当前位置: 仪器信息网 > 行业主题 > >

红外绿点测法

仪器信息网红外绿点测法专题为您提供2024年最新红外绿点测法价格报价、厂家品牌的相关信息, 包括红外绿点测法参数、型号等,不管是国产,还是进口品牌的红外绿点测法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外绿点测法相关的耗材配件、试剂标物,还有红外绿点测法相关的最新资讯、资料,以及红外绿点测法相关的解决方案。

红外绿点测法相关的资讯

  • 高载流子迁移率胶体量子点红外探测器
    短波红外和中波红外波段是两个重要的大气窗口。在该波段范围内,碲化汞胶体量子点表现出良好的光响应。此外,胶体量子点具有易于液相加工制备以及与硅基工艺兼容等优势,因此有望显著降低红外光电探测器的成本。然而,目前胶体量子点红外光电探测器在比探测率、响应度等核心性能方面与传统块体半导体红外探测器相比仍存在一定差距。有效地调控掺杂和迁移率等输运性质是提升量子点红外光电探测器性能的关键。据麦姆斯咨询报道,近期,北京理工大学光电学院和北京理工大学长三角研究院的科研团队在《光学学报》期刊上发表了以“高载流子迁移率胶体量子点红外探测器”为主题的文章。该文章第一作者为薛晓梦,通讯作者为陈梦璐和郝群。在本项工作中,采用混相配体交换的方法将载流子迁移率提升,并且实现了N型、本征型、P型等多种掺杂类型的调控。在此基础之上,进一步研究了输运性质对探测器性能的影响。与光导型探测器相比,光伏型探测器不需要额外施加偏置电压,没有散粒噪声,拥有更高的理论灵敏度,因此是本项工作的研究重点。同时,使用高载流子迁移率的本征型碲化汞量子点薄膜制备了短波及中波红外光伏型光电探测器。实验过程材料的合成:Te前驱体的制备在氮气环境下,称量1.276 g(1 mmol)碲颗粒置于玻璃瓶中,并加入10 ml的三正辛基膦(TOP)中,均匀搅拌至溶解,得到透明浅黄色的溶液,即为TOP Te溶液。碲化汞胶体量子点的合成在氮气环境下,称量0.1088 g(0.4 mmol,氮气环境下储存)氯化汞粉末置于玻璃瓶中,并加入16 ml油胺(OAM),均匀搅拌并加热至氯化汞粉末全部溶解。本工作中合成短波红外和中波红外碲化汞胶体量子点的反应温度分别为65℃和95℃。使用移液枪取0.4 mL的TOP Te溶液,快速注入到溶于油胺的氯化汞溶液中,反应时间分别为4 min和6 min。反应结束后加入20 ml无水四氯乙烯(TCE)作为淬火溶液。碲化银纳米晶体颗粒的合成在氮气环境下,称量0.068 g(0.4 mmol)硝酸,并加入1 mL油酸(OA)和10 mL油胺(OAM)中,均匀搅拌30 min。溶解后,注入1 mL TOP,快速加热至160℃并持续30-45 min。然后向反应溶液中注入0.2 mL TOP Te(0.2 mmol),反应时间为10 min。碲化汞胶体量子点的混相配体交换混相配体交换过程包括液相配体交换和固相配体交换。选择溴化双十二烷基二甲基铵(DDAB)作为催化剂,将碲化汞胶体量子点溶在正己烷中,取4 ml混合溶液与160 μL β-巯基乙醇(β-ME)和8 mg DDAB在N,N-二甲基甲酰胺(DMF)中混合。之后向溶液中加入异丙醇(IPA)进行离心,倒掉上清液,将沉淀物重新溶解在60μL DMF中。固相配体交换是在制备量子点薄膜后,用1,2-乙二硫醇(EDT)、盐酸(HCL)和IPA(体积比为1:1:20)溶液对已成膜的碲化汞胶体量子点表面进行处理。碲化汞胶体量子点的掺杂调控在调控碲化汞胶体量子点的掺杂方面,Hg²⁺可以通过表面偶极子稳定量子点中的电子,所以选择汞盐(HgCl₂)来调控量子点的掺杂状态。在液相配体交换结束后,向溶于DMF的碲化汞胶体量子点溶液中加入10 mg HgCl₂得到本征型碲化汞胶体量子点,加入20 mg HgCl₂得到N型碲化汞胶体量子点。材料表征采用混相配体交换的方法不仅可以提高载流子迁移率还可以通过表面偶极子调控碲化汞胶体量子点的掺杂密度。液相配体交换前后中波红外碲化汞胶体量子点的TEM图像如图1(a)所示,可以看到,进行液相配体交换后的碲化汞胶体量子点之间的间距明显减小,排列更加紧密。致密的排列可以提高碲化汞胶体量子点对光的吸收率。混相配体交换后的短波红外和中波红外碲化汞胶体量子点的吸收光谱如图1(b)所示,从图1(b)可以看出,短波红外和中波红外碲化汞胶体量子点的吸收峰分别为5250 cm⁻¹和2700 cm⁻¹。利用场效应晶体管(FET)对碲化汞胶体量子点的迁移率和薄膜的掺杂状态进行测量,把碲化汞胶体量子点沉积在表面有一层薄的SiO₂作为绝缘层的Si基底上,基底两侧的金电极分别作为漏极和源极,Si作为栅极,器件结构如图1(c)所示。通过控制栅极的极性和电压大小,可以使场效应晶体管分别处于截止或导通状态。图1(d)是N型、本征型和P型中波红外碲化汞胶体量子点的场效应晶体管转移曲线。利用FET传输曲线的斜率计算了载流子的迁移率μFET。图1 (a)混相配体交换前后碲化汞胶体量子点的透射电镜图;(b)短波红外和中波红外碲化汞胶体量子点的吸收光谱;(c)碲化汞胶体量子点薄膜场效应晶体管测量原理图;(d)在300K时N型、本征型和P型中波红外碲化汞胶体量子点的场效应晶体管转移曲线测试结果。分析与讨论碲化汞胶体量子点光电探测器的制备光伏型探测器不需要施加额外的偏置电压,没有散粒噪声,理论上会具有更好的性能,借鉴之前文献中的报告,器件结构设计为Al₂O₃/ITO/HgTe/Ag₂Te/Au,制备方法如下:第一步,在蓝宝石基底上磁控溅射沉积50 nm ITO,ITO的功函数在4.5~4.7 eV之间。第二步,制备约470 nm的本征型碲化汞胶体量子点薄膜。第三步,取50 μL碲化银纳米晶体溶液以3000 r/min转速旋转30 s,然后用HgCl₂/MEOH(10 mmol/L)溶液静置10 s后以3000 r/min转速旋转30 s,重复上述步骤两次。在这里,Ag⁺作为P型掺杂层,与本征型碲化汞胶体量子点层形成P-I异质结。最后,将器件移至蒸发镀膜机中,在真空环境(5×10⁻⁴ Pa)下蒸镀50 nm Au作为顶层的电极。高迁移率光伏型探测器的结构图和横截面扫描电镜图如图2(a)所示。能级图如图2(b)所示。制备好的探测器的面积为0.2 mm × 0.2 mm。图2 (a)高迁移率碲化汞胶体量子点P-I异质结结构示意图及扫描电镜截面图 (b)碲化汞胶体量子点P-I异质结能带图。器件性能表征为了探究高载流子迁移率短波红外和中波红外光伏型探测器的光电特性,我们测试了器件的I-V曲线以及响应光谱。图3(a)和(b)分别是高迁移率短波红外和中波红外器件的I-V特性曲线,可以看到短波红外和中波红外探测器的开路电压分别为140 mV和80 mV,这表明PI结中形成了较强的内建电场。此外,在零偏置下,高迁移率短波红外和中波红外器件的光电流分别为0.27 μA和5.5 μA。图3(d)和(e)分别为1.9 μm(300 K) ~ 2.03 μm(80 K)的短波红外器件的响应光谱和3.5 μm(300 K) ~ 4.2 μm(80 K)的中波红外器件的响应光谱。比探测率D*和响应度R是表征光电探测器性能的重要参数。R是探测器的响应度,用来描述器件光电转换能力的物理量,即输出信号光电流与输入光信号功率之比。图3 (a)300 K时短波红外I-V曲线;(b)80 K时中波红外I-V曲线;(c)短波红外及中波红外器件的比探测率随温度的变化;(d)短波红外器件在80 K和300 K时的光谱响应;(e)中波红外器件在80 K和300 K时的光谱响应;(f)短波红外和中波红外器件的响应度随温度的变化。图3(e)和(f)给出了探测器的比探测率D*和响应度R随温度的变化。可以看到,短波红外器件在所有被测温度下,D*都可以达到1×10¹¹ Jones以上,中波红外器件在110 K下的D*达到了1.2×10¹¹ Jones。应用此外,本工作验证高载流子迁移率的短波红外和中波红外量子点光电探测器在实际应用,如光谱仪和红外相机。光谱仪实验装置示意图如图4(a)所示,其内部主要是一个迈克尔逊干涉仪。图4(b)和(c)为使用短波红外和中波红外量子点器件探测时有样品和没有样品的光谱响应结果。图4(e)和图4(f)为样品在短波红外和中波红外波段的透过率曲线。对于短波红外波段,选择了CBZ、DDT、BA和TCE这四种样品,它们在可见光下都是透明的,肉眼无法进行区分,但在短波红外的光谱响应和透过率不同。对于中波红外波段,选择了PP和PVC这两个样品。在可见光下它们都是白色的塑料,但在中波红外光谱响应和透过率不同。图4(d)为自制短波红外和中波红外单点相机的扫描成像。,短波相机成像可以给出材质信息。中波红外相机成像则是反应热信息。以烙铁的中波红外成像为例,我们可以清楚地了解烙铁内部的温度分布。在可见光下,硅片呈现不透明的状态使用自制的短波红外相机成像后硅片呈现半透明的状态。图4 (a)利用高载流子迁移率探测器进行响应光谱测量的原理示意图;(b)和(c)分别是在有样品和没有样品两种模式下用自制探测器所探测到的光谱响应;(d)自制短波红外和中波红外光电探测器的单像素扫描成像结果图;(e)TCE、BA、DDT和CBZ在短波红外模式下的透光率,插图为四种样品的可见光图像;(f)PVC和PP在中波红外模式下的透光率,插图为两种样品的可见光图像。结论综上所述,采用混相配体交换的方法,将量子点薄膜中的载流子迁移率提升到了1 cm²/Vs,相较于之前的研究提升了2个量级。并且通过加入汞盐实现了对量子点薄膜的掺杂调控,分别实现了P型、本征型以及N型多种类型的量子点薄膜。同时,基于本征型高迁移率量子点制备了短波红外和中波红外波段的光伏型光电探测器。测试结果表明,提升量子点的输运性质,有效的提升了探测器的响应率、比探测率等核心性能,并且实现了光谱仪和红外相机等应用。本项工作促进了低成本、高性能量子点红外光电探测器的发展。这项研究获得国家自然科学基金(NSFC No.U22A2081、No.62105022)、中国科学技术协会青年托举工程(No.YESS20210142)和北京市科技新星计划(No.Z211100002121069)的资助和支持。论文链接:https://link.cnki.net/urlid/31. 1 252.o4.20230925.0923.016
  • 美开发出新型量子点红外探测器
    美国伦斯勒理工学院的研究人员开发出了一种基于纳米技术的新型量子点红外探测器(QDIP)。这种以金为主要材料的新型元件可大幅提高现有红外设备的成像素质,将为下一代高清卫星相机和夜视设备的研发提供可能。相关论文发表在《纳米快报》杂志网站上。  由美国空军科研局资助的这一项目,通过在传统量子点红外探测器元件上增加金纳米薄膜和小孔结构的方式,可将现有量子点红外探测器的灵敏度提高两倍。  研究人员称,红外探测器的灵敏程度从根本上取决于在去除干扰后所能接收到的光线的多寡。目前大多数红外探测器都以碲镉汞技术(MCT)为基础。该元件对红外辐射极为敏感,可获得较强信号,但同时也面临着无法长时间使用的缺憾(信号强度会逐步降低)。  在这项新研究中,研究人员使用了一个厚度为50纳米、具有延展性的金薄膜,在其上设置了大量直径1.6微米、深1微米的小孔,并在孔内填充了具有独特光学性能的半导体材料以形成量子点。纳米尺度上的金薄膜可将光线“挤进”小孔并聚焦到嵌入的量子点上。这种结构强化了探测器捕获光线的能力,同时也提高了量子点的光电转换效率。实验结果表明,在不增加重量和干扰的情况下,通过该设备所获得的信号强度比传统量子点红外探测器增强了两倍。下一步,他们计划通过扩大表面小孔直径和改良量子点透镜方法对设备加以改进。研究人员预计,该设备在灵敏度上至少还有20倍的提升空间。  负责此项研究的伦斯勒理工学院物理学教授林善瑜(音译)称,这一实验为新型量子点红外光电探测器的发展树立了一个新路标。这是近10年来首次在不增加干扰信号的情况下成功使红外探测器的灵敏度得到提升,极有可能推动红外探测技术进入新的发展阶段。  红外传感及探测设备在卫星遥感、气象及环境监测、医学成像以及夜视仪器研发上均有着广泛的应用价值。林善瑜在2008年时曾开发出一种纳米涂层,将其覆盖在太阳能电池板上,可使后者的阳光吸收率提高到96%以上。
  • 可调谐红外双波段光电探测器,助力多光谱探测发展
    红外双波段光电探测器是重要的多光谱探测器件,特别是近红外/短波红外区域,相较于可见光有更强的穿透能力,相较于中波红外可以以较低的损耗识别冷背景的物体,因此广泛应用于民用和军事领域。当前红外双波段探测器主要面临光谱不可调谐,器件结构复杂而不易与读出集成电路相结合的挑战。据麦姆斯咨询报道,近日,合肥工业大学先进半导体器件与光电集成团队在光电子器件领域取得重要进展,研究团队研发了一种光谱可调谐的近红外/短波红外双波段探测器,相关研究成果以“Bias-Selectable Si Nanowires/PbS Nanocrystalline Film n–n Heterojunction for NIR/SWIR Dual-Band Photodetection”为题,发表于《先进功能材料》(Advanced Functional Materials, 2023: 2214996.)。第一作者为许晨镐,通讯作者为罗林保教授,主要从事新型高性能半导体光电子器件及相关光电集成技术方面的研究工作。该研究使用溶液法制备了硅纳米线/硫化铅异质结光电探测器(如图1(a)),工艺简单,成功将硅基探测器的光谱响应拓宽到2000 nm。基于有限元分析法的COMSOL软件分析表明,一方面,有序的硅纳米线阵列具有较大的器件面积,提升了载流子的输运能力,且纳米线阵列具有较好的周期性,入射光可以在纳米线结构之间连续反射,产生典型的陷光效应。另一方面,小尺寸的纳米线阵列可以看作是微型谐振器,可以形成HE₁ₘ谐振模式,增强特定入射光的光吸收。通过调制外加偏压的极性,器件可以实现近红外/短波红外双波段探测、近红外单波段探测、短波红外单波段探测三种探测模式的切换。器件还具有较高的灵敏度,在2000 nm光照下的探测率高达2.4 × 10¹⁰ Jones,高于多数短波红外探测器。图1 双波段红外探测器结构图及相关仿真和实验结果图2 偏压可调的近红外/短波红外双波段探测及探测率随光强的变化曲线此外,该研究还搭建了单像素光电成像系统(如图3(a)),在2000 nm光照下,当施加-0.15 V和0.15 V偏压时,该器件能对一个简单的英文字母实现成像。但是不施加偏压时,缺无法清晰成像。这表明只需要对器件施加一个小的偏置电压时,就可以将成像系统的工作区域从近红外调整到短波红外,具有较高的灵活性。图3 光电成像系统及成像结果这项研究得到了国家自然科学基金、安徽省重点研发计划、中央高校基本科研业务费专项资金等项目的资助。
  • 突破!全球最快响应的短波红外量子点探测器
    【背景介绍】短波红外(SWIR,1000 ~ 3000 nm)光由于受空气中颗粒物的散射较弱,使其在恶劣天气或生物组织中也能提供长距离的有效探测,并在成像场景中提供更多物质化学信息,同时对人眼更安全。这使得短波红外在光通信、远程遥感、自动化视觉技术、生物成像、环境监测和光谱技术等领域中发挥着关键作用。然而,目前市场上的短波红外传感器采用异质外延技术,但由于其制备方法繁琐,不适合大规模、低成本的3D成像应用。随着胶体量子点(QDs)的出现,其尺寸可调的光学特性使其成为探测短波红外光的理想选择。虽然近年来短波红外光电二极管结构探测器的响应时间有所缩短,但至今仍未达到纳秒级水平,这成为将胶体量子点应用于短波红外光电探测领域的主要挑战之一。【成果简介】据麦姆斯咨询报道,近日,比利时根特大学的邓玉豪(第一作者兼通讯作者)等人取得了一项突破性进展,成功利用超薄的胶体量子点吸收层,实现了基于胶体量子点的短波红外光电二极管(QDPDs)的纳秒级响应。这一研究成果创造了短波红外领域全球最快响应的胶体量子点光电探测器,相关内容以“Short-Wave Infrared Colloidal QDs Photodetector with Nanosecond Response Times Enabled by Ultrathin Absorber Layers”为题在国际著名期刊《Advanced Materials》上发表,为胶体量子点在超快短波红外探测技术的进一步研究和应用提供了重要参考。【核心创新】1. 作者通过优化超薄结构器件的制备方法,克服了传统方法的不足,得到1600整流比,42%外量子点效率,98%内量子效率的光电二极管器件。2. 作者通过结构优化,实现了超薄结构下量子点层2.5倍的吸收增强,使得超薄层仍然可以获得较高EQE。3. 作者通过厚度与面积优化,平衡了载流子迁移与RC延迟时间,最终得到创纪录的4 ns响应时间。【研究概览】图1 胶体量子点探测器响应时间的数值模拟。计算表明,漂移时间将限制厚度较大的器件的响应,而RC延迟效应将决定较薄器件的响应时间,通过降低器件面积,可以实现纳秒级的响应时间。图2 胶体量子点光电探测器制备流程优化。作者通过浓度梯度的交换法,提高了PN结的质量,得到了整流比1600的器件。图3 胶体量子点光电探测器结构示意图和性能。该器件的胶体量子点层优化为100 nm,器件的EQE达到了42%,利用结构形成法布里-珀罗腔,在超薄结构的基础上将量子点层的吸收增强了2.5倍,器件的内量子效率可以高达98%。图4 不同大小、不同厚度的胶体量子点光电探测器的响应时间。通过降低器件面积、优化器件厚度可以使得器件具有更快的响应,最终实现了4 ns响应时间的世界纪录,也是首次将胶体量子点短波红外探测速度逼近到了纳秒级别。图5 进一步提快胶体量子点光电探测器的响应分析。通过提高胶体量子点层的迁移率,该器件结构还可以继续优化,完全可以实现亚纳秒级的响应时间,这为接下来胶体量子点超快探测器的研究阐明了研究方向。【成果总结】这项研究工作实现了一项重大的突破,首次设计出超薄吸收层的胶体量子点光电探测器,成功在短波红外波段实现了纳秒级的响应时间。通过采用浓度梯度的配体交换方法,制备了具有高质量PN结的薄膜结构器件。该光电探测器在1330 nm处获得了42%的外部量子效率,这得益于在胶体量子点光电二极管内形成的法布里-珀罗腔和高效的光生电荷提取。此外,通过进一步提高载流子迁移率,该器件可以实现亚纳秒级的响应时间。这项研究的成功突破将对短波红外超快光电探测技术的未来发展产生重大的影响。论文链接:https://doi.org/10 . 1002/adma.202402002【作者简介】Yu-Hao Deng(邓玉豪)博士,比利时根特大学BOF博士后研究员,主要研究方向为胶体量子点材料与光电器件,以及钙钛矿材料表征与光电器件。邓博士之前已在Nature、Advanced Materials、Matter、Nano Letters、Physical Review Letters、Advanced Science等国际期刊上发表论文数篇。
  • 立德红外智能光电研发产业化基地项目: 抢占区域红外光学发展制高点
    6月26日,在西安市高新区,立德红外智能光电研发产业化基地项目正在全力抢抓工期,加快建设步伐。 本报记者 袁景智摄6月26日7时许,36岁的赵海军准时赶到项目“班前讲评台”,向当日施工人员叮嘱注意事项。“进入夏季施工,项目部为大伙儿准备了绿豆汤、藿香正气水等解暑物品。咱们要打起精神,趁着雨季来临前干完地下室施工,为项目后续建设打好‘提前量’。”立德红外智能光电研发产业化基地项目负责人赵海军说。作为西安市重点项目之一,立德红外智能光电研发产业化基地项目是西安中科立德红外科技有限公司的增产扩能项目。该项目位于西安高新区,主要建设红外光电产品中心、医学红外产品中心、低成本红外探测器中心、精密红外光学加工中心、人工智能光电技术研究院及批量生产线等,预计2024年建成投产。相较于同类工业项目,立德红外智能光电研发产业化基地项目对设备荷载、厂房洁净度等建设要求更为严格。为了全面满足施工进度、质量和安全要求,项目团队倒排工期,逐项分解,明确每月、每周、每日工作进度,根据抢工计划全区域灵活周转,通过“一盘棋统筹、分区域定责”的方式,顺利解决人员紧张和不同区域工艺、工期、材料需求各不相同等难题。“每天中午,我们都要在现场开碰头会,对防水铺设、钢筋绑扎、模板搭设、基坑支护等工作进行总结,下午会同监理、业主等对问题进行复查验收,并将结果同步报送至工作群,随时掌握项目施工情况。”赵海军说,项目自年初开工以来,高新区行政审批服务局、住房和城乡建设局、城市管理和综合执法局等部门组成服务小分队,提供全流程手续办理培训。目前,项目进展顺利,预计7月底全面完成地下室施工任务。作为中科院西光所孵化的一家以红外热成像技术为核心的智能光电设备研制企业,西安中科立德红外科技有限公司是国内知名的红外成像与测量设备供应商。自2015年成立以来,该公司围绕红外成像测量技术,重点聚焦智能红外光电设备研制。近年来,在智能光电产业蓬勃发展的大趋势下,西安中科立德红外科技有限公司业务大幅度提升,预计未来订单金额达亿元。然而,由于场地限制,生产、研发、办公等无法有效运转,部分研制和生产不得不依赖于外协,场地分散严重制约了公司进一步发展。“为保持在红外行业的特色和领先性,公司亟需新的场地和空间实现产品量产。”西安中科立德红外科技有限公司人力行政总监欧秦伟表示,项目建成后不仅可大幅提升公司产能,年产能达到万台(套)以上,营业收入预计突破5亿元,还将形成西北地区完整的红外产业链,助力公司抢占区域红外光学发展制高点。望着眼前耸立的钢筋,赵海军感慨地说:“从前期规划、设计到建设,我全程参与了这个项目。项目工期紧、质量要求高,得时刻紧绷安全这根弦。尽管我时常忙到凌晨,但看着厂房一点点‘长大’,就觉得辛苦都值了。”
  • 华南理工研制新型有机半导体红外光电探测器,性能超越传统近红外探测器
    随着近红外(NIR)和短波红外(SWIR)光谱在人工智能驱动技术(如机器人、自动驾驶汽车、增强现实/虚拟现实以及3D人脸识别)中的广泛应用,市场对高计数、低成本焦平面阵列的需求日益增长。传统短波红外光电二极管主要基于InGaAs或锗(Ge)晶体,其制造工艺复杂、器件暗电流大。有机半导体是一种可行的替代品,其制造工艺更简单且光学特性可调谐。据麦姆斯咨询报道,近日,华南理工大学的研究团队研制出基于有机半导体的新型红外光电探测器。这项技术有望彻底改变成像技术,该有机光电二极管在近紫外到短波红外的宽波段内均优于传统无机探测器。这项研究成果以“Infrared Photodetectors and Image Arrays Made with Organic Semiconductors”为题发表在Chinese Journal of Polymer Science期刊上。研究团队采用窄带隙聚合物半导体制造薄膜光电二极管,该器件探测范围涵盖红外波段。这种新技术的成本仅为传统无机光电探测器的一小部分,但其性能可与传统无机光电探测器(如InGaAs光电探测器)相媲美。研究人员将更大的杂原子、不规则的骨架与侧链上更长的分支位置结合起来,创造出光谱响应范围涵盖近紫外到短波红外波段的聚合物半导体(PPCPD),并制造出基于PPCPD的光电探测器,相关性能结果如图1所示。图1 基于PPCPD的光电探测器性能在特定探测率方面,该器件与基于InGaAs的探测器相比具有竞争力,在1.15 μm波长上的探测率可达5.55 × 10¹² Jones。该有机光电探测器的显著特征是,当其集成到高像素密度图像传感器阵列时,无需在传感层中进行像素级图案化。这种集成制造工艺显著简化了制备流程,大幅降低了成本。图2 短波红外成像系统及成像示例华南理工大学教授、发光材料与器件国家重点实验室副主任黄飞教授表示:“我们开发的有机光电探测器标志着高性价比、高性能的红外成像技术的发展向前迈出了关键的一步。与传统无机光电二极管相比,有机器件具有适应性和可扩展性,其潜在应用范围还包括工业机器人和医疗诊断领域。”该新型有机光电探测器有望对各行各业产生重大影响。它们为监控和安全领域的成像系统提供了更为经济的选择。未来,基于有机技术的医疗成像设备有望更加普及,价格也会更加合理,从而在医疗环境中实现更全面的应用。该器件的适应性和可扩展性还为尖端机器人和人工智能等领域的应用铺平道路。这项研究得到了国家自然科学基金(编号:U21A6002和51933003)和广东省基础与应用基础研究重大项目(编号:2019B030302007)的资助。论文链接:https://doi.org/10.1007/s10118-023-2973-8
  • 水质检测设备---全自动红外测油仪(红外光度法)
    产业调研网发布的中国水质监测行业现状调研及未来发展趋势分析报告(2021-2027年)认为,水质监测行业今后将会继续稳定、持续地发展;运营市场方面,随着有关部门监管力度的加强,运营企业的数量将逐渐缩小,少数规模大、实力强的运营企业将逐渐成为运营市场的主力军。随着国家对环保的日益重视,水质监测行业竞争将不断加剧,国内的水质监测企业将迅速崛起,逐渐成为水质监测行业中的翘楚。 B1171全自动红外测油仪符合国家标准“HJ637-2018水质 石油类和动植物油的测定 红外光度法”,由全自动操作软件,红外分光系统和磁力搅拌萃取系统组成,使用萃取溶剂按一定萃取比例,采用滚筒式立体搅拌技术将水体中的油类萃取出来,再将萃取溶液通过过滤装置除水除杂质导入比色皿中,然后红外分光系统进行分析测量。加装专用的硅酸镁过滤装置可以测量石油类和动植物油的含量。测量完毕仪器自动排废清洗管道。全过程自动化,无须操作人员接触四氯乙烯,即自动进样、自动萃取、自动除水除杂质、自动测量、自动清洗、自动排液和存储数据。仪器特点:1、全自动化:全自动进样、萃取、除水过滤、测量、排液、清洗,可连续做8-10个水样。2、健康安全:萃取等操作无须分析人员的参与,不和四氯乙烯的接触,保证了操作人员的健康安全。3、萃取方法符合新国标HJ637-2018,萃取结果和国标方法的结果一致。4、拥有核心技术:配置**油水分离膜一次分离过滤,不配无水硫酸钠除水,一膜可使用百次左右。5、厂家配备**技术产品标准油滤光片,可进行单点校正,一次标准曲线终身免更换,免除配置标准油试剂。6、内置多点触控计算机控制终端,体积小可放置在常规标准1.2米通风橱中,可外接台式计算机控制操作。7、采用效率高的滚筒立体式侧面磁力搅拌萃取技术,萃取效率高于95%,全密闭萃取无挥发无毒害。8、采用Windows10操作系统控制。9、采用稳定成熟的.NET4.0平台绿色免安装测油仪软件。10、真正的三波数,红外三波数谱图清晰,刻度准确,清晰显示三个波数产生的吸收谱图和吸光度。11、四氯乙烯内置3L储液瓶 ,萃取排废全密闭不挥发。12、内置硅酸镁吸附柱可测量矿物油和动植物油,加装自动采样器可升级为在线监测仪。13、一键定标:空白和标准油样自动检测自动校正。14、一键完成:调空白加多个水样检测可以一键完成,减少操作人员的工作量。15、整个萃取系统采用防酸碱防四氯乙烯,全防腐不亲油的材料,运行清洗流程,减少高低浓度交叉污染。16、自动稀释富集:可以任意设定稀释富集比例。17、自动分离水和四氯乙烯废液,自动收集废液四氯乙烯等试剂,排放废水。18、基线稳定性:零点自动实时调整(消除基线漂移影响)。技术参数: 仪器检出限 DL0.02mg/L(测量11次空白计算3倍标准偏差) 波数范围 3400cm-1~2400cm-1(即2941nm~4167nm) 吸光度范围 0.0000~2.0000AU(即透过率100~1%T) 方法检出限 0.002mg/L zui大测量浓度 100%油 水样测量范围 0.001-100000mg/L(稀释或富集萃取测量法) 仪器测量范围 (0.02~800)mg/L 重复性 RSD≤1%(20-100mg/L油标样测定11次) 测量准确度 误差±2 % 相关系数 R0.999 取水样体积 5ml--600ml或5ml--1000ml 检测样品量 连续检测8-10个样品 四氯乙烯萃取量 10-25ml的整数倍 单个样品自动检测时间 2-5min(取样量越多萃取时间越长) 分辨率 0.001mg/L 萃取试剂 四氯乙烯 波数准确度和波数重复性 ±1cm-1 主机净重 25kg 使用电源 (220±22)V、(50±1)Hz、50VA 使用温度和湿度 温度范围1℃-40℃,湿度≤80﹪ 主机外型尺寸 750mm(长)×420mm(宽)×420mm(高)
  • 红外法和电解法水蒸气透过率测试该如何抉择?
    ASTM F3299是使用电解检测传感器(库仑P₂ O₅ 传感器)测量通过塑料薄膜的水蒸气透过率的标准测试方法。根据该测试方法的描述,F3299适用于由单层或多层合成或天然聚合物和箔(包括涂层材料)组成的片材和薄膜。ASTM F1249是使用调制红外传感器(1990年采用)测量通过塑料薄膜的水蒸气透过率的标准测试方法。根据该测试方法的描述,F1249适用于测试由单层或多层合成或天然聚合物和箔(包括涂层材料)组成的柔性阻隔膜和片材。当查看上述每个标准的描述时,它们似乎都可以应用于几乎相同的应用。那么,为什么要选择使用其中一种标准而不是另一种标准?水蒸气透过率测试方法F3299和F1249有什么不同每种测试方法中使用的传感器技术是两种标准之间的主要区别,每种传感器都有其特定的优点和缺点。例如,MOCON的AQUATRAN Model 3 WVTR测量仪器(ASTM F3299)针对的是超高阻隔材料,这些材料旨在将渗透检测范围推至极低水平。这些最低检测限(LOD)的典型应用包括测试OLED显示器、太阳能电池板和要求苛刻的柔性薄膜等,这些应用需要准确且极其灵敏的仪器来确认材料阻隔性能。对于中低阻隔材料,适合选择MOCON PERMATRAN-W3/34配备的调制红外传感器方法(ASTM F1249)进行测试。该仪器的WVTR范围为10-3至103 g/(m2day),具有很长(4-5年)的传感器寿命以及自动化操作功能。水蒸气透过率测试仪AQUATRAN Model 3在选择具有最高灵敏度(LOD)的WVTR渗透仪器时,首先需要确保您材料的WVTR范围与仪器的WVTR范围相匹配,并确认传感器有至少1-2年,最好5年以上的使用寿命。通过选择合适的WVTR范围和最长寿命的传感器,您可以最大限度地提高测量精度、可重复性、测试范围、成本和测量方便性。如果阻隔材料具有中等的WVTR范围选择ASTM F1249还是ASTM F3299?当阻隔材料的WVTR水平不在超低WVTR范围内时,它们会渗透大量水分。在P₂ O₅ 传感器中,传感器会由于长期暴露于湿气环境导致性能损耗。因此,对于中等阻隔材料,使用IR传感器是更好的选择,红外传感器的最大特点是其高精度和长寿命,它在中等阻隔材料的WVTR范围内具有更长的使用寿命。调制IR传感器可以轻松处理中至较高的WVTR水平,用于0.005至1000g/(m2day)的宽范围WVTR测量。F3299是否可以替代F1249?每种测试方法都有自己的理想应用:ASTM F3299适合10-5至10-3 g/(m2day)的应用、ASTM F1249则更适合10-3至103 g/(m2day)的应用。此外,新ASTM F3299的方法描述直接对应ISO 15106-3的方法描述,因此ASTM F3299在技术上对市场来说并不新鲜,MOCON的AQUATRAN系列WVTR测试仪器自2006年以来就符合ISO 15106-3标准。因此,ASTM F3299只是在ISO 15106-3、ASTM F1249、ASTM E-398等一组已建立的WVTR测试方法中添加的另一种测试方法。注:如果已经有在使用的符合ASTM F1249测试方法的MOCON渗透设备,则无需为ASTM F3299购买新的仪器。ASTM F1249仍然是最适合10-3至103g/(m2day)阻隔材料的测试方法。如果您仍有疑问,请与我们的渗透专家联系,以便帮助您找到最适合您应用的仪器。
  • 北理工在红外光电探测器暗电流抑制技术方面取得新进展
    红外光电探测器广泛应用于气体传感、气象遥感以及航天探测等领域。然而目前,传统的红外探测材料主要基于碲化铟、铟镓砷、碲镉汞等,需要分子束外延方法生长,以及倒装键和等复杂工艺与读出电路耦合。虽然探测性能高,但是却受限于成本与产量。胶体量子点(CQD)作为一种新兴的红外探测材料,可以由化学热注射法大规模合成,“墨水式”液相加工可以与硅读出电路直接耦合,大大加快红外焦平面阵列(FPA)的研发进度。目前北京理工大学郝群教授团队已实现320×256、1K×1K百万像素量子点红外焦平面。然而,目前红外胶体量子点暗电流噪声较大的问题限制了成像仪的分辨率和灵敏度。近日,北京理工大学研究团队提出了量子点带尾调控方法,通过量子点成核生长分离的再生长技术,成功得到了形貌可控(如图1)、分散性好、半峰宽窄、带尾态优的红外量子点。图1 不同前驱体合成量子点形貌示意图研究人员基于三种胶体量子点制备了单像素光电导探测器,大幅度降低器件的暗电流和噪声30倍以上,室温下2.5 μm延展短波波段比探测率达到4×10¹¹ Jones,响应时间为0.94 μs(如图2)。图2 光电导探测器结构示意图以及形状控制量子点与两组参考样品的器件性能对比在此基础上,研究人员将HgTe胶体量子点与互补金属氧化物半导体 (CMOS) 读出集成电路 (ROIC) 相集成,制备了640×512像素的焦平面阵列成像芯片,有效像元率高达99.997%。成像过程示意图和成像结果如图3所示。图3 成像过程示意图以及形状控制量子点640×512像素的焦平面成像结果图综上所述,这项研究开发了量子点带尾调控方法,通过单像素光电探测器及红外焦平面验证了该方法在暗电流和噪声抑制上的可靠性,在高性能胶体量子点红外光探测器发展中具有重要意义。相关研究工作于2023年11月发表于中科院1区光学顶刊ACS Photonics。该论文的共同第一作者为郝群教授、博士生薛晓梦和罗宇宁,通讯作者为陈梦璐准聘教授和唐鑫教授。论文链接:https://doi.org/10.1021/acs p hotonics.3c01070
  • “活字印刷式”光电探测器阵列,实现多通道超构红外成像
    受神经形态计算并行处理能力的启发,多通道超构成像(meta-imaging)在成像系统的分辨率增强和边缘识别方面取得了相当大的进步,甚至扩展到中远红外光谱。目前典型的多通道红外成像系统由分离的光栅或合并的多个相机构成,这需要复杂的电路设计和巨大的功耗,阻碍了先进的类人眼成像器的实现。近期,由成都大学郭俊雄特聘研究员、清华大学Yu Liu、电子科技大学黄文教授和北京师范大学张金星教授领导的科研团队开发了一种由铁电超畴(superdomain)驱动的可打印石墨烯等离子体光电探测器阵列,用于具有增强边缘识别能力的多通道超构红外成像。通过直接重新调整铁电超畴而不是重建分离光栅,所制造的光电探测器在零偏压下表现出多光谱响应。与单通道探测器相比,研究人员所开发的多通道红外成像技术表现出更强和更快的形状分类(98.1%)和边缘检测(98.2%)。研究人员开发的概念验证光电探测器阵列简化了多通道红外成像系统,并为人脑型机器视觉中的高效边缘检测提供了潜在的解决方案。相关研究成果以“Type-printable photodetector arrays for multichannel meta-infrared imaging”为题发表在Nature Communications期刊上。基于“活字印刷式”多通道光电探测器阵列的红外成像使用铁电超畴打印的光电探测器的多通道超构红外成像技术方案如上图所示。与多个相机的合并不同,所提出的超构成像的像素点被设计为使用通过“活字印刷式”探测器实施的单个孔径实现并行多通道。通过将单层石墨烯和具有纳米级宽度条纹超畴的BiFeO₃ (BFO)薄膜集成,研究人员开发了一种简单的双端零偏压多通道阵列(MCA)探测器,用于超构红外成像。基于拉曼信号的载流子密度空间监测表明,通过重新调整铁电超畴可以实现石墨烯导电性的非均匀图案化。当工作在零偏压和室温下时,所开发的器件阵列在中红外区域表现出可调谐的透射光谱和选择性响应。“活字印刷式”等离子体光电探测器的制造和架构为了验证这种可打印架构的性能,研究人员通过重新调整铁电畴宽度(对应于活字印刷技术的排版过程)在同一BFO薄膜上制作了一个器件阵列。研究人员重点研究了石墨烯/ BFO超畴(不同宽度)混合结构的光谱响应。所开发的光电探测器实现了约30 mA W⁻ ¹ 的增强响应度和10⁹ Jones数量级的比探测率(D*)。“活字印刷式”光电探测器阵列的表征重要的是,研究人员展示了MCA光电探测器在红外成像应用中的集成,与单通道阵列(SCA)探测器相比,显示出对整体目标形状和边缘检测的更高识别精度,以及更快的训练和识别速度。“活字印刷式”探测器在手势红外成像和识别中的应用总而言之,通过将单层石墨烯和具有纳米级宽条纹超畴的BFO薄膜集成,研究人员开发了一种可打印的光电探测器阵列,证明了这种类型的器件阵列是为多通道超构红外成像应用而设计的,并实现了增强的边缘检测。所开发的可打印光电探测器在零偏压下工作,在室温下表现出约30 mA W⁻ ¹ 的高响应度。这可以归因于石墨烯等离子体与入射光的共振耦合。此外,器件阵列在中红外区域表现出选择性响应,这是通过在环境条件下直接重新调整BFO超畴宽度实现的。这项研究证明,通过在纳米尺度上改变铁电畴可精确控制石墨烯载流子密度。与依赖复杂纳米制造技术的传统器件相比,石墨烯片与不同衬底的兼容性提供了多种优势。此外,该研究还证明了MCA探测器可以增强红外成像中的形状和边缘检测。这些特性使得未来具有简单的电路设计和低功耗的集成光电子平台成为可能。论文链接:https://www.nature.com/articles/s41467-024-49592-4
  • 大连化物所实现量子点—分子杂化的近红外热延迟发光
    近日,大连化物所光电材料动力学研究组 (1121组) 吴凯丰研究员与杜骏副研究员团队在量子点—有机分子能量传递机制与应用的研究中取得新进展,采用低毒性的CuInSe2量子点结合并四苯分子,实现了该类杂化体系在近红外波段的热延迟发光。研究团队前期对量子点—有机分子的三线态能量转移(TET)机制研究表明,通过提升量子点与分子间的波函数交叠,在较低能量转移驱动力的条件下,仍可获得较高的TET效率。根据化学热力学平衡,在这种情况下,从分子三线态回到量子点激子态的吸热反向传能(rTET)速率也较快。当rTET速率远大于三线态本身衰减速率时,大多数三线态都会重新回到量子点激子态辐射出延迟发光(TADPL),原理上类似于有机分子中的热活化延迟荧光现象(TADF)。团队前期也观测到可见波段的TADPL(ACS Energy Lett.,2021),并揭示了其熵调控机制(JPCL,2021)。近红外光在生物成像、光纤通讯、国防安全等诸多领域具有重要意义。基于量子点—有机分子杂化体系的近红外TADPL迄今未见报道,其根本难点在于有机分子的能隙定则:能量越低的激发态,其非辐射衰减速率一般越快。这就要求rTET的速率足够快,才能与之有效竞争。针对该难题,团队通过同时优化量子点和三线态受体分子的手段,采用低毒CuInSe2-并四苯的体系,观测到近红外波段(约900nm)的TADPL。研究发现,在室温下TADPL寿命达到60微秒,相比于CuInSe2量子点激子态的寿命提升了3个数量级。得益于量子点本身高达40%的发光效率,TADPL的量子效率可达9%。这些参数可媲美可见光波段的TADPL体系。得益于CuInSe2量子点无重金属的优势,该体系相比传统的铅基近红外量子点可能具有更好的应用前景。吴凯丰团队近年来致力于量子点与有机分子间的电荷/能量转移动力学研究:揭示了量子点与有机分子电荷转移中的累积电荷效应(JACS,2018;JACS,2018),并在单电荷转移体系中观测到Marcus反转区间(Nat. Commun.,2021);揭示了量子点尺寸和分子构型对三线态传能的影响及其物理机制(JACS,2019;Angew,2020);建立了电荷转移介导三线态传能的各类新机制(Nat. Commun.,2020;JACS,2020;Nat. Commun.,2021),并阐明了电子自旋在其中起到的关键角色(JACS,2020;Chem,2022);面向实际应用开发了低毒性的CuInS2、InP和ZnSe等量子点作为各波段的三线态敏化剂(JACS,2019;JACS,2020;ACS Energy Lett.,2022);探索了这些电荷/能量转移机制在光催化合成中的新型应用(Chem,2021;Angew,2022;Angew,2022)。上述最新工作以“Thermally Activated Delayed Near-Infrared Photoluminescence from Functionalized Lead-Free Nanocrystals”为题,发表在《德国应用化学》(Angew. Chem. Int. Ed.)上,并被选为VIP(Very Important Paper)文章。该工作的第一作者是大连化物所1121组博士后何山。该工作得到国家自然科学基金、国家重点研发计划、中科院稳定支持基础研究领域青年团队计划等项目的资助。
  • 风云三号成功发射,助力红外高光谱等3台光电产品开机
    2021年7月5日北京时间7时28分,风云三号E星在酒泉卫星发射中心成功发射,上海技物所承担研制中分辨率光谱成像仪(微光型)、红外高光谱大气探测仪Ⅱ型、红外地平仪等3台(套)光电产品随星入轨,将按预定程序先后开机。  在充分继承D星技术的基础上,E星载荷进行了系统升级与性能优化:中分辨率光谱成像仪(微光型)可实现7个数量级辐射动态范围和低照度下微光成像;红外高光谱大气探测仪Ⅱ型在红外宽谱段连续高光谱探测、探测灵敏度和精度、观测覆盖能力上得到大幅提升。上述载荷有望填补晨昏轨道国际气象业务探测资料空白,并在提高全球数值天气预报精度和时效方面发挥重要作用。  风云三号E星是风云三号03批气象卫星的首发星,也是世界民用业务气象卫星家族中首颗工作在晨昏轨道的卫星,设计寿命8年,配置11台遥感载荷,主要用于获取数值预报应用需要的大气温度、湿度等气象参数,保障气象领域核心业务,提升天气预测预报能力;监测全球冰雪覆盖、海面温度、自然灾害、生态与环境,提高应对气候变化和气象防灾减灾综合能力;开展太阳、空间环境及其效应、电离层数据监测,满足空间天气预报和保障服务的需求。发射现场红外高光谱大气探测仪Ⅱ型研制团队
  • 科技引领资源开发丨海南绿峰选择赛恩思高频红外碳硫仪助力行业领先
    在资源丰富的海南省,海南绿峰资源开发有限公司一直致力于推动绿色发展和资源利用的先进技术。公司一直在寻求高效、精准的仪器来支持其资源开发工作。最近,海南绿峰资源开发有限公司选择了赛恩思高频红外碳硫仪,以提高其生产过程中的准确性和效率。海南绿峰资源开发有限公司成立于2018年,是海南钢铁和海南矿业控股企业。公司经营涉及大宗固废综合回收利用。赛恩思高频红外碳硫仪适用于固体材料的碳硫元素检测,能够助力企业高效完成样品检测工作。通过引入赛恩思高频红外碳硫仪,海南绿峰资源开发有限公司为其检测流程注入了新的活力。这款仪器的高性能、可靠性以及赛恩思公司的卓越售后服务,都为公司提供了坚实的支持。在不断追求科技创新和提高资源利用效率的同时,赛恩思高频红外碳硫仪将助力公司在行业中保持领先地位。
  • 考虑探测器非理想性的红外偏振成像系统作用距离分析
    在背景与目标红外辐射量差距不大或背景较为复杂等情况下,传统红外成像技术对目标进行探测与识别的难度较大。而红外偏振探测在采集目标与背景辐射强度的基础上,还获取了多一维度的偏振信息,因此在探测隐藏、伪装和暗弱目标和复杂自然环境中人造目标的探测和识别等领域,有着传统红外探测不可比拟的优势。但同时,偏振装置的加入也增加了成像系统的复杂度与制作成本,且对于远距离成像,在红外成像系统前加入偏振装置对成像系统的探测距离有多大的影响,也有待进一步的研究论证。据麦姆斯咨询报道,近期,中国科学院上海技术物理研究所、中国科学院红外探测与成像技术重点实验室和中国科学院大学的科研团队在《红外与毫米波学报》期刊上发表了以“考虑探测器非理想性的红外偏振成像系统作用距离分析”为主题的文章。该文章第一作者为谭畅,主要从事红外偏振成像仿真方面的研究工作;通讯作者为王世勇研究员,主要从事红外光电系统技术、红外图像信号处理方面的研究工作。本文将从分析成像系统最远探测距离的角度出发,对成像系统的探测能力进行评估。综合考虑影响成像系统探测能力的各个因素,参考传统红外成像系统作用距离模型,基于系统的偏振探测能力,建立了红外偏振成像系统的作用距离模型,讨论了偏振装置非理想性对系统探测能力的影响,并设计实验验证了建立模型的可靠性。红外成像系统作用距离建模目前较为公认的对扩展源目标探测距离进行估算的方法是MRTD法。该方法规定,对于空间频率为f的目标,人眼通过红外成像系统能够观察到该目标需要满足两个条件:①目标经过大气衰减到达红外成像系统时,其与背景的实际表观温差应大于或等于该频率下的成像系统最小可分辨温差MRTD(f)。②目标对系统的张角θT应大于或等于相应观察要求所需要的最小视角。只需明确红外成像系统的各项基本参数与观测需求,我们就可以计算出系统的噪声等效温差与最小可分辨温差,进而求解出它的最远探测距离。红外偏振成像系统作用距离建模偏振成像根据成像设备的结构特性可分为分振幅探测、分时探测、分焦平面探测和分孔径探测。其中分时探测具有设计简单容易计算等优点,但只适用于静态场景;分振幅探测可同时探测不同偏振方向的辐射,但存在体积庞大、结构复杂,计算偏振信息对配准要求高等问题;分孔径探测也是同时探测的一种方式,且光学系统相对稳定,但会带来空间分辨率降低的问题;分焦平面偏振探测器具有体积小、结构紧凑、系统集成度高等优势,可同时获取到不同偏振方向的偏振图像,是目前偏振成像领域的研究热点,也是本文的主要研究对象。图1为分焦平面探测系统示意图。图1 分焦平面探测器系统示意图本文仿真的分焦平面偏振探测器,是在红外焦平面上集成了一组按一定规律排列的微偏振片,一个像元对应着一个微偏振片,其角度分别为 0°、45°、90°和135°,相邻的2×2个微像元组成一个超像元,可同时获取到四种不同的偏振态。图1为分焦平面探测系统结构示意图。传统方法认为在红外成像系统前加入偏振装置后,会对系统的噪声等效温差与调制传递函数MTF(f)产生影响,改变系统的最小可分辨温差,进而改变系统的最远探测距离。本文将从偏振装置的偏振探测能力出发,分析成像系统的最小可分辨偏振度差,建立红外偏振成像系统的探测距离模型。我们首先建立一个探测器偏振响应模型,该模型将探测器视为一个光子计数器,光子被转换为电子并在电容电路中累积,综合考虑探测器井的大小、偏振片消光比、信号电子与背景电子的比率以及入射辐射的偏振特性,通过应用误差传播方法对结果进行处理。从噪声等效偏振度(NeDoLP)的定义出发,NeDoLP是衡量偏振探测器探测能力的指标,即探测器对均匀极化场景成像时产生的标准差。对其进行数学建模,进而分析得到红外偏振成像系统的最远探测距离。图2 DoLP随光学厚度变化曲线对于探测器来说,积分时间越长,累积的电荷越多,探测器的信噪比(SNR)就越高,但这种增加是有限度的。随着积分时间的增加,光生载流子有更多的时间被收集,增加信号。然而,同时,暗电流及其相关噪声也会增加。对于给定的探测器,最佳积分时间是在最大化信噪比和最小化暗电流及噪声的不利影响之间取得平衡,为方便分析,我们假设探测器工作在“半井”状态下。通过以下步骤计算红外偏振成像系统最远作用距离:a. 根据已知的目标和背景偏振特性以及环境条件,计算在给定距离下,目标与背景之间的偏振度差在传输路径上的衰减。b. 结合系统的探测器性能参数,确定目标在给定距离下是否可被观察到。如果不能则减小设定的距离。目标被观察到需同时满足衰减后的偏振度差大于或等于系统对应于该频率的最小可分辨偏振度差MRPD,目标对系统的张角θT大于或等于相应观察要求所需要的最小视场角。c. 逐步增加距离,直到目标与背景之间的偏振度差不再满足观察要求。这个距离即为成像系统最远作用距离。τp (R)为大气对目标偏振度随探测距离的衰减函数,可根据不同的天气条件,根据已有的测量数据进行插值,计算出不同探测距离下大气对目标偏振度的衰减,图4. 5给出了根据文献中测量数据得到的偏振度随光学厚度增加衰减关系图。这里给出的横坐标是光学厚度,不同天气条件下,光学厚度对应的实际传播距离与介质的散射和吸收系数有关。综上,我们建立了传统红外成像系统和考虑了偏振片非理想性的红外偏振成像系统的作用距离模型,下面我们将对模型的可靠性进行验证,分析讨论探测器各参数对成像系统探测能力的影响。验证与讨论由噪声等效偏振度的定义可知,其数值越小,代表偏振探测器的性能越优秀。下面我们对影响红外偏振成像系统探测性能的各因素进行讨论,并设计实验验证本文建立模型的正确性。偏振片消光比消光比是衡量偏振片性能的重要参数,市售的大面积偏振片的消光比可以超过200甚至更多。对其他参数按经验进行赋值,从图3可以看到,对于给定设计参数的探测器,偏振片消光比超过20后,随着偏振片消光比的增加,探测器性能上的提升微乎其微。对于分焦平面探测器,为实现更高的消光比,不可避免地要牺牲探测器整体辐射通量。由于辐射通量降低而导致的信噪比损失可能远远超过消光比增加所获得的收益。这一结果同样可以对科研人员研制偏振片提供启发,对需要追求高消光比的偏振片来说,增大透光轴方向的最大透射率要比降低最小透射率更有益于成像系统的性能。图3 偏振片消光比与探测器噪声等效偏振度关系图探测器井容量红外探测器的井容量是指探测器像素在饱和之前能够累积的电荷数量的最大值。井容量是衡量红外探测器性能的一个关键参数,井容量通常以电子数(e-)表示。较大的井容量意味着探测器可以在饱和之前存储更多的电荷,从而能够在更大的亮度范围内准确检测信号。这对于在具有广泛亮度变化的场景中捕获清晰图像至关重要。从图4可以看出,增大探测器井的容量,同样能很好的提高成像系统的偏振探测能力。图4 探测器井容量与探测器噪声等效偏振度关系图然而,井容量的增加可能会导致像素尺寸增大或探测器面积减小,这可能对系统的整体性能产生负面影响。因此,在设计红外探测器时,需要权衡井容量、像素尺寸和其他性能参数,以实现最佳性能。目标偏振度虽然推导出的噪声等效偏振度公式包含目标偏振度这一参量,但目标的偏振度本身对探测器的噪声等效偏振度没有直接影响。NeDolp 是一个衡量探测器性能的参数,它主要受探测器内部噪声、电子学和其他系统组件的影响。然而,目标的偏振度会影响探测器接收到的信号强度,从而影响信噪比(SNR)。从图5也可以看出,探测器的NeDolp受目标的偏振度影响不大。图5 目标偏振度与探测器噪声等效偏振度关系图读取噪声与产生复合噪声比值读取噪声主要来自于探测器的读出电路、放大器和其他电子元件。它通常在整个光强范围内保持相对恒定。产生复合噪声是由光子的随机到达和电荷生成引起的,与光子数成正比。在低光强下,产生复合噪声通常较小;而在高光强下,它会逐渐变大。通过计算读取噪声和产生复合噪声的比值,可以确定系统的性能瓶颈。如果读取噪声远大于产生复合噪声,这意味着系统在低光强下受到读取噪声的限制。在这种情况下,优化读出电路和放大器等元件可能会带来性能提升。如果产生复合噪声远大于读取噪声,这意味着系统在高光强下受到产生复合噪声的限制。在这种情况下,提高信号处理和光子探测效率可能有助于改善性能。从图6可以看出,降低读取噪声与产生复合噪声比值可以有效提升系统偏振探测能力。图6 δ与探测器噪声等效偏振度关系图信号电子比例综合图4~6可以看出,提升β的数值可有效提高探测器的偏振探测能力,由β的定义可知,对于确定井容量的探测器,β的取值主要取决于探测器的各种噪声与积分时间,降低探测器的工作温度、优化探测器结构、减少表面和界面缺陷等途径都可以降低探测器的噪声,调节合适的积分时间也有助于探测系统的性能提升。实验验证根据噪声等效偏振度的定义,利用面源黑体与红外可控部分偏振透射式辐射源创建一组均匀极化场景。如下图7所示,黑体发出的红外辐射,经过两块硅片,发生四次折射,产生了偏振效应,通过调节硅片的角度,即可产生不同线偏振度的红外辐射。以5°为间隔,将面源黑体平面与硅片间的夹角调为10°~40°共七组。每组将面源黑体设置为40℃和70℃两个温度,用国产自主研制的红外分焦平面偏振探测器采取不少于128帧图像并取平均,然后将每组两个温度下相同角度获得的图像作差,以减少实验装置自发辐射和反射辐射对测量结果的干扰,差值图像就是透射部分的红外偏振辐射。对差值图像进行校正和去噪后,即可按公式计算出探测器对均匀极化场景产生的偏振度图像。计算出红外辐射的线偏振度,为减小测量误差,仅取图像中心区域的像元进行分析。该区域像元的标准差就是该成像系统的噪声等效偏振度(NeDoLP)。探测器具体参数如表1所示。图7 实验示意图表1 偏振探测器参数利用本文建立的探测器仿真模型计算出硅片的线偏振度仿真值,公式19计算出硅片线偏振度的理论值,与实验的测量值进行对比,图8展示了三组数据的变化曲线,从图中可以看出,三组数据存在一定偏差,这可能与硅片调节角度误差、面源黑体稳定性、干涉效应、硅片摆放是否平行等因素有关,但在误差允许的范围内,实验验证了偏振探测系统的性能,也证明了本文建立仿真模型的可靠性。NeDoLP测量结果如表2所示。图8 线偏振度理论值、测量值与本文模型仿真值曲线图表2 实验结果从上表可以看到NeDoLP的测量值与仿真值的差值基本能控制在5%以内,实验结果再次印证了本文设计的模型的可靠性。实例计算应用建立的模型对高2.3m,宽2.7m,温度47℃,发射率为1的目标的最远探测距离进行预测,目标差分温度6℃;背景温度27℃;发射率1;目标偏振度30%,背景偏振度1%,使用3.2节中样机的探测器参数,最后,采用文献中介绍的“等效衰减系数-距离”关系的快速逼近法对红外探测系统最远作用距离R进行求解,得到表3的结果。表3 红外成像系统的最远作用距离根据红外探测系统最远探测距离,利用本文第二节提出的方法,得到不同探测概率下红外偏振成像系统最远作用距离结果如表4所示。表4 红外偏振成像系统的最远作用距离所选例子为目标与背景偏振度差异大于其温差,所以在这种探测场景下红外偏振成像系统的探测能力要优于红外成像系统。探测器的参数不同,探测场景与目标的变化都会对模型的结果产生影响,但本文提供的成像系统作用距离模型可为实际探测中不同应用场景下的成像系统选择提供参考。结论针对不同的探测场景,红外成像系统与红外偏振成像系统在最远探测距离方面哪个更有优势并没有定论,探测目标的大小,背景与目标的温差与偏振度差,大气透过率,具体探测器的参数等因素都会对成像系统的最远探测距离产生影响。经实验验证,本文所建立的非理想红外偏振成像系统的响应模型是可靠的,可以用于估算成像系统的最远作用距离,针对不同的探测场景,读者可通过实验确定探测器的具体性能参数,利用仿真软件或实验测量的方式获取探测目标的温度与偏振信息,明确探测环境的具体大气参数,利用模型对红外成像系统与偏振成像系统的最远作用距离进行预估,选择更具优势的成像系统。这项研究获得上海市现场物证重点实验室基金(No. 2017xcwzk08)和上海技术物理研究所创新基金(No. CX-267)的资助和支持。论文链接:http://journal.sitp.ac.cn/hwyhmb/hwyhmbcn/article/abstract/2023041
  • 科易光电:走在红外光电技术领域前列
    广州科易光电技术有限公司广州科易光电技术有限公司成立于2003年,位于广州市黄埔区科学城科珠路203号,是一家专业从事各种红外光电产品及红外系统集成的国家级专精特新企业,同时也是国内少数几家具有独立研发能力与自主知识产权的民用红外热像仪供应商之一。专注热成像系统配套研发据介绍,该公司在热成像系统相关软/硬件及配套研发等方面拥有20年的积累经验,全面掌握了特殊光学系统开发与设计、电路硬件与FPGA(现场可编程逻辑门阵列)开发、机电一体化设计与工业设计能力,在AI软件与智能图像算法开发、系统集成与系统应用等领域拥有深厚的技术积累和持续研发的能力,实现了红外热像与移动互联网、AI智能算法及云存储的技术融合创新。此外,该公司围绕红外热成像技术,结合不同用户的需求提出一系列完整技术解决方案,最终开发出满足各行业使用需求的红外光电系统产品并提供优质服务。产品广泛应用于工业监控测温、石化安防、节能环保、轻型无人机任务系统应用、电气化铁路接触网故障预防、电力输电线路直升飞机巡检、公安边防、危险气体泄漏检测等各个领域,已获得国家级专精特新“小巨人”企业、国家高新技术企业、广东省制造业单项冠军企业、广东省知识产权示范企业、广东省红外热成像工程技术研究中心、广州市知识产权强企等荣誉资质,拥有140项专利和著作权的核心技术,为产品技术形成坚固的技术堡垒,其中挥发气体红外检漏仪已实现国产化替代。产 学研深度融合据介绍,科易公司最新研发的新型红外有机气体检漏设备,可在复杂的生产环境下实时准确地检测出易燃易爆气体泄漏点,为快速定位泄漏点提供了行之有效的方法,特别适用于装置复杂并对泄漏隐患特别敏感的石油、天然气等相关化工领域。该项技术通过广东省生产力促进中心组织的专家评审,达到国内先进水平。科易公司自主研发生产的电气化铁路供电安全检测系统设备,包括车载接触网运行状态检测装置(3C)、受电弓滑板检测装置(5C)等系统,其中3C系统技术水平先进,通过广东省生产力促进中心组织的专家评审达到“国际先进水平”,目前已经在中国铁路系统多个单位得到推广应用,为铁路供电安全提供了技术保障。目前正在积极拓展其在城市轨道交通等相关领域中的应用。科易公司深入实施创新驱动发展战略,构建以企业为主体、市场为导向、产 学研深度融合的技术创新体系。公司于2017年被认定为“广东省红外热成像(科易)工程技术研究中心”,同时也是广东省相关领域“国产化适配项目”承担单位。公司愿景:成为红外光电技术领域中具有强大影响力的科技型上市公司。广州科易发展荣誉• 2003年 公司成立;• 2006年 “工业生产过程控制用非制冷红外焦平面热成像系统”获得广州市科技部科技型中小企业技术创新基金项目;• 2008年 获得国家“高新技术企业”认定证书;• 2010年 “直升机巡检技术研究”项目与广州市科技和信息化局签订了科技部科技型中小企业技术创新基金项目立项合同,并得到市推荐,与国家科技部科技型中小企业技术创新基金管理中心签订了《国家科技型中小企业技术创新基金无偿资助项目》;• 2012年 “六氟化硫(SF6)非制冷型红外气体检漏测温成像仪”项目与华南师范大学联合申请了广东省产学研项目;• 2015年 获得上海凯风长养创业投资合伙企业(有限合伙)A轮融资;• 2015年 获得广州市企业研究开发机构;• 2016年 获得1项欧洲发明专利;• 2016年 获得武器装备科研生产单位—三级保密资格证书;• 2017年 获得“广东省红外热成像(科易)工程技术研究中心”称号;• 2019年 获得铁路产品认证证书(3C);• 2019年 获得广州海汇科创创业投资合伙企业(有限合伙)A轮融资;• 2019年 获得GL1000 防爆合格证;• 2020年 获得工信部“新冠肺炎疫情防控重点保障企业”全国性名单(第一批);• 2021年 获得广州市绿色企业称号;• 2021年 南方电网颁发了昆北-柳北-龙门特高压多端柔性直流输电工程攻坚战贡献奖;• 2021年 参与了国家电网“智能巡检系统、红外热像仪”等标准制定;• 2022年 通过国家级专精特新“小巨人”企业;• 2022年 通过广东省知识产权示范企业;• 2022年 通过广州拟上市高企百强榜单企业;• 2022年 通过广州市促进工业和信息化产业高质量发展—软件适配研发项目(基于红外热成像的智能巡检与安全监测系统研发及国产化适配);• 2022年 “基于红外等技术车载接触网运行状态检测监测装置”经广东省生产力促进中心组织的行业专家评审,该项技术成果达到国际先进技术水平;“基于多光谱多波段成像技术的高热敏智能温度监测系统”达到国内领先、国际先进技术水平;• 2022年 通过广东省单项冠军示范企业;• 2023年 获得铁路产品认证证书(2C);• 2019-2023年 每年获得全国电力巡检技术创新应用奖;• 2020-2022年 连续通过“瞪羚企业”认定。
  • 《中国药典》红外光谱法增订漫反射和显微模式
    2024年02月20日,药典委发布《红外光谱法草案公示稿(第一次)》(详见附件)。红外光谱法(亦称红外分光光度法)是在 4000~400cm-1 波数范围(2.5~25µm波长范围)内测定物质的吸收光谱,用于化合物的鉴别、检查或含量测定的方法。在中红外谱区,吸收带反映了官能团的分子振动信息,其中 1500cm-1以下区域称为“指纹区”,信息丰富且复杂。除部分光学异构体及长链烷烃同系物外,几乎没有两个化合物具有相同的红外光谱,据此可以对化合物进行定性和结构分析;化合物对红外辐射的吸收程度与其浓度的关系在一定条件下符合朗伯-比尔定律,是红外光谱法定量分析的依据。红外光谱法在制药领域被广泛应用于实验室的化学和物理分析,同时也是过程分析技术(PAT)的有效工具。其中,化学分析方面包括原辅料、剂型、生产中间体和包装材料的鉴别和确认;药物中药物活性成分的定量;以及气体、无机物中的杂质定量;化学合成的反应监测等。物理分析方面主要应用于固态性质的测定,如药物多晶型鉴别或检查。本草案在《中国药典》0402 红外分光光度法的基础上修订了如下内容:1. 对通则结构做了调整;2. 增订了红外光谱法的应用范围、谱图表示单位;3. 测量模式部分补充了原理,并增加了漫反射和红外显微镜的内容; 4. 仪器部分提出仪器校验的要求及系统适用性方案; 5. 定性定量方法部分对原描述进行了精简概括,并补充了必要内容;增订了“谱图比对和结果判断方法”,补充了定量分析的具体方法并给出方法验证方案等。附件:0402 红外光谱法草案公示稿(第一次).pdf
  • HORIBA前沿用户动态|“小分子”也能做“大事情”:氟硼荧光染料首次实现从绿光到近红外光的多重荧光发射
    本文获“X-MOLNews”授权转载有机发光染料在新一代照明显示、生物成像、疾病诊疗等领域已得到广泛应用。利用结构单一、便宜易得的有机小分子发光材料实现从紫外光到近红外光全光谱的发光调控是科学家们追求的终目标之一。近日,南京工业大学先进材料研究院黄岭教授和刘志鹏副教授课题组与南京大学沈珍教授合作,利用一种经典的氟硼荧光染料实现了从绿光到近红外光的多重荧光发射。令人惊奇的是,这些多重发射峰不仅可以被不同波长的激光激发产生,而且多重发射峰之间还存在“多米诺”式的能量转移过程。研究结果表明,光照条件下这种氟硼荧光染料分子在聚集状态能够产生多种具有不同能量的聚集体(如二聚体、三聚体等),这些聚集体的产生可能是染料能够实现多重荧光发射的主要原因。 这一发现颠覆了人们对传统发光理论的认知,改变了人们对于“小分子”只能发出蓝光或绿光,只有结构复杂的“大分子”才能发出红光或者近红外光的看法,填补了国际研究的空白,同时也更新了人们对氟硼荧光染料的认知。该研究将进一步推动人们对发光材料的新的发光机制的探索,促进新型发光材料的研制及其在绿色照明、柔性显示、生物成像和医学诊疗等领域的进一步应用。相关研究工作以《Domino-like multi-emissions across red and near infrared from solid-state 2-/2,6-aryl substituted BODIPY dyes》为题,发表在《Nature Communications》。DOI: 10.1038/s41467-018-05040-8。南京工业大学博士后田丹和硕士研究生齐芬(现为南京大学博士研究生)为本论文的共同作者(扫描下方二维码可直达英文原文)。免责说明HORIBA Scientific公众号所发布内容(含图片)来源于文章原创作者提供或互联网转载。文章版权、数据及所述观点归原作者原出处所有,HORIBA Scientific 发布及转载目的在于传递更多信息及用于网络分享,供读者自行参考及评述。如果您认为本文存在侵权之处,请与我们取得联系,我们会及进行处理。HORIBA Scientific 力求数据严谨准确,如有任何失误失实,敬请读者不吝赐教批评指正。我们也热忱欢迎您投稿并发表您的观点和见解。HORIBA科学仪器事业部结合旗下具有近 200 年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 新型低毒的近红外Ag2S量子点制备成功
    试想一下在医院进行常规查体时的情景:首先,喝下一种含有被称为“量子点”的纳米颗粒液体,接着医生会让你慢慢走过一个通道,这时激光束对全身进行扫描。在通道的另一端,计算机自动生成三维图像。根据这些图像,医生会告诉你在你的体内有无肿瘤细胞以及肿瘤细胞的精确定位。这些好像是只有在《特种部队》或《阿凡达》这样的科幻电影中才能见到,但是请不要吃惊,这或许就是你在不久的将来可以享受的“量子点”荧光成像检测技术。  到目前为止,活体荧光成像技术主要有三种标记方法:荧光蛋白标记、荧光染料标记和量子点标记。相比较而言,量子点作为一种新型的纳米荧光探针,具有激发光谱宽、荧光发射光谱窄、荧光光谱可调、量子产率高、光化学稳定性高和不易分解等诸多优点。  由于不同波长的组织穿透力不同,血红蛋白、脂肪和水对近红外波长的吸收保持在一个比较低的水平。因此,对活体成像而言,选择激发和发射光谱位于近红外光区的荧光标记方法,将有利于活体的光学成像,特别是深层组织的荧光成像(Nature Method, 2005, 2: 12 Science, 2009, 324: 804)。因此,低生物毒性的近红外量子点对于活体荧光成像具有非常重要的意义。  最近,中科院苏州纳米技术与纳米仿生研究所王强斌课题组在国际上首次通过以二乙基二硫代氨基甲酸银(Ag(DDTC))为原料制备出了尺寸均匀的、大小为10 nm左右的单分散性Ag2S近红外量子点。相比较目前的含有铅、镉或汞等元素的近红外量子点,Ag2S量子点具有毒性较低的优点。光谱研究结果表明该Ag2S量子点在785 nm的激发条件下,在1058 nm附近出现一个半峰宽仅为21 nm左右的荧光光谱。鉴于该Ag2S量子点的发现对于活体深层组织荧光成像技术具有重要的意义,本研究成果近日发表在著名杂志Journal of the American Chemical Society。  该项研究工作得到了国家自然基金, 中国科学院-国家外国专家局创新团队国际合作伙伴计划以及苏州科技局的支持。
  • 日程更新∣“近红外光谱拥抱智能化生产和生活”主题论坛 暨“近红外光谱实战宝典”新书发布会
    随着人工智能、物联网、云技术、机器人、5G等先进技术的发展,近红外光谱技术在智能化生产方面的优势不断凸显,并在化工、制药等多个行业创造了客观的经济价值。同时,随着相关技术的进步以及应用的拓展,近红外光谱技术也正在逐渐走入大众视野,不断推进着智能化生活的发展方向。为了进一步展示近红外光谱在智能化生产和生活中的技术和应用进展,共同探讨面临的问题以及解决方案,中国仪器仪表学会近红外光谱分会、仪器信息网将于BCEIA2023同期(2023年9月6日,北京中国国际展览中心(顺义馆))联合举办“近红外光谱拥抱智能化生产和生活”主题论坛 ”。会议同期,还将举办《近红外光谱实战宝典》新书发布会,报名预约并到场参会人员均有机会获赠《近红外光谱实战宝典》新书一本!欢迎从事近红外光谱技术和应用研究的专家、用户、厂商,以及对近红外光谱感兴趣的人员到场参会。会议主题:近红外光谱拥抱智能化生产和生活主办方:近红外光谱分会、仪器信息网会议时间:2023年9月6日下午会议地址:北京中国国际展览中心(顺义馆)学术会议区W-102会议室会议日程:“近红外光谱拥抱智能化生产和生活”主题论坛日程安排主持人:北京化工大学 袁洪福教授时间报告人报告题目14:00-14:20褚小立(中石化石油化工科学研究院教授级高工)近红外光谱分析技术的发展现状与未来14:20-14:40刘鸿飞(奥谱天成(厦门)光电有限公司 总经理)国产中短波红外光谱仪的研制及其应用14:40-15:00石文杰(晨光生物科技集团股份有限责任公司 质量主管)近红外技术在植物提取物智能化生产中的应用15:00-15:20李文龙(天津中医药大学 副研究员)从过程分析技术到药物智能制造15:20-15:40杨增玲(中国农业大学教授)近红外光谱传感技术在绿色循环农业中的应用研究15:40-16:00孙红(中国农业大学教授)土壤-作物近红外传感器开发及智慧农业应用16:00-16:20《近红外光谱实战宝典》新书发布环节16:20-17:00讨论环节 会议联系人:叶老师,18211196128 赞助联系人:魏老师,13552834693中国仪器仪表学会近红外光谱分会仪器信息网2023年8月17日会议联系人:叶老师,18211196128赞助联系人:魏老师,13552834693预约报名请点击:http://mhvtajakfgn3848u.mikecrm.com/gFSQam5 扫码报名 中国仪器仪表学会近红外光谱分会仪器信息网2023年8月17日温馨提醒:“近红外光谱拥抱智能化生产和生活”主题论坛暨“近红外光谱实战宝典”新书发布会在BCEIA同期举办,参加该活动的各位老师还需要提前进行BCEIA预登记以顺利进入展会现场。预登记通道已开启,预登记即刻成为BCEIA VIP,并享有三重福利:1、会前免费获取专属胸牌及会议资料2、免费兑换午餐及饮用水3、京城20个网点的BCEIA班车免费乘坐马上扫描下方二维码预报名登记:或PC端点击链接预登记:http://t2.eainfor.com/T/p/103_5 或手机端点击链接预登记:http://t2.eainfor.com/T/w/103_5
  • 新加坡国立大学合成新型近红外发光量子点,光致发光量子效率可达25%|国际用户简讯
    作者:Sophie编辑:Joanna对于太阳能转换器件和生物成像应用程序来说,使用发射近红外光、具有显著斯托克斯位移且再吸收损失小的材料非常重要。近期新加坡国立大学化学系便合成了这样一种新型材料——四元混合巨壳型量子点(InAs?In(Zn)P?ZnSe?ZnS)。这种新型量子点可以实现显著斯托克斯位移,且光致发光量子效率可达25%,非常适合应用于太阳能及生物领域。Tips: 斯托克斯位移是指荧光光谱较相应的吸收光谱红移(斯托克斯位移=发射波长-吸收波长)。斯托克斯位移越大,荧光太阳能光电转换效率越高。图片来源于网络 单锅连续注射&结构比例控制合成新型量子点的关键新加坡国立大学使用单锅连续注射的方法来合成该量子点。四元混合巨壳型量子点结构主要成分由内到外比例为1: 50: 37.5: 37.5合成过程分为4步,由内向外,依次为:1. 合成该量子点InAs内核2. 向InAs核反应容器中注射As前驱体溶液、醋酸锌和磷酸氢,完成第2层In(Zn)P壳层的合成3. 向反应体系注射Se前驱体溶液合成第3层ZnSe壳层4. 注射S前驱体溶液和醋酸锌完成ZnS壳层的合成四元混合巨壳型量子点合成过程图示合成过程中,研究人员会定时从反应容器中取出小部分溶液测量其紫外可见吸光度和光致发光特性来跟踪反应进程,并调整量子点间的结构比例。他们利用HORIBA高能量窄脉宽 Nanoled-440L皮秒脉冲激光光源对样品进行激发,在FluoroLog-3 荧光光谱仪上测试荧光寿命。在新的荧光光谱技术中,FluoroLog-3 系列荧光光谱仪配置CCD检测器新技术,实现快速动态荧光光谱检测,实现实时反应发光测试,分子相互作用的动态检测。新型量子点材料助力太阳能及生物应用用领域终合成的巨壳量子点,In(Zn)P壳层能够吸收400-780 nm的可见光,并将吸收后的能量传递到InAs内核,使其在873nm处发射,进而实现显著的斯托克斯位移和很小的吸收-发射光谱重叠;经统计计算,该量子点光致发光量子效率可达25%,这对于近红外发射器来说相当可观,且它在873nm的发射光与硅太阳能电池的光敏响应区匹配良好。并且这一新型量子点为可调色发光,不含有害金属。种种优点使得该量子点不仅非常适合应用于荧光太阳能领域用以提高光电转换效率;且在生物领域,该量子点也可作为荧光材料用于生物成像,给疾病的诊断和治疗带来巨大进步。该工作以“Large-Stokes-Shifted Infrared-Emitting InAs?In(Zn)P?ZnSe?ZnS Giant-Shell Quantum Dots by One-Pot Continuous-InjectionSynthesis”为题,发表于《Chemistry of Materials》。 HORIBA科学仪器事业部HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案,如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术,旗下Jobin Yvon光谱技术品牌创立于1819年,距今已有200年历史。如今,HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的选择,之后我们也将持续专注科研领域,致力于为全球用户提供更好的服务。
  • 美亚光电成功开发红外激光解离光谱-质谱联用仪样机
    p  近日,安徽合肥美亚光电技术股份有限公司(以下简称“美亚光电”)发布公告称公司收到国家科学技术部下发的《关于通报国家重大科学仪器设备开发专项部分项目综合验收结论的函》【国科资函201952号】——由美亚光电牵头实施,联合中国科学技术大学、复旦大学、同济大学、东华理工大学、安徽大学、第二军医大学附属东方肝胆外科医院等机构的国家重大科学仪器开发专项“红外激光解离光谱-质谱联用仪的研制与产业化”项目顺利通过综合验收。/pp  该项目突破了多种高效率离子传输、高分辨率离子选择等核心技术,strong研制了多种离子源、射频电源等关键部件,开发了两种不同原理的红外激光解离光谱-质谱联用仪产业化样机/strong,并可应用于大气气溶胶污染物组份分析、生物能源的燃烧过程中间体诊断、肝细胞癌分子标志物筛选和早期诊断、典型持久性有机污染物的甄别分析、团簇化学等领域。/pp  美亚光电技术股份有限公司专注于光电识别核心技术与产品的研发。公司产品包括人工智能色选机、X射线检测设备和高端医疗设备等,广泛应用于全球农产品加工、工业检测及医疗卫生等领域,市场占有率多年保持世界领先。/pp  此次通过验收的项目于2012年被列为国家重大科学仪器设备开发专项项目,项目起止时间为2012年10月至2017年9月。项目总经费为9082万元,其中国家重大科学仪器设备开发专项资金4541万元,美亚光电将以自有资金投入经费4541万元。项目目标为攻克离子红外光谱结构分析、高性能离子质量选择和富集等关键技术,strong研制出具有自主知识产权的集红外光谱、质谱分析等功能于一体的红外激光解离光谱-质谱联用分析仪器/strong,并成功应用于大气气溶胶污染物组份分析、肝细胞癌分子标志物筛选和早期诊断。同时项目验收后3年内,形成年产10台的生产能力等。/p
  • 科技增强安全性:FLIR红外热像仪在绿湾市政消防部门“大显身手”
    目前正值夏季用电高峰期,用电安全隐患要时刻警惕!虽然近年来全国安全生产形势保持着稳定态势,事故总量、较大事故、重特大事故起数稍有下降,但是安全隐患的存在和电气引发火灾案列依然非常多。近日,北京大兴一商务楼发生火灾,导致两名消防员牺牲。为了更好地保障消防员的生命安全,应该要更好地运用科技的力量!新技术——更多可能绿湾市政消防部门(美国威斯康星州)始终关注新技术的发展,致力于在消防行动期间能增强消防员和受灾者的安全性。在装备方面,绿湾市政消防员升级了他们的装备,配备了FLIR红外热像仪(TICs)。绿湾市政消防部门拥有将近200名消防员,他们供职于8个消防站(其中7个位于格林湾,1个位于阿卢埃),共覆盖125,000名居民的家园。“火灾对大多数人而言是一个危机四伏的环境,对消防员也不例外,”绿湾市政消防处长Brent Elliott表示。“当您置身于伸手不见五指的浓烟中,再加上灼热的高温,形成一个足以让我们当中的佼佼者都会胆战心惊的环境。解决之道是依靠能够帮您渡过难关的合适工具。如果您有一款工具能使您的团队透过烟雾进行检测,它能创造一种舒适感,让您更高效且更安全地开展工作。”绿湾市政消防处长Brent Elliott:“如果您有一款工具能使您的团队透过烟雾进行检测,它能创造一种舒适感,让您更高效且更安全地开展工作。”02FLIR红外热像仪——快速扫描大片区域绿湾市政消防部门选择FLIR K50红外热像仪作为其数个云梯消防队的标配工具。该团队自热成像技术可用后一直将红外热像仪用于结构消防,选择FLIR红外热像仪后,情况有了极大改变。Brent Elliott:“热像仪使您能够快速扫描一个区域,这一点至关重要。使用其他红外热像仪,您只能在一个结构内搜索;而使用FLIR K50,其较高的分辨率使您能够扫描建筑内部和外部,使您对当前情况成竹在胸。在进入建筑内部之前预先扫描结构外部已成为我们的标准程序,因为它能引导我们前往需要进入的区域,首先来到火灾影响的目标区域。”Brent Elliott:“FLIR热像仪能让你快速扫描一个区域,这一点至关重要。”“应对火灾通常有两种主要策略:扑灭大火和救出受灾人员。红外热像仪在这两方面都能为我们提供帮助。”提升灭火的效率“红外热像仪使我们能够通过识别结构流动路径和空气流动轨迹来控制大气,”Brent Elliott表示。“这使得有效控制火灾成为可能。”“流动路径”是指结构内气体的运动,而“空气流动轨迹”是指结构周围气体的运动。两种现象对于火势发展都至关重要。对于绿湾市政,通过热成像的方法识别流动路径和空气流动轨迹使他们能够作出知情决策,确定合适的消防策略。长久以来人们普遍认为,用水从建筑外部灭火会让火势进一步在结构内蔓延,使火灾之外的条件恶化,增加了消防员和受困受灾者的潜在风险。然而,研究证明从建筑外部尽快用水灭火会软化目标(通常将温度降低数百摄氏度)并且有助于消防员占据有利地位。绿湾市政利用红外热像仪分析火势情况并且从外面“重新调整”火灾救援方案,一旦完成这一操作,便会派遣携带红外热像仪的消防队进一步抗击火灾,在房屋内对火情进行评估。一旦评估完结构内的状况后,利用红外热像仪从内部继续灭火,从而增加完全扑灭火灾的速度和有效性。04火场外也能监测内部详情在消防行动期间,绿湾市政消防部门指挥官希望在消防队成员进入建筑时始终清楚他们的情况。“在过去,红外热像仪随消防员一起进入建筑,但是外面的指挥官由于没有红外热像仪而失去对问题的监测能力,”Brent Elliott称。为避免丢失从红外热像仪获得的信息,该消防部门投资了4台FLIR One热像仪。“通过部署这项技术,消防指挥官在场外也能密切关注火灾情况,”Brent Elliott道。袖珍型FLIR One将移动设备转变成一台能观测热量和精确测量温度的功能强大的热像仪。将FLIR One安装到iPhone手机上,能为指挥官提供火灾和正被大火毁灭的建筑的三维视图。“通过部署这项技术,消防指挥官在场外也能密切关注火灾情况,”Brent Elliott道。如今,两位消防大队长和两位消防处长正使用FLIR One。理想工具——FLIR红外热像仪如今,使用了FLIR K系列红外热像仪超过一年以后,绿湾市政消防部门取得了十分积极的结果。“这款热像仪外形极为紧凑,质量轻盈且易于系在消防外套上。在我看来,我们新采用的热像仪的其中一大优势是能够拍照。这样以来,您实际上可以到外面与您的同事分享里面看到的情形。温标和梯度变化曲线对我们的行动至关重要。它能清晰呈现我们采取行动的环境,因此能够显著增强居住者和消防员的生存能力。”FLIR红外热像仪的用途不只局限于灭火。绿湾市政消防部门还将其用于其它多种任务,包括夜间搜救、水上救援和检测危险材料等。并且无论何时灭火活动结束时,红外热像仪是全面检查结构,搜索热点或隐蔽火灾的理想工具。
  • 即将进入新版药典 国家药典委公示近红外光谱法标准草案
    2月20日,国家药典委员会官网刊发“关于近红外光谱法标准草案的公示”,公示期为90天。近红外光谱法在药物分析中具有广泛的适用性,是在 780~2500 nm(12800~4000cm-1)波长范围测定物质的吸收光谱,用于定性分析和定量分析的方法。基础信息业务编号通铺包20240071品种类别通则辅料包材品种近红外光谱法制修订制定项目周期12标准编号公示期90天公示日期2024-02-20~2024-05-21联系处室通则辅料包材处联系人徐昕怡、朱冉联系电话010-67079522、010-67079581电子邮箱xuxinyi@chp.org.cn邮编100061通信地址北京市东城区法华南里11号楼 国家药典委员会办公室本草案在《中国药典》9104 近红外分光光度法的基础上增修订内容如下:附件:附件 近红外光谱法草案公示稿(第一次).pdf
  • 发射波长950-2100 nm!南开大学庞代文教授团队近红外量子点新突破 | 前沿用户报道
    成果简介2021年8月,南开大学庞代文教授课题组在国际期刊J. Am. Chem. Soc上发表论文:Breaking through the Size Control Dilemma of Silver Chalcogenide Quantum Dots via Trialkylphosphine-Induced Ripening: Leading to Ag₂Te Emitting from 950 to 2100 nm,提出配体诱导量子点熟化生长策略,实现银硫族(Ag₂Te)量子点发射波长从950nm到2100nm连续可调。背景介绍银硫族量子点(Ag₂X X=S, Se, Te)是一类窄带隙半导体纳米晶体,由于其具有近红外荧光发射、高稳定性以及低生物毒性等优异性质,作为近红外二区荧光活体成像的荧光材料,在生物医学研究中有着良好应用。理论上,银硫族量子点中的Ag2Se以及Ag2Te量子点的荧光发射波长能够覆盖整个近红外波段。然而,目前其发射波长可调窗口很窄,无法在宽范围内连续调节。量子点的发射波长(带隙)可通过控制量子点的尺寸来调节,但对于银硫族量子点,其难点在于:1)带隙太窄,发射波长对尺寸变化特别敏感;2)对其成核与生长机理认识不足。量子点尺寸控制的关键在于控制成核与生长阶段单体的供给。小尺寸量子点合成时,需要控制单体用于成核,且抑制纳米晶的进一步生长。反之亦反。庞代文教授团队发现,三烷基膦能够诱导小尺寸银硫族量子点溶解。基于此发现,可通过改变三烷基膦用量、种类、合成温度等精确调控银硫族量子点的溶解行为,进而调控单体为成核或生长所用,精准实现不同尺寸(发光波长)银硫族量子点合成。图文导读本实验以Ag₂Te为样品,通过在1.6–5.9nm间(幅度(Δr)仅4.3nm)精确调节Ag₂Te量子点的粒径,实现了其发射波长从950nm至2100nm的连续可调(跨度(Δλ)为1150nm)。图1 三烷基膦诱导量子点熟化实现Ag₂Te发射波长从950nm到2100nm连续可调。 图2 量子点表面致密的配体层有效地钝化了表面原子,非辐射跃迁减少,发光效率得到了提升。本工作中,Ag₂Te量子点的荧光发射峰可调范围宽(950-2100 nm),为获得真实、完整的稳态荧光光谱需要使用不同的近红外检测器,以在检测器的最佳响应区间进行测试。对于瞬态荧光光谱,由于近红外样品的量子产率相对可见光样品较低,想要在短时间内完成测试,对激光器的功率有较高的要求。本工作中使用980 nm的脉冲光源(DD-980L, HORIBA)激发样品,荧光寿命曲线用软件(DAS6, HORIBA)拟合,可以快速实现近红外量子点瞬态荧光的测试。仪器推荐Fluorolog-QM,采用模块化设计,针对如AIE、钙钛矿、近红外一区二区荧光探针、稀土纳米发光材料、量子点、光功能材料等热点应用实现个性化配置。激发波长低至180nm起,发射波长可覆盖185~5500nm。全波长范围准确聚焦,无色差,高灵敏度35000:1,高分辨率0.1nm。全套的寿命测试技术(TCSPC、MCS、SSTD和延迟技术),保证了全光谱稳瞬态、延迟光谱测试功能。Fluorolog-QM 模块化稳瞬态荧光光谱仪扫码咨询产品总结展望尽管有着十余年的发展历史,银硫族量子点一直面临着发射波长难以在宽范围内调控的难题。相比于原有的工作,这个工作在合成方法以及涉及的化学试剂上并没有太多的变化,而是从细节出发,发现了之前一直被忽略的现象,并基于这一发现突破了存在多年的调控难题。庞代文教授简介:博士、南开大学化学学院杰出教授、博士生导师、美国医学与生物工程院(AIMBE)Fellow、英国皇家化学会Fellow (FRSC)、南开大学分析科学研究中心主任、全国纳标委纳米光电显示技术标准化工作组组长等。主要从事生物医学量子点研究。联系作者:335388123@qq.com文献信息英文原文标题Breaking through the Size Control Dilemma of Silver Chalcogenide Quantum Dots via Trialkylphosphine-Induced Ripening: Leading to Ag2Te Emitting from 950 to 2100nm发表期刊J.Am. Chem. Soc文章署名作者:Zhen-Ya Liu, An-An Liu, Haohao Fu, Qing-Yuan Cheng, Ming-Yu Zhang, Man-Man Pan, Li-Ping Liu, Meng-Yao Luo, Bo Tang, Wei Zhao, Juan Kong, Xueguang Shao, and Dai-Wen Pang扫码查看文献
  • Labthink专利技术助推W3/230红外法水蒸气透过率测试系统问世
    包装透湿性测试领域中,称重法被视为基础方法,虽然原理清晰、操作简单,但测试时间长、重复性较差,20世纪70年代具有测试精度高、量程大、使用寿命长等优点的红外法被引入包装透湿性测试领域,成为与称重法同等重要的测试方法。如今Labthink引用专利技术,推出了新一代红外法水蒸气透过率测试仪器——W3/230水蒸气透过率测试系统,适用于薄膜、片材、太阳能背板、人造皮肤和包装容器的水蒸气透过率测试。  W3/230水蒸气透过率测试系统根据水蒸气对红外线有着特定的吸收光谱的原理设计,通过在试样两侧建立一定的湿度差,促使水蒸气分子通过试样从高湿度一侧向低湿度一侧进行扩散,低湿度一侧的水蒸气进入红外传感器,红外线传感器可以通过检测红外线在通过含水蒸气区域时前后能量的损失而检测水蒸气浓度,由计算机计算得出试样的水蒸气透过率。测试原理满足GB/T 26253、ASTM F1249、ISO 15106-2、TAPPI T557、JIS K7129等各种标准的要求。  测试时间短、结果精确度高、重复性好,是红外法透湿测试的三大优势,W3/230水蒸气透过率测试系统运用了Labthink专利设计将此优势发挥的淋漓尽致。  一方面,Labthink “三腔立式测试单元一体集成” 专利设计将三个渗透池试验腔集成在一个结构块上,三个渗透池分别在结构块的三个不同面上,形成了三个渗透池一体的结构,实现了三个试验腔可同时完成三种不同试样的独立测试,极大提高了检测效率。这种集成设计省去了各腔体之间的连接管路,使三个试验腔紧密的结合在一起,减少了气体泄漏的可能性,促进了温湿度控制的均匀性,进一步提高了测试精度。  另一方面,仪器内置一款高精度红外传感器,试验气体的进气孔与出气孔分别位于红外传感器的右下侧、左上侧,延长了气体通过的路径,保证携带水分的试验气体充分吸收红外光,减少测试误差。该红外传感器能在超宽的测试范围(0.01~1000 g/m224h)内获得精确的测试结果,满足高、中、低不同阻隔性质的材料的测试要求。  目前,W3/230水蒸气透过率测试系统已经进驻国内外等多家科研机构和大型包装生产企业,测试的稳定性得到了使用方的一致认可。如今,Labthink在有着“全球科技创新高地”之称的美国马萨诸塞州大波士顿地区建立的Labthink International已成功投入运营,将为全球客户提供更为便捷的技术支持和售后服务。Labthink兰光 W3/230水蒸气透过率测试系统(红外检测法)商铺链接http://www.instrument.com.cn/netshow/C99113.htm
  • 大连化物所实现量子点—分子杂化体系的近红外热延迟发光
    近日,大连化物所光电材料动力学研究组 (1121组) 吴凯丰研究员与杜骏副研究员团队在量子点—有机分子能量传递机制与应用的研究中取得新进展,采用低毒性的CuInSe2量子点结合并四苯分子,实现了该类杂化体系在近红外波段的热延迟发光。研究团队前期对量子点—有机分子的三线态能量转移(TET)机制研究表明,通过提升量子点与分子间的波函数交叠,在较低能量转移驱动力的条件下,仍可获得较高的TET效率。根据化学热力学平衡,在这种情况下,从分子三线态回到量子点激子态的吸热反向传能(rTET)速率也较快。当rTET速率远大于三线态本身衰减速率时,大多数三线态都会重新回到量子点激子态辐射出延迟发光(TADPL),原理上类似于有机分子中的热活化延迟荧光现象(TADF)。团队前期也观测到可见波段的TADPL(ACS Energy Lett.,2021),并揭示了其熵调控机制(JPCL,2021)。近红外光在生物成像、光纤通讯、国防安全等诸多领域具有重要意义。基于量子点—有机分子杂化体系的近红外TADPL迄今未见报道,其根本难点在于有机分子的能隙定则:能量越低的激发态,其非辐射衰减速率一般越快。这就要求rTET的速率足够快,才能与之有效竞争。针对该难题,团队通过同时优化量子点和三线态受体分子的手段,采用低毒CuInSe2-并四苯的体系,观测到近红外波段(约900nm)的TADPL。研究发现,在室温下TADPL寿命达到60微秒,相比于CuInSe2量子点激子态的寿命提升了3个数量级。得益于量子点本身高达40%的发光效率,TADPL的量子效率可达9%。这些参数可媲美可见光波段的TADPL体系。得益于CuInSe2量子点无重金属的优势,该体系相比传统的铅基近红外量子点可能具有更好的应用前景。吴凯丰团队近年来致力于量子点与有机分子间的电荷/能量转移动力学研究:揭示了量子点与有机分子电荷转移中的累积电荷效应(JACS,2018;JACS,2018),并在单电荷转移体系中观测到Marcus反转区间(Nat. Commun.,2021);揭示了量子点尺寸和分子构型对三线态传能的影响及其物理机制(JACS,2019;Angew,2020);建立了电荷转移介导三线态传能的各类新机制(Nat. Commun.,2020;JACS,2020;Nat. Commun.,2021),并阐明了电子自旋在其中起到的关键角色(JACS,2020;Chem,2022);面向实际应用开发了低毒性的CuInS2、InP和ZnSe等量子点作为各波段的三线态敏化剂(JACS,2019;JACS,2020;ACS Energy Lett.,2022);探索了这些电荷/能量转移机制在光催化合成中的新型应用(Chem,2021;Angew,2022;Angew,2022)。上述最新工作以“Thermally Activated Delayed Near-Infrared Photoluminescence from Functionalized Lead-Free Nanocrystals”为题,发表在《德国应用化学》(Angew. Chem. Int. Ed.)上,并被选为VIP(Very Important Paper)文章。该工作的第一作者是大连化物所1121组博士后何山。该工作得到国家自然科学基金、国家重点研发计划、中科院稳定支持基础研究领域青年团队计划等项目的资助。
  • 近红外光谱法预测双氯芬酸钠球包衣的载药量和释放速率
    与高效液相色谱法(HPLC)等更传统的方法相比,这种研究人员所描述的新方法具有在线和实时监测的优点。《Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy》杂志上的一项新研究探讨了将双氯芬酸钠球体作为给药系统时,双氯芬酸钠的药物载量和包衣过程中的释放率。该研究通过使用近红外(NIR)光谱技术,不仅对药物负载和释放率进行了监测,还对二者进行了实时在线预测。双氯芬酸在屏幕上展示|图片来源:© JoyImage -stock.adobe.com这项研究由13位来自山东大学和山东SMA制药有限公司的研究人员共同合作完成(均位于中国山东)。他们在报告中首先介绍了近年来制药行业如何将过程分析技术(PAT)越来越多地纳入到生产实践中,无论是使用近红外光谱、拉曼光谱还是光学相干断层扫描(OCT),PAT都被誉为药品生产过程中在线实时监测所不可或缺的工具。双氯芬酸钠肠溶片在美国通常以Voltaren的商品名处方,其也以凝胶形式提供。它是一种非甾体抗炎药(NSAID),用于缓解关节炎,提供抗炎、镇痛和解热作用(根据美国专利申请号5,000,000),美国食品药品监督管理局(FDA)。与此同时,山东的研究小组报告称,双氯芬酸钠微球作为一种多单元薄膜包衣给药系统,具有良好的流动性和稳定的释放速率,流化床包衣广泛用于工业生产。双氯芬酸钠肠溶片是美国常用的处方药,其品牌名称为 Voltaren,也有凝胶剂型提供。根据美国食品和药物管理局(FDA)的规定,这是一种非甾体抗炎药(NSAID),用于缓解关节炎,具有消炎、镇痛和解热作用。与此同时,山东的研究团队报告称,双氯芬酸钠球作为一种多单元薄膜包衣给药系统,具有良好的流动性和稳定的释放率,且流化床包衣技术已广泛应用于工业生产中。流化床喷涂是将功能聚合物与涂层分散体喷涂在一起,一般会形成均匀的薄膜涂层。它具有传热传质快、气相固相接触面积大、温度梯度小等优点。研究人员说,作为过程中的一环,对药物负载量和释放率(双氯芬酸钠的关键质量属性(CQAs))的测试和分析可确保给药系统的安全性和有效性,但离线方法耗时过长,影响分析测试效率。在这一应用中,使用近红外光谱的实时在线预测模型具有很强的抗干扰性,进而允许将蔗糖球以不同的投料量引入实验。研究人员说,这种设计将证明模型的稳健性。近红外光谱用于在存在干扰物质的情况下需要进行多组分分子振动分析的场合。近红外光谱由在中红外区域中发现的基本分子吸收的泛音和组合带组成。近红外光谱通常由非特异性和分辨差的重叠振动带组成。尽管存在这些明显的光谱限制,但化学计量学数学数据处理的使用可用于校准定量分析的定性。在流化床涂层过程中使用了带有漫反射模块和高温外部探头的微型近红外光谱仪。据说这次实验的结果是成功的,研究小组发现它能够验证模型的分析能力。因此,作者建议在这一领域开展进一步研究,为智能化的现代药物生产过程提供更多科学依据。参考文献(1) Sun, Z. Zhang, K. Lin, B. et al. Real-Time In-Line Prediction of Drug Loading and Release Rate in the Coating Process of Diclofenac Sodium Spheres Based on Near Infrared Spectroscopy. Spectrochim. Acta, Part A 2023, 301, 122952. DOI: 10.1016/j.saa.2023.122952(2) Voltaren® (diclofenac sodium enteric-coated tablets) – Tablets of 75 mg – Rx only – Prescribing Information. U.S. Food and Drug Administration. https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/019201s038lbl.pdf (accessed 2023-09-07).(3) Voltaren Arthritis Pain Relief Gel & Dietary Supplements | Voltaren. https://www.voltarengel.com/ (accessed 2023-09-07).
  • 中国电科11所多谱段长波红外探测器组件随高光谱综合观测卫星成功入轨
    高光谱红外热成像可以获取地物的热辐射精细光谱信息,更有效地识别地物、分辨目标,在地质勘察领域发挥重大作用。12月9日,中国光学光电子行业协会理事长单位、红外分会理事长单位中国电科11所研制的多谱段长波红外探测器作为宽幅热红外成像仪载荷的核心红外器件随高光谱综合观测卫星(高分五号01A)进入预定轨道,将实现每天3次大气环境、红外全球覆盖,通过卫星的应急观测能力,实现对全球热点区域的快速高光谱重访观测,以高新红外技术,为我国航天事业发展做出新的重要贡献。2022年12月9日02时31分,长征二号丁遥四十五运载火箭在太原卫星发射中心点火升空,成功将高光谱综合观测卫星(高分5号01A)送入预定轨道,发射任务取得圆满成功,标志着高分辨率对地观测系统重大专项空间段建设任务圆满收官。高光谱综合观测卫星将在生态环境动态监测、自然资源调查与监测、大气成分探测等方面发挥重要作用。高光谱综合观测卫星搭载的宽幅热红外成像仪载荷的核心红外器件是由中国电科11所自主研制的一款多谱段长波红外探测器,探测器具有以下特点:4个长波红外谱段。8um-12.5um的长红外波段细分为4个波段,通过分裂窗的反演算法实现高精度、高稳定性定量温度反演。优于50mk的温度分辨率。在波长12.5um的红外探测器中,温度分辨率达到了国际先进水平,可以直观、清晰地迅速捕捉地表广域范围内的昼夜热红外图像。优于10%的响应非均匀性。拍摄的每一幅图像是通过扫描机构将不同区域的图像扫描拼接而成,卓越的非均匀性为百米量级数据提供了保障。该探测器的成功入轨,为我国空间光学遥感领域再添红外“新丁”,将为热红外定量遥感提供百米量级数据,提升红外数据应用效能。▲11所自主研制的多谱段长波红外探测器组件高光谱综合观测卫星是高分5号系列的最后一颗卫星。2012年起,11所开始高分5号卫星用红外组件研制工作,并经过6年努力,红外组件于2018年随高分5号01星成功发射;2021年新研制组件再次随高分5号02星入轨。2022年12月9日,我们又一次见证了载有11所探测器组件的高光谱综合观测卫星成功入轨,它既是高分5号系列的最后一颗,也是高分工程的收官星。高分5号系列卫星发展的十年,也是11所宇航用红外组件研制水平快速发展的十年。未来,11所将继续发挥自身优势,为我国航天事业的发展做出新的更大贡献。
  • 全球超高分辨率傅立叶变换红外光谱仪助力大气污染监测
    为了更好地了解全球气候变化,特别是温室气体(CO2、CH4、N2O、HF、CO、H2O和HDO)在大气和生物圈之间的交换,总碳柱观测网(TCCON)、大气成分变化观测网(NDACC)等研究机构相继成立。这些都是由地基傅立叶变换红外光谱仪(以及其他仪器)组成的网络,它们将太阳作为光源,来记录近红外或中红外光谱范围大气谱。所接收到的高精度数据可以作为重要的地面真实数据,作为对像美国宇航局(NASA)等的卫星测量数据的补充。对于大气污染物的分析,太阳作为红外光源,太阳光经过整个大气层一直到光谱仪的整个光路上不同组分的浓度进行了测量。对于这类场发射测量,需要用到超高分辨率傅立叶变换红外光谱仪。布鲁克IFS 125HR傅立叶变换红外光谱仪凭借准确的仪器谱线函数、出色的波长精度和世界上最高的光谱分辨率,成为该应用和相关研究机构的黄金标准。布鲁克IFS 125HR超高分辨光谱仪采用了令人瞩目的干涉仪设计,可确保光束在长达11米的极长光程差中的完整性。于是,IFS125HR光谱仪全球网络被用于监测全球范围内的大气变化,其中,部分安装在山峰上的观测中心,例如,著名的瑞士少女峰(NDACC);或安装在坐落于美国俄克拉荷马州Lamont的SGP ARM站点设备服务中心(TCCON)。下方图片提供了安装有IFS 125HR光谱仪的全球TCCON观测站点位置,这也凸显了布鲁克在大气污染监测方面做出的重要贡献。注:TCCON: total carbon column observing networkNDACC: network for the detection of atmospheric composition changeSGP: Southern Great PlainsARM: Atmospheric Radiation MeasurementThe Southern Great Plains (SGP) atmospheric observatory was the first field measurement site established by the Atmospheric Radiation Measurement (ARM) user facility. This observatory is the world’s largest and most extensive climate research facility.
  • 可能你不知道,红外光谱法才是中药快速检测的不二之选
    中药检测的方法有很多,比如气相色谱法、髙效液相色谱法、薄层色谱法、紫外-可见分光光度法、红外分光光度法等等。通过这些光谱和色谱的鉴别方法,我们可以对中药材和饮片的理化性能进行科学分析,定性定量。由于全民保健意识的提高,我国中药质量检测越来越被重视。高效,快速、精准、低廉就成为选择中药检测方法的重要参考因素。红外光谱法就是符合以上四点的中药常用检测方法之一。通常绝大部分的有机化合物、或者无机化合物的红外光谱都具有一定的指纹特征,所以就不需要再进行衍生等成分标记处理,尤其是表征一些有机小分子、有机大分子、无机化合物等中药产品,红外光谱几乎都能直接进行表征其中的绝大部分成分,而且红外光谱法适用各种固体、液体、气体形态的中药药品,对于及时发现不合格样品,减少检测周期时间,大批量检测,效率提高,成本降低等各种需求都能满足。检测原理按照《中华人民共和国药典》通则中的相关规定:除部分光学异构体及长链烷烃同系物外,几乎没有两个化合物具有相同的红外光谱,据此可以对化合物进行定性和结构分析。中药药品的各种化合物成分的红外信号也是叠加的,如果化合物种类或数量不相同,那么红外光谱肯定就会存在一定差异,所以我们就可以以此为依据进行定性分析。此外,化合物对红外辐射的吸收程度与其浓度的关系符合朗伯-比尔定律,这也是红外光谱法得以应用的重要依据之一。检测仪器红外光谱仪是中药红外光谱法检测的主要使用仪器设备。这里我们可以使用傅里叶变换红外光谱仪或色散型红外光谱仪,色散型红外光谱仪也就是红外分光光度计。通常这些设备性能符合《中药典》的规定即可。当然,我们在实际检测时,也会根据测试样品的需要,有针对性的选择附属装置,比如压片装置、衰减全反射测定装置等。当然有些附属装置还会配备透射、反射、光纤探头等装置。不过中药检测一般使用压片法和衰减全发射法进行红外测定。取样方法通常我们对一般药材和饮片进行红外光谱法取样时,要求每份试样的重量都不能少于100g;如果是均匀的粉末状药材或者饮片,则要求试样最少不能少于25g;液体药品则要求试样每份不得少于25 mL。当然,事无绝对,如果属于贵重试样,只要能保证试样具有代表性,则可以适当减少取样量。对于成分不均匀的固体试样要求进行粉碎处理,粒度要求能够通过100目筛。浓度较低的液体试可以进行浓缩处理或干燥处理后进行测试。测试方法前面我们也说了中药的红外光谱法,主要分为压片法和衰减全反射法。压片法主要适用于检测干燥的固体试样,或者是不会溶解稀释剂的液体试样。衰减全反射法则是永夜检测不同形态、不同含水量的固体试样或液体试样,这些试样一般不需要进行稀释处理,可以直接进行测试。定性定量分析中药定性分析、中药定量分析是红外光谱法的关键所在。通常中药定性分析一般分为成分定性分析和类别定性分析两种。成分定性分析主要进行化合物结构解析、化合物定性检测;类别定性分析一般为对中药真伪鉴别,产品鉴别、登记鉴别,类别定性分析也分单类别分析、多类别分析。定量分析就是对中药成分的含量或浓度进行测定。以上便是使用红外光谱法来进行中药检测的相关知识。我们在实际检测时,由于空气中的水蒸气和二氧化碳能够吸收特定频率的红外光,所以当测试背景光谱与试样光谱的环境氛围差异较大时,光谱仪就可能吸收水蒸气或二氧化碳的信号,从而影响结果的准确度。所以我们在检测时,一定要排除水蒸气或二氧化碳的干扰,通过及时更新背景光谱,对测试设备进行真空处理,保持环境的温度、湿度,避免相关人员干扰,采取数学方法对相关信号进行扣除等操作,尽量消除空气中水蒸气或二氧化碳的信号干扰影响。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制