当前位置: 仪器信息网 > 行业主题 > >

粉末喷涂设备

仪器信息网粉末喷涂设备专题为您提供2024年最新粉末喷涂设备价格报价、厂家品牌的相关信息, 包括粉末喷涂设备参数、型号等,不管是国产,还是进口品牌的粉末喷涂设备您都可以在这里找到。 除此之外,仪器信息网还免费为您整合粉末喷涂设备相关的耗材配件、试剂标物,还有粉末喷涂设备相关的最新资讯、资料,以及粉末喷涂设备相关的解决方案。

粉末喷涂设备相关的资讯

  • 贺利氏特种光源助力喷涂行业“油改水”“漆改粉”
    近年来,随着我国环保政策越来越严格,许多地区陆续出台了“禁油令”,极大地限制了油性涂料的发展,除此之外,在涂料行业“十三五”规划中也明确提出,要大力推动水性涂料和环保性涂料的发展。在喷涂行业“油改水”、“漆改粉”已成大势所趋,金属件的粉末固化应用越来越多。面临的挑战 然而,现在广泛使用的粉末涂料及涂装工艺,对于腐蚀防护要求较高的挖掘机产品,容易出现边角涂层膜厚较薄,以及复杂的阴角(凹下的角)部位露底等缺陷。 为了解决现有缺陷问题,采用了“干碰干”粉末涂料涂装新工艺。即:将新研制的粉末涂料分两种类型,底粉和面粉,底粉在边角孔洞位置附着力强且有优良的耐腐蚀性;面粉有优良的流平性和装饰性,适用于大面积的涂装涂层。面粉可以在底粉没有固化之前(即底粉为干粉状态下)进行喷涂,喷涂之后两种粉末在一起进行固化。但是,目前国内这种新的喷涂工艺大批量用于涂装生产线的较少,因为这对喷涂设备(喷枪)和固化方法都有较高的要求。所以如何在粉末涂装生产线改善工件固化品质(使表面流平变得更好更均匀)并改善边角固化(工件结构复杂的位置固化效果变好)是企业急需解决的问题。同时客户希望能够提高生产速度,以更快地完成客户的机械订单交付。贺利氏解决方案 客户原本使用的固化方式为传统热风炉加热,尽管这是行业的普遍做法,但是却有着升温时间慢以及占地面积大的问题。在了解了客户需求并在客户现场进行测试后,在贺利氏特种光源团队提出了在客户的热风烘道前,增加燃气催化红外炉对工件进行预热的方案(工艺由纯热风烘道变为燃气催化+热风相结合)。 采用红外预热和热风烘道加热相结合的方式,提高加热效率,节省场地空间,同时又获得了更好的工件表面喷涂效果。 燃气催化红外炉设备内部的情况(从前往后共3个区域,每块区域8块燃气催化加热板,共24块板) 工件经过燃气催化+热风相结合总过程加热曲线。 从曲线前段斜率可以看出在短时间内工件升温速度非常快,相比传统加热炉提升了效率,与此同时并没有影响温度均衡,且固化效果更好了。选择贺利氏的理由 秉承让事实说话的原则,让我们一起来看一下方案实施后现场实测的结果:涂装固化产线长度以及固化时间都缩短了约50%,整套方案的能耗节约了40%,整体固化工艺速度得到了显著提升。气体催化红外系统01.优势预热或固化时间通常为热风炉的1/3减少占地面积,释放有价值的工厂空间节能高达50%最小化系统内气流,消除了不同颜色批次之间的相互干扰无焰反应,生成水、CO2和热催化气体的波长特别适合粉末的吸收特性维护成本低02.适用工艺热敏基材的涂覆(如MDF)粉末喷涂(如金属基材和非金属基材)烘干工艺(如油漆、食品、皮革等)塑料的热成型
  • 喷涂涂层回路控制技术Coating AI
    喷涂涂层回路控制新技术Coating AI,实现人工智能涂装,大数据提升涂装质量水平喷涂涂层回路控制新技术,利用人工智能实现自动化涂层过程,提升涂装质量水平和喷涂效率。了解喷涂涂层回路控制技术Coating AI在这个视频里你可以看到,在涂装生产线上使用Coating AI喷涂涂层回路控制新技术实现人工智能涂装,通过大数据优势提升涂装质量水平。使用Coating AI人工智能涂装系统的好处:解决劳动力短缺问题:Coating AI人工智能涂装系统提供了一个专家顾问工具,可以用来定义最佳喷涂参数,节省成本:通过人工智能学习,显著降低粉末消耗,废品率和劳动强度提高喷涂质量Coating AI 可以实现稳定的喷涂质量,即使是不同人不同时间操作也能保证最后的喷涂质量重点解决的问题:喷涂过程非常复杂,控制影响喷涂过程的不同参数非常困难,需要经验丰富的工人,世界范围内缺乏有经验的喷涂工人,这可能带来的后果是喷涂过量,或者使用太多的粉末,导致次品或者废品,以此同时客户追求更高的涂层质量。Coating AI人工智能涂装技术可以解决问题,喷涂涂层回路控制技术Coating AI可以自己学习和理解喷涂过程,能够找到正确的最佳的喷涂参数,使企业能够实时优化喷涂工艺,操作简单,任何人都能够很容易地使用Coating AI调整喷涂生产线。人们可以通过任何的方法轻松访问CoatingAI,CoatingAI可以集成到生产线上,在云端运行,用户可以通过任何设备访问云端数据。操作流程:工人按照之前的操作在工件上喷涂,使用涂魔师涂层测厚仪进行涂层厚度测量,将测量结果传输到co-pilot上,然后使用该测量值优化生产线,co-pilot可以优化生产线质量,获得相同的涂层厚度,提高生产效率,喷涂效率或生产线速度。参数定义CoatingAI 人工智能涂装喷涂回路自动控制系统能够定义实现高质量涂层结果的最佳机器参数,完全独立于生产线操作员的经验闭环回路控制CoatingAI 是第一个为涂层生产线带来闭环回路控制的解决方案。与涂魔师非接触测厚的关系CoatingAI与涂魔师是合作关系,CoatingAI从涂魔师丰富的涂层测厚数据进行训练学习。点击了解更多关于涂魔师非接触无损测厚仪产品信息如果您对CoatingAI人工智能喷涂涂层回路控制技术感兴趣,欢迎联系翁开尔。
  • 网络研讨会 | 3个铝型材粉末涂层测厚案例研究
    3个铝型材粉末涂层测厚案例研究网络研讨会对早期的喷涂工艺涂层厚度测量可以节省高达30%的涂层材料,避免废品,同时还可以提供一个详细的粉末涂层厚度测量记录文件,方便后续管理。涂魔师Coatmaster提供了完美的涂层厚度测量技术,一方面支持在固化前和固化后进行非接触无损涂层测厚,另一方面易于集成,并可以根据不断变化的环境条件进行及时调整。在此次网络研讨会上,涂魔师Coatmaster总经理Nils A. Reinke教授博士将介绍涂魔师粉末喷涂厚度检测系统技术在垂直方向和水平方向喷涂中的最创新应用。案例研究的范围是从手动非接触无损涂层厚度测量到自动整体成像涂层厚度测量以及闭环涂层厚度控制。此次网络研讨会非常适合铝型材喷涂作业,粉末涂料喷涂作业,垂直方面喷涂作业和水平方向喷涂作业的公司和技术人员参加,欢迎报名参加!通过此次研讨会,你将了解如何通过对早期喷涂工艺进行涂层测厚控制,为喷涂生产线争取更大的效益!网络研讨会时间:2021年7月14日马上发邮件到【marketing@hjunkel.com】报名参加,邮件标题【7月14日涂魔师网络研讨会】进行登记,我们将在研讨会结束后给您发送资料和视频。涂魔师非接触无损测厚系统FLEX介绍涂魔师非接触无损涂层测厚系统FLEX在产线上监控喷粉膜厚后,调节出粉量后节省30%的粉末。特别是对于小批量,产品未出炉已喷完,所以无法根据干膜调整膜厚,而涂魔师在开始喷涂的几分钟内就调整好出粉量,减少返工,降低成本。
  • 粒度与粒度分布如何影响粉末涂料的生产和应用
    近年来,粉末涂料以其固含量高、无挥发性有机物、生产过程能耗低、涂饰质量好等优点深受市场青睐。本文聚焦粉末涂料的生产和应用过程,探究粒度及粒度分布对产品性能的影响。粉末涂料生产过程的第一步是填料和树脂的熔融与混合,要求填料和树脂混和均匀又不发生局部固化反应。要实现这个要求,填料的粒径和粒度分布很重要。图1是两种不同粒度的二氧化钛填料。图1 二氧化钛A(x 50K)图1 二氧化钛B(x 200K)从图1看,填料A 的粒径明显大于B的粒径。理论上粒径小的填料B更容易混合均匀。然而,事实恰恰相反,是粒径大的填料A更容易混合均匀。为了探究出现这种反常现象的原因,本文利用丹东百特仪器公司的Bettersize2600 激光粒度分析仪来测试填料A和B的粒度分布。图2 Bettersize2600激光粒度分析仪图3 二氧化钛A和二氧化钛B的粒度分布如图3所示,填料B 的粒度分布很宽,既有少量微米甚至10微米级颗粒,又有大量亚微米甚至纳米级颗粒。这些亚微米和纳米颗粒导致填料B的比表面积很大,颗粒间相互作用力很强,导致内部团聚现象加剧。从图4的SEM图像可以看出,填料B的这些大颗粒是由小颗粒团聚而形成,树脂很难进到团聚的大颗粒中,这就是填料B反而更难混合均匀的原因。而填料A的粒径大部分在0.4-1微米之间,分布很窄且不团聚,树脂很容易分散在颗粒之间,所以更容易混合均匀。图4 二氧化钛A(x 5K)、二氧化钛B(x 50K)的SEM图像填料和树脂熔融混合之后,下一道工序是粉碎和分级。粉末涂料的粒径受到磨机、进料速度、气流条件和分级等影响。图5显示了不同的粉碎分级工艺(A和B)对产品粒度分布的影响。图5 工艺A(上)和工艺B(下)制得的样品的质量分数在图5中,工艺A为一次分级效果,粉末涂料主要由0 - 20 μm和20 - 80 μm的颗粒组成;工艺B为二次分级效果,粉末涂料几乎全部由20 – 80 μm的颗粒组成。说明二次分级能够有效降低粗端颗粒( 80 μm)和细端颗粒( 20 μm)的占比,得到粒度分布更窄的粉末涂料产品。为什么粉末涂料要求窄的粒度分布?因为在喷涂过程中,较大的颗粒速度快,率先落到工件表面,较小的颗粒运动速度慢,后落在涂层缝隙,两者恰到好处会形成优势互补,两者差距太大将影响喷涂质量,并且,粒径过细还容易吸湿成团,堵住喷枪,也容易漂浮在涂膜上产生气泡和针孔,影响成膜效果。结论高质量的粉末涂料与填料粒度分布密切相关,通过激光粒度分析仪能有效监测和控制填料的粒度分布,从而保证粉末涂料的性能和质量。
  • 喷雾监测|水性底漆在喷涂过程中的液滴大小测量-智能在线喷涂监测系统现场测试报告
    雾化研究涂料的使用对成品的色调、铝效果颜料的底色、涂料的外观等性能有决定性的影响。不仅应用方法本身是决定性的。例如在高转速雾化情况下,转速、流量、转向空气等应用参数的选择也对雾化效果有决定性的影响。因此,了解油漆的雾化过程是很有意义的。巴斯夫涂料部门使用由AOM - Systems公司研发的智能在线喷涂监测系统(图1)开发了一套测量装置,可以对汽车涂料的雾化过程(甚至是静电雾化)进行详细研究。这样,就能从油漆雾化过程中获得的信息来更有效预测的油漆配方开发或设置最优的应用参数。图1:来自AOM-Systems的智能在线喷涂监测系统LabLine 450使用智能在线喷涂监测系统获得更多关于雾化过程的参数信息智能在线喷涂监测系统测量技术基于移动液滴在激光照射下的产生的光散射。由此产生的光散射在时间上被分离成单个的散射信号,并被光子接收器记录下来。散射阶数的特征与液滴的大小、速度和不透明度密切相关。这是智能在线喷涂监测系统技术成为一种直接计数测量方法。与其他测量方法相比,他既测量喷涂中的透明液滴,也能够对透明液滴进行测量。该系统测量所使用的激光束在液滴内或液滴表面上产生穿透和反射。如果把这些结果相互联系起来,就会对喷涂的表征产生一个重要的测量值,这是很难用其他任何方法做到的。这既是时移测量方法的优势。喷涂监测系统能够在真实的应用条件下进行测量。例如可以测量高电压下ATEX区域内的含溶剂涂料。简便的测量设置为了表征汽车喷漆锥,使用了如图2所示的测试装置。高旋转钟罩与测量部分呈45度角,在标准条件下,实际测量激光位于钟罩边缘以下25mm。因此,过喷、紊流和逆流都能够降到最.低。这种测量几何结构提供了激光透镜或探测器受到污染较少的优点。由于喷涂比较稠密,保证了较高的液滴密度,使得测量结果具有较高的统计确定性。此外,在55毫米的测量截面上,所有喷涂部分都能够被捕捉到,因此即使非常宽的喷涂锥也能被检测。总而言之,这个测试设置能够重复测量不同应用参数设定下所有雾化器,旋杯和油漆系统。此外,对于用户来说,这种测量装置还有许多优点。与现有的液滴尺寸测量装置相比,该测试装置在短时间内就可以安装就位,测量程序十分简便。同样地,测量系统对不准情况也很少会发生,因此即便更换到其他测试工位也不会产生任何问题。分析四个水性底漆在一项研究中,使用喷涂监测系统分析了四种不同的水性底漆(WB)。解决系统中对透明度产生的影响●M1,WBL无填料●M2,WBL使用硫酸钡作为填料●M3,WBL有填料,并且有碳黑颜料●M4,WBL有填料,碳黑和铝效果颜料进行分析。为此,预先使用405和450 nm (喷涂监测系统激光器的波长)对10μm抗蚀剂薄膜厚度进行传输测量。(图3)。图3:抗蚀剂M1 - M4在10μm薄膜厚度时的透射测量。NT (%) = 喷涂监测系统测量中不透明滴剂的比例。正如预期的那样,M1的透明度最.高,而M2和M3按照这个顺序吸收的能量更多。最.后,除M4铝系统外,干燥膜中的透射率与雾化过程中不透明液滴的比例有很好的相关性。这可以解释为干燥膜中的铝颜料,它们没有完全平面排列,导致比在喷涂锥的液滴中传输更高。通过高旋转雾化,使用喷涂监测系统在三种不同速度(23k、43k和63k rpm)下对四种涂层进行分析。如图4所示,可以清楚地区分不同的油漆。大于35μm (中值)的透明大液滴在M1雾化中产生,而M2中的填充剂将液滴尺寸减小到27 ~ 31μm。在含有颜料涂层的M3(炭黑)和M4(铝效果颜料)中发现了更小的透明液滴,大小约为15 - 17μm。如预期的那样,在较高的速度下可以得到更小的液滴,这在非透明测量模式下尤为明显。在这里,M3和M4系统的进一步区分成功了,在M4铝系统中,较大的非透明液滴在所有速度下都能够被测量到。一般来说,较大液滴能够产生最.大的速度,正如图中的线性趋势线所说明的那样。钟形锯齿决定空间解决的水滴大小进一步的研究表明,旋杯边缘对空间分辨的液滴大小有显著的影响。为此,选择一个WBL雾化速度为43000 rpm,出流率为300 mL/min,转向空气为400 NL/min,有两种不同形状的旋杯:a)无锯齿钟形和b)线锯齿旋杯。首先看一下平均值,没有锯齿的旋杯(D中位数= 18.2μm)和有锯齿的旋杯(D中位数= 18.9μm)之间没有显著差异。然而,喷涂锥彼此之间差异很大,如图5所示,基于0 - 30mm的空间分辨下降速度。对于两种旋杯产生的液滴来说,液滴的速度从喷涂锥的内部(0毫米)向中.心下降,而喷涂锥外部区域(18 - 25毫米)的线锯齿导致透明液滴和非透明液滴明显具有高速。这种特征对于没有锯齿的旋杯来说不明显。结论:结果表明,喷涂监测系统是一种易于使用的测量系统,特别适用于在汽车涂料的应用过程中测量和表征喷锥。这些特性能够获得非常详细的雾化参数信息,并提供关于空间分辨的液滴大小、速度和液滴类型(透明vs.非透明)的信息。指导用户可以较快地获得可重复的结果。因此,在标准的测量条件下(一个雾化器,一个特定的测量位置),喷涂监测系统提供了非常有用的方法来区分不同的油漆系统,并进一步更精确地了解雾化过程。有了表面特性的知识,应用参数就可以进一步优化。在巴斯夫涂料部门的技术管理中,例如新涂料和涂料工艺的开发和测试,喷涂监测系统作为测量的关键技术,能够更有针对性地阐明复杂的因果机制。Author:Steffen Rohlmann, Georg Wigger, Christian BornemannECO/TAVB, Application Process Technology Europe, BASF Coatings GmbH Münster, Glasuritstrasse 1如果您对AOM Systems喷涂监测系统感兴趣,欢迎致电翁开尔公司咨询。
  • 欧美克LS-909E干法激光粒度仪在粉末涂料行业的创新应用
    干法激光粒度仪在粉末涂料行业的应用随着近年来国家环保高压及绿色发展要求,我国“漆改粉”趋势加速,粉末涂料在整个涂料体系中所占份额越来越大。根据Global Market Insights,Inc.的报告,到2025年,全球粉末涂料市场预计将超过170亿美元。而从全球范围看,我国粉末涂料产销量已占全球60%左右,引领着全球粉末涂料发展! 与传统液态涂料相比,粉末涂料对材料的利用率很高(高达99%),任何过量喷涂都可以回收利用,从而大限度地减少了浪费;具有更广泛的颜色选择和纹理强化了粉末涂料成为液体涂料的有力替代品;粉末涂料具有可持续性、清洁性、安全性等特性,与替代涂料相比,粉末涂料具有优异的性能特征以及显著的成本优势,在农业和建筑、电器、汽车和运输等工业涂饰市场占15%以上并持续增长。 粉末涂料市场一直在发展,而保证粉末涂料质量检测的科学仪器也在不断创新发展。我们都知道,涂料颗粒的粒度分布对粉末涂料性能的影响有以下几大方面: 1、涂料颗粒粒径影响其带电性能 粉末涂料喷涂时的粘附力主要来源于静电荷的库仑力。涂料颗粒一般来说粒径越大带电性越好,但是颗粒的重力随粒径加大的增长速度大于库仑力的增长速度。也就是说颗粒大到一定程度后,重力会远大于库仑力,导致上粉率和涂覆效果会变差。故理想状态下的粉末涂料颗粒粒径应该尽量控制在10μm-60μm之间。粉末涂料太细或者太粗,涂装施工效率、质量就会下降。 图一 不同粒径涂料带电性能 2、影响涂料的流平性 粉末涂料吸附在工件上被加热后形成高粘度的流体状态,然后逐渐流平固化。通过研究流平时间的NIX和DODGE公式:t=kμR/γ(t是涂料颗粒聚结时间、k是常数、R是涂料颗粒半径、γ涂料的表面张力、μ涂料粘度),我们可以知道涂料颗粒粒径跟流平时间成正比。粉末涂料的粒度分布不均匀或者颗粒太粗,将严重影响流平性。 图二 粒度分布均匀的粉末涂料流平效果明显 3、影响涂层厚度 传统粉末涂料的平均粒径一般控制在30μm -50μm,涂层厚度一般在60μm -100μm之间。不同类型的工件需要的涂层厚度不同。同时涂层厚度也在很大程度上影响单位重量的粉末涂料能够涂覆的面积。因此粉末涂料的粒度分布可以说是直接影响涂料性能及经济性的重要参数。 4、影响涂料的储藏性能 根据部分行业专家的研究,粉末涂料存在一个临界粒径,大于这个粒径,粉末不易结块,反之则很容易结团。涂料产品的粒径不应该低于临界粒径,否则产品的储藏性将变得很差。 图三 粉末涂料显微图像 从上图的粉末涂料显微图像中我们可以看到其中有为数众多的小于5微米的“有害”颗粒,这些颗粒既浪费了原材料和能源,又严重影响涂料的存藏性能,应该尽量减少其含量。 因此,有效测定粉末颗粒的分布才能保证粉末涂料的高质量应用。激光粒度仪是当前流行的粒度测试仪器之一,其测试动态范围大、测试速度快、对使用环境要求不高、重复性好等优势满足了涂料行业的测量需求。但随着粉末涂料的异军突起,常用的湿法测试由于粉末涂料样品亲水性不好以及添加分散剂后容易产生气泡等原因,会导致测试结果不稳定,并容易造成结果拖尾。 而干法测试通过空气作为分散介质,在粒度检测时对粉末涂料样品进行干法分散处理,测试时即可以模拟粉末涂料在应用中的状态,得到的测试结果更好的反应粉体应用。在此基础上,粉末涂料行业用户也迫切地要求激光粒度仪具有方便快捷、数据报表呈现灵活等自动化、个性化特点的使用需求。而高性能、简单易用的全自动干法测试系统,智能多样化的软件功能正是LS-909E显著的优势,能为行业用户带来行云流水一般的实验体验。 图四 欧美克LS-909E干法激光粒度仪 欧美克LS-909E干法激光粒度仪正是基于粉末涂料用户对高性能干法仪器的需求而开发的一款性能卓越的粒度分析仪。 LS-909E干法进样系统由干法进样器、全封闭进样窗口、静音泵空压机、油水过滤器和吸尘器等部件构成。在硬件方面,主机装载了进口的高性能进口He-Ne气体激光发射器,结合永磁体空间滤波器设计及一体化激光发射器技术,保障了LS-909E激光粒度分析仪具有0.1-1400um的较宽测试范围及重现性小于1%的高分辨率可靠结果。 搭配欧美克DPF-110自动干法进样系统,样品池具有三重调节设计:进料速度由先进的压电陶瓷晶体精确控制,使测试遮光率易于控制并节省样品量;内置分散压和负压传感器,实时监控测样状态,并具有错误警示功能;干法窗口采用密闭管道式设计,结合窗口负压保护设计与大功率吸尘器粉尘回收装置,大限度回收样品,也使主机不受粉尘影响,极大减少了窗口维护及擦拭清洁工作,并提高了窗口玻璃的使用寿命,同时也提升了测试分析速度。以上多种特性共同保障了LS-909E干法测试对多种不同特性样品的适应性及良好的重现性和真实性。 在软件设计方面,LS-909E智能软件控制自动对中系统保证了精确的光学对中和多次测量的重现性。自动对中机构精度达0.2um,速度更快,既可作为自动测量的一部分,亦可在屏幕上单击鼠标来完成。结合智能判断对中软件功能,避免了传统粒度测量中因对中不良导致的结果偏差,并能延长对中机构寿命。 值得一提的是,LS-909E还配备有完善、开放的样品参数数据库,具有200多种常见材料光学参数,用户也可以自定义材料和折射率,包括折射率实部和虚部(对应样品的吸收率)。结合简单易操作的SOP标准操作流程,使分析测试流程标准化,减少人为因素的影响。同时提供多种测试报告模式和高度个性化的自定义功能:可提供通用测试报告、筛分测试报告、百分测试报告,并具有平均报告、统计报告、拟合报告功能,以及可自定义专业测试报告模板功能。测试报告支持pdf、excel、word及其他文本格式等丰富的导出格式,报告图表可直接右键保存。此外用户还能够在软件中同时查看多个测试报告结果,进行数据的图形比对和数值统计分析,对多个参数进行分类、排序、筛选,并能以表格形式输出。 其智能、友好、符合多种应用的计算机软件功能可定义测试报告模板,让粒度测试分析变得轻松可靠。 欧美克LS-909E的定位是一款高性价比干法激光粒度仪,甫一问世,已在第二十四届中国国际涂料展上得到了广大用户的高度关注和良好反响。粒度测试是一门涉及知识面极为宽广的技术学科,在每一个行业中都有极深入的应用研究,即使是在粒度检测行业打拼了二十多年的欧美克人也一直不断虚心前行,不断探索更智能化的解决方案、更高效的新技术及更全面的服务推向行业市场,为粉末涂料客户在现有和新的应用领域提供了显著的附加值,共同助力粉末涂料行业的创新发展!
  • 应用 | 可喷涂超疏水牙齿保护剂:具有光敏抗菌、耐酸、防污功能
    KRÜSS于1796年诞生于德国汉堡,是表面科学仪器领域的全球领导品牌。先后研发了世界上第一台商用全自动表面张力仪和第一台全自动接触角测量仪,荣获多次国际工业设计大奖和德国中小企业最具创新能力TOP100荣誉。其它产品还包括各类动态表面张力仪、泡沫分析仪、界面流变仪和墨滴形状分析仪等。KRÜSS研究背景世界卫生组织(WHO)提出了“8020”的目标,即在80岁时保留20颗功能性牙齿。由于牙齿没有任何再生功能,如何确保牙齿健康长寿成为了备受关注的问题。目前的牙齿护理方法(刷牙、漱口、使用牙线、使用牙签等)只是将沉积在牙齿表面的污垢清理干净,然后让它们直接接触新出现的复杂刺激。护理工具的延误或不当使用不仅不能消除外界的不良刺激,有时甚至会导致牙齿损伤。因此,一种更可靠、更有效的日常牙科护理策略正处于迫切需要的阶段。近年来,耐用且生物相容的超疏水材料在生物医学应用中显示出巨大的潜力。然而,据我们所知,目前还没有可用的“添加剂”保护牙齿的方法伴随我们的生活,更不用说将超疏水材料应用于常规牙科护理策略。因此,本文首次提出的由ZnO、FSNs和PDMS(简称ZFP)组成的保护剂可以喷涂在牙齿表面形成具有优异超疏水特性的透明膜,这种安全、方便、高效的牙齿保护策略将超疏水性与光动力学相结合,通过简单的喷涂实现对牙齿的抗粘连、抗菌、抗酸和防污等多种保护作用。图1 ZFP喷涂膜多重防护效果示意图实验方法将上述三种保护剂喷洒在制备的牙片上,干燥后分别得到T-P、T-FP和T-ZFP。采用KRÜSS DSA100 (Germany)液滴形状分析仪测定了不同齿片的水滴角。结果与讨论超疏水性和自清洁性分析为了检测ZFP在牙齿表面的疏水行为,将上述三种保护剂(P、FP和ZFP)喷洒在制备的牙齿切片上以获得T-P、T-FP 和T-ZFP。T-ZFP 的水滴角为 151.00°±0.63°,滚动角为 1.95°±0.25°(图2(a)和2(b))。此外,图2(c)说明了T-ZFP表面和水滴之间的低粘度,这进一步证明了ZFP的超疏水效应。此外,TZFP对不同的液体表现出自清洁效果,而在此期间保持牙齿表面清洁(图3)。我们还惊喜地发现TZFP对血液也表现出出色的超疏水性。上述数据表明,ZFP的超疏水自洁特性可有效防止食物残渣粘附,确保应用于牙齿时的抗污能力。图2 T-ZFP的超疏水性。(a)不同齿片的水滴角。(b) T-ZFP的滚动角。(c) T-ZFP与水滴之间的低粘度。(d)刷洗循环、(e)温度循环和(f) pH值变化处理后水滴角的变化图3 T-ZFP对不同液体的自清洁效果生理稳定性分析与人体接触的牙科材料也应具有生理稳定性。考虑到这一点,测量了T-ZFP在刷涂(每10次为一个循环)、温度循环(4和60°C)和酸处理(pH = 3和7)下的水滴角变化,以验证ZFP保护剂的稳定性。图 2(d) 显示T-ZFP 的接触角随着刷牙次数增加而逐渐减小,但在 100 次后仍保持在 145.0° ± 0.6°。这一现象也说明ZFP可以通过一定时间的刷牙有效去除,促进了其在日常生活中的周期性应用。ZFP的生理稳定性通过在温度循环(4到60 °C之间)和pH变化(从3到7)期间超过150°的稳定接触角得到证明(图2(e)和 2(f))。综上所述,ZFP能够适应口腔内的温度变化,对酸刺激具有稳定的耐受性,从而有效地保护牙齿免受腐蚀。小结本工作针对食物残渣黏附、细菌侵入、酸腐蚀、色素沉着等一系列口腔问题,以及公众难以及时标准地刷牙和使用牙线,研制了一种专为日常牙齿保护的可见光响应型抗菌超疏水剂。ZFP保护剂有效地将超疏水性与光动力学相结合,通过简单的喷涂即可发挥抗粘附、抗菌、耐酸、防污等多种功能。因此,这种增材喷涂ZFP护甲有望成为日常生活中的一种新型牙齿保健策略,为牙齿的健康和美观提供有利保障,适应老龄化社会的发展。本文有删减,详细请参考原文S. Zhao, X. Yang, Y. Xu, et al. A sprayable superhydrophobic dental protectant with photo-responsive anti-bacterial, acid-resistant, and anti-fouling functions. Nano Research.
  • 应用案例 | 在旋转流变仪上使用触变性测试定量评估挤出或喷涂后的粘度恢复
    在旋转流变仪上使用触变性测试定量评估挤出或喷涂后的粘度恢复简介许多消费产品包装在管或者瓶中,其使用方法牵涉到以泵送的方式让产品通过喷嘴。这类产品多表现为剪切变稀特性,在挤出过程中,由于剪切速率的增加导致粘度下降,然后在离开孔口后,随着剪切速率的降低,粘度恢复。此过程涉及的剪切速率与孔口半径r、体积流速Q相关,可由下式表示:参数n是幂律指数,对于牛顿流体为1,对于非牛顿流体为0 - 1之间。对样品进行变剪切速率测试,再使用幂律模型对数据进行拟合,可得到这一数值。通过测量体积流速(在一定时间内挤出的体积)和孔的内半径,可以估算挤出过程的相关剪切速率。该值可以输入到步阶式剪切速率测试(图1)中。测试首先在一定的时间内以低剪切速率剪切样品(模拟挤出之前),然后再提高到目标剪切速率(模拟挤出过程)。随着剪切速率下降到其初始值,粘度逐渐恢复。该测试展示了样品在挤出后的粘度恢复快慢,并与产品使用过程中的厚度或粘度相关。图1 步阶速率测试中的触变性可以通过在第一阶段结束时测量最终粘度,以及在第三阶段计算粘度恢复到一定比例所花费的时间,来对触变性进行量化表征。该数值可用于产品或配方之间的比较,广泛地应用于各个行业。方法在与产品使用过程中的挤出相关的剪切速率条件下,评估了牙膏和润肤露的粘度恢复特性。测量使用Kinexus旋转流变仪,Peltier温控单元,糙面平行板夹具,以及rSpace软件中标准的预配置程序。使用标准的装样步骤,以确保两个样品都经历一致且可控的装样方式。所有流变学测量均在25°C下进行。输入挤出体积,挤出时间和孔径半径,可以自动计算出相关的挤出剪切速率,并将其作为测试程序的一部分。在步阶式剪切速率测试中,以该计算值作为中间阶段的剪切速率,其前后使用0.1s-1的恒定剪切速率。自动测定产品恢复90%原始粘度所需时间,并在测试结束时报告。结果使用自动计算器,计算了产品挤出时的剪切速率为:牙膏为34 s-1,润肤露为840 s-1。在步阶测试的中间阶段应用了这些剪切速率。图2显示了牙膏的测试结果。 显然,这是一种高度触变性的材料,因为它无法在测试时间内完全恢复其结构,大约需要6分钟才能恢复到其原始粘度的70%。图2 牙膏的阶段剪切速率曲线相比之下,图3中所示的润肤露几乎可以完全恢复其原始粘度,并且仅需7秒即可获得与牙膏相同百分比的恢复,恢复到90%也仅需23秒即可。该材料可归为基本没有触变性。图3 润肤露的步阶剪切速率曲线对于消费者来说,这意味着润肤露在与皮肤接触后会很快重组结构,这可以防止过度铺展或可能发生的滴落。牙膏在刷牙之前停留在牙刷上的粘度较低,这将使其更易于在口腔中分布开,并可能影响感官特性。当然,牙膏的粘度也不能低到可以流过刷毛、或在刷毛上下垂的程度。结论对牙膏和润肤露进行了三步剪切速率测试,用来评估分别从管和瓶中挤出后的粘度恢复程度。牙膏显示出高度的触变性,需要6分钟才能恢复其原始粘度的70%。然而润肤露仅需7秒即可达到相同程度的恢复,两相比较,可以认为润肤露是非触变性的。
  • 欧奇奥(Occhio)首次提出卫星化粉末微观表征参数
    第九届全国颗粒测试学术会议成功举行,卫星化粉末表征被首次提出2013年5月30日 2013年5月25&mdash 27 日,由中国科协与贵州省人民政府共同主办的&ldquo 中国科协第十五届年会&rdquo 在贵州省贵阳市举行。作为第十五届中国科协年会第16 分会场,第九届全国颗粒测试学术会议暨现代颗粒测试技术发展与应用研讨会得到成功举办。会议期间,国产动态光散射技术的突破和颗粒形貌分析技术的发展成为令人瞩目的焦点。 在本届研讨会上,美国康塔仪器公司北京代表处杨正红先生根据欧奇奥颗粒形貌技术的发展,首次介绍了卫星化粉末(颗粒)及其微观形态表征参数。 理想的工业粉体应该是接近于球形,但由于表面能的缘故,大颗粒与小颗粒往往吸附在一起,从而对粉体的许多性质都产生重要影响。卫星化粉末就是在雾化过程中产生的非常微小的球,同较大的球粘在一起而产生的不规则颗粒(见图1)。粉末的卫星化将影响其流动性、附着力、填充性、增强性及研磨特性和化学活性(包括燃烧效率)等。任何非球形粒子对产品的流动性都可以产生不利影响,甚至可能引起非常有害的粉末堆积,最终将导致进程停止(焊接,等离子喷涂等)从而产生非常高的固定成本! 欧奇奥(Occhio)图像分析法是颗粒分析领域革命性的进步。随着光学、信息科学技术的飞速发展,将直观的显微观察方法与统计学相结合的最新图像法粒度粒形表征不仅能够得到个别颗粒的直观信息,还能够得到大量样本的粒径、粒形的统计信息,从而帮助使用者全方位地表征样品。 Occhio FlowCell 200S+图像法粒度粒形分析仪仪器采用同等仪器中最高水平的 1000 万像素的照相机,拍摄分散在液体中的粉体颗粒的高分辨率照片,可拍摄到小于粒径为 200 nm 的颗粒,进行粒度分布和形状分布的分析,并可进行绝对和相对计数。由于焦距较深,它可以在全视野范围内利用光学系统控制摄影成像,粒子成像鲜明,没有像差,可测量普通图像法粒度分布仪器无法测量的粒子形状,可进行动态或静态的湿法测量,也可对异物进行有效的跟踪分析(趋势分析/动力学)。利用独自开发的CALLISTO(骄子)粒形分析软件,粒径可与激光粒度仪比较或衔接,可进行微观的形状分析,并且对粉体样品的特性进行评价。将粒子的各种形状数值化后,可进行相互比较,除了一般的ISO粒形参数外(如最大内切圆直径、最大长度、凹度、凸度、延伸度、圆形度等),还提供独有的微观粒形参数,包括钝度(Bluntness)、卫星化指数(Satelity Index)和赘生物指数(Outgrowth),共计超过43个参数的有关粒度粒形信息,为粉体颗粒的性能表征提供一种新的手段。
  • 麦克粉末流动性网络讲堂(12月11日)诚邀您参与
    麦克粉末流动性网络讲堂通过粉体流动性表征技术优化加工工艺及过程2019年12月11日10:00-11:00课程描述:目前制药、化工、增材制造、锂电等行业的标准日益提高,为了符合监管部门的要求,研发及生产企业都一直关注工艺开发以提高生产效率和提升产品质量。若要实现效益最大化,就需要建立起药品、化工成品、制造件、锂电生产过程中的工艺参数与这些产品属性之间的关系。如何确定产品的属性仍是目前的一大挑战,单一的颗粒或粉体评价方法往往难以获得良好的对应关系。因此本节课程中我们将介绍美国麦克仪器旗下富瑞曼科技FT4粉体流变仪所带来的多元流动性测试方法,并且结合不同产品的关键质量属性进行深入探讨。培训方式:线上时间:12月11日 10:00-11:00am名额:100人网址:https://www.instrument.com.cn/webinar/meeting_6535.html咨询电话:021-51085884-807讲师简介:陆向云,美国麦克仪器旗下富瑞曼科技产品专家,硕士,毕业于上海理工大学。多年致力于研究制药行业中涉及的粉体流动性等理化性能,同时针对化工、锂电、增材制造等行业中涉及的多种流动性表征技术具有丰富的应用经验。1FT4粉体流变仪™ FT4粉体流变仪™ 1测量并理解粉体流动性FT4设计用于表征粉体的流变性,或称之为流动性。至今这仍是主要的功能,与此同时,仪器、配件和方法学都在不断开发中,因此FT4是目前通用的粉体流动性测试仪。仪器包含四种测试方法:独特的动态流动全面自动剪切盒 (符合ASTM D7891 标准) 整体性能P过程变量特征全自动的测试程序和数据处理预处理模式可提供良好的重复性适合不同的样品量,从10mL到160mL (另有1mL剪切盒可用于有限量的样品)工作原理FT4使用独特的技术测量粉体在运动状态下流动的阻力。精密的桨叶旋转向下穿越粉体,建立精确的流动模式。使得数以千计的颗粒相互作用或流动,对桨叶所施加的阻力则代表了颗粒之间相对运动的难易程度或整体的流动性能。通过桨叶精确、可靠的运动模式,测试取得了极佳的可重复性。FT4上的高级控制系统可准确设定桨叶的旋转和垂直速度,从而定义螺旋角和叶尖速度。FT4方法学FT4作为全面的粉体测试仪,具有四大类测试方法,包括整体、动态流动、剪切和加工过程。 应用FT4在所有的粉体加工行业中都有应用,包括了制药、精细化工、食品、化妆品、墨粉、金属、陶瓷、塑料、粉末喷涂、水泥和增材制造。应用则包括以下: 料斗/胶囊填充湿度影响 破碎壁面摩擦和黏附 压片静电干粉吸入剂料斗设计 料斗流动混合/搅拌结块硬度和耐磨性湿法制粒终点和放大给料研磨真空填充流动助剂的选择和优化分层传输结块
  • “2017特种粉末冶金及复合材料制备/加工第二届学术会议”第二轮通知
    p style="text-align: center "strong2017特种粉末冶金及复合材料制备/加工第二届学术会议/strong/pp  strong各相关单位:/strong/pp  为推动我国新材料产业的科技创新,提升特种粉末冶金及复合材料领域的技术进步和学科发展,搭建科研院所、高等院校、企事业单位、设备制造商之间的学习、交流、合作平台。/pp  strong中国有色金属学会、中南大学、中国科学院金属研究所、西北有色金属研究院、株洲硬质合金集团有限公司/strong等单位定于span style="color: rgb(255, 0, 0) "2017年12月7-10日在湖南省长沙市/span共同举办“span style="color: rgb(0, 176, 240) "strong2017特种粉末冶金及复合材料制备/加工第二届学术会议/strong/span”。/pp  span style="color: rgb(255, 0, 0) "strong材料工业/strong/span是支撑国民经济发展的基础产业,是发展先进制造业和高技术产业的物质基础,在航天航空、海洋、军工、国防、核能、汽车工业等更是不可缺少。加快推动技术创新,引领材料工业升级换代,支撑战略性新兴产业发展,保障国家重大工程建设,促进传统产业转型升级,建设制造强国具有重要的战略意义。/pp  span style="color: rgb(255, 0, 0) "strong本次会议旨在/strong/span促进学术界、产业界、企业界的沟通与联系,为与会人员提供多种形式的交流机会,会议将围绕难熔金属、高温合金、粉末冶金、硬质合金、高性能合金、金属基与陶瓷复合材料、摩擦材料、结构材料、表面涂层与防护技术、制备与加工技术等最新进展情况展开讨论。/pp  span style="color: rgb(255, 0, 0) "strong本次会议将邀请/strong/span国家相关部委、中国有色金属工业协会、中国有色金属学会领导,中国工程院、中国科学院院士和知名专家、学者和企业代表就国家相关政策和技术水平的发展做专题报告。欢迎各企业单位、科研院所、高等院校、设备厂家积极参加。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/f4151a0a-4db3-4e68-b036-343e7692c4ea.jpg" title="微信图片_20171118195259.jpg"//pp style="text-align: center "  span style="text-decoration: underline "strong现将有关事项通知如下/strong/spanbr//pp  span style="background-color: rgb(0, 176, 240) color: rgb(255, 255, 255) "strong组织机构/strong/span/pp  span style="color: rgb(255, 0, 0) "strong主办单位/strong/span/pp  中国有色金属学会/pp  中南大学/pp  中国科学院金属研究所/pp  西北有色金属研究院/pp  株洲硬质合金集团有限公司/pp  span style="color: rgb(255, 0, 0) "strong联办单位/strong/span/pp  新型陶瓷纤维及其复合材料国家级重点实验室/pp  硬质合金国家重点实验室/pp span style="color: rgb(255, 0, 0) "strong 承办单位/strong/span/pp  湖南省宁乡高新技术开发区管理委员会/pp  粉末冶金国家重点实验室/pp  北方中冶(北京)工程咨询有限公司/pp  span style="color: rgb(255, 0, 0) "strong支持单位/strong/span/pp  北京工业大学 江西理工大学 华南理工大学 昆明理工大学华中科技大学 广东省科学院 河南科技大学 上海交通大学 北京理工大学 西北工业大学 西安交通大学 哈尔滨工业大学 山东科技大学 西安理工大学 南昌航空大学 北京航空航天大学 合肥工业大学广东省材料与加工研究所 先进结构功能一体化材料与绿色制造技术工业和信息化部重点实验室/pp  (...陆续更新中)/pp  span style="color: rgb(255, 0, 0) "strong支持媒体/strong/span/pp  《中国有色金属学报(中英文版)》《金属学报》/pp  《稀有金属材料与工程(中英文版)》《中国金属通报》/pp  《稀有金属(中英文版)》/pp  《有色环保》中冶有色技术网/pp  strongspan style="background-color: rgb(0, 176, 240) color: rgb(255, 255, 255) "时间、地点/span/strong/pp  span style="color: rgb(255, 0, 0) "strong时间/strong/span:2017年12月7-10日(其中7日全天报到,8-9日大会及分会学术交流,10日去宁乡考察。)/pp  strongspan style="color: rgb(255, 0, 0) "地点/span/strong:湖南省长沙市长沙融程花园酒店/pp  strongspan style="background-color: rgb(0, 176, 240) color: rgb(255, 255, 255) "拟邀嘉宾及演讲方向/span/strong/pp  span style="color: rgb(255, 0, 0) "strong拟邀嘉宾/strong/span/pp  strong中国有色金属工业协会领导/strong/ppstrong  中国有色金属学会领导/strong/pp  strong黄伯云/strong 中南大学、中国工程院院士/pp  strong何季麟 /strong郑州大学、中国工程院院士/pp  strong屠海令/strong 北京有色金属研究总院、中国工程院院士/pp  strong王华明 /strong北京航空航天大学、中国工程院院士/pp  strongspan style="color: rgb(255, 0, 0) "大会部分报告/span/strong(陆续更新...)/pp  strong杨 锐 /strong中国科学院金属研究所所长/pp  发言题目:钛基复合材料和粉末冶金近净成形研究进展/pp  strong周科朝 /strong中南大学副校长/pp  发言题目:高强耐蚀铜合金的连铸与加工制备技术研究进展/pp  strong关绍康/strong 郑州大学副校长/pp  发言题目:高速连铸连轧新工艺生产高性能铝合金板材的研究与开发/pp  strong易健宏/strong 昆明理工大学副校长/pp  发言题目:新型粉末冶金复合材料/pp  strong范景莲/strong 中南大学教授/pp  发言题目:超高温轻质难熔金属基复合材料/pp  strong王 军/strong 新型陶瓷纤维及其复合材料国家重点实验室主任/pp  发言题目:耐高温透波陶瓷纤维制备/pp  strongspan style="background-color: rgb(0, 176, 240) color: rgb(255, 255, 255) "分会场部分报告(陆续更新...)/span/strong/pp  span style="color: rgb(255, 0, 0) "strong粉末冶金专题分会场/strong/span/pp  strong张德良/strong 东北大学教授/pp  发言题目:通过粉末加工和热机械固结制备超细结构金属基纳米复合材料/pp  strong梁淑华 /strong西安理工大学教授/pp  发言题目:CuW系假合金在高压电器中的应用/pp  strong蔡晓兰/strong 昆明理工大学冶金与能源工程学院教授/pp  发言题目:高能球磨设备与金属基复合粉体制备技术/pp  strong郎利辉 /strong北京航空航天大学机械工程及自动化学院教授/pp  发言题目:钛合金粉末的热等静压数值模拟研究/pp  strong张朝晖/strong 北京理工大学博士生导师/pp  发言题目:放电等离子烧结机理及其应用研究进展/pp  strong白玉龙/strong 西安龙华微波冶金有限责任公司董事长/pp  发言题目:不颠覆,无突破,微波技术在有色金属冶炼上的应用/pp span style="color: rgb(255, 0, 0) "strong 硬质合金专题分会场/strong/span/pp  strong杜 勇/strong 粉末冶金国家重点实验室教授/pp  发言题目:硬质合金的集成计算材料工程/pp  strong王社权 /strong株洲钻石切削刀具股份有限公司 副总经理、研究员/pp  发言题目:立方相成分对梯度硬质合金结构的影响---理论计算和实验研究/pp  strong周武平/strong 安泰科技股份有限公司总裁兼党委书记/教授级高工/pp  发言题目:矿用硬质合金研究进展/pp  strong邓 欣 /strong广东工业大学教授/pp  发言题目:非常规硬质合金及超硬材料研究/pp  strong张 立/strong 中南大学粉末冶金研究院教授/pp  发言题目:从2017Plansee会议看硬质合金的国际发展动态/pp  strong时凯华/strong 自贡硬质合金有限责任公司研发中心主任/博士/pp  发言题目:欧洲陶瓷材料研究新进展/pp  strong张 颢/strong 株硬集团研发中心副主任/高级工程师/pp  发言题目:钻掘硬质合金制备技术发展动态和展望/pp  strong龙本夫/strong 厦门金鹭特种合金有限公司经理/硕士/pp  发言题目:碳酸钴煅烧工艺对氧化钴性能的影响/pp  strong李 毅/strong 江苏泰尔新材料股份有限公司总工程师/博士/pp  发言题目:基于石蜡改性的环境友好型硬质合金成型剂的研究/pp  strong王明智 /strong燕山大学材料学院研究员/pp  发言题目:过渡族金属共价键化合物的合金化—高熵化合物及其应用/pp  strong乔竹辉/strong 中国科学院兰州化学物理研究所研究员/pp  发言题目:硬质合金宽温域摩擦磨损机理研究及自润滑硬质合金的设计制备/pp  strong张 聪/strong 北京科技大学助理研究员/pp  发言题目:Ti(C,N)基金属陶瓷相图热力学数据库及其组织结构设计/pp  高温、难熔金属专题分会场/pp  strong王金淑/strong 北京工业大学教授/pp  发言题目:稀土钼金属陶瓷次级发射材料研究/pp  strong李树奎/strong 北京理工大学教授/pp  发言题目:新型穿甲弹弹芯材料研究/pp  strong沙江波/strong 北京航空航天大学教授/pp  发言题目:放电等离子烧结Nb-Si基合金的组织与性能研究/pp  strong曹顺华 /strong中南大学教授/pp  发言题目:连续梯度钨铜材料制备技术/pp  strong秦明礼 /strong北京科技大学教授/pp  发言题目:高性能金属钨制品的精密制备技术/pp  strong韩胜利 /strong广东省材料与加工研究所高级工程师/pp  发言题目:增塑挤压-熔渗烧结制备W-Cu合金组织性能研究/pp  strong胡 鹏/strong 北京工业大学教授/pp  发言题目:球形钨粉的热等离子制备及其烧结性能研究/pp  strong王伟丽/strong 西北工业大学研究员/pp  发言题目:快速凝固高熵CoCrFeNiMnx合金组织演化规律及其性能特征/pp  strong孟军虎/strong 中国科学院兰州化学物理研究所研究员/pp  发言题目:高熵合金基高温自润滑复合材料的设计制备和减摩耐磨机制/pp  span style="color: rgb(255, 0, 0) "strong金属基复合材料专题分会场/strong/span/pp  strong张 荻 /strong上海交通大学教授/pp  发言题目:待定/pp  strong耿 林/strong 哈尔滨工业大学教授/pp  发言题目:金属基复合材料构型设计与调控/pp  strong武高辉/strong 哈尔滨工业大学教授/pp  发言题目:金属基复合材料尺寸稳定设计及应用/pp  strong马宗义/strong 中国科学院金属研究所研究员/pp  发言题目:高体份金属基复合材料制备与应用/pp  strong彭华新/strong 浙江大学教授/pp  发言题目:金属-陶瓷复合材料的组织调控/pp  strong赵乃勤 /strong天津大学教授/pp  发言题目:三维网络碳纳米增强相的构筑与复合/pp  strong王慧远 /strong吉林大学教授/pp  发言题目:待定/pp  strong王快社/strong 西安建筑科技大学教授/pp  发言题目:累积叠轧制备Ti/Ni多层结构复合材料界面扩散及性能研究/pp  strong郑开宏/strong 广东省材料与加工研究所教授/pp  发言题目:铁基复合材料制备技术及应用合/pp  strong肖伯律/strong 中国科学院金属研究所研究员/pp  发言题目:铝基复合材料变形加工图研究/pp  strong王祖敏/strong 天津大学教授/pp  发言题目:金属-半导体界面的原子传输与相变/pp  strong杨亚锋/strong 中国科学院过程工程研究所研究员/pp  发言题目:陶瓷包覆型粉体的设计、制备及应用/pp  strong魏秋平/strong 中南大学副教授/pp  发言题目:金刚石/铜复合材料的研究/pp  strong何春年/strong 天津大学教授/pp  发言题目:碳材料增强金属基复合材料的设计与强韧化机制/pp  strong黄陆军/strong 哈尔滨工业大学教授/pp  发言题目:多级多尺度钛基复合材料设计与调控/pp  strong贾均红/strong 中科院兰州化学物理研究所研究员/pp  发言题目:金属基宽温域润滑复合材料的设计---AgTMxOy相的原位分解和摩擦诱导重生/pp  strong陈体军/strong 兰州理工大学教授/pp  发言题目:粉末触变成形制备芯—壳结构粒子增强铝基复合材料的研究/pp  span style="color: rgb(255, 0, 0) "strong铜合金及铜基材料专题分会场/strong/span/pp  strong李 周/strong 中南大学教授/pp  发言题目:高性能铜合金设计及应用/pp  strong牛立业/strong 中铝洛阳铜业有限公司教授级高工/pp  发言题目:汽车电阻焊电极用弥散强化铜合金材料工艺研究/pp  strong王强松/strong 北京有色金属研究总院教授/pp  发言题目:铜合金材料特种应用/pp  strong阮 莹/strong 西北工业大学教授/pp  发言题目:多孔铜的结构特征与力学性能研究/pp  strong赵红彬/strong 宁波博威合金材料股份有限公司研发总监/pp  发言题目:致力于社会资源和环境压力降低的高性能铜合金研究/pp  strong王鹏云 /strong中国船舶重工集团公司第七二五研究所高级工程师/pp  发言题目:国内外电阻焊电极用弥散铜性能评价指标体系对比及应用/pp  strong周登山/strong 东北大学讲师/pp  发言题目:杂微量元素Ti抑制纳米晶铜基复合材料中的氧化物颗粒粗化和铜晶粒长大/pp  strongspan style="color: rgb(255, 0, 0) "高性能轻合金材料专题分会场/span/strong/pp  strong杨院生/strong 中国科学院金属研究所研究员/pp  发言题目:纳米析出相增强镁合金/pp  strong王俊升/strong 北京理工大学教授/pp  发言题目:ICME技术用于高强铝合金的设计/pp  strong赵永庆/strong 西北有色金属研究院教授/pp  发言题目:高强钛合金研制/pp  strong王卫国/strong 福建工程学院教授/pp  发言题目:高纯铝再结晶晶界界面匹配研究/pp  strong周吉学/strong 山东省科学院新材料研究所研究员/pp  发言题目:镁合金及镁-铝异种材料连接件整体表面处理技术/pp  strong吴伊平/strong 江南工业集团有限公司总经理/pp  发言题目:大规格TC11钛合金件热处理工艺试验/pp  strong王建华/strong 常州大学材料科学与工程学院教授/pp  发言题目:Al-3P变质Al-18Si合金显微组织与力学性能研究/pp  strong李庆林/strong 兰州理工大学教授/pp  发言题目:稀土变质过共晶Al-Si合金微观组织及力学性能的研究/pp  strong冯小辉/strong 中科院金属所副研究员/pp  发言题目:碳纳米管增强镁基复合材料研究/pp  strong罗天骄/strong 中科院金属所副研究员/pp  发言题目:固溶和淬火处理对挤压态ZK60镁合金残余应力的影响/pp  strong杨 昭/strong 江南工业集团有限公司工程师/pp  发言题目:TC11钛合金材料验收检验中的试样热处理问题/pp  span style="color: rgb(255, 0, 0) "strong增材制造与特种成形技术专题分会场/strong/span/pp  strong史玉升/strong 华中科技大学教授/pp  发言题目:智能金属材料及其增材制造技术/pp  strong伍尚华/strong 广东工业大学教授/pp  发言题目:复杂形状陶瓷零部件的增材制造技术/pp  strong刘 奇/strong 重庆材料研究院有限公司教授级高工/pp  发言题目:3D打印用钨铼合金粉体材料制备及性能研究/pp  strong吴文恒/strong 上海材料研究所副主任/pp  发言题目:增材制造金属粉末的制备与检测/pp  strong邱耀弘/strong 安泰(霸州)特种粉业有限公司 MIM技术项目科学顾问/副教授/pp  发言题目:跃进的不锈钢粉末之成形技术/pp  strong张 升/strong 中国航空工业集团公司北京航空制造工程研究所博士/pp  发言题目:激光选区熔化成形大尺寸钛合金制件技术研究/pp  strong林 峰/strong 清华大学教授/pp  发言题目:粉末床电子束选区熔化(EBSM)技术/pp  strong钱 波/strong 华东理工大学副教授/pp  发言题目:SLM实时预熔重熔的新型工艺研究/pp  strong胡梦龙/strong 江苏昆山工业技术研究院副主任/pp  发言题目:高性能陶瓷光固化成型技术/pp  strong杜开平/strong 北京矿冶研究总院博士/pp  发言题目:3D打印用Inconel 718合金粉末的制备及应用技术/pp  span style="color: rgb(255, 0, 0) "strong表面涂层与防护专题分会场/strong/span/pp  strong彭 晓/strong 南昌航空大学研究员/pp  发言题目:促进金属材料热生长-Al2O3膜的方法探索/pp  strong李争显/strong 西北有色金属研究院教授/pp  发言题目:钛表面防护涂层技术的发展/pp  strong崔洪芝/strong 山东科技大学教授/pp  发言题目:耐磨蚀涂层高通量等离子熔射制备技术及应用/pp  strong李伟洲/strong 广西大学研究员/pp  发言题目:铌合金C103表面复合涂层的高温抗蚀性/pp  strong邱万奇/strong 华南理工大学教授/pp  发言题目:低温反应溅射沉积α-(Al,Cr)2O3薄膜/pp  strong朱圣龙/strong 中国科学院金属研究所研究员/pp  发言题目:抑制涂层-基体间互扩散的高温防护涂层研究/pp  strong鲍泽斌/strong 中国科学院金属研究所研究员/pp  发言题目:活性元素Zr改性铂铝涂层高温氧化及其腐蚀性能研究/pp  strong杨冠军/strong 西安交通大学教授/pp  发言题目:航机燃机热障涂层结构设计与制备调控方法/pp  strong王建强/strong 中国科学院金属研究所研究员/pp  发言题目:高耐蚀耐磨HVAF喷涂铝基非晶涂层研究/pp  strong耿树江/strong 东北大学教授/pp  发言题目:(Cu,Fe)3O4尖晶石涂层的制备及性能研究/pp  strong陈明辉 /strong东北大学教授/pp  发言题目:高温搪瓷涂层/pp  strong张小峰 /strong广东省新材料研究所博士/pp  发言题目:Al-ZrO2原位反应改善热障涂层性能/pp  strong何 健/strong 北京航空航天大学博士后/pp  发言题目:γ' +β双相Ni-Al-Hf合金氧化膜/合金界面钉扎物的不同形成机制/pp  strong董志宏/strong 中国科学院金属研究所金博士/pp  发言题目:Cr12MoV合金钢空心阴极放电辅助离子渗氮研究/pp  strong高丽红/strong 北京理工大学副教授/pp  发言题目: 基于等离子喷涂的反射型激光防护涂层研究/pp  strong石 佳 /strong北京航空航天大学博士/pp  发言题目:等离子物理气相沉积热障涂层生长机理及制备技术研究/pp  span style="color: rgb(255, 0, 0) "strong先进粉末冶金及复合材料青年科技工作者学术交流分会场/strong/span/pp  strong杨亚锋/strong 中国科学院过程工程研究所研究员/pp  发言题目:粉末冶金钛合金的致密化和杂质控制/pp  strong王玉敏 /strong中国科学院金属研究所副研究员/pp  发言题目:复合材料整体叶环损伤失效机制研究/pp  strong刘 涛/strong 中南大学粉末冶金研究院副教授/pp  发言题目:CuCrZr与Cu的低温扩散连接/pp  strong罗来马/strong 合肥工业大学副教授/pp  发言题目:液相法W-Y2O3复合粉体制备与烧结特性研究/pp  strong牛红志/strong 东北大学副教授/pp  发言题目:TiH2颗粒为原料制备低成本低氧含量PM -TC4钛合金及其生成过程/pp  strong谭 鑫/strong 中机国际工程设计研究院有限责任公司高级工程师/pp  发言题目:密度泛函理论计算在材料表面性能研究中的应用/pp  strong宋晓杰/strong 山东科技大学材料科学与工程学院博士研究生/pp  发言题目:原位合成Ti2AlC(N)增强TiAl基复合材料的显微组织和力学性能研究/pp  strong魏 娜 /strong山东科技大学材料科学与工程学院博士研究生/pp  发言题目:TiO2基复合薄膜的制备及其对金属的光电化学防腐研究/pp  strong张犁天 /strong中国科学院力学研究所博士生/pp  发言题目:铜铬合金激光表面细晶化及其电性能/pp  strong黎毓灵/strong 华南理工大学材料科学与工程学院硕士研究生/pp  发言题目:靶功率对YG10x上反应直流磁控溅射沉积纳米W-N涂层显微结构的影响/pp  span style="background-color: rgb(0, 176, 240) color: rgb(255, 255, 255) "strong会议安排及说明/strong/span/pp  1、本次会议代表收取注册费2400元/人、在校学生凭学生证收取注册费1400元/人,包括会务、论文审稿、出版、专家演讲资料费、餐费、考察费。/pp  2、本次会议以学术成果、论文、口头交流及墙报为主,大会分为特邀报告与分会报告(大会主旨报告30分钟,分会邀请报告25分钟、一般报告20分钟,分别包含5分钟提问与讨论时间)。/pp  span style="background-color: rgb(0, 176, 240) color: rgb(255, 255, 255) "strong会议说明与其它/strong/span/pp  1、会议将设置分会场,鼓励年轻学者展示研究成果,促进年轻学者之间的交流和学习,请提前联系会务组,以保证会议议程安排。/pp  2、食宿安排:会议推荐酒店,请代表自行联系预定房间,用餐为会议统一安排。/pp  3、欢迎国内外有关公司及机构支持、赞助本次会议。我们将以会议论文集刊登广告、提供小型展位等多种形式宣传支持、赞助单位,为支持、赞助单位提供广大市场、拓展业务的良机。/pp  4、请参会代表务必将回执发至span style="color: rgb(0, 176, 240) "ysgc@china-mcc.com/span或发送传真至span style="color: rgb(0, 176, 240) "010-88796961/span,没有报名回执不能保证会议资料。/pp  strongspan style="background-color: rgb(0, 176, 240) color: rgb(255, 255, 255) "组委会联系方式/span/strong/pp  联系人:许 飞/pp  手 机:13439831435/pp  电 话:010-68807312/pp  传 真:010-88796961/pp  邮 箱:xufei627@163.com/pp  网 址:www.china-mcc.com/p
  • 阿美特克SMP部门Eighty Four和Reading Alloys将于北京举行的2018世界粉末冶金大会上亮相
    p style="text-align: center "strong2018年9月17-19日阿美特克SMP团队在A215展位与您会面/strong/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/uepic/4a9afd29-b159-4570-8586-ddb02860e010.jpg" title="Stainless Steel Powder Experts to Showcase Specialty Alloys at World Conference on Powder Metallurgy in China.jpg" alt="Stainless Steel Powder Experts to Showcase Specialty Alloys at World Conference on Powder Metallurgy in China.jpg" width="500" height="281"//pp  阿美特克Specialty Metal Products(SMP)两家位于美国宾夕法尼亚州的业务部门,strong阿美特克SMP/strong strongEighty Four/strong和strongReading Alloys/strong,将于span style="color: rgb(255, 0, 0) "2018年9月17-19日在北京举行的世界粉末冶金大会上参展/span。由于他们在适用于要求最高纯度和耐温性关键应用的定制特种不锈钢和其他高合金金属粉末方面的独特灵活性,两家公司均建立了良好的声誉。/pp  阿美特克SMP Eighty Four将突出其在先进不锈钢粉末生产方面的世界优势地位,包括满足严苛客户要求的300和400系列粉末。这些粉末采用专有的水雾化工艺生产,可适于各种应用,包括热喷涂,钎焊,添加剂制造和金属注射成型。/pp  中国是阿美特克SMP的关键市场,尤其是中国汽车行业,其中AMETEK是制造高温不锈钢粉末的先驱,用于需要耐热材料制造的高性能发动机部件。/pp  Reading Alloys是世界前列的气体雾化和高纯钛粉生产商,采用氢化/脱氢(HDH)工艺定制,用于一系列关键的医疗和电子应用。/pp  emspan style="color: rgb(79, 129, 189) "“中国和亚洲是重要且不断增长的市场。我们以优质、定制的特种金属粉末为亚洲汽车,航空和工业市场提供支持。2018世界粉末冶金大会为我们提供了一个推广我们独特的钛和雾化金属粉末产品组合的绝佳机会,”/span/emspan style="color: rgb(79, 129, 189) "AMETEK特种金属产品亚洲区销售经理Mike Hsieh评论道。/span/pp  另外,本活动为AMETEK SMP提供了一个很好的机会,来介绍新近任命的AMETEK SMP中span style="color: rgb(79, 129, 189) "国区销售经理Michael Zhu/span,他将与Mike Hsieh一同于A215展位亮相。/p
  • 揭秘!3D打印金属粉末的主流制备方法
    球形金属粉末作是金属3D打印最重要的原材料,是3D打印产业链中最重要的环节,与3D打印技术的发展息息相关。在“2013年世界3D打印技术产业大会”上,世界3D打印行业的权威专家对3D打印金属粉末给予明确定义,即指尺寸小于1mm的金属颗粒群,包括纯金属粉末、合金粉末及具有金属性质的某些难溶化合物粉末。目前3D打印用金属粉末材料主要集中在钛合金、高温合金、钴铬合金、高强钢和模具钢等方面。随着金属3D打印技术的飞速发展, 球形金属粉末的市场将保持高增长态势。2016年3D打印金属粉末的市场规模约为2.5亿美元,预计2025年市场规模将达到50亿美元。为满足3D打印装备及工艺要求,金属粉末必须具备较低的氧氮含量、良好的球形度、较窄的粒度分布区间和较高的松装密度等特征。当前我国生产的金属粉末性能难以满足高端客户需求,高质量 3D 打印用金属粉末需依赖进口。因此,研究3D打印金属粉末的制备尤为重要。本文特整理了当前3D打印用金属粉末的4种制备方法,供大家参考。1、气雾化法 气雾化法是利用惰性气体在高速状态下对液态金属进行喷射,使其雾化、冷凝后形成球形粉。根据热源的不同又可以将气雾化法细分为电极感应熔炼气雾化(EIGA)和等离子惰性气体雾化(PIGA)两种工艺,采用惰性气体既能防止产物氧化,又能避免环境污染。在 EIGA 工艺中,为电极形式的预合金棒将在不使用熔炼坩埚的情况下进行感应熔炼和雾化,其工艺原理图如下图所示。采用气雾化法所得粉末粒度分布广,大部分为细粉,杂质易于控制,但粉末由于粒径不同而冷却速度不同,导致颗粒内部易产生气泡,形成空心结构,粉末形状不均匀,出现行星球等,对粉末后期应用造成不利影响。 电极感应熔炼气雾化(EIGA)原理及其生产的金属粉末图片来源:南极熊3D打印2、等离子旋转电极雾化法(PREP) 等离子旋转电极雾化法(PREP)是生产高纯球形钛粉较常用的离心雾化技术,其基本原理是自耗电极端面被等离子体电弧熔化为液膜,并在旋转离心力作用下高速甩出形成液滴,然后液滴在表面张力的用下球化并冷凝成球形粉末。PREP 因采用自耗电极,制备出的粉末纯净度较高,且该技术不使用高速惰性气体雾化金属液流,避免了“伞效应”引起的空心粉和卫星粉颗粒的形成。因此,相对于气雾化而言,PREP 制备的粉末中空心粉和卫星粉更少。PREP 制备的粉末球形度可达 99.5%以上,但是粉末粒径分布较窄,主要介于 50~150μm,存在着粉末尺寸 偏大的问题并且细粉收得率很低。目前俄罗斯最先进的 PREP 技术也只能收得约 15%的细粉(~45μm),难以服务于微细球形钛粉市场。 等离子旋转电极雾化法(PREP)原理及其生产的金属粉末图片来源:南极熊3D打印3、等离子丝材雾化法(PA) 等离子丝材雾化法(PA)是加拿大 AP&C 公司特有的金属粉末制备技术,PA 工艺是以纯度高的金属或合金丝为原料,以等离子枪为加热源,原料丝材被等离子体瞬间熔化的同时被高温气体雾化,形成的微小液滴在表面张力的作用下球化并在下落过程中冷却固化为球形颗粒的一种工艺。以合金丝为原料制备各种材质球形粉末的工艺,可实现高水平的可追溯性和较好的颗粒大小控制。该工艺生产出的粉末粒径分布范围窄,平均粒径约为 40μm,细粉收得率高(80%),几乎没有卫星球;粉末纯度高(低氧,无夹杂),球形度高,伴生颗粒非常少。具有出色的流动性和表观密度、振实密度。主要服务对象为生物医疗和航空航天工业,产品畅销20 余个国家。 等离子丝材雾化法(PA)原理及其生产的金属粉末图片来源:南极熊3D打印近年来,国外关于 PA 技术的研究取得了不少进展,现有技术已能够在单位时间内所消耗气体与原料的质量比小于20的条件下,制备大量(至少80%)粒径分布为0~106μm的金属粉末。加拿大 AP&C 公司是 PA 技术的专利持有者,加拿大 Pyro Genesis 公司也拥有相关类似专利,但均不对外出售等离子雾化设备。由于国外公司专利保护及技术封锁,一直以来国内关于 PA技术的研究进展缓慢。 4、射频等离子球化法 射频等离子体球化法是利用射频电磁场作用对各种气体(多为惰性气体)进行感应加热,产生射频等离子,利用等离子区的极高温度熔化非球状粉末。随后粉末经过一个极大的温度梯度,迅速冷凝成球状小液滴,从而获得球形粉末。射频等离子球化技术(PS)图片来源:南极熊3D打印目前国外在这方面研究较多的公司有代表性的包括:英国 LPW 技术公司和加拿大的泰克纳公司。其中,泰克纳 (TEKNA) 公司所开发的射频等离子体粉体处理系统,在世界范围内处于领先地位,可以实现 Ti、Ti-6Al-4V、W、Mo、Ta、Ni 等金属及其合金粉末的生产。 国内北京科技大学在射频等离子球化方面也进行了大量的研究,以不规则形状的大颗粒TiH2 粉末为原料,经过射频等离子高温区后 TiH2 粉末脱氢分解、爆碎,即发生“氢爆”。爆开的金属液滴下落过程中,在表面张力的作用下缩聚成规则的球状,得到微细球形粉末。所收得的粉末粒度范围可以达到 20~50μm,细粉收得率更是高达 80%以上,各项性能参数均不逊于国际一流队列的粉末,图 6 是氢化钛粉末经射频等离子球化前后粉末形貌图。同时,该团队还将该方法创新性地应用到了钨、高温合金、钕铁硼等金属粉末的球化处理当中,均取得了显著的成果。射频等离子体制备球形钛粉示意图图片来源:南极熊3D打印球化前后的粉末形貌对比图片来源:南极熊3D打印
  • 拉曼毒品分析仪:神奇的白色小粉末居然有泡沫
    朋友跟我讲了个公司老宋的故事,说是中国版绝命毒师。 老宋是厂子特聘的化学专家,年薪二十几万,却开一辆临近报废的破桑塔纳。我问他为什么,他笑着打哈哈,答非所问,直到和他交往久了,我才明白其中的原因。老宋缺钱,很缺钱。后来我们这才知道,老宋的两个儿子都不成器。 有一天他带来一袋白色粉末,让我猜是什么东西。“这是……毒品?”我开玩笑。老宋一愣,随即哈哈大笑:“扯咧,洗衣粉!”老宋向水盆里倒了些粉末,晃了晃,果然漾起很多泡沫。我对他故作神秘的样子表达不满,他咧着嘴笑,露出满嘴黄牙。“你可真看得起你哥我,那玩意儿是一般人能造的?”一般人当然造不了,但老宋可不是一般人。 几个月之后老宋被捕,全厂轰动。 那天好几辆警车开进公司,从上面下来十几个全副武装的警察,过了片刻老宋被从实验室押了出来。我们挤在楼道上,看见老宋双手带着手铐,面色苍白。他走路踉踉跄跄,要不是身边有人搀扶,估计得瘫倒在地上。老宋被押进车间,然后有很多人向外搬东西。远远能看见是些反应罐、搅拌机、脱水机、磅秤、天平、制冷机之类,还有一些瓶瓶罐罐,拉了满满两车。老宋的罪名是制毒,这些就是他的作案设备。 老宋被捕后,关于他制毒的一些传闻渐渐流传开来。老宋制毒的动机当然是为了钱。他小儿子开车撞了人,事故很严重,要赔对方68万。老宋虽然年薪高,但是手头一时也拿不出那么多现金来,老宋实在走投无路,开始走上了一条不归路。至于如何制毒,对于老宋这种化学专家而言就是小儿科,就算是从普通药店就可以买到的常见感冒类、止咳类药物,经过老宋的手,也可以变成能让人欲罢不能的冰毒。就以市面上常见的某感冒药为例,从这类药物中提取一种名叫麻黄素的物质,经过加工制作成麻黄素混合液,然后将液体放入蒸馏烧瓶中,进行高温蒸馏,就可以得到甲基苯丙胺,这就是冰毒的主要成分,接下来的工作就是反复蒸馏,提高纯度。说到这里我觉得老宋仍保有一定的良知,因为他制作的冰毒纯度都不是很高。 回想起他之前制造的白色洗衣粉,我还开玩笑说是毒品。每每想起那一幕我就脊背发麻,感觉世事无常。 由于大部分毒品是白色粉末,犯罪分子经常用食盐、洗衣粉、白糖等白色粉末状物质来伪装和掩护毒品,给海关和公安办案人员带来困扰。同时毒品中淀粉、葡萄糖等添加成分,分子量大、极性强、不易气化,对其采用气相色谱法检验具有一定的难度。拉曼光谱属于分子振动光谱,具有所需检材量小、不破坏检材、不需要对样品进行前处理、操作简便、分析速度快等优点。拉曼光谱技术能够比较直观地观察到晶体或粉末的微观情况,对于晶体结构不同或晶体-粉末的混合物,能够直接断定是否有添加成分的存在,对微量杂质或掺杂物的分析具有独特的优越性。我们针对包括可卡因海洛因在内的七种毒品进行拉曼光谱检测。由图可知,七种常见毒品均有相当丰富的拉曼特征位移峰,且每个峰的信噪比较高。同时七种常见毒品的特征峰峰位相互间均有较大差异,通过其特征拉曼峰峰位的不同区分不同成分的毒品。 我们还鉴定了包括奶粉、洗衣粉在内的四种白色粉末状物质,洗衣粉是混合物,且不同厂家的洗衣粉有不同的配方,所以会产生不同的拉曼谱图,不同厂家奶粉的拉曼谱图也有所差异。也就是说由于洗衣粉和奶粉不具有固定的分子结构,也就不具有固定的拉曼谱图,本次鉴定的只是一种奶粉和一种洗衣粉的拉曼谱图,而不是标样谱图。 拉曼光谱分析技术实现了对毒品及其常见添加成分的快速分析。由于拉曼光谱具有微区分析功能,即使毒品和其它白色粉末状物质混和在一起,也可以通过显微分析技术对其进行识别,得到毒品和其它白色粉末分别的拉曼光谱图。拉曼光谱法是检验常见毒品及其添加成分的快速有效的方法。现已成熟运用于刑侦、安检、缉毒等领域。
  • 网络研讨会|涂魔师非接触无损测厚系统助力优化汽车车身涂装工艺
    汽车车身覆盖有几层不同功能的漆层,油漆材料以及喷涂工艺的质量在车辆的美观中起着关键作用。同时,汽车车身表面进行涂装工艺可以避免车身在日常使用中发生氧化、腐蚀、过早老化等问题,起到防护作用。因此,建立统一的喷涂工艺要求和不同涂层厚度的允许容差范围(允许容差范围=合格范围上限值-合格范围下限值)规范是至关重要的。此次网络研讨会,我们将向您展示涂魔师非接触无损测厚系统监测测量、控制和优化汽车车身喷涂工艺,涂魔师非接触无损测厚系统可用于测量固化后的总涂层厚度,也可以在湿膜的情况下得出干膜的涂层厚度。涂魔师非接触无损测厚仪非常适合汽车制造商以及汽车零部件生产商,可通过实时测量涂层厚度实现在生产早期测量涂层厚度,从而解决质量和生产问题,有效避免昂贵且复杂的返工工序。不仅能节省时间成本,也能减少废料和次品的产生,大大稳定了生产质量。马上发邮件到marketing@hjunkel.com,备注【9月2号涂魔师研讨会】进行报名登记,我们将在研讨会结束后给您发送资料和视频。或电话咨询报名。涂魔师非接触无损测厚系统介绍涂魔师非接触无损膜厚仪利用基材与涂层之间的储热特性,非接触无损精准测量金属基材上电泳漆涂层厚度。在涂层未烘干的湿膜状态下即可实时测出干膜厚度,为精确控制漆膜厚度提供可靠的数据支撑。在工件进入烘炉前就能快速监测真实膜厚,及时发现问题并调整设备参数使膜厚达到合格范围,大大缩短了工艺时间和降低返工率。涂魔师非接触无损测厚仪与传统测厚仪的对比传统金属底材测厚采用磁性/涡流法测厚仪、非金属底材测厚采用DIN EN ISO 2808标准提及到的楔形切割法、DIN 50950标准提及到的横切法或是在特定情况下使用ISO 2808标准的接触式超声波测量设备。上述测量方法有各种局限:而涂魔师非接触式实时测厚系统可以解决以上问题,该系统具有突出优势,能帮助企业高效保证产品质量,减少材料消耗,节省生产成本:传统测厚仪涂魔师非接触无损测厚仪需等待膜层干燥而使工序滞后,无法在喷涂/涂布后马上得知干膜厚度不限测试底材,木材、橡胶、塑料、玻璃、混凝土等底材均可高精度测出涂层膜厚受底材种类限制,精度差不限涂层种类,油漆、粉末涂料、粘胶剂、润滑油、胶水等都适用测试时需要与涂层接触,破坏涂层可测量各种颜色颜料的湿膜或干膜厚度无法测试曲面、弯角、小零件等复杂形状可适应各种不规则和外形复杂工件不能在生产线上直接实时测试实时在产线上监测膜厚涂魔师非接触测厚系统能在生产线前端高效检测湿膜厚度并帮助用户及时作出偏差调整,防止涂层厚度不合格导致汽车车身产生易老化腐蚀、易生锈等产品质量问题。翁开尔是瑞士涂魔师Coatmaster中国总代理,欢迎致电咨询涂魔师非接触无损测厚仪更多产品信息和技术应用。
  • 网络研讨会|白色家电涂层工艺漆膜膜厚自动检测
    涂魔师漆膜膜厚自动检测系统非接触无损测量白色家电涂层厚度涂魔师漆膜膜厚自动检测系统能够精准控制涂层厚度,保证产品质量,非常适合白色家电生产制造商和涂装商。粉末涂料喷涂由于其优越的机械性能和无溶剂涂料的应用,在工业领域发挥越来越重要的作用。但只有当涂层厚度保持在一定的容差范围内,粉末涂料喷涂才能发挥其优势,因此喷涂工艺的重点必须放在粉末涂料的有效使用和控制上。对白色家电喷涂涂层工艺的优化不仅仅适用于大型工厂流水线上,而且也适用于小型的涂装生产线,甚至是人工涂装线,在这些生产线上,每小时的工作或每公斤的清漆对企业的盈亏起到决定作用。在白色家电的生产环境中,涂层工艺的另一个挑战是搪瓷!搪瓷就是在金属表面覆盖一层无机玻璃氧化涂层,涂层最主要的作用是保证金属材质不被氧化和腐蚀。烤箱和炊具的所有零部件(马弗炉、柜台门、风扇罩、锅等)进行搪瓷,主要是为了提高这些家电的耐用性和耐高温性,同时也使得这些家电易于清洁,保证卫生。本次网络研讨会,涂魔师专家Francesco Piedimonte将介绍涂魔师漆膜膜厚自动检测系统,演示涂魔师漆膜厚度检测仪先进的ATO光热法原理,以及使用涂魔师非接触无损测厚仪实时在线自动测量粉末、湿膜/干膜和搪瓷涂层厚度。涂魔师漆膜膜厚自动检测支持连续测量生产过程中流水线上的移动部件。马上发邮件到【marketing@hjunkel.com】,备注【9月9号涂魔师研讨会】进行报名登记,我们将在研讨会结束后给您发送资料和视频。涂魔师漆膜膜厚自动检测系统工作原理ATO光热法介绍涂魔师采用ATO光热法专利技术;该项技术采用氙灯安全光源代替激光束进行激发,并以脉冲方式短暂加热待测涂层,内置高速红外传感器将记录涂层表面温度分布并生成温度衰减曲线,最后利用专门研发的算法分析表面动态温度曲线计算待测涂层厚度。通常,涂层厚度越大,反应时间越长(例如1-2秒);涂层厚度越小,反应时间越短(例如0.02-0.3秒),如图所示。相比于传统非接触式测厚仪,涂魔师ATO漆膜膜厚自动检测系统明显降低了仪器维护成本,而且涂魔师能更加快速精准和简单测厚,无需严格控制样品与测厚仪器之间的测试角度和距离,即使是细小部位、弯角、产品边缘、凹槽等难测部位也能精准测厚,并且对操作人员的专业要求低。另外,涂魔师容易集成到涂装系统中,与机械臂或其他移动装置配合使用能方便精准测量工件膜厚,实现不间断连续膜厚监控,提高生产效率。涂魔师漆膜膜厚自动检测系统优势涂魔师漆膜厚度检测仪可以测湿膜直接显示干膜厚度,在生产前期非接触式测量未固化的涂层直接得出涂层的干膜厚度,如粉末涂料、油漆等;涂魔师漆膜膜厚自动检测系统采用先进的热光学专利技术,无需接触或破坏产品表面涂层,在允许变化角度和工作距离内即可轻松测量膜厚;涂魔师漆膜膜厚自动检测允许允许测量各种颜色的涂料(不受浅色限制);适用于外形复杂的工件(如曲面、内壁、边角、立体等隐蔽区域);涂魔师漆膜厚度检测仪100%测量数据安全自动储存于云端,实现生产工艺的统计及不间断追溯,高效监控膜厚真实情况。翁开尔是瑞士涂魔师中国总代理,欢迎致电咨询涂魔师非接触无损测厚仪更多产品信息和技术应用。
  • 涂魔师在线漆层检测|复杂外形工件表面非接触漆膜膜厚自动检测系统
    涂魔师在线漆层检测|复杂外形工件表面非接触漆膜膜厚自动检测系统测量平坦表面涂层厚度并不容易,对复杂几何表面结构的涂层厚度的测量更加困难。传统的单点接触测量往往无法满足客户需求,这种方法通常是相当不准确的,而且只适用于固化后的涂层厚度测量,无法支持在生产工艺过程中进行涂层厚度测量。为了实现对复杂几何表面结构的涂层厚度,涂魔师在线漆膜测厚仪基于先进的ATO光热法技术,研发了一款利用涂层与底材之间的热性能差异进行涂层厚度的非接触无损测量系统。涂魔师漆膜膜厚自动检测系统适用于粉末喷涂,能精确检测粉末涂层厚度,稳定喷涂工艺质量;适用于湿膜和干膜应用,能精确检测固化前湿膜涂层即时得到干膜厚度,节省时间和稳定质量等。通过调研,50%的人在固化或干燥工艺后手动测量涂层厚度,43%的人是在有质量保证的实验室中手动测量涂层厚度,21%的人在选择在固化干燥工艺前手动测量涂层厚度,然而,没有人使用自动化仪器进行涂层厚度测量并优化喷涂工艺。从调研结果上看,大部分的人选择在生产线后期使用接触式涂层测厚仪,手动测量固化后的涂层厚度,然而,无论是湿膜还是干膜,在生产线末端进行涂层厚度测量已经太晚了,如果此时测量效果不好,则会产生大批量的次品,需要进行返工,这将导致更多的资金、人力、物力的消耗。涂魔师非接触无损测厚系统能够在生产线早期阶段进行涂层厚度测量,为您和您的客户记录涂装工艺过程的连续数据,为优化工艺、更换耗材提供依据;能减少物料消耗;提供高精度的生产条件,及时分析膜厚数据,及时发现喷枪堵塞等失效问题,协助调整工艺参数。涂魔师在线漆膜测厚系统如何实现在固化前测量涂层厚度?涂魔师在线漆膜测厚系统使用ATO光热法原理,通过计算机控制光源以脉冲方式加热待测涂层,其中内置的高速红外探测器从远处记录涂层表面温度分布并生成温度衰减曲线。表面温度的衰减时间取决于涂层厚度及其导热性能。最后利用专门研发的算法分析表面动态温度曲线计算测量待测的涂层厚度。涂魔师漆膜膜厚自动检测系统产品系列介绍涂魔师漆膜膜厚自动检测系统有FLEX手持式,Inline在线式,Atline实验室,3D整体膜厚成像系统这4种。涂魔师手持式涂层测厚仪FLEX是一款功能齐全的高精准的非接触式无损测厚系统,无需进行整合,操作方便,校准简单,无需严格控制测试距离和角度,无需等到涂层固化后才进行涂层厚度测量,能有效节省材料和避免涂层缺陷问题,十分适用于生产车间现场,且自动记录数据及生产全过程。使用手持式涂层测厚仪FLEX在产线上监控喷粉膜厚后,调节出粉量后节省30%的粉末。特别是对于小批量,产品未出炉已喷完,所以无法根据干膜调整膜厚。而涂魔师在开始喷涂的几分钟内就调整好出粉量,减少返工,降低成本。涂魔师3D整体膜厚成像系统,通过3D成像检测技术,轻松非接触精准测量形状复杂零部件的膜厚分布情况,测试点的数据与工件被测部份一一对应,实时高效监控膜厚真实情况。为什么需要测量整体的涂层厚度?通过使用涂魔师3D整体膜厚成像系统测量涂层厚度,可以使涂层分布清晰可见,连续实时检测产线的移动工件膜厚,无需严控测量条件,对于摇摆晃动、外形复杂(曲面、内壁、立体、边缘等部位)、各种颜色(不受白色等浅色限制)的工件也能精准测厚。通过SPS等接口实现涂装线的自动化控制,能将涂魔师3D整体膜厚成像系统轻松高效集成到现有涂装线上,集成成本低。涂魔师3D整体膜厚成像系统测量复杂几何表面工件涂层厚度,能够在半秒内获得复杂形状工件表面大约十万个测量点的信息,这使得复杂表面涂层厚度的测量变得简单,并通过对测量结果的记录归档及时调整工艺,实现对喷涂工艺质量的有效控制。翁开尔是涂魔师漆膜膜厚自动检测系统中国总代理,欢迎致电咨询涂魔师漆膜膜厚自动检测系统更多产品信息和技术应用案例。
  • 【瑞士步琦】收集氧气敏感及水分敏感的粉末样品解决方案
    收集氧气敏感及水分敏感的粉末样品解决方案喷干应用”喷雾干燥技术常用于制备电池材料、多孔材料及粉末剂量药物和易挥发的香精香料物质。对于这类样品如何保证喷干后的粉末颗粒在收集时免于环境中氧气及水分的交互影响,是作为工艺开发流程中最后一个关键步骤。 研究者通常会考虑充满惰性气体的箱体作为收集这类粉末产品的实验场地,例如手套箱;同时选用惰性气体作为雾化气源,在操作过程中保证氧气及水分处于极低状态;然而,即便是小型实验级喷雾干燥仪器的体积也初具规模(步琦小型喷雾干燥仪 S-300 的高度超过1m),定制大尺寸的手套箱会增加额外费用且仪器配件的操作和拆卸极其不便。针对这种情况,步琦最新推出喷雾干燥突破性的解决方案——环境守护者(Enviro Guard),站在防御存在于外界环境中氧气和水分干扰的顶峰。1从需求、想法到解决方案Enviro Guard 具有特殊设计的玻璃组件,配有旋塞和气体入口,可以采用氩气形成强大的氧气和水分屏障,保持材料的性质。在惰性气体条件下使用实验室型喷雾干燥仪 S-300 制备粉体颗粒后,通过气体入口引入氩气可以保护您的材料,使其免受潜在的损害。粉体制备完成后,将整个旋风分离器及收集瓶迅速移到小尺寸手套箱内,是样品处于受控的环境中。严格的实验室试验证实了该系统的有效性,可将氧气和湿度水平保持在 2% 以下,持续时间可达 5 分钟。这证明了它在实际操作中的可行性,为研究员提供了处理、转移和加工材料的灵活性,而不会受到环境干扰。无论是追求创新还是保存精致的配方,Enviro Guard 都能确保您的材料不受污染。与环保守护者一起体验未来的材料保护,创新与保护相结合!环境守护者 Enviro Guard (11080767) 由以下部分组成:11080595Enviro 玻璃件11068575旋塞046357螺旋盖033577盖帽040023硅胶垫022352软管夹11080766灰色橡胶塞2气体要求由于氩气的密度明显高于空气,因此 Enviro Guard 与氩气具有良好的兼容性。在大约 130°C 时,氩气的密度为 1.21 Kg/m³ ,与 17.5°C 时的空气密度非常相似。这种密度上的相似性使得氩气能够在粉末上形成稳定的保护层,在这个温度下有效地取代周围的空气并保持其位置。值得注意的是,对于这种特定的应用,我们只建议使用氩气,因为它具有创建和维护保护气层的理想特性。小型喷雾干燥仪 B-290/S-300瑞士步琦公司是全球旋转蒸发技术的市场领先者,并且在中压分离纯化制备色谱,平行反应,喷雾干燥仪和冷冻干燥仪,熔点仪,凯氏定氮仪和萃取仪以及实验室/在线近红外等方面是全球市场主要的供货商。我们相信通过提供高质量的产品和优质的服务,我们能给广大的客户在研究开发创新和生产上提供强有力的支持。我们的所有产品均符合“Quality in your hands” (质量在您手中) 理念。我们始终致力于开发坚固耐用、设计巧妙、便于使用的产品与解决方案,以便满足客户的最高需求。凭借小型喷雾干燥仪 B-290 和 S-300,瑞士步琦巩固了其 40 多年来作为全球市场领导者的地位。实验室喷雾干燥仪融合卓越的产品设计与独特的仪器功能,可为用户提供极佳的使用体验。使用实验室喷雾干燥仪可安全处理有机溶剂;S-300 配备的自动模式可节省大量时间,让整个实验过程调节和可重现性更高;远程控制可以带来极致的灵活性,同时方法编程让操作变得对用户更友好。
  • 水滴角测量仪在粉末中的应用
    水滴角测量仪在涂料、制药、化学工业等领域中,深入了解粉末的润湿性对于粉末的加工、成型和应用具有重要的指导作用。粉末的润湿性能对工业生产的影响?在粉末涂料的制备过程中,粉末颗粒需要均匀地分散在液体中,粉末润湿性好可以使液体更好地浸润,有助于液体在粉体中的渗透和扩散,提高涂层的附着力和稳定性。在制药工业中,部分药物以粉末状存在,粉末的润湿性直接影响药物的溶解性,关系到药物的疗效。在化学工业中,一些化学反应需要在粉末与液体之间进行,如果粉末的润湿性差,会导致化学反应不均匀或不能进行,影响产物的质量和产量。如何评估粉末的润湿性?&bull 座滴法座滴法是接触角测量中最常见的方法,用于静态接触角测量。在测量粉末接触角时,需要将粉末压片进行测量,再通过软件拟合图像得到其接触角数值。&bull Washburn测量方法Washburn测量法是利用液体在粉末材料中的毛细虹吸效应进行测量的一种方法。将样品管悬挂在力学传感器上,将粉末样品置于管内,样品管下端浸入液体中,液体会在粉末的张力下上升,通过实时记录粉末样品的重量和对应时间,再运用Washburn方程进行计算,得出其接触角。由于液体需要浸润粉末并上升到容器中,因此Washburn测量方法不适用于疏水性粉末,对于疏水性的粉末来说,通过座滴法测量其接触角是更便捷的一种方法。因此,在粉末接触角测量应用中,使用座滴法测量更为全面和方便。晟鼎精密粉末行业应用设备在粉末领域,接触角测量仪可以用于测量粉末材料表面亲疏水性能,评估表面润湿性,极性和非极性的分布。SDC-200S 科研接触角测量仪功能齐全、拓展性能高,具有全面、完整、精准拟合测量法,可测量材料表面静/动态接触角、表界面张力,可用于粉末材料表面性能测量。产品优势✅ 全面、完善、精准的拟合方法✅ 变焦变倍镜头,成像清晰✅ 20余种拓展功能✅ 自动注液系统
  • 3D打印行业金属粉末的氧氮氢分析 | 原料粉末vs再生粉末
    3D打印行业金属粉末的氧氮氢分析 | 原料粉末vs再生粉末越来越多的金属零件是通过3D打印来生产的。这个新技术为具有复杂结构零件的生产提供了可能性,特别是一些无法使用常规方法生产的零件。此外,模型可以通过技术图纸实现,而无需使用定制的工具。三维打印零件的质量很大程度上受到原材料的质量影响。为了降低生产成本,金属粉末需要经常被回收。经过多次使用,氧、氮和氢的含量和相关的力学性能可能改变。因此,分析金属粉末中氧、氮和氢的含量,可以确保3D打印产品的质量。各种应用于3D打印行业的金属粉末都可以使用inductar ONH cube进行分析。仪器:inductar ONH cube 氧氮氢分析仪技术细节:载气:氦气样品质量:100-1000mg金属粉末原料的钛和不锈钢粉末以及再生的钛和不锈钢粉末的测试结果参照下表。再生粉末与原料的氧、氮和氢含量相比,变化很大,尤指是氧的含量,由于颗粒的粒度极小同时具有非常大的比表面积,颗粒很容易被氧化。甚至ppm级别的含量变化都可以改变3D打印粉末的性能。因此,分析需要使用精度高,检测限低的检测方法。采用inductar ONH cube进行元素分析是十分好的分析选择。inductar ONH cube 氧氮氢分析仪应用领域:黑色系金属合金,有色金属,有色金属,碳化物及陶瓷材料,地质矿物,氧氮氢分析。特点:无需配备石墨电极清扫刷进行清扫,提高做样效率可编程气体分流,通过睡眠模式进入省气模式无需配备动力气以及外置水冷机,可单坩埚完成测试,节省成本专利的球夹连接,实现免工具维护
  • 固粉加样报告|自动化高通量粉末称量分装应用研究报告
    制药、石油化工、精细化工、材料合成、食品饮料、再生能源、生物研究等行业,都离不开固体加样这一单调重复的实验步骤。手工固体投料加样方式会随着样品数量和种类的增加变的繁琐且极易出错,因此,自动化固体投料的需求在各行业逐步增加。发展到今天,国内外都研发出了不同称量范围和使用场景的自动化固体加样设备,但依然面临很多挑战:&bull 单通道固体投料的方式无法应对当前复杂配方体系;&bull 样品需要人工预处理,如降低样品颗粒度、干燥样品、过滤样品等,自动化程度有待提高;&bull 单通道自动化设备,原料桶切换仍需人工介入操作,并未做到真正的解放人力;&bull 多类型固体原料性状不同,称量精准度无法全部满足需求。市场上是否有 “无需人工介入,自动化加粉称量、分装” 的固体加样仪应对以上挑战?本篇应用报告里,晶泰科技在自主研发的 ChemPlus&trade 桌面型固体加样仪上进行实测研究,选取了 6 种不同物理特性的固体粉末,通过设置不同目标加样量,分别对加样次数、加样速度、加样准确度等数据进行记录分析,用实际应用数据说话,满足您不同应用场景的自动化称量分装需求。测试方案选取 6 种不同物理特性的固体粉末,设置了 5/10/20/100mg 四个目标加样量,多次(12 次或 96 次)测量,记录 ChemPlus&trade 桌面型固体加样仪对于不同粉末在不同目标加样量下的称量数据:平均加样值、加样偏差、加样时间等,以观察 ChemPlus&trade 桌面型固体加样仪在 “粉末自动化称量、分装” 应用上的表现。&bull 测试粉末样品:6 种,分别为 HATU、X-Phos、碳酸钾、山梨醇、乳糖、硬脂酸镁;&bull 目标加样量:5mg、10mg 、20mg 和 100mg;&bull 每种粉末样品分装到不同接收容器托盘中,选取的接收容器托盘:8mL×12试剂瓶,96 孔板。样品选取我们精心挑选了 6 种固体粉末,代表制药、石油化工、精细化工、食品等实验研究中经常遇到的具有不同物理特性的粉末样品,详细信息如下表 1:表1:6种不同性状粉末样品自动化测试结果以上测试数据可以看出,ChemPlus&trade 桌面型固体加样仪可以准确、稳定称量不同物理特性的固体粉末,具体表现如下:&bull ChemPlus&trade 适用样品可以覆盖较大颗粒、蓬松、流动性差的粉末,甚至是 HATU 这种吸潮结块特性的固体粉末,ChemPlus&trade 的称量数据依旧很稳定出色;&bull 对所有目标重量的加样称量偏差基本在 0.1mg 范围内;&bull 小量程的目标加样速度更快,并且保证高准确度;&bull 流动性好容易加不准,流动性差粉末不容易掉下来,这些都是自动化处理的挑战,但面对各类量程目标加样,ChemPlus&trade 都可以快速准确的称量分装碳酸钾、乳糖这些流动性各异的样品;&bull 96 孔板孔径小、易交叉污染,静电粉末加粉挑战难度非常大,但 ChemPlus&trade 凭借除静电装置和独特粉桶设计,高效顺利完成硬脂酸镁这种静电粉末的 96 孔板加粉操作;&bull 可以根据需要把样品分装到不同接收容器,如 2mL×24,4mL×12,8mL×12,20mLx6、96 孔板等(表中仅以 8mL×12、96 孔板为例)。ChemPlus&trade 处理不同类型粉末的性能&bull 独特粉筒设计,吸潮结块、蓬松流动性差等难处理粉末轻松应对易结块,流动性差的 HATU 容易在加粉过程中堵住出粉口;X-Phos、乳糖此类粉末蓬松,流动性差,加粉过程中容易加粉速度过慢,晶泰科技的粉筒结构经过反复迭代优化,确保固体粉末的顺利加粉。&bull 自适应加粉算法智能调节,保证流动性好、大颗粒等多类粉末准确加粉碳酸钾的流动性好,在加粉过程中的准确度需要算法精细调控,山梨醇具有较大颗粒,同样需要合适的算法保证其准确度,晶泰科技自研的控制算法将加粉过程分为多个阶段,包括了最开始的粉末适应阶段,快速加粉阶段和最后的精确控制阶段,可对不同性状的粉末进行适应,达到准确加粉。&bull 配备除静电装置,有效应对“静电飘粉”硬脂酸镁质量比较轻,在加粉过程中更是容易产生静电导致飘粉,晶泰科技的固体加样仪中配备的除静电装置,同时为了平衡加样速度与保证粉末不飘出样品瓶,粉筒出粉口的大小经过反复优化,应用在 96 孔板此类小孔径目标容器中加样同样能够避免交叉污染的风险。ChemPlus&trade 功能优势&bull 高通量:可放置多种固体原料和接收容器,全面提升效率;&bull 适用范围广:样品无需特殊处理,覆盖吸潮结块、较大颗粒、蓬松、流动性差的粉末;&bull 智能算法参数调节:自适应加粉算法,多类型粉末智能识别;&bull 压电陶瓷激振技术:多类型粉末出粉更流畅;&bull 除静电:有效降低静电效应,加样更准确;&bull 成本可控:耗材价格低廉,节省成本;&bull 占地小:整机尺寸小,桌面型;&bull 兼容性广:可兼容多种实验室常用尺寸小瓶;&bull 数据追踪:条形码或二维码样品管理,支持审计追踪;&bull 简易交互软件:可视化操作软件,易上手使用。ChemPlus&trade 是一款结构紧凑的桌面型固体加样仪,支持多种固体原料和兼容不同接收容器,无需人工值守,自动完成重复耗时的称重固体加样操作。ChemPlus&trade 自动化粉末加样技术能够处理多种粉末,覆盖吸潮结块、较大颗粒、蓬松、流动性差的粉末,自适应加粉算法,多类型粉末智能识别,无需针对特定粉末进行设置或者优化加样参数。ChemPlus&trade 可作为制药、石油化工、精细化工、材料合成、食品饮料、再生能源、生物研究等行业实验室中自动化加粉称量、分装的通用设备。产品彩页和应用报告可在晶泰科技展位“资料中心”直接下载。(点击该行文字可直接跳转)
  • 涂料人的年终盛会 | TQC Sheen火热亮相China Coat 2020
    一年一度的涂料盛会China Coat在2020年末如期召开。疫情后的首/个涂料盛会,迎难而上,热力不减,甚至比预期中更为热情高涨。12月的暖城广州,被这抹热力十足的火红所振奋,当然其中,少不了工业物理的身影。此次China Coat涂料盛会,工业物理旗下涂装检测领导品牌,荷兰TQC Sheen以品牌名义独立参展。热情大气的展台背景、陈列摆放的样机设备、广泛全面的检测方案、现场交互的设备体验......诚意十足,干货满满,更是吸引了诸多“涂料人”驻足参观交流。展会现场,工业物理带您一探究竟——火热现场大探班TQC Sheen位于3.1展馆,B15展台。18㎡的展台虽不甚豪华,却五脏俱全。精心搭建的展台背景、陈列满满的展示设备、精湛强大的技术支持,都是我们信心与技术的展示。此次China Coat盛会,工业物理携十余台样机设备盛装出席,明星产品包括杯突试验仪、摆杆硬度计、比色光箱、自动涂布机等。此外,我们有全面且先进的油漆、涂层及表面分析解决方案,帮助“涂料人”更好地了解设备,更精/准地完成涂料检测——除TQC Sheen外,此次展会,工业物理旗下盐雾试验箱品牌C&W也开设独立展台,位于3.1展馆,G12展台。豪华的盐雾试验箱样机,期待您的参观——热门展品大起底未能亲临盛会也无妨,工业物理带屏幕前的您,共同起底热门展品,看看适合“涂料人”的各种检测设备及解决方案——实验室涂层检测TQC Sheen提供专业的实验室检测设备,用于油漆、涂料的研究与控制。其中,新一代杯突试验仪可谓是明星产品。 TQC Sheen 杯突测试仪用于测试、评估钢板上色漆、清漆等涂层在特定条件下的抗开裂及抗剥离的能力。杯突试验仪整合了一套LED观测系统,使测试结果观测更容易,并确保了各种高光、哑光、色彩丰富等类型的表面结果都被最/大限度地观测到。工业表面涂层检测TQC Sheen提供精密的工业表面涂层测试设备,用于粉末涂层、表面处理应用的质量控制。明星产品包括光泽度仪、炉温跟踪仪、比色光箱等。其中,粉末涂层测厚仪即是“非接触,无破坏性”测量仪器的代表之一。TQC Sheen粉末涂层测厚仪利用光热法对薄膜厚度进行非接触、无破坏性测量。设备轻巧稳健,可快速精/准地测量在金属和MDF底材上粉末涂层在固化前后的厚度。测量系统由传感器和显示器组成,通过一条电缆连接。保护涂层试验TQC Sheen提供广泛的保护涂层试验设备,用于喷漆、喷涂过程中的质量保证与控制。设备应用广泛,可海洋船舶、汽车制造、航空航天等行业。我们为诸多表面测试提供了集成性的测试套件。其中,TQC Sheen表面盐分测试套件包含测试所需的所有必要的器材,用于评估喷涂前喷砂清洁处理过的表面上可溶性盐分的水平。独特的直接采样程序(DSP)可确保测试的高效率和高精度,测试结果准确性可比其他可选测试套装高出60余倍。盐雾腐蚀试验工业物理旗下品牌C&W,是全球领/先的腐蚀试验箱开发和制造企业,提供受控环境以模拟和测试样品在自然风化条件下的性能。C&W盐雾腐蚀试验箱配备精密有机玻璃喷雾器,可确保腔内精确集雾。设备通过改变速度、使用重型蠕动泵和流量计精确控制盐溶液流量,从而确保精确的集雾率,消除雾化器堵塞。盐雾腐蚀试验箱应用广泛,包括汽车制造、油漆、表面处理、涂料、化学、电子、航空航天、军事和海洋工业等。涂料盛会仍在进行中涂料人,涂料魂,涂料盛会在羊城!一年一度的China Coat仍在火热进行中,工业物理仍在3.1B15展位,期待您的到场沟通交流,与我们一起,助力涂料行业的发展与未来!展位名:TQC Sheen B.V展位号:3.1展馆,6号展区,3.1B15
  • 用动态粉末测试方法优化湿法造粒工艺
    湿法造粒是口服固体制剂生产经常采用的加工工艺,目标是将通常细而粘的活性成分和辅料加工成更均匀、自由流动的颗粒,方便下游加工。 具有理想特性的颗粒可以有效改善加工性能,包括提高生产量,赋予片剂所需的关键属性等。但是,这意味着湿法造粒制成的粒子通常只是半成品,而非最终产品,从而产生了一个问题,即:如何控制造粒工艺,获得最终能生产出良好片剂的粒子?在第一种情况下,有必要确定潮湿颗粒可测定的参数,以便用来量化粒子属性的差异。 本文描述了全球粉末表征技术领先企业富瑞曼科技和制药加工解决方案主要供应商GEA Group(基伊埃集团)公司双方进行的联合实验研究。本实验采用了基伊埃的ConsiGma? 1连续高剪切湿法造粒及干燥系统,用于造粒,并运用富瑞曼科技的FT4粉末流变仪?进行动态粉体测试。所获得的结果显示了如何根据动态测定潮湿颗粒的结果,来预测成品片剂的属性。研究结果突出表明,动态粉体测试作为一种有价值的工具,可用于加速优化湿法造粒工艺、改善对加工的认识和控制,并对连续加工方法的开发提供支持。湿法造粒的目的和挑战 湿法造粒通常用来改善压片混合工艺的特性,使得粒子在压片过程中拥有优化的加工属性,赋予片剂所需的优点。目的是形成均匀的颗粒,提高压片产量,并使片剂拥有所需的关键品质属性,如重量、硬度以及崩解性能等。 在湿法造粒时,配混料的活性成分、辅料组份和水混合在一起,形成均匀的颗粒。然后,这些均聚体或者粒子得到干燥、研磨、润滑等进一步加工,形成压片机所需的理想喂入材料。这些喂入材料的特性可以通过调节各种加工参数,包括水的含量、粉末喂入速度、螺杆速度等有可能产生影响的造粒等环节来进行控制。通过调节一个或者更多的变量,调节粒子属性,确保粒子在压片机中处于理想的性能状态。 但是,要生产出具有规定属性的粒子,需要认识这些关键的加工参数会对粒子产生何种影响,同时还必须认识粒子属性和最终片剂之间的关系。通过以下实验,可以看出动态粉末测试将如何帮助实现这些目标。动态粉末测试概述 动态粉末测试是对运动中的粉体而非静态粉体进行测量, 并直接测定了松体的流动特性,这有助于在非常接近真实加工环境的状态下对粉体进行表征。可以测得经混合、处于低应力状态、充气甚至呈流体状态下粉体样本的动态特性,以精确模拟加工环境,获得给定工艺条件下直接相关的数据。 当刀片沿着规定路径旋转通过粉体样本时,测量作用于刀片上的扭矩及力,以衡量动态粉末特性。当刀片向下穿过样本时,测得基本流动能(BFE)。它反映了粉体穿过挤出机或喂料机时,在受力状态下的流动特性。比能(SE)测量的则是刀片向上运动时粉体的特性,直接反映了低压环境下,如粉体在重力状态下自由流经模具时的行为特征。加工参数对湿法造粒粒子特性影响的研究 富瑞曼科技和基伊埃集团进行了一项研究,用以确定湿法造粒粒子的动态流动特性是否与片剂的硬度的特性相关。通常情况下,片剂硬度对片剂质量起关键作用。试验采用了基于ConsiGma 25连续高剪切粒子和干燥原理的实验室设备ConsiGma1。 这套系统包含具有专利的连续高剪切造粒及干燥机,可以加工几十克至五公斤、甚至更多的样本。 在该系统上进行的研究有利于促进高效的产品和工艺开发,系统停留时间少于30秒。用ConsiGma1生产的潮湿、干燥的粒子由FT4粉体流变仪进行了表征。 实验项目的第一阶段,对不同造粒条件,如不同含水率、粉体喂入速度和造粒机螺杆速度等状态下的粒子属性进行了评估测试,测试的是基于乙酰氨基酚(APAP)及磷酸氢钙(磷酸二钙)这两种粉体配方的模型。系统地改变了加工参数,并测量了所得到的潮湿粒子的BFE。图2显示的是以不同螺杆速率生产出来的APAP配方粒子的BFE随含水量变化的关系。 收集到的APAP配方数据显示,如果螺杆速度保持不变,则随着含水量增加,BFE也升高。当含水率相同时,低螺杆速度同时会产生高BFE的粒子。两种趋势都会出现,因为高含水量、低螺杆速度,造成喂料多,可能生产出更大、密度更高、粘结性更强、对刀片运动阻力相对更高的粒子。数据同样显示,当含水率为11%、 螺杆速度为600rpm时,所生产的粒子的BFE与采用螺杆速度为450rpm、含水率为8%的粒子的BFE相当。这项发现非常重要,因为它表示,具有相似特性的粒子可以采用不同加工条件获得。 图3显示,含水量和螺杆速度分别保持15%和 600rpm不变,当干燥粉末喂入造粒机的速度降低时,DCP配方制成的粒子的BFE显著增加。 其它数据表明,可以通过降低喂入速率,以更低的含水率得到相同BFE的粒子。如,含水15%、螺杆速度约为 18kg/小时的粒子的特性与含水25%、喂入速度为25kg/小时的粒子相近。结合APAP配混料的研究,结果显示,可以通过加工条件的不同组合来得到具有相同特性的特定粉体。 表1列出了,生产具有不同属性的两组粒子所采用的不同工艺参数。条件1和条件2获得的潮湿颗粒的BFE值约为2200mJ,而条件3和条件4获得的BFE值约为3200mJ。 在下列加工工艺,包括干燥、研磨、润滑等阶段的每一步都测量了粒子的BFE,以改善加工性能。本研究中所采用的流动助剂是硬脂酸镁。在所有这些阶段,不同组的相对BFE值保持不变,第3、4组的BFE值一直高于1、2。 图4模拟了加工过程每一阶段的粒子流动特性。条件3和4显示,干燥后的BFE值有所上升,因为,与条件1和2状态下的粒子相比,条件3和4状态下的粒子相对尺寸大、密度高、机械强度高。 研磨后,尽管粒子密度、形状和韧度差异依然存在,但尺寸更为接近。这也使得BFE的观察结果显得有理可据。这些差别在润滑后保持不变,状态1、2和3、4之间的差别明显。 这些结果清楚表明,可以在各种不同的加工条件下,加工出用BFE衡量的、具有特定流动特性的粒子。这些测试显示,BFE值可用于湿法造粒加工产品和工艺的开发, 但同时也会产生问题,即BFE值是否可以进一步用以预测压片机内的粒子行为,以及,更重要的是,BFE是否可以与片剂关键品质属性直接相关。在粒子动态特性与片剂质量之间建立相关性 采用相同的工艺参数,在压片机中对四批潮湿粒子进行了干燥、研磨、润滑。然后测量了片剂的硬度。图5 为片剂硬度与不同阶段粒子流动性的关系。 结果显示,BFE和片剂的硬度与湿态和干燥的粒子有关,而且与它们的变化极其有关。与潮湿粒子和润滑粒子有关是比较容易理解的。尽管两者的相关性不如它与干燥、研磨过的粒子来得明显。所观察到的润滑过的粒子之间差异性和相关性差应归因于硬脂酸镁的整体影响。 这个数据综合反映了粒子在不同加工阶段的流动性(用BFE进行表征)与最终粒子关键质量属性(此处指硬度)之间存在的直接关系。这意味着,一旦特定的BFE与更理想的片剂硬度相关,就可用于推动对湿法造粒工艺进行的优化。结果表明,假如潮湿粒子能够获得目标BFE,最终以硬度衡量的片剂质量就可得到保障。这为提高产品和工艺开发效率,并且,不管是分批还是连续造粒工艺,都能获得更好的工艺控制路径,创造了机会。面向未来今天,采用传统的批次加工方法依然占支配地位,但业内很多人预期,未来大量的产品会采用连续加工。本文中,富瑞曼科技和基伊埃集团共同为将这一理想变成现实向前迈进了一大步。文章揭示了通过采用不同的工艺条件,有望获得特定的片剂属性,并且指出,动态粉末特性如流动性与最终产品的特性直接相关。 本文最初于2014年3月刊登于《医药制造》杂志。结束 图 图1:FT4粉末流变仪?的基本工作原理。测量刀片(或叶片)在穿过样本时遭遇的阻力,量化所测量粒子或粉末松体的流动特性。图2:为APAP配方制备的粒子的BEF随着含水量的增加以及螺杆速度的下降而增加。图3:为DCP配方制备的粒子的BFE随着喂入速率的下降而显著上升。图4:在造粒的不同阶段BFE变化明显,但不同组的粒子之间会存在明显差异。Figure 5: A strong correlation is found between the BFE of the granules and final tablet hardness图5:粒子BFE和最终片剂硬度之间存在很强的关联度Table 1: Four different processing conditions used to make two distinct groups of granules表1:两组明显不同的粒子采用的4种不同加工条件
  • 百特携新品仪器参加2016粉末涂料与涂装行业展览会,现场人气爆表!
    2016年10月15日,在美丽的海滨城市厦门,百特携两款热卖机型:智能化湿法激光粒度仪BT-9300ST和干法激光粒度仪BT-2001,亮相2016粉末涂料与涂装行业展览会。在展会上,新老客户共同体验了百特激光粒度仪精准的测量结果和便捷的测量流程,现场人气爆棚! 2016精品大荟萃:粒度测试风向标 在本届展会上,百特BT-9300ST成为大亮点。 BT-9300ST是一款一体化智能型湿法激光粒度仪。它应用了百特首创的双镜头技术,测试范围可达到0.1-1000微米,准确性误差和重复性误差均小于1%。BT-9300ST的全自动的操作流程实现了自动对中、自动进水、自动测试和自动清洗。只需一键操作,即可得到准确测量结果。这些突破性的技术将给客户带来精准的测量结果和便捷的使用体验。 在本届展会中,现场测试环节成为展会的热点之一。百特干法测试仪BT-2001专门针对无法用液体溶剂分散的样品,提供0.1-1000微米的大量程干法测量,准确性误差和重复性误差均小于1%。自动进料、自动分散、自动测试和自动回收流程,为客户提供准确的测量结果的同时,避免了粉尘污染。 在展会上,百特BT-2001除了为老用户进行免费的样品测试,也为慕名而来的新客户进行样品测试和操作培训。便捷的测试流程和一致的测量结果赢得了参观者的交口称赞。 本届展会,百特仪器重点围绕涂料和涂装行业的粉体颗粒分布数据、样品分析检测技术、产品质量和稳定性控制等应用主题,力求为涂料和涂装行业用户提供一站式解决方案。 除此之外,百特更有幸与来自涂料、化工、研磨等行业的大腕领袖及知名企业代表畅谈,从不同角度分享粒度测试的先进技术、发展趋势、市场需求等。 百特一路走来,都受到业界的广泛关注与大力支持!在此,我们要衷心感谢各位朋友的支持和关注,希望这精彩纷呈的48小时给每一位参会者都带来收获的喜悦!
  • 全自动涂层测厚仪|涂魔师非接触无损测厚仪FLEX新功能介绍网络研讨会
    涂魔师全自动涂层测厚仪是一款非接触无损涂层测厚的仪器,采用先进的光热红外法(ATO)对涂层进行非接触测量,实时得出涂层厚度。在工艺早期在线测量涂层厚度是记录和监控涂装工艺的关键,不仅能起到节省涂装材料成本、提高产品质量,而且能减少滞后时间和降低废品率的作用。环境条件的变化容易影响涂装工艺,因此在工业环境中使用操作简易的测厚仪是至关重要的。涂魔师全自动涂层测厚仪FLEX采用的是非接触无损测厚专利技术,而不是基于磁感应或超声波原理。因此它能精准测量湿漆、固化前的粉末涂料来得出干膜厚度和直接测量固化后的涂层厚度,适合各种涂料类型和颜色(包括白色)。与电磁感应测厚设备相比,涂魔师能精准测量金属、木材、塑料和橡胶等基材上的涂层厚度。与其他光热法、基于激光和超声波原理的设备不同的是,它具有安全可靠、使用方便、精度高和重复性好、校准简便并无需严格控制测试距离和角度等优势。使用涂魔师全自动涂层测厚仪FLEX有以下的优势:①节省10%-30%的涂料②减少测量湿膜涂层厚度的时间③操作简单,方便新员工学习④可以在生产线早期进行涂层厚度测量,降低成本和返工率⑤绿色环保⑥帮助企业建立工业4.0的标准⑦支持与企业ERP直连,数据实时传输2021年9月22号网络研讨会将由联合首席官Andor Bariska介绍涂魔师全自动涂层测厚仪FLEX的详细产品信息和新功能,帮助企业优化喷涂工艺。马上发邮件到marketing@hjunkle.com申请网络研讨会视频和资料,邮件主题【9月22号涂魔师研讨会】我们将在研讨会结束后给您发送资料和视频。涂魔师全自动涂层测厚仪FLEX工作原理ATO光热红外法介绍涂魔师全自动涂层测厚系统使用光热红外法ATO原理,通过计算机控制光源以脉冲方式加热待测涂层,其中内置的高速红外探测器从远处记录涂层表面温度分布并生成温度衰减曲线。表面温度的衰减时间取决于涂层厚度及其导热性能。最后利用专门研发的算法分析表面动态温度曲线计算测量待测的涂层厚度。涂魔师全自动涂层测厚仪FLEX是一款功能齐全的高精准的非接触式无损测厚系统,无需进行整合,操作方便,校准简单,无需严格控制测试距离和角度,无需等到涂层固化后才进行涂层厚度测量,能有效节省材料和避免涂层缺陷问题,十分适用于生产车间现场,且自动记录数据及生产全过程。翁开尔是涂魔师中国总代理,欢迎致电咨询关于涂魔师全自动涂层测厚仪更多产品信息、技术应用和客户案例。
  • 大昌华嘉将于北京举办粉末流动性应用研讨会
    大昌华嘉公司将于于2012年5月10日在北京化工大学生命科学与技术学院举办的&ldquo 粉末流动性应用研讨会&rdquo 。(地址:科技大楼302会议室)我们知道,能够预测粉末在特定生产过程中的表现对研究人员来说是很重要的。由于粉末自身的复杂性,粉末的定性方法一直以来都依赖于人工经验或者主管评估,粉末流动性质如果不能与生产过程条件相匹配就会导致低质量的产品甚至是生产线的停顿,因而,对流动性质进行准确评估和测试则逾显重要。Freeman Technology设计的FT4多功能粉末流动性测试仪,可以明确的测量不同堆积状态和不同加工应力环境下的粉末剪切性质,整体性质和粉末动力学性质。由于FT4实现了对粉末的行为的完整洞察,这就使得确定影响粉末加工表现的关键参数成为可能。 附: 大昌华嘉商业(中国)有限公司科学仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器,在中国的石油,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。 Freeman Technology专精于粉末及其流动特性的先进表征与分析技术,其多功能粉末流动性测试仪的核心源自于它独创的专利技术。该企业具备ISO 9001:2008认证,并于2007年4月获得英国企业女王奖。FT4多功能粉末流动性测试仪已经广泛的应用在制药、化学、食品、化妆品、墨粉、塑料、陶瓷、金属、粉末涂料等工业领域。大昌华嘉一直致力于高端、专业的科学仪器的市场拓展,我们为粉体及材料表征的研究提供了全面的解决方案,包括:英国Freeman Technology的多功能粉末流动性测试仪(FT4)美国麦奇克(Microtrac)的激光粒度分析仪(纳米,微米,Zeta电位),粒度粒形分析仪日本拜尔(BEL)的比表面孔隙分析仪,蒸汽吸附仪,高压吸附仪, 多组分竞争吸附德国克吕士(KRUSS)的接触角,表面张力分析仪英国Copley的振实密度计,松密度计大昌华嘉商业(中国)有限公司市场部2012-4-5 会议日程:08:45 &ndash 09:00报到 09:00 &ndash 09:15大昌华嘉商业(中国)有限公司 致辞樊润 产品经理09:15 &ndash 10:45粉末流动性质及行为特点Tim Freeman, Managing Director,Dr. Fu XiaoWei, Freeman Technology英-中同步翻译10:45 &ndash 10:55茶歇 10:55 &ndash 12:00粉末流动性质的具体应用,Dr. Fu XiaoWei, Materials Scientist12:00 &ndash 13:30午餐 (西边) 13:30 &ndash 15:00仪器展示和样品测试(用户可以带样品)Dr. Fu 回 执 姓 名 单 位 通讯地址 电 话 手 机 邮 编 E-mail 拟与会人数及姓名 特别需要解决的问题 现有的仪器(或新的需求) 联系人:张媛 樊润 王卫华电话:010-65613988-129,13901255059,13810747749 ;传真:010-65610278电子邮箱:helen.zhang@dksh.com, rain.fan@dksh.com,eric.wang@dksh.com
  • 大昌华嘉成功举办粉末流动性应用研讨会
    大昌华嘉商业(中国)有限公司于近期在上海、北京两地成功举办了&ldquo 粉末流动性应用研讨会&rdquo 。 来自英国Freeman Technology公司的应用专家傅晓伟博士在研讨会现场为用户讲解了粉末流动性质及行为特点和粉末流动性质的具体应用,并演示了具体的仪器操作。大昌华嘉公司仪器部销售经理严秀英女士为研讨会致辞并简要介绍了粉末颗粒度的大小及形状分析的方法。本次讲座得到了行业内众多专家的一致认可,现场讨论交流热烈。 我们知道,能够预测粉末在生产过程中的表现对研究人员来说是很重要的。由于粉末自身的复杂性,粉末的定性方法一直以来都依赖于人工经验或者主观评估。粉末流动性质如果不能与生产过程条件相匹配就会导致低质量的产品甚至是生产线的停顿,因而,对流动性质进行准确评估和测试则逾显重要。 Freeman Technology设计的FT4多功能粉末流动性测试仪,可以明确地测量不同堆积状态和不同加工应力环境下的粉末剪切性质,整体性质和粉末动力学性质。由于FT4实现了对粉末行为的完整洞察,这就使得确定影响粉末加工表现的关键参数成为可能。附: 大昌华嘉商业(中国)有限公司科学仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器,在中国的石油,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。 Freeman Technology专精于粉末及其流动特性的先进表征与分析技术,其多功能粉末流动性测试仪的核心源自于它独创的专利技术。该企业具备ISO 9001:2008认证,并于2007年4月获得英国企业女王奖。FT4多功能粉末流动性测试仪已经广泛地应用在制药、化学、食品、化妆品、墨粉、塑料、陶瓷、金属、粉末涂料等工业领域。美国麦奇克有限公司(Microtrac Inc.)是世界上最著名的激光应用技术研究和制造厂商,其先进的激光粒度分析仪已广泛应用于水泥,磨料,冶金,制药,石油,石化,陶瓷,军工等领域,并成为众多行业指定的质量检测和控制的分析仪器。
  • 大昌华嘉即将于广州举办粉末的性质及其评价研讨会
    大昌华嘉公司将于2013年3月20日在华南理工大学举办的&ldquo 粉末的性质及其评价研讨会&rdquo 。 我们知道,由于粉末自身的复杂性,能够预测粉末在生产过程中的表现对研究人员来说是很重要的。粉末的性能可以通过微观和宏观两方面来表述。微观上,我们可以通过粉末颗粒的大小,比表面的测量,以及通过图像分析的颗粒形状来控制粉末颗粒的质量;宏观上,由于粉末自身的复杂性,粉末的定性方法一直以来依赖于人工经验或者主观评估。粉末流动性质如果不能与生产过程条件相匹配就会导致低质量的产品甚至是生产线的停顿,因而,我们可以通过粉末流动测试仪对流动性质进行准确评估和测试则逾显重要。 本次讲座将通过宏观的方法介绍几种典型的不同粉末加工环境下相关的粉末流动特性如何影响其加工表现或者产品质量的案例,说明为什么应用多功能流动性测试仪测试并完整了解粉末在充气或者固结等不同应力环境下,和在静止或移动的不同状态下的性质对于粉末处理和加工至关重要;另外还将通过微观的方法即激光衍射、动态图像分析,动态光散射或其它方法测试颗粒大小,分布,zeta电位,图形,用以评价粉末的微观性质。附: 大昌华嘉商业(中国)有限公司科学仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器,在中国的石油,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。 Freeman Technology专精于粉末及其流动特性的先进表征与分析技术,其多功能粉末流动性测试仪的核心源自于它独创的专利技术。该企业具备ISO 9001:2008认证,并于2007年4月获得英国企业女王奖。FT4多功能粉末流动性测试仪已经广泛地应用在制药、化学、食品、化妆品、墨粉、塑料、陶瓷、金属、粉末涂料等工业领域。 美国麦奇克有限公司(Microtrac Inc.)是世界上最著名的激光应用技术研究和制造厂商,其先进的激光粒度分析仪已广泛应用于水泥,磨料,冶金,制药,石油,石化,陶瓷,军工等领域,并成为众多行业指定的质量检测和控制的分析仪器。会议日程: 时 间:2013年3月20日(周三)上午9点-下午17点地 点:华南理工大学 西湖苑宾馆广州市五山街华南理工大学校内西湖畔会议室:2号会议室 08:45 &ndash 09:00报到 09:00 &ndash 09:15大昌华嘉商业(中国)有限公司 致辞严秀英 销售经理, DKSH09:15 &ndash 10:15粉末流动性质及行为特点傅晓伟 博士,Freeman Technology10:15 &ndash 10:30茶歇 10:30 &ndash 12:00粉末流动性质的具体应用傅晓伟 博士,Freeman Technology12:00 &ndash 13:00午餐 13:00 &ndash 14:30粒度大小,形状及Zeta电位测量的最佳解决方案&mdash &ldquo 激光衍射,动态图像分析及动态光散射法&rdquo 严秀英 销售经理, DKSH14:30 &ndash 14:50茶歇 14:50 &ndash 16:30现场仪器操作,软件演示及现场答疑严秀英 销售经理, DKSH 回 执 姓 名 单 位 通讯地址 电 话 手 机 E-mail 邮 编 拟与会人数及姓名 特别需要解决的问题 现有的仪器(或新的需求) 联系人:老小姐电话:020-81320662电子邮箱:jessica.lao@dksh.com
  • 喷雾干燥高产率的秘密?一篇带你读懂步琦旋风分离技术
    喷雾干燥高产率的秘密1喷雾干燥喷雾干燥被广泛应用于许多领域,目的是将液体转化为粉末的固体状态。料液被分散到热气流中,并通过喷雾干燥技术转化为颗粒。再将这种粉末通过旋风或过滤系统从气相中分离出来。这种干燥技术也越来越多地应用于热敏性材料,如蛋白质、脂类、生物催化剂或传统药物的提取物。小样本量的喷雾干燥不仅用于可行性研究和进一步扩大规模,也可用于小规模生产。因此回收率是工艺评估的关键参数,特别是针对高价值的产品。2旋风技术玻璃制成的旋风分离器已经在工业上广泛应用了一个多世纪。其主要优点是结构简单,且没有活动部件。分离主要是基于气流中颗粒的惯性沉积。在逆流旋流器中,气体通过切向引入使其旋转。这产生的离心力比重力大上百倍甚至到上千倍。颗粒向壁面和旋风器底部移动,而气体向上螺旋到旋风器顶部的气体出口(图1)。旋风分离是一个重要的工业过程,有许多旨在了解和改进其操作的研究,即使从被公认的模型来看,对旋风分离器中复杂的流体动力学行为还未完全理解。旋风分离器研究的目的是在分离速率(更好的产品回收率或更清洁的废气)、压降(更少的压缩机性能要求)和设计(更少的投资成本)之间找到最佳选择。▲ 图1. 逆流旋风分离器示意图3喷雾干燥机的旋风设计对于实验室规模的喷雾干燥机,回收率是非常重要的,已经有几位作者进行了研究,其中 Maa 等人[1998]是最相关的,他们研究了带有标准旋风的 BUCHI 迷你喷雾干燥机 B-190。结果表明,粒径小于 2μm 的颗粒的分离存在极限。这可能导致产品损失进入过滤器。此外,在某些应用中,例如药物输送或纳米技术,平均粒径应小于 2μm,这使得标准玻璃旋风分离器不适合。设计优化 BUCHI 提供了一个台式喷雾干燥机与玻璃旋风分离器结合的导电层,以防止微粒静电结合,从而减少产品损失。而对于作为制药应用中典型基质物质的乳糖,分离性能的差异是明显的(图2)。▲ 图2. 左:无涂层旋风分离器,壁面上的产品损失多;右:有涂层旋风分离器,产品损失少表1 比较了相同干燥条件下的产量。与惯性相比,颗粒直径越小,表面引力越大。因此,内部旋风壁和颗粒之间发生了粘合力,这也导致了自然堆积结构,就像沙漠中的沙丘一样。材料10%乳糖溶液仪器BÜ CHI Mini Spray Dryer B-290干燥参数入口温度165℃出口温度83℃抽气机效率100%进料效率30%回收率无静电涂层的旋风分离器28%有静电涂层的旋风分离器76%表1. 喷涂参数和最终产量:未涂覆和涂覆旋风的比较临近筛孔颗粒,即分离的临界理论颗粒直径,与旋风分离器的直径直接相关,较小的旋风分离器直径使得较小颗粒的分离效果更好。Stairmand[1951]推荐了一种高效旋风分离器的标准设计。基于这些一般的比例和玻璃吹风机的性能,一种新的旋风被开发和优化。此外,产品收集容器的尺寸也缩小了,便于少量处理样品 (图3)。▲ 图3. 小型产品收集容器和玻璃弯头的高效旋风分离器示意图(兼容的所有BUCHI迷你喷雾干燥机型号)4分离性能的测定喷雾干燥过程的分离性能主要是通过测量所收集粉体的质量,并与初始重量的比值来确定的。这仅仅反映了整个过程,并没有量化旋风本身的分离能力。因此,没有在旋风中分离的粉末是通过深床聚酯纤维过滤器来测量的。将高效旋风分离器与标准旋风分离器进行了比较,它们都涂有静电涂层。将不同浓度的盐溶液进行喷雾干燥,得到不同的粒度分布,用激光衍射分析仪测量。当浓度为 1% ~ 20% (w/w)时,平均直径变化在 3.2 ~ 5.7 μm 之间。盐溶液在小型喷雾干燥机 B-290 中喷雾干燥,使用以下参数(表2)。通过小型旋风的压降较高,因此加热干燥空气的吞吐量较低,产生了较低的出口温度。150ml溶液干燥后,用 500ml 蒸馏水清洗过滤器。然后可以用凯氏定氮法对洗涤液进行分析。从氮分析中计算铵盐的量,然后可以确定分离效果,结果如 图4 所示。物料的不同性能对分离性能也会产生影响,因此,分离效果很难预测。在苏黎世联邦理工学院(ETHZ)的一项研究项目中,表明聚乳酸-co-葡萄糖酸(PLGA)的产率可以从 50.6% 提高到 62.0%,这是批量大小仅为 150 毫克和 1500 毫克的样品,这表明了使用小型高效旋风在迷你喷雾干燥机中喷雾干燥极少量产品的可能性。材料1%、5%和20%硫酸铵溶液仪器BÜ CHI Mini Spray Dryer B-290干燥参数入口温度160℃出口温度85℃(标准旋风分离器)出口温度72℃(高效旋风分离器)抽气机效率100%进料效率35%表2. 决定旋风分离器分离速率的干燥参数▲ 图4.两种旋风分离器对喷雾干燥铵盐的分离率的影响5结论本文介绍了一种新型的高效旋风分离器,它比标准旋风分离器具有更高的分离效率,特别适用于小颗粒和高价值产品的分离。当然,BUCHI 喷雾干燥仪可以处理极小批量的高价值产品。6参考文献Maa, Y.F., Nguyen, P.A., Sit, K., Hsu, C.C. [1998] Spray-Drying Performance of a Bench-Top Spray Dryer for Protein Aerosol Powder Preparation, Biotechnol. Bioeng., 60,3, 301-309Sowter, J.K. [1986] Cyclones in industrial processes, Van Tongeren Intl. Ltd. Stairmand, C.J. [1951] The design and performance of cyclone separators, Trans. Instn Chem. Engrs, 29, 356-383
  • 大昌华嘉即将在南京举办粉末的性质及其评价研讨会
    大昌华嘉公司仪器部将于2012年12月6日在南京工业大学举办&ldquo 粉末的性质及其评价研讨会&rdquo 。诚邀各位老师专家莅临参加。 我们知道,由于粉末自身的复杂性,能够预测粉末在生产过程中的表现对研究人员来说是很重要的。粉末的性能可以通过微观和宏观两方面来表述。微观上,我们可以通过粉末颗粒的大小,比表面的测量,以及通过图像分析的颗粒形状来控制粉末颗粒的质量;宏观上,由于粉末自身的复杂性,粉末的定性方法一直以来依赖于人工经验或者主观评估。粉末流动性质如果不能与生产过程条件相匹配就会导致低质量的产品甚至是生产线的停顿,因而,我们可以通过粉末流动测试仪对流动性质进行准确评估和测试则逾显重要。 附: 大昌华嘉商业(中国)有限公司科学仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器,在中国的石油,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。 Freeman Technology专精于粉末及其流动特性的先进表征与分析技术,其多功能粉末流动性测试仪的核心源自于它独创的专利技术。该企业具备ISO 9001:2008认证,并于2007年4月获得英国企业女王奖。FT4多功能粉末流动性测试仪已经广泛地应用在制药、化学、食品、化妆品、墨粉、塑料、陶瓷、金属、粉末涂料等工业领域。美国麦奇克有限公司(Microtrac Inc.)是世界上最著名的激光应用技术研究和制造厂商,其先进的激光粒度分析仪已广泛应用于水泥,磨料,冶金,制药,石油,石化,陶瓷,军工等领域,并成为众多行业指定的质量检测和控制的分析仪器。 大昌华嘉商业(中国)有限公司市场部2012-11-12会议日程: 时 间:2012年12月6日(周四)上午9点-下午17点地 点:南京工业大学(江苏省南京市新模范马路5号 创新科技大楼A座506室,地铁1号线新模范马路站)会议室:5楼会议室 08:45 &ndash 09:00报到 09:00 &ndash 09:15大昌华嘉商业(中国)有限公司 致辞姜丹, DKSH09:15 &ndash 10:15粉末流动性质及行为特点傅晓伟 博士,Freeman Technology10:15 &ndash 10:30茶歇 10:30 &ndash 12:00粉末流动性质的具体应用傅晓伟 博士,Freeman Technology12:00 &ndash 13:00午餐 13:00 &ndash 14:00"One Stop Shop" ~颗粒分析的特性~严秀英 销售经理, DKSH14:00 &ndash 15:00粒度大小及Zeta电位测量的最佳解决方案&mdash &ldquo 激光衍射及动态光散射法&rdquo Philip E. Plantz, PhD, Microtrac15:00 &ndash 16:00颗粒大小与形状测量-- "图像技术" ~2D & 3D~Terje Jø rgensen, Microtrac16:00 &ndash 17:00现场仪器操作,软件演示及现场答疑严秀英 销售经理, DKSH 回 执 姓 名 单 位 通讯地址 电 话 手 机 E-mail 邮 编 拟与会人数及姓名 特别需要解决的问题 现有的仪器(或新的需求) 联系人:姜小姐电话:4008210778 ;传真:021-33678466电子邮箱:ins.cn@dksh.com
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制