当前位置: 仪器信息网 > 行业主题 > >

回流比控制器

仪器信息网回流比控制器专题为您提供2024年最新回流比控制器价格报价、厂家品牌的相关信息, 包括回流比控制器参数、型号等,不管是国产,还是进口品牌的回流比控制器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合回流比控制器相关的耗材配件、试剂标物,还有回流比控制器相关的最新资讯、资料,以及回流比控制器相关的解决方案。

回流比控制器相关的论坛

  • 微流控控制器说明

    [b][url=http://www.f-lab.cn/microarray-manufacturing/flowtest-oem.html]微流控控制器[/url][/b]是[b]控制微流体器件[/b]如微型泵,微型阀的功能强大的[b]流控控制器[/b],[b]微流控控制器[/b]简化了实验室科研的复杂设计。微流控控制器OEM版本操作简单,更加有效,更适合微流体和微流控产业化使用,可以广泛用于医疗设备,生物处理系统,实验室仪器,化学仪器和科学设备和许多其它使用流体控制装置(泵,阀等)的领域,方便用户集成和制造工具。[img=微流控控制器]http://www.f-lab.cn/Upload/flowtest_.jpg[/img][b][/b]微流控控制器:[url]http://www.f-lab.cn/microarray-manufacturing/flowtest-oem.html[/url][b]微流控控制器[/b]FlowTest™ OEM版本结合:[list][*]现代化和高品质的控制板,不仅是设计和流体控制子系统开发的关键工具,也是在工业化和制造阶段新直接整合成新的先进仪器的关键工具。[/list][list][*]开发和集成成套套件是一个灵活的,有效的和用户友好的软件套件,用于快速开发,高效编程和易于集成。这些软件大大简化了新先进仪器的流体功能。也降低了集成的成本和时间,同时在工业化工作期间促进在仪器内的操作控制器。[/list]

  • 用于微流控芯片的多通道正负压力控制器解决方案

    用于微流控芯片的多通道正负压力控制器解决方案

    [color=#000099]摘要:在微流控芯片进样、化学反应进样和长时间药物注射领域,都需要能提供正负气压可精密控制的压力控制器。本文特别针对微流控芯片进样对多通道压力控制器的技术要求,提出了相应的解决方案,并详细介绍了方案中多通道气路结构、控制方法、气体流量调节阀、压力传感器和PID控制器等内容和技术指标。通过此解决方案,完全能够满足各种微流体控制对多通道压力控制器的要求。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#000099]一、背景介绍[/color][/size]在微流控芯片进样、化学反应进样和长时间药物注射领域,都需要能提供正负气压可精密控制的多通道压力控制器,并且通过气体压力来控制流体的流量或流速。图1所示为这种压力控制器在微流控芯片进样中的典型应用。[align=center][img=微流控芯片用压力控制器,690,318]https://ng1.17img.cn/bbsfiles/images/2022/06/202206271559098143_8354_3384_3.png!w690x318.jpg[/img][/align][align=center]图1 多通道压力控制器在微流控芯片进样中的典型应用[/align]在微流控芯片进样中,要求压力控制器需具备以下几方面的功能:(1)多通道,每个通道可独立控制和操作。(2)每个通道都可按照编程设定输出相应的正负压力。(3)正负压力控制范围:绝对压力1Pa~0.5MPa(表压-101kPa~0.6MPa)。(4)压力控制精度:0.1%~1%。 针对上述微流控芯片进样对压力控制器要求,本文提出了相应的解决方案,并详细介绍了方案中多通道气路结构、控制方法、气体流量调节阀、压力传感器和PID控制器等内容和技术指标。通过此解决方案,完全能够满足各种微流体控制对多通道压力控制器的要求。[size=18px][color=#000099]二、解决方案[/color][/size]本文所提出的解决方案是实现在1Pa~0.7MPa绝对压力范围内的精密控制,控制精度极限可达到0.1%。即提供一个可控气压源解决方案,采用双向控制模式的动态平衡法,结合高精度步进电机和微小流量电动针阀、高精度压力传感器和多通道PID控制器,气压源可进行高精度的各种真空压力的可编程输出,同时也可用于控制不同的流体流量。本文所涉及的解决方案,主要针对用于微流控芯片进样用多通道正负压力控制器,这主要是因为微流控芯片所用压力基本在一个标准大气压附近变化,相应的多通道压力控制器相对比较简单。而对于更低压力,如气压小于1kPa绝对压力的多通道控制,要实现精密控制则整个压力控制器将十分复杂。微流控芯片进样用多通道压力控制器工作原理如图2所示。[align=center][img=微流控芯片用压力控制器,690,350]https://ng1.17img.cn/bbsfiles/images/2022/06/202206271559436818_6219_3384_3.png!w690x350.jpg[/img][/align][align=center]图2 微流控芯片进样用多通道压力控制器工作原理图[/align]微流控芯片进样用多通道压力控制器的工作原理为:(1)多通道压力控制包括多个控制通道,每个控制通道包括正压气源、进气调节阀、出气调节阀、抽气泵和PID控制器单元。其中的正压气源和抽气泵提供足够的负压和正压能力,并且可以多通道公用。同样,多通道压力控制器也公用一个进气调节阀。需要注意的是,由于微流控进样所需的负压气压值较大并接近一个标准大气压,对于微流控芯片进样的压力控制,只需固定进气调节阀的开度,近靠调节出气阀开度极可实现正负压的精密控制,因此可以公用一个进气调节阀。如果要进行较低负压气压值(较高真空度)的精密控制,配置恰恰相反,每一通道配置的进气阀进行调节,但可以公用一个抽气阀。(2)精密压力控制原理基于密闭空腔进气和出气的动态平衡法。多通道压力控制器的每一个通道都是典型闭环控制回路,其中PID控制器的每一通道采集相应通道的真空压力传感器信号并与此通道的设定值进行比较,然后调节相应通道的进气和抽气调节阀开度,最终使此通道传感器测量值与设定值相等而实现该通道真空压力的准确控制。(3)为了覆盖负压到正压的所要求的真空压力范围,需要配置一个测试量程覆盖要求范围内的高精度绝对压力传感器,如果一个压力传感器无法覆盖全量程,则需要增加压力传感器数量来分段覆盖。采用绝对压力传感器的优势是不受各地大气气压变化的影响,无需采取气压修正,更能保证测试的准确性和重复性。(4)绝对压力传感器对应所覆盖的真空压力范围输出数值从小到大变化的直流模拟信号(如0~10VDC)。此模拟信号输入给PID控制器,由PID控制器调节进气阀和排气阀的开度而实现压力精确控制。(5)当控制是从负压到正压进行变化时,一开始的进气调节阀开度(进气流量)要远小于抽气调节阀开度(抽气流量),通过自动调节进出气流量达到不同的平衡状态来实现不同的负压控制,最终进气调节阀开度逐渐要远大于抽气调节阀开度,由此实现负压到正压范围内一系列设定点或斜线的连续精密控制。对于从正压到负压压的变化控制,上述过程正好相反。[size=18px][color=#000099]三、方案具体内容[/color][/size]解决方案中所涉及的正负压力控制器的具体结构如图3所示,主要包括正压气源、电动针阀、密闭空腔、压力传感器、高精度PID控制器和抽气泵。[align=center][img=微流控芯片用压力控制器,690,393]https://ng1.17img.cn/bbsfiles/images/2022/06/202206271602023624_9954_3384_3.png!w690x393.jpg[/img][/align][align=center]图3 微流控芯片进样用多通道正负压力控制器结构示意图[/align]在图3所示的正负压力控制器中,每个通道都对应一密闭空腔,每个密闭空腔上的外接接口作为此通道的压力输出口。密闭空腔左右安装两个NCNV系列的步进电机驱动的微型电动针阀,电动针阀本身就是正负压两用调节阀,其绝对真空压力范围为0.0001mbar~7bar,最大流量为40mL/min,步进电机单步长为12.7微米,完全能满足小空腔的正负压精密控制。由此,压力控制器中的每个通道可实现正负压任意设定点的精确控制,也可以从正压到负压的压力线性变化控制,也可以从负压到正压的压力线性变化控制。微流控芯片进样过程中一般要求微小正负压控制,要求是在标准大气压附近的真空压力精确控制,如控制精度为±0.5%甚至更小,一般都需要采用调节抽气阀的双向动态模式,即通过控制器使得进气口处电动针阀的开度基本不变,同时根据PID算法来调节排气口处的电动针阀开度。由于进气阀的开度基本处于固定状态,使得微流控芯片进样所用的多通道压力控制器可以公用一个调节进气流量的电动针阀。另外,所有通道都需要具备抽气功能,抽速也是一固定值,因此多通道压力控制器也可以公用一个抽气泵。在微流控芯片进样过程中压力控制,除了上述恒定进气流量调节抽气流量的控制方法之外,决定压力控制精度的因素还有压力传感器、PID控制器和电动针阀的精度。本方案中的PID控制器采用的是24位AD和16位的DA,电动针阀则是高精度步进电机,因此本解决方案的测试精度主要取决于压力传感器精度,一般至少要选择0.1%精度的压力传感器。在微流控芯片进样过程中,往往会要求密闭容器在正负压范围内进行多次往复变化和按照设定曲线进行控制,因此本方案采用了可存储多个编辑程序的PID控制器,每个设定程度是一条多个折线段构成的曲线,由此可实现正负压往复变化的自动程序控制。在本文所述的解决方案中,为实现正负压的精密控制,如图3所示,针对负压的形成配置了抽气泵。抽气泵相当于一个负压源,但采用真空发生器同样可以达到负压源的效果,负压源采用真空发生器的优点是整个系统只需配备一个正压气源,减少了整个系统的造价、体积和重量,真空发生器连接正压气源即可达到相同的抽气效果。[size=18px][color=#000099]四、总结[/color][/size]本文所述解决方案,完全可以实现微流控芯片进样系统中压力的任意设定点和连续程序形式的精密控制,并且可以达到很高的控制精度和速度,全程自动化。本方案除了自动精密控制之外,另外一个特点是系统简单,正负压控制范围也可以比较宽泛,整个系统小巧和集成化,便于形成小型化的检测仪器。本文解决方案的技术成熟度很高,方案中所涉及的电动针阀和PID控制器,都是目前特有的标准产品,其他的压力传感器、抽气泵、真空发生器和正压气源等也是目前市场上常见的标准产品。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【世界环境日】正确控制污泥回流比的方法

    以下是几个关键的控制方法:污泥浓度控制:定期监测混合液悬浮固体(MLSS)浓度,确保其维持在一个适宜的范围内,一般介于2000mg/L至4000mg/L。如果MLSS超过此范围,应及时排放剩余污泥,以避免因污泥浓度过高导致的处理效率下降和出水水质恶化。污泥沉降比(SV)控制:SV是衡量活性污泥沉降性能的指标,正常值通常在15%至30%之间。若SV值上升,表明污泥沉降性能下降或污泥量增多,此时应增加剩余污泥排放量以改善沉降性能并维持稳定的SV值。污泥负荷控制:根据进水负荷和活性污泥的生物降解能力,计算污泥的理论产生量,并据此调整排放量,确保曝气池内的污泥负荷(F/M,即食物与微生物质量比)在适宜范围内,一般为0.25至0.5kgBOD/kgMLSSd,以维持良好的处理效果和污泥活性。MISS控制法:通过计算公式Vw=V(MLSS-MLSS0)/RSS来确定剩余污泥排放体积,其中Vw为要排放的剩余污泥体积,V为曝气池容积,MLSS为实测污泥浓度,MLSS0为目标维持的浓度值,RSS为回流污泥浓度。这种方法适用于水量水质变化不大的污水处理厂,通过调整排放量以维持设定的MLSS浓度。F/M控制法:通过调整进水的有机负荷和排泥量,维持一个稳定的F/M比,以控制污泥增长速率和排放量,确保处理系统稳定运行。连续或间歇排泥:根据实际情况选择连续排泥或周期性排泥,连续排泥有利于维持系统稳定,而间歇排泥则可以根据水质变化和处理需求灵活调整。监控系统运行状态:定期检查曝气系统、搅拌设备的工作状态,确保曝气充分,混合均匀,避免死区和短流现象,这些都间接影响污泥的生成和排放控制。

  • 超高精度浮辊和张力双回路控制器:Montalvo张力控制器的国产替代

    超高精度浮辊和张力双回路控制器:Montalvo张力控制器的国产替代

    [align=center][color=#990000][b]超高精度浮辊和张力双回路控制器:Montalvo张力控制器的国产替代[/b][/color][/align][align=center][color=#990000]Unwind Tension Controller for Dancer Input with Tension Indication—— Domestic Substitution of Montalvo Tension Controller[/color][/align][align=center][img=超高精度浮辊和张力双回路控制器:Montalvo张力控制器的国产替代,690,542]https://ng1.17img.cn/bbsfiles/images/2022/10/202210092010572560_1350_3221506_3.jpg!w690x542.jpg[/img][/align][color=#990000]摘要:针对目前市场上张力控制器普遍存在的测控精度较差、功能单一、适用传感器类型少和PID参数无法自整定等问题,本文分析了国外浮辊和张力双通道控制器的技术特点。对标国外高端张力控制器产品,本文重点介绍了国产替代产品的性能,国产张力控制器同样具有浮辊和张力双回路控制功能,但由于每个通道都采用了24位AD、16位DA和双精度浮点运算,可以实现超高精度的张力控制,而所具有的PID自整定功能则使得操作更为快捷方便。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000][b]一、问题的提出[/b][/color][/size]张力控制器主要应用于冶金,造纸,薄膜,染整,织布,塑胶,线材等设备上,是一种实现恒张力或者锥度张力控制的自动控制仪表,其作用主要是实现辊间的同步,收卷和放卷的均匀控制。一套典型的张力控制系统主要由张力控制器,张力读出器,张力检测器,制动器和离合器构成。根据环路可分为开环,闭环或自由环张力控制系统;根据对不同卷材的监测方式又可分为超声波式,浮辊式,跟踪臂式等。典型的张力控制器主要由AD,DA转换器和高性能微处理器等组成,张力控制器与张力传感器和电气比例阀组成典型的张力控制系统。在具体张力控制过程中,张力控制器是根据张力传感器和A/D模式转换器测量到的张力与设定的目标张力相比较后,经微处理器PID运算自动调整D/A输出从而改变电气比例阀的输出压力来实现卷料的张力调节,可广泛用于各种需对张力进行精密测控的场合,具有使用灵活和广泛的适用性。目前市场上有各种张力控制器,但在高精度张力控制过程中,普遍存在以下不足:(1)测量精度较低:普遍采用12位AD模数转换器,个别国外产品用了16位AD模数转换器,对于一些高精度的张力传感器输出显然无法准确测量,测量精度无法满足高精度控制要求。(2)输出精度较差:普遍采用12位DA数模转换器,个别国外产品用了14位DA数模转换器,对于一些高精度的张力控制显然无法实现。(3)浮点运算精度较差:目前市场上商品化张力控制器的PID运算基本都是采用单浮点方式进行,运算精度较差,从而使得输出百分比的最小调节量也只能为0.1%,根本无法进行电气比例阀输出压力的精细调节,进而无法实现超高精度的张力控制。(4)单通道控制:绝大多数张力控制器尽管可以实现如收放卷的扭矩控制,过程张力中的速度控制以及浮辊张力控制,但只能选择其中的一种控制模式。而个别国外的张力控制器产品,如Montalvo的Z4UI双回路控制器则能实现放卷扭矩和浮辊位置的同时控制。(5)传感器输入信号类型少:在各种张力控制中会采用到多种不同的传感器,如超声波探头,浮辊,电位器和激光等,这些不同传感器所输出的信号类型和量程有多种形式,但目前绝大多数张力控制器的输入型号类型非常有限。(6)PID参数无法自整定:在有些张力控制过程中,需要准确无超调的PID控制,快速且自动的选择合适PID则显着尤为重要,但目前很多张力控制器并没有这项PID参数自整定功能。针对上述目前张力控制器中普遍存在的问题,特别是为了实现超高精度张力控制以及相关控制器的国产替代,本文将对国外高端张力控制器技术特点进行分析,并对标国外产品介绍研发的新型浮辊和张力双回路超高精度控制器产品。[b][size=18px][color=#990000]二、Montalvo公司 Z4UI 双回路张力控制器技术特点分析[/color][/size][size=18px][color=#990000][/color][/size][/b]蒙特福Montalvo公司是国外著名的张力控制相关产品生产厂商,其最具特点的控制器产品是Z4UI浮辊和张力双回路控制器,我们将对标此张力控制器进行分析。蒙特福Z4UI浮辊和张力双回路控制系统结构如图1所示,控制器内置了张力指示器,能够同时检测浮辊电位计信号和张力检测器的张力信号,从而提供高精度的张力控制。它集合了浮辊吸收缓冲张力波动的功能和张力检测器精确、稳定的检测优势,通过渐进式“Progressive“ PID 控制电路调节放卷制动器的转矩输出,保持浮辊臂的位置不变来实现张力控制。模拟式张力表显示卷材的张力大小,操作员可直接监视张力稳定性,并根据张力表显示的实际卷材张力,来调节浮辊臂上的载荷从而保持理想张力。[align=center][color=#990000][img=01.Z4UI浮辊和张力双回路控制.jpg,690,275]https://ng1.17img.cn/bbsfiles/images/2022/10/202210092013010509_6406_3221506_3.jpg!w690x275.jpg[/img][/color][/align][align=center][color=#990000]图1 Z4UI双回路控制器在浮辊和张力控制系统中应用的结构示意图[/color][/align]由此可以看出,蒙特福Z4UI控制器是个典型的双回路闭环控制器。其中,一个回路是通过检测浮辊位置信号(DPS-1位置传感器或浮辊电位器)来控制第一个电气比例阀(I/P转换器)压力输出,由此来调整气缸位置将气压转换成扭矩输出达到张力调节。另一个回路通过检测卷径信号(接近开关或超声波探头)来控制第二个电气比例阀(I/P转换器)压力输出,由此来调整放卷位置达到张力调节。由此可见,蒙特福Z4UI双回路控制器是通过同时对两个变量的检测和控制来实现高精度的放卷调节。蒙特福Z4UI控制器的另外一个特点是采用RS-232与上位机(PLC或PC)进行通讯,采用控制软件进行所有操作,减少了人工界面操作的复杂程度。[b][size=18px][color=#990000]三、国产双回路超高精度张力控制器[/color][/size][/b]从上述蒙特福Z4UI双回路张力控制器技术特点可以看出,双回路张力控制器的核心技术内容就是一个非常典型的双通道PID控制器,张力的控制则是采用外置传感器实现电气比例阀的串级形式的PID控制,因此,双回路张力控制器的技术特征就是双通道的电气比例阀串级PID控制。基于此分析,结合我们在真空压力方面进行电气比例阀超高精度串级PID控制的成功经验,我们可以将通用型的VPC-2021系列PID调节器(单通道和双通道)应用于张力控制中,由此可完全实现蒙特福Z4UI双回路张力控制器的替代。VPC-2021-2系列双通道PID调节器是标准形式的工业用控制器,具有96×96mm、96×48mm和48×96mm三种规格,但其最大优点是具有超高精度检测和控制能力,其中具有24位AD模数转换、16位DA数模转换和双精度浮点运算能力,具备0.01%的最小输出百分比。用于张力控制的双通道超高精度PID控制器如图2所示,电气接线如图3所示,主要技术指标如下:[align=center][color=#990000][img=VPC 2021-2超高精度PID控制器,600,266]https://ng1.17img.cn/bbsfiles/images/2022/10/202210101508335313_3719_3221506_3.jpg!w690x307.jpg[/img][/color][/align][align=center][color=#990000]图2 VPC 2021-2系列双通道张力控制器[/color][/align](1)真彩色IPS TFT长寿命LED背光、全视角液晶显示。(2)独立双回路控制,每路控制输出刷新率50ms,双通道独立的输入和输出,双回路报警功能可以多功能应用,每通道都具备独立的PID控制功能,每个通道都可进行独立的手动和自动控制切换。(3)万能型信号检测能力,即每通道都具备47种输入信号形式,仅需通过设置极可完成信号类型和量程选择,由此可满足各种规格和形式的张力探测器的引入。除了能测量各种张力传感器、位置传感器给出的模拟电压、电流和电阻信号之外,还可以测量各种温度传感器和压力传感器等各种信号,传感器输出端直接接入控制器并在控制器上进行选择即可使用。(4)双通道独立控制输出,输出信号有线性电流、线性电压、继电器输出、固态继电器输出和可控硅输出五种形式,可用于直接驱动电气比例阀(或电子压力转换器)进行张力控制,也可以驱动各种阀门和加热器等执行机构进行真空度、压力和温度等参数的控制。(5)支持数字和模拟远程操作功能,支持标准MODBUS RTU 通讯协议。(6)采用自主改进型PID算法,支持对PV微分和无超调控制算法。5组PID存储和调用,10组输出限幅等实用功能。每个通道采用独立的PID参数,且可独立的进行PID参数自整定。(7)带传感器馈电供电功能(24V,50mA)。(8)支持一路过程变量变送功能,变送的过程变量可选PV测量值、SV设定值、控制输出值和偏差值,变送输出类型有4-20mA, 0-10mA, 0-20mA, 0-10V, 2-10V, 0-5V, 1-5V七种。(9)两组开关量光隔输入端,可以实现各种应用功能的灵活应用切换。(10)随机配备强大的控制软件,可通过软件进行控制参数设置、运行控制、过程曲线显示和存储,非常便于过程控制的调试。[align=center][img=,690,276]https://ng1.17img.cn/bbsfiles/images/2022/10/202210101726466183_8818_3221506_3.png!w690x276.jpg[/img][/align][align=center][color=#990000]图3 VPC 2021-2系列双通道控制器电气连接图[/color][/align]从上述国产控制器技术指标可以看出,国产VPC 2021-2系列双通道控制器的性能和功能要远优于蒙特福Z4UI控制器,并具有强大的拓展能力,完全可以实现对蒙特福Z4UI控制器的替代。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][align=center][/align][align=center][/align][align=center][/align]

  • 高精度可编程真空压力控制器(压强控制器和温度控制器)

    高精度可编程真空压力控制器(压强控制器和温度控制器)

    [align=center][img=,599,441]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200929562418_9505_3384_3.png!w599x441.jpg[/img][/align][size=18px][color=#990000]一、简介[/color][/size] 真空压力控制器是指以气体管道或容器中的真空度(压力或压强)作为被控制量的反馈控制仪器,其整个控制回路是闭环的,控制回路由真空度传感器、真空压力控制器和电动调节阀组成。 依阳公司的VPC2021系列控制器是一种强大的多功能高度智能化的真空压力测量和过程控制仪器,采用了24位数据采集和人工智能PID控制技术,可与各种型号的真空压力传感器(真空计)、流量计、温度传感器、电动调节阀门和加热器等连接,可实现高精度真空压力(压强)、流量和温度等参量的定点和程序控制,是一种替代国外高端产品的高性能和高性价比控制器。[size=18px][color=#990000]二、主要技术指标[/color][/size] (1)测量精度:±0.05%FS(24位A/D)。 (2)输入信号:32种信号输入类型(电压、电流、热电偶、热电阻),可连接众多真空压力传感器。 (3)控制输出:4种控制输出类型(模拟信号、固态继电器、继电器、可控硅),可连接众多电动调节阀。 (4)控制算法:PID控制和自整定(可存储和调用20组PID参数)。 (5)控制方式:定点和程序控制,最大可支持9条控制曲线,每条可设定24段程序曲线。 (6)控制周期:50ms。 (7)通讯方式:RS 485和以太网通讯。 (8)供电电源:交流(86-260V)或直流24V。 (9)外形尺寸: 96×96×136.5mm (开孔尺寸92×92mm)。[size=18px][color=#990000]三、特点和优势[/color][/size] (1)高精度24位数据采集,使得此系列控制器具有高精度的控制能力。 (2)具有各种不同类型信号的输入功能,可覆盖多种测量传感器,既可连接真空计用来控制真空压力和压强,也可用来控制其它变量,如连接流量计用来控制流量、连接温度传感器用来进行温度控制等。 (3)可连接和控制几乎所有的电动调节阀和数字控制阀门,也可连接控制各种加热装置,结合传感器由此组成可靠的闭环控制系统。 (4)控制器体积小巧和使用灵活,即可独立做为面板型控制器使用,也可集成在测试系统整机中使用。 (5)采用了标准的MODBUS通讯协议,便于控制器与上位机通讯和进行二次开发。 (6)具有2路输出功能,可实现真空压力的两种控制模式,一种是可变气流量(上游控制)压强控制模式,另一种是可变通导(下游控制)流量调节模式。[align=center][color=#990000][img=,300,253]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932222782_1134_3384_3.png!w300x253.jpg[/img][/color][/align][align=center][color=#990000]上游控制压强模式[/color][/align][align=center][color=#990000][img=,300,252]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932370447_2503_3384_3.png!w300x252.jpg[/img][/color][/align][align=center][color=#990000]下游控制压强模式[/color][/align][align=center][color=#990000][img=,300,249]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932454481_7140_3384_3.png!w300x249.jpg[/img][/color][/align][align=center][color=#990000]上游和下游同时控制的双向模式[/color][/align][size=18px][color=#990000]四、外形和开孔尺寸[/color][/size][align=center][img=,690,317]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932536698_9309_3384_3.png!w690x317.jpg[/img][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 微流控芯片进样装置高精度压力和流量控制器的国产化替代

    微流控芯片进样装置高精度压力和流量控制器的国产化替代

    [size=16px][color=#339999][b]摘要:针对微流控芯片压力驱动进样系统中压力和流量的高精度控制,本文提出了国产化替代解决方案。解决方案采用了积木式结构,便于快速搭建起气压驱动进样系统。解决方案的核心是采用了串级控制模式,结合高精度的传感器、电气比例阀和PID控制器,通过压力和流量的双闭环PID控制回路可实现微流控芯片内液体流量的高精度控制。另外,解决方案具有强大的拓展功能,可进行手动、自动、程序和周期控制,同时也具备芯片的温度控制功能。[/b][/color][/size][align=center][b][color=#339999]~~~~~~~~~~~~~~~~~~~~~~~~~[/color][/b][/align][size=16px][color=#339999][b][/b][/color][/size][b][size=18px][color=#339999]1. 问题的提出[/color][/size][/b][size=16px] 微流控芯片是将成百上千的微流道集成于以平方厘米为单位的芯片上,以实现样本的制备、分离、筛选、检测等功能,其特点在于可以用极少量的检测样本有效地完成各类检测,可取代常规的生化实验平台。微流控芯片中的微流道内径非常细小,可以实现低至1微米的空间细胞操作精度,因此在向微流道中进样时,对于流量的控制要求非常高。[/size][size=16px] 目前的微流控进样系统,主要是一些国外进口产品,如法国FLUENT公司基于传统的压力控制元件生产的MFCS-EZ流体驱动-精密压力控制器性能比较优良,达到稳定的时间可低至100ms,压力稳定误差小于0.1%,但价格昂贵;美国ELVEFLOW公司基于压电效应设计的OB1 MK3压力控制器性能更加优异,达到稳定的时间可低至35ms,压力稳定误差小于0.01%,但其功耗较高,售价更为昂贵。[/size][size=16px] 为了实现对微流控芯片内微流体压力和流量的高精度自动控制,特别是为了实现国产化替代,本文提出了一种压力和流量的串级控制解决方案。[/size][size=18px][color=#339999][b]2. 压力驱动的微流量精密控制工作原理[/b][/color][/size][size=16px] 微流控芯片中气压驱动进样系统的工作原理非常简单,如图1所示,即采用可调气压作为驱动力,控制一个装有液体的封闭容器中的气体压力实现液体驱动,控制液体向微流控芯片进行充注。[/size][align=center][size=16px][color=#339999][b][img=01.微流控芯片压力驱动进样系统工作原理图,500,267]https://ng1.17img.cn/bbsfiles/images/2023/06/202306271542286750_971_3221506_3.jpg!w690x369.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 压力驱动进样系统工作原理图[/b][/color][/size][/align][size=16px] 充液过程中随着流阻的变化,负载也在不断改变,为保证流经微流控芯片液体流量的恒定在设定值,对应的驱动压力也应随时进行调节。[/size][size=16px] 在微流控芯片气压驱动进样系统中,针对不同的应用场景和要求,目前国外产品普遍采用了两种控制技术,一种是对驱动压力进行控制的开环控制技术,另一种是同时对压力和流量进行控制的闭环控制技术。[/size][size=16px] 如图2所示,在仅对驱动气压进行控制的进样系统中,是在进气端口增加了一个压力调节器。此压力调节器中集成了压力传感器、阀门和PID控制器,通过对高压气源的减压控制,由此用来精密调节和控制密闭容器上部的气体压力。[/size][align=center][size=16px][color=#339999][b][img=02.微流控芯片进样系统纯压力控制工作原理图,600,248]https://ng1.17img.cn/bbsfiles/images/2023/06/202306271541131358_1798_3221506_3.jpg!w690x286.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 微流控芯片进样系统纯压力控制工作原理图[/b][/color][/size][/align][size=16px] 从图2可以看出,这种纯压力控制方式尽管可以调节微流控芯片内液体的流量,但无法获知具体流量是多少,这样一种开环控制形式更无法对液体流量进行高精度控制。[/size][size=16px] 为实现对微流控芯片内液体流量的精密控制,在上述开环控制形式的基础上,通过增加液体流量计和PID控制器,与压力调节器组成一个闭环控制回路,如图3所示。在此闭环控制回路中,PID控制器检测流量传感器信号并与设定值进行比较,通过PID控制算法计算后向压力调节器输出控制信号,压力调节器对进气气压进行调节,最终使微流控芯片内的液体流量在设定值处恒定。[/size][align=center][size=16px][color=#339999][b][img=03.微流控芯片进样系统压力和流量串级控制工作原理图,600,289]https://ng1.17img.cn/bbsfiles/images/2023/06/202306271541419942_6786_3221506_3.jpg!w690x333.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 微流控芯片进样系统压力和流量同时控制工作原理图[/b][/color][/size][/align][size=16px] 从图3可以看出,这种压力和流量同时控制的工作原理采用了一个非常典型的PID串级控制(级联控制)结构,即压力调节器作为压力控制的PID辅助控制回路,同时压力调节器作为执行器与流量传感器和PID控制器构成PID主控制回路。这种PID串级控制结构常用于高精度控制领域中,所以采用这种串级控制方法可以实现微流体压力驱动进样系统流量的高精度调节和控制。需要说明的是流量传感器可以布置在微流控芯片的进口端或出口端,具体可以根据微流控芯片的具体结构来进行选择。[/size][size=18px][color=#339999][b]3. 解决方案[/b][/color][/size][size=16px] 从上述微流控芯片压力驱动进样系统的串级控制工作原理可知,采用串级控制方式在理论上可实现流量的高精度控制,而要实现这种高精度控制,还需要相应的硬件配置提供保证。为此,本解决方案提出的硬件系统结构如图4所示。[/size][align=center][size=16px][color=#339999][b][img=04.微流控芯片进样系统压力和流量串级控制系统结构示意图,650,366]https://ng1.17img.cn/bbsfiles/images/2023/06/202306271542005587_5164_3221506_3.jpg!w690x389.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图4 微流控芯片进样系统压力和流量串级控制系统结构示意图[/b][/color][/size][/align][size=16px] 在图4所示的系统中,为实现高精度的压力和流量控制,解决方案中的关键部件配置如下:[/size][size=16px] (1)流量传感器:需根据流量的范围和控制精度需要选择合适的流量传感器,目前市场上有多种国内外的液体流量传感器可供选择。同时要求传感器具有相应的模拟量信号输出。[/size][size=16px] (2)压力调节器:压力调节器可选择电气比例阀,同样需要根据压力调节范围选择相应的型号。另外尽可能采用高精度和高速电气比例阀,特别是更快速度的压电式电气比例阀。[/size][size=16px] (3)超高精度PID控制器:在测量精度和控制精度都满足要求的前提下,主回路PID控制器精度将最终决定流量控制精度,如果PID控制器精度不够,则无法发挥传感器和压力调节器的精度优势。为了,本解决方案选择了超高精度的PID控制器,其具有24位AD、16位DA和采用双精度浮点运行的0.01%最小输出百分比。另外,此控制器具有PID参数自整定功能,并带有标准MODBUS通讯协议的RS485接口,可方便与上位计算机连接。[/size][size=16px] 通过上述高精度器件的配置,可很方便的搭建起微流控气压驱动进样系统并实现高精度的压力和流量控制。另外,采用超高精度PID控制器的高级功能,还可实现以下拓展功能:[/size][size=16px] (1)采用自带的计算机软件,可通过上位计算机直接进行界面操作,无需再进行编程。[/size][size=16px] (2)采用远程设定点功能,可实现手动旋钮调节方式的压力和流量控制。[/size][size=16px] (3)同样采用远程设定点功能以及外置一个周期信号发生器,可对压力和流量按照设定周期和幅度进行周期性变化。[/size][size=16px] (4)采用正反向控制功能以及外置一个TEC半导体制冷模组,可实现对微流控芯片的加热和制冷控制。[/size][size=18px][color=#339999][b]4. 总结[/b][/color][/size][size=16px] 综上所述,通过此解决方案模块式结构以及高精度器件的配置,可灵活和快速搭建起微流控芯片进样系统,并可在很高的精度上实现微流控芯片压力驱动进样系统中的压力和流量控制。[/size][size=16px] 另外,依此解决方案所搭建的压力和流量控制系统还具有强大的拓展功能,可满足各种微流控芯片气压驱动进样系统的使用,完全可以替代进口产品,同时也为后续多通道微流控压力驱动进样系统的国产化替代奠定的技术基础。[/size][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~~~[/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align]

  • 高精度级联控制器在印刷和喷绘设备油墨流量和压力控制中的应用

    高精度级联控制器在印刷和喷绘设备油墨流量和压力控制中的应用

    [size=16px][color=#339999][b]摘要:针对现有技术在印刷或喷绘设备中油墨流量控制不准确,使得油墨粘稠度产生异常造成批量性质量方面的问题,本文提出了相应的串级控制解决方案,即通过双回路形式同时控制油墨的流量和压力。本解决方案不仅可以保证油墨最终流量的控制精度和避免出现质量问题,同时还采用了专门的PID串级控制器,代替传统的PLC控制器且无需再进行编程工作。[/b][/color][/size][align=center][size=16px] [img=高精度级联控制器在印刷和喷绘设备油墨流量控制中的应用,550,300]https://ng1.17img.cn/bbsfiles/images/2023/05/202305161500376435_5330_3221506_3.jpg!w690x377.jpg[/img][/size][/align][b][size=18px][color=#339999]1. 问题的提出[/color][/size][/b][size=16px] 油墨是用于印刷的重要材料,它通过印刷或喷绘将图案、文字呈现在承印物上。油墨中的主要成分和辅助成分主要由连结料(树脂)、颜料、填料、助剂和溶剂等组成,它们均匀地混合并经反复轧制而成一种黏性胶状流体。油墨具有一定的粘稠度,当油墨在管道内输送时,如果流量发生改变或发生其他意外情况,就会导致油墨的粘稠度发生改变,很容易造成批量性的不良品发生。由此可见,油墨流量的精密和稳定控制是印刷和喷绘设备中的核心技术之一。[/size][size=16px] 针对油墨流量精密控制需求,特别是根据客户的要求以及现有技术的不足,希望可以进行技术升级以预防因油路,气路,或者油墨粘度异常造成批量性的问题。为此,为了具体解决油墨流量控制不准确使得油墨粘稠度产生异常造成批量性质量问题,本文提出了相应的解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 解决方案基于流量和压力串级控制原理,即对油墨流量和油墨压力同时进行调整,由此实现高精度的油墨流量控制。解决方案的结构如图1所示。[/size][align=center][size=16px][color=#339999][b][img=01.油墨流量和压力精密控制系统结构示意图,690,312]https://ng1.17img.cn/bbsfiles/images/2023/05/202305161502292249_6607_3221506_3.jpg!w690x312.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 油墨流量串级控制系统结构示意图[/b][/color][/size][/align][size=16px] 如图1所示,解决方案的油墨流量控制系统由压力控制和流量控制两个闭环控制回路构成,这两个控制回路详述如下:[/size][size=16px] (1)压力控制回路:压力控制回路由电气比例阀独立构成,其内部包括压力传感器、调节阀和控制器。压力控制回路的作用是对高压气源压力进行自动减压,并快速恒定控制在压力设定值上。压力控制回路作为串级控制(或双闭环控制)的辅助控制回路(内部闭环回路),主要用来控制加载在油墨桶上的压力,以便快速调节和控制油墨桶的油墨输出流量。[/size][size=16px] (2)流量控制回路:流量控制回路由流量计、串级控制器和压力控制回路构成。在控制过程中,串级控制器检测流量计输出信号并与设定值比较,然后驱动压力控制回路使油墨输出流量稳定在设定流量值上。流量控制回路作为串级控制(或双闭环控制)的主控制回路(外部闭环回路),主要用来检测油墨桶的输出流量并给压力控制回路输出控制设定值。[/size][size=16px] 通过上述两个控制回路的串联最终构成串级控制(级联控制或双闭环)回路,即流量控制回路的输出作为压力控制回路的输入,压力控制回路作为最终流量控制回路的执行机构。[/size][size=16px] 另外需要说明的是,图1只是给出了双闭环控制回路的结构示意图,在具体实施过程中还需根据流量控制精度、耐压范围和油墨喷嘴孔径等工艺参数进行相应的配套器件选择,在此方案中使用了超高精度的PID串级控制器,具有24位AD、16位DA和0.01%最小输出百分比,这样基本就可以满足绝大多数油墨流量控制精度的要求。[/size][size=16px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 本文所述的串级控制系统,通过PID串级控制器、电气比例阀、压力传感器和高精密流量计等元件,通过流量控制和压力控制的双闭环控制形式,实现了设定流量和实际流量自动精密控制。由此可预防因油路、气路或者油墨粘度异常造成批量性的不良发生。[/size][size=16px] 本解决方案的特色之一是采用专门的PID串级控制器来代替一般控制中所用的PLC控制装置,通过串级控制器的配套软件可方便进行流量控制,无需再对PLC控制装置进行编程的繁复操作。[/size][align=center][b][color=#339999][/color][/b][/align][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • 超高精度PID串级控制器和电气比例阀在轮胎硫化饱和蒸汽外温变温控制中的应用

    超高精度PID串级控制器和电气比例阀在轮胎硫化饱和蒸汽外温变温控制中的应用

    [align=center][img=饱和蒸汽温度精密控制,690,315]https://ng1.17img.cn/bbsfiles/images/2022/11/202211160915568591_8820_3221506_3.jpg!w690x315.jpg[/img][/align][size=14px][color=#000099]摘要:在目前的饱和蒸汽轮胎硫化工艺中,普遍还在采用电动定位器和电动执行器形式的减压阀进行温度控制。这种控温方式存在响应时间长、控温波动大和磨损引起寿命短等问题。本文介绍了采用电气比例阀和气动减压阀组合的替代方案,其中还采用了超高精度的串级PID控制器,此串级控制法替代方案可大幅提高蒸汽温度的控制精度和速度,并延长阀门的使用寿命和可在线维护。作为一种新技术,此解决方案还可推广应用到其它蒸汽加热领域。[/color][/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~[/align][b][size=18px][color=#000099]一、问题的提出[/color][/size][/b][size=14px][/size][size=14px] 硫化是目前轮胎生产过程中的最后一道工序,一般通过热硫化将成型的胎胚变成了轮胎成品。目前的硫化方式基本都是根据硫化内温的介质不同来区分,而外温实现方式(或称热板温度、模温)一般都是注入一定压力的蒸汽进行温度控制。[/size][size=14px][/size][size=14px] 本文将主要讨论轮胎硫化过程中的外温变温控制技术,有关内温调控技术则将在后续报告中再进行详细阐述。[/size][size=14px][/size][size=14px] 外温和外压是轮胎硫化的主要工艺参数,其控制的好坏直接影响硫化轮胎的质量。外温的实现通常使用蒸汽作为加热介质,而蒸汽一般都是饱和蒸汽。饱和蒸汽的一个重要特性是其温度与压力之间一一对应,即饱和蒸汽的温度始终由其压力决定,而轮胎硫化外温蒸汽加热工艺就是利用此特征来调整蒸汽压力以实现对蒸汽温度的精密控制。[/size][size=14px][/size][size=14px] 在目前的大多数蒸汽温度控制过程中,如图1所示,基本都采用的是典型的单闭环PID控制方法,使用了复杂笨重的电动减压阀来控制饱和蒸汽温度,即采用一个温度传感器将信号发送给PID控制器,控制器向电动阀门定位器发送命令信号,阀门定位器控制阀门所需开度以使得温度接近设定温度。这种控制的结果是阀门必须一直工作以保持温度,循环打开和关闭等同于磨损阀门部件,最大的问题是这种带有阀门定位器形式的电动减压阀的运行速度很慢,对PID控制器的控制信号有很大的响应滞后,如果观察热电偶的信号输出,则会在目标温度周围出现正弦波形,而不会出现平滑、平坦的温度信号,因此这种控制方式往往呈现出蒸汽温度波动较大的现场。[/size][size=14px][/size][align=center][size=14px][color=#000099][img=传统单回路蒸汽温度控制结构示意图,690,170]https://ng1.17img.cn/bbsfiles/images/2022/11/202211160917432405_1591_3221506_3.jpg!w690x170.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#000099]图1 采用阀门定位器形式的电动减压阀蒸汽温度控制结构及其温度波动[/color][/align][size=14px][/size][size=14px] 针对上述目前电动定位器和电动执行器结构形式的减压阀在轮胎硫化蒸汽温度控制中存在响应时间长、控温波动大和磨损引起寿命短等问题,本文将介绍采用电气比例阀和气动减压阀组合的替代方案,通过超高精度的串级控制PID控制器,此替代方案可大幅度提高蒸汽温度的控制速度和精度,并延长减压阀的使用寿命。此解决方案还可以推广应用到其它蒸汽加热设备。[/size][size=14px][/size][b][size=18px][color=#000099]二、解决方案[/color][/size][/b][size=14px][/size][size=14px] 在上述传统的饱和蒸汽温度控制过程中,采用的是一个典型的闭环控制回路,即作为执行机构的带阀门定位器的电动减压阀与PID控制器和温度传感器构成一个闭环控制。[/size][size=14px][/size][size=14px] 新的解决方案则是采用了双闭环PID控制回路组成的串级控制法,其结构如图2所示。[/size][size=14px][/size][align=center][size=14px][color=#000099][img=新型双回路串行控制法蒸汽温度控制结构示意图,690,223]https://ng1.17img.cn/bbsfiles/images/2022/11/202211160918269307_9385_3221506_3.jpg!w690x223.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#000099]图2 采用超高精度PID控制器、电气比例阀和气动减压阀的串行控制结构及其温度波动[/color][/align][size=14px][/size][size=14px] 在图2所示解决方案中,采用了经典的串级控制结构,即温度传感器、气动减压阀、电气比例阀和串级PID调节器组成一个双回路闭环控制系统。其中自带压力传感器和PID控制板的电气比例阀与气动减压阀构成次回路,用于调节气动减压阀的开度;温度传感器、串级PID控制器和次级回路再构成主回路,主回路采集硫化箱温度,经PID计算后输出控制信号给次回路中的电气比例阀,这里的次回路此时相当于主回路的执行器。[/size][size=14px][/size][size=14px] 与传统单回路控制相比,这种结合了电气比例阀和高精度PID调节器,并采用了串级控制法的蒸汽温度控制系统,充分发挥了串级控制的特点,有以下几方面的优势:[/size][size=14px][/size][size=14px] (1)可明显改善蒸汽温度控制精度和速度,控制温度的变化曲线平摊且与设定曲线非常接近,蒸汽温度达到稳定可节省几十分钟。[/size][size=14px][/size][size=14px] (2)对于高压饱和蒸汽的压力扰动具有较迅速和较强的克服能力。[/size][size=14px][/size][size=14px] (3)可消除次回路(气动减压阀和电气比例阀)的非线性特性的影响。[/size][size=14px][/size][size=14px] (4)气动减压阀可采用不同规格的气动圆顶加载压力调节器,可与各种精度和流量的电气比例阀组合实现不同规格轮胎硫化中任意设定温度的自动控制。[/size][size=14px][/size][size=14px] (5)先进的电气比例阀替代了传统的电气转换器(I/P和E/P),不再需要定期重新校准的繁复操作,不再需要仪表空气而只需加装气体过滤器即可,也不会不断排放空气减少压缩控制的浪费,重要的是控制精度可以达到任何设定点的±0.1%。[/size][size=14px][/size][size=14px] 总之,上述解决方案是目前大多数蒸汽温度控制技术的升级换代,可大幅提高轮胎硫化过程中蒸汽温度的控制精度和速度,此解决方案完全可以推广应用到其它蒸汽加热领域。[/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=14px][/size]

  • 控制器作用

    液相控制器的作用是什么就是连接机器和显示器吗,如果关掉控制器的话机器还能进行检测吗?只看到岛津的机器有单独的控制器,那安捷伦和WATERS是安在内部了还是不是所有的机器都需要控制器啊

  • Heller1936MK5系列回流焊炉 - 实现最优化制程控制和能源管理

    Heller1936MK5系列回流焊炉 - 实现最优化制程控制和能源管理

    [b]革新性软件系统实现蕞优化制程控制[/b]Heller 1936MK5系列回流焊炉采用了ECD公司开发的革新性软件系统,提供了三种层次的制程控制:回流炉CPK, 制程CPK和产品追踪控制。这个软件系统确保了所有参数都得到蕞优化,并及时报告和使用方便。[b]HELLER独家专有能源管理软件[/b]HELLER拥有自己独家的能源管理软件,可以在不同的批量生产状态中实现优化能源消耗。通过设定不同的程序,在全载生产、半载生产以及设备闲置时都可以达到节省能源消耗的目的。[img=,690,387]https://ng1.17img.cn/bbsfiles/images/2023/10/202310121254303057_7803_5802683_3.jpg!w690x387.jpg[/img][b]冷却系统设计更宪进[/b]Heller Mark5回流焊机配备了全新水冷式“冷凝导管”设计,使助焊剂回收免保养,并且具有更好的冷却效果。通过该设计,焊剂被收集在专门设置的收集瓶中,易于更换清理并进行在线保养,大大节省了维护时间。冷凝导管的表面采用了双层隔热设计,并配备内部冷凝导管,使其具有倬越的冷却效果。同时,新的冷却区炉膛设计确保焊机内没有助焊剂残留,从而减少设备维护时间并提高生产效率。[b]HELLER专家团队 - 为客户提供恮方位本地化服务[/b]HELLER结合无与伦比的设计专家团队,在“国际本地化”的发展战略下,不仅在制造中心和支持中心实现本地操作,还致厉于恮方位的本地化设计、服务、培训和制程服务。这种商业模式将HELLER推向世界Ⅰ流回流焊接系统供应商之列,并成为客户不二选择。[b]技术领導者 - 荣获多项奖项肯定[/b]作为技术领宪企业, HELLER多次荣获行业奖项认可。2018年度又获得包括年度蕞佳服务奖、VisionAward年度蕞佳创新奖、行业领導奖以及Frost&Sullivan全球SMT企业年度奖等多个殊荣。在带来革新性的软件系统和宪进的冷却系统的同时,HELLER不仅注重为客户提供蕞佳制程控制和能源管理效果,还在本地化设计、服务和支持方面大幅度提升。作为技术领導企业,HELLER一直以来都是回流焊接系统供应商中的佼佼者。无论您是需要优化制程控制、降低能源消耗还是寻求蕞专业的本地化支持与服务,选择HELLER绝对没有错。[b]苏州仁恩机电科技有限公司[/b]秉承“创新开拓、槁效专业、团结合作、精益求精”的经营理念,致厉于不断为客户创造价值。在市场竞争中,我们始终以客户需求为出发点,提供更加完善的解决方案。

  • 阀件、控制器半导体元器件控温中的作用有哪些?

    半导体元器件控温设备中,每个配件都有着不同的作用,由于作用不同,无锡冠亚的半导体元器件控温的阀件和控制器的作用也是不同的。  半导体元器件控温的水泵,是用于加速水流动的工具,以达到加强水在换热器中换热的效果。半导体元器件控温的水流开关用作管道内流体流量的控制或断流保护,当流体流量到达调定值时,开关自动切断(或接通)电路。半导体元器件控温的压力控制器用作压力控制和压力保护之用,机组有低压和高压控制器,用来控制系统的压力的工作范围,当系统压力到调定值时,开关自动切断(或接通)电路。  半导体元器件控温的压差控制器用作压力差的控制,当压力差到达调定值时,开关自动切断(或接通)电路。半导体元器件控温的温度控制器用作机组的控制或保护,当温度到达调定值时,开关自动切断(或接通)电路。在我们的产品上,温度的控制常用到,用水箱温度来控制机组的开停机情况。还有些象防冻都需要用到温度控制器。  半导体元器件控温视液镜用于指示制冷装置中液体管路的制冷剂的状况、制冷剂中的含水量、回油管路中来自油分离器的润滑油的流动状况,有的视液镜带有一指示器,它通过改变其颜色来指出制冷剂中的含水量。(绿色表示干燥,黄色表示潮湿)。因温度变化而引起水的体积变化,膨胀水箱用来贮存这部分膨胀水,对系统起稳压定压的作用,能给系统补偿部分水。  半导体元器件控温是一项比较新的设备,性能上面要求高一点才能使得半导体元器件控温的运行更加稳定。

  • 自动水位控制器开关

    自动水位控制器开关

    [font=&][color=#333333]自动水位控制器开关,也称为鱼缸自动补水器,是一种用于鱼缸或水族箱的设备,可以自动监测和控制水位,确保鱼缸中的水位始终保持在适当的范围内。它通常包括一个水位传感器和一个控制开关。[/color][/font][font=&][color=#333333][/color][/font][font=&][color=#333333]水位传感器是自动水位控制器的核心部件,它可以通过不同的原理来检测水位。其中,光电液位传感器是一种常用的水位传感器。它利用发射器和接收器之间的光束来检测水位。当水位低于设定值时,光束被阻挡,接收器接收到的光信号减弱,从而触发控制开关,启动补水装置。当水位达到设定值时,光束不再被阻挡,控制开关停止补水。[/color][/font][font=&][color=#333333][/color][/font][font=&][color=#333333]鱼缸自动补水器的工作原理如下:首先,将水位传感器安装在鱼缸中,确保传感器的位置能够准确地检测到水位。然后,将补水装置连接到自动水位控制器,并将补水管放入鱼缸中。当水位低于设定值时,光电液位传感器会触发控制开关,启动补水装置,补充鱼缸中的水。当水位达到设定值时,光电液位传感器会停止触发控制开关,补水装置停止工作。[/color][/font][font=&][color=#333333][/color][/font][font=&][color=#333333]选择合适的自动水位控制器开关时,需要考虑以下几个因素:首先,根据鱼缸的大小和水位需求,选择适当的控制开关和水位传感器。其次,考虑自动水位控制器的稳定性和可靠性,选择具有高品质和可靠性的产品。此外,还需要考虑自动水位控制器的安装和操作便捷性,以及价格和性价比。[/color][/font][font=&][color=#333333][/color][/font][align=center][img=鱼缸补水器,673,582]https://ng1.17img.cn/bbsfiles/images/2023/07/202307071357083064_4373_4008598_3.jpg!w673x582.jpg[/img][/align][font=&][color=#333333] [/color][/font][font=&][color=#333333]总之,自动水位控制器开关是一种方便实用的设备,可以帮助鱼缸或水族箱保持适当的水位。通过光电液位传感器的检测和控制,自动水位控制器可以自动补充鱼缸中的水,确保鱼类的生活环境稳定和舒适。选择合适的自动水位控制器开关时,需要考虑水位需求、稳定性、可靠性、安装便捷性和价格等因素,以确保其能够满足鱼缸的需求。[/color][/font][font=&][color=#333333][/color][/font]

  • 自动上料控制器 自动打磨控制器

    自动上料控制器 自动打磨控制器

    自动上料控制器 / 自动打磨控制器产品外形小巧,功能简单实用,参数设置少,无需繁琐操作。该表由杭州双星普天 开发设计,功能支持 定制!一、基本工作原理:监控主电机的电流,当主电机负载电流过大时,控制器输出断开信号,停止副电机工作,随着主电机处理物料的减少,主电机电流降低,控制器开启副电机工作,以此循环。二、基本参数1、供电:220V AC / 24V DC 可选2、输出:单继电器输出,触点容量 250V 3A3、采样方式:采用电流互感器 隔离采样4、量程: 10A / 50A /100A5、安装方式:面板安装 / 导轨安装 可选三、操作方式常规设置内容:报警下限电流值报警下限输出延时报警上限电流值报警上限输出延时设置方法:1、对于已知动作电流的用户,可以进入设置模式后修改设置内容2、该电流表支持快速设置模式,无需进入设置状态,通过简单的按键即可完成动作电流的设置。对于不知道电流大小 或者 需要频繁快速修改设定值的用户特别方便。四、互感器(销售时含)与该表配合使用的互感器有多种,出厂时根据用户测量电流范围选配,无需用户关注。用户只需关注 被检测线的直径,线鼻子是否顺利穿线等问题。与该表配合的常规互感器 穿心孔直径有 26mm / 11mm / 6mm 供选择。如有特别要求,比如钳形口互感器等,采购时需咨询。五、质保自采购之日起,在正常使用情况下,一年内出现质量问题,免费更换。无限期保修http://ng1.17img.cn/bbsfiles/images/2014/07/201407221106_507480_2909512_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/07/201407221106_507481_2909512_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/07/201407221106_507477_2909512_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/07/201407221106_507477_2909512_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/07/201407221106_507477_2909512_3.jpg

  • 工业用PID控制器相对于可编程逻辑控制器PLC的五大优点

    工业用PID控制器相对于可编程逻辑控制器PLC的五大优点

    [size=16px][color=#339999][b]摘要:针对控制领域内广泛使用的PID控制器和可编程逻辑控制器PLC,本文分析了具体应用中PID控制器的几大优点。PID调节器的优点主要体现在测控精度高、更强的控制功能、使用门槛低和操作简单、具有明了的可视化界面和节省成本。[/b][/color][/size][align=center][size=16px][img=相对于可编程逻辑控制器PLC,PID控制器具有哪些优势,600,320]https://ng1.17img.cn/bbsfiles/images/2023/05/202305161607321889_5876_3221506_3.jpg!w690x368.jpg[/img][/size][/align][size=16px][/size][b][size=18px][color=#339999]1. 基本概念[/color][/size][/b][size=16px] PID控制器(Proportion Integration Differentiation.比例-积分-微分控制器),由比例单元P、积分单元 I 和微分单元D组成。通过Kp,Ki和Kd三个参数的设定。PID控制器主要适用于基本线性和动态特性不随时间变化的系统。PID控制器是一个在工业控制应用中常见的反馈回路部件,PID控制器通常是指闭环控制的一种形式,这个控制器把收集到的数据和一个参考值进行比较,然后把这个差别用于计算新的输入值,这个新的输入值的目的是可以让系统的数据达到或者保持在参考值。[/size][size=16px][/size] 可编程逻辑控制器(Programmable Logic Controller,PLC)是一种具有微处理器的用于自动化控制的数字运算控制器,可以将控制指令随时载入内存进行储存与执行。可编程逻辑控制器已经相当或接近于一台紧凑型电脑的主机,其在扩展性和可靠性方面的优势使其被广泛应用于目前的各类工业控制领域。[size=16px][/size] 在大多数工业控制应用中,PLC像PID控制器一样使用,PID模块的排列可以在PACs或PLC中完成,从而为精确的PLC控制提供更好的选择。与单独的控制器相比,这些控制器既智能又强大,每个PLC基本都包括软件编程中的PID模块。[size=16px][/size] 然而,尽管PID控制器和PLC有众多类似之处,它们在设置、编程和应用方面仍有显著不同,而综合这些不同来看,PID控制器有以下几方面自己独特的优势。[size=18px][color=#339999][b]2. 测控精度高[/b][/color][/size][size=16px] [/size][size=16px]PID控制器是闭合反馈回路的一部分,该回路主动追踪过程值与设定值的偏差,并根据需要调节输出水平。许多控制器都有 PID 算法,并带自动调节功能,可以实现快速设置,并保持最小的过程值与设定值偏差。目前一些工业用PID控制器已经发展到具有极高精度的水平,如24位AD、16位DA和0.01%最小输出百分比,由此可以实现温度、真空、压力、流量、张力等物理量的超高精度测量和控制。而对于PLC则很难具备如此高精度的能力,就算个别PLC能达到如此高的精度,那价格也会远高于PID调节器。[/size][size=18px][color=#339999][b]3. 控制功能更优[/b][/color][/size][size=16px] [/size][size=16px]PID控制器是一种专门设计用于处理特定的工业过程的调节器,因此包含了与这些过程直接相关的特点、输出和控制功能,例如针对各种不同的传感器需要提供完备的数据采集能力,针对需要阀门电机驱动控制(VMD)的应用提供专门的算法。而PLC需要具备适合广泛制造和自动化功能的特点,因此针对很多具体工业控制的特点是有限的。PLC可以执行基本的控制任务,但不如专门的PID控制器优势明显。此外,由于需要处理模拟信号,控制系统对微处理器的要求非常严苛,PID控制器是专为处理这些需求而设计的,而PLC必须在系统经过测试后才能判定能否满足这些过程要求。如未能符合要求,PLC将无法快速响应过程中的各种变化,并导致超前或滞后,从而影响产品质量。[/size][size=18px][color=#339999][b]4. 使用门槛低和操作简单[/b][/color][/size][size=16px] [/size][size=16px]PLC设计用于多任务控制环境,需要专业编程技巧以及大量时间,由专业人士来打造符合特定应用需要的解决方案。而PID控制器则可以相对快速地安装、设置和优化,并且所需经验极少。特别是一些PID控制器还自带计算机软件,采用图形化界面的计算机软件可以快速实现PID控制器的设置、运行和过程变量的采集和显示,更是大幅度降低了使用门槛。 [/size][size=16px][/size] 大多数PID控制器可以面板安装,也就是可以安装在过程机械的前面板上,并且带可视屏幕,相关人员只需基本的工程知识即可在数分钟内完成设置。PLC则较为复杂,通常安装在面板后面的机架上,不带显示屏,且需要单独的HMI(同样需要设置),因此PLC操作使用的便捷性上劣势明显。[size=18px][color=#339999][b]5. 明了的可视化界面[/b][/color][/size][size=16px] [/size][size=16px]面板安装的PID控制器有多种规格以及复杂程度,因此操作员可轻松查看过程信息以及需要注意的警告或警报信息。PLC通常没有直接的界面,需要一个单独的人机界面(HMI),且人机界面需要单独设置。HIM可以显示必要的过程信息,但它通常还会显示与PLC所管理的其他任务相关的各种数据。这意味着面板安装式PID控制器优势非常明显,有专门的界面方便查看所有相关的信息,可以快速进行调节。许多PID控制器还额外提供数据记录功能,可以用于查看先前所做的更改以及标记潜在问题。[/size][size=18px][color=#339999][b]6. 节省成本[/b][/color][/size][size=16px] [/size][size=16px]当然这是相对来说的,PLC设计用于控制多任务,适用于多回路控制的应用。对于某些单回路,或者少数回路控制的应用,PLC许多特点是应用所不需要的,所以成本显得高昂,这是不如选用专门针对某个工艺参数调控设计的PID控制器。[/size][size=16px][/size] 总之,对于具有相同功能和控制精度的PID控制器和PLC,总体而言PID控制器更节省成本。[size=16px][/size][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~~[/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align]

  • 冷凝水试验箱控制器功能介绍

    冷凝水试验箱控制器采用日本原装进口“优易控”品牌温湿度仪表,7英寸高清真彩液晶触摸显示屏,带给您触觉和视觉的尊贵与舒适; 冷凝水试验箱控制器功能介绍: 1、具有1000段程式、每段可循环999步骤的容量,每段设定最大值为99小时59分;10组程序链接功能; 2、控制器可存储600天内历史数据(24小时运行状态下,记录间隔1min以上,温湿度数据同时记录时),且可回放上传的控制内历史数据曲线; 3、可随时插入U盘导出或上传数据,并可通过随机赠送软件在电脑查看或转成EXCEL格式; 4、仪表配备USB端口,可直接通过端口驱动微型打印机预览及打印(选配); 5、控制器面板标配有10M/100M以太网络接口,自动获取IP地址远程控制。可支持实时监控、历史曲线回放、程序编辑、FTP上传下载、历史故障查看、远程定值/程序控制等功能;

  • 鱼缸水位开关自动控制器

    鱼缸水位开关自动控制器

    [align=left][font=宋体][color=#333333][back=white]随着科技的发展,人们的生活越来越智能化。对于养鱼爱好者来说,一个自动控制的鱼缸水位开关控制器能够极大地提高养鱼的便利性和舒适度。[/back][/color][/font][/align][align=left][font=宋体][color=#333333][back=white]这款鱼缸水位[url=https://www.eptsz.com]开关自动控制器[/url]采用先进的微处理器技术,能够实时监测鱼缸的水位。当水位过低或过高时,控制器会立即启动相应的工作模式。当水位过低时,控制器会自动打开水泵,将水注入鱼缸,确保鱼儿有足够的水生活环境。[/back][/color][/font][/align][align=center][img=水位自动控制器,673,582]https://ng1.17img.cn/bbsfiles/images/2023/12/202312141603520014_401_4008598_3.jpg!w673x582.jpg[/img][/align][align=left][font=宋体][color=#333333][back=white]鱼缸补水器分为控制器和磁性吸盘两部分,确定鱼缸需要保持的水位线,将吸盘与控制器对准后分别放在鱼缸壁的内侧与外侧。电源的一头插入控制器,将另一头插入插座内,即可完成补水器供电。水泵插头插入控制器,水泵接上水管放入备用水箱中,既可实现补水功能。[/back][/color][/font][/align][align=left][font=宋体][color=#333333][back=white]这款鱼缸水位开关自动控制器是养鱼爱好者的理想选择。它不仅能够提供舒适的鱼儿生活环境,还能大大降低养鱼的难度和劳动强度。在未来,随着技术的不断进步,相信这款控制器将会更加智能、更加人性化,为养鱼爱好者带来更多的便利和乐趣。[/back][/color][/font][/align]

  • 24位AD和16位DA串级PID控制器在超高精度张力控制中的应用

    24位AD和16位DA串级PID控制器在超高精度张力控制中的应用

    [size=16px][color=#ff0000]摘要:针对目前张力控制器中普遍存在测量控制精度较差和无法实现串级控制这类高级复杂控制的问题,本文介绍了具有超高精度和多功能的新一代张力控制器。这种新一代张力控制器具有24位AD模数转换、16位DA数模转换、双精度浮点运算和0.01%的最小输出百分比,同时还就有远程设定点和变送输出功能,可方便的实现两个参量的串级控制,并可进行手动和自动控制的开关切换,极大提高了张力控制的精密度,更是适合一些特殊应用中的微张力控制,甚至可以进行张力设定程序曲线的精确控制。[/color][/size][align=center][size=16px][img=微张力控制,650,272]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110946105710_7747_3221506_3.jpg!w690x289.jpg[/img][/size][/align][size=18px][color=#ff0000][b]1. 问题的提出[/b][/color][/size][size=16px] 张力控制是一种对在两个加工设备之间作连续运动或静止的被加工材料所受的张力进行自动控制的技术。在各种连续生产线上,各种带材、线材、型材及其再制品,在轧制、拉拔、压花、涂层、印染、清洗以及卷绕等工序中常需要进行张力控制。[/size][size=16px] 张力控制中所用到的张力控制器是一种由单片机或者一些嵌入式器件及外围电路开发而成的系统,主要由A/D和D/A转换器以及高性能单片机等组成。在张力控制过程中,首先直接设定要求控制的张力值,让张力传感器采集的信号(一般为毫伏级别)作为张力反馈值,比较两者的偏差后,经内部智能PID运算处理后,调节执行机构,自动控制材料的放卷、中间引导及收卷的张力,达到系统响应最快的目的。目前的张力控制器普遍还存在以下几方面的问题:[/size][size=16px] (1)测量精度较低:普遍采用12位AD模数转换器,个别国外产品用了16位AD模数转换器,对于一些高精度的张力传感器输出显然无法准确测量,测量精度无法满足高精度控制要求。[/size][size=16px] (2)控制输出精度较差:普遍采用12位DA数模转换器,个别国外产品用了14位DA数模转换器,对于一些高精度的张力控制无能为力。[/size][size=16px] (3)浮点运算精度较低:目前市场上商品化张力控制器的PID运算基本都是采用单浮点方式进行,运算精度较低,输出百分比的最小调节量只有0.1%,无法进行超高精度的张力控制。[/size][size=16px] (4)传感器输入信号类型少:在各种张力控制中会采用到多种不同的传感器,如超声波探头,浮辊,电位器和激光等,这些不同传感器所输出的信号类型和量程有多种形式,但目前绝大多数张力控制器的输入型号类型非常有限,且不能方便的进行测量范围调整。[/size][size=16px] (5)功能简单:绝大多数张力控制器只能进行单变量的控制,如收放卷的扭矩控制,过程张力中的速度控制以及浮辊张力控制,但只能选择其中的一种控制参数,缺乏两个参数同时控制的功能,无法采用更高级的控制形式——串级控制来更好实现准确的张力调节。[/size][size=16px] (6)PID参数无法自整定:在有些张力控制过程中,需要准确无超调的PID控制,快速且自动的选择合适的PID参数则显着尤为重要,而目前大多张力控制器缺乏这种PID参数自整定功能。[/size][size=16px] 针对目前张力控制器中普遍存在的问题,特别是为了实现超高精度张力控制,本文将详细介绍超高精度工业用PID调节器及其在超高精度张力控制过程中的应用,特别还介绍了串级控制功能的具体应用。[/size][size=18px][color=#ff0000][b]2. 超高精度PID控制器[/b][/color][/size][size=16px] VPC-2021系列PID调节器是一种标准形式的工业用控制器,有单通道和双通道两个系列,具有96×96mm、96×48mm 和48×96mm三种尺寸规格,如图1所示。[/size][align=center][size=16px][color=#ff0000][b][img=01.超高精度PID控制器系列,650,223]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110948313448_487_3221506_3.jpg!w690x237.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图1 VPC2021系列超高精度PID控制器[/b][/color][/size][/align][size=16px] VPC2021系列PID控制器的最大优点是具有超高精度检测和控制能力,具有24位AD模数转换、16位DA数模转换和双精度浮点运算能力,0.01%的最小输出百分比。主要技术指标如下:[/size][size=16px] (1)真彩色IPS TFT长寿命LED背光、全视角液晶显示。[/size][size=16px] (2)独立的单回路和双回路控制,每个通道控制输出刷新率50ms,独立的PID控制功能,每个通道都可进行独立的手动和自动控制切换。[/size][size=16px] (3)万能型信号检测能力,即每通道都具备47种输入信号形式,仅需通过设置即可完成信号类型和量程选择,由此可满足各种规格和形式的张力探测器的引入。除了能测量各种张力传感器、位置传感器给出的模拟电压、电流和电阻信号之外,还可以测量各种温度传感器和压力传感器等各种信号,传感器输出端直接接入控制器并在控制器上进行选择即可使用。[/size][size=16px] (4)单、双通道独立控制输出,输出信号有线性电流、线性电压、继电器输出、固态继电器输出和可控硅输出五种形式,可用于直接驱动电气比例阀(或电子压力转换器)进行张力控制,也可以驱动各种阀门和加热器等执行机构进行真空度、压力和温度等参数的控制。[/size][size=16px] (5)具有远程设定点、变送和正反向控制功能,使得串级控制和分程控制成为可能。[/size][size=16px] (6)采用自主改进型PID算法,支持对PV微分和无超调控制算法。5组PID存储和调用,10组输出限幅等实用功能 。每个通道采用独立的PID参数 , 且可独立的进行PID参数自整定。[/size][size=16px] (7)支持数字和模拟远程 操 作 功 能,支持标准MODBUS RTU通讯协议。[/size][size=16px] (8)带传感器馈电供电功能(24V,50mA)。[/size][size=16px] (9)支持一路过程变量变送功能,变送的过程变量可选PV测量值、SV设定值、控制输出值和偏差值,变送输出类型有4-20mA, 0-10mA, 0-20mA, 0-10V, 2-10V, 0-5V, 1-5V七种。[/size][size=16px] (10)两组开关量光隔输入端,可以实现各种应用功能的灵活应用切换。[/size][size=16px] (11)随机配备强大的控制软件,可通过软件进行控制参数设置、运行控制、过程曲线显示和存储,非常便于过程控制的调试。[/size][size=18px][color=#ff0000][b]3. 串级控制在张力控制中的应用[/b][/color][/size][size=16px] 在典型的张力控制中多采用PID控制方式,由人工设定所需运行张力。设定值与张力传感器测量值进行比较计算后,PID控制器调节执行机构实现张力的稳定输出。典型张力控制器结构如图2所示。[/size][align=center][size=16px][color=#ff0000][b][img=02.典型单参数张力PID控制结构示意图,450,119]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110949423425_329_3221506_3.jpg!w690x183.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图2 典型单参数张力控制结构示意图[/b][/color][/size][/align][size=16px] 图2所示的采用单参数进行张力控制的方法在很多实际应用中并不能满足需要,往往需要引入第二个参数进行控制,由此需要PID串级控制方式,其结构如图3所示。[/size][align=center][size=16px][color=#ff0000][b][img=03.双参数串级控制PID张力控制结构示意图,600,165]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110950250802_7112_3221506_3.jpg!w690x190.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图3 双参数串级控制PID张力控制结构示意图[/b][/color][/size][/align][size=16px] 在图3所示的串级控制系统中包含了主和次两个闭环控制回路:[/size][size=16px] (1)次控制回路包括传感器1、执行机构和次PID控制器,其中将进入外围执行机构膜的参量作为次回路的控制参数。[/size][size=16px] (2)主控制回路则包括了传感器2、次控制回路、外围执行机构和主PID控制器,其中将外围执行机构的产出参数作为主回路的控制参数。[/size][size=16px] 由此可见,串级控制的核心是解决主PID控制器输出和次PID控制器的输入问题,采用一般的工业用PID控制器很难实现上述复杂的功能,如果采用PLC控制也需要复杂编程和相应硬件支持。为此,本解决方案采用了两台标准化的,且高精度多功能的PID控制器(VPC2021-1系列),具体接线如图4所示。[/size][align=center][size=16px][color=#ff0000][b][img=04.串级控制系统PID调节器接线示意图,690,193]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110950400632_8989_3221506_3.jpg!w690x193.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图4 串级控制系统PID调节器接线示意图[/b][/color][/size][/align][size=16px] 如图4所示,具有变送功能的主PID控制器,在主输入端口接收传感器2测量信号,然后根据所设置的固定值进行PID自动控制,相应的控制输出信号(输出值或偏差值)经过变送转换为4~20mA, 0~10mA, 0~20mA, 0~10V, 2~10V, 0~5V和1~5V七种模拟信号中的任选一种,并传送给次PID控制器的次输入端。[/size][size=16px] 具有远程设定点功能的次PID控制器,在次输入端口接收主PID控制器的变送信号作为变化的设定值,然后根据主输入端口接收到的传感器信号,进行PID自动控制,控制信号经主输出端口连接执行机构,对外部执行机构进行自动调节。[/size][size=16px] 需要注意的是,如果主PID控制器输出的控制信号能被次PID控制器次输入通道接收,且输入信号类型和量程与主输入通道接入的传感器一致,也可采用普通PID控制器作为主控制器。[/size][size=16px] 另外,从图4可以看出,由于VPC2021-1单通道PID控制器具有远程设定点功能,由此就可以很容易实现外部手动张力调节,而只需增加一个旋转电位器即可。手动调节接线如图5所示。[/size][align=center][size=16px][color=#ff0000][b][img=05.串级控制系统PID调节器手动和自动切换接线示意图,690,193]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110950566532_2083_3221506_3.jpg!w690x193.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图5 串级控制系统PID调节器手动和自动切换接线示意图[/b][/color][/size][/align][size=16px] 如图5所示,通过主PID控制器上连接的纽子开关,可以实现手动和自动功能切换。当切换到手动控制时,则可以通过接在主PID控制器次输入端子上的电压信号发生器,就可以实现手动调节控制。[/size][size=18px][color=#ff0000][b]4. 总结[/b][/color][/size][size=16px] 综上所述,通过采用新一代的超高精度多功能PID控制器,可以实现各种应用场景下的张力控制。与传统的张力控制器相比,新一代的张力控制器主要具有以下优势:[/size][size=16px] (1)超高精度:24位AD模数转换、16位DA数模转换和双精度浮点运算能力,0.01%的最小输出百分比。[/size][size=16px] (2)多功能:最多2通道的张力控制,可实现串级控制,可进行手动和自动功能切换。[/size][size=16px][/size][size=16px][/size][align=center][color=#ff0000]~~~~~~~~~~~~~~~~~~~[/color][/align]

  • 水位控制器解析

    水位控制器解析

    [size=24px][font=宋体][url=http://http://www.eptsz.com/Products.aspx]水位控制器[/url]是用来监测液体位置的开关,控制器连接处一头是连接水泵、一头是连接电源的,当液体低于检测点位置,传感器检测到无水时,会根据其原理输出一个信号,连接水泵的开关开启自动加水。当液位高于一定的检测点,[url=http://http://www.eptsz.com/Products.aspx]传感器[/url]发出信号,连接电源的开关就会强制关闭停止加水。双重液位检测保护,防止溢缸。[/font][font=宋体]水位控制器的原理是通过传感器探头对水位进行检测,当水位达到一定位置时,传感器内部芯片输出高低电平信号,从而实现对液位的控制。该设备功耗低、体积小、防水性能好、安装维护非常方便。[img=,556,319]https://ng1.17img.cn/bbsfiles/images/2022/06/202206100932141492_1847_4008598_3.png!w556x319.jpg[/img][/font][/size]

  • 温度控制器

    您好!我一朋友现在用的岛津的液相,想外配一个温度控制器,将其温度控制在10°左右,想请教一下您,一般有哪些型号,这个通用吗?

  • 热电堆和热电阻温度跟踪控制方法及其超高精度多功能PID控制器

    热电堆和热电阻温度跟踪控制方法及其超高精度多功能PID控制器

    [color=#990000]摘要:针对温度跟踪控制中存在热电堆信号小致使控制器温度跟踪控制精度差,以及热电阻形式的温度跟踪控制中需要额外配置惠斯特电桥进行转换的问题,本文提出相应的解决方案。解决方案的核心是采用一个多功能的超高精度PID控制器,具有24AD和16位DA,可大幅提高温差热电堆跟踪温度控制精度。同时,此PID控制器具有远程设定点功能,两个热电阻温度传感器可直接接入控制器就能实现相应的温度自动跟踪控制。由此仅通过一个超高精度PID控制器,可实现热电偶和热电阻形式的高精度温度跟踪控制。[/color][align=center][img=高精度温度跟踪控制,600,330]https://ng1.17img.cn/bbsfiles/images/2023/01/202301051642301750_9704_3221506_3.jpg!w690x380.jpg[/img][/align][size=18px][color=#990000][b]1. 问题的提出[/b][/color][/size] 在一些工业领域和热分析仪器领域内,常会用到温度自动跟踪功能,以达到以下目的: (1)保证温度均匀性:如一些高精度加热炉和半导体圆晶快速热处理炉等,为实现一定空间或面积内的温度均匀,一般会采取分区加热方式,即辅助加热区的温度会自动跟踪主加热区。 (2)绝热防护:在许多热分析仪器中,如绝热量热仪、热导率测试仪和量热计等,测试模型要求绝热边界条件。这些热分析仪器往往会采取等温绝热方式手段,由此来实现比采用隔热材料的被动绝热方式更高的测量精度。 自动温度跟踪功能的使用往往意味着要实现快速和准确的温度控制,其特征是具有多个温度传感器和加热器,其中温差探测器多为电压信号输出的热电偶和电阻输出的热电阻形式。对于采用这两种温差探测器的温度跟踪控制,在具体实施过程中还存在以下两方面的问题: (1)在以热电堆为温差传感器的跟踪温度控制过程中,往往会用多只热电偶构成热电堆来放大,N对热电偶组成的热电堆会将温差信号放大N倍,但即使放大了温差信号,总的温差信号对应的输出电压也是非常小。如对于K型热电偶,1℃温差对应40uV的电压信号,若使用10对K型热电偶组成温差热电堆,则1℃温差时热电堆只有400uV的电压信号输出。对于如此小的电压值作为PID控制器的输入信号,若要实现小于0.1℃的温度跟踪控制,一般精度的PID控制器很难实现高精度,因此必须采用更高精度的PID控制器。 (2)在以热电阻测温形式的跟踪温度控制过程中,情况将更为复杂,一般是采用复杂的惠斯登电桥(wheatstonebridge)将两只热电阻温度传感器的电阻差转换为电压信号,再采用PID控制器进行跟踪控制。但这样一方面是增加额外的电桥仪表,另一方面同样要面临普通PID控制器精度不高的问题。 为此,针对上述温度跟踪控制中存在的上述问题,本文将提出相应的解决方案。解决方案的核心是采用一个多功能的超高精度PID控制器,具有24AD和16位DA,可大幅提高温差热电堆跟踪温度控制精度。同时,此PID控制器具有远程设定点功能,两个热电阻温度传感器可直接接入控制器就能实现相应的温度自动跟踪控制。由此通过一个超高精度PID控制器,可实现热电偶和热电阻形式的高精度温度跟踪控制。[b][size=18px][color=#990000]2. 解决方案[/color][/size][/b] 为了实现热电堆和热电阻两种测温形式的温度跟踪控制,解决方案需要解决两个问题: (1)高精度的PID控制器,可检测由多只热电偶组成的温差热电堆输出小信号。 (2)不使用电桥仪器,直接采用PID控制器连接两只热电阻温度传感器进行跟踪控制。 为解决温度跟踪控制中的上述两个问题,解决方案将采用VPC-2021系列多功能超高精度的PID控制器。此控制器的外观和背面接线图如图1所示。[align=center][img=,600,177]https://ng1.17img.cn/bbsfiles/images/2023/01/202301051656426331_2008_3221506_3.jpg!w690x204.jpg[/img][/align][align=center][b][color=#990000]图1 VPC 2021系列多功能超高精度PID控制器[/color][/b][/align] 针对温度跟踪控制,VPC 2021系列多功能超高精度PID程序控制器的主要特点如下: (1)24位AD,16位DA,双精度浮点运算,最小输出百分比为0.01%。 (2)可连接模拟电压小信号,可连接各种热电偶,可连接各种铂电阻和热敏电阻温度传感器,共有多达47种输入信号形式。 (3)具备远程设定点功能,即将外部传感器信号直接作为设定点来进行自动控制。 对于由热电偶组成的热电堆温差探测器形式的温度跟踪控制,具体接线形式如图2所示。[align=center][color=#990000][b][img=温差热电堆控制器接线图,500,194]https://ng1.17img.cn/bbsfiles/images/2023/01/202301051643371408_3010_3221506_3.jpg!w690x268.jpg[/img][/b][/color][/align][align=center][b][color=#990000]图2 温差热电堆控制器接线图[/color][/b][/align] 图2是典型的温差热电堆控制器接线形式,其中用了两只或多只热电偶构成的热电堆检测物体AB之间的温差,温差信号(电压)直接连接到PID控制器的主输入端,PID控制器调节物体B的加热功率,使温差信号始终保持最小(近似零),从而实现物体B的温度始终跟踪物体A。 对于由热电阻温度传感器形式构成的温度跟踪控制,具体接线形式如图3所示。这里用了控制器的远程设定点功能,这时需要物体AB上分别安装两只热电阻温度计,其中物体B上的热电阻(两线制或三线制)连接到PID控制器的主输入端作为控制传感器,物体A上的热电阻(与物体B热电阻制式保持相同)连接到PID控制器的辅助输入端作为远程设定点传感器,由此实现物体B的温度调节始终跟踪物体A的温度变化。[align=center][img=热电阻温度传感器控制器接线图,500,195]https://ng1.17img.cn/bbsfiles/images/2023/01/202301051644317319_3570_3221506_3.jpg!w690x270.jpg[/img][/align][align=center][b][color=#990000]图3 热电阻温度传感器控制器接线图[/color][/b][/align][b][color=#990000][size=18px]3. 总结[/size][/color][/b] 高精度的温度跟踪控制一直以来都是一个技术难点,如对于热电偶组成的温差热电堆温度跟踪控制,若采用普通精度的PID控制器还有实现高精度的温度跟踪控制,通常需要增加外围辅助技术手段,一是通过增加热电偶对数来增大温差电压信号,但这种方式工程实现难度较大且带来导线漏热问题,二是采用较高品质的直流信号放大器对温差电压信号进行放大,这同时增加了控制设备的复杂程度和造价。 对于采用热电阻温度传感器进行温度跟踪控制,以往的实现方法是采用复杂的惠斯登电桥(wheatstone bridge)将两只热电阻温度传感器的电阻差转换为电压信号,这同样增加了控制设备的复杂程度和造价。 由此可见,采用VPC 2021系列多功能超高精度PID调节器,可直接与相应的温度传感器进行连接,简化了温度跟踪控制的实现难度和装置的体积,更主要的是超高精度的数据采集和控制可大幅提高温度跟踪的控制精度。[align=center]~~~~~~~~~~~~~~[/align][align=center][/align][align=center][/align]

  • 具有分程控制功能的超高精度PID控制器及其应用

    具有分程控制功能的超高精度PID控制器及其应用

    [size=16px][color=#339999]摘要:分程控制作为一种典型的复杂控制方法之一,常用于聚合反应工艺、冷热循环浴、TEC半导体温度控制、动态平衡法的真空和压力控制等领域。为快速和便捷的使用分程控制,避免采用PLC时存在的控制精度差和使用门槛高等问题,本文介绍了具有分程控制功能的超高精度VPC-2021系列PID控制器,以及使用分程控制时的参数设置、接线和具体应用。[/color][/size][align=center][size=16px][img=超高精度PID控制器的特殊功能(4)——分程控制功能及其应用,650,440]https://ng1.17img.cn/bbsfiles/images/2023/04/202304191326452103_3866_3221506_3.jpg!w690x468.jpg[/img][/size][/align][b][size=18px][color=#339999]1. 分程控制简介[/color][/size][/b][size=16px] 分程控制是采用一个输出变量来控制几个不同操作变量之间协调运行的一种复杂控制方式,如单个控制器用于控制两个执行机构(例如两个阀门、加热和制冷器等),控制这两个操作变量将一个受控变量保持在设定点上。分程控制主要包括以下三种不同方式:[/size][size=16px] (1)分程控制(Split Range Control)[/size][size=16px] (2)顺序控制(Sequence Control)[/size][size=16px] (3)正反向动作控制(Opposite Acting Control)[/size][size=16px] 一个典型的分程控制且应用广泛的是密闭容器的真空压力控制,控制回路上有两个控制阀,一个阀负责进气加压,另一个阀负责排气。图1(a)曲线图显示了阀门开度与真空压力的关系。[/size][align=center][size=16px][color=#339999][b][img=01.分程控制的三种形式,690,249]https://ng1.17img.cn/bbsfiles/images/2023/04/202304191329331841_5111_3221506_3.jpg!w690x249.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 分程控制三种形式的操作示意图[/b][/color][/size][/align][size=16px] 如果需要对阀门进行顺序控制,其工作方式如图1(b)所示。在这种顺序阀操作中,当PID控制器输出为0~50%时,阀门A将从0~100%打开。当PID控制器输出达到50%时,阀门A将100%打开,然后阀门B将在PID输出达到50%后开始打开。因此,对于PID控制器输出50%至100%,阀门B将从0%至100%打开。[/size][size=16px] 在正反向动作控制中,对于0~100%的PID控制器输出,阀A将从0~100%开始打开,同时对于相同的PID控制器输出,阀B将从100%到0%关闭。[/size][size=16px] 在上述分程控制的具体实施过程中,普遍需要采用具有PID控制功能的相应装置。目前这种控制装置大多采用PLC形式才能实现,存在使用门槛高和控制精度差等问题。为此本文将介绍一种具有分程控制功能的超高精度PID控制器,以及分程控制时的参数设置、接线和具体应用。[/size][size=18px][color=#339999][b]2. 具有分程控制功能的超高精度PID控制器[/b][/color][/size][size=16px] VPC-2021系列超高精度PID控制器的内核是一款双通道控制器,其中VPC2021-1系列是具有分程控制功能的PID控制器,而VPC2021-2系列则是独立双通道PID控制器。本文将重点介绍具有分程控制功能的VPC2021-1系列PID控制器,此控制器如图2所示。[/size][align=center][size=16px][color=#339999][b][img=02.VPC2021-1控制器及其电气接线图,690,199]https://ng1.17img.cn/bbsfiles/images/2023/04/202304191329550947_4629_3221506_3.jpg!w690x199.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 VPC2021-1控制器及其电气接线图[/b][/color][/size][/align][size=16px] VPC-2021系列PID控制器的主要技术特征如下:[/size][size=16px] (1)尽管VPC-2021系列PID控制器的内核是双通道控制器,具有两路传感器输入和两路控制信号输出,但为了实现分程控制功能,控制器仅配置了一套PID控制模块,所以在实际应用中还是一款单通道PID控制器。[/size][size=16px] (2)具有两路控制信号输出(主控输出1和主控输出2),两路输出可以分别控制相应的阀门、加热和制冷器,适合真空压力和温度的分程控制功能实现。[/size][size=16px] (3)具有一路变送输出通道,可变送输出测量值PV、设定值SV、输出值OP和偏差值DV四个控制参数中的任选一种,这也有助于分程控制功能的实现和拓展。[/size][size=16px] (4)具有两路传感器信号输入通道,可连接相同测量参数(如真空压力或温度)但量程不同的传感器,可实现两个传感器之间的自动切换,由此可进行宽量程范围内的PID控制。[/size][size=16px] (5)所具有的两路输入通道,还可实现本地设定和远程设定功能之间的切换,通过远程设定功能,可任意改变设定值(如周期性波形形式的设定曲线),实现周期性复杂波形的控制。[/size][size=16px] (6)具有程序控制功能,支持20条编程曲线,每条50段,支持段内循环和曲线循环。[/size][size=16px] (7)具有超高的测量和控制精度,24位AD、16位DA、双精度浮点运行和0.01%最小输出百分比。控制器是面板安装式的标准工业调节器,最大开孔尺寸为92mm×92mm。[/size][size=18px][color=#339999][b]3. 分程控制功能的具体应用[/b][/color][/size][size=16px] 针对图1所示的三种分程控制形式,采用VPC2021-1控制器的具体实施方法如下。[/size][size=16px][color=#339999][b] (1)分程控制应用[/b][/color][/size][size=16px] 对于典型的分程控制,PID控制器的具体接线如图3(a)所示,将两个被控对象,如常闭型阀门或加热制冷器,直接连接到主控输出1和主控输出2接线端。测量传感器连接到主输入1接线端。[/size][align=center][size=16px][color=#339999][b][img=03.分程控制接线示意图,690,222]https://ng1.17img.cn/bbsfiles/images/2023/04/202304191330182623_478_3221506_3.jpg!w690x222.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 两种分程控制形式的PID控制器接线示意图[/b][/color][/size][/align][size=16px][color=#339999][b] (2)顺序控制应用[/b][/color][/size][size=16px] 对于顺序控制,PID控制器的具体接线如图3(b)所示,将一个被控对象,如常闭型阀门,直接连接到主控输出1接线端,将第二个被动对象,如常闭型阀门,连接到变送输出接线端。测量传感器连接到主输入1接线端。[/size][size=16px][color=#339999][b] (3)正反向控制应用[/b][/color][/size][size=16px] 对于正反向控制,PID控制器的具体接线与图3(a)所示相同,区别只是所连接阀门一个是常闭型,另一个是常开型。[/size][size=16px] 在使用PID控制器进行分程控制之前,还需进行以下几项控制器参数的设置:[/size][size=16px] (1)设置仪表功能的控制方式为“双输出”。[/size][size=16px] (2)在分程控制中,根据实际被控对象设置“死区”范围。[/size][size=16px] (3)如需采用变送功能,还需进行相应的变送参数设置。[/size][size=16px] (4)如需采用双传感器切换功能,还需进行相应的切换参数设置。[/size][size=18px][color=#339999][b]4. 总结[/b][/color][/size][size=16px] 综上所述,本文详细介绍了具有分程控制功能的VPC2021-1系列超高精度PID控制器,采用此控制器可直接用于相应分程控制的实施,且具有很高的控制精度。[/size][size=16px] 分程控制在实践中应用广泛,然而,由于忽视了与之相关的独特挑战,分程控制经常会被误用或滥用。在许多应用中,如上述的顺序控制和正反向动作控制中,采用如VPC2021-2这种独立双通道PID控制器,无论在配置、调试和故障排除上都要简单得多。[/size][align=center][color=#339999]~~~~~~~~~~~~~~~~~~[/color][/align][align=center][color=#339999][/color][/align][align=center][color=#339999][/color][/align][align=center][color=#339999][/color][/align]

  • 控制器数据存储

    水质监测用那种在线的[url=https://www.hach.com.cn/product/orbisphere410]智能数字控制器[/url]连接电极,监测数据是能存储到控制器然后通过u盘给导出来吧?这种控制器,可以操作存储数据的存储次数和间隔嘛?比如我想一个小时存储几次之类的。

  • 防水型压力控制器

    防水型压力控制器:怎么防水呢?采用什么材质?(YWK-50/C)型防水型压力控制器是怎么输出的。具体资料有没有啊

  • 水池水位自动控制器功能介绍

    水池水位自动控制器功能介绍

    [font=&][color=#333333]水池水位自动控制器是一种用于监测和控制水池水位的设备。它通过传感器实时监测水池的水位,并根据设定的水位范围自动控制水泵或阀门的开关,以保持水池的水位在合适的范围内。[/color][/font][font=&][color=#333333][/color][/font][font=&][color=#333333]水池水位自动控制器具有以下功能:[/color][/font][font=&][color=#333333][/color][/font][font=&][color=#333333]实时监测水位:水池水位自动控制器配备了高精度的水位传感器,能够准确地监测水池的水位变化。它可以实时显示当前水位,并将数据传输给控制器进行处理。[/color][/font][font=&][color=#333333][/color][/font][font=&][color=#333333]自动控制水泵或阀门:根据设定的水位范围,水池水位自动控制器可以自动控制水泵或阀门的开关。当水位低于设定的最低水位时,控制器会自动启动水泵或打开阀门,将水注入水池;当水位达到设定的最高水位时,控制器会自动关闭水泵或关闭阀门,停止注水。[/color][/font][align=center][img=水位自动控制器,690,690]https://ng1.17img.cn/bbsfiles/images/2023/07/202307191457554937_9399_4008598_3.jpg!w690x690.jpg[/img][/align][font=&][color=#333333]报警功能:水池[url=https://www.eptsz.com]水位自动控制器[/url]还具有报警功能。当水位超出设定的安全范围时,控制器会发出声音或光信号,提醒操作人员及时采取措施,避免水池溢出或水位过低。[/color][/font][font=&][color=#333333][/color][/font][font=&][color=#333333]远程监控和控制:一些高级的水池水位自动控制器还具有远程监控和控制功能。通过与互联网连接,操作人员可以远程监测水池的水位,并进行远程控制,实现对水泵或阀门的远程开关。[/color][/font][font=&][color=#333333][/color][/font][font=&][color=#333333]水池水位自动控制器的功能使得水池的水位控制更加方便和精确。它可以广泛应用于各种水池,如蓄水池、游泳池、鱼塘等,有效地提高了水资源的利用效率,减少了人工操作的工作量,同时也提高了水池的安全性和稳定性。[/color][/font][font=&][color=#333333][/color][/font]

  • Heller 1707MK5回流焊炉:提高产量和过程控制的理想选择

    Heller 1707MK5回流焊炉:提高产量和过程控制的理想选择

    [b]超大体积、高速加热模块[/b]Heller 1707MK5回流焊炉采用超大体积、高速加热模块,能够有效传导更多的热量。该加热模块对温度变化的响应时间小于一秒,并且对温度变化蕞小为0.1℃,从而保持厚板型材的完整性加载。[b]宽处理窗口和通用配置文件[/b]该焊炉设计有宽处理窗口和可适应多种不同板子运行的“通用配置文件”。这意味着可以在一个温度曲线上运行许多不同类型的电路板,方便用户进行生产调整和灵活操作。[img=,690,460]https://ng1.17img.cn/bbsfiles/images/2023/09/202309200942326080_721_5802683_3.jpg!w690x460.jpg[/img][b]宪进的记录功能[/b]Heller 1707MK5回流焊炉配备了五个宪进的PCB配置文件和过程参数记录功能。用户可以存储蕞多500个温度配方和轮廓图,实现工艺参数自动化管理并提高生产效率。HELLER mk5在线式真空辅助回流焊系统: 槁效环保又稳定[b]集成真空技术[/b]HELLER在线式真空辅助回流焊系统通过在回流炉内集成真空模组,实现了热风回流焊与真空焊接的一体化。该系统能够精崅控制真空抽取速度,并完成普通回流炉的温度曲线,实现在线式焊接。同时,这种设计还有效降低生产成本、提高产量。[b]无空洞连接[/b]在线式真空辅助回流焊系统能够提供无空洞(总面积小于1%)的连接效果,确保半导体盖与热界面材料之间紧密而无缝隙的连接。这样可以蕞大限度地提高散热效率,并为产品保持稳定的工作性能。半导体宪进封装TIM / 盖子粘贴行业方案介绍[b]多种解决方案可选[/b]Heller针对半导体宪进封装TIM/盖子粘贴等行业需求,提供了三种经过验证的解决方案:真空压力烤箱(PCO)、压力回流炉(PRO)和甲型回流炉。这些解决方案均具备消除间隙功能,在不同的应用场景下能够提供蕞佳的粘合效果。通过与用户深入了解具体需求,我们将为您推荐适合的半导体封装方案。Heller 1707MK5回流焊炉以及在线式真空辅助回流焊系统是在电子制造行业中实现高产量和严格过程控制的理想选择。这些设备不仅可以提供稳定、槁效、环保的焊接效果,还兼具灵活性和可配置性,以满足不同类型板子或需求变化时的生产调整。同时,Heller所提供的多种解决方案也为半导体宪进封装TIM/盖子粘贴等行业应用带来了更多选择,并确保无空隙连接,优化散热能力并提高工作性能稳定性。在[b]苏州仁恩机电科技有限公司[/b],我们拥有丰富的管理、生产技术和工艺经验,能够为客户提供恮面的支持和帮助。我们信奉“品质第一,服务至上”的理念,让客户放心选择我们的heller回流焊设备产品和服务。

  • 控制器自动加药和进水

    能控制水泵自动上水和停止还有加药机启停的[url=https://www.hach.com.cn/product-list/kongzhichuangan]智能控制器[/url],大概要多少钱;就是灌溉用水的水池,现在想实现根据水位高低启动进水;然后放了个水质测定仪和加药装置,想控制自动加药,两个可以用一个控制器实现吗?

  • 什么是光电液位控制器

    什么是光电液位控制器

    [font=宋体][back=white]光电液位控制器是一种利用光电传感技术来实现液位控制的设备。它通过光电传感器对液体的光反射或透射进行检测,从而实现对液位的监测和控制。[/back][/font][back=white] [/back][font=宋体][back=white]光电液位控制器的工作原理是利用光电传感器发射出的光束与液体的接触面发生反射或透射,通过接收器接收到的光信号来判断液位的高低。当液位达到设定的阈值时,光电液位控制器会触发相应的控制动作,如开关电路、报警或自动控制等。[/back][/font][align=center] [img=光电液位传感器,601,371]https://ng1.17img.cn/bbsfiles/images/2023/09/202309071404373511_9614_4008598_3.jpg!w601x371.jpg[/img][/align][font=宋体][back=white]相比传统的浮球液位开关,光电液位控制器具有许多优势。首先,光电液位控制器的体积小巧,安装方便,适用于各种容器和管道的液位控制。其次,光电液位控制器不需要直接接触液体,因此不受液体的颜色、腐蚀性和杂质的影响,具有更高的可靠性和稳定性。此外,光电液位控制器还可以实现非接触式的液位检测,避免了浮球易卡死和水垢加重等问题,提高了液位检测的精度和准确性。[/back][/font][back=white] [/back][font=宋体][back=white][url=https://www.eptsz.com]光电液位控制器[/url]通过光电传感技术实现了对液位的准确监测和控制,具有体积小、可靠性高和安装方便等优势。在液位控制领域,光电液位控制器是一种更好的选择。[/back][/font]

  • 【分享】SWK-B型可控硅数显温度控制器

    SWK-B型可控硅数显温度控制器 该控制器可与箱形高温电阻炉(马弗炉),双管定硫炉、灰熔点测定炉或其它电热设备配合,实现对炉内温度自动控制,以适应不同的试验对升温速度及控制温度的不同要求。 ◆SWK-B型控制器采用数字显示指示温度,炉温显示清晰准确。 ◆使用双向可控硅输出控制,切换无触电,具有寿命长、无噪声等优点。 ◆具有PID调节功能,能有效克服炉温过冲的现象,使得温度控制更准确。 ◆输出电压0~220V连续可调,可适应不同的升温速度要求。 ◆电源:AC 220V±10% ,50HZ ◆全导通输出电压可调 ◆最大允许负载5KW 使用说明书(节选)一、概述SWK-B型数显温度控制器用于配合箱形高温电阻炉、定硫炉及其它电加热设备,实现对炉内温度的自动控制,以适应不同的试验项目对升温速度和温度的不同要求。其主要特点有:1. 温度设定与测量采用数字显示,直观准确 2. 采用双向可控硅控制输出,切换无触点,具有使用寿命长,无噪音等优点。3. 具有PID调节功能,能有效克服炉温过冲现象,使温度控制更准确。4. 输出电压无级调节,可适应不同的升温速度要求。二、主要参数1. 输入电压:220V±10%,50HZ2. 输出电压:0~220V连续可调3. 最大允许负载:5KW4. 精度等级:0.5级5. 配用电偶:镍铬-镍硅,K值,0~1000℃6. 工作环境:0~40℃,相对湿度≯85%三、使用方法1. 使用前应首先检查控制器的内部接线是否脱落,如有松动应按原理图接好,可控硅管壳与散热器应接触良好,保证元件工作是散热正常。2. 控制器不应放置在具有剧烈震动的场合,控制器内部应保持清洁。3. 按电控器上所标输入(220V),输出位置,将电源与负载接好。4. 控制原理图见下图5. 打开电源开关键,工作指示灯亮,表示电源已接通。6. 顺时针转动电压调节选钮,使电压表指示到合适强度(220v),拨动”数显调节仪”右下方开关到设定(OFF)后, 顺时针转动开关上面的调节选钮,使温度显示到需要设定值;设定后,开关拨到测量(ON),绿灯亮开始工作,温度达到设定值后红灯亮,停止工作。四、常见故障及产生原因:......

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制