当前位置: 仪器信息网 > 行业主题 > >

红外结果分析

仪器信息网红外结果分析专题为您提供2024年最新红外结果分析价格报价、厂家品牌的相关信息, 包括红外结果分析参数、型号等,不管是国产,还是进口品牌的红外结果分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外结果分析相关的耗材配件、试剂标物,还有红外结果分析相关的最新资讯、资料,以及红外结果分析相关的解决方案。

红外结果分析相关的资讯

  • 第一届近红外纤维定量分析比对试验结果公布
    p  近红外检测技术日趋成熟,在很多行业有了广泛的应用。对纺织品领域而言,随着FZ/T 01144-2018《纺织品 纤维定量分析 近红外光谱法》的发布和实施,近红外技术的应用也进入了快车道。不过,目前近红外技术在纺织检测领域的应用仍然处在验证和建模研究阶段,使用机构和单位主要是一些大学,研发机构,规模较大的第三方检测机构等,大部分处于探索和尝试阶段,没有真正地用近红外检测技术进行检测并出具检测报告,主要原因还是担心出具的数据不够准确,模型不够稳定,无法鉴别出异常样品等。/pp  因此,为了更好地了解各家单位和机构近红外设备的使用情况,加强各机构之间的互动和交流,推动近红外检测技术在纺织品检测领域更广泛地应用。受中国仪器仪表学会近红外光谱分会的委托,上海英柏检测技术有限公司主办了第一届近红外纤维定量分析的比对试验。/pp  本次比对试验由上海质量监督检验技术研究院纤维检验所作为独立第三方,承担准备比对试验用样品、样品制备、样品邮寄、数据收集、化学法测试安排和数据收集汇总等工作 比对样品的化学法测试结果由上海市质量监督检验技术研究院、绍兴中纺联检验技术服务有限公司、浙江中纺标股份有限公司三家机构进行独立测试并提供数据。/pp  此次共有11家实验室机构参加比对试验,基本涵盖了目前纺织品检测领域有近红外设备且已建立了自有模型的机构。参加本次比对试验的机构(排名不分先后)有:上海纺织集团标准检测有限公司、福建省纤维检验中心晋江检验部、天纺标检测认证股份有限公司、上海天祥质量技术服务有限公司、上海英柏检测技术有限公司、赣州市检科院、广州市纤维产品检测研究院、青岛市产品质量监督检验研究院、深圳市英柏检测技术有限公司、上海冉紫实业有限公司、中山海关技术中心。/pp  本次比对试验参加机构所用到的仪器品牌及型号(排名不分先后)有:JDSU Smarteye 1700便携式近红外分析仪、长沙普测T-NIR、冉紫实业RZNIR 7900、聚光 SupNIR-1520 TM、珀金埃尔默PE 9700、冉紫实业RZNIR 5600、聚光SupNIR-1500、聚光SupNIR-1520 、赛默飞世尔 Antaris II、布鲁克 Tango-R。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 645px " src="https://img1.17img.cn/17img/images/202006/uepic/74bf4692-9aa0-4a06-bf43-a3a885806fa5.jpg" title="微信图片_20200624100859.png" alt="微信图片_20200624100859.png" width="450" height="645" border="0" vspace="0"//pp  此次比对试验选择市场上使用比较普遍的三种模型(棉/氨纶,聚酯/氨纶,棉/聚酯)进行,每个模型选择三块样品参与比对。比对试验采用Round Robin Test方式进行。由第三方独立机构先将样品寄给lab1,并告知lab2的地址和联系人,lab1在规定的时间内完成比对试验,并上报结果给第三方独立机构后将样品寄给lab2,以此类推,直至所有的机构都完成比对试验,由最后一家机构将样品寄回第三方独立机构 在比对试验进行中,试样不得破坏。在循环传递的过程中,后一家机构须对寄到的样品进行检查,如果发现样品被损坏,需第一时间告知主办方,同时比对试验终止,此次比对试验宣告失败。/pp  比对测试的数据比对方式是采用近红外方法与传统方法两者的数据进行比较,理论上可以认为,近红外方法的试验数据越接近传统方法的试验数据时,比对结果更优,反之,则比对结果更劣。当然,虽然传统方法的试验数据由三家机构提供,取平均值,但也仍然不排除有偏差的可能性,因此,即使是理论上的推断,仍然建议依据此数据得出的评价结果仅供参考。/pp  比对试验执行标准:FZ/T 01144-2018《纺织品 纤维定量分析 近红外光谱法》 参考值执行标准:GB/T 2910.11纺织品 定量化学分析 第11部分:纤维素纤维与聚酯纤维的混合物(硫酸法)、FZ/T 01057(部分)纺织纤维鉴别试验方法、FZ/T 01095-2002 纺织品 氨纶产品纤维含量的试验方法。/pp style="text-align: center "strong比对试验近红外法试验结果/strong/ppstrong/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 150px " src="https://img1.17img.cn/17img/images/202006/uepic/fe216ded-f19a-4618-81f8-605275fc29f0.jpg" title="01.png" alt="01.png" width="600" height="150" border="0" vspace="0"//pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 151px " src="https://img1.17img.cn/17img/images/202006/uepic/fe4957b4-e092-4865-a9e0-65c497d04ff6.jpg" title="02.png" alt="02.png" width="600" height="151" border="0" vspace="0"//pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 168px " src="https://img1.17img.cn/17img/images/202006/uepic/376e4545-1eab-46f7-86f8-e6e57de959f2.jpg" title="03.png" alt="03.png" width="600" height="168" border="0" vspace="0"//pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 500px height: 169px " src="https://img1.17img.cn/17img/images/202006/uepic/4c41878c-6bb1-4908-9cdd-71430f289d56.jpg" title="04.png" alt="04.png" width="500" height="169" border="0" vspace="0"//pp style="text-align: center "strong比对试验传统方法试验结果汇总/strong/ppstrong/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 139px " src="https://img1.17img.cn/17img/images/202006/uepic/737deb51-d521-4d5d-8a0c-228b9e9228e9.jpg" title="05.png" alt="05.png" width="600" height="139" border="0" vspace="0"//pp  据介绍,本次比对试验目的在于各机构之间的技术交流,因此对于最终的数据只进行呈现,不对每个实验室的数据进行评价。各机构可根据各自实验室的数据进行对比分析。/pp  不过,虽然不做具体的评价,但是从数据上观察,仍然可以得出一些普遍性结论供大家参考:从数据的一致性和稳定性方面,进一步验证近红外法适用于纺织品纤维定量分析 棉/氨纶,聚酯/氨纶的近红外方法的数据与传统方法的数据差异较小,且大部分机构间的数据一致性较好 在这三个模型上,不同品牌和型号的仪器都有可能得到较好的测试结果,相同品牌和型号的仪器也可能得出一致性较差的测试结果,说明检测设备在满足基本参数条件下,更多地取决于建模样品的选取,建模过程的控制,建模方法的选择。/ppbr//p
  • 第二届近红外纤维定量分析比对试验结果公布
    纺织品纤维含量分析是决定纺织产品标识准确度的重要因素,多国制定相关技术法规,要求纺织服装产品上贴有永久性的标签,并在标签上按照规定的方法注明产品的纤维成分及含量。传统纺织品成分定量方法采用的化学溶解法存在着使用化学试剂、对环境污染、检测周期长、破坏样品等缺点。近红外光谱分析技术作为一种新兴检测技术已经开始迅速被应用于纺织品成分定性和定量检测,具有快速、无损、环保、便捷等优点。该技术主要利用在近红外光的照射下,不同的纤维成分呈现不同吸收峰,其成分含量不同则体现出不同大小、缓陡的吸收峰,利用相应的化学计量学方法和纤维成分数据库,即可获得准确的纤维成分及含量。但在纺织品纤维定量方面,由于近红外模型受仪器类型、实验室环境、织物结构、颜色、染料、纤维含量、检测条件等因素影响,校正模型建立好坏程度直接影响其预测效果,且目前仍存在定量模型无法统一或互通的问题。中国海关科学技术研究中心工业与消费品安全研究所联合深圳市菲雀兰博科技研究中心有限公司,在中国仪器仪表学会近红外光谱分会的大力支持下,于2021年成功举办了第二届(2021)近红外纤维定量分析比对试验,以期推动近红外光谱分析技术的发展和应用。本次比对试验,共涉及棉/氨纶、聚酯纤维/氨纶、棉/聚酯纤维、锦纶/氨纶、棉/聚酯纤维/氨纶 5 大类别,4 类二组分,1 类三组分。分别是棉/氨纶(1-3#)、聚酯纤维/氨纶(4-6#)、棉/聚酯纤维(7-9#)、锦纶/氨纶(10-12#)、棉/聚酯纤维/氨纶(13-15#),五组面料均由中国海关科学技术研究中心工业与消费品安全研究所提供。本次比对试验共有16个机构报名参加,包括中纺标检验认证股份有限公司、北京市毛麻丝织品质量监督检验站、天纺标检验认证股份有限公司、青岛市产品质量监督检验研究院、江苏省纺织产品质量监督检验研究院、南通市纤维检验所、上海英柏检测技术有限公司、上海冉紫实业有限公司、上海纺织集团检测标准有限公司、国家纺织服装产品质量监督检验中心(浙江桐乡)、浙江中纺标检验有限公司、福建省纤维检验中心晋江检验部、中山海关技术中心、广州亚诺检测技术有限公司、中纺标(深圳)检测有限公司、深圳市英柏检测技术有限公司等。在规定期限内有15家实验室反馈了测试结果,1家实验室取消了比对。在15个实验室中,Lab 1、2、3、7、11参加了全部模型比对;Lab 6、8、9、10、12参加了4个模型的比对;Lab 4、5、14、15参加了3个模型比对;Lab16参加1个模型比对。执行标准FZ/T 01144-2018。结果Z比分数图:从参试实验室比对结果可以看出,棉/氨纶、聚酯纤维/氨纶两类样品,各参试实验室所建模型预测结果较为理想,锦纶/氨纶、棉/聚酯纤维、棉/聚酯纤维/氨纶样品,存在少数参试实验室所建模型预测结果不理想的情况。由于纺织纤维种类众多,且复合织物的种类和比例各不相同,使得近红外光谱校正模型的建立难度较大,需要大量的样本数据,校正数据的准确性及合理的计量学方法都对测试结果有影响。针对此次近红外纤维定量分析比对计划,对于相关模型的建立,给出以下建议:1)样品筛选:某些较厚双层针织结构的织物,其谱图看不到明显的吸收峰,或与其他的谱图偏差较大,在建模过程中,此类样品对模型的建立会造成很大影响,不适宜做校正样品,应该去除。2)样品采集: 样品采集过程中,建议将样品折叠适宜厚度,一般4层,水平放置测试窗口上,并在样品上施加一固定压力。采集中对于吸收峰不明显、谱图偏移或漂移严重、光谱形态异常的应提前剔除。3)光谱数据预处理:仪器采集的原始光谱中除包含与样品组成有关的信息外,同时也包含来自各方面因素所产生的噪音信号。这些噪音信号会对谱图信息产生干扰,从而影响校正模型的建立和对未知样品组成或性质的预测。光谱数据预处理主要解决光谱噪音的滤除、数据的筛选、光谱范围的优化及消除其他因素对数据信息的影响,为下步校正模型的建立和未知样品的准确预测打下基础。常用的数据预处理方法有导数、滤噪(平滑)、多点基线校正、归一化处理等。在近红外分析中,对于样品不同组分之间的相互干扰导致吸收光谱谱线重叠的现象,可采用求导的方法进行处理。其中常用的是一阶导数和二阶导数。4)定量校正算法: 近红外光谱分析常用的计量方法有主成分分析(PCR),偏最小二乘法(PLS)和人工神经网络法(ANN)等,其有着各自的优点和局限。选择适合的校正算法,对模型的适用性,有效性有着显著帮助。比如:TQ Analyst提供了定量校正算法,包括了比尔定律、最小二乘法(CLS)、偏最小二乘法(PLS)和主成分回归法(PCR)等。其中在纺织纤维定量检测模型中,偏最小二乘法(PLS)较为经典和常用。5)光谱波长范围的选择:光谱范围的选择在NIR定量分析模型的建立中是最难的一步。至今为止,化学计量学领域仍无完美算法来选择最佳的光谱范围。目前,已有一些配套软件可实现自动化选择光谱范围。例如:TQ Analyst软件中自带Suggest向导进行自动选择光谱范围。光谱波长范围的选择会直接影响模型的精度,即相关系数与均方差。6)建模及模型优化:近红外光谱存在谱带宽、重叠较严重、吸收信号弱、信息解析复杂等问题,它依赖于化学计量学方法,在样品待测属性值与近红外光谱数据之间建立一个校正模型,再通过模型对未知样品的近红外光谱进行预测来得到各性质成分的预测值。目前,近红外建模方法大都以“光谱数据预处理,波长筛选进行特征降维和突出,再通过PLS、SVM算法进行建模”的方法为主。建模的优化常见于如何使用预处理算法对光谱进行预处理,来消除仪器变异所引起的偏差;如何使用波长选择算法,提取光谱中的有效特征;如何利用化学计量方法建立稳定可靠的模型。除此之外,随着人工智能技术的发展,深度学习可以利用现有的大规模已标记数据集训练出一个预测能力强、鲁棒性好的多层网络结构模型。此外深度学习方法建模,其对预处理、波长选择等依赖性很低,该法也将为近红外光谱检测带来新的机遇。
  • 30秒出结果,DA 6200™ 近红外肉类分析仪带来全新的分析体验
    随着当代社会人们生活水平的提升,对肉制品的需求量也比以往有所增加,但是肉制品的质量问题仍然时有发生。肉制品的加工过程涉及牲畜的饲养、初加工、企业收购、再加工和投放市场这几个步骤, 为了保证肉制品的质量和安全,每一步都需要对肉制品进行检测,肉制品的检测主要包括感官检测,肉制品成分分析(水分蛋白脂肪等),理化检测(粗氨,挥发性盐基氮等),另外为了防止养殖中滥用、超量使用抗生素类兽药等或 使用违禁药物,还需要进行兽药残留和瘦肉精的检测。市场中为了获取不正当的利益,还存在的肉类掺假的问题。我国是肉制品生产大国,食品监管机构和肉制品企业对于肉制品生产加工中的质量安全问题越来越重视。 PerkinElmer也一直关注肉类食品的安全检测,并开发了一系列的应用方案。1、肉类样品中多环芳烃的检测多环芳烃(polycyclic aromatic hydrocarbons,PAHs)是烧烤及烟熏肉制品加工过程中极易产生的一类具有致癌和致突变性的有机物,加工工艺、环境条件和肉制品特性等多种因素能够影响肉制品加工过程中PAHs的形成,对于肉制品加工行业而言,非常有必要准确测定肉制品中多环芳烃的浓度水平。珀金埃尔默的 Clarus 600 GC/MS 系统可以高效的对肉类样品中的多环芳烃类化合物进行分析 GPC作为样品制备方法用于除去肉类样品中的大部分基质干扰物质。《肉类样品中多环芳烃的检测:样品制备与GC MS 分析 》2、ICP-MS分析肉类和海产品中多种元素肉类食品为人类提供丰富的蛋白质,也可为人类提供多种微量营养元素,同时肉类食品中也会存在重金属超标的风险。因此需要分析的肉类食品中各种元素含量包括营养元素和重金属,这需要分析仪器具备常量与痕量元素分析的能力。电感耦合等离子体质谱(ICP-MS)能够同时测量多种元素和极宽的测量范围,非常适用于食品分析。ICP-MS超低的检出限使其能对痕量级污染物进行定量分析,如Pb,As,Se和Hg;而常量级的营养元素,如Ca,Mg,K,Na也可以定量测量。《NexION 300/350 ICP-MS分析肉类和海产品中多种元素》3、鉴别猪肉掺假近年来,食品中的肉类和肉制品的掺假问题日益突出。2013年欧盟地区大范围出现的牛肉中添加马肉和其他肉类的风波,中国也有新闻报道过猪肉冒充牛肉的事件,珀金埃尔默以QSightTM220 液相色谱串联质谱为基础建立了快速检测肉类和肉制品中猪肉的特异性多肽的方法。本方法可适用于检测生肉和熟肉制品等多种不同类型的肉类样品,为清真食品和猪肉类产品掺假的检测提供了有力的工具。《PerkinElmer QSight™ 系列液质联用系统在猪肉鉴别检测中的应用方案》4、重磅!全新的DA 6200™ 近红外肉类分析仪为了帮助肉制品企业更好的进行过程质量控制, 珀金埃尔默推出全新的DA 6200™ 近红外肉类分析仪,可以帮助肉制品企业监测肉类产品中的脂肪、水分、蛋白质和其他关键参数,在数秒之内获得多个组分的分析结果,无需像传统化学分析耗费数小时。DA 6200™ 近红外肉类分析仪还可以对从原料肉、中间产品到肉制品成品进行全流程的质量控制,从而可以优化生产工艺,降低成本,保证产品一致性,提高企业的盈利能力。《DA 6200便携式近红外肉类分析仪》点击链接获取文中提到的解决方案和更多半导体相关资料:https://mp.weixin.qq.com/s/ieol3aWI0IX9F8JmAWJs4Q关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn。
  • 【我与近红外的故事】曾仲大:近红外数据分析之路
    p  span style="font-family: 楷体,楷体_GB2312,SimKai "strong随感:/strong“我与近红外的故事”征文近一年了,看过许多老师情真意切的表达,真是把乐趣融入到了近红外的研究与应用之中,也更加深切地感受到同行们对国内近红外发展的使命感和责任感。而自己与近红外的故事,几次动笔却都没能写下几个字。时间肯定不是借口,惰性真是害人啊。好在拖到春节,总算能静下心来了。就像与近红外的相遇相知,既是机缘巧合,更是某种必然吧。/span/pp  初识近红外,都是博士毕业一年以后的事了。那时已经在香港理工大学周福添教授课题组从事博士后研究一年多了,主要方向还是老本行-化学计量学基础算法研究,解决中药和代谢组学等复杂体系分析中的数据处理问题,从GC-MS,LC-MS到中药指纹与药物活性关系。一次Daniel MOK博士找到我,询问是否有意愿到陈新滋院士课题组从事中药质量分析与鉴别方面的工作,陈院士那时是理大副校长(后任香港浸会大学校长,现受聘中山大学教授、学委会主任),研究组的条件与学术水准自不必说,就这样幸运地开始了近二年的近红外数据分析之旅。/pp  对香港熟悉的朋友一定对其大街小巷的名贵中药材印象深刻,尤其是弥墩道,应该是内地赴港旅游人士的必经之地吧,一是去旺角购买电子产品的旅游大巴必定经过这里,另一方面则是这条大道两旁大大小小的中药材店。记得第一次见到时,很是疑惑哪来的那么多冬虫夏草、燕窝和野生人参?说回到陈院士负责的这个研究课题,由香港赛马会中药研究院提供500万研究经费,对包括上述中药,以及石斛、灵芝、阿胶等在内的30味名贵中药材进行质量鉴别分析和研究,目的是帮助那些大街小巷的药材经销店铺,中间批发商,甚至普通消费者,以快速、经济、简便的方法识别药材真假,甚至质量等级。这些药材大多价格不菲,若能够有效识别真假,其商用价值可想而知!顺便一提,香港赛马会中药研究院很多年前已经解散,个中原因无法深究,但在目前国家大力践行中医药研究开发与应用的今天,这也算是一件憾事吧,包括设想中的香港国际中医药中心。/pp  说到这里,近红外分析可以派上用场了!无论是十年前,还是十年后的今天,应没有什么分析技术比近红外更适合完成这项使命,综合考虑时间效率、分析成本,亦或是平衡多重因素影响下定性定量分析结果的准确性!记得当时我们使用的是FOSS公司的XDS快速含量分析仪(Type XM 1100 Series),以及Polychromix手持式近红外分析仪(Model: 1600-2400)。由于项目定位于实际应用,需要适应不同场合下的快速分析,对数据分析本身的要求同样也是比较高的,比如涉及模型传递,尽可能简化数据分析的过程及对使用者的要求,亦确保结果的准确可靠性。基于此编写了功能完备的近红外数据分析软件系统,一站式地完成近红外数据分析的完整流程,从各种各样的预处理方法到特征选择,再到定性定量模型的构建、评价与验证预测,以及模型传递等。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201706/insimg/137c0a6d-7548-46ef-beea-f984cce33ba7.jpg" title="2_副本.jpg"//pp style="text-align: center "中药质量分析与鉴别项目中用到的近红外分析仪 (图1和图2)。/pp  说实在的,那时对化学计量学的多元校正方法并不是特别熟悉,我的整个硕士和博士研究,都是多元分辨方向,也就是如何从中药和烟草等复杂体系分析的联用仪器数据中,发展“数学分离”的方法,获取化学纯组分的定性定量信息,即纯组分的光谱和色谱信息。幸运的是,得益于在梁逸曾教授研究组六年时间里耳濡目染的学习,比如许青松教授对统计分析的讲解,杜一平教授的QSAR研究等等,使得我无论对复杂数据的理解,还是化学计量学方法的应用与发展,都有足够基础支持我去解决近红外数据分析中遇到的各种问题。在香港的几年时间里,梁教授每年也都会利用假期去香港一段时间,与香港同行合作交流化学计量学及其应用方面的成果,更是继续指导我解决研究中遇到的实际难题。每每想到这些,总会浮现与恩师相处过程中的点点滴滴。至于上面提到的中药质量分析研究项目,我们对包括阿胶、珍珠、川贝母、藏红花、黄连在内的多味中药进行了深入分析研究,获得了非常不错的结果,陈院士对此也给予了很高的评价。很清楚地记得因此第一次上了电视新闻,是香港亚洲卫视针对我们使用近红外分析技术,如何快速识别真假中药,及其质量等级的采访报道。当然,这些研究很多也是和理工大学的同事,以及杨大坚教授(现任重庆市中药研究院院长)、董玮玮博士等一起完成的,我主要负责数据分析,以及数据软件产品开发与实现方面的工作。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201706/insimg/ac0a45a1-23c7-43bf-8467-f0cb1a6ccb8d.jpg" title="3_副本.jpg"//pp style="text-align: center "中药质量分析与鉴别项目交流会 (图3),及与日本Yukihiro Ozaki教授交流(图4)。/pp  离开香港后,很长一段时间内都没有与近红外分析有直接的关联。先是在Philip Marriott 教授课题组做research fellow,从事全二维色谱数据分析方面的工作,主要方向是全二维分离的模拟、预测,以及化学计量学新方法的发展。2012年回国后则作为引进人才,在中科院大连化物所许国旺教授研究组,从事代谢组学数据分析与高分辨LC-MSn数据处理新算法的研究等。看似这些工作与近红外分析不怎么挨着边,但老实说,同其他研究一样,数据分析也是一通百通的事!数据来源与数据结构可能不一样,数据背景与数据分析结果,以及数据处理方法亦可能存在差别,但数据分析的本质却是高度一致的,无论是色谱分离的模拟,亦或是代谢小分子标志物的发现!从这个意义上来说,也算是一直在这个圈子吧。/pp  近红外技术的发展,面临非常多的机会,无论从国内快检还是工业智能化的需要来看,还是从国外近红外发展的轨迹来看。然而近红外分析更广阔的应用,仍有一系列需要解决的难题,这其中当然包括仪器硬件的小型化、便携式,以及智能化与场景化。但从数据及数据分析的角度来说,快速、准确的模型构建,模型的通用性、更新及转换等仍是需要加以研究的内容。基于此,离开化物所后创办的大连达硕信息技术有限公司,第一个数据产品“魔力”,便专注近红外数据的分析,这也算是真正走在了近红外技术与数据分析的商业应用之路上。希望能够以智慧化、便捷化的方式,分析挖掘科学研究与工业应用中的海量数据。无论对于近红外分析的初入者,还是有了相当经验的人员,一旦采集到数据,便能快速得到好用的模型及结果,这也是目前非常欠缺的,主要原因就在于近红外数据分析的过程长,可变因素多,涉及的算法也很多,传统上要快速得到一个好用的模型并不容易。尽管大多数研究者并没有把数据分析提升到特别核心的位置,但其价值显而易见,甚至在某些方面可与硬件本身相得益彰,弥补硬件的物理劣势!/pp  另一方面,近红外分析以其简单方便的前处理,加上非常快速的数据采集方式,使得数据的获取,甚至大数据的积累顺理成章。然而即使对同一组数据,不同的研究者亦极有可能得到完全不同,甚至相反的分析结果或结论,即使在固定分析方法的情况下!这是一个容易被忽视,却又至关重要的问题,否则不管如何将近红外分析的硬件评价,以及实验测试全过程标准化,也无法得到可相互比较的结果。数据“横看成岭侧成峰”的魅力,不应是由于数据分析方法或人员的不同导致,而是数据背景的属性差异或者数据分析目的的不同产生。基于此,我们也正采用近红外数据分析的通用准则,使用粒子群等最优化的方法,开发全新的近红外数据分析软件产品,自动优选数据分析算法,以及方法的使用顺序,并全局优化方法的参数。这样我们获得数据后,只需按照标准化的流程一步一步走,便可获得最优的数据分析模型与模型结果。从而使得近红外数据的分析,如同实验分析一样,结果的重现性与可比性也就不再是个问题。避免像现在这样,往往是漫无目的的数据探索,耗费漫长时间也不一定能得到合适好用的模型!这无论在研究中,还是在工业生产中,都是需要花大力气迎接的挑战。在这一过程中,得到了袁洪福教授、吴海龙教授、邵学广教授、杜一平教授、褚小立教授、闵顺耕教授等诸多老师的大力支持与帮助。从老师们关切的眼神中,能读懂那份殷殷之情,也唯有努力做点事情,为国内近红外的发展做些有益的工作,方不负此情。/pp  近红外分析能做的事情很多,近红外数据分析如是,尤其站在移动互联时代,站在大数据分析挖掘的视角与高度。近红外有其自身特有的巨大优势-本身就是物联网中的一个绝佳传感器!从这个意义上来说,近红外分析代表着某种未来,只是通往未来的路上,还需要我辈站在前辈的肩膀上,不断付出智慧和汗水。/pp  “师者也,教之以事而喻诸德也。”,数据分析之路上,深深地烙上了梁逸曾教授的影响。亦师亦友者,感恩、深切缅怀您。/pp style="text-align: right "span style="font-family: 楷体,楷体_GB2312,SimKai "  2017年1月30日于浙江西湖/span/pp  strong个人简介/strong/pp/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201706/insimg/e1424397-960a-4e21-a206-9245429e6328.jpg" title="1_副本.jpg"//pp  曾仲大,男,博士,现任大连达硕信息技术有限公司总经理。/pp  曾博士师承梁逸曾教授,2006年获得工学博士学位,主要从事化学计量学基础算法研究,以及色、质、光谱等分析技术在制药、烟草和代谢组学等复杂体系分析中的应用及其数据分析挖掘等。近年来在大数据的分析与应用方面亦有涉猎。/pp  曾博士先后工作于香港理工大学、澳洲RMIT大学、Monash大学,以及中国科学院大连化学物理研究所。迄今已发表SCI论文40余篇,在2013-2016近三年时间里,以第一作者或合作者在美国分析化学杂志发表7篇研究论文,同时获邀为TrAC等权威期刊撰写化学计量学及化学数据分析处理方面的综述。/pp  曾博士曾获得中国科学院大连化学物理研究所“所百人”引进人才计划,大连“海创工程”计划、高层次人才创新创业支持计划、新兴技术创新成长计划,以及国家人社部高层次海归人才创业计划的支持。公司主要提供复杂化学与生物数据分析服务,数据挖掘软件产品开发,以及个性化数据应用的整体解决方案。/pp  strong人生格言:/strong有志者,事竟成。/p
  • 食品加工分析中的近红外方法
    这种方法允许同时对多个参数进行快速无损地分析近红外分析是基于样品中分子对近红外辐射(800 nm-2500 nm)的响应。当近红外光照射到样品上,要么被样品吸收,要么就发生散射,从而产生了能够反映样品物理性质和化学组成的光谱。近红外是一种间接的测量方式,必须借助于传统的标准化学分析方法的结果建立标定模型。采用化学计量学建立的模型可以用来分析混合物或者天然产物中物质的含量,如谷物和肉类。同时标定自身的数据丰富广泛,在日常检测时非常快速高效。优化近红外分析的小技巧1保持样品的一致性分析的样品应和标定在建模时使用的样品有相同的特性。例如,建模时使用小麦中蛋白质数据所建立的标定就不适用于其它谷物中蛋白质的分析。由于水分和样品颗粒大小也会影响近红外光谱,所以也要保证样品采用相同的处理方式。2校正样品均匀覆盖全部范围特别重要的一点是,建模时选取具有代表性的样品并使得参考值均匀地分布在日常检测所期望的范围内。例如,少量且数值相近的样品建立的模型就无法对一个变化较大的属性给出准确的预测结果。主成分分析(PCA)是一个有效的对比样品差异性的统计工具。3关注参考值可靠的近红外标定依赖参考值。如凯氏定氮测蛋白、索氏提取测脂肪这些参考方法有助于近红外分析得到准确的结果。这些参考方法在整个近红外方法建立过程中都应保持不变,因为不同的分析方法的准确性和精密的都有所区别。考虑这些方法的标准误差和测量不确定度,应为每项属性保留一份当前参考方法的记录。4使用近红外以辅助参考方法使用近红外方法,您能从批量化的检测中获益。专为离线和旁线设计的近红外分析仪器可以分别安装在实验室或生产部门,作为像凯氏定氮仪、脂肪提取器、色谱系统和滴定等传统分析仪器的补充。下述的例子就展示了使用近红外对节省分析支出的贡献:回报实例每天 10 个实验室样品可以节约花费月 15 欧元,一年以 200 天计算共节省 30000 欧元。假如一台近红外光谱仪的售价在 40000 欧元,只需1年就投资就能收获回报。获得额外的收益。试剂溶液以及其它相关实验耗材的使用量都显著地减少,近红外分析在极大地节约成本的同时还保证了安全性。此外,由于近红外分析速度的优势还能提升实验室的效率。步琦解决方案ProxiMate™ 是一台适合放置在产线旁的设备,它拥有 IP69 认证且支持触控,即使戴着手套也不会影响操作,具有强大且稳定的性能。不仅能够使用仪器提供的校准模型,而且也可使用整合在仪器中的自动校准 AutoCal 功能,轻松建立您的专属模型。步琦解决方案的更多信息:https://www.buchi.com/zh/products/instruments/proximate寻找更多有关我们近红外产品的信息:https://www.buchi.com/zh/knowledge/applications
  • 红外/近红外光谱分析技术在乳粉生产中的应用
    pspan style="color: rgb(255, 0, 0) "strong  一、引言/strong/span/pp  乳制品含有的蛋白质、脂肪、乳糖和其他固形物等具有较高的营养价值,是促进人体生长发育及维持健康水平的必需营养成分。目前市售的奶粉品种众多,质量参差不齐,在巨大的经济利益驱动下,出现了“阜阳奶粉事件”、“还原奶事件”、“光明牛奶回奶事件”、“雀巢奶粉事件”以及“三聚氰胺事件”,这些都说明了牛奶质量控制的重要性和紧迫性。那么如何为牛奶生产厂家确保原料奶的质量,并准确、快速地对流水线生产中的各个关键点进行控制?/pp  传统的奶制品质量检测用化学分析方法,主要有气相色谱、液相色谱、电泳、PCR和免疫ELISA等,取样化验过程复杂,实时性较差,大大影响了生产效率,而且往往涉及专用仪器与分析方法、耗费时间较长、分析过程繁琐、分析费用高,增加了现场检测及在线质量控制的难度。国家也出台了一系列相应的国家标准检测方法,如原料乳与乳制品中三聚氰胺检测方法(GB/T22388-2008)和原料乳中三聚氰胺快速检测液相色谱法(GB/T22400-2008)等。面对目前日益增长的市场需求,传统化学分析方法的效率已经明显滞后,开发快捷灵敏、无损易行的现代分析技术,对乳品生产的质量监控具有重要的意义。/pp  分子光谱技术(包括近红外,中红外等)是20世纪80年代后期迅速发展起来的一项测试技术,在欧美等国,它已成为乳制品成分分析的重要手段,并为乳品权威分析机构,如国际乳品联合会 (IDF)以及美国分析化学家学会(AOAC)等权威机构所认可。随着我国乳品行业的发展,采用快速、准确、可靠的乳品分析技术以适应WTO的要求已成为当前乳品企业发展的关键所在。目前,国内外许多乳制品厂家,如蒙牛、伊利、雀巢,光明、君乐宝等已经将FOSS公司的分析解决方案(包括中红外和近红外光谱分析仪)用于原奶收购和生产过程的质量监控。/ppstrong  span style="color: rgb(255, 0, 0) "二、红外/近红外分析技术在乳品行业的使用现状/span/strong/pp  随着社会对乳制品质量安全的不断重视,目前乳品企业对奶粉的质量把控越来越严格,奶粉的理化指标,如脂肪、酸度、乳糖、蛋白、蔗糖、水分和灰分等通常决定了奶粉的类别和质量,只有在生产过程中严格检测和把控这些指标才能生产出合格的奶粉。目前传统的奶粉检测方法对于这些理化指标的检测耗时长且繁琐,而奶粉的生产过程是一个连续的过程,长时间的分析检测无法满足奶粉生产过程中的有效控制。红外/近红外光谱分析技术以其快速、多组分和无损分析的特点在农牧业食品石油化工等行业中被广泛应用,同样在奶粉的检测中潜力巨大。/pp  目前国内奶粉的生产工艺一般包括原料乳验收→预处理与标准化→浓缩→喷雾干燥→冷却储存→包装→成品,在整个过程中有多个关键控制点需要检测多个指标,而这些点非常适合使用红外/近红外光谱分析技术进行快速分析。据了解,国内目前约有90%以上的规模化生产的乳粉企业都在采用红外/近红外光谱技术对其从原料奶、中间配料以及最终的奶粉实现全程化的监控和控制。目前国内几家大的乳粉企业,如伊利、蒙牛、雀巢、君乐宝、飞鹤等均已将这些红外/近红外的快速检测技术应用于如下几个环节的监控中,取得了不错的效果,既保证了产品质量的一致性,又最大程度的节约了生产成本。/ppstrong  1. 原料乳验收/strong/pp  原料奶位于乳业产业链的最上游, 其质量安全将直接影响到乳品的质量与安全, 从这个意义上讲, 能否从源头上紧抓原料奶的质量控制, 将直接关系到整个乳业的质量安全。通常在牛场仅对牛乳的质量做一般的评价,在到达乳品厂后需要通过若干检验对其成分和卫生质量进行测定。乳品企业一般实行“以质论价,优质优价”的政策或办法,可以鼓励奶农自觉改善饲养管理,提高原料乳质量,同时有利于企业对原料乳的分级处理。/pp  我国部颁标准规定原料乳验收时的理化指标包括脂肪、蛋白质、酸度、密度、抗生素等等。为了防止牛奶兑水,通常会检测液体乳的冰点,因为兑水后的牛奶冰点会升高。目前,对于液体原料乳中脂肪、蛋白、酸度等的检测,大多数乳企使用基于傅里叶变换的中红外光谱分析技术 (a href="https://www.instrument.com.cn/netshow/C193216.htm" target="_blank" style="text-decoration: underline "span style="color: rgb(0, 112, 192) "如FOSS的MilkoScan FT1乳品分析仪/span/a),这种检测方案不仅仅用于原料乳的按质论价,同时也应用于液体乳制品生产过程以及成品控制。同时,中红外光谱技术还可以通过与天然鲜奶拥有的特定光谱进行比对,迅速发现可疑的鲜奶样品,对提高乳制品的质量和保护消费者的利益具有重要的意义。/pp  strong2. 预处理及标准化/strong/pp  在全脂奶粉的生产中,标准化主要是通过对原料乳的脂肪含量调整,使之达到成品的标准要求(即原料乳中的脂肪含量与无脂干物质含量的比值达到乳粉的标准化值)。/pp  在配方奶粉生产中,通常需要根据目标人群进行配方设计,调整宏观成分含量,并在对液体乳进行预处理后,加入一定的添加剂,如婴幼儿配方粉需要尽量调整乳品中各组分的含量模拟母乳。在这个过程中,营养组分的调整,添加剂量的控制都会影响最后生产的乳粉是否合格。而检测不合格的产品通常会要返工处理,提高了生产成本和时间成本。在这个处理过程中,有效的监督检测手段必不可少,目前全球有超过85%的大中型乳品企业(如Arla Food,Nestle, Fonterra,以及国内的伊利、君乐宝等)已经使用了Milkoscan FT1乳成分分析仪进行旁线分析,实现标准化过程中快速分析反应,有效的减少了产品的波动,即时调整配方配比,提高了生产效率,产品稳定性也大大提升。/pp strong 3. 真空浓缩与喷雾干燥/strong/pp  从液态奶变成固体奶粉,需要进行干燥工艺,首先对液态乳进行真空浓缩,真空浓缩能够节省能量,对奶粉颗粒的物理性状有显著影响。液态乳经过浓缩后,喷雾干燥时,粉粒较粗大,具有良好的分散性和冲调性,能迅速复水溶解,可以改善乳粉的保藏性等。所以在真空浓缩时原料乳浓缩的程度直接影响乳粉的质量,特别是溶解度。在真空浓缩时,通常要求浓缩程度越高越好,因为一般真空浓缩的时间要比喷雾干燥节省至少10倍,但是浓缩至太高的浓度对于后续的喷雾干燥又存在不利影响,因此对真空浓缩水分的实时控制能够节约生产成本,提高生产效率。/pp  浓缩后的乳打入保温罐内,立即进行喷雾干燥。喷雾干燥直接影响乳粉的溶解度、水分、杂质度、色泽和风味,对产品质量影响很大。喷雾干燥过程中对乳品水分的控制非常重要,奶粉要求水分为2.0~5.0%,若为4.0~6.0%,也就是水分提高到3.5%以上,就会造成奶粉结块,则商品价值就低,同时,水分提高后奶粉易变色,贮藏期降低 当乳粉水分含量提高至6.5~7.0%时,储存一小段时间后,其中的蛋白质就有可能完全不溶解,产生陈腐味,同时产生褐变。此外,奶粉的水分含量过高,还可能导致营养素损失、微生物滋长、奶粉结块变质等问题。但乳粉的水分含量也不宜过低,否则易引起乳粉变质而产生氧化臭味,一般喷雾干燥生产的乳粉水分含量低于1.88%时就易引起这个缺陷。/pp  常规的水分检测方法测量速度和准确度一直存在一定的矛盾,而水分对于乳粉生产非常重要。为了解决这个问题,目前乳品企业常使用近红外光谱分析技术(a href="https://www.instrument.com.cn/netshow/C132525.htm" target="_blank" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "如FOSS的近红外分析方案NIRS DS 2500/span/a) 进行干燥过程的控制。/pp  与传统方法相比,近红外光谱分析技术具有测量速度快、操作方便、不破坏样品、不用前处理试剂等特点,目前,乳企使用近红外光谱仪做旁线检测,检测一个样品时间小于1分钟,检测速度频率大幅提高,控制基本实现实时性 而且近红外仪器稳定,具有IP65防水防尘级别,能适应车间环境 现场操作非常简单,样品直接装入样品杯中,装样简单不易出错,多组分结果直接显示,不需要专业的人员对数据结果进行分析,生产线普通工人都能进行分析操作。大大提高了生产效率,节约了生产成本,提高了产品质量。/pp  除了旁线分析外,现在逐渐流行的在线检测能够实现生产过程真正的实时质量监控,能做到有问题即时发现,如果与生产控制系统直接对接,能实时调整喷雾干燥生产工艺,对奶制品质量控制有着重大的意义。目前国内已有乳粉生产企业(如君乐宝,飞鹤乳业)引入a href="https://www.instrument.com.cn/netshow/SH100345/C335078.htm" target="_blank" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "FOSS的Profoss/span/a近红外在线检测解决方案,在乳粉生产中进行高频率、高分辨率的生产过程控制,控制水分的含量,获得稳定的水分、脂肪和蛋白含量,使生产更接近于目标规格,提高了产量,获得了最佳的物质平衡。而且,减少了返工、开工波动,以及不必要的重复劳动,生产效率得到极大的提高,基本上在一年左右能收回投资。/pp  strong4. 成品质量控制/strong/pp  在喷雾干燥冷却后乳粉便要进行包装出厂,包装出厂的乳粉必须经过检测分析合格后才能出厂销售。如婴幼儿配方奶粉,通常需要检测蛋白质、脂肪、水分、乳糖、酸度和灰分等等理化指标,这些理化指标使用常规检测方式进行全部检测需要几天的时间,费时费力,而且受化验室人员化验水平影响较大。目前乳品企业使用近红外光谱仪,进行成品分析,可以快速测定婴幼儿配方奶粉中的水分、蛋白、脂肪、酸度、灰分、乳糖等指标,单个样品测量耗时在1分钟内,以上所有指标同时测出,快速高效,同时也避免了由于人员操作误差导致的检测一致性差的问题。/pp  综上所述,在奶粉的整个生产工艺中各个关键控制点,几乎都可以使用红外/近红外光谱技术进行分析检测,通过使用红外/近红外分析技术对奶粉生产过程的监控能有效提高产品的合格率,在企业的成本控制,以及为消费者提供安全合格乳制品方面具有非常好的实际效果。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 305px " src="https://img1.17img.cn/17img/images/201908/uepic/3663ffed-3880-4cfd-bc5a-2087797f79f1.jpg" title="微信图片_20190812103309.png" alt="微信图片_20190812103309.png" width="600" height="305" border="0" vspace="0"//pp style="text-align: center "strong红外/近红外技术用于乳粉生产过程中的检测控制点/strong/pp  红外/近红外技术以其快速,操作简单为乳企的整个生产链条提供了巨大的便利,但在实际使用红外/近红外技术进行从原料奶到成品奶粉的检测过程中,采用的检测模块或者模型的准确性显得尤为重要。一个预测性能良好的模型一定是基于前期大量数据库的积累而来的,建模数据的指标范围,建模数据对应的样品量,以及采用的建模方法等均决定了后期模型的准确程度,所以在目前的红外/近红外推广和使用过程中,提供硬件性能可靠的红外/近红外检测方案的同时,配备的检测模块或者模型的预测性能显得尤为重要。以a href="https://www.instrument.com.cn/news/20190812/490937.shtml" target="_blank"DS 2500/a近红外检测分析仪在奶粉检测中所配备的数据库情况为例, 从目前主要客户的使用效果来看,预测效果好,数据准确性高,能够帮助客户很好的指导生产。/pp  目前a href="https://www.instrument.com.cn/news/20190812/490937.shtml" target="_blank"DS 2500/a近红外分析仪配备的配方奶粉、脱脂奶粉、乳清粉等奶粉模型预测性能如下:/ptable border="1" cellspacing="0" cellpadding="0" width="551" align="center"tbodytr class="firstRow"td width="93" rowspan="8"p style="text-align:center "全脂奶粉及婴幼儿配方奶粉/p/tdtd width="66"p style="text-align:center "成分/p/tdtd width="102"p style="text-align:center "定标范围/p/tdtd width="75"p style="text-align:center "定标误差(SECV)/p/tdtd width="124"p style="text-align:center "定标样品数量/p/tdtd width="91"p style="text-align:center "相关系数/p/td/trtrtd width="66"p style="text-align:center "水分/p/tdtd width="102"p style="text-align:center "1.54-4.50/p/tdtd width="75"p style="text-align:center "0.17/p/tdtd width="124"p style="text-align:center "4640/p/tdtd width="91"p style="text-align:center "0.90/p/td/trtrtd width="66"p style="text-align:center "蛋白/p/tdtd width="102"p style="text-align:center "9.50-31.02/p/tdtd width="75"p style="text-align:center "0.35/p/tdtd width="124"p style="text-align:center "4468/p/tdtd width="91"p style="text-align:center "0.99/p/td/trtrtd width="66"p style="text-align:center "脂肪/p/tdtd width="102"p style="text-align:center "5.09-39.31/p/tdtd width="75"p style="text-align:center "0.40/p/tdtd width="124"p style="text-align:center "4313/p/tdtd width="91"p style="text-align:center "0.99/p/td/trtrtd width="66"p style="text-align:center "酸度/p/tdtd width="102"p style="text-align:center "4.91-14.91/p/tdtd width="75"p style="text-align:center "0.89/p/tdtd width="124"p style="text-align:center "3785/p/tdtd width="91"p style="text-align:center "0.75/p/td/trtrtd width="66"p style="text-align:center "灰分/p/tdtd width="102"p style="text-align:center "2.55-6.10/p/tdtd width="75"p style="text-align:center "0.07/p/tdtd width="124"p style="text-align:center "1373/p/tdtd width="91"p style="text-align:center "0.99/p/td/trtrtd width="66"p style="text-align:center "乳糖/p/tdtd width="102"p style="text-align:center "33.44-58.22/p/tdtd width="75"p style="text-align:center "0.54/p/tdtd width="124"p style="text-align:center "1151/p/tdtd width="91"p style="text-align:center "0.98/p/td/trtrtd width="66"p style="text-align:center "蔗糖/p/tdtd width="102"p style="text-align:center "0- 18.81/p/tdtd width="75"p style="text-align:center "0.42/p/tdtd width="124"p style="text-align:center "1267/p/tdtd width="91"p style="text-align:center "0.98/p/td/trtrtd width="93" rowspan="3"p style="text-align:center "脱脂奶粉/p/tdtd width="66"p style="text-align:center "水分/p/tdtd width="102"p style="text-align:center "2.67-4.34/p/tdtd width="75"p style="text-align:center "0.11/p/tdtd width="124"p style="text-align:center "1425/p/tdtd width="91"p style="text-align:center "0.85/p/td/trtrtd width="66"p style="text-align:center "蛋白/p/tdtd width="102"p style="text-align:center "31.23-38.59/p/tdtd width="75"p style="text-align:center "0.22/p/tdtd width="124"p style="text-align:center "898/p/tdtd width="91"p style="text-align:center "0.97/p/td/trtrtd width="66"p style="text-align:center "脂肪/p/tdtd width="102"p style="text-align:center "0.37-1.13/p/tdtd width="75"p style="text-align:center "0.02/p/tdtd width="124"p style="text-align:center "558/p/tdtd width="91"p style="text-align:center "0.97/p/td/trtrtd width="93" rowspan="5"p style="text-align:center "乳清粉/p/tdtd width="66"p style="text-align:center "水分/p/tdtd width="102"p style="text-align:center "2.43-6.69/p/tdtd width="75"p style="text-align:center "0.46/p/tdtd width="124"p style="text-align:center "494/p/tdtd width="91"p style="text-align:center "0.80/p/td/trtrtd width="66"p style="text-align:center "蛋白/p/tdtd width="102"p style="text-align:center "60.02-90.26/p/tdtd width="75"p style="text-align:center "0.92/p/tdtd width="124"p style="text-align:center "596/p/tdtd width="91"p style="text-align:center "0.97/p/td/trtrtd width="66"p style="text-align:center "脂肪/p/tdtd width="102"p style="text-align:center "3.44-9.88/p/tdtd width="75"p style="text-align:center "0.13/p/tdtd width="124"p style="text-align:center "379/p/tdtd width="91"p style="text-align:center "0.99/p/td/trtrtd width="66"p style="text-align:center "灰分/p/tdtd width="102"p style="text-align:center "2.09-5.44/p/tdtd width="75"p style="text-align:center "0.03/p/tdtd width="124"p style="text-align:center "362/p/tdtd width="91"p style="text-align:center "0.99/p/td/trtrtd width="66"p style="text-align:center "pH/p/tdtd width="102"p style="text-align:center "6.4-6.95/p/tdtd width="75"p style="text-align:center "0.02/p/tdtd width="124"p style="text-align:center "486/p/tdtd width="91"p style="text-align:center "0.96/p/td/tr/tbody/tablepstrong  三、红外/近红外分析技术在国内乳品行业的应用前景/strong/pp  前已述及,红外/近红外分析技术不需要样品的准备过程,是一种无损化的分析技术,同时该项技术具有快速准确的特点,能够满足实时、快速分析的要求。只要提供稳定可靠的定标,就可以对待分析样品给出准确的分析结果。随着我国乳品行业的发展,红外/近红外光谱分析技术必将逐步取代目前在国内占主流的传统化学分析方法,在乳制品及其相关行业发挥越来越大的作用。另外,随着乳品行业有关红外/近红外相关标准的逐步引入,未来红外/近红外技术在乳品行业也必将像饲料、粮油和纺织等其他行业有章可依、有据可鉴。/pp  基于近几年乳品行业发展的特点,个人认为未来国内红外/近红外技术在乳品行业的应用有以下两方面需求:/pp  其一,目前在国内,红外/近红外技术在乳品行业的应用以液态奶和乳粉的快速检测为主,主要因为国内目前乳品行业的消费产品类型(只包括液奶和乳粉)相对比较单一。在欧美诸多国家,红外/近红外技术在奶酪、黄油、稀奶油、浓缩乳清等类型样品的检测中已经发挥着很大的作用,可以预期随着国家由“喝奶”向“吃奶”的消费导向的普及,国内消费者对于奶酪,黄油等的消费需求会有所上升。后期,红外/近红外技术应用于奶酪、黄油以及浓缩乳清等样品的检测也必将逐渐深入。/pp  其二,国外的液体乳主要以保鲜的巴氏奶为主,这与其完善的冷链系统及经济水平有关。近几年我国的液体奶市场增长迅速,但主要以保质期较长的UHT奶为主。随着我国乳品工业的发展和人们对液体乳新鲜度的要求,近几年,国家大力推广“优质乳工程”,倡导企业生产新鲜度更高,营养更丰富的优质乳。/pp  加入国家“优质乳工程”的企业对奶源有了更高的要求,如更低的体细胞和细菌数,更高的蛋白和合理的脂肪含量,同时,对一些功能性指标(如乳铁蛋白,糠氨酸等)的检测也提出了要求。由此可见,随着国家“优质乳工程”的实施,企业自身的检测需求必将促使红外/近红外快速检测技术朝着准确度要高,检测指标更全面等方向进行改进和提高。可以预期,未来的红外/近红外检测技术不仅要准确地检测脂肪、蛋白、总固等常规指标,而且也需要具有检测一些功能性新指标,如巴氏奶和鲜奶中的乳铁蛋白,以及UHT奶中的糠氨酸等方面的检测能力。/pp style="text-align: right "span style="font-family: 楷体, 楷体_GB2312, SimKai "strong(供稿:FOSS 罗海峰)/strong/span/p
  • 美国Zeltex手持近红外谷物分析仪评测
    随着利曼中国成为美国Zeltex公司手持近红外分析仪(谷物、种子、肉类及其他食品方向)在中国地区的独家授权代理商后,颇受业界关注。近日,美国Zeltex公司2015款最新型手持近红外谷物分析仪抵达利曼中国北京总部,工程师团队第一时间对此产品进行了现场评测。 美国Zeltex公司专业设计制造的便携式手持近红外分析仪可在现场快速无损地检测谷物、种子、肉类及其他食品中的蛋白质、脂肪及水分,经过20多年的技术积淀,其产品在近红外领域拥有超过30项专利,能够为粮食、食品科研等领域提供完整的实验方案。这款最新型的ZX-50IQ手持近红外谷物分析仪,采用带密码锁的手提铝箱包装,尺寸46 x 33 x 12 cm,与14寸笔记本电脑包尺寸接近,重量不足5 kg。在安全性和便携性上,可谓做工扎实。 打开铝箱后,除主机(尺寸26 x 12 x 9 cm,重量仅有1.5 kg)外,产品还附带标准品及几款不同规格的样品杯,用于填充不同类型的样品,如小麦、大麦、玉米、大豆、高梁、油菜籽、豆粕等。 整个测量过程十分简单,主要有以下几步:仪器自检—标样测定—样品测定—读取数据。为获得较高准确性的数据,仪器会提示操作者进行多次测量并要求旋转样品杯。仪器已内置大量标准曲线,同时允许操作者连接电脑后新建标准曲线并对测量次数做出修改。 为验证数据的准确性,工程师特地从超市采购一袋带有营养成分标识的大豆,经过4次测定(约一分钟),实测蛋白质含量为35.7%,与标识仅有0.1%的偏差。该偏差在实验室近红外法测量大豆粗蛋白含量标准(GB/T 24870-2010)允许的偏差±0.4%范围之内,结果非常令人满意。需要注意的是,测量过程中,一定要保持样品杯透明面的清洁,填料时也要注意尽量压实。 综述,作为最新型便携式设备的ZX-50IQ手持近红外谷物分析仪,通过升级主板、固件及软件程序,较上代相比在精度和性能方面提升33%,可以更高效、准确的满足谷物现场检测工作,其特点可概括如下:■ 操作非常简单,上手容易;■ 便携式设计,体积小巧,不受使用环境限制;■ 6节5号电池即可供电,亦可外接交流电源;■ 样品使用量少,无需前处理,整粒无损检测;■ 分析速度快,不到1分钟即可获取结果;■ LCD显示屏直显数据,同时可外接电脑综合分析。 利曼中国自成立二十余年来,一直致力于质量控制与分析、智能科技产品的推广及应用,目前在中国拥有20多个销售联络处,6个维修服务中心,5个示范实验室,近百名员工以及众多的国内外合作伙伴。Zeltex手持近红外产品的引入,将进一步丰富利曼的产品线,更好地服务于国内分析检测领域,促进分析技术的提高。更多产品信息,请致电全国统一服务热线400-606-1718。
  • FOSS发布两款新的近红外分析仪
    NIRS DS 2500, NIRS DA 1650, 近红外分析的新阶段NIRS DS 2500多功能近红外分析仪NIRS DA 1650多功能近红外分析仪  近日,福斯集团公司在全球发布两款高性能的多功能近红外分析仪, NIRS DS 2500 和NIRS DA 1650。这两款新一代的近红外分析仪具有以下主要特点:  NIRS DS 2500光谱扫描范围宽(400-2500nm)。无论测试蛋白、水分还是高要求的指标,如纤维、灰分、氨基酸, NIRS DS 2500均可在1分钟内给出快速、准确的测定结果,来确保原料收购、生产控制和终产品质量控制。  NIRS DS 2500预装定标模型,可分析多种类型样品。 NIRS DS 2500 可以完全兼容NISYSTEM II分析方案和XDS分析方案,确保很好利用已有的NIR SYSTEM II和XDS数据库,直接整合,而不损失测试性能。  NIRS DA 1650是一款二极管阵列型近红外分析仪,扫描范围为1100-1650nm,适合于对水分、蛋白、脂肪等指标做准确的分析,它完全兼容福斯其他的近红外分析仪,例如InfraXact 和ProFoss在线分析仪,确保定标数据的快速使用和整合。  无论NIRS DS 2500,还是NIRS DA 1650,新机器投入使用非常简单,机器均经过工厂硬件标准化,光强度、带宽和波长精度在生产最后阶段完全控制校正,确保仪器之间的一致性。一旦机器投入使用,内置的测量标准帮助控制仪器性能,确保长时间无漂移,这就保证了仪器之间一致性的连续控制。  NIRS DS 2500和NIRS DA 1650设计高性能要求,确保可用于比较复杂的生产环境。仪器牢靠,使用简单,符合IP65标准,可经受温度、湿度、灰尘和震动的变化。  福斯的NIRS DS 2500和NIRS DA 1650采用用户界面友好的ISIscan Nova软件,支持最新的定标技术,支持网络连接功能。
  • 陈皮药材如何用近红外快速鉴别分析
    陈皮药材如何用近红外快速鉴别分析陈皮作为传统中药,其药用历史悠久。以陈皮为主药的二陈汤、苏子降气汤、六君子汤、平胃散等经典名方在历代本草中都有记述。而如今药典中记载的陈皮主要来源于部分芸香科植物的干燥成熟果皮,具有理气健脾,燥湿化痰的功效。根据品种与产地来划分,目前市售陈皮主要分为广陈皮、陈皮与杂陈皮三类,广陈皮主要来源于茶枝柑,陈皮则是来源于大红袍、福橘及温州蜜柑的栽培变种,而来自杂柑类、宽皮橘类、橙柚及柠檬等果皮混杂陈皮入药的情况,市场称之为杂陈皮。杂陈皮与陈皮药材价格差异也十分悬殊,因此市场也出现相应商品混杂入药的现象,导致陈皮药材基源复杂,药材品质难以保证。成都中医药大学刘友平课题组创新性地采用近红外光谱分析技术对陈皮药材的品种识别和黄酮类成分的检测展开研究。1品种识别选取广陈皮 17 批,川陈皮 8 批,在 60 ℃ 烘箱中干燥后粉碎,过 80 目筛,取 8g 样品粉末放置样品杯中扫描近红外光谱,扫描范围 10000cm-1 – 4000cm-1,分辨率 8cm-1,扫描次数 64 次,每个样品重复装样后扫描 3 次。▲ 陈皮药材近红外光谱图采用聚类分析的算法对不同预处理方法、建模波段和潜变量进行考察,根据综合评价指标 Q 值的大小选出最优结果,前 3 个最好模型参数如下表所示。序号预处理方法建模波段潜变量数Q1SNV, db110000-7800, 6600-5400, 4800-440060.90692db1, ncl10000-7404,7144-500030.88743mf10000-400070.8836采用最佳参数建立的模型,从潜变量的立体得分图可以清楚看出两类陈皮药材在空间上相互独立,并用 12 批未参与建模的陈皮药材进行外部验证,仅有 1 批样品被误判,说明模型可以准确地识别广陈皮和川陈皮。▲ 陈皮药材前三潜变量得分空间分布图2含量分析目前针对陈皮药材中化学成分主要集中在挥发油、黄酮类和生物碱成分,而黄酮类又是一类比较重要的有效化学成分,具体还可细分为芸香柚皮苷、橙皮苷、川陈皮素和橘皮素。通过高效液相色谱法分析不同栽培品种陈皮药材种所含的 4 种黄酮类成分可以发现除芸香柚皮苷外,其余 3 种黄酮类成分在不同品种的药材种含量差异明显,且仅有川陈皮、广陈皮以及杂陈皮中的椪柑符合药典对陈皮药材的含量标准。因此仅对三种含量有明显差异的黄酮类成分进行近红外光谱分析,取 69 批不同来源的陈皮样品采集近红外光谱,参数设置与品种鉴别时类似,取样减少至 5g,仪器扫描次数改为 32 次,其余参数保持不变。▲ 陈皮药材近红外光谱图分别考察了不同的光谱预处理方式、建模波段以及潜变量对三种的影响,此外还剔除了对建模影响较大的样品,最终选取的的模型效果如下。▲ 橙皮苷模型预测散点图▲ 川陈皮素模型预测散点图▲ 橘皮素模型预测散点图最终三种黄酮成分模型对独立验证集样品预测的均方根误差分别为 0.284,0.054 和 0.014。与传统分析方法 HPLC 相比,近红外分析操作简便,快速无损,结果准确,且能够多组分同时测量,这对陈皮药材的质量控制及在线监测等方面,都有极高的应用价值。3相关仪器▲ NIRFlex N-500研究中所采用的近红外光谱仪就是来自步琦的 NIRFlex N-500,针对医药研发、生产质控等不同环节都能提供可靠的解决方案。 1偏振干涉仪NIRFlex N-500 独特的偏振干涉仪设计,相比经典傅里叶近红外光谱仪,在简化光路空间的同时,极大地提升了设备的抗震能力,更能通过实验室、生产车间、仓库等多种复杂测量环境的考验。 2模块化NIRFlex N-500 模块化的设计,4 种测量池以及多达近 20 种的测量附件,能够满足几乎所有的测量场景。更换快捷方便,一台机器就能完成多样品形态的测量分析工作。 3双灯源NIRFlex N-500 贴心的双灯源设计,一旦主灯能量降低到阈值之下,就自动切换至副灯,不会造成分析间断而影响生产效率。 4校准标准物NIRFlex N-500 内置校准标准物,搭配功能全面且强大的软件套件,保证数据安全,满足 GMP 及 21 CFR Part 11 的要求,为制药行业提供安全稳定的分析手段。有关更多详细信息,请与我们联系。4参考文献闫珂巍,. 基于近红外光谱技术快速定性鉴别广陈皮模型的建立[J]. 中草药, 2015, 46(20): 3096-3099.李旻. 不同栽培品质陈皮药材品质等同性研究[D]. 成都中医药大学, 2017.
  • 福斯发布 Infratec 近红外谷物分析仪新品
    p style="text-align:center "img src="https://img1.17img.cn/17img/images/201909/pic/54fa8630-de7e-46a6-9878-001805dd5402.jpg!w400x400.jpg" alt="福斯 Infratec 近红外谷物分析仪"//ppstrong  /strong2019年4月,福斯全新一代Infratec近红外谷物分析仪正式上市。该产品支持数字化连接,多台仪器通过互联网络轻松管理,随时掌握生产数据,帮您建立企业自己的大数据;全新触控屏及软件全程引导分析操作,人人都可准确操作 放样即自动启动分析,操作简单到不能再简单 可选的Pin码功能,实现分级管理;工业级硬件,符合防尘防水飞溅IP54标准,保证生产安全。/ppstrong  产品介绍:/strong/pp  采用近红外透射技术,利用全息数字光栅进行全谱扫描,可获得丰富的光谱信息 光纤导光光路设计,保持仪器间高度一致性,保证定标传递的准确度 综合性ANN定标,基于FOSS 谷物行业30年丰富的谷物定标数据库,具有广泛的样品适用性和高精准度。/pp  快速检测各类谷物、豆类等整粒谷物及面粉等粉状样品,包括小麦、大麦、各类麦子、玉米、大豆、高粱、大米、小米、稻谷、各类油籽等。检测参数包括水分、蛋白质、油分、容重、淀粉、碱消值、各种氨基酸、纤维、灰分、湿面筋、沉降值等。/pp  适用于粮食收购、面粉、榨油、植物育种、麦芽制造、生物燃料、酿造及焙烤等。/pp  工业级硬件符合官方标准EN15948,防尘防水飞溅IP54规范要求,保证生产安全。/ppstrong  技术参数:/strong/pp  分析时间:60秒10个子样品,包括容重分析。启动动态子采样后,分析时间缩短至40秒。/pp  路径长度:可变单元实现6-33mm的自动控制。/pp  结果报告:默认显示在显示器上,可发送到PC/LIMS和打印机端口。/pp  回归程序:ANN(人工神经网络) PLS(偏最小二乘法)/pp  子样品数:1~30个字样品(标准为10个子样品)/pp  专利方法:美国专利 US 4,944,589 欧洲专利 EP 0 320 77 B1,8704886-4主要特点:/pp  1.快速检测,结果精准 /pp  2.无需化学试剂,整粒样品直接检测 /pp  3.按质论价,行业公认标准。/ppstrong  技术支持:/strong/pp  福斯中国拥有一支专业的技术团队,为您提供行业技术应用咨询及技术支持。/pp  a href="https://www.instrument.com.cn/netshow/C341332.htm" target="_blank"strong福斯 Infratec 近红外谷物分析仪/strong/a/ppbr//p
  • 【瑞士步琦】您最关心的近红外定量分析小知识我都有!
    红外定量分析小知识近红外分析作为一种二次分析方法,需要借助模型来对采集的近红外光谱进行计算,从而得到用户关注的指标的结果,可以简单地将这个模型理解成类似与指纹图谱的数据库,只要这个数据库足够全面,就能快速准确地提供分析结果。通常来说,初次接触近红外以及想要独立建立近红外定量分析模型的用户最为关心的问题就是:我需要多少个准备多少个样品才能建立起一个“能用”的模型呢?在回答这个问题之前,需要先了解近红外分析的工作流程。近红外分析的工作流程收集建模样品获取样品参考值采集建模样品的近红外光谱建立模型验证模型用于未知样品的分析日常分析与监测通过上述分析流程可以看出,之前提到的问题是对近红外这项分析技术基础但很核心的疑问。其实问题的答案也很简单,一句话概括就是足量的具有代表性的样品。虽然这个回答很简略,但其中包含的要点却不少。展开来说分为两方面:一个是足量的样品,另一方面是代表性的样品。这两点在GB/T 29858 《分子光谱多元校正分析通则》中有详细的描述:对于校正集至少需要 6 倍于建模潜变量(建模时的一个重要参数)大小的样品,当潜变量小于 4 时,样品数量不应少于 24 个。样品应包含所分析的成分。收集的样品成分含量变化范围应适当超过日常分析的范围(10 %-15 %)。收集的样品成分含量分布需服从均匀分布。对于验证集至少需要 4 倍于建模潜变量大小(与校正集潜变量相同)的样品,当潜变量小于 5 时,样品数量不应少于 20 个。收集的样品成分含量的跨度和标准偏差应是校正集的 95% 到 100% 之间。从国标中不难看出,建立一个分析模型至少需要接近 50 个具有代表性的样品,当然这只是最低的要求,如果想要获得一个更加稳健的模型,得到更为准确的分析结果,增加更多具有代表性的样品到模型中则是必不可少的。下期的近红外定量分析知识将为大家分享如何系统地评价模型的性能,欢迎关注步琦实验室服务号,及时获取最新信息。如果您在近红外仪器使用过程中还有其他问题,也可通过下方的联系方式告诉我们,会有专业的技术人员竭诚为您答疑解惑。
  • 红外沼气分析仪应用新趋势——模块化红外气体传感器
    本文介绍了检测沼气成分的五种主要方法:奥氏气体分析法、热催化燃烧检测法、热导元件检测法、气相色谱GC检测法、红外气体分析法,分析了这五种检测方法的特点及其在我国沼气服务体系中的适应性,并总结了目前最适宜我国大中型沼气工程沼气成分监测的分析方法是红外沼气成分分析技术。1、奥氏气体分析法 奥氏气体分析法是一种经典的化学式手动分析方法,该方法是利用溶液吸收法来测定CO、CO2和O2浓度,CH4和H2浓度则在爆炸燃烧法后用吸收法测定,剩余气体为N2。目前传统的奥氏气体分析方法在沼气成分检测中应用较少。针对农村沼气服务体系的特定应用,通常采用检测管法,该方法操作更简便,常用的检测管有H2S、O2、CO2、CO等,但没有直接测量CH4浓度的检测管,CH4浓度是通过计算所得,即100%-[ CO2 ]-[空气]-[H2S]-[ CO ]等,因此存在一定误差。 奥氏气体分析仪具有结构简单、价格便宜、维修容易等优点,常用于CO2、O2、CO、H2、烃类等气体浓度的测定,在实验室里应用广泛。但该仪器长期运行成本高,仅每年购买试剂和玻璃器皿至少要1万多元,且必须对气体进行人工取样,才可在实验室内进行分析,其中分析人员的操作技能和“态度”对分析的精确度也有着较大影响。同时奥氏气体分析仪只能对单一成分逐个进行检测分析,不具备多重输入和信号处理功能,分析费时,操作繁琐,响应速度慢,效率低,难以实时在线地分析现场工况,现逐渐被全自动分析仪器替代。2、热催化燃烧检测方法 热催化燃烧检测方法是利用两只热催化(黑白)元件——补偿元件和桥臂电阻构成惠斯顿电桥加一恒定电压,将铂丝加热到500℃,当遇到空气中的可燃气体时,测量元件在催化剂的作用下,在元件表面发生催化反应,使得温度升高,阻值增大,电桥输出不平衡,以此来测定甲烷浓度。该方法是检测甲烷泄漏最简单、经济的方法,在我国煤矿安全检测领域具有广泛应用。但载体催化元件只能检测0~4%的甲烷浓度,当空气中甲烷浓度超过5%后,元件会发生“激活”现象,造成永久损坏。同时检测设备需要频繁标定,热催化元件的仪器使用寿命一般在1年内,精度较差(10%),而在高H2S条件下,易造成传感器中毒甚至报废,使用寿命大大缩短。3、热导元件检测方法 不同气体的导热系数存在差别,热导元件检测方法就是根据这一特性,来测定气体的体积浓度。沼气的主要成分是CH4和CO2 ,被测沼气的导热系数由CH4和CO2共同决定。对于彼此之间无相互作用的多组分气体,其导热系数可近似地认为是各组分导热系数浓度的加权平均值。因此,根据沼气的导热系数与各组分导热系数之间的关系,就可以实现沼气多组分气体浓度的测定。 目前该检测方法已广泛应用在煤矿瓦斯抽排领域,也可用于沼气中甲烷浓度的测量。但该类型传感器使用寿命一般在2年左右,且该传感器对于低浓度测量,具有较大局限性,如无法测量浓度低于5%的甲烷浓度,如果用于甲烷的泄露报警将会造成较大误差。4、气相色谱GC检测方法 气相色谱GC分析方法是利用气体物理吸附能力的差别,将采样的气体在色谱中分离然后,热导检测器通过热电阻与被测气体之间热交换和热平衡来实现其CH4、CO2、O2等气体浓度的检测,该检测方法分离效能高,对物理化学性能很接近的复杂混合物质都可以进行定性、定量检测,灵敏度较高。气相色谱分析原理示意图 由于柱温与载气对分离结果的具有较大影响,其中柱温对分离结果的影响比载气的大,所以在检测过程中,除了要经常更换色谱柱外,还需要对色谱柱温和载气流速进行适度的调节,以免影响分离结果造成误差。同时色谱价格相对较贵,需要采样,不能实现在线分析。5、红外气体分析方法 当对应某一气体特征吸收波长的光波通过被测气体时,其强度将明显减弱,强度衰减程度与该气体浓度有关,两者之间的关系遵守朗伯一比尔定律,也就是红外光谱检测方法的基本原理。红外气体分析技术作为一种快速、准确的气体分析技术在实际应用中十分普遍。由于该方法是采用物理原理,分析气体不与传感器发生反应,因此传感器使用寿命很长,该类型传感器不仅可以用于测量沼气泄露的低浓度报警,也可以用于高浓度的沼气成分测量。 由上表可知,红外气体分析技术相较于奥氏、热催化、热导元件、气相色谱气体分析技术,具有响应时间快、灵敏度高、使用寿命长、仪器操作方便等优势。但对国内用户而言,红外气体分析技术普遍存在NDIR传感器价格昂贵、维护困难、产品质量参差不齐等问题。针对这些问题,四方仪器对NDIR传感器进行了升级,将红外传感器进行模块化设计,一个传感器对应检测一个气体组分,拆卸维护方便,使得仪器在体积、性能、维护、价格上具有以往仪器无法比拟的优势。 如沼气分析仪(智能便携型)Gasboard-3200Plus,采用自主知识产权的模块化红外传感器,可实现CO、CO2、CH4等多组分气体浓度的快速测量。同时其H2S、O2浓度测量可拓展,流速、流量可采集,体积轻量化,APP终端智能化等创新设计,弥补了沼气成分、流量一台仪器不可同时测量,长距离、大规模沼气项目监测设备不易携带,监测数据获取流程复杂等的不足,可广泛用于生物沼气、污水处理废气和垃圾填埋气体等沼气成分的可靠准确且经济有效的监测。在满足行业标准应用的同时,仪器测量组分还可根据用户需求定制,轻巧便携,实用性大大提高。模块化红外气体传感器工作原理6、结论 在沼气技术服务体系建设中,气体分析仪发挥了十分重要的作用,在选择配置时需要考虑仪器的使用寿命、功能、质量保障体系、实用性、性价比等因素。在奥氏吸收、热导元件、热催化、气相色谱、红外光谱的气体分析仪中,从寿命、功能、实用性等方面考虑,可优先选择红外方法的仪器;如果仅测量甲烷浓度或检测泄露,可以考虑基于热导和热催化原理的仪器;如果用于实验室定性与定量的精准测量,也可以考虑色谱分析方法。 但随着沼气生产和过程控制要求的逐渐提高,不断实现技术创新升级的红外沼气分析仪将逐渐取代奥氏吸收、热导元件、热催化、气相色谱等气体成分检测技术,成为我国大中小型沼气工程沼气成分监测与工艺过程调控必不可少的气体成分监测设备。(来源:沼气圈)
  • 助力刑侦能力考核,且看岛津红外油漆样品分析方案
    油漆是刑侦案件当中的常用物证,现场遗留漆片,涉案物品上油漆类附着物的检验,能够为案件侦破提供方向和思路。近期公安系统刑侦考核,漆片类分析吸引众多关注。岛津红外系列产品,轻松应对油漆物证鉴定需求。一 典型应用红外显微光谱法分析车辆碰撞现场微量油漆物证汽车车身油漆由底漆层、中涂层、面漆层、清漆层等组成,不同厂家和车型对应不同的车身油漆。所以汽车油漆隐含着汽车车型的重要信息,利用红外显微光谱法对车辆碰撞现场采集的微量油漆碎片与肇事嫌疑车辆油漆样本进行红外光谱比对分析,为交通肇事事故分析提供了强有力的技术依据。样品处理:使用挥发性溶剂对采集到的样本表面进行除杂处理(灰尘、污染物),挥干后对样本进行切片取样,最后使用金刚石池透射法分析。车辆取样样本进行对比分析,结果表明:1#嫌疑车辆取样样本与事故现场发现油漆碎片在1300 cm-1~1600 cm-1 区间差异性比较明显;而2#嫌疑车辆取样样本与事故现场发现油漆碎片结果一致,所以其作为肇事车辆可能性更大。对2#嫌疑车辆样本光谱图进行检索,得到其成分结果为邻苯二甲酸二辛酯(DIO_PHTA)。二 其他典型应用速览油漆碎片的测试(显微金刚石池)图7:木材上的油漆碎片,用金刚石压平,尺寸:约 70x30μm图8:不同位置的油漆差谱图9:对差谱进行光谱检索,结果为甲苯胺红L三 关联仪器AIRsight 红外拉曼显微镜◆ 同一个显微镜,同一个软件,实现红外和拉曼两种光谱技术从样品观察、定位标记、多模式测定到数据分析的全工作流。◆ 能够在不移动样品的情况下,对同一样品的微小区域分别获得互补的红外和拉曼光谱信息,以实现多光谱维度的表征。IRXross通用型红外光谱仪◆ 适用多种应用的高性能◆ 内置新一代分析智能◆ 完全符合日益严格的法规要求本文内容非商业广告,仅供专业人士参考。
  • 近红外水光谱组学:一种新的分析手段
    p style="text-align: left "  近红外(NIR)光谱是一种分子光谱,不仅体现了分子的结构和官能团等分子本身的特征,还体现了包括氢键在内的分子间或分子内相互作用。水分子在100 nm到100 μm的光谱区间都有吸收,在大部分光谱区域有很强的吸收,导致很多光谱技术难以用于水溶液体系或含水量较多的分析体系。但是在近红外光谱区间,水的吸收相对较弱。因此,近红外光谱技术可以测量水溶液体系或含水量较多的样品。同时由于水在化学结构上的特点,其近红外光谱极易受到扰动因素的影响,比如温度、压力或者溶质。当水分子周围环境改变时,近红外光谱也会随之发生变化,从变化的光谱中我们可以获取结构及相互作用的信息。所以近红外光谱为水及含水体系的研究提供了一种新的分析手段,通过水的光谱信息随扰动条件的变动可以建立新的分析方法。br//pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 300px " src="https://img1.17img.cn/17img/images/201907/uepic/29dd919c-5601-470f-91ed-83048cbc6358.jpg" title="579ba6a9-02f4-4ced-878f-9f5948cd9b8f.jpg" alt="579ba6a9-02f4-4ced-878f-9f5948cd9b8f.jpg" width="450" height="300" border="0" vspace="0"//pp style="text-align: center "strong南开大学化学学院 邵学广教授/strong/pp  早在1925年,Collinssup[1]/sup和Waggenersup[2]/sup等分别研究了液态水的吸收光谱与温度的相关性,发现温度的改变会对水的吸收光谱产生明显的影响。随着温度的升高,水的吸收峰向高波数移动并且强度逐渐增强,说明液态水是由不同氢键结构的水分子组成的混合物。Inoue等sup[3]/sup研究了水的结构随压力的变化,发现当压力升高时,水的近红外吸收峰向低波数移动,说明水的氢键结构增强,结构化程度升高。除了外界环境对水结构的影响,溶质的加入也会使水的结构发生变化。Gowen等sup[4]/sup研究了不同温度下无机盐(NaCl、KCl、MgCl2和AlCl3)水溶液的近红外光谱,通过提取与水结构相关的特征光谱信息,分析了特征光谱随温度和离子浓度的变化。结果表明KCl和NaCl倾向于破坏水氢键网络结构中的氢键,而MgCl2和AlCl3倾向于促进水分子之间的氢键形成。Czarneckisup[5]/sup采用二维相关谱技术研究了N-甲基乙酰胺与水的相互作用,通过对水溶液的近红外光谱的分析,发现了水分子和两个N-甲基乙酰胺分子相互作用形成氢键的光谱特征。这些研究都表明当加入扰动条件(如温度,压力,溶质等)时,水的近红外光谱会发生明显变化,通过变化的水光谱,可以反映出结构的改变或水与溶质之间的相互作用。/pp  2006年,Tsenkovasup[6]/sup在研究了不同质量牛奶制品的近红外光谱特征的基础上首次提出了“水光谱组学(Aquaphotomics)”并开展了一系列研究工作。水光谱组学通过研究体系中水的光谱信息在温度和溶质(种类和含量)等扰动下产生的变化,了解不同物质及含量对水结构产生的影响,再通过水的结构推断溶质的结构与功能。研究结果表明,利用水的近红外光谱随扰动条件的变动不仅可以对疾病或异常状态进行无损诊断,而且还可以作为“镜子”反映溶质的动力学过程以及外部条件对溶液产生的影响。比如,利用水化层中水结构的信息实现了对大豆花叶病潜伏期的诊断sup[7]/sup、通过检测大熊猫尿液中的水的光谱判断了大熊猫是否处于发情期sup[8]/sup,另外,也发现了细菌的代谢物也对水的光谱有影响从而实现了对溶液中细菌含量的定量分析sup[9]/sup。/pp  在我们的研究工作中,将水作为探针,利用水的结构对温度敏感的特点,利用温控近红外光谱技术,通过提取随温度变化的水光谱信息对溶质进行了结构和定量分析。在结构分析方面,首先研究了小分子溶质(如葡萄糖、寡肽、醇等)对水结构的影响。通过水在一级倍频区吸收带的变化,发现葡萄糖使水的有序结构增强,为解释糖类化合物在生物体系中的“保护作用”提供了新的依据sup[10]/sup。利用温度效应,研究了寡肽(五聚赖氨酸水、五聚天冬氨酸)水溶液的近红外光谱,利用独立成分分析提取了水的特征光谱信息,观察到寡肽与水的相互作用,发现寡肽的加入会使水的热稳定性增强,五聚赖氨酸水溶液中疏水水合占主导地位,水分子在氨基酸残基的烷基侧链周围形成“水笼” 而在五聚天冬氨酸水溶液中亲水水合为主要作用,水分子通过一个氢键与寡肽分子相结合。进一步说明水可以作为探针来研究分子间的相互作用sup[11]/sup。/pp  除了小分子之外,大分子(比如蛋白质、高分子聚合物)与水的相互作用也一直是大家关心的问题。采用连续小波变换(CWT)提高近红外光谱的分辨率,通过分析人血清白蛋白(HSA)和水的光谱信息随温度的变化,研究了HSA二级结构的热变性过程,发现水结构变化可以反映HSA的展开过程sup[12]/sup。进一步将该方法应用于血清分析,结合蒙特卡罗-无信息变量消除法(MC-UVE)筛选出与蛋白质特征吸收相关的变量研究了不同水结构在蛋白质的热变性过程中的作用sup[13]/sup。应用二维相关光谱分析了不同温度下卵清蛋白水溶液的近红外光谱,研究了卵清蛋白受热形成凝胶的过程水的作用,结果表明,含有两个氢键的水结构变化能够很好的反映蛋白质的结构转变,并且在蛋白形成凝胶的过程中促进了凝胶结构的形成sup[14]/sup。采用高维算法NPCA研究了具有LCST行为的高分子聚合物聚(甲基丙烯酸N,N-二甲氨基乙酯)(PDMAEMA)随温度升高聚集过程中水的作用,通过对水光谱的分析,得到了与聚合物链形成两个氢键的水分子(S2)在聚集过程中起到重要的桥联作用,当温度升高,桥联的S2氢键结构遭到破坏,高分子链发生聚集形成胶束,研究结果说明水可以作为研究聚合物聚集过程的探针sup[15]/sup。通过对水的温控近红外光谱进行分析,得到了水的光谱中容易受到温度影响的光谱变量,并发现所选变量可用于不同溶液的识别sup[16]/sup。同时,将水作为探针,采用PCA和二维相关光谱分析的方法分析了血清样品的近红外光谱,得到了与血清样品差异相关的水结构的特征光谱,并发现这种特征光谱与疾病之间的相关关系sup[17]/sup。/pp  借助化学计量学方法提取水结构信息,对水溶液体系的定量分析开展了研究工作。在水-乙醇-丙醇体系中,温度和浓度的变动均会引起水光谱的变化,利用多级同时成分分析(MSCA)建立了两级模型,分别描述光谱与温度之间的定量关系(QSTR)和光谱与浓度之间的定量关系(QSCR),实现了温度效应的定量描述和浓度的定量计算sup[18,19]/sup。提出并建立了互因子分析(MFA)方法,通过提取不同温度或不同浓度下水的吸收光谱中包含的“共同”光谱特征实现了温度或浓度的定量分析,成功应用于水溶液以及实际血清样品中葡萄糖的定量检测sup[20]/sup。这些研究成果都表明当施加一定的扰动因素时,水可以作为敏感的探针进行定量分析。/pp  近红外水光谱组学为近红外光谱在生物和生命体系分析中应用开辟了新的领域,温控近红外光谱技术为近红外光谱的应用提供了新的思路,化学计量学为近红外光谱技术在实际复杂体系分析中的应用提供了技术手段。随着研究工作的不断深入,越来越多的水的近红外光谱特征将得到深度挖掘,成为探索和理解水在化学和生物过程中作用与功能的重要信息来源。/pp strong 参考文献:/strong/ppspan style="font-family: " times="" new=""  [1] J.R. Collins. Change in the infra-red absorption spectrum of water with temperature. Phys. Rev. 192. 26, 771-779./span/ppspan style="font-family: " times="" new=""  [2] W.C. Waggener. Absorbance of liquid water and deuterium oxide between 0.6 and 1.8 microns. Anal. Chem. 1958, 30, 1569-1570./span/ppspan style="font-family: " times="" new=""  [3] A. Inoue, K. Kojima, Y. Taniguchi, K. Suzuki. Near-infrared spectra of water and aqueous electrolyte solutions at high pressures. Solution Chem. 1984, 13, 811-823./span/ppspan style="font-family: " times="" new=""  [4] A.A. Gowen, J.M. Amigo, R. Tsenkova. Characterisation of hydrogen bond perturbations in aqueous systems using aquaphotomics and multivariate curve resolution-alternating least squares. Anal. Chim. Acta 2013, 759, 8-20./span/ppspan style="font-family: " times="" new=""  [5] M.A. Czarnecki, K.Z. Haufa. Effect of temperature and concentration on the structure of n-methylacetamide-water complexes: Near-infrared spectroscopic study. J. Phys. Chem. A 2005, 109, 1015-1021./span/ppspan style="font-family: " times="" new=""  [6] R. Tsenkova. Aquaphotomics and chambersburg. NIR news 2006, 17, 12-14./span/ppspan style="font-family: " times="" new=""  [7] B. Jinendra, K. Tamaki, S. Kuroki, M. Vassileva, S.Yoshida, R. Tsenkova. Near infrared spectroscopy and aquaphotomics: Novel approach for rapid in vivo diagnosis of virus infected soybean. Biochem Biophys Res Commun. 2010, 397, 685-690./span/ppspan style="font-family: " times="" new=""  [8] K. Kinoshita, M. Miyazaki, H. Morita, M. Vassileva, C.X. Tang, D.S. Li, O. Ishikawa, H. Kusunoki1, R. Tsenkova. Spectral pattern of urinary water as a biomarker of estrus in the giant panda. Sci. Rep. 2012, 2, 856./span/ppspan style="font-family: " times="" new=""  [9] Y. Nakakimura, M. Vassileva, T. Stoyanchev, K. Nakai, R. Osawa, J. Kawanod, R. Tsenkova. Extracellular metabolites play a dominant role in near-infrared spectroscopic quantification of bacteria at food-safety level concentrations. Anal. Methods 2012, 4, 1389-1394./span/ppspan style="font-family: " times="" new=""  [10] X.Y. Cui, X.W. Liu, X.M. Yu, W.S. Cai, X.G. Shao. Water can be a probe for sensing glucose in aqueous solutions by temperature dependent near infrared spectra. Anal. Chim. Acta. 2017, 957, 47-54./span/ppspan style="font-family: " times="" new=""  [11] D. Cheng, W.S. Cai, X.G. Shao. Understanding the interaction between oligopeptide and water in aqueous solution using temperature-dependent near-infrared spectroscopy. Appl. Spectrosc. 2018, 72, 1354-1361./span/ppspan style="font-family: " times="" new=""  [12] M.L. Fan, W.S. Cai, X.G. Shao. Investigating the structural change in protein aqueous solution using temperature-dependent near-infrared spectroscopy and continuous wavelet transform. Appl. Spectrosc. 2017, 71, 472-479./span/ppspan style="font-family: " times="" new=""  [13] X.W. Liu, X.Y. Cui, X.M. Yu, W.S. Cai, X.G. Shao. Understanding the thermal stability of human serum proteins with the related near-infrared spectral variables selected by Monte Carlo-uninformative variable elimination. Chin. Chem. Lett. 2017, 28, 1447-1452./span/ppspan style="font-family: " times="" new=""  [14] L. Ma, X.Y. Cui, W.S. Cai, X.G. Shao. Understanding the function of water during the gelation of globular proteins by temperature-dependent near infrared spectroscopy. Phys. Chem. Chem. Phys. 2018, 20, 20132-20140./span/ppspan style="font-family: " times="" new=""  [15] L. Wang, X.W. Zhu, W.S. Cai, X.G. Shao. Understanding the role of water in the aggregation of poly (n, n-dimethylaminoethyl methacrylate) in aqueous solution using temperature -dependent near-infrared spectroscopy. Phys. Chem. Chem. Phys. 2019, 21, 5780-5789./span/ppspan style="font-family: " times="" new=""  [16] X.Y. Cui, J. Zhang, W.S. Cai, X.G. Shao. Selecting temperature-dependent variables in near-infrared spectra for aquaphotomics. Chemom. Intell. Lab. Syst. 2018, 183, 23-28./span/ppspan style="font-family: " times="" new=""  [17] X.Y. Cui, Y.M. Yu, W.S. Cai, X.G. Shao. Water as a probe for serum-based diagnosis by temperature-dependent near-infrared spectroscopy. Talanta 2019, 204, 359-366./span/ppspan style="font-family: " times="" new=""  [18] X.G. Shao, J. Kang, W.S. Cai. Quantitative determination by temperature dependent near-infrared spectra. Talanta 2010, 82, 1017-1021./span/ppspan style="font-family: " times="" new=""  [19] J. Kang, W.S. Cai, X.G. Shao. Quantitative determination by temperature dependent near-infrared spectra: A further study. Talanta 2011, 85, 420-424./span/ppspan style="font-family: " times="" new=""  [20] X.G. Shao, Y.M. Yu, X.Y. Cui, W.S. Cai. Mutual factor analysis for quantitative analysis by temperature dependent near infrared spectra. Talanta 2018, 183, 142-148./span/pp style="text-align: right "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "(南开大学化学学院 邵学广、孙岩、崔晓宇)/span/strong/p
  • 世界第一台拉曼红外合一的手持式分析仪上市
    p  现场应急人员在面对未知化学物质时,会面临一些要立即解决的挑战,其中就包括选择最适合的技术来评估当前事态。目前,用于未知固体和液体识别的两种应用最广泛的技术分别是a href="http://www.instrument.com.cn/zc/34.html"拉曼/a和红外光谱法。/pp  物质对各项技术的反应程度随其独特的分子结构而定。某些物质对红外光谱分析反应明显,而另一些则可能更适合采用拉曼光谱法。所以,红外光谱和拉曼光谱一起使用时,可提供更广泛的未知物质识别范围。然而,也造成了广大用户经常要花费精力去选择是红外、还是拉曼,或者必须购买、携带两台仪器。如今,这种情况可以得到解决了:在2015年3月初的Pittcon上,赛默飞推出了将红外光谱和拉曼光谱“合二为一”的分析仪——Gemini,Gemini分析仪是世界上第一台将拉曼光谱和红外光谱技术结合到一起的手持式分析仪。/pp style="text-align: center "img alt="" src="http://img1.17img.cn/17img/old/NewsImags/images/201542915248.jpg" style="width: 389px height: 400px "//pp  红外光谱和拉曼光谱“合二为一”的Gemini分析仪即将在中国推出,借此机会,仪器信息网采访了赛默飞相关人员,详细介绍了Gemini解决了哪些技术上的难题、带来哪些应用上的优势、最适合的应用是哪些等问题。/pp style="text-align: center "span style="color:#0000ff "strong手持拉曼和红外产品方面拥有丰富经验/strong/span/pp  strongGemini手持式光谱分析仪,将傅立叶红外光谱和拉曼光谱技术集成到一台手持式仪器中,解决了哪些技术上的难题?/strong/pp  strong赛默飞:/strong在Gemini的开发过程中,其中一个难点就是如何将两种技术合二为一。不过,赛默飞在手持拉曼和红外产品方面丰富的经验,拥有非常成熟的产品,如基于拉曼光谱法的FirstDefender分析仪,以及基于傅里叶变换红外(FTIR)光谱法的TruDefender分析仪。在丰富的经验基础上,以及不断的设计和优化,我们成功的将这两种技术集成到单台手持分析仪上。/pp  Gemini分析仪重量仅为1.9Kg,甚至比某些单独的手持拉曼或红外光谱的重量还要轻便,可见产品的设计是非常紧凑的。而且秉承了赛默飞手持拉曼和红外坚固性和环境性,Gemini分析仪通过了最新的美国军标测试,美国军标测试内容包括跌落、敲击、振动、温度、防水等等。/pp  总的来说,Gemini将两种技术集成到单台设备中,还保持了小巧轻便和坚固耐用的特点,能够方便用户带到任何地方进行测试。/pp style="text-align: center "span style="color:#0000ff "strong style="text-align: center "双重技术:补充性和验证性/strong/span/pp  strong拉曼光谱和红外光谱集成到一起,将带来哪些应用上的优势?/strong/pp  strong赛默飞:/strong大家都知道拉曼光谱和红外光谱有很长的历史,是非常成熟的光谱技术。在红外和拉曼光谱法中,仪器需要采集未知物质的光谱“指纹”,然后将采集到的指纹与参考数据库进行比较。两种方法都是经过实验室验证的精确光学技术,在特定的应用中具有显著的优势。红外光谱和拉曼光谱法可测定未知物质样本中能量与分子键的相互作用。红外光谱测定的是振动分子中分子键吸收了多少能量 即红外光在穿过物质后的剩余能量。与之相比,拉曼光谱法测量的是经激光激发后振动分子散射的能量。/pp  Gemini分析仪结合了两种技术,使用户可以利用这两种技术的能力来分析和识别未知化合物,扩大了样品的分析范围并且还可以互相补充并互相验证。在Gemini上,操作者可以非常简单快速的切换两种技术进行样品分析。并且,由于不必为了减轻重量而牺牲功能,操作人员能比以往更快速地获得可靠的分析信息。/pp  Gemini的操作界面也是一大亮点,首先软件已经内置到设备当中,直观和图形化的操作界面使得软件操作异常简单,只需简单的培训用户就可操作这种光谱设备。对于新用户,软件里的扫描帮助功能可以引导用户正确的扫描样品。老用户由于对我们的手持拉曼和红外设备软件操作并不陌生,因此同样类型的软件更能使得他们操作得心应手。另外,Gemini在一些细小之处也有改进,如触摸屏和键盘的设计,即使佩戴手套也可以操作 两种技术的操作软件、流程保持一致使得用户操作非常简化。/pp style="text-align: center "span style="color:#0000ff "strong适用于化学品和爆炸物识别/strong/span/pp  strongGemini手持式光谱分析仪/strongstrong最适合的应用是哪些?/strong/pp  strong赛默飞:/strong现在越来越多的行业需要快检技术或者是希望在现场能够给出结果,例如安检、公安、海关、检验检疫等行业都有对物质快速定性的需求,手持拉曼和红外光谱等分析技术满足了在现场对不明化学物快速定性的需要。/pp  结合了拉曼和红外光谱两种技术的Gemini内置了大量数据库和专利的软件算法,可以自动进行光谱分析并给出清晰的结果,同时,我们的技术人员不断优化数据库和软件,为的就是使分析结果更加准确和快速。/pp  Gemini的出现满足了那些既对拉曼又对红外感兴趣的用户的需求,而且从应用的角度能够大大的扩大样品的分析范围,除了常规的毒品、爆炸物、有毒有害物质,还能够分析塑料、布料、药品、食品添加剂等等。用户也可以建立自己的数据库,开发自己的应用。/pp style="text-align: right "strong编辑:刘丰秋/strong/p
  • 【恒美仪器】近红外小麦分析仪-快速无损,操作简单
    近红外小麦分析仪在小麦的收购和储存过程中发挥了重要的帮助作用。以下是其主要帮助: 1.快速检测:近红外小麦分析仪能在短时间内完成对小麦品质的全面检测,包括蛋白质、水分、矿物质等重要指标。这大大缩短了收购和储存过程中的检测时间,提高了工作效率。 2.准确判断:通过近红外小麦分析仪的检测,可以准确地了解小麦的品质状况,从而对小麦进行分级、分类。这有助于确保收购到好的小麦,为后续的储存和加工提供原料。 产品链接https://www.instrument.com.cn/netshow/SH104275/C436236.htm3.指导储存:近红外小麦分析仪的检测结果可以帮助预测小麦在储存过程中的变化趋势。通过了解水分含量、蛋白质结构等信息,可以制定更合理的储存方案,避免因储存不当导致的品质下降。 4.优化库存管理:根据近红外小麦分析仪的检测结果,可以更准确地掌握库存情况,及时调整库存结构,避免库存积压或过期。 5.降低成本:通过快速、准确的检测,可以减少不必要的筛选和复检工作,降低人力和时间成本。同时,确保了原料采购,有助于降低生产成本。 6.提高决策效率:近红外小麦分析仪提供的数据支持使得收购、储存等决策更加科学、有据可依,提高了决策效率。 综上所述,近红外小麦分析仪在小麦的收购和储存过程中提供了快速、准确、全面的品质检测,为优化管理流程、提高经济效益提供了有力支持。
  • 催化燃烧技术终结者——红外气体分析技术
    催化燃烧技术传感器应用广泛并且价格便宜,但易被污染中毒、缺乏安全自检、要求定期维护、标定以及使用寿命短。红外气体传感器这些年发展迅速,克服了以上催化燃烧的缺点,符合IEC61508安全标准,在检测碳氢化合物气体时可提供快速可信的检测结果。本文将就两种传感器的不同优缺点作出比较,以供大家了解。催化燃烧 催化燃烧最早起源于十九世纪六十年代采矿业,早期简单的铂丝线圈传感器由于能耗大、零点漂移严重不适于连续操作。 当前催化燃烧检测器连接两个铂丝线圈,每个都包裹着氧化铝粘土。检测单元包裹着催化剂,可燃气通过时可促进氧化发热。 催化燃烧优点 1、 检测器价格低廉、供应广泛; 2、 可使用各种可燃气,如果方法正确,可用于特殊物质检测; 3、 装置简单,除了标准气,没有其他特殊的维护装备; 催化燃烧缺点 1、 易中毒,如果暴露在有机硅、铅、硫和氯化物组分中,将失去对可燃气的作用; 2、 易产生烧结物,阻止可燃气与传感器接触; 3、 没有自动安全防护装置; 4、 在某些环境下灵敏度会下降(特别是硫化氢和卤素); 5、 需要至少12%的氧气浓度,在氧气浓度不足情况下工作效率明显下降; 6、 如暴露在可燃气体浓度过高的环境下,会被烧坏; 7、 使用时间越长,灵敏度越低; 8、 寿命有限,最长3-5年; 9、 需定期进行气体测试和标定;红外技术 包含一个原子以上的气体能吸收红外光,这样碳氢化合物和一些气体比如二氧化碳、一氧化碳能通过红外技术进行检测。二氧化碳气体分析示意图 为了区分红外吸收,气体和其他物质比水,需要额外增加一个波长宽带为2.7-3um的传感器。碳氢化合物在此范围没有吸收峰。这可以阻止错误报警发生和减小干扰物质的信号。双光束设计就是被用来防止光学组分污染造成错误报警。 红外技术优点 1、 较快的反应速率:响应时间一般小于7秒; 2、 自动故障操作:电源错误、信号错误、软件错误都能反馈给控制系统; 3、 对污染性气体的信号抗干扰能力强; 4、 寿命长,一般大于10年; 5、 维护成本低; 6、 无需氧气; 7、 高浓度可燃气体条件下,不会烧坏; 8、 不会烧结,相应的问题也不会发生; 红外技术缺点 购买价格高于催化燃烧检测器 催化燃烧需要定期测试(通过标气)。有些海洋石油平台通常每六周需测试一次,每3-5年需要更换一次,这样需要耗费大量的成本。 不会烧结的红外气体检测仪器可自我检测,比检测如灯、传感器、窗口、软件等这些不可恢复的问题,从而大大降低出现问题的可能性。较少的零点、量程漂移及高灵敏度意味着红外气体检测仪器的校准和常规维护少,一般为6-12个月。 同时,红外传感器的价格近年已经显著下降,虽然价格还是高于催化燃烧检测器,但实践经验表明,红外传感器的成本可通过减少维护成本来降低。故红外气体传感技术取代催化燃烧技术大势所趋。 四方仪器自控系统有限公司,以自主知识产权的红外传感器核心技术为依托,成功研制红外烟气、沼气、煤气、尾气、天然气等节能减排仪器仪表,并已广泛应用于电力、钢铁、有色金属、煤化工、石油化工、垃圾焚烧、厌氧发酵、机动车及发动机检测、石油天然气勘探、煤层气综合利用、空分、节能环保部门、科研院校及民用等领域。 红外传感器可检测特征吸收峰位置的吸收情况,以确定某种气体的浓度。这种传感器过去都是大型的分析仪器,但近些年,随着以MEMS技术为基础的传感器工业的发展,这种传感器的体积已经由10升,45公斤的巨无霸,减小到2毫升(拇指大小)左右。 微型红外传感器 使用无需调制光源的红外传感器使得仪器完全没有机械运动部件,实现免维护,有效降低维护成本,从而降低工业过程气体的监测成本。(欢迎转载,转载请注明来源:工业过程气体监测技术)
  • 北京理化分析测试技术学会-红外光谱分析技术高级培训班
    布鲁克推荐北京理化分析测试技术学会 预祝培训课程圆满成功,红外光谱学得以更广泛有效的应用。红外光谱分析技术高级培训班通知(第二期) 红外光谱作为经典、传统的分子结构分析手段之一,已历经百多年的发展。该方法至今仍然在官能团结构解析、未知物结构鉴定中占有独特且无法取代的地位。甚至在复杂混合物体系的分析中红外光谱法也独具导向作用,展示出无与伦比的活力。尤其是从90年代后期以来,红外光谱测量信号的数字化和分析过程的绿色化使该技术具有典型的时代特征。随着仪器制造和计算机技术的发展,以及统计学和化学计量学方法被广泛地应用于红外光谱的数据分析,使红外光谱技术已经和正在逐步地被用于现场应急分析和在线过程分析。为提高红外光谱分析与应用技术水平,系统了解国内外红外光谱的检测标准,缩短国内外在该技术上的掌握和应用上的距离,北京理化分析测试技术学会、北京光谱学会于2013年05月26日-31日在北京共同举办红外光谱分析与应用技术培训班,由北京理化分析测试技术学会承办,特聘请国内知名专家授课。培训将执行全国分析检测人员能力培训委员会(NTC)发布的全国分析检测人员能力培训考核大纲(ATC009/A:2011-1 红外光谱分析技术考核与培训大纲)内容要求,授课方式理论培训与实际操作相结合,以实际操作为主,加强学员的动手能力,达到熟练掌握标准实验方法的目标。培训结束可参加全国分析检测人员能力培训委员会(NTC)组织的技术能力考核,考核通过者,将获得由NTC发放的《分析检测人员技术能力证书》,此证书可作为实验室认证认可及增项的资质证明。 一、培训时间:2013年05月26日-31日(26日全天签到)二、培训地点:北京市海淀区西三环北路27号,北科大厦一层,北京科技条件市场培训中心三、培训日程:见附表四、注册方式:①培训费共计2800元(含教材费、午餐费、实验耗材费)。住宿费用自理,附近汉庭等快捷酒店,学员如有需要可自行选择。交费时间2013年5月4日前交费2013年5月5日后交费培训费2500元2800元 ②考核费:500元(含NTC理论考试、实操考核,NTC证书等费用),有相关工作经历人员可参加NTC考核。 ③缴费方式(汇款)账户名称:北京理化分析测试技术学会账户号:4043200001801900001154开户行:华夏银行北京紫竹桥支行汇款用途处表明:红外光谱培训五、联系方式北京理化分析测试技术学会于靖琦 010-68731259;13521470325E-mail:gpnh88@126.com报名者请填写以下回执,并于2013年5月4日前 E-mail至联系人邮箱。如有其它需要,请在备注中说明。 北京理化分析测试技术学会2013年3月27日 《红外光谱分析与应用技术培训班》回执(复印有效)工作单位 职务 单位地址 邮编 姓 名 性别 年龄 职称 固定电话 手机 E-mail 住 宿是□;否□发票抬头 备 注参加NTC考核:是□;否□ 培训日程 第一天基础理论知识 (1)基础知识分子光谱概述;红外光谱发展史;分子光谱振动理论;基本术语。(2)红外光谱解析红外光谱与分子结构;红外光谱解析三要素;常见化合物的红外光谱解析、混合物红外谱图的解析方法、近红外光谱解析(3)红外光谱定量分析基础包括郎伯-比尔定律和峰高度和峰面积的计算等。(4)红外光谱分析的特点(5)红外光谱分析的新进展第二天红外光谱仪器设备与操作 (1)红外光谱仪器的基础知识仪器的发展;仪器的主要部件(光源、分光系统和检测器);傅里叶变换红外光谱仪;色散型红外光谱仪;红外光谱的主要干扰及其消除(2)红外光谱仪的主要技术指标分辨率、信噪比、稳定性波数和光度重复性、波数和光度准确度、背景能量分布和谱图的质量评价等(3)红外光谱制样技术常规制样技术、采样技术、联用技术和低温红外光谱技术等(4)红外光谱仪的使用日常分析操作和仪器使用要求及注意事项。(5)红外光谱仪的维护日常维护、分束器、检测器、光源的维护,常见故障与排除,紧急情况的处理原则等(6)红外光谱仪的仪器校准和期间核查仪器校准和期间核查第三天红外光谱分析结果的数据处理 (1)红外光谱数据分析的特点(2)常规数据处理技术坐标转换、基线校正、光谱平滑、光谱归一化、光谱求导、光谱差减、光谱去卷积等其他数据处理方法。(3)多元数据处理技术光谱比对、光谱检索、模式识别、定量分析和二维相关红外光谱技术。 第四天红外光谱分析标准与应用(1)红外光谱分析方法常见通用技术规范一红外光谱分析方法通则、傅里叶变换红外光谱仪检定规程、色散型红外光谱仪性能规范、红外光谱定性分析方法通用技术规范、法庭涂料的检定和比较指南。(2)红外光谱法在燃油、润滑油分析中的应用应用示例:测量脂肪酸甲酯的含量。(3)红外光谱法在半导体产品分析中的应用应用示例:测量硅单晶中III、V族杂质的含量。(4)红外光谱法在刑侦技术领域的应用应用示例:微量物证的理化检验。(5)红外光谱法在高分子材料分析中的应用应用示例:橡胶分析。(6)红外光谱法在药物分析中的应用应用示例:化学药、化学原料药等的红外光谱分析;中药红外光谱分析通用方法;中药无机成分的鉴别;中药活性成分的鉴别。(7)红外光谱法在食品、保健品分析中的应用应用示例:食品及油脂中反式脂肪酸含量的检测;奶粉主要营养成分的整体分析(8)红外光谱法在生物医学分析中的应用应用示例:生物可降解材料的快速筛选。(9)红外光谱法在宝石鉴定中的应用应用示例:翡翠鉴定。(10)近红外光谱分析方法标准与应用实例标准示例:近红外分析定标模型验证和网络管理与维护通用规则;应用示例:测定稻谷中蛋白质的含量。第五天红外光谱分析方法常见通用技术规范二 (1)红外光谱分析方法通则(2)傅里叶变换红外光谱仪检定规程(3)色散型红外光谱仪性能规范(4)内反射光谱法规范(5)红外显微分析方法通用规范(6)GC/IR通用技术规范(7)TGA/IR通用技术规范(8)LC/IR通用技术规范(9)红外光谱定性分析方法通用技术规范(10)红外光谱定量分析方法通用技术规范(11)红外光谱多元定量分析规范(12)多元校正方法验证的规范(13)开放光路FTIR测量气体和水蒸汽的技术规范(14) 法庭涂料的检定和比较指南。
  • 魔力-近红外数据智慧分析处理软件系统发布新版本
    2016年9月26日,由大连达硕信息技术有限公司独立开发,在近红外数据分析处理方面具有巨大优势的魔力软件系统,发布新版本(v2.0)。在原有v1.0版本的基础上,系统新增模型传递的功能,解决仪器标准化问题,并极大地提升系统的模型分析效率,改善用户体验。魔力软件v2.0版新增的模型传递功能,提供多个方法,有效校正不同仪器间的近红外数据变化与差异,达到仪器数据的标准化,从而提升定性定量分析结果的可比性与可用性;同时新版本在大数据量的文件载入、工程文件的保存与打开、内存的高效利用,以及用户体验等诸多方面做足文章,力争把该产品打造成近红外数据智慧分析处理的完整解决方案,在数据分析的智慧化,分析方法的全面性,以及用户使用的便捷性等各个方面,极大超越现有的软件系统,完美解决广大科研工作者与应用工程师在近红外分析中遇到的数据处理难题。 魔力软件系统在近红外数据分析处理中的显著优势,可概括为如下几个方面: 批量载入某一文件夹下多种类、复杂格式的数据多变量数据分析前,通常需将待分析的数据整合成数据矩阵形式。然而多重因素的影响导致数据分析工作者较难实现这个过程,比如不同样本产生的多个数据、样本分析条件差异导致的数据长度差异、数据类型的变化,以及数据中同时含有数字和字符等等。怎么办?魔力软件可快速解决!文件行,文件夹也可以! 一键构建算法流,快速、智能完成数据建模复杂多变量数据分析的流程长、方法多,传统逐步分析的策略费时、费力。魔力软件创新实现基于算法流的数据分析,即用户可任意构建包含多个数据分析方法的方法组合,进而达到建模中的一键处理、多模型处理、方法参数修改后的快速建模与快速重建模,是智慧型数据分析的创新发展。 数据分析过程中,任一阶段随时随地的数据建模数据分析的本质是“让数据开口说话”,告诉你数据背后的隐含内容。优异的数据分析流程应在数据分析的任意阶段,依据用户需求随心所欲地产生新数据、分析新数据、建立数据分析闭环。魔力软件就是这么做的:建立数据、图表、模型、结果间的任意流动,使得数据分析更加得心应手! 全面的数据预处理、变量选择、分类与回归建模方法不同的数据处理方法有不同的适应性,得到满意的数据分析模型或结果,可能需要对系列方法进行优化选择。魔力软件包括16大类、31小类的数据预处理方法,以提高数据质量;15大类、36小类的特征选择方法,优选变量;15个数据建模方法,用于探索性分析、分类与回归分析。有如此多方法的支持,不再为发文章而发愁,魔力软件:发文章的利器一枚! 优异的用户体验:数据库管理、工程式文件、使用向导、完美报表等魔力软件独创一键式的数据处理流程,同时模型训练、验证与预测,便捷的导航栏与工程式的文件管理,强大的数据操作与可视化功能,加上丰富的算法与智慧化的分析过程,带给您不一样的用户体验。一个字:爽!(魔力软件功能菜单)目前魔力软件系统的新版本已经全面开放试用,欢迎联系公司获取试用版。与此同时,公司推出促销大惊喜。凡是在2016年12月30号之前购买产品的企业单位,或者高校、科研院所,均可获得惊喜促销价。欢迎垂询。 已经购买魔力软件的用户,可获得免费升级服务;已经试用过魔力软件v1.0版本的用户,亦可重新申请试用v2.0新版本。 大连达硕信息是国家高新技术企业,专注化学与生物行业数据的整合分析与深度挖掘,辅助决策支持。公司全方位提供数据分析服务、数据处理产品,以及数据应用整体解决方案,是我国化学与生物数据应用领域的领头羊。公司技术力量非常雄厚,在化学与生物数据分析领域积累了非常丰富的经验,深受客户好评
  • CIS标准《近红外光谱分析技术术语》拟立项
    2023年9月18日,中国仪器仪表学会标准化工作委员会发布关于拟立项(近红外光谱分析技术术语)CIS标准的公示通告,拟制定标准是天津大学申报的《近红外光谱分析技术术语》近红外光谱分析技术具有快速、原位、非破坏性等诸多优点,广泛应用于实验室分析、在线质量检测,可实现多组分多通道同时测定各类样品的成分及含量,包括气体、液体、固态、粘稠体、涂层、粉末等。各种基于新原理、新器件的近红外光谱仪器层出不穷,在农牧、食品、化工、制药、烟草等领域发挥了越来越重要的作用。然而,市场规模及应用需求强势增长的势头之下,我国近红外光谱技术及仪器产业化与推广应用还面临不少问题:近红外分析仪器种类众多,并且基于不同分光及检测原理,相关技术与仪器及应用标准欠缺,典型行业/领域的应用示范不充分,甚至同一技术与仪器的术语及其定义都不同,造成了仪器参数虚标及与应用效果不符等问题;此外,应用客户在仪器选择方面面临标准不统一,验证成本高等问题,不同仪器分析结果差异较大,这些问题都在影响近红外光谱分析技术的推广应用,进而制约我国国产近红外仪器产业的发展。2013发布实施的GB/T 13966-2013《分析仪器术语》规定了分析仪器常用的基本术语、各类分析仪器有关方法、原理、仪器名称、零部件名称及性能特性量方面的术语和定义。但是,缺少与近红外光谱相关的术语及定义规范,无法涵盖各种新型近红外光谱分析技术应用领域。2022年发布实施的T/CIS 17006-2022《傅立叶变换近红外光谱仪技术通则》规定了傅立叶变换近红外光谱仪正常工作条件、功能、技术指标、安全等的要求和试验方法,但是无法覆盖不同原理近红外光谱仪器,术语定义不够全面。为了规范近红外光谱仪器生产及应用,为近红外光谱技术的健康发展提供帮助,需要制定统一的术语定义标准。附件(近红外光谱分析技术术语)CIS标准公示表.docx
  • 波通公司发布新型近红外谷物分析仪,用于农田现场使用
    近几年近红外谷物检测仪一般安装在大型谷物收购和谷物加工现场,目前急需一款用于农场现场收购的近红外谷物检测仪,而且需要能解决所需的问题。这类仪器必须坚固耐用,便于在田地到处携带使用,必须操作简单,但功能又要足够满足与一般实验室使用的近红外仪器一样的准确功能,最后必须使用费用低。波通公司新款仪器Inframatic 8800能满足以上所有需求,采用固态硬盘和二极管阵列技术,光学部分没有任何的移动部件,更好地满足仪器的准确性和重复性的高要求。Inframatic 8800的优点很多,它小巧轻便便于携带,内部的蓄电池可以工作4个多小时,内置GPS定位系统,便于农场主对高价值的谷物的辨认,并将结果标注在谷物分布图上,便于农场主对收割和装仓实施计划性的安排。仪器的快速分析(90秒内出水分和蛋白结果)可以实现瞬间分析,帮助使用者控制谷物的干燥,田地和装货的抽查,决定最佳的收割时间等。波通公司行业经理Henrik Andrén总结:“IM8800开创了近红外在农场应用的先河,它的准确性与实验室使用的仪器一样准确,又足够便宜到农场主能接受的价位,便于农场主区分优良有价值的谷物,充分利用发芽的大麦和高蛋白的小麦。”更多的信息请联系波通瑞华科学仪器(北京)有限公司 010-63423835
  • 关于近红外光谱分析网络化应用研究的思考
    近几年以来,在国内烟草行业,随着烟草企业的联合重组与整合,对烟叶原料品类多样化提出了更高的要求,为了统筹优化与合理应用原料提供技术支持,以Web Service架构的“互联网+近红外光谱分析”的基本模式,于2015年,云南中烟构建的以原料研究为导向的烟叶原料近红外分析网络系统上线使用,通过六年多来的运行,实现了原料近红外分析检测数据的交换和共享,对评估烤烟收购质量,合理组配复烤模块单元,提供了即时的数据支持;在产品开发和产品维护方面,针对性使用烟叶原料,研发新产品配方、优化配伍和维护产品质量稳定,发挥了积极的辅助作用,特别是从“人、机、料、环、法”等方面,依据相应的技术标准(包含近红外校正模型建立、验证、应用和维护等),规范了网点的近红外光谱实验室,多年来,积累了初烤烤烟、复烤片烟和库存片烟等烟叶原料近红外分析检测大量的数据资产。系统功能基本达到了设计预期。然而,为了进一步探索分析烟叶原料品质类别、配方模块(单元)相似性、质量变化趋势和规律,在综合利用近红外光谱数据、理化性质数据和一些与质量相关的半结构化非结构化数据时,由于集成的常规性质数据有限,满足不了质量表征的需求,加之,在网络平台上面对大量的数据处理分析,传统的化学计量学定性定量建模计算模式难于适应,制约了多变量数据(如光谱)的深入挖掘和数据挖掘的效率。为了推进近红外光谱分析网络化应用,本文基于烟草近红外光谱网络化应用的实践经验,抛砖引玉,与大家探讨近红外光谱分析网络化应用研究的一些思路。1、近红外光谱标准化烟草可视为一种多成分复杂化学体系的天然作物,迄今为止,从烟草中鉴定出来的化学成分达5500多种,烟草质量与这些化学成分的相关性至今尚未全部研究清楚,通常采用为数有限的常规化学成分指标(如烟碱、总氮、总糖、还原糖、蛋白质、钾、氯和灰分等),评估烟草整体质量特征时仍存在不足,普遍认为,烟草在燃吸时的整体质量特征是烟草中这些复杂成分相互协同作用的结果。在近红外光谱定量分析中,烟草近红外光谱包含大量潜在的物质组成信息尚未充分利用,不同质量特征的烟草具有自身的特征近红外光谱,应用适当的化学计量学模式识别方法,如PLS-DA、SIMCA和SVM,结合近红外光谱挖掘烟草的整体质量特征归属,对寻求质量特征相似或相近的替代原料,保障规模化产品制造稳定的原料供给有着重要的意义。每一个网点的近红外光谱实验室是数据“发源地”,数据质量决定了将来数据的应用价值。实验室除了从“人、机、料、环、法”等方面,依据相应的规范(包含近红外光谱测量、校正模型建立、验证、应用和维护的技术标准等)要求运行之外,显然,在网络环境里光谱数据采集的“标准化”就特别重要。这就要求入网的近红外光谱仪必须具有优良的光学特性,仪器之间的差异最小,保证对不同产区网点的近红外光谱仪测量的光谱数据进行分析时,仪器的背景差异不会造成明显的影响,但事实上,同一厂家同一型号同一个批次生产的光谱仪都很难做到这一点,可以说,近红外光谱仪之间的差异是进行网络数据共享,挖掘光谱数据信息存在的问题之一。一是借鉴模型转移的化学计量学方法,根据仪器之间的光谱差异,建立一个光谱的数学关系,然后依据这个数学关系,“软拷贝”实现光谱数据采集的标准化;二是仪器厂商提升仪器的制造水平,降低仪器之间的差异,特别是不同批次生产的仪器之间的差异,才能使其测量的光谱差异最小,不会对后续的光谱分析造成明显的影响,也就是说用一台仪器采集的光谱建立的模型预测同一组样品在本台仪器上测量的光谱,与使用本台仪器的模型预测另一台仪器测量同是一组样品的光谱所得到的结果无明显的差异,在这两台仪器之间就无需建立光谱的数学关系,即简单的“硬拷贝”就可实现网络平台光谱数据采 集的标准化,要义见图1示意。在网络环境中的光谱仪可视为一个“网络传感器”,对传感器的技术要求在朝着高质量、高精度、小型化、低功耗和智能化等方向演进,对网络用户来说,期待仪器制造商生产性能一致性优良的光谱仪,乃是尤为理想的解决方案。图1 不同的光谱仪采集同一组样品,可得到基本相同的光谱,即“一个世界,一个标准”2、云化近红外光谱分析网络平台云计算服务是一种集中式服务,所有数据都通过网络传输到云计算中心进行处理。资源的高度集中与整合使得云计算具有很高的通用性,然而,面对网络设备和数据的爆发式增长,边缘计算相比于云计算模型,能够更加迅速、可靠和节能地响应用户需求,数据在本地处理也可以提升用户隐私保护程度。另外,边缘计算也减小了对网络的依赖,在离线状态下也能够提供基础业务服务。通过云化近红外光谱分析网络平台,集成不同的烟草产地生态环境、等级、品种以及相应的近红外光谱、理化性质(包含烟叶的形态形状图像,化学成分指标等)数据是其任务之一,便于分析挖掘与感官质量相关的特征信息,服务于烟叶原料的精细化种植及科学合理应用,在近红外光谱定性、定量建模或后续的各种数据挖掘实际应用中,是基于“中心云”或“边缘云”的数据资源进行的。有时会用到中心云的数据资源,如对各大产区烟草质量进行整体性比照分析,探索各大烟区烟草质量特征,支持原料生产基地系统规划;有时会用到边缘云的数据资源,如对某个产区烟草历时性数据作趋势分析,探索烟草质量的稳定性与变化趋向,辅助基层植烟区改进或调整生产措施。所以,面向服务对象的规模、复杂程度合理部署、云化近红外光谱分析网络平台就尤为重要,有利于集约化网络资源,提升数据的分析处理以及数据挖掘的效率,见图2示意。图2. 近红外光谱分析平台云化示意图3、构建云计算自动化(智能)建模服务系统通常,在建立样本数量大于3000个以上的近红外校正模型时,样本量越大,运算速度越慢,对计算机性能的要求越就越高,且在建模过程中,如组织训练集或校正样本集、清洗异常样本、筛选适宜的建模数据等等,基本是基于“文件夹”来操作完成的,对网络环境中的大体量的数据资源,因缺乏探索性数据分析的网络计算手段而难于被充分利用,传统的建模方式和流程效率低、适应性差。基于网络资源进行化学计量学网络计算,现代云计算技术为化学计量学计算研究搭建了高灵活性平台。如何选择诸如Hadoop、Spark等生态圈技术,通过分布式计算提升定性、定量建模效率,并结合长期积累的建模经验、领域知识(包含相关的波长或波段选择、光谱预处理方法及其经验参数设置、模型误差水平控制等),实现自动化建模,这是我们要联合网络计算专家实现近红外光谱分析网络化云计算所要解决的问题。显然,把传统的近红外光谱定量、定性分析涉及的训练集样本或校正集样本的筛选、光谱的预处理、建模等化学计量学方法(算法)网络化,开发分布式计算的化学计量学软件系统(当然,这也是数据挖掘的重要组成部分),共享应用网络软、硬件资源优势,平衡计算负载,实现近红外光谱分析云计算,可能是一种比较好的解决思路,这无论是对近红外光谱定性定量分析的普通用户,还是对近红外光谱数据进行深度挖掘的高级用户,都具有较好的便利性和实用性。4、研发基于特征模型的网络搜索引擎基于多维质量特征数据(结构化和非结构化数据),诸如烟草产地生态、等级、品种、理化性质指标、近红外光谱、形态形状图像等,选取不同的特征,通过模式识别技术建立用户预期的质量特征类模型,然后应用“基于特征模型的网络搜索引擎+类模型”搜索网络共享资源(中心云或边缘云)中具有相近或相似质量特征的样本,也就是在网络共享资源中“淘宝”,寻求在产品制造中烟叶原料的替代应用,保障产品质量的稳定。搜索引擎形式类似“百度”或“Google”。这里以烟草近红外光谱定性分析的应用举例说明,我们需要什么样功能的“搜索引擎”,近红外光谱包含丰富的化学物质结构信息,且近红外光谱与物质组成及含量相关,不同属性、特征的烟草样品具有相应的特征近红外光谱,通过结合烟草领域知识,采用适宜的化学计量学模式识别方法(如基于PCA的各种分类算法、ANN或SVM等)来提取烟草样品近红外光谱特征信息,训练能表征质量特征的近红外光谱类模型,应用验证通过的类模型和待测烟草样品近红外光谱便可预测待测样品的归属类别或特征。常规近红外光谱定性预测分析是基于“文件夹+类模型”进行操作的,而在网络环境中,近红外光谱定性预测分析必须网络化,预测是在云化的近红外光谱分析网络平台上,应用“基于特征模型的网络搜索引擎+类模型”寻找“隐藏”在“中心云”或“边缘云”中的数据资源(见图3示意),它承担着大体量的网络计算。基于特征模型的网络搜索引擎是“云计算自动化(智能)建模服务系统”预测分析网络化的延展,可简单视为是一个“网络预测器”,当然,这个“网络预测器”需要网络计算专家和近红外光谱化学计量学算法专家联手研发。图3. 近红外光谱分析网络化应用示意图5、其它针对不同应用场景或职能部门,利用中心云数据或边缘云数据进行一些简单的在线统计分析计算,并对结果进行可视化展示,如原料生产部门可快速实现对烟叶质量指标的比较,分析烟叶质量的稳定性、质量变化走势等。开发一些满足不同应用场景的APP、微信小程序、公众号等(见图3示意),也是一项值得开展的工作。(作者:王家俊 云南中烟工业有限责任公司)
  • 近红外数据分析中的关键问题网络讲座顺利召开
    近红外数据分析中的关键问题网络讲座顺利召开 2016年8月30日上午,由华东理工大学、南开大学、大连达硕信息技术有限公司共同主办的网络讲座,在仪器信息网,以在线的方式顺利召开。讲座分别由杜一平教授、邵学广教授、曾仲大总经理担任主讲人,围绕近红外数据分析中关键性、经常性问题进行全面、深入阐述。 杜老师从近红外光谱数据预处理、变量选择、模型构建与结果验证等诸多方面,非常细致地介绍了整个建模过程中涉及的算法及算法原理、注意事项,以及普遍遇到的问题及解决方法。杜老师也提到,近红外数据分析绝非看似的那样简单,涉及对数据的理解、对算法的理解。同时不能只关注数学方法,更要记住我们是化学家!邵老师从大数据分析角度出发,阐述近红外数据分析,并延伸到近红外光谱的模型转移。大数据是国家关注的重点方向,企业信息化的推进,数据体量不断增大,需要基于大数据与云计算的手段方法提升效率,挖掘数据价值。近红外的模型转移则是现在生产型企业发展中遇到的,非常棘手的问题。不同厂家、不用仪器的数据和模型不能共享,很难实现数据融合。邵老师经过多年的研究与实践从方法到应用给大家进行了详细介绍。同时邵老师介绍了近红外模型转移中需要考虑和注意的问题,以及目前比较成熟的算法,为大家解决实际问题提供广阔思路。 曾老师则从近红外数据分析应用与软件系统实现的角度,阐述如何能更智慧地构建近红外分析模型,并结合大连达硕信息技术有限公司最新发布的魔力近红外数据分析产品(v2.0版),全面介绍系统如何实现智慧型近红外数据分析,包括批量文件夹数据载入,智能数据建模算法流,“随时”、“随时”数据建模,全面的建模方法比较,以及优异的用户体验等等。同时鼓励近红外同行们使用产品,支持国产软件发展。讲座后,三位老师延长预定时间,回答大家感兴趣的诸多问题。此次讲座得到了近红外分析和化学计量学同行的普遍关注,人气指数超过5,500,300余人报名参加。讲座结束后,大家通过各种途径表达对讲座的支持厚爱,效果很好,评价非常高。与此同时,大连达硕信息技术有限公司在讲座后,建立化学数据联盟微信群,一方面使与会者可更深入讨论近红外相关问题,推进行业发展,另一方面也广纳同行对联盟发展的意见与建议,促进联盟发展。 大连达硕信息是国家高新技术企业,专注化学与生物行业数据的整合分析与深度挖掘,辅助决策支持,公司全方位提供数据分析服务、数据处理产品,以及个性化数据应用整体解决方案,是我国化学与生物数据应用领域的排头兵。公司技术力量非常雄厚,在化学与生物数据分析领域积累非常丰富的经验,深受客户好评。
  • 红外光谱仪FTIR-850对微小异物的分析
    显微红外技术是基于傅里叶变换红外光谱技术与显微镜技术的结合发展起来的,与常规红外光谱技术相比,显微红外技术具有检测灵敏度高、微区分析和无损检测等优点,测试时几乎不引入外部干扰,可以满足对微小样品成分的快速鉴定与分析。 在法庭科学领域中, 由于案件现场提取到的物证通常是极微量的,常规红外光谱分析技术常常无法达到检测要求,显微红外技术可以卓有成效地解决微量物证鉴定上的难题,可以满足微量物证必须保留以用于法庭作证的特殊需要。 在电子显示屏生产领域中,电子显示屏通长是由多层材料组装起来的,如果不慎引入异物夹杂在层与层之间,在屏幕点亮的时候很容易出现黑点、黑线或者是阴影,造成质量不合格。要解决这种情况或者是找到责任方,都需要先分析异物具体是什么物质,找到异物的来源,才能针对性的采取措施防止类似事件发生,从而改进产品的质量。针对此类微小异物(人体皮屑、衣物纤维、粉尘颗粒等)的分析,最常用的分析方法就是显微红外。 在微塑料分析研究领域,微塑料作为一种新兴污染物,泛指直径小于5 mm的塑料颗粒,充斥于从海洋到陆地的所有环境里。微塑料被海洋生物吞食,在生物体内不断积累,随着生物链,造成更广泛的危害,目前微塑料的检测主要是通过显微红外光谱技术手段来进行。1、适用范围 适用于微量物证鉴定、显示屏异物来源分析、微塑料成分及氧化情况研究。2、基本原理 红外光谱技术与显微技术相结合而产生的一种微量分析技术,即通过显微镜观察被测样品的外观形态或物理微观结构的基础上直接测试,选定样品某特定部位测试,得到该微区物质高质量的红外谱图。3、实验条件(1)主机及附件FTIR-850傅里叶变换红外光谱仪 红外显微镜附件(PIKE) 红外显微镜附件(Specac)(2)扫描参数: 分辨率8cm-1 ;扫描次数64次;扫描范围4000~500cm-1。4、实验结果(1)车辆碰撞物证(车漆)(2)显示屏异物(60微米黑色异物)(3)微塑料5、实验结论 与常规红外光谱技术相比,显微红外技术具有检测灵敏度高、制样方法简便、无损检测等优点,非常适合于微小样品或者大样品的微区分析,对于物证鉴定机构、电子显示屏生产企业、海洋环境微塑料污染及防控研究机构来说显微红外光谱技术是一种非常重要的手段 。 港东科技——专注、专业、专心为您提供更好的红外光谱解决方案!
  • 便携式近红外光谱技术在食品分析中的应用
    HAMAMATSU(滨松) PHOTONICS近红外光谱在食品分析中的作用近红外光谱(NIR)是指在750至2500 nm的电磁光谱近红外区域内研究物质和光之间的相互作用[1]。当红外光与样品分子相互作用时,每个波长反射、透射和吸收的电磁能的量取决于样品中存在的键类型[1]。C-H、N-H和OH振动键在近红外区域最普遍,决定了给定物质的光谱形状。近红外光谱通常用于测量和量化样品的近似成分,如蛋白质、水分、干物质、脂肪和淀粉。此外,近红外光谱反映了其物理性质或特性[1]。因此,当应用于食品时,样品的近红外光谱不仅可以提供有关食品化学成分的信息,还可以通过不需要使用试剂的无损、快速和清洁的方法提供有关其功能的信息[2]。便携式仪器的影响直到最近,近红外技术才向小型化设备发展,使近红外分析从实验室进入现场成为可能。便携式近红外光谱是监测作物质量、确定最佳种植条件和收获时间的绝佳工具。鉴于食品易受含量变化的影响,需要保持新鲜以防止质量损失,以及非法掺假的可能性,控制食品质量的重要性怎么强调都不为过。此外,食品生产、配送链的复杂性以及将分析时间降至最低的需要,使便携式光谱仪在该领域向前迈出了革命性的一步[5][6]。用于食品分析的近红外光谱示例Parastar等人将计算技术应用于近红外分析仪获得的吸收光谱,能够准确区分新鲜肉和解冻肉,并根据鸡的生长条件对鸡柳进行正确分类[3]。使用类似的工具,Kucha和Ngadi能够评估猪肉末的新鲜度[4]。这些计算方法,通常被称为“化学计量学”,使用多种算法和统计技术,如多元线性回归、偏最小二乘回归和主成分分析来分析来自光谱仪的数据。这些方法将光谱信息转化为与样品相关的化学和功能特性[2]。便携式近红外分析仪改善奶牛健康,优化灌溉和收割时间便携式近红外分析仪已被用于饲料和牧草的农场监测,以评估其质量。在这个过程中,将饲料样本放在扫描仪前进行分析,并将结果提供给农民或营养学家。这使他们能够及时做出有关提要的管理决策,将获得结果所需的时间从几天缩短到几秒钟。例如,牛饲料中玉米青贮饲料的干物质含量每天变化很大,在六个月内高达41%。通过现场调整,奶牛可以获得更一致的口粮,从而改善牛群的总体健康状况。这是通过血液参数的变化和乳腺炎的减少来观察的,从而增加了产奶量。此外,这项技术可以潜在地减少饲料浪费,从而降低成本并增加收入[7]。便携式近红外光谱法的另一个有价值的应用领域是对作物生长各个阶段的实地评估。Tardaguila等人研究了在不同环境条件下生长的八个不同品种的160片葡萄叶片的吸收波长。他们专门针对含水量评估来确定葡萄酒行业灌溉的优化策略[8]。在收获季节,近红外光谱已被用于评估橄榄果实[9]、葡萄[10]和番茄[11]在树上的成熟度,从而优化收获时间,甚至使用农业机器人实现自动化水果采摘。收获后,近红外光谱技术有助于农民、消费者和质量控制官员对产品质量进行快速无损检测。这项技术还允许检测由于将传统生产的水果错误标记为有机水果而导致的菠萝欺诈[12]。FTIR光谱提供更高的通量和更好的灵敏度在近红外光谱中,分析有机材料的吸收光谱主要有两种方法。第一种方法是基于二极管阵列的光谱学。该技术使用色散光栅将从样品反射或透射的光分离为其波长分量。然后将每个分量聚焦在线性检测器阵列的不同像素上。这种方法速度相当快,可以用于实时测量。然而,二极管阵列光谱仪的光通量与其光谱分辨率成反比,这限制了其有效性。此外,在近红外区域敏感的线性阵列的高成本可能会限制其在某些应用中的应用,特别是在农业和食品中。获得吸收光谱的第二种方法是傅立叶变换干涉测量法。在这种方法中,入射光被分成两条路径,一条指向固定反射镜,另一条指向可移动反射镜。当这些路径被重新组合时,就会得到干涉图。通过对该干涉图进行傅立叶变换,可以获得入射光的光谱,并且通过适当的校准,可以确定样品的吸收光谱。使用这种技术,可以同时测量所有波长,在不影响光谱分辨率的情况下提供更好的吞吐量和更高的灵敏度(通常被称为“Fellgett的优势”)。在该技术中,仅使用单个NIR光电探测器而不是阵列,从而保持低成本。滨松光子的FTIR引擎为食品行业带来了新的曙光滨松的FTIR引擎C15511-01是一个紧凑的傅立叶变换红外光谱模块,对1.1µm至2.5µm范围内的近红外光具有灵敏度,并具有USB连接。该设备的特点是在手掌大小的外壳中有一个迈克尔逊光学干涉仪和控制电路。为了补偿元件小型化造成的光损失,滨松光子公司的工程师为FTIR引擎配备了一个大型可移动MEMS反射镜和一个高灵敏度InGaAs PIN光电二极管。这种MEMS元件的特殊设计抵消了外部振动和器件内部杂散光反射的影响。可移动MEMS反射镜的位置使用专用激光系统进行连续和精确的监测,以确保最高的波长再现性。一般来说,滨松的FTIR引擎可以提供与更大、更昂贵的台式设备相当的高灵敏度、高分辨率和高速测量。使用FTIR引擎进行红外光谱分析有两种测量方法:“反射测量”和“透射测量”。使用这些方法,我们测量了坚果(杏仁、腰果、核桃)和酒精饮料(啤酒、清酒和白兰地)的光谱。透射测量:酒精饮料吸收光谱的比较及其酒精浓度的估计FTIR引擎C15511-01用于观察几种酒精饮料产生的吸收光谱的差异。将液体放入对近红外透明的石英池中,提供1mm的光路长度。使用卤素灯作为本实验的光源。来自灯的宽带光部分被液体吸收,并通过光纤部分传输到FTIR引擎。图中所示的吸收光谱是在室温下获得的,平均128次扫描,并减去参考测量值。这些光谱的形状主要受水中的OH基团(吸收波长:1450 nm和1900 nm)和醇中的CH基团(吸收光谱波长在2100 nm和2500 nm之间)的影响。还测量了纯水和乙醇的光谱,并将其添加到图中进行比较。此外,使用2300nm处的吸收峰来估计每种饮料中的酒精浓度。该测量显示的值与液体中酒精的实际存在一致,证实了使用这种紧凑的设备和方法进行精确估计的可能性。漫反射测量:使用近红外光谱对坚果进行分类当照射到样品上的光的一部分被其表面颗粒有规律地反射时,其余的则穿透样品。在这里,光通过折射透射、光散射和表面反射反复散射,直到它离开待测量的样品。通过该测量获得的漫反射光谱与样品的吸收光谱相似。漫反射信号通常比通过透射获得的信号弱。因此,使用这种方法的主要挑战之一是提高照明效率。在传统配置中,使用光纤将来自单个卤素灯的宽带光引导到样品。滨松光子最近设计了L16462-01,这是一种针对漫反射测量进行优化的创新光源。该装置配备了多个灯,以特定角度靠近样品。通过光纤收集从样品散射的光,并将其引导至NIR光谱仪。这种配置可测量信噪比,最大限度地减少杂散光的影响。e照射到样品上的部分光被其表面颗粒规则反射,其余部分穿透样品。在这里,光通过折射透射、光散射和表面反射反复散射,直到它离开待测量的样品。通过该测量获得的漫反射光谱与样品的吸收光谱相似。食物过敏是一种遗传易感个体在食用某些食物成分后出现不利免疫反应的情况。这种反应可能导致立即或延迟的症状,可能是严重或致命的[13]。在过去的几十年里,这种免疫紊乱已经成为全世界关注的一个重要问题,在西方国家,至少有8%的儿童和5%的成年人受到影响。它给医疗系统带来了相当大的压力,并可能严重限制日常甜梅干动[14]。许多种类的坚果,包括核桃(胡桃)、腰果(西方腰果)和杏仁(甜梅干),都被欧洲法规1168/2011列为过敏原,只要存在于食品中,就需要添加到成分表中[15]。出于这些原因,坚果的检测和分类对于食品工业来说是必要的。滨松利用近红外光谱对杏仁、腰果和核桃的吸收光谱进行了研究和分类。使用FTIR引擎C15511-01和新的灯L16462-01获得测量结果。将坚果放置在光源上,无需任何预先准备,平均进行128次扫描以获得每个样品的吸收光谱。所获得的光谱的特征在于1600-1800nm处的峰,这是由从脂质和蛋白质拉伸的CH的第一泛音引起的。当观察光谱的二阶导数时,各种光谱之间的差异更加明显。通过主成分分析法可以对不同种类的坚果进行分类。结论近红外光谱在食品工业中的潜在应用已经被许多科学出版物广泛记录了几年。便携式仪器的出现正在将分析从实验室转移到现场,将结果的时间从几天大幅缩短到几秒钟。最值得注意的是,这种由滨松MEMS技术驱动的硬件小型化在不影响灵敏度或分辨率的情况下实现。新的计算技术正在不断发展,以分析和比较吸收光谱,并估计食品中特定化合物的含量。这些方法使整个行业的非技术用户越来越容易访问该技术。便携式FTIR分析仪是解决食品行业许多重大挑战的宝贵工具。例如,它们可以帮助提高作物产量,从而在面临粮食需求增加时提供一种替代毁林的方法。将这些技术融入农业可以在优化灌溉和限制整个供应链的食物浪费时限制水浪费。最后,FTIR分析仪可以帮助改善我们的食物质量,使其对我们和所有依赖我们的动物更安全、更健康。参考文献[1] K. B. Beć, J. Grabska, and C. W. Huck, “Near-Infrared Spectroscopy in Bio-Applications”, Molecules, vol. 25, no. 12, p. 2948, Jun. 2020, doi: 10.3390/molecules25122948.[2] D. Cozzolino, “The Ability of Near Infrared (NIR) Spectroscopy to Predict Functional Properties in Foods: Challenges and Opportunities”, Molecules, vol. 26, no. 22, p. 6981, Nov. 2021, doi: 10.3390/molecules26226981.[3] H. Parastar, G. van Kollenburg, Y. Weesepoel, A. van den Doel, L. Buydens, and J. Jansen, "Integration of handheld NIR and machine learning to 'Measure & Monitor' chicken meat authenticity" in Food Control, vol. 112, pp. 107149, 2020. doi: 10.1016/j. foodcont.2020.107149. [4] Kucha, C.T., Ngadi, M.O. “Rapid assessment of pork freshness using miniaturized NIR spectroscopy”. Food Measure 14, 1105–1115 (2020). https://doi.org/10.1007/s11694-019-00360-9 [5] J.-H. Qu, D. Liu, J.-H. Cheng, D.-W. Sun, J. Ma, H. Pu, and X.-A. Zeng, "Applications of Near-infrared Spectroscopy in Food Safety Evaluation and Control: A Review of Recent Research Advances" Critical Reviews in Food Science and Nutrition, vol. 55, no. 13, pp. 1939-1954, 2015. doi: 10.1080/10408398.2013.871693.[6] K. B. Beć, J. Grabska, and C. W. Huck, “Miniaturized NIR Spectroscopy in Food Analysis and Quality Control: Promises, Challenges, and Perspectives,” Foods, vol. 11, no. 10, p. 1465, May 2022, doi: 10.3390/foods11101465.[7] "Can On-Farm NIR Analysis Improve Feed Management?", Penn State Extension. [Online]. Available: https://extension.psu. edu/can-on-farm-nir-analysis-improve-feed-management.[8] J. Tardaguila, J. Fernández-Novales, S. Gutiérrez, and M.P. Diago, "Non-destructive assessment of grapevine water status in the field using a portable NIR spectrophotometer", J. Sci. Food Agric., vol. 97, pp. 3772-3780, 2017. doi: 10.1002/jsfa.8241.[9] A. J. Fernández-Espinosa, "Combining PLS regression with portable NIR spectroscopy to on-line monitor quality parameters in intact olives for determining optimal harvesting time", Talanta, vol. 148, pp. 216-228, 2016. doi: 10.1016/j.talanta.2015.10.084.[10] G. Ferrara, V. Marcotuli, A. Didonna, A. M. Stellacci, M. Palasciano, and A. Mazzeo, “Ripeness Prediction in Table Grape Cultivars by Using a Portable NIR Device”, Horticulturae, vol. 8, no. 7, p. 613, Jul. 2022, doi: 10.3390/horticulturae8070613.[11] H. Yang, B. Kuang, and A.M. Mouazen, "In situ Determination of Growing Stages and Harvest Time of Tomato (Lycopersicon Esculentum) Fruits Using Fiber-Optic Visible—Near-Infrared (Vis-NIR) Spectroscopy", Applied Spectroscopy, vol. 65, no. 8, pp. 931-938, 2011. doi: 10.1366/11-06270.[12] C. L. Y. Amuah, E. Teye, F. P. Lamptey, K. Nyandey, J. Opoku-Ansah, and P. O. Adueming, "Feasibility Study of the Use of Handheld NIR Spectrometer for Simultaneous Authentication and Quantification of Quality Parameters in Intact Pineapple Fruits", Journal of Spectroscopy, vol. 2019, Article ID 5975461, 9 pages, 2019. doi: 10.1155/2019/5975461.[13] Z. Husain and R.A. Schwartz, "Food allergy update: more than a peanut of a problem", International Journal of Dermatology, vol. 52, pp. 286-294, 2013. doi: 10.1111/j.1365-4632.2012.05603.x.[14] S. H. Sicherer and H. A. Sampson, "Food allergy: Epidemiology, pathogenesis, diagnosis, and treatment", The Journal of Allergy and Clinical Immunology, vol. 133, no. 2, pp. 291-307.E5, Feb. 2014. doi: https://doi.org/10.1016/j.jaci.2013.11.020 [15] A. Luparelli, I. Losito, E. De Angelis, R. Pilolli, F. Lambertini, and L. Monaci, “Tree Nuts and Peanuts as a Source of Beneficial Compounds and a Threat for Allergic Consumers: Overview on Methods for Their Detection in Complex Food Products”, Foods, vol. 11, no. 5, p. 728, Mar. 2022, doi: 10.3390/foods11050728.本文来源:HAMAMATSU PHOTONICS(滨松电子),Applications for portable NIR spectroscopy in food analysis,www.hamamatsu.com供稿:符 斌,北京中实国金国际实验室能力验证研究有限公司
  • 精打细算,助粮油企业降本增效 ——近红外分析仪在粮油企业应用的效益分析
    近红外光谱技术应用在粮油行业已有多年的时间,自2010年以来,粮油行业包括小麦或小麦粉、稻谷、玉米、大豆等在内的相关的国家标准已有十余项,检测指标包括水分、蛋白、脂肪、淀粉等含量的测定。近红外光谱技术以其特有的快速、无损、准确的特点,成功应用于粮油行业。 作为国内唯一拥有全线近红外分析产品的龙头企业,聚光科技(杭州)股份有限公司在国内粮油行业占据近三分之一的市场份额,积累了大量模型的同时,对国内粮油行业的现状和粮油企业的需求也有了充分的了解和认识。聚光科技致力于为粮油企业提供高性价比的好产品,让产品满足用户使用需求的同时,还能为用户带来额外的效益,助力用户开源节流,降本增效。聚光科技Sup-NIR系列近红外分析仪到底能给粮油企业带来什么,让粮油企业它如此青睐?且听笔者慢慢分析。没有近红外的日子,粮油企业是怎么进行常规检测的? 目前粮油行业常规检测还是多用传统检测手段,传统的分析方法需要大量消耗水、电、及化学试剂。 粮油行业常见指标的传统检测方法与近红外检测方法时间对比如下: 时间就是金钱!这是生产企业生存的第一法则! 试想一下,一个粮油生产企业每天投入近10个小时的时间,至少3人次的人力去做大量的实验来检测上述5个指标,费时费力不说,前处理、人为分析等多个环节都会给检测的结果带来不可避免的误差,导致结果不准确。检测结果不准确,直接影响粮油生产企业原料采购和生产产品的品质检测。相同的样品,相同的条件,只要3分钟,近红外分析仪就能给出全部5个指标的检测结果! 近红外是如何减少企业化验成本的?以国内一家年产量10万吨的油脂企业为例:传统的分析方法需要大量消耗水、电、及化学试剂,而近红外分析只需耗用极少量的电力,无需其它任何试剂。化验室测试粗蛋白、水分、灰分,原料平均每月需分析450个样品(分析粗蛋白、水分、灰分、粗脂肪),采用近红外检测后,这些样品所耗的试剂、水、电等费用可全部节约。具体数字见下表。表1 采用近红外分析方法节约水电试剂费用明细 说明:采用近红外分析,每月累计节约费用近3387元,以上样品分析是以每批为计算,若不足满批,则成本会更高。故合计每年节约费用在:37257元。对于该企业来说,每年仅是水费、电费和试剂费就可节省最少37257元,还不包括因此节省下来的人力成本。因为常规理化检测需要接触有毒试剂,对身体健康不利,因此造成化验人员不固定,每次新化验人员上岗,均需进行培训,并且管理难度增大。采用近红外设备分析后,化学试剂使用量减少,对环境污染减少,可节约减排费用。同时人员流动相对减少,因此可节省员工培训时间,降低管理难度,从而间接创造收益。 近红外是如何帮助企业降低原料采购成本的? 油脂行业的生产成本中,原料成本大约占用了85%的比例,其它如工人工资、能源等只占到15%左右。因此,控制原料成本是提高效益、创造利润的重要环节。销售价格由原料成本+固定成本+人工/费用+毛利组成,由下表可计算出:当原料成本节约了1%时,毛利由5%增长为6%,实际增长率=20%。 以大豆油生产企业为例进行效益分析: (1)豆粕中水分控制效益分析: 检测水分含量,调整干燥(蒸汽)工序中物流速度与蒸汽量,调节水分含量: 水分含量偏高,采取降低物流速度或提高烘蒸温度; 水分含量偏低,采取加大蒸汽流量; 水分效益分析 : 水分每增加0.1%,带来3元/吨的利润; 水分控制由原来的平均12.5%提升到12.8%,则增加了0.3%的水分,即可带来9元/吨的利润;(2)豆粕中蛋白控制效益分析: 检测蛋白含量,调整豆皮或高蛋白豆粕加入量,调节蛋白含量: 蛋白含量偏高,采取加入豆皮; 蛋白含量偏低,采取加入高蛋白豆粕; 蛋白效益分析: 蛋白每降低0.1%,带来15元/吨的利润; 蛋白控制由原来的平均43.5%降低到43.3%,则降低了0.2%的蛋白,即可带来30元/吨的利润;(3)豆粕中残油控制效益分析: 检测残油的目的主要为控制加工工艺,平衡效率和效益: 一般残油小于0.5%,则豆子浸泡时间过长,影响生产效率,即产量变低; 一般残油大于0.7%,则豆子浸泡时间不足或轧胚、浸出工序异常,出油率偏低,影响效益; 近红外是如何帮助企业控制原料和粕类品质的? 在油脂品质控制中,控制原料和粕类品质,可带来巨大收益。 假设大豆粗脂肪为18%,价格约3500元/吨。大豆粗脂肪每增加一个百分点,每吨的价格就要高60元左右。如能严格控制检测含油量,按质定价可以节约不少成本。 假设豆粕粗蛋白含量43%左右,价格约3100元/吨 豆粕粗蛋白含量每高一个百分点,每吨价格就要高50-100元。利用近红外技术快速检测豆粕粗蛋白,可以通过添加低价的豆皮,对豆粕的粗蛋白含量进行精确调控。再以年产量10万吨豆粕的油脂厂为例,以粗蛋白检测为例:表2 采用近红外方法后仅节约蛋白一项可增加的效益 根据以上两个表,可估算出:在采用近红外分析技术后,对于示例中的油脂厂,每年可节约的水电试剂费为37257元;严格质量控制,仅节约蛋白可增加41万元收益。同样如果能严格控制水分含量和收购原料时含油量和水分含量,可带来非常可观的收益。除了有形的开源节流,对于生产企业的无形的品牌和知名度也有正面的影响。近红外分析仪可在2~3分钟内快速反映成品质量是否合格,加快了成品出厂周期,减轻了成品库负荷。成品抽检频率可提高上百倍,减少了不合格品的流出,从而保证产品质量的稳定性,提高了客户满意度。另外近红外快速分析仪还可以通过快速检测减少堆装时间、节省部分装运费用;通过快速分析原料适当降低原料库存,节省资金利息;降低质量事故,减少差错成本;使采购部门快速判断原料质量和价格,增加采购机会。综上所述,采用近红外带来的收益主要有如下部分: 直接节约实验室化验成本 按质论价,降低原料成本 快速控制原料和粕类品质 降低人员管理难度,节约管理费用 降低环境污染,节约减排费用 稳定产品质量,提高企业信誉,带来无形收益。 注重的效益粮油企业在寻求着各种能够节能降耗的方法,提高效益的同时降低成本,还要保证产品的质量和用户的满意度。用户的需求就是仪器生产企业的动力,聚光科技开发出的SupNIR系列近红外分析,不仅能够快速无损地检测多种指标,还能够替用户精打细算,降本增效,因此受到广大粮油企业的欢迎。目前国内包括山东三维油脂、嘉里粮油(青岛)有限公司、鲁花集团等大中型粮油企业都已采购聚光科技的近红外分析仪,相信有了用户的大力支持,聚光科技会推出更多更好的服务! ps:更多近红外在细分领域的应用请点击专题查看http://www.fpi-inc.com/jgzt/welcome.php?7
  • 全球首款便携式手持近红外谷物分析仪获一致好评
    总部设在美国马里兰州黑格斯敦的Zeltex公司,积累了近三十年的便携式手持近红外分析仪设计制造经验,其产品在近红外领域拥有超过30项的专利,能够在现场快速无损地检测谷物、种子和食品中的蛋白质、脂肪及水分,可以为粮食、食品科研等领域提供完整的实验方案,客户遍及政府机构、研究所、大学、农场等。 2015年初,利曼中国正式成为美国Zeltex公司手持近红外分析仪(谷物、种子、肉类等)在中国地区的独家授权代理商。几个月来,利曼员工深入国内大豆主产区之一的东北地区,先后在沈阳、哈尔滨、黑河、克东等地巡回演示世界首款、方便小巧的快速近红外分析仪。与传统笨重的实验室台式近红外分析仪相比,ZX-50IQ手持近红外谷物分析仪不仅具备轻巧、便携的特点,在数据测量方面同样具有很高的准确性与稳定性,获得当地农场、油脂厂、大豆企业的一致好评。 谈到便携式仪器,自然会联想到它的尺寸与重量,实拍图如下: 主机尺寸26 x 12 x 9 cm,重量1.5 kg,拿在手里如同半个平板电脑(厚度除外)。同时,仪器可依据用户需求,配备不同的标样杯(大豆、玉米、小麦、大麦、高梁、油菜籽、豆粕等)及样品杯。仪器整体包装为带密码锁的手提铝箱,与14寸笔记本电脑包尺寸接近,重量不足5 kg,在安全性和便携性上,可谓做工扎实。 整个测量过程十分简单,主要分为以下几步:仪器自检&mdash 标样测定&mdash 样品检测&mdash 数据读取。为获得较高数据的准确性,仪器会主动提示操作者进行多次测量并要求旋转样品杯。同时,仪器具备拓展空间,内置不同的标准曲线,允许操作者连接电脑后新建标准曲线并对测量次数做出修改。 综述,作为最新型便携式设备的ZX-50IQ手持近红外谷物分析仪,通过升级主板、固件及软件程序,较上代相比在精度和性能方面提升33%,可以更高效、准确的满足现场谷物检测工作,其特点可概括如下:■ 操作非常简单,上手容易;■ 便携式设计,体积小巧;■ 6节5号电池即可供电,亦可外接车载点烟器或交流电源;■ 样品使用量少,无需前处理,整粒无损检测;■ 分析速度快,不到1分钟即可获取结果;■ LCD显示屏直显数据,同时可外接电脑综合分析。 利曼中国自成立二十余年来,一直致力于质量控制与分析、智能科技产品的推广及应用,目前在中国拥有20多个销售联络处,6个维修服务中心,5个示范实验室,近百名员工以及众多的国内外合作伙伴。Zeltex手持近红外产品的引入,将进一步丰富利曼的产品线,更好地服务于国内分析检测领域,促进分析技术的提高。更多产品信息,请致电全国统一服务热线400-606-1718。
  • PerkinElmer推出PM2.5红外分析解决方案
    请下载:PerkinElmer PM2.5 颗粒物来源红外分析解决方案进行 PM2.5 颗粒物对大气环境污染评估时,不仅要考察其对本地污染状况,而且也需要分析来自其它地区或其它国家的越境污染的影响。不仅要静态追踪 PM2.5 行业污染源头,而且要可能地动态追踪其迁移变化途径。 实例:PerkinElmer(日本)与客户合作开展的利用FT-IR成像设备对大气中PM2.5颗粒物污染状况的评估。配置:PerkinElmer FT-IR 及 SpotlightTM 400 红外成像仪 右图:在富士山顶可采集的颗粒物中,对来自太平洋方向的小笠原气团与大陆气团这2种气团进行了评估。Fig.2 中显示的是一例颗粒物 IR 成像结果,分别是小笠原气团到达的 7 月 20 日所捕集的颗粒物和大陆气团到达的 8 月 23 日 2.5 µ m 级所捕集的成像结果。根据可视图像,发现捕集的颗粒物相似,对官能团分布(成分分布)成像,表明来自小笠原气团的气溶胶中有机物较少而硫酸盐明显。另一方面大陆气团中不仅检测出硫酸盐还检测出有机物和氧化硅。 请点击查阅相关应用文章
  • 《饲料的近红外光谱分析应用指南》征求意见
    日前,全国饲料工业标准化技术委员会发布文件,征求关于3项农业行业标准(征求意见稿)的意见。其中《饲料的近红外光谱分析应用指南》规定了饲料成分如水分、粗脂肪、粗蛋白、淀粉、粗纤维含量以及消化率等技术指标的近红外光谱分析应用指南。  与其他分析技术尤其是传统的实验室化学分析技术相比,近红外光谱分析技术在分析速度、检测成本、可同时检测多种理化性质、易操作性等主要检测性能方面具有显著优势。在全球饲料行业,NIR技术的优势已经获得了极大的认可和广泛的应用。据悉,在 ISO 12099:2010 Animal feeding stuffs, cereals and milled cereal products-Guidelines for the application of near infrared spectrometry 标准颁布之前,国际上的近红外光谱技术在饲料行业中并没有通行的、普适性的国际标准。2010年 6 月 15 日,ISO 12099 的颁布实施在动物饲料行业树立了行业公认的交流准则,从而让不同 NIRS 光谱用户实现了结果的互认与交流,该标准在 2017 年进行了修订(ISO 12099:2017)。  在饲料行业,我国从 20 世纪 90 年代中期开始引进近红外饲料分析仪器,到 2002 年底,正式颁布了饲料行业近红外分析的国家标准 GB/T18868-2002《饲料中水分、粗蛋白质、粗纤维、粗脂肪、赖氨酸、蛋氨酸快速测定近红外光谱法》、2007 年颁布实施了 NY/T 1423-2007《鱼粉和反刍动物精料补充料中肉骨粉快速定性检测近红外反射光谱法》,2012 年颁布了地方标准 DB21/T 2048-2012《饲料中粗蛋白、粗脂肪、粗纤维、水分、钙、总磷、粗灰分、水溶性氯化物、氨基酸的测定 近红外光谱法》,2015年颁布了地方标准DB43/T 1065-2015《饲料中氯基酸的测定 近红外法》,2019年颁布了地方标准DB36/T 1127-2019《饲料中粗灰分、钙、总磷和氯化钠快速测定 近红外光谱法》,这些标准的颁布实施,标志着这项检测新技术在我国的饲料检测方面受到了广泛的关注和认可。  虽然,国内许多大型饲料企业和科研院所均在饲料的 NIR检测软硬件方面投入了巨大的财力物力,既促进了饲料行业的飞速发展,又提升了 NIR技术的普及与推广。但与飞速发展的 NIR饲料分析技术以及对应的国际标准方面的发展相比,我国针对 NIR技术在饲料检测方面的标准制订还有待完善,这对我国 NIR技术在饲料行业的全面、稳健、规范的发展形成了制约。故此,亟需推出针对饲料行业检测具有指导性质的、能适应 NIR检测技术发展态势的指南标准。  《饲料的近红外光谱分析应用指南》修改采用 ISO 12099:2017《动物饲料、谷物及谷物精制料的近红外光谱分析应用指南》。ISO 12099 为使用近红外光谱进行动物饲料的成分如水分、脂肪、蛋白、淀粉、粗纤维含量以及相关性能参数如消化率等的检测提供了综合性指南。ISO 12099 国际标准的引用,为各项技术环节提供了非常细致的指导基础,是后续开发和应用具体 NIRS 解决方案的重要基石。  作为促进仪器技术应用的有力手段,标准的推行对仪器及分析测试行业具有重大的意义。通过国家标准信息查询系统检索,目前近红外相关的国家标准22项、行业标准31项,地方标准18项。相关标准的推出对于发展中国近红外光谱分析技术,便于广大用户正确掌握和使用近红外光谱定性分析方法,在一定程度上解决了粮油、饲料、水果、纺织品、乳制品等现场快速鉴定与相关行业产品的鉴别、溯源及判别问题,对促进中国近红外光谱快速分析技术应用和发展具有重要实际意义。特别值得一提的是,2013年发布了GB/T 29858-2013《分子光谱多元校正定量分析通则》,2019年发布了GB/T 37969-2019《近红外光谱定性分析通则》。其中,《近红外光谱定性分析通则》规定了近红外光谱定性分析的基本原理和方法、使用软件、仪器设备、光谱测量、样品、定性分析试验步骤、试验数据处理、试验报告等内容的通用要求,进一步完善了近红外分析技术的应用标准,使近红外定性分析的应用走向规范。在我国,大量的科研机构及企事业单位越来越重视并充分挖掘和利用着NIR分析的优势。不过,相对于近红外亟待拓展的领域,现有的标准还不能满足快速增长的应用需求。拿饲料为例,当前全球工业领域的质量管理,已提升到以“原料控制”及“生产过程质量控制”等预防性的质量控制和检验手段为主。要满足上述要求,须有快速、适宜现场及在线检测的检验手段作为支撑,而鉴于近红外光谱技术的优势,相关标准的完善将进一步推动其在饲料领域的应用拓展。
  • 近红外光谱分析技术高速发展——参加全国第九届近红外光谱学术会议心得体会
    北京工商大学人工智能学院 张倩 高翔 崔程(导师:吴静珠)2022年10月20~22日,为期三天的全国第九届近红外光谱学术会议在线上召开,此次会议全力展示了我国近红外光谱领域所取得的最新进展及成果,增进了广大近红外光谱科技工作者和广大近红外分析工作者之间的交流与合作,进一步促进了我国近红外光谱事业的发展。本次会议中外专家学者汇聚一堂,近3000人报名参会,会议规模再创新高。此次会议共安排了80余场报告,内容涵盖了化学计量学方法、仪器与测量附件、光谱成像与过程分析,以及近红外光谱技术在农业、食品、化工、制药等多个领域的应用进展,为参会人员呈现了一场既有深度亦有广度的学术盛宴。以下从多种角度介绍本次会议亮点及参加会议的心得体会。首次邀请国外学者进行汇报,扩充国际视角本次会议,不仅汇集了数十位近红外领域顶尖的国内专家,还邀请了四位国际知名教授、专家站在国际视角,现场分享近红外技术的最新发展。来自日本名古屋大学的Satoru Tsuchikawa教授带来了题为《State-of-Art NIR Imaging Research For Agriculture and Forestry》的报告,详细讲述近红外成像技术在农业和林业的研究进展;来自韩国汉阳大学的Hoeil Chung教授的报告题目为《Identification of gallbladder cancer through NIR analysis of bile and quantitative detection of microplastics captured in perfluorocarbon》,通过对于胆汁的近红外分析和定量检测来诊断胆囊癌,展现了近红外光谱在疾病筛查领域具有的广泛应用前景;来自西班牙Córdoba-UCO大学的Dolores Pérez-Marín教授分享了报告《Current Trends in The Use of NIRS Spectroscopy for The Control of Agrifood Products and Processes》,介绍了在农产品、食品品质和生产过程控制中近红外光谱技术的应用趋势;奥地利因斯布鲁克大学分析化学和放射化学研究所所长Christian Wolfgang Huck教授针对微型光谱仪的现状与未来带来了题为《Present and Future of Miniaturized NIR-Spectrometers Combined with Challenging Data Management Strategies》的精彩汇报,介绍了近年来不同分光原理的微型光谱仪应用领域发展及智能化水平提升等趋势。数十位资深近红外专家相聚云端,现场分享最新的研究进展本次会议十余位在近红外检测领域深耕多年的专家教授分享了自己从事近红外光谱分析技术应用研究与实践十余年的经历、经验和心得体会,为青年学者进行后续的研究提供经验与启发。南开大学的邵学广教授结合近红外光谱分析的需求,简述近红外光谱分析中所涉及的化学计量学方法,阐述化学计量学对近红外光谱分析的作用和意义。化学计量学的核心是正确的使用数学和统计学方法进而从数据中获取与分析目标相关的信息,理解化学计量学方法的原理是保障正确使用的关键,邵教授通过将建模流程拆分,在数据集及评价、建模方法、模型评价与验证、模型监控等步骤中说明如何在近红外光谱分析实践中正确选择和使用化学计量学方法。云南中烟工业有限责任公司的王家俊高工结合自己从事近红外光谱技术在烟叶原料、辅助材料质量控制与品质分析中的应用研究的经验,从近红外光谱定量定性分析与标准、近红外光谱分析网络化与数据挖掘应用、天然样品高质量光谱的测量与参考数据测定、化学计量学方法应用和模型应用和维护五个方面分享了自己的实践体会,同时也展望了大数据时代近红外光谱技术网络化的应用前景,给青年学者提出希冀。华东理工大学的杜一平教授带来自己最新的研究进展,杜教授通过对低浓度组分检测的深度思考,从样品中浓度相关性的角度探讨NIR模型的本质。他提出当样品中存在与被测组分浓度具有相关性的组分时,模型可以“借助”这种关系提升模型性能,样品组成改变时,相关性组分对模型的影响可能影响到模型预测精度,该发现有助于我们进一步理解和应用模型、变量选择结果、模型维护方法以及注意模型更新等。海南大学的云永欢副教授做了题为《我与近红外光谱的十年:从基础理论、方法开发到应用研究》的报告,将自己从开始接触近红外光谱到现在取得的成果和总结的经验精炼在20分钟内向大家进行了分享,给正在学习和进行近红外领域相关研究的在校研究生提供了很多新的思路和研究方向。聚焦近红外技术在食品安全、生物制药、化学化工等热门领域的最新应用本次会议不仅聚焦最新、最前沿的光谱技术,而且对食品安全、生物制药、生命科学、材料等目前最热门的应用领域进行深入探讨。近红外技术在水果分级检测中应用日趋广泛。来自北京市农林学院智能装备技术研究中心的李江波研究员进行了题为《水果内部质量近红外光谱检测技术与设备》的报告。针对近红外光在水果组织中传输存在多重散射和吸收,导致水果内部有效光谱信息难以准确、稳定获取的问题,建立了水果内部光传输特性分析系统,解析了近红外光在水果内部传输机理,提出了逐步切片结合最小二乘拟合的近红外光在水果组织中穿透深度分析法,保证了近红外光谱信号的可靠获取。湖南农业大学李跑教授利用近红外光对果皮穿透能力对柑橘品种、柑橘产地、柑橘霉变进行定性无损检测:对于不同品种的柑橘鉴别分析,采用主成分分析-Fisher线性判别模型(PCA-FLD)+6点平均光谱(赤道4点+顶部+底部)最终实现100%鉴别率,使用同样的方法对不同产地的柑橘进行鉴别,最终结果依然非常优秀;对于霉变柑橘检测,研究了不同波段(长短波段)柑橘近红外光谱对霉变模型的影响,并指出:在建模过程中发现短波近红外光虽然穿透性要强于长波近红外,但长波近红外光建模效果要优于短波近红外。在食品行业近红外技术的应用日渐成熟。福斯华(北京)科贸有限公司的应用专家杨海龙结合福斯华三款近红外光谱仪在肉类行业、谷物交易加工行业以及制糖行业的应用,对近红外光谱分析技术在食品行业的应用进行了分享。温州大学的黄光造老师利用一类自编码器结合近红外光谱实现对奶粉中掺假的检测。四川长虹电气股份有限公司的刘浩工程师深入探讨了近红外光谱在白酒行业的应用:应用近红外光谱技术实现对酒醅的快速检测,可为酿酒生产现场及时提供数据。通过组合不同预处理方法、预处理参数选择、PLS成份数建立定量模型,可以选择出酒醅的水分、酸度、淀粉、残糖的最佳建模方法;自主研发的光谱智能APP可以实现账号管理、光谱采集、光谱曲线绘制、云端模型调用和结果展示等功能。相较于传统实验室,其具有体积小巧、轻便、易携带等优点,非常适合对酿酒车间酒醅进行现场快速检测。近红外光谱在生物制药领域近年来也取得了显著的研究进展。随着制药技术的发展,药物连续化生产正在成为国际制药行业发展的趋势,来自山东大学的李连副研究员分享了报告《近红外光谱分析技术在制药领域的在线应用研究探索》,以光谱稳定获取、光谱-物料实时对应、光谱模型建立等方面为着力突破点,重点介绍了山东大学药物智能制造技术研究团队,应用NIRS在药物生产在线分析方面所做的研究工作及获得的研究成果。来自天津中医药大学的硕士研究生吴晨璐进行了题为《多光谱数据融合用于双黄连口服液的质量检测》,该报告提出了一种基于紫外可见和近红外光谱的数据融合方法,以可溶性固含量和总黄酮为指标的用于检测双黄连口服液质量的方法。来自中国科学院西北高原生物研究所的硕士研究生龙若兰进行了题为《藏药五脉绿绒蒿提取过程中总黄酮含量的近红外在线检测》的报告,该研究以提升五脉绿绒蒿中总黄酮含量在线检测精度为目标,为中药材在线检测模型的建立提供了新的思路。来自天津中医药大学中药制药工程学院的硕士研究生崔同灿进行了题为《草药NIRS指纹图谱转换为HPLC指纹图谱的可行性研究》。在草药的流通和使用的过程中不同批次的药材之间质量波动较大,该报告以菊花和天麻为例,研究不同校准转移方法实现NIRS指纹图谱转换为HPLC指纹图谱的适用性和可靠性。该研究探索了具有不同分析信号的不同类型仪器之间的校正转移的可行性,以期解决草药快速质量评价和成分含量预评估任务,为草药质量控制研究提供新的手段和思路。拉曼光谱成像、高光谱成像、微波频谱分析等多领域的光谱分析技术全面发展 此次会议交流不仅仅限于近红外光谱分析技术,对于其他光谱技术结合化学计量学的研究和应用等也展开了多组报告,对拉曼光谱成像、高光谱成像、微波频谱分析和介电光谱等领域的基础研究、理论创新、及新方法、新技术和新应用进行了介绍。来自武汉轻工大学的四位研究生分别基于拉曼光谱成像技术做了多种研究。肖晓枫同学以小龙虾为研究对象,模拟了微塑料在小龙虾体内的传递途径和累积过程,并利用拉曼成像结合图像处理用于识别和可视化不同小龙虾组织中的微塑料,基于此估计微塑料的污染水平。梅婷娜同学建立了一种基于拉曼成像与化学计量学相结合的高效方法,以同时识别滤袋在浸泡过程中释放出的各种MPs。吕静雯同学以大豆油、菜籽油和棕榈油为研究对象,模拟了油炸行业的煎炸过程,将拉曼光谱结合化学计量学用于定量监测油炸过程中油的降解。徐梦婷同学通过拉曼峰强度建模成功地将山茶油与低价植物油和掺假山茶油区分开,预测成功率达95%以上,为山茶油鉴别提供一种可行方案。来自中国农业大学的博士研究生龙园做了题为《拉曼高光谱用于玉米种子霉变筛选检测研究》的报告:将拉曼高光谱应用于玉米种子霉变样本筛选,结果表明基于竞争自适应重加权算法(CARS)结合胚面和非胚面权重比例为3:7构建的偏最小二乘判别分析模型精度最佳,测试集精度可达90.63%。来自西北大学的硕士研究生郭梦君做了题为《基于表面增强拉曼光谱结合随机森林的水中多环芳烃定量分析》的报告,报告表明表面增强拉曼光谱结合RF可以实现水中多环芳烃的快速准确检测。随着微波电子学和微波测量技术的发展,微波频谱分析方法逐渐发展成为一种独立的快速无损测量技术。微波频谱分析技术已成功应用于许多领域的水分含量测量,包括粮食作物、轻工业产品和建筑材料等。来自中国矿业大学的田军博士设计了一款煤炭水分含量智能测量系统,其将微波频谱分析与距离加权K近邻(DW-KNN)算法相结合,实现了煤炭水分含量的快速无损测量。广州星博科仪有限公司的创办人罗旭东针对高光谱成像技术的应用现状做了题为《高光谱实时分类技术在机器视觉中的应用和发展》的报告,介绍了针对高光谱成像技术三维成像数据,数据量巨大问题的解决方案,以及在工业现场的实际应用。来自北京工商大学崔程同学在其报告《基于近红外高光谱成像的花生冻伤检测》中研究利用高光谱成像技术对花生是否冻伤进行定性检测研究,采用四种变量选择方法CARS、SPA、VCPA-IRIV、VCPA-G在全谱范围内选择出与花生冻伤相关的特征波长,并按照每个波长变量的重要性进行排序组合建立支持向量机模型,最终在保证一定判别准确率前提下筛选表征花生冻伤的特征波长,并通过光谱吸收峰解析花生冻伤光谱检测机理。来自西北农林科技大学的杨可博士和朱杰亮同学报告了使用介电光谱检测牛初乳中掺假的检测研究,介电光谱具有波长长、在乳中穿透深度大、散射影响小等优点,在非均质乳的在线检测中具有很大的潜力。杨可博士通过建立基于近红外光谱和介电光谱的初乳成熟乳含量定量鉴别模型来比较近红外光谱和介电光谱在定量鉴别掺假初乳中的性能。研究显示NIRS和DS均能清晰识别初乳中成熟乳的比例,但两种方法的识别特征完全不同。DS比NIRS能更好地预测初乳中成熟乳的掺假,在非均质液体食品的快速定量分析中具有良好的潜力;朱杰亮同学建立了一种基于介电光谱的成熟乳初乳掺假快速检测的新方法,利用合理的算法分析其影响因素和机理。多种最新检测仪器亮相,助力近红外光谱检测发展近红外技术的研究和应用离不开仪器技术的进步,本次会议得到了12家国内外知名仪器公司的大力支持,多家仪器企业也派出资深技术人员现场分享最新的产品和技术。来自无锡迅杰光远科技有限公司的技术总监兰树明做了题为《颗粒样品NIR漫反射光谱提高采样精度方法的研究》的报告,介绍了一种颗粒样品提高采样精度的方法,研究漫反射光谱化学计量学结果与粒度之间的关系,提出一种大光斑侧照式混合光学采样方法,扫描全部样品的漫反射光谱信息,并将颗粒产生的随机光谱噪声通过简单的平均方法实现有效抑制,提高颗粒样品的分析精度,使颗粒样品无需粉碎能够得到高精度的分析结果。海洋光谱的晏彬彬分享了如何在科研和生产中选择适合的近红外光纤光谱仪,介绍了海洋光学多款新款小微型近红外光谱仪,以大波段范围、高灵敏度、全谱波段信号优化为主要升级目标,有效的提升了仪器的稳定性,数据的可靠性。珀金埃尔默仪器公司的资深产品专员郁露也介绍了珀金埃尔默近(中)红外产品及应用进展。在大会组委会努力不懈的组织与全国近红外技术用户的热情参与下,第九届全国近红外光谱学术会议顺利闭幕。会议为国内外光谱科研工作者及专业技术人士提供一个持续、高效的沟通交流平台,促进了业内交流,提高了光谱研究及应用水平。会议不仅有国外专家的研究分享,还有国内从业数十年的资深专家传授经验,更有数位优秀的青年科研工作者和在读学生在本次会议中分享了最新的研究成果。从了解、质疑,到认可,中国近红外光谱技术经过长时间的发展、实践,现在已经逐渐被各领域用户接受、认可,目前近红外技术的应用研究和技术推广还处在迅速上升阶段。这不但得益于老一辈专家打下的坚实基础,更需要年轻学者和学生的不断进取。会议开幕式上获得第四届“陆婉珍近红外光谱奖” 的各位老师以及会议闭幕式评选的12位获得优秀青年报告奖的青年学者都是我们学习的榜样。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制