当前位置: 仪器信息网 > 行业主题 > >

快速分离系统

仪器信息网快速分离系统专题为您提供2024年最新快速分离系统价格报价、厂家品牌的相关信息, 包括快速分离系统参数、型号等,不管是国产,还是进口品牌的快速分离系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合快速分离系统相关的耗材配件、试剂标物,还有快速分离系统相关的最新资讯、资料,以及快速分离系统相关的解决方案。

快速分离系统相关的论坛

  • 【资料】Agilent 1200系列快速高分离液相色谱系统培训文档

    Agilent 1200系列快速高分离液相色谱系统培训文档安捷伦1200系列快速高分离 LC 系统,与常规 HPLC 相比,在没有牺牲分辨率、精密度和灵敏度的前提下,分析速度提高20倍,高分辨率提高60%。安捷伦1200系列快速高分离液相系统可提供最快分析速度、最高分辨率,同时最大限度地保持系统低压力而设计的。因此,它保留了常规 HPLC 仪器和方法的耐用性和工作原理。这种独特的设计使1200 RRLC成为了一种通用的液相分析流速范围适合的柱尺寸从1 到4.6-mm ID, 10 到 300-mm 柱长,粒度1.5到 10 µ m。 [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=67227]安捷伦1200系列快速高分离系统[/url]

  • 采用气相色谱柱快速分离脂肪酸甲酯

    采用配备DB-FastFAME Intuvo [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统快速分离脂肪酸甲酯。脂肪酸甲酯 (FAME) 的分析可用于鉴定食品中的脂类组分,是食品分析中最重要的应用之一。采用本方法实现快速、良好的分离效果。对油类、脂肪和含脂食品的分析是政府实验室、质量控制 (QC) 实验室或合同研究组织 (CRO) 实验室的常见任务。测定食品中的总脂肪与反式脂肪含量时,对脂肪酸及其 FAME 衍生物的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析是脂肪表征的重要工具。在许多用于食品(如食用油)检测的法规方法中,测定脂肪酸组成时都要求使用涂覆氰丙基固定相的毛细管柱对特定的顺反脂肪酸异构体进行分离。此外,实现良好的 FAME 分离还需较长的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱(100 米)和较长的分析时间(超过 70 分钟)。然而,这种方法分析效率较低且分析成本较高。而采用氰丙基固定相的 DB-FastFAME Intuvo [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱,可实现 FAME 混合物的快速分离(包括分离一些关键顺反异构体),且能满足法规方法的要求。本文简述了采用 DB-FastFAME Intuvo [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱和[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统快速分析FAME 混标。[img]https://i5.antpedia.com/attachments/att/image/20200216/1581861033964746.png[/img]实验部分试剂与标准品FAME 36 组分混合物(部件号 5191-4276)、C4–C24 偶数碳饱和 FAME 混合物(部件号 5191-4278)和菜籽油 FAME混合物(部件号 5191-4277)均来自安捷伦科技公司。37 组分 FAME 混标(部件号 CDAA-252795-MIX-1 mL)购自上海安谱科学仪器有限公司。将 C4–C24 偶数碳饱和 FAME 混合物用己烷稀释至 500 μg/mL。菜籽油 FAME混合物为 100 mg 净混合物,用二氯甲烷稀释 20 倍。[img]https://i5.antpedia.com/attachments/att/image/20200216/1581861033868195.png[/img]仪器使用配备火焰离子化检测器 (FID) 的Intuvo 9000 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]进行分析。使用配备 5 μL 进样针(部件号 G4513-80213)和分流/不分流进样口的 Agilent 7693A 自动液体进样器进样。实验步骤将标准样品用与之相对应的方法进行进样分析,检测方法如表1-表5所示。[img]https://i5.antpedia.com/attachments/att/image/20200216/1581861033863172.png[/img]结果与讨论FAME 36 组分混标专门为模拟多种食品样品的脂肪酸组成而设计,可用于鉴定多种食品中的关键 FAME。该混标中包含 C4:0至 C24:1 范围的 FAME,包括多数重要的饱和、单不饱和及多不饱和 FAME。该混标不包含以前用作内标的一种 FAME,即二十三烷酸甲酯 (C23:0),。图 1所示为 FAME 36 组分混合物在 20 m ×0.18 mm、0.20 μm DB-FastFAME Intuvo[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱上的分离结果,图2所示为菜籽油按方法1进行分析的结果。该方法采用氦气作为载气,可在 5 分钟内实现所有化合物的分离,包括关键 AOAC 对,R s 1.5。采用这种方法获得了良好的峰形和分离度,且分析时间为 5 分钟。采用氢气作为载气,可在 4 分钟内完全分离 C4–C24 偶数碳饱和 FAME 混合物和 FAME 36 组分混合物(图 3 和图 4)。这表明使用该色谱柱可实现快速样品通量,且分离度不受影响。[img]https://i5.antpedia.com/attachments/att/image/20200216/1581861033504634.png[/img]  对于使用传统 37 组分 FAME 混标验证其FAME 方法的实验室,图 5 展示了在 Intuvo9000 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]上使用 20 m × 0.18 mm、0.20 μm DB-FastFAME 色谱柱得到的色谱图。该方法采用氦气作为载气,在 8 分钟内实现了所有化合物的完全分离。  与预期结果一样,采用氢气作为载气可加快分析速度,而分离度几乎相同。图 6所示的结果表明,采用氢气作为载气可在6.5 分钟的分析时间内实现 37 组分 FAME混标中所有化合物的完全分离。[img]https://i5.antpedia.com/attachments/att/image/20200216/1581861033301731.png[/img]结论DB-FastFAME Intuvo [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱可快速、出色地分离 FAME 混合物。实验表明,采用氦气作为载气时,DB-FastFAME Intuvo [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱可在 5 分钟内完全分离 FAME 36 组分混合物中的所有组分,包括关键 AOAC 对和关键顺反脂肪酸异构体。本实验也表明,此方法还能实现菜籽油的快速分析。采用氢气作为载气时,这种高效的 DB-FastFAME Intuvo[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱将运行时间缩短至 4 分钟以内,同时实现了所有化合物的基线分离。

  • 快速手性分离的一种用法设想

    我们想让分析周期短一些。准备用在GC-MS上。对于不关心其手性分离的物质,能不能快速过去,只有在关心的物质区域工作一下。咨询专家,我这样的想法可行不?!目的是节约分析时间。

  • 【资料】DABS衍生化氨基酸的快速简单分离

    DABS衍生化氨基酸的快速简单分离--很好的资料[color=red]【由于该附件或图片违规,已被版主删除】[/color][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=34384]DABS衍生化氨基酸的快速简单分离[/url][color=red]【由于该附件或图片违规,已被版主删除】[/color]

  • 【原创大赛】快速炼厂气分析系统的原理简介

    【原创大赛】快速炼厂气分析系统的原理简介

    [color=black]快速炼厂气分析系统的原理简介[/color][align=center][color=black]概述[/color][/align][color=black]炼厂气分析系统——三通道快速分析方案的基本工作过程图解。[/color][align=center][color=black]一 背景介绍[/color][/align][color=black]原油一次加工和二次加工的各生产装置都有气体产出,总称为炼厂气,主要来源于原油蒸馏、催化裂化、热裂化、石油焦化、加氢裂化、催化重整、加氢精制等过程。[/color][color=black]炼厂气的组成因加工条件及原料的不同,有很大差别。除了催化重整产生的气体是以氢气为主外,其他装置产气主要为碳一(甲烷CH4)至碳四(丁烷、丁烯等)的气态烃以及少量杂质等,其中以催化裂化装置总加工量大,气体产量大,气体中的烯烃也最多。因此,催化裂化气体是炼厂气加工装置的主要来源。[/color][color=black]炼厂气常分为两个部分,碳一和碳二(乙烷、乙烯)的烃类称为干气,数量较少,一般作为燃料气供加热炉烧掉,也可利用干气中的乙烯组分制作苯乙烯等;碳三(丙烷、丙烯等)和碳四的烃类,即液化石油气,是炼厂气加工的主体。[/color][color=black]使用Shimadzu公司的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]GC-2014,配备有双TCD检测器、单FID检测器和四支自动切换阀,设计某炼厂气分析系统,一次进样完成炼厂气样品中多组分(氢气、氧气、氮气、甲烷、一氧化碳、二氧化碳、碳二-碳六烃类、碳六以上总烃类)的分析工作,10min之内即可分析完成。[/color][align=center][color=black]二 结构原理[/color][/align][color=black]本系统的硬件结构原理如图1所示,系统分为三个分析通道,分别采用两个TCD检测器和一个FID检测器,两个TCD检测器选用不同种类载气以满足分析灵敏度的要求。[/color][color=black]系统配置有四支自动切换阀(三支自动十通阀、一支自动六通阀)和七根色谱柱,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]系统分析程序对四支切换阀进行精确、定时的切换,改变七根色谱柱的连接与反吹状态,实现样品的分离测定。[/color][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111230733557696_3114_1604036_3.jpg[/img][/align][align=center][color=black]图1 快速炼厂气分析系统(待机状态)[/color][/align][color=black]通道一使用TCD检测器,氢气或者氦气做为载气,测定炼厂气样品中的微量轻烃类物质(甲烷、乙烷、乙烯)、氧气、氮气、二氧化碳、一氧化碳和硫化氢等组分,采用十通阀进样反吹加六通阀色谱柱选择的方式连接。[/color][color=black]通道二使用TCD检测器,氩气做为载气,测定炼厂气样品中的微量氢气组分,采用较为基本的十通阀进样反吹方式连接。[/color][color=black]通道三使用FID检测器,测定炼厂气样品中的碳三至碳六烃类以及碳六以上烃类物质总量浓度,采用十通阀进样反吹方式连接,反吹出口直接连接至FID检测器,测定碳六以上的重烃类物质总量。[/color][align=center][color=black]三 工作流程[/color][/align][color=black]该系统的工作流程如下:[/color][color=black]通道一工作过程[/color][color=black]取样:[/color][color=black]如图1所示,此时将样品通入定量环(样品流经 sample in - loop -sample out),充分吹扫定量环,排除其中参与空气或样品。[/color][color=black]进样,样品预分离[/color][color=black]样品通入十通阀完全替换掉定量环中残余气体后,十通阀旋转36°,此时样品进样至色谱柱PC1中,此时系统状态如图2所示:[/color][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111230733562003_1441_1604036_3.jpg[/img][/align][align=center][color=black]图2 进样状态下的通道1系统结构图[/color][/align][color=black]此时样品流经Car1 - loop - PC1 - C1 - C2 - - TCD1。样品在色谱柱PC1中被预分离成两部分:保留较弱的碳二以下的烃类(包括硫化氢)和永久气体(氧气、氮气、一氧化碳、二氧化碳),和保留较强的碳三以上的烃类组分。[/color][color=black]反吹,放弃碳三以上的烃类组分[/color][color=black]当样品中的碳二和永久气体组分流出色谱柱PC1之后,系统控制十通阀再次旋转36°,系统恢复到图1的状态,色谱柱PC1内部的载气流向发生反相,该色谱柱内留存的碳三以上的重烃类物质被反吹放弃掉。[/color][color=black]此状态下,载气流向为:Car1 - PC1 - Vent1(PC1中载气方向发生反转)。[/color][color=black]色谱柱选择,滞留永久气体。[/color][color=black]色谱柱PC1中流出的碳二和永久气体组分,在色谱柱C1中继续分离以增加分离度和选择性(色谱柱PC1和色谱柱C1内部填充物为不同的有机担体类固定相)。组分在C1色谱柱中被分离成永久气体(色谱柱内表现为单峰)和二氧化碳、乙烷、乙烯、硫化氢几个部分。[/color][color=black]其中永久气体类组分作为合峰完全流入色谱柱C2之后,切换阀V2旋转60度,将永久气体物质滞留在色谱柱C2之中。[/color][color=black]色谱柱C1中的二氧化碳、乙烯、乙烷和硫化氢经过阻尼R,流出至TCD1检测器,首先出峰。系统此时状态如图3所示。[/color][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111230733564744_1119_1604036_3.jpg[/img][/align][align=center]图3 永久气体被滞留在色谱柱C2中的状态[/align][color=black]5 色谱柱选择,释放永久气体类组分。[/color][color=black]当色谱柱C1中的硫化氢出峰完毕,切换阀V3再次旋转60度,通道一结构恢复至待机状态,此时色谱柱C2中滞留的永久气体类组分流出至TCD1检测器,出峰顺序为氧气、氮气、甲烷、一氧化碳。[/color][color=black]通道二的工作过程:[/color][color=black]1 取样[/color][color=black]如图1所示,此时将样品通入定量环(样品流经 sample in - loop -sample out),充分吹扫定量环,排除其中参与空气或样品。[/color][color=black]2 进样[/color][color=black]系统启动数据采集的瞬间,十通阀V3旋转36度,此时样品被载气携带进入预分离色谱柱PC2中(样品流经 car3 - loop -PC2 - Column1 - TCD2)。[/color][color=black]样品在预分离色谱柱PC2(PC1柱内填充物为有机担体类固定相)中分离为较轻组分(氢气、氧气、氮气、一氧化碳)和较重组分(烃类、二氧化碳等物质)。[/color][color=black]其中保留较弱的永久气体类组分流入色谱柱C3(色谱柱内填充物为分子筛),氢气被色谱柱C3上与氧气、氮气等组分分离并在TCD1检测器上出峰。[/color][color=black]3 反吹[/color][color=black]当色谱柱PC2中的较轻组分完全流入色谱柱C3中,十通阀V3再次旋转36度,此时色谱柱PC2内部的载气反向流动,将保留时间较强的组分(二氧化碳、重烃类等物质)反吹流出系统。[/color][color=black]通道三的工作过程:[/color][color=black]1 取样[/color][color=black]如图1所示,此时将样品通入定量环(样品流经 sample in - loop -sample out),充分吹扫定量环,排除其中参与空气或样品。[/color][color=black]2 进样[/color][color=black]系统启动数据采集的瞬间,十通阀V4旋转36度,此时样品被载气携带进入预分离色谱柱PC3中(样品流经 car5 - loop -PC3 - C4 - FID)。[/color][color=black]样品在预分离色谱柱PC3(填充物为非极性硅氧烷类固定相,一般会使用长度较短的毛细管柱)中分离为较轻组分(氢气、氧气、氮气、一氧化碳、碳六以下的烃类)和较重组分(碳六以上的重烃类)。[/color][color=black]其中保留较弱的各类组分流入色谱柱C4(该色谱柱为长度较大的氧化铝毛细管色谱柱),烃类物质可以在该色谱柱上实现分离,并且存在一定的保留时间。[/color][color=black]3 反吹,碳六以上组分出峰[/color][color=black]当色谱柱PC3中的较轻组分完全流入色谱柱C4中,并且所有组分并未从色谱柱C4中流出时,十通阀V4再次旋转36度,系统恢复至图1所示的状态,此时色谱柱PC3内部的载气反向流动,将保留时间较强的组分(碳六以上的重烃类)反吹流出进入FID首先出峰。[/color][color=black]然后色谱柱C4中的各个烃类组分逐次流出在FID上出峰。[/color][color=black]系统总体谱图如图3所示[/color][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111230733568898_2666_1604036_3.jpg[/img][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111230733569656_2650_1604036_3.jpg[/img][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111230733570525_9994_1604036_3.jpg[/img][/align][align=center]小结[/align][color=black]该分析系统三个通道工作相独立,通道三的保留时间需要嵌套,分析过程较为复杂。分析系统配置三个检测器,总体运行和维护成本较高,但系统分析效率高。[/color]

  • 【资料】快速色谱技术

    快速色谱法(Flash chromatography)是制备液相色谱中法中的一种,通常用于有机化合物的分离。快速色谱法具有操作容易、价格便宜、分析快速的优点,在纯化有机化合物应用方面,几乎没有其它技术可以和快速色谱法相媲美。快速色谱法已成为通过纯化进行正相分离的通用方法。快速色谱法是一项典型的低压技术,科学家们正在使用真空或泵技术在中压条件下加速快速色谱的分离过程。色谱柱内填充粒径为40~60 mm的硅胶吸附剂。低粘度的流动相需选用较小的粒径。传统的快速色谱则需要科学家们根据测试需要填充色谱柱,因而许多色谱柱变成了一次性的预制快速柱。  快速色谱经常用于规模放大从薄层色谱分离后的正相化学物质。。快速色谱的需求主要来自制药业(51%)、生物技术(25%)和学术机构(8%),这三个行业占据了快速色谱84%的市场份额。在制药业,快速色谱应用广泛,包括少量化合物、多肽的纯化以及天然产物的纯化。  快速色谱的总体市场行情处于持续上升趋势,特别是在生命科学领域。有机化合物及多肽的合成方面的应用持续拉动快速色谱系统市场的增长。事实上,快速色谱系统有望在接下来的5年中实现两位数增长。

  • 【原创】关于WATERS的UPLC和AGILENT的RPLC以及其他公司的快速分离技术的一点浅解

    随着WATERS提出的UPLC仪器和快速分离的概念,发现最近提出这种技术的公司的仪器一个接一个的出来了。本人发表一点自己的看法,请大家多指教。也希望大家跟帖讨论这个问题,毕竟是新东西,越讨论越明白,大家多互相学习,学无止境嘛,更何况掏钱的咱们消费者,怎么也得搞明白点。 采用更小颗粒填料的柱子必然是色谱分离的一种趋势,因为根据理论,柱效有所提高,峰高就提高了,信噪比也就提高了,分离度也变大了,根据著名的van Deemter公式,填料颗粒变小,采用相应的最佳流速变小,柱效增加,当然带来的问题就是仪器系统需要承受更高的压力,没有计算过采用1.8um的柱子正常情况压力大概是多少PSI,不过应该仪器所需要承受的压力也不需要WATERS所宣传的15000PSI(感觉有点像是炫耀他的性能),Agilent采用提高温度的方式会缩短保留时间,减少流动相捻度,系统压力会降低到1200所能承受的范围,不至于因为柱压高造成密封圈损害,造成漏液。没看过1200系统能耐多少压力(有那位网友用过请告知),我想应该跟1100差不多,6000PSI到头,根据van Deemter公式,柱效与温度没有关系,最多保留时间变小会减小峰拓展,但是实际应用中不得不要考虑的问题是提高温度是必须考虑样品和填料的稳定性问题的。当然AGILENT既然宣传到100度的问题,肯定对他们的色谱柱在此温度下的稳定性有把握了,但是有多少样品在高温下是稳定而不分解呢? 另外一个本人比价迷惑的地方就是采用小颗粒柱效是增加了,但是柱长变短了,分辨率自然变小了。如果对于本来分离度不好的样品,但是由于柱长变短分辨率自然降低,提高柱效就能明显改善分离效果呢?没用过UPLC,不知道那位用过的网友能分析一个实际的样品比较来看看。 另外关于UPLC这个概念,据我所知,其实在WATERS之前就在蛋白质组学领域中的NANO多维液相上就已经应用这种采用更小颗粒填料的色谱柱技术了,柱压根据实际应用柱子的长度不同相差很大,有的研究人员已经采用了Pore size=300A,Colum I.D=100um,Colum length=50CM长的柱子进行多肽分析了,正常压力到6000PSI的样子,但是只有WATERS最先提出了一个UPLC概念,不愧是色谱行业老大,眼光独到!接下来跟风的公司不少,Agilent说他们03年就推出了小颗粒填料,不知真假,但还是棋差一招,没有WATERS厉害,Agilent的仪器耐不到这么高的压力,提高温度来降低压力以适用他们的仪器,同时也会缩短分析时间,达到更快速的效果,不过我还是对高温所带来的柱子和样品的稳定性问题有所怀疑,期待下次有机会去听他们的讲座,相信AGILENT下一代的仪器应该也会设计到15000PSI了。 另外就是关于van Deemter公式,填料颗粒变小,同时最佳分离流速也需要变小,柱效会增加,最佳理论踏板高度Hmin=2.48D,但实际却有所差异,因为其公式还存在一些别的因素没有考虑进去,目前van Deemter公式也在不断修正,在毛细管LC中,据说COLUMN i.d 达到2.1cm以下就会存在“管壁效应”,就像GC的毛细管,不仅仅是与填料的颗粒大小相关,如果根据van Deemter公式会得到很大偏差。LC技术还有很多很多需要探索的地方。 太唉,太累了,下次再接着探讨,欢迎大家跟帖发表意见和看法。

  • 单细胞转移分离系统特点

    [b][url=http://www.f-lab.cn/cell-analyzers/puncher.html][b]单细胞转移分离系统[/b][/url]是可用于单细胞转移,单细胞分离和单细胞隔离,单细胞成像应用的多功能单细胞分离操作仪器,它可以实现从微孔芯片转移单细胞到细胞收集管中。单细胞转移分离系统[/b][color=#666666]集单细胞成像,单细胞隔离,单细胞选择功能于一体,自动聚焦成像。[/color][b]单细胞转移分离系统转移单细胞到Eppendorf微管,PCR微孔板或其它反应微管中,[/b][color=#666666]在隔离单细胞后,它可以对选定收集的细胞进行扫描并成像。[/color][b]单细胞转移分离系统[/b][color=#666666]采用Nikon Ti-2倒置荧光显微镜,配备自动扫描显微镜载物台,自动聚焦器件,高灵敏度荧光CCD相机和LED激发光源组建而成。[/color][img=单细胞转移分离系统]http://www.f-lab.cn/Upload/single-cell-isolation.JPG[/img][b]单细胞转移分离系统[/b]特点完全自动化,步进系统高质量单细胞荧光成像单细胞分离的效率超过90% 超过70%分离的细胞增殖 分离后兼容所有的单细胞的WGA工具包(放大器的‐1,picoplex,复制‐G)实惠微Wells基于硅微孔微腔。由薄膜封闭70µ m,井底直径(1µ m),包含一个单孔。样品流体进入威尔斯并从底部的孔隙中流出。单个细胞被拖着走。一旦单个细胞降落到孔隙上,流动停止,其他细胞就不会进入井内。有用的细胞被识别出来。选定的细胞穿孔从微孔到384孔PCR板或离心管等等。单细胞转移分离系统:[url]http://www.f-lab.cn/cell-analyzers/puncher.html[/url]

  • 人参制品 快速分离 ,耗时16min

    人参制品   快速分离 ,耗时16min

    人参制品 快速分离梯度洗脱:水相A-有机相B(76.5:23.5) 【0-7min,A→75,B→25】】 【7-7.5min,A→50,B→50】 【7.5-8min,50,50】 【8-8.01min,A→54.5,B→45.5】 【8.01-12.8min,54.5,45.5】 后运行3.5min色谱柱 thermo Syncronis Dim.(mm)AQ 1.7μm 50×2.1mm 安捷伦1290http://ng1.17img.cn/bbsfiles/images/2016/02/201602231252_584894_2779413_3.png如你们喜欢,可以加入我们的小团队。 名为:shooter 团队里面有大学的教授(帅气的老外教授(我们的最终决策人)),各个地方的检验人员,和对液相感兴趣的年轻朋友。我们团队现在的进程是讨论液相色谱的条件,通过我们来把一些在液相上分析时间长的旧方法改为快速高效的方法(必须要成为实例)。 希望你们的加入,具体方法在论坛留言给我,我会尽快回复你们。 我们需要的你是能和我们融合为一个Team!

  • 温度快速变化试验箱制冷系统的排污工作

    温度快速变化试验箱制冷系统进行排污的目的在于淸除制冷系统中的污物,以免系统中的污物进入压缩机和节流阀。排污方式如下: 1、温度快速变化试验箱制冷系统的设备管道在运行前都必须进行排污,以清除安装过程中残留在系统内的焊渣,铁屑,沙粒等污物。防止污物损伤制冷机的部件和系统中的阀门,避免系统管道阻塞。 2、氨制冷系统排污时,可用空压机或氨制冷机提供压缩空气,压缩空气的压力一般不超过0.6MPa。排污口应设置在管道的最低处,排污工作可分组,分段分层进行。 3、温度快速变化试验箱制冷系统排污一般不少于3次,直到排出气体不带水蒸气,油污和铁锈等杂物。 4、为了有效的利用压缩气体的爆发力和高速气流,可在排污口上装个阀门,待系统内压力升高时快速打开阀门,使气体迅速排出,带出污物。 5、实践中也可用木塞堵住排污口,当系统有一定压力时,将木塞拔掉,使空气迅速排出,这种方法很好。但存在一定危险,操作时务必小心,注意安全。 6、氟利昂系统的排污也在系统安装完后进行,使用0.6MPa的氮气进行分段吹污。排污的方法和检验和氨系统相同,氟利昂系统排污和试压时不能使用压缩空气,压缩空气中含有水蒸气,若残留在氟利昂系统内,将引起氟利昂系统的冰堵或冰塞现象。 7、在排污过程中,如发现管路法兰阀门有明显泄漏,应及时补救。系统排污结束后,应将系统所有阀门的阀芯和过滤器拆卸清洗。 本文出自北京雅士林试验设备有限公司 转载请注明出处

  • 【分享】系统命令快速查看你的系统几岁

    系统命令快速查看你的系统几岁了  Windows系统安装使用到现在,想知道它的“高龄”是多少吗?  以WindowsXP系统来说,按“WIN+R”快捷键,输入“CMD”回车后,再在DOS窗口下输入“systeminfo”命令,就可以查看到您的WindowsXP出生日期了(指WindowsXP初安装日期)。,如果利用GHOST重装系统后,还是会以以前的时间为准。  除此之外,还可在此看到系统的所有信息,如主机名、处理器、网卡、以及系统打了多少补丁等等。是不是很有意思呢? 可以在命令行下写下这样的一条命令:systeminfo 系统信息.txt 这条命令的作用是把所获得的系统信息输出为文本文档.

  • 快速温变试验箱电气控制系统原理

    快速温变试验箱电气控制系统原理 快速温变试验箱电气系统设有手动和自动控制;具有温度测控、实时数据显示、参数设定、记录打印、报警、故障显示等功能,快速温变试验箱电气控制系统基本构成:  系统配置压缩机高、低压力开关,用于系统运行故障报警和保护压缩机作用。系统还为压缩机设有超压、过载、过热、缺相保护。风机设有热保护功能快速温变试验箱电气系统分强电和弱电两部分。强电部分主要由控制R404A压缩机的起停、箱内风机运行的交流接触器、热继电器;控制辅助加热器的固态继电器及线路保护的断路器等器件组成。弱电部分由日本优易1100型彩色液晶触摸屏及配套PLC(带USB接口1个,RS232接口1个,可与电脑连接,可与电脑进行数据通讯)和人机界面触摸屏、温度传感器组成。温度测量传感器为:Pt100铂电阻,通过Pt100铂电阻把温度信号送入PLC的A/D转换模块,实现试验箱内的温度的控制和显示,Pt100选用进口A级元件。http://www.whgt17.com/uploads/allimg/160817/1-160QG515350-L.jpg

  • Sepaths UP全自动固相萃取系统快速上样

    Sepaths UP全自动固相萃取系统快速上样

    Sepaths UP全自动固相萃取系统快速上样1、前言  Sepaths UP全自动柱膜通用固相萃取仪,兼顾了大小体积样品,主要用于样品的分离、纯化和浓缩,广泛应用于饮用水、地表水、地下水、食品、饮料等液体样品或固体半固体样品提取液中痕量有机物萃取和富集;整套系统可以同时自动完成6个相同或者不同样品的固相萃取柱的活化、样品过柱(过膜)、清洗、氮气干燥、浸泡、洗脱等操作,处理样品量大,自动化程度高;整套系统密封环保。操作简便,安全环保。Sepaths UP全自动柱膜通用固相萃取仪可以在上样快速的基础上同时保证较高的回收率和稳定性。http://ng1.17img.cn/bbsfiles/images/2017/10/2015092415282701_01_3024284_3.jpg  本文中通过对萃取水中多氯联苯的实验来突出Sepaths UP全自动柱膜通用固相萃取仪快速上样的特点。2、仪器  2.1 Sepaths UP全自动柱膜通用固相萃取仪(莱伯泰科有限公司,美国波士顿)  2.2 MultiVap-8八通道平行浓缩仪(莱伯泰科有限公司,美国波士顿)  2.3 Extrapid手动固相萃取系统(莱伯泰科有限公司,北京)  2.4天美 7890Ⅱ气相色谱仪3、试剂和材料  3.1 C18 固相萃取盘 47mm (J.T. Baker公司)  3.2 乙酸乙酯(色谱纯,Fischer公司)  3.3 甲醇(色谱纯,Fischer公司)  3.4 二氯甲烷(色谱纯,Fischer公司)  3.5 正己烷(色谱纯,Fischer公司)  3.6 标准液:ρ=500ng/mL,溶剂为甲醇(购买市售有证的标准储备液配制)。  3.7 去离子水(市售实验室的纯净水,要求在被检测化合物检出限内无干扰物)  3.8无水硫酸钠(Na2SO4):在450℃下加热4h,置于干燥器中冷却至室温,密封保存于干净的试剂瓶中。4、实验部分  4.1 样品制备    使用已洗净的1L玻璃样品瓶,装取去离子水1000mL,加1%甲醇进行样品改性,调节pH值到5,再加入100μL标准液充分摇匀。  4.2 样品溶液固相萃取方法见表1。表1 固相萃取步骤步骤溶剂浸泡时间干燥时间活化1乙酸乙酯10 mL90 sec90 sec活化2二氯甲烷10 mL90 sec90 sec活化3甲醇10 mL90 sec0 sec活化4水10 mL90 sec0 sec上样加标水1000 mL0 sec0 sec干燥萃取盘--60 sec洗脱样品瓶1乙酸乙酯10 mL150 sec60 sec洗脱样品瓶2二氯甲烷15 mL150 sec60 sec洗脱样品瓶3二氯甲烷15 mL150 sec120 sec  收集的洗脱液中含有水分,用一定量的无水硫酸钠进行脱水,置于浓缩仪上45℃氮吹浓缩至近干,用1 mL定容,进气相色谱分析。  4.3 仪器分析  气相色谱条件   色谱柱:石英毛细管柱,长30m,内径0.25mm,膜厚0.25μm,固定相为5%二苯基95% 二甲基聚硅氧烷。   升温程序:120℃,保持1分钟,20℃/min升至180℃,然后5℃/min升至280℃;   进样方式:不分流进样;进样量:1.0μm;进样口温度:270℃。5、结果与讨论  如图1所示, 1000mL水样通过Sepaths UP全自动柱膜通用固相萃取仪中萃取盘的时间为17min,表明上样速度快。http://ng1.17img.cn/bbsfiles/images/2015/09/201509241705_567688_3024284_3.jpg图1 上样时间  如表2所示,加入1%甲醇改性后的水样,通过Sepaths UP全自动柱膜通用固相萃取仪固相萃取后样品回收率在84-105%,回收率均较高,并且RSD小于5%。表2 1%甲醇改性样品固相萃取样品回收率回收率(%)12[align=center

  • 网络讲堂:8月20日 BioComp密度梯度制备与收集系统在生物大分子分离中的应用

    http://img3.17img.cn/bbs/upfile/images/20100518/201005181701392921.gifBioComp密度梯度制备与收集系统在生物大分子分离中的应用讲座时间:2014年08月20日 10:00 主讲人:孙福鼎 五洲东方分子生物学产品线应用工程师,负责分子成像设备以及密度梯度制备与收集产品的应用及技术支持,对密度梯度超速离心以及核糖体分离(Ribosome profiling)有着丰富的经验,目前主要致力于密度梯度超速离心在病毒分离、核糖体及叶绿体等亚细胞器分离以及其他生物学大分子分离的应用。http://img3.17img.cn/bbs/upfile/images/20100518/201005181701392921.gif【简介】1、生物学大分子分离方法2、密度梯度方法介绍及应用案例 产品应用领域应用于线性密度梯度溶液的快速制备,便于后续超速离心分离生物学样品。 产品主要特点快速高效,最快1min 内制备完成6 个离心管样品的均一线性梯度制备。程序控制,不同梯度介质及梯度范围所需程序均已内置,自动运行。适用广泛,可用于多种介质的梯度制备,包括Sucrose、Glycerol、Optiprep、Nycodenz、Ficoll、Percoll、Nacl、CsCl 等梯度介质。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名并参会用户有机会获得100元手机充值卡一张哦~3、报名截止时间:2014年08月20日 9:304、报名参会:http://simg.instrument.com.cn/meeting/images/20100414/baoming.jpg

  • 【资料】美开发出利用激光分离细胞新系统

    近日,美国麻省理工学院利用造价低廉的激光开发出一种从样品中分离某些细胞的新系统。该系统能在普通的玻璃载玻片上分离出1万多种细胞,这将有助于研究人员轻松完成许多在以前看来不可能的生物实验。而且,与其他细胞分离方法相比,该系统分离速度快、操作简单且价格便宜。这一研究结果刊登在12月15日的《分析化学》(Analytical Chemistry)上。 此前,细胞分离系统都是将样品与可跟特定蛋白质或其他成分反应的标记物混合,然后根据样品是否发出荧光来分离细胞。新系统将根据细胞中某些特定部分的反应来进行更加细致的细胞分离。另外,系统还能根据反应速度的快慢以及持续时间的长短来分离细胞,而用传统分离办法完成这些工作是不可能的。 新系统仅利用一个固定在普通玻璃载玻片上的透明有机硅薄层。硅层中分布了很多小空穴,使样品溶液中的细胞能沉淀在其中。经过如此改装的载玻片就能帮助研究人员分离出上万个细胞。 通过显微镜,研究人员或计算机系统能仔细察看细胞是否在特定区域或时间发出荧光。一旦发现发出荧光的细胞,计算机将自动记录其位置。然后,所有被记录下来的细胞将在激光束的作用下从空穴中浮出,最后这些细胞经液体冲刷后就可收集到容器中。 该系统的研发人员称,用激光束使细胞从空穴中浮出来,就像用消防管的水推动一个充气球。但激光的作用非常轻柔,不会使细胞受到损伤。 与光镊等昂贵的分离技术不同,这个系统的成本仅为几千美元,因此可广泛应用于生物实验室和临床研究机构。研究人员预计,该系统将在临床试验与诊断、基因筛选以及克隆研究等方面发挥重要作用。(来源:科技日报 徐玢) (《分析化学》(Analytical Chemistry),79 (24), 9321 -9330, 2007. 10.1021/ac071366y S0003-2700(07)01366-2,J. R. Kovac and J. Voldman)

  • 汽水分离器提高蒸汽品质,消除蒸汽系统的水锤和冲蚀,保护下游阀门和设备

    汽水分离器提高蒸汽品质,消除蒸汽系统的水锤和冲蚀,保护下游阀门和设备

    [align=center][b][img=,450,469]http://ng1.17img.cn/bbsfiles/images/2017/05/201705111137_03_3231450_3.jpg[/img][img=,450,469]http://ng1.17img.cn/bbsfiles/images/2017/05/201705130931_01_3231450_3.jpg[/img]汽系统的汽水分离[/b][/align][align=center]杭州瓦特节能工程有限公司技术中心[/align][align=center]蒸汽技术工程师李少鹏[/align]超过对300家蒸汽用户的现场调研,大部分的工业应用中,加热介质使用的是饱和蒸汽。饱和蒸汽在沿着输送的过程中,不可避免有散热损失,部分蒸汽冷凝成小水滴。另外,在现代锅炉中,水容积普遍较小,当锅炉水处理不良或者超负荷运行,蒸汽快速脱离水汽表面时会带出部分的水滴。以上这些小水滴会被高速流动的蒸汽携带,弥散在整个蒸汽流中。杭州瓦特节能在过往2年的蒸汽工程实践中发现:提高蒸汽的干度是蒸汽系统中最需要关注的问题之一,这是因为含有水分的湿蒸汽会带来如下问题:(1)降低单位质量的蒸汽所含有的热量。(2)导致在管道和换热设备表面污垢的形成。(3)蒸汽中的水滴增加了换热面的水膜厚度,从而降低换热器的出力(水膜的热阻大约是铁或钢的60~70倍,是铜的500~600倍)。(4)蒸汽带水,在阀座和其它相关部件高速流动时,将造成侵蚀和抽丝现象,同时水滴也会增加腐蚀的可能性。(5)引起控制阀和流量计工作不正常,甚至失效。杭州瓦特节能积累的经验表明,湿蒸汽降低生产效率和产品质量,也会导致设备的损坏,增加维护成本降低使用寿命,影响蒸汽系统的稳定性。因此管道中的水分在进入设备之前,必须及时有效的排除于蒸汽系统之外。通常,布置在管路上的疏水点只能捕捉在管路底部流动的冷凝水,对于悬浮在蒸汽流中的小液滴却无能为力。而杭州瓦特节能的汽水分离器不仅可以排除管道底部的水流,还可以有效的分离蒸汽流中悬浮的小液滴。顶部安装排空气阀后,能将空气排除于系统之外。合理应用汽水分离器,必然能起到提高蒸汽品质和热效率、节约能源、提高产品品质、减少设备维护、延长设备使用寿命的作用。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制