当前位置: 仪器信息网 > 行业主题 > >

离心分配色谱

仪器信息网离心分配色谱专题为您提供2024年最新离心分配色谱价格报价、厂家品牌的相关信息, 包括离心分配色谱参数、型号等,不管是国产,还是进口品牌的离心分配色谱您都可以在这里找到。 除此之外,仪器信息网还免费为您整合离心分配色谱相关的耗材配件、试剂标物,还有离心分配色谱相关的最新资讯、资料,以及离心分配色谱相关的解决方案。

离心分配色谱相关的论坛

  • 【求助】吸附色说与分配色谱区别???

    哪位高手能用简单的语句(或举例)形象的说一下分配色谱与吸附色谱的区别呢只是知道正相HPLC与反相HPLC分别属于分配与吸附,怎么理解???还有,小弟在做HPLC时,处理极性很强物质的分离时,不知道如何选择柱子,用反相柱吧,保留时间太短,用正相柱吧,流动相又不好溶解样品感谢上天又给我一次机会可以向你们请教

  • 【原创大赛】高效液相色谱——液液分配色谱之:极极如意令

    【原创大赛】高效液相色谱——液液分配色谱之:极极如意令

    液液分配色谱篇——包治百变的“HPLC咒”:极极如意令 此“咒”一出必峰回路转一、关于高效液相色谱的主要类型及选择 以液体作流动相的色谱称液相色谱。广义范围内,除柱色谱外,薄层色谱(液固色谱)和纸色谱(液液色谱)也属于液相色谱。该篇只讨论狭义的液相色谱,即柱色谱。柱色谱法按分离机理分类可分为液固吸附色谱、液液分配分色谱、键合相色谱、凝胶相色谱、离子色谱等。其中,离子色谱法的分析对象是离子性化合物。 本篇只论行业目前广泛使用的高效液相色谱:液液分配色谱。二、关于高效液相色谱的核心与保护 在高效液相色谱分析中,除了固定相(色谱柱填料)对样品的分离起主要作用外,合适的流动相(也称为做洗脱液)对改善分离效果也会产生重要的辅助效应。 从实用角度考虑,选用作为流动相的溶剂除具有价廉、易购的特点外,还应满足高效液相色谱分析的下述要求: 1. 选用的溶剂应当与固定相互不相溶,并能保持色谱柱的稳定性; 2. 选用有溶剂应有高纯度,以防甩含微量杂质在柱中积累,引起柱效性能的改变; 3. 选用的溶剂性能应与所使用的检测器相匹配,如使用UV检测器,就不能选用在检测波长下有UV吸收的溶剂;若使用RI检测器,就不能使用梯度洗脱; 4. 选用的溶剂应对样品有足够的溶解能力,以提高测定的灵敏度; 5. 选用的溶剂应具有低的黏度和适当低的沸点。使用低黏度溶剂,可减少溶质的传质阻力,有利于提高柱效; 6. 应尽量避免使用具有显著毒性的溶剂,以保证工作人员的安全; 附:一般实验室流动相备品的极性强度可用溶剂强度参数 ξ 表示。 ξ 是指每单位面积吸附剂表面的溶剂的吸附能力, ξ 越大表明其极性也越大。如下: http://ng1.17img.cn/bbsfiles/images/2016/07/201607302250_602716_2239775_3.png三、液液分配色谱的分离原理及与正、反相的异同 分离原理:在液液分配色谱中,一个液相作为流动相,另一个液相(即固定液:填料化合物)则分散在很细的惰性载体或硅胶上作为固定相。作为固定相的液相与流动相互不相溶,它们之间有一个界面。固定液对被分离组分按照它们各自分配系数,很快地在两相间达到分配平衡。这种分配平衡的总结果导致的各组分迁移速度产生不同,或快或慢,从而达到分离的效果。很明显,分配色谱法的基本原理与液液萃取相同的一致的,都是由化学性质的差异引起的分配定律。 正、反相的异同:依据固定相和流动相的相对极性的不同,分配色谱法可分为:正相分配色谱法——固定相的极性大于流动相的极性;反相分配色谱法——固定相的极性小于流动相的极性。 在正相分配色谱法中,固定载体涂布的是极性固定液(即填料化合物),流动相是非极性溶剂。可用来分离极性较强的水溶性样品,洗脱顺序即有:非极性组分先洗脱出来,极性组分后洗脱出来。 在反相分配色谱法中,固定相载体上涂布极性较弱或非极性的固定液(即填料化合物),而用极性较强的溶剂作流动相。可用来分离油溶性样品,其洗脱顺序与正相液液色谱相反,即极性组分先被洗脱,非极性组分后被洗脱。四、正相、反相流动相的改性方法 在正相分配色谱中,使用的流动相此时以已烷、庚烷为主体,可加入﹤20%的极性改性剂,如1-氯丁烷、异丙醚、二氯甲烷、四氢呋喃、氯仿、乙酸乙酯、乙醇、乙腈等; 在反相分配色谱中,使用的流动相以水为主体,可加入一定量的改性剂,如二甲基亚砜、乙二醇、乙腈、甲醇、丙酮、对二氧六环、乙醇、四氢呋喃、异丙醇等。 注:改性的原由主要调节流动相的极性强度和改造其洗脱能力,但切勿改性过度导致造成色谱柱损伤!!!切记!切记!切记! 林林总总有诗曰: 选流动相溶剂:选溶先着稳,纯度定柱寿 选溶样品溶剂:溶器相匹配,多溶方灵敏 概括溶剂效果:毒低得安全,低黏得高效 柱子极性特征:相正而极强,相反而低极 正相分析特性:水溶选正相,强相而后现 反相分析特性:油溶必反相,强强多分离 正流动相要求:正相烷不二,极弱先出局 反流动相要求:反相与水多,改性防伤害

  • 【第三届原创大赛】浅析硅胶分配色谱在天然产物分离中的应用

    【第三届原创大赛】浅析硅胶分配色谱在天然产物分离中的应用

    维权声明:本文为yangliguo007原创作品,本作者与仪器信息网是该作品合法使用者,该作品暂不对外授权转载。其他任何网站、组织、单位或个人等将该作品在本站以外的任何媒体任何形式出现均属侵权违法行为,我们将追究法律责任。浅析硅胶分配色谱在天然产物分离中的应用背景介绍 我们通常所讲的硅胶柱色谱是指硅胶吸附色谱,其分离原理在于依据待分离化合物与硅胶表面的硅醇基的吸附力不同,从而实现化合物的分离。而硅胶柱除了依据吸附原理分离化合物外,还可以依据分配原理实现化合物的分离,即硅胶分配色谱,本人依据实践经验对硅胶分配色谱相关事宜简述如下,希望对各位朋友有所帮助。什么是硅胶分配色谱?谈到分配,就要存在两种互不相溶的溶剂系统(这有别于硅胶吸附色谱,吸附色谱所用溶剂为单一系统,可能由两相组成,但这两相肯定互溶为一个系统),极性大的溶剂系统吸附在硅胶(支持剂)上,分离过程中不移动,称为为固定相;极性小的溶剂系统作为洗脱剂,分离过程中从柱子上慢慢移动下来,称为流动相。在整个分离过程中,待分离化合物不断地在固定相和流动相之间反复分配,从而实现分离。注意:在三相系统中,我们要分清固定相与流动相,以氯仿-甲醇-水为例,流动相为水饱和的氯仿-甲醇,固定相为氯仿饱和的甲醇-水。硅胶分配色谱的应用范围?原则上讲各类化合物均可利用硅胶分配色谱实现分离,但实际工作中硅胶分配色谱用的较少,主要用于一些水溶性较大的化合物的分离,如皂苷、糖类、酚类化合物等。硅胶分配色谱常用展开系统有哪些?氯仿-甲醇-水;乙酸乙酯-乙醇-水;水饱和的正丁醇;正丁醇-乙酸乙酯-水;氯仿-甲醇-乙酸乙酯-水。硅胶分配色谱注意事项有哪些?⑴固定相与流动相必须预先相互饱和,否则,当流动相流过固定相时,会把固定相从支持剂(硅胶)上夺下来,慢慢的只剩下支持剂了,此时,已不是分配色谱了,必然导致分离的失败。⑵虽然硅胶分配色谱洗脱时使用两种或三种溶剂,但装柱时最好使用一种溶剂(为了装的均匀),所以我们应先用一种溶剂装柱,然后再将其置换成起始溶剂。⑶在洗脱过程中,要尽量使待分离化合物在两相溶剂间达到平衡,所以流动相的流速要慢一些。⑷一般来讲,生物碱或酸性物质常用缓冲溶液作为固定相。硅胶分配色谱之个人应用:硅胶分配色谱广泛用于各种皂苷的分离纯化中,如人参皂苷在用氯仿-甲醇(吸附色谱)展开时为一条直线,分不开;但采用氯仿-甲醇-水(分配色谱)展开时,效果不错,见下图:展开剂:氯仿-甲醇-水;显色剂:浓硫酸-香草醛http://ng1.17img.cn/bbsfiles/images/2010/09/201009272100_247555_1745326_3.jpghttp://ng1.17img.cn/bbsfiles/images/2010/09/201009272100_247556_1745326_3.jpg6、后记 理论上讲,部分人参皂苷可以通过硅胶分配色谱拿到纯品,但由于种种原因,后续进一步纯化工作搁置,敬请谅解。http://ng1.17img.cn/bbsfiles/images/2010/09/201009300952_248163_1745326_3.jpghttp://ng1.17img.cn/bbsfiles/images/2010/09/

  • 高效色谱仪分离方法的选择原则

    高效色谱仪分离方法的选择原则:一、根据相对分子质量选择:1、相对分子质量很低的样品采用气相色谱。2、液液分配色谱、液固吸附色谱和离子交换色谱最适合分析相对分子质量为200~2000的样品。3、相对分子质量大于2000的样品,采用凝胶色谱为最优。二、根据溶解度选择:1、溶于水并能离解的样品,采用离子交换色谱。2、溶于烃类(如苯或异辛烷等)的样品,可采用液固吸附色谱。3、溶于CCl4的样品,多采用液液分配色谱和液固吸附色谱。4、既溶于水又溶于异丙醇的样品,常用水和异丙醇的混合液作液液分配色谱的流动相,以疏水性化合物作固定相。三、根据分子结构选择:1、酸、碱化合物采用离子交换色谱。2、脂肪族和芳香族采用液液分配色谱、液固吸附色谱。3、异构体采用液固吸附色谱。4、同系物不同官能团和强氢键化合物采用液液分配色谱。

  • 【讨论】探讨一下高速逆流色谱进行样品前处理的可能

    我对农残检测样品前处理不熟悉,但是学习了之后发现,回收率,溶剂和试剂消耗,以及操作的简便性等都是非常重要的影响因素。想与各位前辈们讨论一下,高速逆流色谱仪是否能在样品的前处理中起一定作用呢?高速逆流色谱是一种无固体载体的连续高效液液分配色谱分离技术,采用多层缠绕的螺旋管柱,由柱体的高速行星式运动产生的不对称离心力场实现两相溶剂体系的高效混合、分配及充分保留,形成连续流萃取,从而实现不同溶解分配系数的溶质在两相溶剂中的分离。由于避免了固相载体,从而排除了不可逆吸附等现象,理论上能够实现分离物质的完全回收。而且样品处理量可以大大超过固相萃取。成本低,操作也简单,回收率高。我觉得样品前处理过程中有可以取代固相萃取的。向前辈们请教,这个技术有没有可能用于畜牧产品,水产品,或者蔬菜水果的样品前处理或者精制过程呢?或者哪一位老师有兴趣进行一些创新性的研究?谢谢!

  • 气相色谱知识普及——气相色谱分类

    气相色谱知识普及——气相色谱分类

    气相色谱分类GC属于柱色谱,它可以分为几类。最常见的有以下几种。1、 按色谱柱分分为填充柱GC和开管柱GC。填充柱内要填上一定的填料,是实心的,而开管柱(又称毛细管柱)是空心的,其固定相是附着在管内壁上的。http://ng1.17img.cn/bbsfiles/images/2016/06/201606160841_597076_944_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/06/201606160841_597077_944_3.png2、 按固定相状态分分为气固色谱和气液色谱。前者采用固体固定相,如多空氧化铝或高分子小球等,主要用于分离永久气体和较低分子量的有机化合物,其分离主要是基于吸附机理。后者则为液体固定相,分离主要基于分配机理。3、 按分离机理分分为分配色谱(即气液色谱)和吸附色谱(即气固色谱)。应当指出,气液色谱并不总是纯粹的分配色谱,气固色谱也不完全是吸附色谱。一个色谱过程常常是两种或多种机理的结合,只是有一种机理起主导作用而已。4、 按进样方式分分为常规色谱、顶空色谱和裂解色谱等。楼主:如若有不足之处,欢迎大家补充!!!http://simg.instrument.com.cn/bbs/images/default/em09507.gifhttp://simg.instrument.com.cn/bbs/images/default/em09507.gif

  • 什么原因会导致色谱峰拖尾?

    前沿陡峭,后沿较前沿平缓的不对称峰,称为拖尾峰。气相色谱中,常见的吸附色谱法(利用吸附剂表面对不同组分物理吸附性能的差别而使之分离的色谱法称为吸附色谱法),如果吸附等温线为非线性,当进样试样量超过一定数量时就会出现拖尾峰;分配色谱法(利用固定液对不同组分分配性能的差别而使之分离的色谱法称为分配色谱法),如果载体表面具有活性作用点,试样量超过柱负荷或进样方法不当等,都会出现拖尾峰现象。什么原因会导致色谱峰拖尾?

  • 【原创】色谱分离方法的选择

    要正确地选择色谱分离方法,首先必须尽可能多的 了解样品的有关性质,其次必须熟悉各种色谱方法的主要特点及其应用范围。选择色谱分离方法的主要根据 是样品的相对分子质量的大小,在水中和有机溶剂中的溶解度,极性和稳定程度以及化学结构等物理、化学性质。一、相对分子质量对于相对分子质量较低(一般在200以下),挥发性比较好,加热又不易分解的样品,可以选择[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法进行分析。相对分子质量在200 ~ 2000的化合物,可用液固吸附、液-液分配和离子交换色谱法。相对分子质量高于2000,则可用空间排阻色谱法。二、溶解度水溶性样品最好用离子交换色谱法和液液分配色谱法;微溶于水,但在酸或碱存在下能很好电离的化合物,也可用离子交换色谱法;油溶性样品或相对非极性的混合物,可用液-固色谱法。三、化学结构若样品中包含离子型或可离子化的化合物,或者能与离子型化合物相互作用的化合物(例如配位体及有机螯合剂),可首先考虑用离子交换色谱,但空间排阻和液液分配色谱也都能顺利地应用于离子化合物;异构体的分离可用液固色谱法;具有不同官能团的化合物、同系物可用液液分配色谱法;对于高分子聚合物,可用空间排阻色谱法。

  • 【分享】高效液相色谱法分离技术

    % F液—液分配色谱法及化学键合相色谱流动相和固定相都是液体。流动相与固定相之间应互不相溶(极性不同,避免固定液流失),有一个明显的分界面。当试样进入色谱柱,溶质在两相间进行分配。达到平衡时,服从于下式:式中,Cs—溶质在固定相中浓度;Cm--溶质在流动相中的浓度; Vs—固定相的体积;Vm—流动相的体积。LLPC与GPC有相似之处,即分离的顺序取决于K,K大的组分保留值大;但也有不同之处,GPC中,流动相对K影响不大,LLPC流动相对K影响较大。4 E5 \) p1.正相液—液分配色谱法(Normal Phase liquid Chromatography): 流动相的极性小于固定液的极性。2、反相液 — 液分配色谱法(Reverse Phase liquid Chromatography): 流动相的极性大于固定液的极性。液—液分配色谱法的缺点:%尽管流动相与固定相的极性要求完全不同,但固定液在流动相中仍有微量溶解;流动相通过色谱柱时的机械冲击力,会造成固定液流失。上世纪70年代末发展的化学键合固定相,可克服上述缺点。现在应用很广泛(70~80%)。液-液分配层析:- K/ F Y/ % [固定相为单体固定液构成。将固定液的官能团结合在薄壳或多孔型硅胶上,经酸洗、中和、干燥活化、使表面保持一定的硅羟基。这种以化学键合相为固定相的液-液层析称为化学键合相层析。另一种利用离子对原理的液-液分配层析为离子对层析。. R2 X: v( D1 o8 v4 q-

  • 高效液相色谱技术

    高效液相色谱(HPLC:High Performance Liquid Chromatography )是化学、生物化学与分子生物学、医药学、农业、环保、商检、药检、法检等学科领域与专业最为重要的分离分析技术,是分析化学家、生物化学家等用以解决他们面临的各种实际分离分析课题必不可缺少的工具。国际市场调查表明,高效液相色谱仪在分析仪器销售市场中占有最大的份额,增长速度最快。 高效液相色谱的优点是:检测的分辨率和灵敏度高,分析速度快,重复性好,定量精度高,应用范围广。适用于分析高沸点、大分子、强极性、热稳定性差的化合物。其缺点是:价格昂贵,要用各种填料柱,容量小,分析生物大分子和无机离子困难,流动相消耗大且有毒性的居多。目前的发展趋势是向生物化学和药物分析及制备型倾斜。7.1 基本原理 加样 流动相 固定相 流动相 A A B C B C B A 固定相 —— 柱内填料,流动相 —— 洗脱剂。HPLC是利用样品中的溶质在固定相和流动相之间分配系数的不同,进行连续的无数次的交换和分配而达到分离的过程。通常,按溶质(样品)在两相分离过程的物理化学性质可以作如下的分类:分配色谱:—— 分配系数亲和色谱:—— 亲和力吸附色谱:—— 吸附力离子交换色谱:—— 离子交换能力凝胶色谱(体积排阻色谱):—— 分子大小而引起的体积排阻分配色谱又可分为:

  • 【资料】高速逆流色谱

    高速逆流色谱高速逆流色谱仪(High-speed Countercurrent Chromatography,简称HSCCC),于1982年由美国国立卫生院Ito博士研制开发的一种新型的、连续高效的液液分配色谱技术.

  • 【分享】色谱方法分类----基础知识

    色谱法的基本原理利用样品混合物中各组分理、化性质的差异,各组分程度不同的分配到互不相溶的两相中。当两相相对运动时,各组分在两相中反复多次重新分配,结果使混合物得到分离。两相中,固定不动的一相称固定相;移动的一相称流动相。分类:根据流动相分—以气体作流动相—[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]——固定相为液体 气-液色谱                     固定相为固体 气-固色谱      —以液体作流动相—液相色谱——固定相为液体 液-液色谱                     固定相为固体 液-固色谱      —当流动相是在接近它的临界温度和压力下工作的液体时——超临界色谱 根据固定相的附着方式      —固定相装在圆柱管中—柱色谱      —固定相涂敷在玻璃或金属板上—薄膜色谱(平板色谱)      —液体固定相涂在纸上—纸色谱(平板色谱)根据分离机理      —分配色谱—样品组分的分配系数不同      —吸附色谱— 样品组分对固定相表面吸附力不同      —体积排阻色谱—利用固定相孔径不同,把样品组分按分子大小分开      —离子交换色谱—不同离子与固定相商相反电荷间的作用力大小不同根据极性      —流动相极性>固定相极性-反相色谱      —流动相极性<固定相极性-正相色谱  [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]只适合分析较易挥发、且化学性质稳定的有机化合物,而HPLC则适合于分析那些用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]难以分析的物质,如挥发性差、极性强、具有生物活性、热稳定性差的物质。所以,HPLC的应用范围已经远远超过[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]。  一、吸附色谱(adsorption chromatography)又叫液固色谱法:流动相是液体,固定相是固体。分离原理:固定相是固体吸附剂,吸附剂是多孔性微粒物质表面有吸附中心。样品组分与流动相竞争吸附中心。各组分的吸附能力不同,使组分在固定相中产生保留时间不同和实现分离。固定相: 固定相通常是强极性的硅胶、氧化铝、活性炭、聚乙烯、聚酰胺等固体吸附剂。活性硅胶最常用。流动相: 弱极性有机溶剂或非极性溶剂与极性溶剂的混合物,如正构烷烃(己烷、戊烷、庚烷等)、二氯甲烷/甲醇、乙酸乙酯/乙腈等。 应用: 对于极性,结构异构体分离和族分离仍是最有效的方法,如农药异构体分离、石油中烷、烯、芳烃的分离。 缺点是容易产生不对称峰和拖尾现象。二、分配色谱原理: 固定液机械的吸附在惰性载体上,样品分子依据他们在流动相和固定相间的溶解度不同,分别进入两相分配而实现分离。固定相:将一种极性或非极性固定液吸附在惰性固相载体上。如全多孔微粒硅胶吸附剂。根据极性不同分类:正相分配色谱—固定相载体上涂布的是极性固定液;                流动相是非极性溶剂;                可分立极性较强的水溶性样品;                弱极性组分先洗脱出来。         反相分配色谱—固定相载体上涂布的是非极性或弱极性固定液;                流动相是极性溶剂;                强极性组分先洗脱出来。  液-液分配色谱固定相中的固定液体往往容易溶解到流动相中去,所以重现性很差,且不能进行梯度洗脱,已经不大为人们所采用。三、键合相色谱  考虑分配色谱法中固定液的缺点,因此将各种不同的有机关能团通过化学反应共价结合到固定相惰性载体上,固定相就不会溶解到流动相中去了。键合固定相优点:○ 对极性有机溶剂有良好的化学稳定性        ○使色谱柱的柱效高、寿命长          ○实验重现性好          ○几乎适于各种类相的有机化合物的分离,尤其是k’宽范围的样品        ○可以梯度洗脱根据极性不同分类:正相键合相色谱—固定相极性>流动相极性                 固定相:二醇基、醚基、氰基、氨基等极性基团的有机分子。                  适于分离脂荣、水溶性的极性、强极性化合物          反相键合相色谱—固定相极性<流动相极性                 固定相:烷基、苯基等非极性有机分子。如最常用的ODS柱或C18柱就                     是最典型的代表,其极性很小。                 适于分离非机性、弱极性离子型样品,                 是当今液相色谱的最主要分离模式。正相HPLC(normal phase HPLC):   是由极性固定相和非极性(或弱极性)流动相所组成的HPLC体系。其代表性的固定相是改性硅胶、氰基柱等,代表性的流动相是正己烷。吸附色谱也属正相HPLC。 反相HPLC(reversed phase HPLC):   由非极性固定相和极性流动相所组成的液相色谱体系,与正相HPLC体系正好相反。其代表性的固定相是十八烷基键合硅胶(ODS柱,Octa Decyltrichloro Silane),代表性的流动相是甲醇和乙腈。四、体积排阻色谱(SEC,size exclusion chromatograghy)(又称凝胶色谱和分子筛色谱) 原理: 以多孔凝胶(如葡萄糖,琼脂糖,硅胶,聚丙烯酰胺等)作固定相,依据样品分子量大小达到分离目    的。大分子不进入凝胶孔洞,沿多孔凝胶胶粒间隙流出,先被洗脱;小分子进入大部分凝胶孔洞,    在柱中被强滞留,后被洗脱。根据样品性质分类:凝胶过滤(GFC)—用于分析水溶性样品,如多肽、蛋白、生物酶、寡聚核苷酸、多聚核                  苷酸、多糖。         凝胶渗透(GPC)—用于分析脂溶性样品,如测定高聚物的分子量。  SEC主要依据分子量大小进行分离,因此与样品、流动相间的相互作用无关。因此不采用改变流动相的组成来改善分离度。 五、离子交换色谱(ion exchange chromatography, IEC)分离原理:使用表面有离子交换基团的离子交换剂作为固定相。带负电荷的交换基团(如磺酸基和羧酸基)可以用于阳离子的分离;带正电荷的交换基团(如季胺盐)可以用于阴离子的分离。不同离子与交换基的作用力大小不同,在树脂中的保留时间长短不同,从而被相互分离。

  • 【讨论】高效液相色谱法及其在药物分析中的应用

    原创与否转帖 部分高效液相色谱法及其在药物分析中的应用 法,这种色谱法的柱效能低、分离周期长。高效液相色谱法(high performance liquid chromatography,简称HPLC)是在经典液相色谱的基础上发展起来的一种色谱方法。与经典的液相色谱法相比,高效液相色谱法具有下列主要优点:①应用了颗粒极细(一般为10µm以下)、规则均匀的固定相,传质阻抗小,柱效高,分离效率高;②采用高压输液泵输送流动相,流速快,一般试样的分析需数分钟,复杂试样分析在数十分钟内即可完成;③广泛使用了高灵敏检测器,大大提高了灵敏度。目前,已经发展了多种不同的固定相,有多种不同的分离模式,使高效液相色谱法的应用范围不断扩大。下面介绍高效液相色谱法的有关知识,新的方法和技术以及在药物分析中的应用。一、分类 高效液相色谱法按分离机理的不同可分为以下几类: (一)吸附色谱法(adsorption chromatography)以吸附剂为固定相的色谱方法称为吸附色谱法。使用最多的吸附色谱固定相是硅胶,流动相一般使用一种或多种有机溶剂的混合溶剂。在吸附色谱中,不同的组分因和固定相吸附力的不同而被分离。组分的极性越大、固定相的吸附力越强,则保留时间越长。流动相的极性越大,洗脱力越强,则组分的保留时间越短。 (二)液-液分配色谱法(liquid- liquid chromatography)液-液分配色谱的固定相和流动相是互不相溶的两种溶剂,分离时,组分溶入两相,不同的组分因分配系数(K)的不同而被分离。目前广泛使用的化学键合固定相是将固定液的官能团键合在载体上而制成的,使用化学键合固定相的色谱方法(简称键合相色谱法)可以用分配色谱的原理加以解释。键合相色谱法在HPLC中占有极其重要的地位,是应用最广的色谱法。按照固定相和流动相极性的不同,分配色谱法又可分为正相色谱法和反相色谱法两类。

  • 【原创】高速逆流色谱技术

    【原创】高速逆流色谱技术

    高速逆流色谱技术是现代分离科学领域的一个新颖的技术分支,是一种不用任何固态填料的液-液分配色谱技术,物质的分离依据其在两相中分配系数的不同而实现的,它完全排除了固态载体对样品的不可逆吸附、沾染、失活等影响,具有无耗材、分离效率高、制备量大、回收率高、重现性好等优势,被大量用于天然产物化学成分的分析和制备分离。目前已广泛应用于生物医药、天然产物、食品和化妆品等领域,尤其是在我国生物医药以及中药现代化等领域的应用俞来俞广。

  • 【实战宝典】什么原因会引起色谱峰拖尾?

    [font=宋体]发帖人:[/font]doxw0323[font=宋体]链接:[/font][url=https://bbs.instrument.com.cn/topic/961852][color=windowtext]https://bbs.instrument.com.cn/topic/961852[/color][/url][b][font=宋体]问题描述:[/font][/b][font=宋体]前沿陡峭、后沿较前沿平缓的不对称峰,称为拖尾峰。[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]中,常见的吸附色谱法[/font]([font=宋体]利用吸附剂表面对不同组分物理吸附性能的差别,而使之分离的色谱法称为吸附色谱法[/font])[font=宋体],如果吸附等温线为非线性,当进样试样量超过一定数量时就会出现拖尾峰;分配色谱法[/font]([font=宋体]利用固定液对不同组分分配性能的差别,而使之分离的色谱法称为分配色谱法[/font])[font=宋体],如果载体表面具有活性作用点,试样量超过柱负荷或进样方法不当等,都会出现拖尾峰现象。什么原因会导致色谱峰拖尾[/font]?

  • 【解惑】被 ‘色谱柱的分配系数’ 和 ‘容量因子’ 难倒了?

    [list][*]在色谱仪分析检测过程中,我们会接触到这样两个概念:分配系数和容量因子。然而有绝大部分色谱使用者对这两个概念并不十分了解,今天咱们就说一说什么是色谱柱的分配系数和容量因子?二者是什么关系?[/list][size=14px]分配系数和容量因子一定程度上展现色谱柱的柱效,了解影响色谱柱分离度的因素,有助于有效地使用和保养色谱柱,提高色谱柱分离度和色谱仪检测灵敏度。[/size][size=14px][/size][size=14px]分配系数是指在一定温度下,待测样品在两相间达到分配平衡时,在固定相与流动相中的浓度之比。分配系数与组分、流动相和固定相的温度、压力有关。在[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url]中,固定相确定后,分配系数主要受流动相的性质影响。在试验中主要靠调整流动相的组成配比及pH值,以获得组分间的分配系数差异及适宜的保留时间,达到分离的目的。[/size][size=14px][/size][size=14px]在流动相、固定相、温度和压力一定条件下,样品浓度很低时,分配系数只取决于组分的性质,而与浓度无关。在大多情况下,分配系数随着浓度的增大而减小,这时色谱峰为拖尾峰;而有时随着溶质浓度增大,分配系数也增大,这时色谱峰为前延峰。因此,只有尽可能减少进样量,使组分在柱内浓度降低,分配系数恒定时,才能获得正常峰。[/size][size=14px]在同一色谱条件下,样品中分配系数值大的组分在固定相中滞留时间长,后流出色谱柱;分配系数值小的组分则滞留时间短,先流出色谱柱。混合物中各组分的分配系数相差越大,越容易分离,因此混合物中各组分的分配系数不同是色谱分离的前提。[/size][size=14px][/size][b][size=14px]分配系数K和分配比k的关系:[/size][/b][size=14px][/size][b][size=14px]K=kβ[/size][/b][size=14px]β为相比率,是反映各种色谱柱柱形特点的又一个参数,β=Vm/Vs,Vm为流动相的体积,即死时间(t0)与流动相流速的乘积,Vs为色谱柱中固定相的体积。对填充柱其β值一般为6~35,对毛细管其β值为60~600。[/size][size=14px][/size][size=14px]容量因子是待测样品在两相间达到分配平衡时,在固定相与流动相中的量之比。因此容量因子也称质量分配系数。容量因子的物理意义:表示一个组分在固定相中停留的时间是不保留组分保留时间的倍数。分配系数为0时,化合物全部存在于流动相中,在固定相中不保留,停留的时间为0;分配系数越大,说明固定相对此组分的容量越大,出柱慢,保留时间越长。[/size][size=14px][/size][b][size=14px]分配系数K,容量因子k与保留时间之间有如下关系:[/size][/b][size=14px][/size][b][size=14px]k=t'R/t0,t'R=tR-t0[/size][/b][size=14px]上式说明容量因子的物理意义:表示一个组分在固定相中停留的时间(t'R)是不保留组分保留时间(t0)的几倍。[/size][size=14px]k=0时,化合物全部存在于流动相中,在固定相中不保留,t'R=0;k越大,说明固定相对此组分的容量越大,出柱慢,保留时间越长。[/size][size=14px][/size][size=14px]容量因子与分配系数的不同点是:k取决于组分、流动相、固定相的性质及温度,而与体积Vs、Vm无关 K除了与性质及温度有关外,还与Vs、Vm有关。由于t'R、t0较Vs、Vm易于测定,所以容量因子比分配系数应用更广泛。[/size]

  • 气相色谱的起源

    [b]1.1.1. [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]是基于液相色谱技术发展而来的。[/b]“Partition Chromatography”含义为“分配色谱”,分配色谱固定相是液体,狭义的分配是指物质在相邻两相中的溶解差异,比如利用分液漏斗提取碘的实验中,碘在水相和四氯化碳两种溶剂中的溶解度差异现象。与“吸附色谱”固定相是固体不同,分配色谱法中起固定相作用的是液体(需要以硅藻土等为载体),流动相经过时,利用液体固定相对试样中诸组分的溶解能力不同,即试样中诸组分在流动相与固定相中分配系数的差异,而实现试样中诸组分分离。顺便说明一下,现在很多文献在描述固定相时,以分配对应“液体”,吸附对应“固体”的概念已经不是很严格了。首个真正意义上色谱方法的发现者,一般认为是俄罗斯植物学家茨韦特(Mikhail Tsvet),在1901年的一次学术会议上,他汇报了用含有碳酸钙的液固吸附柱分离植物色素的方法,之后在1906年的两篇论文中,他首次将这种液固吸附分离方法定义为“chromatography”,即“色谱法”。高中化学实验中有一个叶绿素在滤纸上按照四种颜色谱带展开的实验,概念上可以总结为液体流动相在固体固定相上的一种简单的“液固分配色谱”。在此之后出现的液液分配色谱,需要把固定液(例如硅油)涂渍在一种称为担体的固体颗粒的表面上,然后再装入柱内。因此,概念上的“液体固定相”,现实中是固定液和载体的组合,表现为颗粒。以下两种色谱法中的流动相为液体,一般称为液相色谱。l Liquid-solid adsorption chromatography:液(流动相)-固(固定相)吸附色谱;l Liquid-liquid partition chromatography:液(流动相)-液(固定相)分配色谱;[align=center][img]https://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/align][b](1). Archer John Porter Martin马丁[/b]Archer John Porter Martin马丁,英国生物化学家,。马丁博士1910年3月1日生于英国伦敦。1932年获剑桥大学学士学位,1933年在剑桥营养学研究所工作时,专门从事食物营养成分的分析,并于1934年在《自然》杂志上发表《维生素E的吸收光谱》一文,1936年获博士学位。1936年任英国利兹市羊毛工业研究协会(Wool Industries Research Association,Leeds)化学师,从事毛织物的染色研究,1940年刚刚毕业的辛格加入其团队后发表重要文献,1943年辛格换工作到伦敦利斯特预防医学研究所。1943年马丁在33岁时与Judith Bagenal (1918-2006),结婚,一生育有两个儿子和三个女儿。1946-1948年,马丁是诺丁汉的布茨纯药物公司生物化学研究负责人,1948年为英国医学研究理事会成员,并在英国国立医学研究所继续进行分配色谱领域有关研究,可能在此时与攻读博士学位的詹姆斯(时年25岁)成为师徒并指导其进行[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的研究工作, 1952年(42岁)获得第52届诺贝尔化学奖(与Richard Synge分享),1959年马丁成为阿博茨伯里实验室主任。晚年患阿兹海默症(Alzheimer's Disease)享年92岁。[img]https://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img]图 1.1‑ 3 Archer John Porter Martin (1 March 1910 - 28 July 2002)https://en.wikipedia.org/wiki/Archer_Martin[b](2). Richard L.M. Synge辛格[/b]Richard L.M. Synge辛格,英国生物化学家。  1914年10月28日生于英国利物浦,1928-1933年在曼彻斯特学院学习,后转入剑桥大学,1936年获文学士学位。1941年获哲学学位。1941-1943年在英国利兹市羊毛工业研究协会(Wool Industries Research Association,Leeds)任生物化学师,期间在马丁指导下研究羊毛中挥发性脂肪酸的分离,并发表重要文献。1943-1948年在伦敦利斯特预防医学研究所工作,离开马丁团队。1948-1967年任阿伯丁罗威特研究所蛋白质化学研究室主任。1967年后任诺里奇食品研究所生物化学师。曾任英国和平大会副主席。1950年被选为英国皇家学会会员。是爱丁堡皇家学会、英国化学会、英国生物化学会、英国营养学会、法国生物化学会、美国生物化学家协会会员。1949-1955年任《生物化学杂志》编委。  辛格主要研究把物理化学方法用于蛋白质及有关物质的离析和分析。因1940-1943年间与马丁共同工作期间发表有关分配色谱(partition chromatography)理论文献,而共同获得1952年诺贝尔化学奖。辛格获奖时年仅38岁。[img]https://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img]图 1.1‑ 4 Richard L.M. Synge(1914.10.28-1994.8.18)https://www.nobelprize.org/prizes/chemistry/1952/synge/facts/[align=center] [/align][b](3). [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]奠基文献[/b][align=center] [/align]1. Martin AJ, Synge RL. Separation of the higher monoamino-acids by counter-current liquid-liquid extraction: the amino-acid composition of wool. Biochem J. 1941 35(1-2):91-121.Biochem J. 1941 Jan 35(1-2):91-121.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1265473/[align=center][img]https://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/align][align=center]图 1.1‑ 8 2018年4月, NIMR原址开始拆除[/align]https://en.wikipedia.org/wiki/National_Institute_for_Medical_Research合并后的新机构的名称为弗朗西斯克里克研究所(Francis Crick Institute)。2015年开始运营,预计2021年这家耗费6.5亿英镑(约63亿人民币)、占地9.3万平方米的研究所将全功率运行,将有1600位科学家和工作人员在这里工作,它将成为欧洲最大的单一生物医学实验室。不知道学习仪器分析的同学们有没有机会到这里学习,化学和生物学最后也是密不可分的学科啊。[align=center]图 1.1‑ 9弗朗西斯克里克研究所(Francis Crick Institute),伦敦圣潘克思区域,2015年开始运营,地下四层,地上8层。[/align][align=center] [/align]

  • Agilent液相色谱柱各类别的应用

    以下是Agilent液相色谱柱的应用范围:正相吸附色谱极性:固定相 流动相固定相- 极性流动相(己烷,庚烷)- 非极性极性物质后出峰反相分配色谱极性:固定相 流动相固定相- 非极性流动相(甲,乙醇,乙腈,THF,二氯乙烷)- 极性非极性物质后出峰

  • 液固吸附色谱与化学键合相色谱区别?

    高效液相色谱法按组分在固定相和流动相两者间分离机理不同可分为,液固吸附色谱。液液分配色谱,化学键合相色谱法。离子交换色谱法,凝胶色谱法。我疑问的是,我们平时用的ODS-C18柱是固液吸附色谱柱吗???但是好像跟化学键合相色谱也相符合。毕竟色谱柱也是以硅胶为基质键合的C18填料柱。所以我们平时用的这个C18柱是哪一种呢?

  • 气相色谱的分类及定义

    凡是以[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]作为流动相的色谱技术,通称为[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]。一般可按以下几方面分类:1、按固定相聚集态分类: (1)气固色谱:固定相是固体吸附剂,(2)气液色谱:固定相是涂在担体表面的液体。2、按过程物理化学原理分类:(1)吸附色谱:利用固体吸附表面对不同组分物理吸附性能的差异达到分离的色谱。(2)分配色谱:利用不同的组分在两相中有不同的分配系数以达到分离的色谱。(3)其它:利用离子交换原理的离子交换色谱:利用胶体的电动效应建立的电色谱;利用温度变化发展而来的热色谱等等。

  • 高效液相色谱分析样品的溶解度选择

    通常进行高效液相色谱分析是优先考虑的是样品不必进行预处理,就可经溶样来进行分析,因此样品在有机溶剂和水溶液中的相对溶解性是样品最重要的性质。由于样品在有机溶剂中溶解度的大小,初步判断样品是非极性化合物还是极性化合物,进而推断用非极性溶解剂戊烷、己烷、庚烷等,还是极性溶解剂二氯甲烷、氯仿、乙酸乙酯、甲醇、乙腈等来溶解样品,并通过实验判断。若样品溶于非极性溶剂,表明样品为非极性化合物,通常可选用吸附色谱法或正相分配色谱法、正相键合色谱法进行分析。若样品溶于极性溶剂或相混溶的极性溶剂,表明样品为极性化合物,通常可选用反相分配色谱法或更为广泛应用的反相键合相色谱法进行分析。若样品溶于水相,可首先检查水溶液的pH值,若呈中性为非离子型组分,常可用反相(或正相)键合色谱法进行分析。若pH值呈弱酸性,可采用抑制样品电离的方法,在流动相中加入硫酸、磷酸调节pH=2~3,再用反相键合相色谱法进行分析。若pH值呈弱碱性,则可向流动相中加入阳离子型反离子,再用离子对色谱法进行分析。若pH呈强酸性或强碱性,则可用离子色谱法进行分析。对呈强离子型水溶性生物大分子的分析仍是高效液相色谱的特殊难题之一,近年随凝胶过滤色谱和高效亲和色谱的迅速发展,对解决像蛋白质、核酸等生物大分子的分析提供了有效的途径。来源:互联网

  • 高效液相色谱法的分类

    按分离过程物理化学原理分类各种方法比较 方法项目吸附色谱分配色谱离子色谱体积排阻色谱亲和色谱固定相全多孔固体吸附剂固定液载带在固相基体上高效微粒离子交换剂具有不同孔径的多孔性凝胶多种不同性能的配位体键连在固定相上流动相不同极性有机溶剂不同极性有机溶剂和水不同PH值的缓冲液有机溶剂或一定PH值的缓冲液不同PH值的缓冲液,或加入改性剂分离原理吸附 解吸溶解 挥发可逆性的离子交换多孔凝胶的渗透或过滤具有锁匙结构络合物的可逆性离解平衡常数吸附系数KA分配系数KP选择性系数KS分布系数KD稳定常数KC

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制