当前位置: 仪器信息网 > 行业主题 > >

射线荧光膜

仪器信息网射线荧光膜专题为您提供2024年最新射线荧光膜价格报价、厂家品牌的相关信息, 包括射线荧光膜参数、型号等,不管是国产,还是进口品牌的射线荧光膜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合射线荧光膜相关的耗材配件、试剂标物,还有射线荧光膜相关的最新资讯、资料,以及射线荧光膜相关的解决方案。

射线荧光膜相关的论坛

  • 求X射线荧光光谱模拟软件

    求一个X射线荧光光谱模拟软件或者用什么软件可以模拟出来都行!lixinweiwill@163.com 十分感谢 例如:选用不同阳极靶材的X光管,可选择不同元素,最后得到荧光谱图

  • X射线荧光光谱分析

    X射线荧光光谱分析

    X射线荧光光谱分析用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X射线荧光光谱仪。由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。下图是这两类仪器的原理图。http://ng1.17img.cn/bbsfiles/images/2011/12/201112280433_341844_1601823_3.jpg现将两种类型X射线光谱仪的主要部件及工作原理叙述如下: http://ng1.17img.cn/bbsfiles/images/2011/12/201112280434_341845_1601823_3.jpg两种类型的X射线荧光光谱仪都需要用X射线管作为激发光源。上图是X射线管的结构示意图。灯丝和靶极密封在抽成真空的金属罩内,灯丝和靶极之间加高压(一般为40KV),灯丝发射的电子经高压电场加速撞击在靶极上,产生X射线。X射线管产生的一次X射线,作为激发X射线荧光的辐射源。只有当一次X射线的波长稍短于受激元素吸收限lmin时,才能有效的激发出X射线荧光。大于lmin的一次X射线其能量不足以使受激元素激发。          X射线管的靶材和管工作电压决定了能有效激发受激元素的那部分一次X射线的强度。管工作电压升高,短波长一次X射线比例增加,故产生的荧光X射线的强度也增强。但并不是说管工作电压越高越好,因为入射X射线的荧光激发效率与其波长有关,越靠近被测元素吸收限波长,激发效率越高。   X射线管产生的X射线透过铍窗入射到样品上,激发出样品元素的特征X射线,正常工作时,X射线管所消耗功率的0.2%左右转变为X射线辐射,其余均变为热能使X射线管升温,因此必须不断的通冷却水冷却靶电极。

  • X射线荧光光谱分析的基本原理 及应用

    X射线荧光光谱分析的基本原理   当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为10-12-10-14s,然后自发地由能量高的状态跃迁到能量低的状态。这个过程称为驰豫过程。驰豫过程既可以是非辐射跃迁,也可以是辐射跃迁。当较外层的电子跃迁到空穴时,所释放的能量随即在原子内部被吸收而逐出较外层的另一个次级光电子,此称为俄歇效应,亦称次级光电效应或无辐射效应,所逐出的次级光电子称为俄歇电子。它的能量是特征的,与入射辐射的能量无关。当较外层的电子跃入内层空穴所释放的能量不在原子内被吸收,而是以辐射形式放出,便产生X射线荧光,其能量等于两能级之间的能量差。因此,X射线荧光的能量或波长是特征性的,与元素有一一对应的关系。图10.1给出了X射线荧光和俄歇电子产生过程示意图。   K层电子被逐出后,其空穴可以被外层中任一电子所填充,从而可产生一系列的谱线,称为K系谱线:由L层跃迁到K层辐射的X射线叫Kα射线,由M层跃迁到K层辐射的X射线叫Kβ射线……。同样,L层电子被逐出可以产生L系辐射(见图10.2)。如果入射的X射线使某元素的K层电子激发成光电子后L层电子跃迁到K层,此时就有能量ΔE释放出来,且ΔE=EK-EL,这个能量是以X射线形式释放,产生的就是Kα射线,同样还可以产生Kβ射线 ,L系射线等。莫斯莱(H.G.Moseley) 发现,荧光X射线的波长λ与元素的原子序数Z有关,其数学关系如下: λ=K(Z-s)-2   这就是莫斯莱定律,式中K和S是常数,因此,只要测出荧光X射线的波长,就可以知道元素的种类,这就是荧光X射线定性分析的基础。此外,荧光X射线的强度与相应元素的含量有一定的关系,据此,可以进行元素定量分析。

  • 【原创】能量色散X射线荧光光谱(电源)

    能量色散X射线荧光光谱开关电源能量色散X射线荧光光谱采取脉冲高度剖析器将不同能量的脉冲离开并测量。能量色散X射线荧光光谱仪可分为具备高分别率的光谱仪,分别率较低的便携式光谱仪,和介于两者之间的台式光谱仪。高分别率光谱仪通常采取液氮冷却的半导体探测器,如Si(Li)和高纯锗探测器等。低分别便携式光谱仪经常采取反比计数器或闪耀计数器为探测器,它们不须要液氮冷却。近年来,采取电致冷的半导体探测器,高分别率谱仪已不必液氮冷却。同步辐射光激起X射线荧光光谱、质子激起X射线荧光光谱、喷射性同位素激起X射线荧光光谱、全反射X射线荧光光谱、微区X射线荧光光谱等较多采取的是能量色散方法。编纂本段非色散谱仪  非色散谱仪不是采取将不同能量的谱线分别开来,而是通过抉择激起、抉择滤波和抉择探测等方法使测量剖析线而消除其余能量谱线的搅扰,因而个别只实用于测量一些简朴和组成基础固定的样品。假如n1n2,则介质1相关于介质2为光密介质,介质2相关于介质1为光疏介质。关于X射线,个别固体与空气相比都是光疏介质。所以,假如介质1是空气,那么α1α2(图2。20右图),即折射线会倾向界面。假如α1足够小,并使α2=0,此时的掠射角α1称为临界角α临界。当α1α临界时,界面就象镜子一样将入射线整个反射回介质1中,这就是全反射景象。X射线荧光光谱法有如下特征:剖析的元素规模广,从4Be到92U均可测定;   荧光X射线谱线简朴,互相搅扰少,样品不必分别,剖析方法对比简便;   剖析浓度规模较宽,从常量到微量都可剖析。重元素的检测限可达ppm量级,轻元素稍差。待续。。。。。非色散?不是很理解。楼主,你有示意图来介绍一下吗。

  • 【分享】X射线荧光光谱法学习(ppt)

    X射线荧光光谱法是利用样品对x射线的吸收随样品中的成分及其众寡变化而变化来定性或定量测定样品中成分的一种方法.它具有分析迅速、样品前处理简单、可分析元素范围广、谱线简单,光谱干扰少等优点.x射线荧光法不仅可以分析块状样品,还可对多层镀膜的各层镀膜分别进行成分和膜厚的分析.[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=138141]X射线荧光光谱[/url]

  • X射线荧光光谱仪

    波长色散X射线荧光光谱仪分析对象主要有各种磁性材料(NdFeB、SmCo合金、FeTbDy)、钛镍记忆合金、混合稀土分量、贵金属饰品和合金等,以及各种形态样品的无标半定量分析,对于均匀的颗粒度较小的粉末或合金,结果接近于定量分析的准确度。X荧光分析快速,某些样品当天就可以得到分析结果。适合课题研究和生产监控。 波长色散X射线荧光光谱仪采用晶体或人工拟晶体根据Bragg定律将不同能量的谱线分开,然后进行测量。波长色散X射线荧光光谱一般采用X射线管作激发源,可分为顺序式(或称单道式或扫描式)、同时式(或称多道式)谱仪、和顺序式与同时式相结合的谱仪三种类型。顺序式通过扫描方法逐个测量元素,因此测量速度通常比同时式慢,适用于科研及多用途的工作。同时式则适用于相对固定组成,对测量速度要求高和批量试样分析, 顺序式与同时式相结合的谱仪结合了两者的优点。 美国Cianflone公司扫描型X射线荧光光谱仪(波长色散型)2501XBT型号是ASTM金属基层处理涂层测厚检验标准(D5723-95)、ASTM1306-07和D6906-03中唯一推荐检测仪器。X射线荧光光谱仪是表面金属元素成分分析的理想工具。 Portaspec2501XRF可以试验如下金属和矿物的全定量分析: 铬、钴、铜、金、铁、铅、锂、锰、汞、钼、镍、、铂、银、钍、钛、钨、铀、钒、锌、锆? Portaspec以安全的辐射标准(CRF标准)耐用的光学系统,简便的元素选择操作,强大灵活的测量功能、成为金属元素定量定性的最好分析工具。 PortaspecX系列色散型X射线荧光光谱仪用于质量控制和研究,高效、功能强大,包括触摸屏笔记本电脑。X射线管冷却水浴、真空泵,高压电源于一体,完全实现低成本运行。 PortaspecX系列色散型X射线荧光光谱仪主要特点: XSEBT单一元素; XBT分析从钛到银、从钡到铀的单一或多金属顺序测量; XLT分析AI、Si 、P、S、Cl、K、Ca、Zr 系统设置与样品分析耗时短 移动式测量探头,可实现无损在线检测 符合CRF辐射安全 包括触摸屏笔记本电脑 快速调角开关电源 密封、高效耐用的光学系统实验高精度高可靠性的测量请不要注明出处。否则广告论处。

  • X射线衍射仪与X射线荧光光谱仪有什么不同?

    X射线衍射仪简称XRD( X-ray diffractometer ),特征X射线及其衍射X射线是一种波长(0.06-20nm)很短的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相机乳胶感光、气体电离。用高能电子束轰击金属靶产生X射线,它具有靶中元素相对应的特定波长,称为特征X射线。如铜靶对应的X射线波长为0.154056 nm。X射线荧光光谱仪简称XRF( X Ray Fluorescence ),人们通常把X射线照射在物质上而产生的次级X射线叫X射线荧光(X—Ray Fluorescence),而把用来照射的X射线叫原级X射线。所以X射线荧光仍是X射线。一台典型的X射线荧光(XRF)仪器由激发源(X射线管)和探测系统构成。X射线管产生入射X射线(一次X射线),激发被测样品。受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。然后,仪器软件将探测系统所收集到的信息转换成样品中各种元素的种类及含量。X射线照在物质上而产生的次级 X射线被称为X射线荧光。利用X射线荧光原理,理论上可以测量元素周期表中铍以后的每一种元素。在实际应用中,有效的元素测量范围为9号元素 (F)到92号元素(U)。

  • 【资料】熊猫收集--X射线荧光分析技术应用的误区

    X射线荧光分析作为工业分析技术经历了几十年的发展历程,在水泥制造业已得到广泛应用。我国水泥工业中X射线荧光分析技术的应用和发展,基本上是在近25年中实现的。上个世纪七十年代末八十年代初,一方面随着大量新型干法水泥生产线的成套引进,大型X荧光光谱仪开始出现在我国水泥工业,另一方面,随着钙铁分析仪的研制成功,钙铁分析仪在水泥生产过程控制中迅速普及,形成了高端产品和低端产品两翼齐飞的局面;八十年代后期,采用管激发、Si(Li)半导体探测器的X射线荧光能谱仪曾一度受到关注,但到了九十年代初期,国产的源激发正比计数管多元素分析仪,以其简单实用的结构和价格低廉的优势迅速进入市场,成为以水泥工业为主要对象的中档产品;世纪之交前后,针对工业分析应用开发的小型多道X荧光光谱仪,随着我国水泥工业结构调整的步伐得以大量应用。可以说,目前在水泥制造业,X射线荧光分析仪的应用是处于百花齐放的时代。这种局面给用户带来了多种选择,同时也形成一些误区。本文试图跳出X荧光分析技术领域学术研究和商业行为的圈子,从水泥制造业应用X荧光分析技术的角度,提出一些避免误区的观点。 1.X射线荧光分析基本原理 荧光,顾名思义就是在光的照射下发出的光。X射线荧光就是被分析样品在X射线照射下发出的X射线,它包含了被分析样品化学组成的信息,通过对上述X射线荧光的分析确定被测样品中各组份含量的仪器就是X射线荧光分析仪。 从原子物理学的知识我们知道,对每一种化学元素的原子来说,都有其特定的能级结构,其核外电子都以各自特有的能量在各自的固定轨道上运行,内层电子在足够能量的X射线照射下脱离原子的束缚,成为自由电子,我们说原子被激发了,处于激发态,这时,其他的外层电子便会填补这一空位,也就是所谓跃迁,同时以发出X射线的形式放出能量。由于每一种元素的原子能级结构都是特定的,它被激发后跃迁时放出的X射线的能量也是特定的,称之为特征X射线。通过测定特征X射线的能量,便可以确定相应元素的存在,而特征X射线的强弱(或者说X射线光子的多少)则代表该元素的含量。 量子力学知识告诉我们,X 射线具有波粒二象性,既可以看作粒子,也可以看作电磁波。看作粒子时的能量和看作电磁波时的波长有着一一对应关系。这就是著名的普朗克公式:E=hc/λ。显然,无论是测定能量,还是波长,都可以实现对相应元素的分析,其效果是完全一样的。 2.X射线荧光分析仪的分类 2.1. 根据分光方式的不同,X射线荧光分析可分为能量色散和波长色散两类,也就是通常所说的能谱仪和波谱仪,缩写为EDXRF和WDXRF。 通过测定荧光X射线的能量实现对被测样品的分析的方式称之为能量色散X射线荧光分析,相应的仪器称之为能谱仪,通过测定荧光X射线的波长实现对被测样品分析的方式称之为波长色散X射线荧光分析,相应的仪器称之为X射线荧光光谱仪。 2.2. 根据激发方式的不同,X射线荧光分析仪可分为源激发和管激发两种:用放射性同位素源发出的X射线作为原级X射线的X荧光分析仪称为源激发仪器;用X射线发生器(又称X光管)产生原级X射线的X荧光分析仪称为管激发仪器。 2.3. 就能量色散型仪器而言,根据选用探测器的不同,X射线荧光分析仪可分为半导体探测器和正比计数管两种主要类型。 2.4. 根据分析能力的大小还可分为多元素分析仪器和个别元素分析仪器。这种称呼多用于能量色散型仪器。 2.5. 在波长色散型仪器中,根据可同时分析元素的多少可分为,单道扫描X荧光光谱仪、小型多道X荧光光谱仪和大型X荧光光谱仪。[color=#DC143C]发错版面,已经有人发过---熊猫[/color]

  • 【资料】X射线荧光光谱法进展(共32讲)

    [B][center]X射线荧光光谱法的进展(1)——X射线光谱法的发展历程[/center][/B]X射线荧光(以下简称XRF)光谱法的基本原理是当物质中的原子受到适当的高能辐射的激发后,放射出该原子所具有的特征X射线。根据探测到该元素特征X射线的存在与否的特点,可以定性分析;而其强度的大小可作定量分析。该法具有准确度高,分析速度快,试样形态多样性及测定时的非破坏性等特点,它不仅用于常量元素的定性和定量分析,而且也可进行微量元素的测定,其检出限多数可达10-6,与分离、富集等手段相结合,可达10-8。测量的元素范围包括周期表中从F~U的所有元素。一些较先进的X射线荧光分析仪器还可测定铍、硼、碳等超轻元素。而多道XRF分析仪,在几分钟之内可同时测定20多种元素的含量。伦琴在1895年发现X射线。其后1927年用X射线光谱发现化学元素Hf,证实可以用X射线光谱进行元素分析。1948年美国海军实验室首次研制出波长色散X射线荧光光谱仪。20世纪60年代中期开始在工业部门推广这项技术,我国在那时开始引进刚开始商品化的早期X射线荧光光谱仪。山于半导体探测器的出现,70年代开始出现能量色散X射线光谱仪。由于微型计算机的出现,70年代末到80年代初,使X光谱分析技术无论在硬件、软件还是方法上都有突飞猛进的发展。进入90年代以来,随着空间、生物、医学、环境和材料科学的发展,其需求进一步刺激X射线光谱学的发展,主要体现在各种新探测器、新激发源及相关元器件的开发上,新器件的优越性又促成新的测试技术。X射线光谱学又面临一个大发展的局面。由于XRFA在主次量元素分析上的无可比拟的优势,以及现代X射线荧光光谱仪器的发展,XRFA已经成为一门成熟的成分分析技术,在冶金、地质、建材、石油、生物、环境等领域均有广泛的应用。

  • X射线荧光光谱的产生 欢迎大家讨论

    [size=18px]稀里糊涂的和X射线荧光分析仪一起摸爬滚打了十几个年头了,突然有朋友问我X射线荧光光谱是如何产生的?特点是什么?我的感觉就是有些生疏了,好像有很久没有没有详细的回顾过这方面的知识了,在这里重新学习分享一下:其实X射线是一种波长较短的电磁辐射,通常是指能量范围在0.1~100keV的光子能量。当样品被X射线照射时,样品中的待检测元素内层电子或者次外层电子会被入射X射线激发,从而产生该元素的特征X射线,我们称之为X射线荧光也就是XRF。通过检测样品种不同的元素所产生的X荧光的能量或强度,通过工作站进行分析计算,就能达到我们日常分析的定性或定量的需求。在这里如果有想进一步进行讨论的可以给小编留言,我们可以进一步研究探讨下.[img]https://simg.instrument.com.cn/bbs/images/default/em09502.gif[/img]现在根据X射线的分辨方式,XRF光谱分析仪通常可分为两大类,波长色散 WDXRF和能量色散EDXRF X射线荧光光谱仪。分析的介质也是非常多样化的,如金属,液体,粉末,压片,胶熔,滤纸……等等等等,检测主打一个快速同时不改变样品结构,不用高温,不用燃烧,样品检测完还是保持着原本的样子。这也是XRF目前备受关注且大家爱使用的原因吧!记得X射线照射样品后产生的特征X荧光的介绍处是有示意图的,可以帮助大家更好的理解,现在没找到,等找到或者大家学习的欲望很强时,我一定找到并且奉献分享![/size]

  • 【求助】射线荧光光谱仪及附属设备

    我们单位是家铝厂,现扩大规模生产,最近实验室想买一台x射线荧光光谱仪及附属设备,主要用途是分析氧化铝和电解质分子比,各位网友,能否提供产品信息和报价(如荧光仪、 震动磨(化验制样粉碎机)、压样机等相关设备)发到我的邮箱中,smxpy@163.com 收到之时 我会与您联系

  • 关于X射线荧光光谱仪的详细介绍

    关于X射线荧光光谱仪的详细介绍: X射线荧光光谱仪分析的元素范围广,从4Be到92U均可测定;  X射线荧光光谱仪简单,相互干扰少,样品不必分离,分析方法比较简便,分析浓度范围较宽,从常量到微量都可分析。重元素的检测限可达ppm量级,轻元素稍差,分析样品不被破坏,分析快速,准确,便于自动化。  X射线荧光光谱仪可分为具有高分辨率的光谱仪,分辨率较低的便携式光谱仪,和介于两者之间的台式光谱仪。高分辨率光谱仪通常采用液氮冷却的半导体探测器,如Si(Li)和高纯锗探测器等。低分辨便携式光谱仪常常采用正比计数器或闪烁计数器为探测器,它们不需要液氮冷却。近年来,采用电致冷的半导体探测器,高分辨率谱仪已不用液氮冷却。同步辐射光激发X射线荧光光谱、质子激发X射线荧光光谱、放射性同位素激发X射线荧光光谱、全反射X射线荧光光谱、微区X射线荧光光谱等较多采用的是能量色散方式。  X射线荧光光谱仪具有重现性好,测量速度快,灵敏度高的特点。能分析F(9)~U(92)之间所有元素。样品可以是固体、粉末、熔融片,液体等,分析对象适用于炼钢、有色金属、水泥、陶瓷、石油、玻璃等行业样品。无标半定量方法可以对各种形状样品定性分析,并能给出半定量结果,结果准确度对某些样品可以接近定量水平,分析时间短。

  • 波长色散型X射线荧光光谱仪与能量色散型X射线荧光光谱仪的区别

    一.X射线荧光分析仪简介 X射线荧光分析仪是一种比较新型的可以对多元素进行快速同事测定的仪器。在X射线激发下,被测元素原子的内层电子发生能级跃迁而发出次级X射线(X-荧光)。波长和能量是从不同的角度来观察描述X射线所采用的两个物理量。波长色散型X射线荧光光谱仪(WD-XRF)。是用晶体分光而后由探测器接受经过衍射的特征X射线信号。如果分光晶体和控测器做同步运动,不断地改变衍射角,便可获得样品内各种元素所产生的特征X射线的波长及各个波长X射线的强度,可以据此进行特定分析和定量分析。该种仪器产生于50年代,由于可以对复杂体进行多组同事测定,受到关注,特别在地质部门,先后配置了这种仪器,分析速度显著提高,起了重要作用。随着科学技术的进步在60年代初发明了半导体探测仪器后,对X荧光进行能谱分析成为可能。能谱色散型X射线荧光光谱仪(ED-XRF),用X射线管产生原级X射线照射到样品上,所产生的特征X射线(荧光)这节进入SI(LI)探测器,便可以据此进行定性分析和定量分析,第一胎ED-XRF是1969年问世的。近几年来,由于商品ED-XRF仪器及仪表计算机软件的发展,功能完善,应用领域拓宽,其特点,优越性日益搜到认识,发展迅猛。 二.波长色散型X射线荧光光谱仪与能量色散型X射线荧光光谱仪的区别 虽然光波色散型(ED-XRF)X射线荧光光谱仪与能量色散型(ED-XRF)X射线荧光光谱仪同属于X射线荧光分析仪,它产生信号的方法相同,最后得到的波谱也极为相似,单由于采集数据的方式不同,WD-XRF(波谱)与WD-XRF(能谱)在原理和仪器结构上有所不同,功能也有区别。(一)原理区别 X射线荧光光谱法,是用X射线管发出的初级线束辐照样品,激发各化学元素发出二次谱线(X-荧光)。波长色散型荧光光仪(WD-XRF)是用分光近体将荧光光束色散后,测定各种元素的特征X射线波长和强度,从而测定各种元素的含量。而能量色散型荧光光仪(ED-XRF)是借组高分辨率敏感半导体检查仪器与多道分析器将未色散的X射线荧光按光子能量分离X色线光谱线,根据各元素能量的高低来测定各元素的量,由于原理的不同,故仪器结构也不同。(二)结构区别 波长色散型荧光光谱仪(WD-XRF),一般由光源(X-射线管),样品室,分光晶体和检测系统等组成。为了准且测量衍射光束与入射光束的夹角,分光晶体系安装在一个精密的测角仪上,还需要一庞大而精密并复杂的机械运动装置。由于晶体的衍射,造成强度的损失,要求作为光源的X射线管的功率要打,一般为2-3千瓦,单X射线管的效率极低,只有1%的功率转化为X射线辐射功率,大部分电能均转化为而能产生高温,所以X射线管需要专门的冷却装置(水冷或油冷),因此波谱仪的价格往往比能谱仪高。 能量色散型荧光光谱仪(DE-XRF)

  • X射线荧光光谱技术在燃料油检测中的应用研究

    本文研究了X射线荧光光谱法直接测定燃料油中铝、硅、钒、硫含量,成功地将X射线荧光光谱分析技术应用于燃料油多元素分析,避免了传统法灰化过程中,由于燃烧不完全等原因造成分析元素的损失,解决了传统法操作步骤繁多,分析时间长,准确度低等问题,拓宽了X射线荧光光谱分析技术在国内的应用领域,为液体燃料元素分析引入了一种新的快速检测技术。本文分析了X射线荧光光谱法在燃料油分析中出现的一些特殊问题,如液体杯支撑膜对测量的影响及支撑膜的选择依据,油品标准样品的配制和稳定,油品样品的基体效应及校正方法等,进行了仔细的试验和较深入的分析。试验了5种液体杯支撑膜对X射线荧光分析油品的各种影响,针对不同的油品种类和分析要求,选择相应的支撑膜。提出了2种改善油品标准样品在配制和保存过程中的稳定性的方法:通过加入稳定剂来改善油品标准样品的长期稳定性和通过提高溶剂粘度的方法来改善油品标准样品的短期稳定性,初步解决了油品标准样品和分析样的稳定性问题。试验了元素内标、变化的理论α系数等校正方法的校正效果。内标元素可以校正基体组成变化很大的样品的基体效应;变化的理论α系数可以很好地校正基体已知样品的基体效应。结果表明,本方法简便、快速、准确度、精密度较好,所得结果与传统法结果一致,具有较高的应用价值

  • 【分享】X射线荧光光谱分析法介绍

    利用原级 X射线光子或其他微观粒子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。在成分分析方面,X射线荧光光谱分析法是现代常规分析中的一种重要方法。   [b]简史 [/b] 20世纪20年代瑞典的G.C.de赫维西和R.格洛克尔曾先后试图应用此法从事定量分析,但由于当时记录和探测仪器水平的限制,无法实现。40年代末,随着核物理探测器的改进,各种计数器相继应用在X射线的探测上,此法的实际应用才成为现实。1948年H.弗里德曼和 L.S.伯克斯制成了一台波长色散的X射线荧光分析仪,此法才开始发展起来。此后,随着X射线荧光分析理论和方法的逐渐开拓和完善、仪器的自动化和计算机水平的迅速提高,60年代本法在常规分析上的重要性已充分显示出来。70年代以后,又按激发、色散和探测方法的不同,发展成为X射线光谱法(波长色散)和X射线能谱法(能量色散)两大分支,两者的应用现已遍及各产业和科研部门。

  • 请问关于x射线荧光分析

    我们公司经常在同济大学的x射线荧光分析测量玻璃样品的组分含量.采用的是半定量分析.但是测量出的数据有时有明显出入.请问熟悉x射线荧光分析的大侠们,半定量分析的准确度大概多少?另外,问过硅酸盐研究所的x射线荧光分析室.他们称Na以下的元素无法用半定量分析出.为什么同济大学可以测量B的含量呢?

  • X-射线荧光光谱仪(XRF)简介

    X-射线荧光光谱仪(XRF)是一种较新型可以对多元素进行快速同时测定的仪器。在X射线激发下,被测元素原子的内层电子发生能级跃迁而发出次级X射线(即X-荧光)。波长和能量是从不同的角度来观察描述X射线所采用的两个物理量。  波长色散型X射线荧光光谱仪(WD-XRF),是用晶体分光而后由探测器接收经过衍射的特征X射线信号。如果分光晶体和控测器作同步运动,不断地改变衍射角,便可获得样品内各种元素所产生的特征X射线的波长及各个波长X射线的强度,可以据此进行定性和定量分析。该仪器产生于50年代,由于可以对复杂体系进行多组分同时测定,受到观注,特别在地质部门,先后配置了这种仪器,分析速度显著提高,起了重要作用。  随着科学技术的进步,在60年代初发明了半导体探测器以后,对X-荧光进行能谱分析成了可能。能谱色散型X荧光光谱仪(ED-XRF),用X射线管产生原级X射线照射到样品上,所产生的特征X射线(荧光)直接进入半导体探测器,便可以据此进行定性分析和定量分析。  由于普通能量色散X荧光采用低功率X射线管,又采用滤光片扣除背景和干扰,其背景偏高,分辨率偏小,使得应用范围受到限制,特别是在轻元素的分析受到限制。随之X射线偏振器的诞生,产生了一款新型的能量色散X荧光光谱仪,既偏振式能量色散X荧光光谱仪ED(P)-XRF,再加上SDD探测器的使用,不仅提高了(相对使用正比计数管和Si(PIN)探测器的仪器)的分辨率,免去Si(Li)探测器使用液氮冷却的繁琐和危险,原来普通能量色散X荧光的轻元素检出限高,分辨率差的缺陷,又使得(相对波长色散X荧光用户)购买和使用X荧光仪器的成本大大减低,这使得偏振式能量色散X荧光光谱仪ED(P)-XRF在分析领域的迅猛发展,越来越受到广泛关注。

  • 波长色散型X射线荧光光谱仪与能量色散型X射线荧光光谱仪的比较

    虽然波长色散型(ED-XRF)X射线荧光光谱仪与能量色散型(WD-XRF)X射线荧光光谱仪同属X射线荧光分析仪,它们产生信号的方法相同,最后得到的波谱或者能谱也极为相似,但由于采集数据的方式不同,ED-XRF(波谱)与ED-XRF(能谱)在原理和仪器结构上有所不同,功能也有区别。  (一)原理区别  X-射线荧光光谱法,是用X-射线管发出的初级线束辐照样品,激发各化学元素发出二次谱线(X-荧光)。波长色散型荧光光仪(WD-XRF)是分光晶体将荧光光束色散后,测定各种元素的含量。而能量色散型X射线荧光光仪(WD-XRF)是借助高分辨率敏感半导体检测器与多道分析器将未色散的X-射线按光子能量分离X-射线光谱线,根据各元素能量的高低来测定各元素的量。由于原理不同,故仪器结构也不同。  (二)结构区别  波长色散型荧光光谱仪(WD-XRF),一般由光源(X-射线管)、样品室、分光晶体和检测系统等组成。为了准确测量衍射光束与入射光束的夹角,分光晶体系安装在一个精密的测角仪上,还需要一庞大而精密并复杂的机械运动装置。由于晶体的衍射,造成强度的损失,要求作为光源的X-射线管的功率要大,一般为2~3千瓦。但X-射线管的效率极低,只有1%的电功率转化为X-射线辐射功率,大部分电能均转化为热能产生高温,所以X-射线管需要专门的冷却装置(水冷或油冷),因此波谱仪的价格往往比能谱仪高。能量色散型荧光光谱仪(WD-XRF),一般由光源(X-射线管)、样品室和检测系统等组成,与波长色散型荧光光谱仪的区别在于它用不分光晶体。由于这一特点,使能量色散型荧光光仪具有如下优点:  ①仪器结构简单,省略了晶体的精密运动装置,也无需精度调整。还避免了晶体衍射所造成的强度损失。光源使用的X-射线管功率低,一般在100W以下,不需要昂贵的高压发生器和冷却系统,空气冷却即可,节省电力。  ②能量色散型荧光光仪的光源、样品、检测器彼此靠得很近,X-射线的利用率很高,不需要光学聚集,在累积整个光谱时,对样品位置变化不象波长色散型荧光光谱仪那样敏感,对样品形状也无特殊要求。  ③在能量色散谱仪中,样品发出的全部特征X-射线光子同时进入检测器,这就奠定了使用多道分析器和荧光屏同时累积和显示全部能谱(包括背景)的基础,也能清楚地表明背景和干扰线。因此,半导体检测器X-射线光谱仪能比晶体X-射线光谱仪快而方便地完成定性分析工作。  ④能量色散法的一个附带优点是测量整个分析线脉冲高度分布的积分程度,而不是峰顶强度。因此,减小了化学状态引起的分析线波长的漂移影响。由于同时累积还减小了仪器的漂移影响,提高净计数的统计精度,可迅速而方便地用各种方法处理光谱。同时累积观察和测量所有元素,而不是按特定谱线分析特定元素。因此,见笑了偶然错误判断某元素的可能性。(选自网络,侵删)

  • x射线衍射、x荧光、直读光谱3种仪器检测领域

    一、直读光谱仪采用原子发射光谱学的分析原理,样品经过电弧或火花放电激发成原子蒸汽,蒸汽中原子或离子被激发后产生发射光谱,发射光谱经光导纤维进入光谱仪分光室色散成各光谱波段,根据每个元素发射波长范围,通过光电管测量每个元素的最佳谱线,每种元素发射光谱谱线强度正比于样品中该元素含量,通过内部预制校正曲线可以测定含量,直接以百分比浓度显示.己被广泛使用于几乎所有的光谱测量,分析及研 究工作中,特别适应于对微弱信号,瞬变信号的检测.二、X荧光光谱仪(XRF)由激发源(X射线管)和探测系统构成.X射线管产生入射X射线(一次X射线),激发被测样品.受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性.探测系统测量这些放射出来的二次X射线的能量及数量.然后,仪器软件将探测系统所收集到的信息转换成样品中各种元素的种类及含量.广泛应用于冶金、地质、有色、建材、商检、环保、卫生等各个领域三、X射线衍射仪"可分为"X射线粉末衍射仪"和"X射线单晶衍射仪器".由于物质要形成比较大的单晶颗粒很困难.所以目前X射线粉末衍射技术是主流的X射线衍射分析技术.单晶衍射可以分析出物质分子内部的原子的空间结构.粉末衍射也可以分析出空间结构.但是大分子(比如蛋白质等)等复杂的很难分析.X射线粉末衍射可以1,判断物质是否为晶体.2,判断是何种晶体物质.3,判断物质的晶型.4,计算物质结构的应力.5,定量计算混合物质的比例.6,计算物质晶体结构数据.7,和其他专业相结合会有更广泛的用途.比如可以通过晶体结构来判断物质变形,变性,反应程度等

  • X射线荧光光谱仪

    向各位老师请教个问题:斯派克(XEP06C型)X射线荧光光谱仪检测润滑油中的磨损元素(金属元素),(1)实验重复性:试样平行实验的允差;(2)允差范围:检测标准油样的准确度,怎样做内部质控呢。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制