉电子的探测器技术(CCD技术,以及后来的高精度电子捕捉、电子计数electron counting设备)的提升,更多的信息和更低的噪音保证了高分辨率的图像。  近些年来,Cryo-EM被用来解析很多结构非常大(无法用X-ray解析)的蛋白质(或者蛋白质复合体),取得了非常好的结果。同时,单电子捕捉技术取代之前的光电转换成像的CCD摄像设备,减少了图像中的噪音和信号衰减,同时并增强了信号。计算机成像技术的成熟和进步,也赋予了Cryo-EM更多的进步空间。然而,Cyro-EM与X-ray不同,该方法不需要蛋白质成为晶体,相同的是都需要低温环境来减少粒子束对样品的损害。  除去介绍的这三种方法以外,计算机建模技术也越来越多地被用在了蛋白质结构解析中。而且新解析的结构也会提高计算机建模的精确度。未来,我们或许能够用计算机构建原子级别的细胞模型,构建在芯片上的细胞。  蛋白质结构对了解生命体的生化反应、有针对性的药物研发有着重要意义。从1958到如今已经接近60年,蛋白质结构解析得到了较快的发展。然而,在如今DNA测序如此高效廉价的时代,蛋白质和DNA结构解析并没有进入真正高速发展阶段,这也导致了在如此多的DNA序列数据非常的今天,结构数据却相对少的可怜。大数据时代的基因组、蛋白质组、代谢组、脂类组等飞速发展的时候,蛋白质结构组也得到了更加广泛的重视。发展高精度、高效的结构解析技术也一直都有着重要意义。未来,蛋白质结构解析,对针对蛋白质的药物筛选,和计算机辅助的药物研究研究不应被低估。未来说不定在蛋白质结构领域有着更多惊喜,让我们拭目以待。 第一届电镜网络会议部分视频回放
  • 沃特世在京成功举办质谱技术在蛋白表征及高级结构中应用技术研讨会
    沃特世公司(纽约证券交易所代码:WAT)近日在北京成功举办了以“质谱技术在蛋白表征及高级结构中应用”为主题的技术研讨会,吸引了60余位来自国家蛋白质组中心、中国食品药品检定研究院、中国科学院、清华大学、北京大学、军事医学科学院、中国农业科学院等知名高校、科研院所、分析测试平台及生物制药企业等相关领域的研究人员参加了会议。 研讨会的主旨为 “提升国内蛋白表征领域对蛋白高级结构研究的认知”,涵盖三大议题:蛋白药物深度结构表征所需要的质谱技术与生物信息学软件、氢氘交换(HDX)技术及IMS在结构生物学特别是表位学研究、蛋白质相互作用研究领域的最新进展及SONAR技术在蛋白质鉴定和非标记定量蛋白质组学研究中的进展。 会上国际知名学者、日本大阪大学副教授Susumu Uchiyama博士指出,氢氘交换质谱(HDX MS)逐渐成为蛋白质高级结构研究不可或缺的技术,并介绍了氢氘交换质谱技术及其在表位学和蛋白相互作用研究上的具体应用 。同时对其最近发表在Nature Communication上的题为《Haem-dependent dimerization of PGRMC1/sigma-2 receptor facilitates cancer proliferation and chemoresistance》论文的研究成果进行了汇报,获得了与会科研学者的一致高度评价。 日本大阪大学副教授Susumu Uchiyama博士做大会报告 沃特世(Waters)总部制药业务部高级市场拓展经理Asish Chakraborty博士对生物制药行业普遍关注的宿主蛋白残余测定进行了报告演讲,并介绍了使用通用型UPLC/MS分析对生物治疗性蛋白质中的HCP进行全面鉴定和定量。此分析方法采用在线二维液相色谱法分离多肽,然后利用高分辨率、高质量准确度的质谱仪进行蛋白质鉴定和定量。另外,Chakraborty博士对当前氢氘交换质谱方案的新进展也作了更新介绍。 沃特世公司总部Asish Chakraborty博士做大会报告 来自沃特世亚太区的高级科学家陈熙博士作了题为“非变性质谱技术及IMS行波离子淌度质谱技术在蛋白质高级结构研究上的应用进展”的精彩报告,介绍了行波离子淌度高分辨质谱技术在生物药分析上的最新应用进展,成熟的行波离子淌度分离技术为常规高分辨质谱增加了更多一个维度的分离能力,在蛋白质药物常规结构表征如二硫键错配、氢-氘交换质谱技术进行蛋白质药物高级结构和动态变化研究以及HCP(宿主细胞蛋白)残留的鉴定和定量上发挥着重要作用。 沃特世亚太区高级科学家陈熙博士做大会报告 沃特世中国应用科学家殷薛飞博士作了 “最新DIA质谱技术-SONAR在非标记定量蛋白质组学研究中的应用”的报告。殷博士介绍的 SONAR数据采集模式于今年9月发布,科学家们只需执行一次进样即可完成更准确的定性和定量分析,对复杂样品中脂质、代谢物和蛋白质的定量和鉴定,可免去采用MS/MS方法分析时通常需要额外进行方法开发的麻烦。 大会还邀请了来自美国Genentech的蛋白质化学部科学家甘雨田博士分享了她运用蛋白质组学思路进行生物药物研究开发的思路与实践,甘博士还介绍了她今年8月发表于Nature Biotechnology上的ISDetect快速自动蛋白末端质谱检测法,引起与会人员的强烈兴趣。 会议最后 ,沃特世中国生物制药高级经理宋兰坤女士作了“LC/MS平台化方案助力生物药研究开发”的报告,并对会议进行了总结。宋经理说:“质谱技术是蛋白质研究中不可取代的工具,其在蛋白质常规表征及高级结构研究中均有很好的应用方案及研究文献, 为揭示生命科学的奥秘发挥着越来越重要的作用。作为全球生物制药领域解决方案顶尖供应商,沃特世公司为生物药物产业界及蛋白质研究相关科学领域提供先进的仪器和技术。希望本次会议的议题可以激发与启迪科研工作者的思路,为生物药物产业的从业人员搭建一个学术讨论与经验分享的平台。 会议同期展出的蛋白科学研究先进生物技术墙报
  • 各种蛋白互作检测方法优缺点分析
    聚焦蛋白质互作研究进展与实验方法研究蛋白-蛋白相互作用是理解生命活动的基础。蛋白质—蛋白质互作网络是生物信息调控的主要实现方式,是决定细胞命运的关键因素。检测蛋白质间相互作用的实验方法有哪些?这些检测方法各有什么优缺点?总结如下。1. 生化方法●共纯化、共沉淀,在不同基质上进行色谱层析(需要补充)●蛋白质亲和色谱 基本原理是将一种蛋白质固定于某种基质上(如Sepharose),当细胞抽提液经过改基质时,可与改固定蛋白相互作用的配体蛋白被吸附,而没有吸附的非目标蛋白则随洗脱液流出。被吸附的蛋白可以通过改变洗脱液或者洗脱条件而回收下来。GST pull down技术:为了更有效的利用蛋白质亲和色谱,可以将待纯话的蛋白以融合蛋白的形式表达,即将”诱饵“蛋白与一种易于纯化的配体蛋白融合。例如与GST融合的蛋白再经过GSH的色谱柱时,就可以通过GST和GSH的相互作用而被吸附。当载有细胞抽提物经过柱时,就可以得到能够与“诱饵”蛋白相互作用的目标蛋白了。Epitope-tag技术:表位附加标记技术 就是将附加的抗原 融合到目的蛋白以检测目的蛋白的表达,同时还可以通过亲和层析法来纯化目的蛋白。 缺点:表位附加标记可能会使融合蛋白不稳定,改变或使融合蛋白功能丧失。以上两种方法都要共同的缺点:假阳性。实验所检测到的相互作用可能时由蛋白质所带电荷引起的,并不是生理性的相互作用 蛋白的相互作用可能并不是直接的,可是由第三者作为中介的 有时会检测到两种在细胞中不可能相遇却有极强亲和力的蛋白。因此实验结果还应经其他方法验证。●免疫 共沉淀 免疫共沉淀是以抗体和抗原之间的专一性作用为基础的用于研究蛋白质相互作用的经典方法。改法的优点是蛋白处于天然状态,蛋白的相互作用可以在天然状态下进行,可以避免认为影响 可以分离得到天然状态下相互作用的蛋白复合体。 缺点:免疫共沉淀同样不能保证沉淀的蛋白复合物时候为直接相互作用的两种蛋白。另外灵敏度不如亲和色谱高。●Far-Western 又叫做亲和印记。将PAGE胶上分离好的凡百样品转移到硝酸纤维膜上,然后检测哪种蛋白能与标记了同位素的诱饵蛋白发生作用,最后显影。 缺点是转膜前需要将蛋白复性。2. 等离子表面共振技术(Surface plasmon resonance)该技术是将诱饵蛋白结合于葡聚糖表面,葡聚糖层固定于几十纳米厚的技术膜表面。当有蛋白质混合物经过时,如果有蛋白质同“诱饵”蛋白发生相互作用,那么两者的结合将使金属膜表面的折射绿上升,从而导致共振角度的改变。而共振角度的改变与该处的蛋白质浓度成线性关系,由此可以检测蛋白质之间的相互作用。该技术不需要标记物和染料,安全灵敏快速,还可定量分析。缺点:需要专门的等离子表面共振检测仪器。3. 遗传学方法使某处发生缺损,检测对其他地方的影响。●基因外抑制子。基因外抑制子是通过一个基因的突变 来弥补原有基因的突变。比如相互作用的蛋白A和B,如果A发生了突变使两者不再相互作用,此时B如果再发生弥补性突变就可以使两者的相互作用恢复,那么B就是A的基因外抑制子。 缺点:需要知道基因,要有表型,筛选抑制子比较费时。●合成致死筛选 指两个基因同时发生突变会产生致死效应,而当每个基因单独发生突变时则无致死效应。用于分析两个具有相同重要蛋白之间的相互作用。4. 双杂交技术原理基于真核细胞转录因子的结构特殊性,这些转录因子通常需要两个或以上相互独立的结构域组成。分别使结合域和激活域同诱饵蛋白和猎物蛋白形成融合蛋白,在真核细胞中表达,如果两种蛋白可以发生相互作用,则可使结合域和激活域在空间上充分接近,从而激活报告基因。 缺点:自身有转录功能的蛋白会造成假阳性。融合蛋白会影响蛋白的真实结构和功能。不利于核外蛋白研究,会导致假隐性。5. 荧光共振能量转移技术指两个荧光法色基团在足够近(100埃)时,它们之间可发生能量转移的现象。荧光共振能量转移技术可以研究分子内部对某些刺激发生的构象变化,也能研究分子间的相互作用。它可以在活体中检测,非常灵敏,分辩率高,能够检测大分子的构象变化,能够定性定量的检测相互作用的强度。 缺点 此项技术要求发色基团的距离小于100埃。另外设备昂贵,还需要融合GFP给蛋白标记。此外还有交联技术(cross-linKing),蛋白质探针技术,噬菌体展示技术(Phage display)以及生物信息学的方法来检测蛋白质之间相互作用。
  • 新型冠状病毒科研进展之——蛋白靶点结构研究进展
    p style="text-align: justify text-indent: 2em line-height: 1.75em "strong仪器信息网讯 /strongspan style="text-indent: 2em "冠状病毒是一类严重危害人类和动物健康的病原微生物,属于具有大量天然宿主的一类RNA病毒。该病毒极易发生基因重组和变异,具有遗传多样性,迄今为止,已不断有新亚型或新的冠状病毒出现。冠状病毒上的S蛋白、PLpro和3CLpro是药物开发的良好靶点,本文整理并总结了基于靶标发现的潜在药物。/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/38dd544f-4905-4c6c-899f-7d2e0b1a4099.jpg" title="截屏2020-03-30上午11.54.47.png" alt="截屏2020-03-30上午11.54.47.png"//pp style="text-align: justify text-indent: 2em line-height: 1.75em "冠状病毒是一种有包膜的、非节段的单股正链RNA病毒,属于巢病毒目(nidovirales)冠状病毒科(Coronaviridae)正冠状病毒亚科(ortho-coronavirinae)。由于病毒包膜上有向四周伸出的突起,形如花冠而得名。冠状病毒亚科进一步细分为四类,即α、β、γ 和 δ 冠状病毒。冠状病毒在自然界中广泛存在,其自然宿主包括人类和其他哺乳动物如牛、猪、犬、猫、鼠和蝙蝠等。strong目前,已经鉴定出六种人类冠状病毒,其中包括α属的HCoV-29E和HCoV-NL63;β属的HCoV-OC43、HCoV-HKU1、严重急性呼吸综合征相关冠状病毒(SARS-CoV)和中东呼吸综合征相关冠状病毒(MERS-CoV)。/strong/pp style="text-align: justify text-indent: 2em line-height: 1.75em "另外,近期从武汉市不明原因肺炎患者下呼吸道分离出的冠状病毒,世界卫生组织初步命名为2019-nCoV。2020年2月12日,国际病毒分类委员会宣布新型冠状病毒(2019-nCoV)的正式分类名为span style="color: rgb(192, 0, 0) "严重急性呼吸综合征冠状病毒(SARS-CoV-2)/span。研究者将来源于武汉的新型冠状病毒序列与已知的“SARS冠状病毒”“MERS冠状病毒”进行了比较,发现strong6个新型冠状病毒序列几乎一致,其与SARS的同源性更高,相似性约为70%,与MERS相似性约为40%。/strongstrong序列差异主要在ORF1a和编码S-蛋白的spike基因上,这是冠状病毒与宿主细胞作用的关键蛋白。/strong/pp style="text-align: center text-indent: 2em line-height: 1.75em "strongspan style="color: rgb(0, 112, 192) "冠状病毒蛋白靶点结构研究进展/span/strong/pp style="text-align: justify text-indent: 2em line-height: 1.75em "冠状病毒是最大的一种核糖核酸病毒(26~32kb),其基因组为单股、正链RNA。编码非结构蛋白(Nps)的复制酶基因占据了基因组的三分之二,而结构蛋白和辅助蛋白仅占病毒基因组的三分之一。目前已经解析出了许多冠状病毒相关的蛋白质结构,如SARS-CoV S糖蛋白(PDB ID:5WRG)(图1A)、MERS-CoV N蛋白的C末端结构域(PDB ID:6G13)(图1B)、MERS-CoV N蛋白的N末端结构域(PDB ID: 4UD1)(图1C)。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/fd7a83a8-25f3-48a0-989e-958bb95bc364.jpg" title="截屏2020-03-30上午10.38.54.png" alt="截屏2020-03-30上午10.38.54.png"//pp style="text-align: justify text-indent: 2em line-height: 1.75em "病毒体与宿主细胞的初始附着是通过S蛋白与其受体之间的相互作用而开始的。根据研究报道,S蛋白具有受体结合活性和膜融合活性,是冠状病毒感染细胞的关键蛋白。研究发现在大多数冠状病毒中,S蛋白被宿主细胞弗林蛋白酶(Furin)样蛋白酶切割成S1和S2两种单独的多肽。S1的主要功能是与宿主细胞表面受体结合,而S2亚基则负责介导病毒-细胞以及细胞-细胞膜的融合。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "在对近期的SARS-CoV-2 S蛋白进行研究时发现,虽然SARS-CoV-2 S蛋白中与ACE2蛋白结合的5个关键氨基酸中有4个发生了变化,但变化后的氨基酸,却没有影响SARS-CoV S蛋白与ACE2 蛋白互作的构象。与SARS-CoV S蛋白相比,突变体后的SARS-CoV-2 S蛋白结构与ACE2 蛋白相互作用能力,由于丢失的少数氢键有所下降,但仍然达到很强的结合自由能,说明SARS-CoV-2 是通过S蛋白与人ACE2相互作用感染人的呼吸道上皮细胞。/pp style="text-align: center text-indent: 2em line-height: 1.75em "span style="color: rgb(0, 112, 192) "strong疫苗和治疗药物研究进展/strong/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "为了控制病毒的爆发,研究者们开发了针对 SARS¯ CoV 和 MERS¯ CoV 的疫苗。不同的疫苗有不同的制备方法下表中列出了这些方法的发展和优缺点。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/446bbee2-3399-4764-a3f5-0339be331bc9.jpg" title="截屏2020-03-30上午10.59.39.png" alt="截屏2020-03-30上午10.59.39.png"//pp style="text-align: justify text-indent: 2em line-height: 1.75em "迄今为止,大多数研究只集中在SARS疫苗的开发上,研究过程中使用了动物模型,但是这些模型并不能概括人类发生的严重临床疾病。strong综合SARS 和 MERS 疫苗的研究经验。发现冠状病毒疫苗的研究主要靶标是冠状病毒的S蛋白。疫苗不仅需要诱导体液和细胞免疫应答,还需要诱导黏膜免疫应答并借助佐剂来诱导 Th1 和 Th2 途径的平衡。也就是说成功的疫苗必须在不引起过度免疫激活的情况下达到保护的平衡。 未来还需加强对 SARS-CoV 和 MERS-CoV 等疫苗的研发。/strong/pp style="text-align: justify text-indent: 2em line-height: 1.75em "对于目前的 SARS-CoV-2,据新华社报道,美国医学专家正与中国同行合作研发针对新型冠状病毒的疫苗,美国休斯敦贝勒医学院彼得霍特兹教授通过电子邮件表示,贝勒医学院正在与美国得克萨斯大学、美国纽约血液中心以及中国上海复旦大学合作开发疫苗。目前,尚无针对 SARS-CoV、MERS-CoV、 SARS-CoV-2 和其他 HCoV 感染的特异性疗法,患者主要接受支持性治疗,并辅以多种药物组合,包括使用抗体、干扰素以及病毒和宿主蛋白酶的抑制剂。 /pp style="text-align: justify text-indent: 2em line-height: 1.75em "此外,除了针对SARS外,有研究报道了一种针对MERS-CoV S蛋白N端结构域的新型中和单克隆抗体。该研究表明N末端结构域在病毒感染过程中可能很重要,这项发现对于进一步的疫苗设计和针对MERS-CoV感染的预防和治疗性单克隆免疫法的开发具有重要意义。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "理想情况下,疫苗接种和抗病毒治疗都应具有各自明确的作用机制,以避免产生逃逸突变病毒菌株,并提高对不同病毒菌株的活性。strong迄今为止,利巴韦林和利巴韦林加各种类型的干扰素已成为SARS和MERS患者最常用的治疗手段。/strongSARS-CoV-2爆发以来,全国各个攻关团队筛选出一系列具有治疗潜力的药物。strong中国科学院上海药物研究所和上海科技大学免疫化学研究所的抗SARS-CoV-2病毒感染联合应急攻关团队报道了综合利用虚拟筛选和酶学测试相结合的策略进行药物筛选,发现了30种可能对SARS-CoV-2有治疗作用的药物、活性天然产物和中药。/strong/pp style="text-align: justify text-indent: 2em line-height: 1.75em "strongspan style="text-indent: 2em "沈阳药科大学、华中科技大学和军事医学研究院国家应急防控药物工程技术研究中心组成的联合攻关小组发现SARS-CoV-2蛋白序列中SARS-CoV-2-PLP序列与SARS-CoV-PLP具有82%的氨基酸同源性。/span/strong/pp style="text-align: justify text-indent: 2em line-height: 1.75em " 2020 年 1 月 21 日,中国科学院上海巴斯德研究所郝沛研究员等使用计算机模拟的方法发现了 SARS-CoV-2的S-蛋白的受体结合结构域(RBD)和人血管紧张素转化酶 ACE2 的结合作用较强。 SARS-CoV-2通过 S 蛋白 - ACE2 结合途径对人 类传播构成了重大的公共卫生风险。因此ACE2 也可能用于 SARS-CoV-2的治疗研究。 黄朝林等根据过往洛匹那韦利托那韦片对 SARS-CoV感染的患者有“ 实质性的临床益处” 的结果 推测这种疗法可能对 SARS-CoV-2感染的患者有效。此外,武汉病毒研究所与军事医学科学院毒物药物研究所联合发现了在细胞层面上对 SARS-CoV-2有较好抑 制作用的雷米迪维或瑞德西韦(RemdesivirGS-5734)、氯喹(ChloroquineSigma-C6628)、利托那 韦(Ritonavir)等三种“老药物”。 /pp style="text-align: justify text-indent: 2em line-height: 1.75em "瑞德西韦属于核苷类似物能够抑制 RNA 依赖的 RNA 聚合酶 (RdRp),由美国知名药企吉利德科学公司研发原本用于对抗埃博拉病毒在体外和动物模型中瑞德西韦证实了对 SARS 和 MERS 的病毒病原体均有活性它们与新型冠状病毒结构相似,从理论预测瑞德西韦对新型冠状病毒可能有效。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "目strong前瑞德西韦已进入 III 期临床试验该临床试验项目将在武汉市金银潭医院等多家医院同时进行两部分组成均采用随机、双盲、安慰剂对照形式开展。/strong据吉利德对外披露,在武汉进行的临床实验有两项,一是研究评估瑞德西韦用于未表现出显著临床症状患者的治疗效果,也就是轻、重症患者。另一项则是评估其用于重症确诊病患的疗效。值得一提的是,来自中国科学院武汉病毒研究所等机构的中国学者已经在细胞水平上验证了瑞德西韦在2019 新型冠状病毒上有较好的活性。span style="text-indent: 2em "研究结果显示在 Vero E6 细胞上瑞德西韦对 SARS-CoV-2的半数有效浓度EC50 =0.77μmol/L,选择指数 SI 大于 129,表明该药物在细胞水平上能效抑制 SARS-CoV-2 的感染,但其在人体上的作用还有待临床验证。/span/ppbr//pp style="text-align: justify text-indent: 2em line-height: 1.75em "参考文献:/pp style="text-align: justify text-indent: 2em line-height: 1.75em "1.XU X T,CHEN P,WANG J F,et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission[J]. Science China-Life Sciences,2020. /pp style="text-align: justify text-indent: 2em line-height: 1.75em "2.FOUCHIER R A,HARTWIG N G,BESTEBROER T M,et al. A previously undescribed coronavirus associated with respiratory disease in humans [J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(16):6212 - 6216. /pp style="text-align: justify text-indent: 2em line-height: 1.75em "3.VANDER HOEK L,PYRC K,JEBBINK M F,et al. Identification of a new human coronavirus [ J] . Nature Medicine,2004,10(4):368 -373. /pp style="text-align: justify text-indent: 2em line-height: 1.75em "4.WANG M,CAO R,ZHANG L,et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019¯ nCoV) in vitro [J]. Cell Research,2020/pp style="text-align: justify text-indent: 2em line-height: 1.75em "5.HUANG C,WANG Y,LI X,et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan,China [J]. Lancet,2020. /ppbr//ppbr//p
  • 了解糖蛋白结构异质性和相互作用:来自native Mass的见解
    大家好,本周为大家分享一篇发表在Current Opinion in Structural Biology上的文章,Understanding glycoprotein structural heterogeneity and interactions: insights from native mass spectrometry,通讯作者是英国牛津大学化学系的Carol V . Robinson教授。  蛋白质糖基化的过程会产生具有多种组成、连接和结构的聚糖,这些聚糖具有多种生物学功能。哺乳动物的主要两类糖基化修饰为 N糖和粘蛋白型O糖(图1 a,b)。N-聚糖的分支结构、单糖延伸、岩藻糖基化和唾液酸化是主要特征 粘蛋白型O-聚糖根据其核心结构分为四类。解读聚糖异质性对于了解糖蛋白的结构和功能至关重要。高分辨率nMS在完整水平上提供聚糖组成的全景图,并且将糖蛋白结构的异质性与相互作用的化学计量和功能联系起来。这篇文章集中讨论了利用nMS阐明糖蛋白结构异质性和生物分子功能的最新进展。  图1 糖基化特征可以用native MS方法表征  一、描绘糖型组成异质性  糖蛋白的主要特征包括聚糖占据、N-聚糖分支/延伸、岩藻糖基化和唾液酸化。通过native MS 和糖蛋白组学的方法表征人胎球蛋白糖型,native MS确定全局宏观和微观异质性,而糖蛋白组学描述了位点特异性糖基化信息,可以根据特定于位点的信息对蛋白native MS谱中每种糖型的详细组成进行注释(图1c)。  使用凝集素的亲和纯化质谱(AP-MS)有助于靶向分析糖蛋白上具有感兴趣结构的糖型。例如,特异性识别α1-3岩藻糖残基的凝集素 (AAL),揭示了人类α1-酸糖蛋白(AGP)上的 α1-3岩藻糖残基的化学计量 使用与糖基β1-6分支相互作用的凝集素PHA-L,表明 β1-6 分支在所有 AGP 糖型上的普遍存在。  外切糖苷酶处理在糖组学中广泛用于区分具有不同键的单糖残基。一项最近的工作使用了α-神经氨酸酶、β-半乳糖苷酶、β-N-乙酰氨基葡萄糖苷酶和α-岩藻糖苷酶的组合外切糖苷酶,揭示了 AGP 在完整糖蛋白水平上核心和触角岩藻糖基化的化学计量。对于同时具有 N-连接和 O-连接聚糖的高度糖基化生物治疗药物,例如依那西普、使用外切糖苷酶、内切糖苷酶和蛋白酶的综合酶处理对于全面了解糖蛋白的整体异质性至关重要(图2)。  图2 (a) 依那西普的结构 (b) 唾液酸酶(一种外糖苷酶)和PNGase F(一种内糖苷酶)处理的依那西普的native MS。  2、描绘结构异质性  蛋白质O-糖基化在许多细胞表面蛋白质中普遍存在,如 SARS-CoV-2 刺突蛋白受体结合域 (S-RBD),该蛋白具有核心 1 和核心 2 粘蛋白型O糖。最近的一项突破将软着陆 MS 和扫描隧道显微镜 (STM) 相结合,能够对单个聚糖的构象和结构进行成像。  以前的报告表明,N-聚糖分支和核心岩藻糖基化受到糖基化位点局部构象的限制,远离蛋白质表面的唾液酸化和末梢岩藻糖基化被认为受蛋白质骨架结构的影响较小。随着 nMS 分辨率的进步,通过比较位点特异性和全局异质性直接重新审视这一假设是可行的。如果每个位点上的糖基化事件是独立的,那么全局异质性应该与位点特异性信息一致。对于核心岩藻糖基化IgG和携带简单 N糖的人胎球蛋白,位点特异性糖基化完美地解释了整体异质性。然而,最近对高度分支和唾液酸化的 rhEPO 和 S-RBD 的研究表明,糖基分支上唾液酸化打破了native MS 和糖蛋白组学数据之间的这种相关性。因此,这些情况表明唾液酸化并非完全独立于所有糖基化位点。  3、破译N聚糖生物合成途径 监测N-聚糖宏观和微观异质性提供了对其生物合成途径的见解。N-聚糖分支由一系列N-乙酰胺基葡萄糖转移酶催化,它们将单糖依次连接到糖基的不同分支上。对敲除了个别N-乙酰胺基葡萄糖转移酶基因的细胞表达的糖蛋白进行分析,可以揭示糖基的生物合成偏好。除了N聚糖的分支合成以外,岩藻糖基化过程也可以通过native MS揭示。人类AGP最多能携带11个岩藻糖, 用连续的外切糖苷酶消化和native MS来区分 AGP 上的核心和分支岩藻糖基化N-聚糖,揭示了岩藻糖基化在完整糖蛋白水平上的联系和化学计量(图3)。  图3 (a)人AGP结构。(b)外切糖苷酶处理可区分AGP上N糖的核心和分支岩藻糖基化。(c) 外糖苷酶消化的AGP的native MS揭示了在完整糖蛋白水平上岩藻糖基化的联系和化学计量学。  四、将糖的异质性与糖蛋白相互作用联系起来  通过保留完整的蛋白质与配体/药物的复合物,nMS 为蛋白质相互作用的化学计量和动力学提供了信息。AGP 与抗凝药物华法林的研究表明,单岩藻糖基化可减弱蛋白质-药物相互作用(图4)。  图4 (a)人 AGP在其疏水袋中特异性结合抗凝药物(华法林)。 (b) 将 AGP-华法林复合物的native MS绘制为华法林浓度的函数 (c)华法林浓度和与华法林结合的非岩藻糖基化AGP或单岩藻糖基化AGP的百分数的对应曲线。非岩藻糖基化为蓝色,单岩藻糖基化为红色。 (d) 不同糖型解离常数的比较表明,N-聚糖分支和岩藻糖基化降低了 AGP 对华法林的亲和力。  native MS的分辨率革命已经使糖组学、糖蛋白组学和top-down MS之间建立了联系,以揭示糖基的宏观异质性。未来,蛋白质糖基化的数学模型和多组学方法的整合将为我们理解“不可解析”的糖蛋白复合物提供新的思路。
  • 岛津推出用于分析疏水多肽蛋白的MALDI新基质
    岛津制作所(SSI)近日发布了ATHAP-MALDI基质方法工具包,用于改进对包含跨膜疏水蛋白和多肽的分析能力。传统的LC-MS/MS和MALDI-TOF 很难分析包含疏水基团的膜蛋白。烷基化三羟基苯乙酮(ATHAP)新基质在此方法中发挥了特殊的作用。  许多疾病的生物标志物是包含疏水基团的膜蛋白。之前用液质和MALDI-TOF的检测效果都不理想,这类蛋白和多肽一般不被目标分析物列表所包含。由于疏水多肽的低溶解性,其难于在液相质谱中得到检测。采用如α -氰基-4-羟基肉桂酸 (CHCA)、芥子酸(SA)、二羟基苯甲酸(DHB)等传统基质的MALDI法离子化效率较低,从而导致用MALDI-TOF检测这些物质灵敏度很差。  “疏水性是将横跨膜片段整合到脂质双分子层的主要动力。这些新的基质工具包为科学家分析这些重要物质的生物和物理化学性质提供了前所未有的可能性。”岛津公司Scott Kuzdzal博士说。“这些工具包可以提高分析灵敏度,开拓对从抗菌肽到癌症蛋白标志物等关键疏水性分子结构和功能的研究。”  ATHAP基质由广岛大学和田中耕一尖端科技实验室联合开发,并授权给岛津制作所。本研究得到日本学术振兴会(JSPS) “世界领先创新科技研发资助项目 (FIRST Program) ”的赞助支持。编译:郭浩楠
  • 蛋白分析利器-月旭科技助力探索蛋白质人工化学合成的奥秘
    1965年,中国科学家在世界上首次人工合成牛胰岛素,开启了生命化学研究的新时代。过去数十年历尽科研工作者的不断努力,蛋白质的人工化学合成取得了巨大进步。相较于自然界的生物合成,化学合成可创制具有各种精确控制结构及非天然结构的人造蛋白质,对于发展满足我们需求的蛋白质工具和蛋白质产品带来了新机遇。近期科研工作者们在化学合成蛋白领域又取得了新的成果,并应用了月旭科技的相关色谱柱产品,快来随小编一起饱尝科研的饕餮盛宴吧!化学合成大型镜像聚合酶并实现镜像DNA信息存储WELCH据悉,自然状态下的DNA,会经过精巧的进化来存储遗传信息。而手性倒链L-DNA具有相同的信息能力,但耐生物降解,可作为一个健壮的生物正交信息库。在一项新研究中,清华大学生命学院朱听课题组的研究人员们用化学方法合成了一个90kda的高保真镜像Pfu DNA聚合酶,它能够精确组装一个千碱基大小的镜像基因。该实验中首次使用的大型镜像蛋白质全化学合成策略及千碱基长度镜像基因的组装技术,解决了长期制约镜像生物学领域发展的大型镜像生物分子的制备难题。该研究成果以“利用高保真镜像Pfu DNA聚合酶实现生物正交的镜像DNA信息存储”(Bioorthogonal information storage in L-DNA with a high-fidelity mirror-image Pfu DNA polymerase)为题,于2021年7月29日发表在Nature Biotechnology杂志上。研究成果快览研究人员们用聚合酶在L-DNA中编码路易斯巴斯德1860年的一段话,这段话第一次提出了生物学的镜像世界。为突破全化学合成对蛋白质大小的限制,研究团队通过将嵌合的D-DNA/L-DNA关键分子嵌入到D-DNA存储库中,来实现手性隐写。团队将全长为775个氨基酸的Pfu DNA聚合酶分割为长度为467个氨基酸和308个氨基酸的两个片段分别合成,将其混合后共同复性,使其正确折叠为具有完整功能的90 kDa高保真镜像Pfu DNA聚合酶,为目前已报道最大的全化学合成蛋白质;研究者还利用该高保真镜像聚合酶组装出长达1.5 kb的镜像16S核糖体RNA基因,为目前已报道最长的镜像DNA。此外,他们发现保存在自然环境条件下(当地池塘水中)的微量L-DNA条形码,在1年内仍可扩增和测序;而在相同条件下的D-DNA条形码,在1天后就已经无法扩增。背后原因只有一个:它们的手性不同。在研究中,该课题组利用Ultimate XB-C4 (4.6*250mm, 5μm)来监测反应的进行,并检测肽段产品的纯度。同时用制备柱Ultimate XB-C4和C18 (21.2*250mm, 5μm或10*250mm, 5μm)来分离制备粗品肽段和连接产物。全化学合成富含二硫蛋白质WELCH在生物医学研究中,富含二硫的蛋白质是有用的药物或工具分子,但它们的合成由于折叠的困难而变得复杂。有鉴于此,清华大学的刘磊教授、中国科学技术大学的郑基深教授等研究人员,使用可移除的O-连接的β-N-乙酰葡萄糖胺策略,实现了正确折叠的富含二硫键蛋白质的全化学合成,该研究成果以“Total Chemical Synthesis of Correctly Folded Disulfide-Rich Proteins Using a Removable O-Linked β-N-Acetylglucosamine Strategy”为题,发表于2022年1月3日的JACS杂志上。研究成果快览研究人员描述了一种可移除糖基化修饰(RGM)策略,它可以加速具有多个或甚至链间二硫键的正确折叠蛋白质的化学合成。实验过程中,利用Ultimate XB-C4(120Å或300Å,250mm×4.6mm,5μm)监测蛋白的合成反应,并用半制备柱Ultimate XB-C4和C18(300Å,250mm×10mm,5μm)成功制备得到目标蛋白。该策略包括在Ser/Thr位点引入简单的O-连接的β-N-乙酰氨基葡萄糖(O-GlcNAc)基团,通过稳定其折叠中间体,有效地促进了富含二硫的蛋白质的折叠。折叠后,O-GlcNAc基团可以用β-N-乙酰氨基葡萄糖酶(OGA)被有效地去除,从而获得正确折叠的蛋白质。使用这种策略,该研究组完成了正确折叠的铁调素的合成,这是一种含有四组二硫键的铁调节激素。研究人员首次实现了正确折叠的白细胞介素5(IL-5)的全合成,这是一种26kDa的同型二聚体细胞因子,负责嗜酸性粒细胞的生长和分化。“工欲善其事,必先利其器”,月旭科技专门针对多肽、蛋白类等生物样品方法开发,推出Welch生物样品分析方法开发包,助力前沿的科学研究和日常生产分析制备工作。● 适合蛋白、多肽或其他大分子的方法开发。为了能更好地与键合相发生作用,需使用大孔径(300Å或450Å)的填料。● 不同保留能力的不同选择性键合相,满足各种分子大小的蛋白质、多肽的保留和分离。参考文献1. Ting F. Zhu, et al. Bioorthogonal information storage in l-DNA with a high-fidelity mirror-image Pfu DNA polymerase. Nature Biotechnology,2021. Nature Biotechnology | VOL 39 | December 2021 | 1548–1555.2. Lei Liu, et al. Total Chemical Synthesis of Correctly Folded Disulfide-Rich Proteins Using a Removable O-Linked β-N-Acetylglucosamine Strategy. J. Am. Chem. Soc. 2022, 144, 349−357.
  • 【重磅】冷冻电镜Cryo-EM解析出新冠病毒首个S蛋白的近原子分辨率结构
    电镜不仅可以揭示新冠病毒形态、扩增过程及传播途径,同时,使用冷冻电镜解析病毒的刺突糖蛋白(Spike glycoprotein, S蛋白)结构是助力疫苗与抗病毒药物研发的关键所在。2月15日,美国得克萨斯大学奥斯汀分校Jason S. McLellan教授团队和美国国立卫生研究院NIH联合在预印版网站bioRxiv上发表了首篇使用冷冻电镜解析新冠病毒S蛋白的研究文章。Jason Mclellan团队通过冷冻电镜Cryo-EM技术,解析了新冠病毒S蛋白三聚体的3.5埃的近原子分辨率结构,从生物物理及结构生物学的角度加深了我们对新冠病毒的认知。01为何2019-nCoV的传染性如此之强?作者使用了来自赛默飞旗下品牌Thermo Scientific的Titan Krios冷冻电镜,解析了新冠病毒刺突糖蛋白(简称S蛋白)三聚体预融合构象的近原子分辨率结构,其分辨率达3.5埃(10-10 m)。该研究中发现新冠病毒S蛋白三聚体的在多数时候其三个受体结合域(Receptor-binding domains,RBDs)中的一个发生了旋转,使得其更容易与细胞表面的受体相互作用。作者还借助于其他生物物理和负染电镜(Thermo Scientific Talos TEM)技术,发现 2019-nCoV S结合细胞表面受体血管紧缩素转化酶2(angiotensin-converting enzyme 2, ACE2)的亲和力高于SARS-CoV的 S蛋白。这两方面的数据说明了为何2019-nCoV的传染性较其他冠状病毒传染性更强。*新冠病毒S蛋白三聚体预融合构象的近原子分辨率结构作者进一步通过动力学实验检测确认新冠病毒、SARS病毒与宿主细胞受体ACE2亲和力的差异。令人震惊的是,2019-nCoV结合ACE2的亲和力是SARS病毒结合受体亲和力的10-20倍。该研究成果进一步阐释了新冠病毒能够迅速在人际间传播的原因。*新型冠状病毒相对SARS病毒对ACE2具有高亲和性02为何SARS-CoV的抗体对2019-nCoV无效?由于新型冠状病毒与SARS-CoV病毒之间的结构同源性,通过比较,研究者发现了2019-nCoV S蛋白与SARS-CoV S蛋白的结构差异。此外,他们还测试了三种研发用于结合SARS-CoV S蛋白的单克隆抗体,研究发现这些抗体并不能与2019-nCoV S蛋白RBD产生交叉反应,这说明SARS-CoV的抗体并不能用于2019-nCoV, 针对2019-nCoV必须重新设计抗体和疫苗。*2019-nCoV S与SARS-CoV S的结构对比总而言之,此文章利用冷冻电镜技术对新型冠状病毒的S蛋白进行了近原子分辨率的解析,为进一步精确地疫苗设计以及抗病毒药物的研发提供了重要的结构生物学基础,为发展新型冠状病毒的医疗对策提供了技术支持。后续如有相关疫苗或抗病毒药物的研究进展,冷晓镜会持续跟进报道。冷晓镜小课堂Q刺突糖蛋白(简称S蛋白)为何这么重要?冠状病毒的刺突糖蛋白(Spike glycoprotein, S glycoprotein)是Ⅰ型跨膜糖蛋白,也是病毒最大的结构蛋白,其包含了病毒的主要抗原决定簇,能够刺激机体产生中和抗体和介导免疫反应,通常包括由球状的受体结合亚基S1和棒状的融合亚基S2两部分。同时,S蛋白的S1亚基决定了受体细胞的表面受体的特异性,而S2亚基又决定了病毒进入细胞的融合过程的特性,可以说S蛋白的结构对于设计疫苗来产生抗体或者设计药物阻断病毒吸附与侵染具有重要作用。*美国疾病控制中心 (CDC) 创建的新冠病毒立体模型“ 作为冷冻电镜(cryo-EM)技术的开拓者,赛默飞世尔科技一直致力于该技术的研发和普及,在不断推出新产品的同时,还专门与客户合作开发了冷冻电镜免费在线学习工具https://em-learning.com,希望为广大生命科学工作者及相关行业提供更完备更易用的解决方案。目前,赛默飞世尔科技冷冻电镜产品家族包括旗舰级300 kV产品Krios G4,最新推出的200 kV产品Glacios,用于冷冻样品制备的Vitrobot和用于样品筛查的入门级产品Talos L120C G2,以及用于冷冻电子断层扫描(cryo-ET)细胞样品减薄的冷冻聚焦离子束Aquilos 2等。”
  • 非变性质谱在生物制药完整蛋白分析中的应用
    p  何为非变性质谱?就是选用温和的溶液体系及质谱条件,使蛋白保持在非变性状态下被分析。听到这,有些小伙伴可能会一头雾水:师兄师姐教我处理蛋白质样品的时候,第一步就是要变性啊,怎么现在又不要变性了?/pp  在通常的蛋白质相关分析中,为了破坏蛋白质的三维立体空间结构,便于酶解等操作,会通过加热或是加入高浓度的变性试剂(如尿素、盐酸胍等),使蛋白质变性 另外,对于常用的分离手段——反相色谱来讲,其流动相的酸性pH条件与高有机相同样也会使蛋白质变性。当需要对蛋白质中的非共价结合进行研究时,为了避免非共价结合被强烈的变性条件所破坏,则需在非变性的液相-色谱条件下(通常为50mM醋酸铵,pH=7的中性体系)进行研究 另外,对于组成较为复杂的蛋白样品,在非变性条件下分析时,由于体系中质子数减少,所以蛋白电荷态数目也会相应减少,电荷态之间的相互重叠度也会下降,进而减少复杂组分之间的相互影响,从而能够得到复杂蛋白样品中每个组分的分子量信息(图1)。/pp style="TEXT-ALIGN: center"img title="图1_副本.jpg" src="http://img1.17img.cn/17img/images/201704/insimg/56171fe8-be7c-4cc8-a672-814a9fe87e30.jpg"//pp style="TEXT-ALIGN: center" strong图1/strong 同一样品分别于变性及非变性条件下进行分子量测定的原始谱图/pp  目前,strong非变性质谱技术主要应用在两个方面/strong:一是strong生物制药领域/strong,通过打开单克隆抗体链间二硫键后在Cys位点上偶联小分子药物(Cys-ADC)的完整分子量分析,此类药物的链间仅靠非共价力结合,故变性条件下各条链会分离,无法测得其完整状态的分子量 另一应用方向为strong研究蛋白质多聚体/strong,非变性条件下不仅可以保持各个亚基间的非共价相互作用,同时由于中性条件更接近生理状态,得到的结果更具意义。/pp  现在,非变性质谱与氢氘交换、X-ray衍射、核磁共振、冷冻电镜和cross-linking等技术联合使用、互为补充,已经越来越多的被应用在结构生物学、生物医药等领域的研究中。本期文章将会重点介绍非变性质谱在治疗性生物医药制品完整分子量测定中的研究,下期文章将会侧重介绍非变性质谱用于蛋白复合物的研究进展。/ppspan style="COLOR: #002060"strongOrbitrap超高分辨质谱:非变性质谱研究的理想平台/strong/span/pp  古人云:工欲善其事,必先利其器。要想研究做得好,趁手工具不可少!针对于非变性质谱研究中的需求,我们在Orbitrap质谱平台上对相关参数进行了优化,包括离子源区脱溶剂能量、质量范围的扩展以及高质荷比离子传输效率的优化等,使Orbitrap在固有的高分辨率、高质量精度及高灵敏度基础上,在非变性质谱领域也能有出色表现。/pp style="TEXT-ALIGN: center"img title="图2_副本.jpg" src="http://img1.17img.cn/17img/images/201704/insimg/caeec8f3-896f-4e02-a44a-84aae9ecd287.jpg"//pp style="TEXT-ALIGN: center"  strong图2/strong Orbitrap质谱平台用于非变性质谱分析/pp  上文中提到,在生物制药领域中,会通过分子工程设计,在单克隆抗体的特定氨基酸上通过化学反应,偶联上小分子治疗药物,通过单克隆抗体的靶向识别功能将小分子药物精确带至病变细胞处并释放,达到精确给药、减少毒副作用的目的,这类药物被称作抗体药物偶联物(Antibody Drug Conjugates,ADCs)。在这类药物中,通过将单抗链间二硫键打开从而在Cys位点上偶联药物的Cys-ADC,由于其链间仅靠非共价力结合,故需在非变性质谱条件下才能对其完整分子量进行测定(图3)。/pp style="TEXT-ALIGN: center"img title="图3_副本.jpg" src="http://img1.17img.cn/17img/images/201704/insimg/270ff8dd-d5c1-442b-baf1-f287fcb557b9.jpg"//pp style="TEXT-ALIGN: center" strong 图3/strong Cys-ADC结构示意图/pp style="TEXT-ALIGN: center"  图4展示了使用非变性质谱平台对Cys-ADC进行完整分子量测量的结果。由图中不难发现,使用体积排阻色谱(SEC),可以将单克隆抗体与其他杂质分离开,而Orbitrap质谱平台能够得到基线分离、信噪比高的原始谱图。经数据处理软件解卷积处理后,可见偶联了0/2/4/6/8个小分子药物的簇峰分布,符合Cys-ADC的典型分布特征 解卷积后计算所得该ADC的药物/抗体比值(Drug to Antibody Ratio, DAR),与之前报道过的DAR值相符。/pp style="TEXT-ALIGN: center"img title="图4_副本.jpg" src="http://img1.17img.cn/17img/images/201704/insimg/b494de8a-6ac5-42cf-ad12-d84637e32bef.jpg"//pp style="TEXT-ALIGN: center"  strong图4 /strong使用非变性质谱平台对Cys-ADC进行完整分子量测量。/pp style="TEXT-ALIGN: center"  (上),原始色谱/质谱图 (下),解卷积后谱图。/pp  作为对照,在变性条件下也对同一个样品进行了分子量测定(图5),发现链间的非共价结合在强烈的变性条件下均被破坏,只能观察到部分ADC的分子量信息。该实验进一步说明了在非变性条件下对Cys-ADC进行分子量测定的必要性。/pp style="TEXT-ALIGN: center"img title="图5_副本.jpg" src="http://img1.17img.cn/17img/images/201704/insimg/46b85220-b769-47dc-b534-f92c93b56cff.jpg"//pp style="TEXT-ALIGN: center"  strong图5/strong 变性质谱条件下对Cys-ADC进行分子量测量。/pp style="TEXT-ALIGN: center"  (上),原始色谱/质谱图 (下),解卷积后谱图。/pp  对于常见的另外一种ADC——Lys-linked ADC,虽然其小分子药物与单克隆抗体是通过共价键相结合,但偶联上小分子药物后,ADC的复杂度大大增加,此时若在非变性条件下进行分子量测定,可以减少信号之间的干扰,得到更加准确的测量结果(图6)。/pp style="TEXT-ALIGN: center"img title="图6_20170406090915_副本.jpg" src="http://img1.17img.cn/17img/images/201704/insimg/7c9e60f0-f01a-45eb-85eb-f9dceece9c46.jpg"//pp style="TEXT-ALIGN: center"  ▲非变性条件可减少复杂组分间信号重叠/pp style="TEXT-ALIGN: center"img title="非变性2_20170406090518_副本.jpg" src="http://img1.17img.cn/17img/images/201704/insimg/e634be51-bf68-49f2-b7be-e205227a7242.jpg"//pp style="TEXT-ALIGN: center"  ▲非变性条件下Lys-ADC完整分子量测量结果/pp style="TEXT-ALIGN: center"  strong图6 /strong使用非变性质谱平台对Lys-ADC进行完整分子量测量。/pp  strong小结/strong/pp  本期我们对非变性质谱技术的原理、适用范围进行了介绍,并以Cys-ADC与Lys-ADC样品的完整分子量测量为例展示了该方法的应用,不知道小伙伴们有没有对非变性质谱技术有个初步的了解呢?下期我们将会介绍该技术在蛋白复合物研究中的应用,各位看官走过路过不要错过,我们下期见!/pp  参考文献/pp  [1] Dabaene et al., Anal Chem. 2014, Nov 4 86 (21):10674-83./pp /p
  • 11月9日开播!蛋白分析及表征技术进展主题网络研讨会
    蛋白质作为生命基本构成单元,几乎承担着所有生命活动。深入研究蛋白质的功能和结构,全面分析蛋白质间的相互作用和调控机制,不仅能更好地了解生命的奥秘,还为疾病的预防和治疗提供新思路和新方法。为帮助广大实验室用户及时了解蛋白质分析及表征技术最新进展及前沿应用,仪器信息网将于11月09日举办“蛋白分析及表征技术进展”主题网络研讨会,聚焦蛋白质的结构表征、相互作用和动态变化等前沿研究,涵盖质谱、X射线晶体衍射、核磁共振、原子力显微镜和冷冻电镜等技术分享,欢迎大家踊跃报名!报名链接:https://insevent.instrument.com.cn/t/fbs (点击报名)『会议日程』蛋白分析及表征技术进展(2023年11月09日)报告时间报告方向专家单位09:30-10:00结构蛋白组学质谱仪器与方法徐伟北京理工大学 教授10:00-10:30分析型超速离心机在生物大分子药物分析中的前沿应用李文奇清华大学蛋白质研究技术中心 蛋白质制备与鉴定平台主管/高级工程师10:30-11:00分析实验中移液产品的正确选择和使用庄昕晔普兰德(上海)贸易有限公司 产品专员11:00-11:30大分子晶体学在蛋白分析中的应用范仕龙清华大学蛋白质研究技术中心 X射线晶体学平台主管/高级工程师11:30-12:00基于等温滴定微量热技术的蛋白互作分析研究吴萌中国科学院分子细胞科学卓越创新中心 高级工程师12:00-13:30午休时间13:30-14:00高速原子力显微镜的生物大分子研究焦放中国科学院物理研究所 特聘研究员14:00-14:30生物型原子力显微镜在蛋白质形貌和结构表征中的应用樊友杰布鲁克(北京)科技有限公司 高级应用/服务工程师14:30-15:00蛋白质表观分子量的核磁共振检测方法李红卫北京大学北京核磁共振中心 高级工程师15:00-15:30冷冻电镜制样技术经验交流郭振玺北京大学冷冻电镜平台 副主任/高级工程师15:30-16:00利用肌红蛋白铰链区域紧密的氢键网络来构建稳定的结构域交换二聚体的研究谢成北京大学张文彬教授课题组 博士后『精彩报告预览』徐伟 教授北京理工大学《结构蛋白组学质谱仪器与方法》【报告摘要】:针对生理条件下微量生物分子三维结构及功能研究这个科学问题,首先发展了具有高稳定性、高重复性的液相离子迁移电泳技术与仪器,该方法利用Laminar flow取代了传统的电渗流,通过引入Taylor扩散实现了样品分子的分离、半径和分子有效带电量的同时测量。为了获取生物大分子较全面的立体结构,课题组进一步将离子迁移电泳与非变性质谱技术相结合,通过气相非变性质谱实验获得了分子的溶液可及表面积、通过液相迁移电泳实验获取了分子体积,再结合流体力学Stokes Flow方程,最终获取了蛋白及蛋白复合体的三维几何尺寸信息,该方法可应用于蛋白-小分子复合体结构研究和蛋白质内部几何结构解析。基于液相离子迁移原理,课题组进而开发了液相离子阱装置,在液相条件下实现了离子的富集、选择性传输与顺序弹射分析。通过该装置,不仅可以实现复杂样品的分离,也可以将质谱仪器的检测灵敏度提升100倍以上。报名占位李文奇 蛋白质制备与鉴定平台主管/高级工程师清华大学蛋白质研究技术中心《分析型超速离心机在生物大分子药物分析中的前沿应用》【报告摘要】:生物大分子药物包括抗体药、细胞治疗药、疫苗、重组蛋白类药物等;生物大分子药物具有分子量大,结构复杂的特点,随着生产工艺的不断优化和分析技术的进步,生物大分子药物的质量控制将日趋规范和严格,国家药品监督管理部门也在不断提升该类产品的质量控制要求。有效的质量控制分析方法是确保产品安全性和有效性的基础,报告介绍了生物大分子药物市场规模以及临床现状,结合生物大分子药物的研发流程和基本性质,针对性的对其成药性评价,制备和工艺开发提出相对应的质量控制分析方法,尤其是分析型超速离心机在生物大分子药物分析中的主要应用和发展前景,通过分析超速离心技术在国内外进而对于不同类型的生物大分子药物制定分析策略。报名占位庄昕晔 产品专员普兰德(上海)贸易有限公司《分析实验中移液产品的正确选择和使用》【报告摘要】:移液操作是实验工作的基本技能之一,同时也是最容易被忽视的技能。 液体移液仪器、体积量具在实验室移液操作中扮演着重要的角色。这决定了几乎所有化学与生物学分析测试的精度和结果的可靠性、重复性,正确的选择、使用移液产品是生化实验的必要基础。本次报告将介绍BRAND瓶口分液器、移液器、连续分液器、容量瓶、移液管等移液产品的原理和操作。报名占位范仕龙 晶体学平台主管/高级工程师清华大学蛋白质研究技术中心《大分子晶体学在蛋白分析中的应用》【报告摘要】: 大分子晶体学是一种通过生物大分子(如蛋白质和核酸)形成晶体,以获得其高分辨率三维结构的技术。在蛋白性质研究中,大分子晶体学发挥着重要的作用。 通过大分子晶体学,可以确定蛋白质的三维结构,这对于理解蛋白质的功能和作用机制非常重要;通过大分子晶体学,可以解析蛋白质与其他分子(如酶底物、配体等)的结合位点,以及相互作用的方式。这有助于揭示蛋白质的功能机理,例如酶的催化机制、信号传递等。从而指导药物设计和研发。通过解析药物与靶蛋白的结合模式,可以优化药物的结构和性能,提高药物的特异性和效力;最后大分子晶体学可以提供结构信息,帮助药物研发人员进行结构优化工作。通过研究晶体结构和结合位点的特性,可以设计和改进蛋白质受体和配体的结构,使其具有更好的稳定性、活性和选择性。 总之,大分子晶体学在蛋白性质研究中发挥着至关重要的作用,可以帮助揭示蛋白质的结构、功能机理和多样性,指导大分子和小分子药物设计和优化。报名占位吴萌 高级工程师中国科学院分子细胞科学卓越创新中心《基于等温滴定微量热技术的蛋白互作分析研究》【报告摘要】:蛋白质与其他分子的相互作用是蛋白组学研究中的重要内容,用于研究蛋白-蛋白相互作用的技术和方法有很多种。等温滴定微量热技术是最早发展起来可用于蛋白间相互作用研究的定量检测技术,具有可在溶液中无需任何标记、样品无损地进行检测的特点。本报告结合工作实际对等温滴定微量热技术(ITC)的原理、操作及应用着重进行介绍。报名占位焦放 特聘研究员中国科学院物理研究所《高速原子力显微镜的生物大分子研究》【报告摘要】:待定。报名占位樊友杰 高级应用/服务工程师布鲁克(北京)科技有限公司《生物型原子力显微镜在蛋白质形貌和结构表征中的应用》【报告摘要】:蛋白质在细胞中发挥着各种各样的功能,涵盖了细胞生命活动的各个方面,如发挥催化作用的酶和参与生物体内的新陈代谢的胰岛素,还有可以进行物质运输的分子马达蛋白。细胞免疫反应、细胞分化、细胞凋亡等过程中也都有大量蛋白质的参与。 研究蛋白质的形貌和结构以及蛋白质与其他分子之间的相互作用,有助于理解蛋白质的作用,了解蛋白质是如何行使其生物功能,这无论是对于生物学还是医学和药学,都是非常重要的。通过对蛋白力学结构的分析,可以进行功能注释和指导设计特异性的蛋白的合成。 本报告我们将向大学介绍Bruker生物型原子力显微镜在蛋白质领域的相关应用,包括蛋白质形貌的表征和原位动态过程的观察,还有单分子力谱在蛋白结构解析中的应用。 Bruker生物型原子力显微镜的全针尖扫描模式的设计能从结构上很好地与现在的主流倒置显微镜进行无缝的耦合联用,能够让我们从多变量角度对蛋白质进行解析。报名占位李红卫 高级工程师北京大学北京核磁共振中心《蛋白质表观分子量的核磁共振检测方法》【报告摘要】:蛋白质表观分子量更加真实的反映了其在接近生理条件下的存在状态。本报告介绍一种可以极大降低环境因素的影响、提高测试结果的可重复性的蛋白质表观分子量的测定方法,方法在蛋白质研究以及蛋白质类产品的研发与生产过程中具有较高的实用价值。通过该方法,发明人旨在探索一条从方法创新到实验室应用再到企业应用的途径。报名占位郭振玺 副主任/高级工程师北京大学冷冻电镜平台《冷冻电镜制样技术经验交流》【报告摘要】:冷冻电镜样品制备是冷冻电镜技术发展的瓶颈之一,制约着解析生物大分子复合物三维结构的效率。本报告将结合报告人所在冷冻电镜平台自主开展的支撑科研工作者快速制备冷冻样品的几种方法,与大家进行交流。报名占位谢成 博士后北京大学化学与分子工程学院张文彬教授课题《利用肌红蛋白铰链区域紧密的氢键网络来构建稳定的结构域交换二聚体的研究》【报告摘要】:我们探究了氢键对肌红蛋白(Mb)结构域交换二聚体的形成和稳定性的影响。当Mb二聚体铰链区氢键网络附近的 Leu137 突变为亲水性氨基酸(Glu 或 Asp)后,二聚体的稳定性增强。铰链区氢键网络更紧密的突变体中,氢键数量更多,α螺旋刚性更强,二聚体结构更加稳定。本研究证明了氢键对于设计稳定结构域交换蛋白质二聚体的重要性和实用性。报名占位扫码加入高内涵成像技术交流群(发送备注姓名+单位+职位)扫码直达报名页面温馨提示:1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。会议内容及报告赞助:仪器信息网 赵先生:13331136682,zhaoyw@instrument.com.cn
  • 对于人类蛋白质相互作用网络的结构解析
    大家好,本周为大家分享一篇发表在Nat. Struct.上的文章,Towards a structurally resolved human protein interaction network,该文章的通讯作者是瑞典斯德哥尔摩大学的Petras Kundrotas、Arne Elofsson和欧洲分子生物学实验室的Pedro Beltrao。蛋白质-蛋白质相互作用(PPIs)的表征对于理解形成功能单位的蛋白质组和细胞生物学研究的基础是至关重要的。同时,蛋白质复合物的结构表征是理解蛋白质的功能机制、研究突变的影响和研究细胞调控过程的关键步骤。最近,基于神经网络的方法已经被证明了准确预测单个蛋白质和蛋白质复合物的结构的能力;然而,其在大规模预测人类复杂结构中的应用尚未得到有效测试。在此,本文测试了应用AlphaFold2在预测人类蛋白质相互作用结构上的潜力和局限性,并通过实验提示了界面残基中潜在的调节机制。除此之外,本文还提供了使用预测的二元复合物来构建高阶组装的案例,以此拓展了对于人类细胞生物学的理解。人类蛋白质相互作用的结构预测本文基于AlphaFold2的FoldDock管道对65484对来源于HuRI与hu.MAP V.2.0数据库中实验测定的PPIs的结构进行预测。文章合并了一个pDockQ分数,该分数可以根据置信度对模型进行排序。结果显示,已知相互作用蛋白的pDockQ往往高于随机集;对于hu.MAP数据集显示出平均比HuRI数据集更高的可信度,这表明,高可信度模型集中在具有高亲和力和直接相互作用的蛋白质相互作用区域。实验表明,AlphaFold2可以预测大型复合物中直接相互作用的蛋白对的结构(图1)。图1 | AlphaFold2复合物预测在大规模人类PPIs数据集上的应用影响预测置信度的特征如图1a所示,相较于HuRI和hu. MAP数据库中的蛋白质对,出现在蛋白质数据库(PDB)中的蛋白质对更加富集于高分模型部分。为了更好地理解这种差异,本文首先研究了一个由大型(10链)异质蛋白复合物构建的额外数据集。通过实验,结果显示直接相互作用对与间接相互作用对之间pDockQ分数的差异是显著的,这表明与间接相互作用对相比,即使直接相互作用对是大型复合体的一部分,也往往能够被预测。除此之外,由于HuRI数据库中的许多蛋白质间相互作用很可能是短暂的,而AlphaFold2无法可靠地预测这种相互作用(图2)。图2 | 影响预测置信度的蛋白质和相互作用特征:不同数据集的分析预测的复合物结构在化学交联上的验证化学交联结合质谱分析是一种识别蛋白质对中邻近的活性残基的方法,可以用来帮助确定可能的蛋白质界面。为了确定预测的复合物结构是否满足这种正交空间约束,本文获取了528对具有预测模型的蛋白质对的残基对的交联集合。在此章节中,文章提供了多个案例证明了化学交联验证的有效性(图3)。图3 | 对于预测复合物模型的化学交联支持复合物界面上与疾病相关的错义突变与人类疾病相关的错义突变可以通过多种机制改变蛋白质的功能,包括破坏蛋白质的稳定性、变构调节酶活性和改变PPIs。为了确定预测结构的有效性,本文汇编了一组位于界面残基上的突变,这些突变之前曾被实验测试过对于相应相互作用的影响。文章使用FoldX预测突变时结合亲和力的变化,并观察到破坏相互作用的突变强烈影响了结合的稳定性;另外,本文就在一系列生物学功能中具有界面疾病突变的蛋白质网络簇进行了举例说明(图4)。图4 | 蛋白质复合物界面残基的疾病突变蛋白质复合物界面的磷酸化调节蛋白质磷酸化可以通过改变修饰残基的大小和电荷来调节结合亲和力来调节蛋白质的相互作用,将磷酸化位点定位到蛋白质界面可以为它们在控制蛋白质相互作用中的功能作用产生机制假说。本文使用了最近对人类磷酸化蛋白质组26的鉴定,在高置信度模型中鉴定出了界面残基上的4,145个独特的磷酸化位点。实验表明,某些界面可能受到特定激酶和条件的协调调控。虽然不是所有界面上的磷酸位点都可能调节结合亲和力,但这一分析为特定扰动后的相互作用的潜在协调调控提供了假设(图5)。图5 | 界面残基上磷酸化位点的协同调控来自二元蛋白质相互作用的高阶组装蛋白质既能够同时与多个伙伴相互作用组成更大的蛋白复合物,又能够在时间和空间上分离。这也反映在文章的结构特征网络中,即蛋白质可以在群体中被发现,如蛋白质相互作用全局网络视图所示(图6)。由于使用AlphaFold2预测更大的复合物组装可能受到计算需求的限制,文章测试了蛋白质对的结构是否可以迭代结构上对齐。文章在上述网络中覆盖的一组小的复合物上测试了这一过程,并将一个实验确定的结构与预测的模型进行对齐,展示了该过程的潜力和局限性。受测试例子的鼓励,本文定义了一个自动化过程,通过迭代对齐生成更大的模型。总之,文章发现可以迭代地对齐相互作用的蛋白质对的结构来构建更大的组装,但同时也发现了目前限制这一过程的问题。图6 | 对高阶组装的蛋白质复合物的预测结论本文通过一系列的实验评估了应用AlphaFold2预测已知人类PPIs的复杂结构的潜力与局限性。分析结果表明,由亲和纯化、共分馏和互补的方法组合支撑的蛋白质相互作用能够产生更高置信度的模型。文章证明,可以使用模型指标(如pDockQ评分)对高置信度模型进行排序,为大规模PPIs和稳定复合物的详细研究提供支持;而来自交联质谱实验的数据为进一步验证这些预测提供了理想的资源。除此之外,本文用疾病突变和磷酸化数据证明了蛋白质界面的结构模型对于理解分子机制以及突变和翻译后修饰的影响至关重要;最后,文章提出了从预测的二元配合物出发构建更大的组件结构模型的想法。后续仍需要更多的工作来确定确切的化学计量学,设计方法和评分系统来构建如此更大的复杂组件,以及预测具有弱和瞬态相互作用的蛋白质之间的相互作用。参考文献(1) Burke DF, Bryant P, Barrio-Hernandez I, et al. Towards a structurally resolved human protein interaction network [published online ahead of print, 2023 Jan 23]. Nat Struct Mol Biol. 2023 10.1038/s41594-022-00910-8. doi:10.1038/s41594-022-00910-8
  • 全球基因组学和蛋白组学分析仪器市场预测
    全球权威调研机构Technavio最新报告显示,预计在2013到2018年全球基因组学和蛋白组学分析仪器市场将保持7.83%的复合年增长率。  基因组学研究的是基因及其功能,蛋白质组学研究的是蛋白质组或组蛋白的结构和功能,两者均使用分子生物学和生物信息学的工具和技术。基因组学通过绘制基因和DNA序列来了解基因组的结构和功能。一个蛋白质组是一个基因组在特定时间内表达的一整套蛋白质。蛋白质组学主要涉及的是使用分子生物学、生物化学和遗传学来分析蛋白质,这些蛋白质是通过基因编码而来。蛋白质是所有细胞的主要组分,而且控制细胞的不同功能特性。基因组和蛋白质组结构或功能的缺陷可能导致疾病,因此基因组学和蛋白组学技术在科研、新药研发、疾病诊断中发挥着重要作用。这些应用都需要基因和蛋白缺陷的识别和研究,而基因组和蛋白质组的蛋白质分离、净化、识别、量化和分析都需要仪器、试剂和软件。基因组学和蛋白质组学用到多种分析仪器,但应用最广泛的是色谱系统、质谱系统、PCR系统和下一代测序系统。  目前,基因组学和蛋白组学领域的主要供应商有安捷伦、Bio-Rad、罗氏集团、Illumina、PE和赛默飞,其他比较优秀的供应商还有BD、布鲁克、GE医疗、JASCO、日本电子、Luminex、Qiagen NV、Rigaku Corp.、岛津、西格玛、Spectrolab Systems、Waters等。  这个市场发展的主要推动力为基因组学和蛋白组学技术的完善,主要挑战在于基因组学和蛋白组学知识的缺乏,主要趋势为聚焦于药物研发和疾病诊断。
  • 139万!东南大学医学与生命科学平台蛋白纯化仪和蛋白质稳定分析仪采购项目
    项目编号:JSHC-2022121190C2项目名称:东南大学医学与生命科学平台蛋白纯化仪采购预算金额:96.0000000 万元(人民币)采购需求:东南大学医学与生命科学平台采购蛋白纯化仪一套,主要功能要求如下:可以进行生物大分子的范例纯化,已知和未知蛋白质的纯化,蛋白质的结构动力学药物作用靶点研究,药物蛋白的分离,蛋白质工程药物的合成,蛋白质的定性,基因表达产物的分离。主要技术要求如下:蛋白纯化系统主机部分系统泵:精确的全自动微量柱塞泵,双泵四泵头,每个泵头都有独立除气阀。流速:0.001-25ml/min;装柱可以双泵模式运行,达到0.1–50ml/min。压力范围:0–20 MPa (200bar,2900 psi);梯度流速范围:0.5-25ml/min。具备恒压调速功能,自动根据压力调节流速输出,使压力保持稳定。项目编号:JSHC-2022121193C7项目名称:东南大学医学与生命科学平台蛋白质稳定分析仪采购预算金额:43.0000000 万元(人民币)采购需求:东南大学医学与生命科学平台采购蛋白质稳定分析仪一套,主要技术要求如下:(1)适用范围:可分析任意类型的蛋白样品:病毒颗粒、膜蛋白、标签蛋白、酶、抗体、激酶、多聚复合物等。(2)样品数量:≥6 个(3)测量时间:≤3 分钟(4)样品消耗量:≤10 µL合同履行期限:详见采购文件本项目( 不接受 )联合体投标。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制