当前位置: 仪器信息网 > 行业主题 > >

红外热重分析

仪器信息网红外热重分析专题为您提供2024年最新红外热重分析价格报价、厂家品牌的相关信息, 包括红外热重分析参数、型号等,不管是国产,还是进口品牌的红外热重分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外热重分析相关的耗材配件、试剂标物,还有红外热重分析相关的最新资讯、资料,以及红外热重分析相关的解决方案。

红外热重分析相关的论坛

  • 热重红外气相色谱质谱联用技术分析未知水性样

    [font=微软雅黑][font=微软雅黑]实验室经常需要分析未知混合物确定其主要成分、获取其中的添加剂或污染物种类以及含量[/font] [font=微软雅黑]等信息。这些信息在某些应用场合是至关重要的,例如,剖析竞争对手产品配方或者评价产[/font] [font=微软雅黑]品的指标是否遵循行业规范等等。光谱分析技术在研究预分离纯组分的样品方面已经建立了[/font] [font=微软雅黑]大量较为成熟的方法,分离和离析过程可以借助热重分析仪、傅立叶变换红外光谱仪和气[/font] [font=微软雅黑]相色谱仪等完成。而对于复杂混合物样品体系,将这些常规技术进行联用则是更为有效的[/font] [font=微软雅黑]检测分析手段。珀金埃尔默公司可提供全套成熟的联用解决方案,在本案例中,通过使用[/font] [font=微软雅黑]TL-9000型传输管线有效的将使用产品TG-IR-GC/MS 热重-红外-[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]/质谱联用进行联用,可用于分析复杂 样品体系。三联机解决方案如图1所示。[/font][/font][font=微软雅黑][font=微软雅黑]  本文选取了近期典型的案例:分析实验室对一组染色的[/font] [font=微软雅黑]水性样品进行了系统分析。由于水对光谱分析有强烈干扰,所以样品均在在室温预[/font] [font=微软雅黑]先进行干燥处理。当干燥过程完成后,将所得到的薄膜[/font] [font=微软雅黑]从烘干盘上剥下,然后置于干燥空气流中进行短暂加[/font] [font=微软雅黑]热。从所得薄膜上取部分样品放入与红外光谱仪联机[/font] [font=微软雅黑]的热重分析仪当中。样品重量为[/font][font=微软雅黑]20毫克,在氮气气氛 下以20o C/min的速度从20度加热到850度。在加热过程 中,样品所释放的气体通过TL-8000型加热传输管线和 接口被导入红外光谱仪的气体样品池。因此,在热重分 析过程中,可以同时对样品所释放出的气体进行实时红 外光谱分析。图2所示为热失重与温度的关系曲线。[/font][/font][font=微软雅黑][font=微软雅黑]  在[/font][font=微软雅黑]20o C到150o C之间对应样品中残余水分1.38%的失重 过程。在200o C到410o C之间,存在一个归属于挥发性 组分挥发的显著失重台阶,在该温度区间同时还伴随着 聚合物的初始分解过程。聚合物部分主要分解过程发生 在410o C到510o C的温度范围内。[/font][/font][font=微软雅黑][font=微软雅黑]  在热重分析仪的热分离过程中,样品所释放的气体被实[/font] [font=微软雅黑]时输送到傅立叶变换红外光谱仪中进行红外数据采集。[/font] [font=微软雅黑]热重[/font][font=微软雅黑]-红外数据包含了每间隔约8秒采集一次所得到的一 系列的谱图。标准的红外数据显示格式为吸收率对波数 曲线,样品逸出气体的红外光谱图采集密度大约为每升 温2度采集一组谱图。热重-红外联用的Time-Base软件 还可以辅助绘制三维坐标图谱,可同时显示叠加的红 外曲线随时间或者温度以及波数的关系,用户可以非常 直观的了解样品在整个温度平台中的热重-红外数据变 化情况(如图3示)。这有助于阐述样品分解过程的动 力学,确定选取哪个温度区间展开精细分析。此外,分 析人员还可以查看任何特定波长对应的吸收与时间的谱 图,以跟踪所关心的分解产物浓度对时间,乃至温度的 关系。[/font][/font][font=微软雅黑][font=微软雅黑]  通过观察图[/font][font=微软雅黑]3的数据,作者观察到逸出气体中包含一种未 知物质,在280o C处该物质的逸出速率达到大。选择该 温度下的谱图进行数据库比对分析。从这个数据库搜索 发现这种未知物质属于三乙二醇二苯甲酸酯-或者结构类 似的物质。图4显示的是未知样的红外谱图以及搜索到的 匹配物质的红外谱图。图5列出了其他匹配物质,一起 列出的还有每个匹配物的相关统计匹配程度。[/font][/font][font=微软雅黑][font=微软雅黑]  然后,[/font][font=微软雅黑]TL-9000接口被用来进行后续分析,以证实样品 中的未知物质的鉴定准确度。选取该物质红外吸收浓 度达大值时进行分析,将红外气体池中的气体样品 送到[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]/质谱仪中。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]数据如图6所示。[/font][/font][font=微软雅黑][font=微软雅黑]280°C时从热重分析仪逸出的物质,进一步用[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]色 谱解析,然后用质谱分析仪评估,由此未知分子结构被 打碎成为组分离子,根据它们在磁场中飞行响应的不同 加以鉴别。结果与已建质谱数据库的数据作比较。 国家科学技术研究院(NIST)的质谱数据库搜索未知物质 形成的输出结果如图7示。[/font][/font][font=微软雅黑][font=微软雅黑]  未知物质经证实为二乙二醇二苯甲酸酯,化学结构与[/font] [font=微软雅黑]红外分析确定的物质非常相似,这两种物质红外谱图[/font] [font=微软雅黑]不能进行有效鉴别。[/font] [font=微软雅黑]在文献中搜索二乙二醇二苯甲酸酯的化学特性显示该[/font] [font=微软雅黑]物质属于一种化学性质稳定、具有较高沸点的清澈液[/font] [font=微软雅黑]体。该物质微溶于水,与聚合物材料相容性较好。尤[/font] [font=微软雅黑]其是与聚乙烯醇和聚氯乙烯能够极好的相容,因此常[/font] [font=微软雅黑]被用于聚乙烯醇均聚物和共聚物乳液的增塑剂。此[/font] [font=微软雅黑]外,它也被用做聚氯乙烯涂层、食品包装粘结剂和涂[/font] [font=微软雅黑]料,以及化妆品工业的增塑剂等等。由于在老鼠活体[/font] [font=微软雅黑]实验中显示该物质具有表观毒性,因此将其作为增塑[/font] [font=微软雅黑]剂使用和如何妥善处理含有这种物质的废弃物时需要[/font] [font=微软雅黑]法规加以监管。[/font][/font][font=微软雅黑][font=微软雅黑]  热重[/font][font=微软雅黑]-红外的进一步分析显示在300到400°C之间样品 中的聚合物分解释放出醋酸,如下图示;因此,样品 中的聚合物极有可能是聚醋酸乙烯酯:[/font][/font][font=微软雅黑][font=微软雅黑]  小结:将多套分离分析仪器联机进行测试的[/font][font=微软雅黑]“联用技术”, 如TG-IR-GC/MS 热重-红外-[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]/质谱联用技术,配合强 大的搜索软件以及完善的谱图数据库,赋予分析人员 能够对未知水性混合物进行有效全面的分析,其中添 加的各种组分得以鉴别。[/font][/font][font=Calibri] [/font]

  • 红外光谱、热重分析这种分析化合物结构、分解温度的项目怎么进行能力验证

    想向大家请教一个问题:我们实验室想申请CNAS认可,检测项目主要是石油领域的,做能力验证的时候按要求选择了化学分析和物理性能做了能力验证,但是有两个项目不是石油领域的,如对于有机化合物结构分析(利用红外光谱仪)、分解温度(热重分析仪)这两个项目需要做能力验证吗?我没有找到对应的能力验证机构,该怎么办呢?是一定要做实验室间对比吗?还是有别的解决办法呢?

  • 热分析/红外光谱联用仪器分析软件中热重部分的数据处理与作图

    热分析/红外光谱联用仪器分析软件中热重部分的数据处理与作图

    [b][size=18px][color=#ff0000]说明:本部分内容最初发表于“热分析与吸附”公众号([url=http://mp.weixin.qq.com/s?__biz=MzI5MjUzMzQ0OA==&mid=2247484499&idx=1&sn=80ba792fa24acfef6da0024e9bca1768&chksm=ec7ea1f4db0928e2953b29e32fa45c8cb829d1e9f3fc384fcc88d7b4255cac6c924cb0cf97cb&token=1107019109&lang=zh_CN#rd]链接[/url]),欢迎关注公众号了解更多的热分析与吸附相关的内容[/color][/size][/b]本部分将介绍实验结束后的数据处理过程。由于本部分内容较多,为了叙述和阅读的方便,本部分将以实验室在用的美国Perkin Elmer公司的热重/红外光谱/[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]质谱联用仪为例简要介绍热分析/红外光谱联用中与热重部分的数据处理与作图相关的内容,在下一部分内容中将介绍与红外光谱部分相关的数据处理与作图的内容。说明:在热分析/质谱联用的数据分析系列内容第4部分《热分析/质谱联用的数据分析方法 第4部分 仪器分析软件中热重部分的数据处理与作图》中详细介绍了热重部分的数据处理与作图,热分析/红外光谱联用的数据分析中的热重部分的数据处理与作图与此大同小异。为了便于阅读并保持内容的完整性,因此本部分内容与《热分析/质谱联用仪器分析软件中热重部分的数据处理与作图》基本相同,仅增加了与红外光谱相关的部分内容。1. 实验样品信息样品:一水合草酸钙(白色粉末);实验气氛:高纯He,流速100mL/min;坩埚:敞口氧化铝坩埚;温度范围:室温-900℃;加热速率:20℃/min仪器:美国Perkin Elmer 热重(型号Pyris 1)/红外光谱(型号Frontier)/[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url](型号Clarus 680)/质谱(型号Clarus SQ8T)联用仪;传输管线温度:热重仪至红外光谱仪温度、红外光谱仪气体池温度均为280℃,由TL-9000联用装置控制传输管线以及红外光谱仪气体池的温度(图1)。[align=center] [img=,558,480]https://ng1.17img.cn/bbsfiles/images/2020/06/202006171657014958_9108_1879291_3.png!w558x480.jpg[/img][/align][align=center]图1[/align]红外光谱仪工作条件:DTGS检测器,波数分辨率8cm-1,光谱叠加次数为4。2. 热重曲线分析打开需分析的热重曲线的原始文件,打开后界面如图2所示。点击Display菜单中的weight %选项,将纵坐标由绝对质量换算为以百分比表示的相对质量(图3)。点击Temperature/time图标(图4),将横坐标由时间转换为温度(针对线性加热的实验条件)。坐标转换后的曲线如图5所示。图5中的TG曲线中,随温度升高先后出现了失去一分子结晶水、失去一分子CO和失去一分子CO2的三个失重过程。[align=center][img=,475,292]https://ng1.17img.cn/bbsfiles/images/2020/06/202006171657176718_3794_1879291_3.png!w475x292.jpg[/img][/align][align=center]图2[/align][align=center][img=,475,398]https://ng1.17img.cn/bbsfiles/images/2020/06/202006171657327184_8296_1879291_3.png!w475x398.jpg[/img][/align][align=center]图3[/align][align=center][img=,562,208]https://ng1.17img.cn/bbsfiles/images/2020/06/202006171657432527_8949_1879291_3.png!w562x208.jpg[/img][/align][align=center]图4[/align][align=center][img=,562,268]https://ng1.17img.cn/bbsfiles/images/2020/06/202006171657530851_3101_1879291_3.png!w562x268.jpg[/img][/align][align=center]图5[/align]如需得到微商热重(DTG)曲线,则选中Math菜单下的Derivative选项(图6),可得到如图7所示的DTG曲线。图7中右侧的Y轴所对应的为DTG曲线,左侧的Y轴所对应的则为TG曲线。如需对DTG曲线进行平滑处理,则选中图8中的Smooth选项,在弹出的窗口(图8)中设置需平滑的范围和平滑次数,平滑后的曲线如图9所示。[align=center][img=,562,395]https://ng1.17img.cn/bbsfiles/images/2020/06/202006171658044523_6558_1879291_3.png!w562x395.jpg[/img][/align][align=center]图6[/align][align=center] [img=,562,268]https://ng1.17img.cn/bbsfiles/images/2020/06/202006171658216276_4674_1879291_3.png!w562x268.jpg[/img][/align][align=center]图7[/align][align=center][img=,562,282]https://ng1.17img.cn/bbsfiles/images/2020/06/202006171658341653_2952_1879291_3.png!w562x282.jpg[/img][/align][align=center]图8[/align][align=center] [img=,562,282]https://ng1.17img.cn/bbsfiles/images/2020/06/202006171658454165_6276_1879291_3.png!w562x282.jpg[/img][/align][align=center]图9[/align]点击图10中的Calc菜单中的相关选项,分别计算每一失重台阶所对应的百分比及其特征温度,分析后的曲线如图11所示。需要指出,在分别对TG和DTG曲线进行分析时,应用鼠标首先选中需分析的曲线,选中后的曲线显示较粗(如图7和图9)。[align=center] [img=,349,474]https://ng1.17img.cn/bbsfiles/images/2020/06/202006171658567544_9027_1879291_3.png!w349x474.jpg[/img][/align][align=center]图10[/align][align=center] [img=,558,272]https://ng1.17img.cn/bbsfiles/images/2020/06/202006171659095278_870_1879291_3.png!w558x272.jpg[/img][/align][align=center]图11[/align]3. 热重曲线分析结果的导出由于软件中经归一化、平滑、微分等处理后的分析结果不能一键导出,在数据导出时建议采用以下方法:(1)原始数据的导出点击File菜单下的Export data选项(图12),选择导出的文件格式(.txt或.csv),并保存为相应的文件,导出的数据如图13所示。需要注意,通过这种方式导出的文件为经平滑、微分等处理前的数据! [align=center] [img=,448,424]https://ng1.17img.cn/bbsfiles/images/2020/06/202006171659199768_7766_1879291_3.png!w448x424.jpg[/img][/align][align=center]图12[/align][align=center] [img=,690,235]https://ng1.17img.cn/bbsfiles/images/2020/06/202006171659328701_3488_1879291_3.png!w690x235.jpg[/img][/align][align=center]图13[/align]图13中,第一列为实验时间(单位为分钟),第二列为样品质量(单位为mg),第四列为程序温度(单位为℃),第五列为程序温度(单位为℃)。在其他作图软件中进行作图时通常用第五列中的样品温度作为横坐标,第二列中的质量作为纵坐标进行分析。当然,第二列中的质量需要进行归一化处理。在公众号文章《Origin软件中热重曲线的作图方法》中以Origin软件为例介绍了相应的处理方法,此处不做赘述。(2)数据处理后的数据导出方法如需导出经归一化、平滑、微分等处理后的分析数据,可选中Edit菜单下的Copy或Copy Image选项复制数据或者图片到作图软件中进行进一步处理(图14)。为了便于分析,也可以复制到空白的Excel表中再导入至其他软件中进行进一步处理。图15给出了将TG曲线和DTG曲线复制到一个Excel文件中的实例,供参考。也可将曲线分析后的图片直接复制到该表格中,如图16。[align=center][img=,450,258]https://ng1.17img.cn/bbsfiles/images/2020/06/202006171659439018_9576_1879291_3.png!w450x258.jpg[/img][/align][align=center]图14[/align][align=center] [img=,609,455]https://ng1.17img.cn/bbsfiles/images/2020/06/202006171700025082_6916_1879291_3.png!w609x455.jpg[/img][/align][align=center]图15[/align][align=center] [img=,690,232]https://ng1.17img.cn/bbsfiles/images/2020/06/202006171700179346_3131_1879291_3.png!w690x232.jpg[/img][/align][align=center]图16[/align]

  • 【原创大赛】【官人按】二维/多维相关光谱方法对热重-红外联用双线性数据的解析

    【原创大赛】【官人按】二维/多维相关光谱方法对热重-红外联用双线性数据的解析

    [align=center][b]二维/多维相关光谱方法对热重-红外联用双线性数据的解析[/b][/align][align=center]郭然,徐怡庄[sup]*[/sup][/align][align=center]北京分子科学国家实验室,稀土材料化学及应用国家重点实验室,北京大学化学与分子[/align][align=center]工程学院,北京 100871[/align][b]摘要:[/b]本工作中,使用基于异步正交的二维/多维相关光谱方法对多类热重-红外联用双线性数据进行分析。结果表明,本方法可以有效地处理包含二组分甚至多组分气体逸出物的热重-红外数据,并得到体系中各纯物质光谱。该方法可以有效识别大量体系中某物质的特征吸收峰,且不需预先得知待差减物质谱图,相比于传统的差减法有较明显的优势。[b]关键字:[/b]二维/多维相关光谱 热重-红外联用[b]背景介绍[/b]热重-红外联用方法被广泛地应用于物质成分鉴定、热分解过程考察等相关研究。在常规的热重-红外联用分析中,不同气体逸出物随加热过程逐渐逸出,并通过红外气体池进行检测。然而,气体逸出物的逸出曲线经常会有重合,在某些情况下,逸出曲线甚至会有严重重叠。例如,两气体组分A及B由同一物质分解产生或是具有接近的沸点,则该两物质的逸出曲线会非常接近。气体逸出物逸出曲线的严重重叠,使得在红外检测过程中,只能得到混合物的红外光谱而非各纯物质光谱,这给气体逸出物的鉴定及后续分析造成了很大困难。一般来说,在对红外光谱进行处理,以期得到各纯物质光谱时,可以通过差减法,将光谱中存在的干扰项去除,从而得到目标物质的光谱。该方法的应用一般需要满足以下条件,即需要扣除的物质及其光谱已知。例如,光谱处理中常见的水汽及二氧化碳背景扣除方法,即是基于水汽和二氧化碳光谱已知的前提下,通过选择合适的峰位,找出差减的比例系数,从而将水汽及二氧化碳光谱从总光谱中移除。然而,随着总光谱复杂程度的加剧,干扰光谱鉴定的物质不仅是水和二氧化碳,而可能包含各类未知且具有不同光谱形状的气体逸出物,单纯进行水和二氧化碳的扣除,对很多体系的分析而言是远远不够的。即使是二氧化碳的扣除,差减法也存在一定问题。在中红外区,二氧化碳的谱峰主要存在于2350cm[sup]-1[/sup]-2200cm[sup]-1[/sup]的光谱区段。由于很少有气体产物在该光谱区段存在吸收峰,目前的二氧化碳扣除算法可以将该区段谱峰全部扣去。然而,实际体系中存在一些物质,在该光谱区段具有具红外活性的振动模式(如乙腈的C≡N三键伸缩振动)。当这些物质对总光谱有贡献时,差减法很难恰好将二氧化碳的成分准确扣除,从而导致得到的谱峰变形,影响后续的数据分析。本工作中,使用本课题组开发的二维/多维相关光谱方法对多类物质的热重-红外数据进行处理,以期得到各纯物质光谱。[b]算法简要介绍[/b]二维及多维异步谱的构建基于以下算法:[align=center] [img=,492,106]https://ng1.17img.cn/bbsfiles/images/2018/09/201809051625044178_4191_3237657_3.jpg!w492x106.jpg[/img][/align]式中,为物质k在[i]t[/i][sub]i[/sub]时刻的逸出浓度,为物质k在[i]v[/i][sub]j[/sub]处的红外吸收,N为Hilbert-Noda变换矩阵。通过基于Hilbert-Noda变换矩阵的异步相关乘法,构建二维异步谱。在异步谱上通过寻找特征性的系统缺峰,得到一级特征峰的吸收信息,并由该处的异步谱截线,得到各纯物质的光谱形状。构建多维异步谱时,在构建二维异步谱方式的基础上,对原始一维光谱进行多级分组,在二维异步谱上取各组相同位置的截线,进行基于公式(2)的高维异步谱构建。可以证明,通过异步光谱的升维算法,可以将体系中各成分对于光谱的贡献逐一去除,进而不断简化光谱形式,最终得到纯物质光谱。通过选择不同的升维路径,可以通过选择不同的特定吸收峰,去除不同成分对总光谱的贡献,从而得到不同的物质光谱(证明略)。本方法已应用在多类体系中,并成功得到了体系中各纯物质红外光谱。下面给出一个应用实例。[b]实验条件[/b]仪器:TGA(TGA-8000)-FTIR (Frontier) 联用仪器 (Perkin Elmer);样品:去离子水、乙腈、乙酸乙酯。实验步骤:配制水/乙腈/乙酸乙酯混合溶液(v:v:v=1:4:1)上样于坩埚,以30℃为起始温度,10℃/min速度升温至90℃,30℃/min升温至150℃。红外光谱采集:分辨率8cm[sup]-1[/sup],每张光谱采集时间约2.7s。[b]结果讨论[/b]水、乙腈、乙酸乙酯三组分的沸点相差不大,通过上述算法,可以将体系中各成分逐级去除,最终得到三组分各自的纯物质光谱。[align=center][b] [img=,690,626]https://ng1.17img.cn/bbsfiles/images/2018/09/201809051625227884_5273_3237657_3.jpg!w690x626.jpg[/img][/b][/align][align=center]图1 基于三维异步相关方法的水/乙腈/乙酸乙酯混合物热重-红外联用数据分析 (A) 二维异步相关谱 (B) 三维异步谱在x=3746cm[sup]-1[/sup]处的二维截面 (C) 三维异步谱在x=2620cm[sup]-1[/sup]处的二维截面 (D) Trace 1-图(B)在y=2620cm[sup]-1[/sup]处的截线,对应乙酸乙酯光谱(Trace 4);(Trace 2)图(B)在y=1768cm[sup]-1[/sup]处的截线,对应乙腈光谱(Trace 5);(Trace 3)图(C)在y=2982cm[sup]-1[/sup]处的截线,对应水光谱(Trace 6)[/align][b]致谢[/b]本工作由国家自然科学基金(No.51373003)赞助。

  • 【求助】请教气相-红外,热重-红外联用方面有经验的朋友!

    最近公司打算将现有的[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]和红外,热重分析仪联用。正在考察!请有经验的朋友分享一下这方面的经验。包括联用所需要的硬件,软件,技术,应用等方面。在这些方面我们还是空白,希望朋友们多多帮助。仪器型号: 红外:尼高力 Protege 460 热重:美国TA HI-RES TGA 2950 [url=https://insevent.instrument.com.cn/t/Mp]气相[/url]:安捷伦 6890plus

  • 近红外光谱法在药物分析中的应用

    近红外(Near Infrared,NIR)光谱的波长范围是780~2526nm(12820~3959cm-1),通常又将此波长范围划分为近红外短波区(780~1100nm)和近红外长波区(1100~2526nm)。由于该区域主要是O-H,N-H,C-H,S-H等含氢基团振动光谱的倍频及合频吸收,谱带宽,重叠较严重,而且吸收信号弱,信息解析复杂,所以虽然该谱区发现较早,但分析价值一直未能得到足够的重视。近年来,由于巨型计算机与化学统计学软件的发展,特别是化学计量学的深入研究和广泛应用,使其成为发展最快、最引人注目的光谱技术。而且由于该技术方便快速,无需对样品进行预处理,适用于在线分析等特点,在药物分析领域中正不断得到重视与应用。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=30654][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法在药物分析中的应用[/url][color=red]【由于该附件或图片违规,已被版主删除】[/color]

  • 近红外光谱分析技术在高分子研究中的应用

    近红外光谱分析技术在高分子研究中的应用

    近红外光谱分析技术在高分子研究中的应用*摘 要 近红外光谱分析技术是高分子领域重要的表征方法之一。通过近红外区段光谱信息的测定可以获得丰富的结构性质信息,如共聚物熔融指数、化学组成等。除对高分子物理化学信息的静态表征,由于近红外无损监测、快速识别的特点,在聚合物合成过程监测中亦可监测合成过程中相关参数。本综述重点介绍近红外光谱分析法历史、基本理论、相关的化学计量学、机器学习方法等并通过三个方面的运用进行举例分析:物理性质的测定分析、化学组成的结构分析、在线监测过程运用,综述对近红外未来发展方向进行系列展望,包括可解释性机器学习与快速机器学习的发展、化学计量学进展、基础理论进步等方面,系列跨学科进步与发展必将助力近红外分析技术在高分子领域的进一步引用。关键词 高分子表征,近红外光谱,化学计量学,在线分析, 近红外光谱分析技术结合化学计量学方法的运用,在聚合物表征、分析种有诸多方面的运用,如结合近红外光谱测定共聚物种的化学组成;利用近红外分析共聚物的熔融指数,测定其物理性质;结合机器学习方法,利用近红外在化工合成过程中进行在线监控。可用于聚合物分析表征的近红外光谱技术主要有四种,包括近红外透射光谱(NIR)、漫反射近红外光谱(NIDRS)、偏振近红外光谱、近红外光声光谱(NIR-PAS)。基于透射、漫反射的近红外光谱仪配合多种采样调节,可满足不同环境下化学信息的分析测定。在聚合物的表征方法中,近红外是速度较快、适应性强的表征方法,随着化学计量学软件、技巧的进一步普及以及机器学习、深度学习平台构建的便利性,必将对高分子领域研究与发展产生深远影响。本文从近红外发展史出发,在简要介绍近红外光谱分析技术基础后,着重介绍实验、数据处理技巧,并通过三个方面的运用举例进行简要综述。1近红外光谱分析技术发展简史近红外区段按照美国材料与试验协会(American Society for Testing and Materials, ASTM)定义为波长为780~2526nm的电磁波。近红外光谱最早于1800年由William Herschel发现,在20世纪早期,科学家利用摄谱方法获得了有机化合物的近红外光谱,并结合统计热力学以及基团的光谱特征进行解释,可行的光谱化学信息归属分析为近红外光谱(Near Infrared Spectroscopy, NIR)作为分析技术进行应用提供可能性.限于仪器研究发展,在20世纪中期以前,近红外光谱实际运用并未广泛展开,仅停留在实验室测试中,但自50年代后期,简易近红外光谱仪的出现以及Karl Norris等科学家在近红外光谱漫反射技术上的探究,近红外光谱在农副产品的品质测定方面有了一定的运用,但限于光谱分析手段于化学计量学手段的发展,基于传统光谱定量分析方法分析近红外谱代,在受到采样背景、颗粒大小等因素影响时,往往会产生较大误差。20世纪80年代,随着化学计量学方法的运用,结合中红外、近红外分析积累的光谱归属、仪器研发经验,近红外光谱分析技术获得了广泛的应用,成为一种独立的光谱分析技术,并在高分子领域、农副产品鉴别、石油化工领域逐渐运用广泛。由于近红外光谱分析测试过程中不损坏试样、不适用其他试剂等特点,极大方便研究者利用近红外进行表征测试、解读化学信息。2 近红外光谱分析法2.1 近红外光谱仪基本原理 近红外光谱仪主要分为两大部分:第一部分为光学系统,即测量样品近红外光谱的光谱测量系统;第二部分为从样品光谱中处理与提取样品信息的化学计量学模块,也称“黑匣子”内的功能模块。前者是近红外分析光谱仪的硬件部分,后者是近红外光谱仪的软件部分。 近红外光谱测量系统是一种能够针对对不同类型样品采用不同类型光谱的测量系统。其构成分三部分:光源模块、进样与光谱测量模块和分工检测器与电子系统模块,共同产生承载样品信息的近红外光谱。 分光模块:分光模块实现分光的功能。分光是指将包含多种波长成分的复色光在空间或时间分离开。分光方式可分为机械分光与数字分光。机械分光,以色散型光谱仪为例,其核心是单色器,即将复色光经处理形成一系列只有“单一”波长成分的单色光。以傅立叶变换型光谱仪为例,傅立叶变换型光谱仪是通过其中的迈克尔逊干涉仪,让分析光强度对(干涉仪)动镜移动的距离进行扫描,产生干涉图。将分析光所得干涉图经过傅立叶变换,产生频率域光谱。傅立叶变换属于运用算法进行数字分光。傅立叶变换型光谱仪产生的光谱波长标度是由激光的频率作为参比通过数学运算所得,同时基于激光频率准确度高,变换所产生的光谱波长标度也很高,而此对近红外分析模型的传递十分有利。 近红外光谱分析的基本光谱测量方法:光谱测量过程就是以光谱为载体对样本信息进行采集的过程,而之后的化学计量学方法也需要从样品光谱中提取信息,进行分析。因此需要选择合适的光谱测量方法。光与物体的相互作用其宏观过程形成了直接投射光谱、镜面反射光谱、漫反射光谱与漫透射光谱。如何选择并完成后续应用,则取决于它们是否可以承载足够多的信息。2.2 近红外光谱原理 红外光束可分为单色光和复合光,当红外光束射过样品时,当被照射样品的分子能特定吸收辐射中某些频率波段的光,则可产生吸收光谱。分子吸收能量后会使构成分子中部分化学键的振动,并使自身的振动能态发生改变。通常,分子基频振动产生的吸收光谱带位于中红外区域(400~4000cm-1)。与中红外区相邻区域即4000~14285cm-1(2500~700nm),称为近红外区域,习惯上又划分为短波近红外区(700~1100nm)和长波近红外区(1100~2500nm)。发生在该区域的吸收谱带对应于分子基频振动的倍频和组合频。 近红外光谱是电磁波,它具有光的属性,既具有波粒二象性,因此,我们对光的能量也可以用光子表示。量子力学理论认为,光子能量为:Ep=hv。上述公式同样适用于近红外的光子能量。近红外光束穿过由一种或多种分子组成的物质上,如果分子对其不产生吸收,则近红外光会完全透过样品,该物质分子为非红外活跃分子;反之,则为红外活跃分子。而只有红外活跃分子中的化学键才能对近红外光束中的光子进行吸收,进而产生近红外光谱吸收。物质分子在近红外光谱区的吸收是由于分子振动转动与静止之间的状态转变,以及分子振动或转动状态在不同能级间的跃迁。近红外光谱的化学信息是分析过程样品分子振动状态跃迁信息在光谱的具像化。能量跃迁包括基频跃迁,对应分子振动状态在相邻振动能级之间的跃迁;倍频跃迁,对应于分子振动状态在相隔一个或几个振动能级之间的跃迁;合频跃迁,对应于分子基频跃迁于倍频跃迁同时发生的跃迁。近红外谱图主要承载的信息是C—H、N—H、O—H合频与倍频的信息。2.3光谱预处理方法 近红外光谱仪所测得的吸光度光谱信号受多种不确定因素影响,例如不同组分相互干扰引起的光谱重叠与峰掩盖现象、信号噪声等问题,都降低了直接定量分析结果的准确度与精度。因此在用化学计量学方法建立模型的过程中,对光谱信号进行预处理,从而消除噪声影响及无关信息,具有关键性意义。常用的预处理方法包括数据增强算法、平滑算法、导数算法、标准正态变量变换、多元散射校正、傅里叶变换、小波变换等。1.数据增强算法 (data enhancement)数据增强算法包括均值中心化、标准化、归一化等方法。通过中心化与标准化,可使所有数据分布于零点两侧,在简化运算的同时,不影响数据的相对位置,从而充分反映数据变化,有效消除多余信息,提升模型的稳健性与预测能力。2.平滑算法(smoothing)信号平滑能够有效消除信号噪声的影响,其基本假设是光谱含有的噪声为零均随机白噪声,通过多次测量取平均值从而降低噪声提高信噪比。常用方法有移动平均平滑法和Savitzky-Golay卷积平滑法。其中,移动平均平滑法中选取合适的平滑窗口宽度难度较大,仅求均值易使去噪效果不佳,因此Savitzky-Golay提出卷积平滑法,以多项式对移动窗口内数据进行多项式最小二乘拟合,强调中心点的中心作用,从而有效去噪,得到广泛应用。3.导数算法(derivative)光谱的一阶导数与二阶导数是NIR光谱分析中常用的预处理与基线校正方法。光谱分辨率高且波长采样点多时,可采用直接差分法处理;光谱波长采样点较为稀疏时,可采用Savitzky-Golay卷积求导法计算。光谱的一阶导数可去除与波长无关的漂移,二阶导数可去除同波长线性相关的漂移。求导时通过选取合适的差分宽度,从而能够有效消除基线与其它背景的干扰,提高其分辨率与灵敏度。4.标准正态变量变换 (standard normal variate transformation, SNV)标准正态变量变换是基于光谱阵的行进行处理的预处理方法,能够消除固体颗粒大小、表面散射及光程变化对NIR漫反射光谱的影响。对光谱进行SNV变换计算方法如下:https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611276915_2972_3957149_3.png (2-1) 其中,为第i样品光谱的平均值(标量),,为波长点数;,为校正集样品数。5. 多元散射校正(multiplicative scatter correction,MSC)多元散射校正基于光谱阵进行运算,由Martens等人提出,在NIR固体漫反射中得到广泛应用,作用同标准正态变量变换类似,能够消除颗粒分布不均匀及颗粒大小产生的散射影响。MSC算法如下:Step1:计算校正集光谱的平均光谱:https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611280774_834_3957149_3.png (2-2) Step2:对平均光谱作线性回归计算,求得回归系数: https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611290010_9504_3957149_3.png (2-3) Step3:对每一条光谱作多元散射校正处理:https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611290793_95_3957149_3.png (2-4) 其中https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611295784_4342_3957149_3.png,https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611299670_5789_3957149_3.png为样品数;https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611301877_3185_3957149_3.png表示第https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611312998_9572_3957149_3.png个波数;https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611315908_2149_3957149_3.png为光谱矩阵。近来,小波变换(wavelet transform,WT)在图像处理中的应用逐渐成熟,外部参数正交化算法(EPO)与广义最小二乘加权算法(GLSW)因其可消除水分与温度对光谱的影响,得到广泛应用。随着技术的进步,利用化学计量学方法建模进行预处理的方法将持续发展,使模型的稳定性与准确性得到进一步的提升。2.4光谱降维方法 在近红外漫反射光谱与吸收光谱中均存在组分谱带较宽,彼此重叠严重的问题,因此采用化学计量学方法对光谱进行降维,对于准确提取光谱信息具有重要意义。目前,在近红外光谱分析中常用的化学计量方法有多元线性回归(MLR)、主成分分析(PCA)、偏最小二乘(PLS)、奇异值分解(SVD)、遗传算法(GA)等方法。1.多元线性回归(MLR)多元线性回归以整个光谱矩阵建立模型,在多组分体系校正过程中测定结果良好。但由于维数有所限制、矩阵中信息与被测性质不具相关性,模型的预测能力将受到一定影响。2.主成分分析(PCA)主成分分析法将原来众多具有一定相关性的自变量,通过线性组合的方式重新组合成一组较少的线性无关的综合指标来代替原来的指标,新变量能反映原变量的绝大部分信息。其计算方法如下:https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611441980_1283_3957149_3.png图2.4-1主成分分析法降维示意图Fig 2.4-1 the process of PCA algorithm Step1:构建样本大小为mhttps://ng1.17img.cn/bbsfiles/images/2022/02/202202111611318713_6179_3957149_3.pngn个数据,记为https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611327910_1104_3957149_3.png。写出训练样本矩阵https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611334892_4308_3957149_3.png (2-1)Step2:构建样本大小为的协方差矩阵,记为。其中表示两个维度和之间的协方差。https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611340675_3632_3957149_3.png (2-2) https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611343868_4673_3957149_3.png,https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611351015_9878_3957149_3.png分别代表样本矩阵D中维度为,数据的均值。https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611352784_1583_3957149_3.png (2-3) https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611359081_8704_3957149_3.png (2-4) Step3:求出协方差矩阵的特征值https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611364862_7580_3957149_3.png及对应的特征向量https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611368983_6727_3957149_3.png。将特征值按照大小依次排列,特征值越大,重要级别越高。对于特征值小的,在误差允许范围内可以忽略不计。Step4:取前k行组成矩阵P,记为模式矩阵E。降维后可得矩阵https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611372987_2106_3957149_3.png。其中https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611375145_6044_3957149_3.png是模式矩阵E的转置,https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611373828_5702_3957149_3.png为中心化矩阵A的转置。降维后的F矩阵在一定程度上降低了复杂度,保留的大部分细节信息,为判别吸收峰提供了有效的依据。3. 偏最小二乘法(PLS)偏最小二乘作法为常见的化学计量标定方法,将X、Y矩阵的分解及回归并做一步,并将Y矩阵信息应用于X矩阵的分解,使得到的X的主成分直接被Y矩阵关联,利用全谱数据,利于对复杂体系进行分析。具体方法为:Step1:建立模型:https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611381073_2885_3957149_3.png,其中,T与U为对应得分矩阵;P与Q对应载荷矩阵;E与F为对应PLS残差矩阵。Step2:将T与U做线性回归https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611383953_8734_3957149_3.png,从而解得B。Step3:根据P求得光谱矩阵得分T’与浓度矩阵预测值Y’,其中,https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611383818_3460_3957149_3.png,从而完成预测。4. 奇异值分解(SVD)奇异值分解是通过集合总体信息,以代数或集合准则最优化技术对矩阵结构进行简化的方法,能够对光谱图像进行有效降维。具体方法为:Step1:建立一个的矩阵,定义矩阵的SVD为:https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611388963_2243_3957149_3.pngStep2:对矩阵A与A的转置做矩阵乘法,由关系https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611394031_6226_3957149_3.png,得到矩阵https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611397908_656_3957149_3.png的n个特征值与n个特征向量v,n个特征向量v构成SVD中的V矩阵;由关系https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611402967_7620_3957149_3.png,得到矩阵的m个特征值与m个特征向量u,m个特征向量u构成SVD中的U矩阵;Step3:由https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611402919_6856_3957149_3.png,求出每个奇异值https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611410984_7926_3957149_3.png,也能够进而求出奇异矩阵https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611412890_5353_3957149_3.png。5. 遗传算法(GA)遗传算法是对全局进行有效搜索,建立PLS校正模型的方法。该方法能够减少建模波长数据,从而提高预测精度。其具体方法如下:Step1:建立纯物质矩阵A,对其进行初始化,对每列的n个元素进行参数优化,并用的范围对每个元素进行二进制编码,不断重复后使适应度趋于稳定。Step2:对样本进行适应度计算,以误差平方和(SSE)作为此个体的适应度。https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611419814_8081_3957149_3.png (2-5)Step3:以初始化的矩阵A,随机初始化2N个种群,每个种群含有n条染色体,每条染色体由12位的二进制编码,分别对应第一列的n个元素,将每个个体对应的二进制编码解码,其中https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611422753_9630_3957149_3.png,表示第i位对应的数据;再计算每个个体对应的适应度;Step4:进行自然选择,从范围内产生 2 个随机数,选择两个个体中适应度比较小的,重复选择操作,直至选择了2N个个体; Step5:交叉与变异,将种群分为N对,对每一对染色体产生一个随机数,当随机数小于交叉概率时,两条染色体随机单点交换;对每个个体产生一个随机数,当随机数小于变异概率时,选择个体中随机一条染色体,将其变为0; Step 6: 选择交叉变异之后得到新的种群,回到 Step2,直至迭代次数大于规定值; Step 7: 继续优化第二列,依此类推,优化完之后再重复优化第一列,直至迭代次数超过阈值2.5 模型识别方法 决策树(Decision tree):决策树学习旨在构建一个与训练数据拟合很好,并且复杂度小的决策树。决策树学习算法包括 3 部分:特征选择、树的生成和树的剪枝。特征选择的目的在于选取对训练数据能够分类的特征。通常使用信息增益最大、信息增益比最大或基尼指数最小作为特征选择的准则。决策树的生成往往通过计算信息增益或其他指标,从根结点开始,递归地产生决策树。这相当于用信息增益或其他准则不断地选取局部最优的特征,或将训练集分割为能够基本正确分类的子集。由于生成的决策树存在过拟合问题,需要对它进行剪枝,以简化学到的决策树。决策树的剪枝,往往从已生成的树上剪掉一些叶结点或叶结点以上的子树,并将其父结点或根结点作为新的叶结点,从而简化生成的决策树。 判别分析(Discriminant Analysis):判别分析又称为线性判别分析(Linear Discriminant Analysis)产生于20世纪30年代,是利用已知类别的样本建立判别模型,为未知类别的样本判别的一种统计方法。通过判别分析,可以建立能够最大限度的区分因变量类别的函数,考查各种光谱差异是否显著,判断哪些自变量对组间差异贡献最大,评估分类的程度,根据自变量的值将样本归类。 支持向量机:该方法是Vapink等根据统计学理论提出的一种建立在结构风险最小化原则的基础上,专门研究小样本情况下和预测的问题,它体现了兼顾经验风险和置信范围的一种折中的思想,能较好地解决小样本、非线性、高维数等实际问题。支持向量机可用于分类和定量预测,分别称之为支持向量分类机、支持向量回归机。 K-最邻近法:K-最邻近法是基本且简单的分类与回归方法。K-最邻近法的基本做法是:对给定的训练实例点和输入实例点,首先确定输入实例点的K个最邻近训练实例点,然后利用这K个训练实例点的类的多数来预测输入实例点的类。K-最邻近法三要素:距离度量、K值的选择和分类决策规则。常用的距离度量是欧氏距离及更一般的距离。K值小时,K邻近模型更复杂;K值大时,K邻近模型更简单。K值的选择反映了对近似误差与估计误差之间的权衡,通常由交叉验证选择最优的K。 可优化分类器: 提升树(Boosting tree),以决策树为基函数的提升方法为提升树,对分类问题决策树是二叉分类树,回归问题就是二叉回归树。提升树模型为加法模型,采用向前分步算法训练。提升树算法采用前向部分算法。迭代的目的是构建,使得本轮损失最小,求得相应的参数。对于不同的问题采用的损失函数不同,在分类问题中使用的就是0/1损失函数。对与回归问题来说,一般采用平方误差函数。 装袋树,装袋法(Bagging)又称自助法聚集(Bootstrap Aggregation),联想到之前提到的自助法的思想方法,对于n个同方差的观测,其平均值的方差为,这说明求平均可以降低方差。那么自然地可以进一步联想,通过自助法抽取n个样本,建立n个决策树模型,然后对n个预测结果求平均,也可以降低方差,提高准确性。装袋法通过自助法抽样B个样本,建立B棵高方差的决策树,不必剪枝。对于分类问题,B个分类结果投票选最多的就好;对于回归问题,B个回归值求平均。B取大一点也不会造成过拟合。装袋法并不仅适用于决策树,但对决策树尤其有用。 子空间K值临域分类器,子空间KNN算法依据类别求得各个子空间,增加不同类别的区分度,相比于单纯的互k最近邻选择,进一步增强了邻居之间的关系。子空间KNN算法首先将训练集依据类别分组,然后分别计算出每个类别子空间的维度权重,再将待分类样本以及训练样本投影到各个子空间中,以便加强各个样本与类别之间的关联性。再在每个对应的于空间中,使用子空间KNN算法求得各个类别的距离权重比。最后累计各个子空间中的距离权重,选择其中距离权重最大的类别作为待分类样本的类标签, 人工神经网络(Artificial Neural Network,ANN):人工神经网络(artificial neural network,ANN)系统是20世纪40年代后出现的。它是由众多的神经元可调的连接权值连接而成,具有大规模并行处理、分布式信息储存、良好的自组织自学能力等特点。与数字计算机比较,人工神经网络在构成原理和功能特点等方面更加接近人脑,它不是按给定的程序一步一步地执行运算,而是能够自身适应环境、总结规律、完成某种运算、识别或过程控制。https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611446940_3578_3957149_3.png图2.5-1 人工智能神经网络架构图Fig 2.5-1 the structure of artificial neural network 如图2.5-1所示,人工神经网络通常划分为3个层次,分别为输入层、隐层、输出层。光谱预处理所得到的实验数据首先进入输入层和隐层,之后被传输到输出层,通过对实验数据进行运算处理,逐渐更新完善输入层到输出层的计算路径。在人工神经网络中,实验样品会被按照7:3的比例划分为训练集和预测集。实验数据通过对训练集的训练后确定3个层次之间的神经关系和神经粗细,训练集数据数量越大,神经网络就越精确。建立神经网络后,通过输入不同的变量值,就可以预测未知样品的结果。 卷积神经网络:是一种非线性模型,可以有效提取光谱中的局部信息。典型的卷积神经网络模型包含输入层、卷积层、池化层、全连接层、输出层。对于光谱数据,输入层输入一维光谱数据比二维光谱矩阵更加高效。输入数据和标签后,卷积层使用多个设定好大小和步长的一维卷积核经卷积运算后得到特征图。池化层通常在卷积层之后用来提取数据的局部特征。经过一个或者多个全连接层,可将特征映射到样本空间进行分类。激活函数使用ReLU函数可以避免梯度消失问题;而在分类问题中,神经网络的最后一层通常使用Softmax函数,将输入映射为0到1之间,作为对应类别的概率。模型训练时,首先初始化权值,输入塑料样本训练集近红外光谱数据及类别标签,经过神经网络各层得到最终输出结果。计算模型损失函数值,通过反向传播将损失函数值从最末层传至网络各层,按照最小化损失函数值的方向更新权值,继续训练。 光谱数据是一维信号,相邻波长有强的相关性,样本量少的问题,有文献报道可以采用了包含5层的一维浅层卷积神经网络,包括1个输入层、2个卷积层、1个池化层、1个全连接层和1个softmax输出层,采用误差反向传播算法结合随机梯度下降法进行层与层之间的连接权重调节。在卷积层中利用多个卷积核提取不同属性的光谱特征,采用非饱和线性修正单元(rectified linearunits ,ReLU)为激活函数,池化层采用 Max-pooling方法进行下采样,其有利于减少因样本光谱平移、旋转产生的干扰,保留主要特征并增大输出特征的感受野。为进行不同光谱特征的融合,使用卷积层代替LeNet等网络中输出层前普遍采用的全连接层,实现了全卷积,尽管在一维网络中两者具有相同的参数数量,前者有更明确的物理意义。输出层使用了Softmax分类器,将预测结果转换为非负值,输出类别的归一化概率。2.6 近红外光谱分析流程的建构 近红外分析流程主要包括定量与定性分析,在进行定量与定性分析时首先需要建立校正模型。如果在建立校正模型时遵循一定规范可以一定程度上保证分析结果的可靠性。以下过程将于ASTM E1655《Standard Practices for Infrared Multivariate Quantitative Analysis》、ASTM E1790《Standard Practices for Infrared Multivariate Quantitative Analysis》《JJG178-2007紫外、可见、近红外分光光度计检定规程》《JJG001-1996傅立叶变换红外光谱计验证规定》等标准的基础上介绍近红外光谱测定流程。 定量分析过程。进行近红外定量分析首先必须建立校正模型,需选择足够多的且有代表性的样品组成校正集。建立校正模型所需的样品组成或性质通常采用现行标准或传统方法进行测定。校正集是建立模型的基础,建模过程就是根据校正集的光谱和数据建立数学关系。即收集一定数量的建模样品,分别测定样品的近红外光谱和参考数据,通过化学计量学方法建立二者之间的数学关系。下一步测定样品的红外光谱时,校正集、验证集和未知样品的近红外光谱测定必须采用同一方式,否则会给校正带来误差。建立红外定量分析模型是一个繁琐的过程,包括大量样品的收集和基础数据的测定,以及校正模型的建立与验证。校正模型的建立一般需要进行数据预处理、光谱区间的选择、建立数学模型、对模型进行统计评价以及优化以及对模型异常点统计检验。最后需要模型验证。近红外光谱分析要求在建模之后进行模型验证以确保模型的可用。其基本过程是采用模型对一组已知参考值的样品进行预测,并将结果进行比对。模型通过验证后就可用于对未知样品进行测定,在使用模型时,需要经常对模型性能进行监控,必要时进行模型维护。总之,近红外定量分析是围绕着模型进行,建立模型、验证模型、使用模型和模型维护。 定性分析过程。近红外定性分析使用已知类别的样品建立近红外定性模型,然后用该模型考察未知样品是否是该类物质。即首先,我们需要采集已知样品的光谱,然后用一定数学方法识别不同类型的物质。并用不在训练集的样品考察模型能否正确识别样品类型。随后采集未知样品的光谱,将它与已知样品的光谱进行比较,判断其属于哪类物质。另外,如果未知样品和模型中的所有物质都不相似,模型也能给出这方面的信息。3 典型应用3.1 在化学组成解析方面的应用随着计算机及化学计量学的发展,无损而高效的近红外分析手段广泛应用于测定物质的化学组成。特别是对于聚合物、共混物及共聚物的组分分析、聚合物内部细微结构的分析,都是近红外光谱技术在高分子领域中所具有的重要用途。通过进行组分分析,可确定不同成分的含量与分布情况;通过改变环境条件对细微结构进行监测,确定结构组成并对其调控,使聚合物的性能得到进一步的提升。Viviane等人采用近红外光谱对聚酯纤维材料中二甘醇(DEG)与末端羧基(TCG)的含量与分布情况进行测定。将聚酯纤维暴露于伽马射线中,利用Spectrum 400与Diamond 20两种具有不同窗口尺寸的近红外光谱仪,在1000-2500 nm and 1000-2052 nm范围内,各自平均对样品进行50次扫描,并采用SG求导对光谱进行预处理、利用偏最小二乘判别分析模型对光谱进行分析,结果表明二甘醇(DEG)含量为0.10% w/w ,末端羧基(TCG)含量为2.1 meq/kg,所选模型的交互验证均方根偏差(RMSEP)与传统方法结果接近,通过对近红外高光谱相机所采集图像进行分析确定DEG与TCG的分布情况。实验充分利用近红外能够快速有效测定含量的特点,将光谱矩阵与聚合物属性相联系,从而降低染色与反应敏感性问题,实现对聚酯纤维性能的优化的效果。https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611451052_3176_3957149_3.png图3-1-1 聚酯纤维样品中DEG含量分布图Fig 3-1-1 Distribution maps of the DEG content in PET fiber samples(Reprinted from Ref. )https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611450701_9462_3957149_3.png日本关西学院大学的Ozaki等人利用近红外光谱分析手段对聚3-羟基丁酸酯(PHB)在125℃下等温结晶过程进行观察,并对该物质的氢键组成与等温结晶动力学进行研究。制备厚度为500μm的聚3-羟基丁酸酯薄膜,将样品加热至195℃,以5°C/min的速度使温度降至125℃,并在此环境下进行等温熔融结晶,对该过程进行实时监测,后期采用Unscrambler程序进行数据处理,采用主成分分析法对6200-4000 cm-1区域光谱进行降维,结合Avrami方程,得到其结晶动力学参数,同时从化学键非谐性的角度说明C-H与C=O均参与其氢键形成,证明该结晶过程不是非晶态与有序晶态二元混合物的简单过渡。聚3-羟基丁酸酯作为应用最为广泛的可降解热塑性聚合物之一,具有结晶度高且热不稳定的特点,本研究充分利用近红外实时监测功能与主成分分析法,为提高聚3-羟基丁酸酯力学与热学性能方法提供新的思路。图3-1-2 在125°C熔融结晶过程中,PHB在6050-4000 cm-1区域的近红外光谱,所示光谱在0 - 180分钟每10分钟采集一次Fig 3-1-2 NIR spectra in the region of 6050-4000 cm-1of PHB in a film during the melt-crystallization process at 125°C. The spectra shown were collected at every 10 min from 0 to 180 min. (Reprinted from Ref. )Nattaporn等人同样对从氢键角度对聚3-羟基丁酸酯展开研究,采用红外与近红外相结合的方法,实时监测聚3-羟基丁酸酯(PHB)与醋酸纤维丁酸酯(CAB)共混体系球晶在等温结晶过程中空间构象的变化。在80℃热氯仿中制备厚度为50μm的混合膜,采用Perkin-Elmer成像系统进行观察,并使样品在185℃下熔化,以30°C/min降温至125℃进行等温结晶,每6min记录一次光谱图像,观察非均相球晶在x、y、z三个方向的结构变化与动态生长,淬火5min后冻结成晶体再用显微镜进一步观察球晶的形成。通过研究该结晶熔融行为,分析C=O伸缩振动在第一与第二倍频峰区域的红外与近红外光谱变化,采用主成分分析法,最终发现球晶生长过程中z方向逐步受到限制,并进一步确定聚3-羟基丁酸酯(PHB)与醋酸纤维丁酸酯(CAB)的分布情况,表明在分子氢键中产生的不同贡献,说明PHB通过共混可进一步提升其性能,使其具有更好的生物降解性与生物相容性。同时本研究将红外中结晶峰强度,近红外中分离的吸收带的不同信息相结合进行数据分析,从而充分提高了细节结构研究过程的准确度与精度。https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611453026_5851_3957149_3.png图3-1-3 在125℃和时间为24min条件下的视觉图像与PHB近红外图像Fig 3-1-3 A visual image and (b) an NIR image of PHB measured at 125°C a tt= 24 min.(Reprinted from Ref. )近年来,使用近红外技术测定聚合物组分及结构的应用非常广泛。Shichao Zhu团队利用近红外光谱与拉曼光谱对熔融聚合物共混物组分进行在线测量,并提出两种数据融合策略,采用偏最小二乘法(PLS)回归、人工神经网络(ANN)和极限学习机(ELM)对4种光谱数据进行分析;S.S. Thosar团队利用近红外测定了聚乳酸-共乙醇化物样品的共聚比,并对二阶导光谱数据在2130-2288nm处建立线性回归模型,在1100-2500nm处建立偏最小二乘模型,在2288nm处进行线性回归校正,从而实现在可接受精度范围内快速对聚合物体系进行表征;Tsuyoshi团队采用近红外与傅里叶拉曼光谱测定了12种具有不同乙烯含量的聚丙烯,采用主成分分析与主成分回归方法对光谱进行降维,在建立了预测聚丙烯共聚物中乙烯含量的不同校正模型,并完成了其性能的比较;Irena团队通过使用平均直径为1.0微米的水凝胶颗粒,对单个水凝胶颗粒进行观察测量,在波长为1764nm处测定其二维图像,从而确定金纳米笼能够增强尺寸大于1微米聚合物分子的吸收,且增强的吸收能对聚合物吸收区域记录的聚合物分子图像产生影响,由此对不同类型贵金属纳米粒子的制备提出https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611455858_937_3957149_3.png新思路,可通过调整其表面等离子体共振的方法从而使其适用于不同的设备与应用。图3-1-4 1746nm下对A、B两组设置测得二维图像(上)和相应的三维图像(1747nm下,SetA为纳米水凝胶粒子不受金纳米笼作用,SetB为纳米水凝胶粒子受金纳米笼作用Fig 3-1-4 2-D images (top) and corresponding 3-D images (bottom) of the drawn rectangular section in 2-D images of absorption at 1764 nm of hydrogel particles without gold nanocages (Set A) and with gold nanocages (Set B). (Reprinted from Ref. ) 近红外光谱在测定化学组成方面,除了对聚合物的组分与结构进行监测分析,在日常生活、工业生产等方面也发挥着重要的作用。在生活方面,近红外可用于对食品真伪进行快速鉴定,例如Roman团队用中红外与近红外监测三聚氰胺,提出了高效灵敏的乳制品分析方法;程旎等人采用近红外光谱对鱼肉新鲜度进行评价,并建立相关体系;近红外也被广泛应用于农业领域,近红外光谱技术能够对土壤的有机与矿质成分进行分析,对土壤的质地与ph进行预测,同时也能够对农作物品质进行分析,例如Ba Tuan Le提出的谷物快速分析方法,将近红外技术与仿射变换、极限学习机模型相结合,在玉米和水稻的数据集种得到有效验证。在工业方面,近红外对于炼油、军工、航天以及化工等领域都具有重要意义,Ulrici等人利用近红外在1000-1700nm内对聚对苯二甲酸乙二醇酯和聚乳酸进行识别,从而改善其进一步回收工艺;李定明等人用近红外测定了核燃料处理液液中的硝酸浓度;张彦君等人对聚丙烯物性参数进行快速分析,从而指导工艺修改并调整技术参数。因此,近红外在测定化学组成中的作用不容忽视,未来应针对此方面的应用潜能进行进一步的开发,从而使该项技术充分发挥其作用与价值。3.2 在物理性质表征方面的应用 随着各种物质表征技术的兴起,近红外光谱技术因其所含信息广泛和信息具有良好的可解释性,广泛应用于对聚合物物理性质的检测与表征。由于近红外无损监测、快速识别的特点,在聚合物合成过程监测中亦可监测合成过程中相关参数,同时也可与其他表征手段联用,对聚合物的光学、力学、表面结构等进行过程监测与分析,进而可通过其他技术手段对聚合物进行表面或化学改性以达到预期物理性质。 Nishida M等用近红外高光谱成像技术对新型的生物基可降解塑料聚乳酸(PLA)在控制温度下进行更系统的热力学研究。PLA纤维的典型制成方法是熔融纺丝,将聚合物加热到其熔点以上,将其拉至所需的形状,然后冷却以稳定聚合物。当聚合物呈机械取向时,就会发生应变诱导结晶。将近红外高光谱成像的应用扩展到往返温度扫描,以探测光谱的不可逆结构转变,为在控制温度下进行更系统的热力学研究提供了可能性。对不同拉伸程度的聚乳酸纤维样品进行了基于加热和冷却工艺的往返温度扫描。例如,通过在来回的温度扫描过程改变温度从80到120度,可以收集纤维的近红外光谱。https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611457508_954_3957149_3.pnghttps://ng1.17img.cn/bbsfiles/images/2022/02/202202111611461803_6590_3957149_3.png 图3-2-1 (A)每个PLA样品的典型近红外光谱和(B)基于二阶导数的4772cm-1光谱强度的高光谱图像 Fig 3-2-1(A)Typical NIR spectra of each PLA sample and (B) hyper spectacular image based on spectral intensity of crystalline peak at 4772 cm-1 derived from second derivatives.(Reprinted from Ref.)聚乳酸纤维的结晶峰随温度的变化而逐渐移动,这种变化不会被样品的冷却所抵消。了解聚合物的热、结晶和熔体流变性行为对控制其部件质量十分有益。https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611462770_8442_3957149_3.pnghttps://ng1.17img.cn/bbsfiles/images/2022/02/202202111611463708_8792_3957149_3.png 图3-2-2 从80到120度的加热过程中结晶峰能带位置的变化Fig3-2-2 Variation of band position of crystalline peak at (A)80 and (B)120 in heating progress(Reprinted from Ref.;) Ogura T等将一种基于近红外光谱的流变光学表征技术应用于聚合物共混物静态拉伸力学变形测试。然后对近红外光谱进行二维相关分析。从乙基峰或甲基峰中发现PCL优先变形。结果表明,当PCL掺量为50%时,拉伸试样的规范面积变白、多孔。试样断口附近的扫描电镜图像显示了聚合物共混物的拉伸区和未拉伸区。采用近红外光谱流变光学表征技术研究了含50% PCL聚合物(薄膜试样)共混物的静态拉伸变形行为。二维相关谱的结果表明了PCL相的主要变形,这一结果支持了扫描电镜图像的变形行为。也为了提高聚羟基烷烃酸酯(PHA)的力学性能,利用万能试验机考察PCL掺量对拉伸性能、杨氏模量、拉伸强度和断裂伸长率的影响提供了支持。 Lomakina EI等利用近红外光谱技术对生物柴油质量进行了廉价且快速的质量分析方法,而且质量控制可以实时进行。乙醇和生物柴油作为替代燃料或生物燃料的使用在过去几年有所增加。现代的官方标准列出了必须确定的25个参数来证明生物柴油的质量,这些分析既昂贵又耗时。与红外、拉曼或核磁共振方法相比,近红外光谱技术是一种廉价且快速的生物柴油质量分析方法,而且质量控制可以实时进行。研究人员比较了线性和非线性校准技术的性能-即多元线性回归(MLR),主成分回归(PCR),偏最小二乘回归(PLS),以及人工神经网络(ANN) ,从近红外光谱分析中预测生物柴油的性质。建立了生物柴油四种重要特性的模型:密度(15℃)、运动粘度(40℃)、含水量和甲醇含量。还研究了不同预处理方法(Savitzky-Golay导数、正交信号校正)对模型预测能力的影响,并建立了一种基于近红外光谱数据的生物柴油燃料性能预测模型。此结果可以帮助快速且准确地分析其他生物燃料(如生物醇/酒精燃料、乙醇-汽油燃料、纤维素乙醇、生物醚、藻类燃料)、石油精炼产品(液体石油气、90(2011)2007-2015汽油、石脑油、煤油/喷气飞机燃料、柴油、(船舶)燃料油、润滑油和工业用油、石蜡、沥青和焦油、石油焦)和石化产品(烯烃及其前体、芳香烃:如苯或混合二甲苯)。近红外光谱在分析化学的其他领域的应用,如制药(药物)质量控制、食品质量控制(如绿茶/红茶)、片剂的活性药物成分(API)/药物(pharmakon)分析,可以通过应用现代多元数据分析方法来加强。 刘亚娜团队运用可见光一近红外光谱技术结合触针式轮廓法可以实现快速预测天然高分子材料木材的表面粗糙度,同时利用可见光一近红外光谱(400~2500nm)技术结合PLS方法得到的模型校正和预测结果理想。利用可见光、短近红外区、长近红外区以及近红外等分段光谱都可以对样品的表面租糙度进行建模预测,其模型表面粗糙度参数的真实值与预测值相关系数可达0.80左右。并提出建议可在下一步的研究当中,建立具有代表性的、大量的样品模型,使得近红外光谱技术预测天然高分子材料的表面粗糙度更加精确和方便,为非接触式测量方法提供更为准确、快速的新方法。 https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611464840_2647_3957149_3.png 图3-2-3 样品在近红外400~2500nm区域处所建模型表面粗糙程度Ra的实测值与预期值相关系数图 Fig.3-2-3 Relationship between lab determined and NIR predicted Ra of sample between 400~2500nm(Reprinted from Ref.;) 近红外光谱技术在物理性质表征方面,除了对物质组分质量、表面粗糙度、耐力性等性能进行表征外,还可以用于对材料NIR反射率光屏蔽性能等进行表征。如Han A等对新型太阳能热反射材料NIR反射率进行实时监测,从而有效通过相关技术提高塑料的NIR反射率和抗老化性的潜力;G. Scott和D. Gilead等运用紫外可见近红外光谱对不同氧化锌含量的ZnO/PS- PMMA纳米复合薄膜在各波段光区内的光屏蔽性能分析表征;FC等运用近红外光谱技术用于对显示出NIR屏蔽性能的材料的屏蔽性能进行表征,近红外的光占太阳辐射能量的一半,对NIR屏蔽性能的检测可有效实现其光屏蔽。近红外光谱技术还可以与相关表征技术结合对物质的物理性能进行进一步的表征。如J. Polym等将近红外光谱技术结合核磁共振技术应用于植物衍生的异山梨酯和异构酰胺合成的共聚物其结晶性能对光学性能的影响;D. L. Kaplan等则建立了一种新的NIR光谱结合角光谱在线方法,可同时测量EVA颗粒的化学和物理性质;R. Auras 等利用Vis/NIR吸收光谱与电子顺磁共振谱结合,可为自导电聚合物如PEDOT测量谱和自旋信号提供了新的解释;N. Revagade等通过NIR和MIR谱相结合的相互转换分析,研究了聚乙烯晶体中构象无序的温度依赖性。Jayalekshmi S等运用Vis/NIR光谱技术有效模拟了电池中的氧化还原过程中中间体形成的伏安图,因电池中的氧化还原过程中往往伴随着颜色的变化,也可用此表征其光学性质。近红外光谱分析技术在测定物质物理性能方面具有十分优良的应用,在此方面也仍有的巨大的潜力待进一步开发。3.3在聚合物合成过程在线监测方面的应用 聚合物在合成与成型过程中,需要不断调整其工艺参数从而实现材料在不同方面的性能提升,然而,动态参数的确定往往需要大量实验数据作为理论基础,因此导致一定的资源浪费。近红外光谱通过光纤传感技术可对反应过程进行实时检测,具有快速高效、无损灵敏等优良特性, 因此能够有效解决聚合物动态参数难以测定的问题,实现对聚合物合成及成型过程的在线分析与控制。近年来,近红外光谱在线监测功能已广泛应用于聚合物反应方面的研究,并主要从聚合物的特性参数表征、动态合成成型过程测定两个方面展开应用。该项监测技术对多个领域的发展都发挥着积极作用,尤其是对工业生产过程中工艺参数的优化具有重要意义,提供有效方案的同时也产生了经济效益,具有一定的实际价值。 FabricioMachado等运用近红外光谱在线监测悬浮聚合过程中聚氯乙烯粒子形态特征。Fariajr建立了一个基于偏最小二乘的回归模型,并通过建立PLS方法用于形态预测最终树脂的性能,如pd,CPA等。且该模型用实验数据进行了校准,在不同的反应条件下,通过操控搅拌速度、悬浮剂浓度来控制粒子形态。结果表明,形态特征的动态轨迹与基于NIR的校准预测模型一致,沿时间平稳变化。这些轨迹可作为过程监测和控制的参考。对近红外光谱分析可得聚乙烯晶粒形态的实时数据,并且可以实现基于先进的NIR的控制程序来控制聚氯乙烯树脂的形态特征。而在聚合物聚合过程中,聚合反应器的自动化和先进的控制对于进行工业生产中制作工艺一环至关重要。 https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611466120_9690_3957149_3.png图3-3-1.NIR光谱预测VCM聚合过程中BD和CPA的动态演变 Fig 3-3-1.Dynamk evolution of BD and CPA during VCM polymerizations, as predicated by NIR spectroscopy.(Reprinted from Ref. ) 后藤健等对聚合物采用近红外光谱分析3C-NIR等方法表征了其反应过程中分子量分布。在H-NMR谱中,来自异硫萘单体单元的叔丁基二甲基硅基取代基的0.54ppm和0.91ppm的信号缺失以及9.8ppm的醛质子和150ppm的醛碳对应的信号缺失表明缩聚反应的完成。所有的FT-红外光谱都与纽格鲍尔等人测量的的光谱吻合良好。从UV-Vis-NIR光谱的带边确定的带隙值分析,这些带隙均在1.2-1.3eV的范围内。这远低于人们普遍接受的1.5ev的临界值。因此,所有获得的聚合物都可以被认为是低带隙聚合物。利用近红外光谱技术对反应过程进行实时检测能有效辅助在化学反应条件允许的下有更为充分的可能引入各种侧链。 Lalehvash等人在实验室反应挤出机上,用近红外光谱和流变仪对马来酸酐(MAH)与聚丙烯(PP)的接枝共聚反应进行原位监测,以反应温度与引发剂过氧化二异丙基(DCP)为实验变量,对该共聚过程展开探究。对马来酸酐与聚丙烯进行预混后使之构成封闭系统,在200、210、220℃下分别以熔融状态处理90min,在线监测通过近红外光谱仪Nicolet Nexus与Thermo Haake Minilab CTW5的小型挤出机连接而实现,每2min对该过程的粘度与10000-4000https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611464793_7107_3957149_3.jpeg范围内光谱数据进行采集,共进行190次扫描,反应结束后对样品进行后处理,从而得到接枝共聚最终产品,数据处理过程采用PCA对光谱进行降维,以此提高结果准确度与精度。最终发现DCP的存在不影响接枝共聚速率,DCP浓度介于0.25-0.5 wt%之间时,会引起断裂反应的增强,从而时表观粘度急剧下降,当DCP浓度较低时,该团队对该反应过程提出了一种“修复机制”,即两个PP与MAH中部分结构进行反应,且同时有断裂反应的发生,总的分子量能够保持不变,表现为粘度较稳定,当MAH浓度降低后,粘度才开始急剧下降。PP作为工业生产与日常生活中广泛应用的聚烯烃,具有优良化学性能与物理性能,常通过在熔融状态下以自由基进行接枝聚合的方法对其进行改性,本研究充分利用近红外与远程仪器进行光纤连接的技术手段,对产物的特性参数与反应过程进行实时监测,从而提出PP与MAH的反应机制,对于理解高温下接枝共聚的均聚复杂性及进一步提升聚丙烯性能以改善其工艺参数,具有启发性作用。 Andrew 团队采用近红外光谱在线监测注塑成型过程中聚乳酸(PLA)对聚对苯二甲酸乙二酯(PET)的污染情况,并对PLA进行定量分析,且提出多种PLA含量预测模型,通过对模型进行测试验证,从而提出最佳预估方法。对PET与PLA材料在107℃下进行8h预处理,采用Battenfeld HM40 4/130使样品注塑成型,制备出含聚乳酸含量在0.01% - 0.09% w/w范围之间的PET共混物,在线监测通过将两个光线探针与近红外光谱相连,从而获得4000-12000cm-1下的实时光谱信息,数据处理过程采用多元分析思想,对光谱采用PLS进行降维,并将所测区段划分为5个部分建立不同模型,验证后得到最优解。在建立模型之外,研究发现PET与PLA在9000-8000cm-1区段内峰值具有显著差异,表明了物理变化的发生;同时PLA浓度的增加使PET光谱中基线发生位移,因PLA浓度影响材料不透明度,所以该位移现象可作为监测PET材料颜色与添加剂浓度的重要方法。当前,PET已作为重要包装材料而得到大规模生产与应用,但因PET与PLA不相容的特性,其回收过程易受到PLA威胁而影响其流动性,导致其再次使用过程中性能大幅下降。而本实验借助近红外监测过程中优越的精度与灵敏度,对PET与PLA的特性参数进行定量测定,对注塑成型过程进行定性分析,以最优模型实现在0.01% ~ 0.09%的聚合物熔体中定量检测聚乳酸在PET中的污染,从而对PET回收工艺的提升提供了良好的思路与方法。 近红外光谱在线监测技术不仅对工业发展具有指导性意义,在医药、农林、食品等方面的发展也具有重要价值。在药物监测方面,Lien Saerens等人通过近红外光谱对热熔挤压过程中酒石酸美托洛尔的浓度进行测定,并对聚合类药物的固态行为与分子相互作用展开研究,从而提高了制药效率,为该行业由批量处理向连续处理的转型提供有效思路;杨辉华,郭拓,马晋芳等人将近红外光谱在线监测技术应用于中药柱层析的过程中,以光谱自适应移动窗口标准差趋势图等作为指标,从而对生产过程的异常现象、反应节点进行有效监测,以此提高药物质量均一性;杨华生、吴维刚等将近红外与炒麦芽过程中指标成分建立定量校正模型,提出“成分变化率”的炒制终点判断方法,从而对药物炒制工艺终点的判断提供科学方法。在农林方面,András Salgó等对小麦种子的成熟过程中的水分、碳水化合物、蛋白质等参数进行近红外无损检测以探究其生长机理,并对其生长过程中的水合与脱水过程展开深入了解。在食品加工方面,郭中原 、慎石磊等人采用近红外对豆粕品质进行在线控制,并建立合理预处理系统,从而解决物料颗粒度较大而加工产物混合不均的问题。由此可见,近红外光谱在聚合物在线监测过程中具有关键性作用,并已广泛应用于不同行业的研究过程当中,在未来,可进一步拓展其在线监测功能,使其作用不只局限于对特性及反应进行表征观察,从而充分实现其科技价值与经济效益。4 发展展望4.1 可解释性学习(Interpretability for machine learning)的探究有望助力近红外模式识别过程化学信息追溯 众多机器学习、深度学习手段被运用于近红外模式识别过程中,在诸多领域取得了系列进展。但由于机器学习方法参数传递的不透明性、网络架构的复杂性,机器学习方法在进行训练集训练、预测集预测的过程中,对化学信息参与的权重、化学信息损失的探究难以进行,除按照常规数据分析手段进行交叉验证集的设置,目前暂无较好解决方法。 在机器学习运用的其他领域,机器学习可解释性的研究正悄然兴起。机器学习的可解释性指如下三个方面的含义:一是指的是对整个模型的高层次的理解;二是指通过了解一个网络每个组分的作用来达到理解一个模型的作用;三是理解网络的训练和动态行为。以决策树(Decision Tree)模型为例,决策树每一个节点有明确的判别标准,从节点和分支上进行判别分析,其可视性强,也便于我们判断每个分支的进行是否有逃离化学信息的趋势,可以通过剪枝等操作进行剔除;而由众多决策树组成的随机森林,由于森林中使用的决策树未知性强,模型可解释性较差。https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611466785_3819_3957149_3.png 图4.1-1 可解释性机器学习研究趋势Fig 4.1-1 trends in the research of explainable machine learning or related subjects 目前可解释性的评价标准主要有以下几个方面:精准度,一致性,完整性,普遍性和实用性,精确度指解释方法的准确性,探究可否定量解释;一致性是指解释中不存在任何矛盾,对于相似样品产生相同结果;完整性是指解释方法应该显示出在最大数量的数据实例和数据类型方面的有效性,而不是只对某些数据有效;通用性则强调该解释机器学习的方法逻辑是否具有推广性,能否推广到其他机器学习策略中;实用性则是基于其黑盒性质,使用神经网络在很大程度上是一个反复试验的过程,有时会产生矛盾的直觉。可解释性的增强应当要帮助我们理清这些矛盾之处。 目前机器学习可解释性的论文可以进行如下分类:“事前可解释性建模”和“事后可解释性分析”。后者是模型已经训练好,然后解释,前者是从头设计可解释性的模型。进一步,“事后可解释性分析”可以分成七个小项:特征分析(Feature Analysis)、模型检查(Model Inspection)、显著表征(Saliency)、代理模型(Proxy)、先进数理(Advanced Math/Physics Method)、案例解释(Explaining-by-Case)、文本解释(Explaining-by-Text)。“事前可解释性建模”可以再分成可解释表示(Interpretable Representation)、模型修缮(Model Renovation)。https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611468806_2035_3957149_3.png图4.1-2 可解释性研究方法Fig 4.1-2 The Research methods in the explainable machine learning 以模型检查为例,探究如何在图像识别中如何帮助模型判断数据集中其他样本是如何摸预测。P. W. Koh等研究人员利用影响函数以确定一个样本的预测,数据集中的其他样本对该预测有正面影响还是负面影响?如图3所示,对于类似LeNet-5的网络,通过影响函数可以识别给定图像的两个有害图像。除此之外,很多研究人员注意到神经网络中的故障或偏差的检测,A.Bansal等开发了一种通用算法,以识别那些神经网络可能无法为其提供任何预测的实例。在这种情况下,该模型将发出“不要信任我的预测”之类的警告而不是给予一个预测。具体来说,他们使用一系列属性特征来注释所有失败的图像,并将这些图像聚类,以判断错误图像https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611473541_6342_3957149_3.png图4.1-3 错误图像的判别方法Fig 4.1-3 distinguish harmful images from database(with explainable methods in ML) 神经网络作为一种广泛使用的机器学习、深度学习架构,拥有较强的泛化能力。神经网络的构建是受生物神经网络的启发,然而,神经网络的后续发展却基本不是由神经科学的观点来推动的。目前判断神经网络的方式主要是损失函数,有效的损失函数是过去几年中深度网络发展的重要动力;例如,GAN中使用的对抗性损失,损失函数将使模型能够学习可解释的表示形式,例如增强特征可分离性。我们的大脑是一个最好的优化机器,该机器具有强大而准去的权重分配机制。通过研究大脑,可以帮助我们建立生物学上合理的损失函数。可解释性机器学习的进一步发展和普及,有望为我们打开模式识别方法中“黑匣子”的奥秘,为探究化学信息权重提供逻辑可行性。4.2 快速机器学习(Fast ML)的构建有望降低近红外应用门槛在近红外模型构建的过程中,大多数建模过程对仪器公司具有一定软件依赖性(Vendor Lock-in),且仪器公司提供软件更新程度慢,无法及时集成最新的机器学习研究成果以供研究者选择,而基于MATLAB构建的机器学习策略虽有一定的集成度,但MATLAB作为付费软件,又对使用者的经济条件提出一定程度的要求;基于Python结合numpy、TensorFlow等数据科学处理库,能非常方便的处理数据,但对于初学者必须掌握一定的编程基础才可进一步使用。对于工业现场分析的高光谱数据,往往还会对计算条件提出要求,而一个集成度高、运算速度快的快速机器学习架构会对基于近红外模式识别的运用有较大影响。过去几年,ML 的大部分进步都源于异构计算硬件的使用别是,图形处理单元 (GPU) 的使用促进了大型深度学习(DL)算法的开发。在大型数据集上训练大型人工智能(AI)算法的能力使算法能够执行复杂的任务。在这些发展的同时,出现了新型 DL 算法,旨在减少操作数量,从而实现快速高效的 AI 算法。2021年,40多个机构的近百位研究者联名发布了一篇报告以讨论快速机器学习在科学中的应用和技术,将强大的 ML 方法集成到实时实验数据处理循环中以加速科学发现的概念。综述报告主要讨论了机器学习在科学研究中的技术与应用——将强大的机器学习方法集成到实验数据处理过程有助于加速科学发现。内容涵盖三个方面:机器学习在多个科学领域的应用;高效训练、高资源利用率算法;用于部署这些算法的计算架构和平台。https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611471726_4322_3957149_3.png图4.2-1 快速机器学习设计的相关领域Fig4.2-1 The subjects contain in the Fast ML techniqueFast ML可以作为一种颠覆性技术来改变现状,并导致我们处理数据的方式发生重大变化,从近红外领域中不断利用的新机器学习算法、卷积神经网络等也可发现机器学习其泛化能力强的特点。作者在文中综述了包括大型强子对撞机、高强度加速器实验、材料发现、费米实验室加速器控制、中微子和直接暗物质实验、电子离子对撞机、引力波、生物医学工程、健康监测、宇宙学、等离子体物理、用于无线网络和边缘计算的机器学习等机器学习任务,并讨论了诸如数据表示、网络特征等共同问题,结合合适硬件的进步与部署,研究人员阐释构建快速机器学习的方法与技巧。构建快速 ML 算法的技术和技巧,这需要协同设计:在考虑硬件的情况下构建算法,并为硬件编程提供高效的平台。关注神经网络设计和训练,以便在硬件中有效实现。ML 硬件计算平台可分为两类:传统 CMOS 硬件和新兴的 CMOS 硬件。前者将解决近期的硬件解决方案,而后者将专注于范围的投机端。在近红外光谱的在线识别中,我们希望的理想ML算法需要低延迟,但通常资源有限。然而,目前大多数最先进的神经网络模型都具有高得令人望而却步的延迟,以及大量的内存占用和能源消耗。出于这个原因,从业者被迫使用具有非理想精度的次优模型(例如浅层神经网络)来避免这种延迟问题,通过量化(降维或低维度处理)、模型的减枝或稀疏推理,缩短在线监测所需时间。https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611473172_8592_3957149_3.png图4.2-2 快速机器学习可行的架构及敏感性判断法Fig 4.2-2 the structural design of Fast Machine Learning based on conventional layers 4.3 新化学计量学与模式识别方法运用层出不穷 随着化学计量学的进一步发展,新方法、新技巧被不断提出与运用,在光谱降维上,以江南大学陶焕明,高美凤对近红外光谱变量选择方法的研究为例,研究人员提出改进免疫遗传算法(iIGA)进行近红外光谱变量的选择。目前运用的遗传算法(GA)具有陷入局部最优解的可能且解释精度较低,借鉴生物学原理,江南大学高美凤副教授团提出利用免疫遗传算法(IGA)结合适应度和抗体浓度两种具体概念,使免疫遗传算法得以考虑免疫平衡的存在,即抗体浓度越高,越受抑制,在蛋白质含量预测上该研究提出的iIGA算法相较于原IGA算法预测精度得到提升,结果说明iIGA算法具有一定优越性。https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611474822_8610_3957149_3.png图4.3-1 改进免疫遗传算法示意图Fig 4.3-1 the process of iIGA algorithm在光谱预处理中,基线漂移是拉曼、中红外、近红外以及激光诱导击穿光谱等光谱仪器测量过程中经常出现的问题,石油化工研究院的褚小立等人,对系列算法的革新和迭代进行综述,例如经优化的惩罚最小二乘法(AsLS), 具有计算效率高和无需谱峰检测等优点, 其基本原理是在惩罚最小二乘的基础上,引入权重向量,对高于拟合基线的信号施以小权重或将权重设置为零。反之,则施以大权重,通过求解惩罚最小二乘函数获得基线的有效估计.以利用AsLS处理的国际RRUFF矿物数据库中不同产地同一矿物的拉曼光谱图为例(如下图所示),由于荧光等背景干扰,样本光谱之间出现了很大的差异,但当利用AsLS算法校正基线后,相同矿物之间的拉曼光谱展现出很好的相似性,说明在高光谱处理中,利用惩罚最小二乘法可以有效排除外界干扰,更加准确的测定光谱图像https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611479205_6511_3957149_3.jpeg图4.3-2 经过不同基线校正方法所得近红外光谱图Fig.4.3-2 (A)Ten spectra of a certain mineral from different regions in RRUFF database and (B) corresponding baseline corrected ones by asymmetric least squares (AsLS)4.4 近红外光谱学的基础研究的探索为理论计算模拟创造机遇近红外区段包含丰富的分子合频、倍频信息,因斯布鲁克大学Krzysztof B. Bec与关西学院大学Yukihiro Ozaki在近红外区段所包含的化学信息解释中做了相关的工作。非谐振子的化学振动使近红外区段所包含的化学振动信息丰富,而部分吸收峰较弱且有重叠的显现,很难对其化学信息的归属很强度进行进一步的分析。随着分子模拟(Molecular Dynamics)的进一步发展,理论计算被用于近红外光谱的分析研究上,因斯布鲁克大学的Krzysztof B. Bec教授,利用量子模拟计算对胡椒碱(piperine)的理论光谱进行相关模拟,并于实际光谱进行了对比,并明确理论计算光谱各谱代的归属,在整体上符合实验实测光谱图样,但仍然存在偏差。https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611480397_1290_3957149_3.png图 4.4-1 胡椒碱理论计算与实际光谱对比图Fig 4.4-1 the calculated and experimental spectrums of piperine 日本关西学院大学的OZAKI教授与奥地利的Huck教授,对甲醇分子在近红外区段的化学信息进行光谱模拟计算和谱带解析,得到20余个倍频与合频吸收峰,与实验有较强的吻合性,但仍具有一定偏差。https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611481246_6681_3957149_3.jpeg图4.4-2 甲醇理论计算光谱与实际光谱归属Fig 4.4-2 the calculated and experimental spectrums of CH3OH低浓度甲醇(0.005 mol/L)的实验近红外光谱图与模拟计算谱图的谱带归属 综上,化学计量学的进一步发展以及可解释性的机器学习结合量子计算模拟手段,有望将目前处于“黑箱模型”状态的分析过程转化为“灰色模型”,甚至达到“白色模型”完全可解释的状态5 结束语近红外光谱分析法作为一项表征测试手段,在高分子材料领域获得了一定程度的运用,结合不同化学计量学方法、机器学习、光谱分析手段,可以对各种物性参数进行有效分析预测,限于该技术存在一定的使用门槛,以及供应商依赖(Vendor lock-in)等现实情况,近红外在高分子材料领域目前仍处于起步阶段,随着化学计量学方法的进一步进步、光谱解析手段的进一步深入,近红外分析手段可更好在高分子材料研究中发挥自身作用,在物理化学性质分析、过程监控中有更为深入、广泛的应用。 REFERENCES1 Blanco M, Villarroya I. NIR spectroscopy: a rapid-response analytical tool. TrAC Trends in Analytical Chemistry, 2002, 21(4):240-2502 Furukawa, T. , Watari, M. , Siesler, H. W. , Ozaki, Y. Discrimination of various polypropylene) copolymers and prediction of their ethylene content by near-infrared and Raman spectroscopy in combination with chemometric methods . Journal of Applied Polymer Science. 2003, 87: 616-6253 Yoshida H., Sakyo K. In-line monitoring of polyethylene density using near infrared (NIR) spectroscopy . Polymer Engineering and Science. 2000, 40 (S): 1107-1113.4 Marion G. H., Atul Khettry. In-line monitoring of molten polymers Near infrared spectroscopy robust probes and rapid data analysis . Polymer Engineering and Sciece. 1994, 34 (23): 1758-1756.5 Oihana Elizaled, Jose Ramon Leiza. On-line Monitoring of All-Acrylic Emulsion Polymerization Reactors by Raman Spectroscopy . Maceomol. Symp. 2006, 206: 135-1486 Sheibat-Othman N , D Peycelon, G Févotte. Monitoring and Control of Free-Radical Polymerizations Using Near-Infrared Spectroscopy. Industrial & Engineering Chemistry Research, 2004, 43(23):7383-7391.7 吴艳萍. 近红外光谱表征聚丙烯树脂性质的研究 . 北京: 石油化工研究院, 2003.8 C. Schade, W. Heckmann, S. Borchert. Determination of Orientational States in Impact-Polystyrene Specimens by Near-Infrared Polarization scopy .Polymer Engineering and Science. 2006, 46 (3): 381-383.9 夏柏杨, 任芋.近红外光谱分析技术的一些数据处理方法的讨论 . 光谱实验室. 2005, 22 (3): 629-634.10 Magali Laasonen. Near Infrared spectroscopy, a quality control tool for the different steps in the manufacture of herbal medicinal products . Finland: University of Helsinki, 2003.11 Marlon M. Reis, Pedro H. H. Araujo, Claudia Sayer, et al. Comparing near infrared and Raman spectroscopy for on-line monitoring of emulsion copolymerization reactions . Macromol. Symp. 2004, 206: 165-178.12 董守龙, 任芋, 黄友之.近红外光谱分析技术的发展和应用 .分析与检测. 2004, 11(6):44-46.13 张玲, 邱芳萍, 于健.现代近红外光谱技术 .长春工业大学学报.2003, 24 (4): 23-25.14 陆婉珍. 21世纪的分析化学 . 北京:科学出版社, 1999: 75-91.15 陆婉珍. 现代近红外光谱分析技术 . 北京:中国石化出版社, 2006:1-3.16 Nuria Prieto, Olga Pawluczyk, Michael Edward Russell Dugan, and Jennifer Lynn Aalhus, A Review of the Principles and Applications of Near-Infrared Spectroscopy to Characterize Meat, Fat, and Meat Products,Appl. Spectrosc. 2017,71:1403-1426.17 褚小立, 袁洪福, 陆婉珍. 近年来我国近红外光谱分析技术的研究与应用进展 . 分析仪器. 2006, 2: 1-10.18 彭云, 沈怡, 武培怡, 杨玉良. 广义二维相关光谱学进展 . 分析化学评述与进展. 2005, 10: 1499-1504.19 J. M. R. Fontoura, A. F. Santos, F M. Silva, et al. Monitoring and Control of Styrene Solution Polymerization Using NIR Spectroscopy . Journal of Applied Polymer Science. 2003, 90: 1273-1289.20 陆婉珍, 袁洪福, 徐广通等.现代近红外光谱分析技术. 北京:中国石化出版社, 200021 Mobley P R , Kowalski B R , Workman J J , et al. Review of Chemometrics Applied to Spectroscopy: 1985-95, Part 2. Applied Spectroscopy Reviews, 1996, 31(4):347-368.22 梁逸曾,俞汝勤.分析化学手册(10)——化学计量学.北 京:化工出版社,200123 刘树深,易忠胜.基础化学计量学.北京:科学出版社, 199924 近红外光谱分析技术实用手册. 北京:机械工业出版社, 2016:25 刘树深,易忠胜.基础化学计量学.北京:科学出版社, 199926 徐广通, 袁洪福, 陆婉珍. 现代近红外光谱技术及应用进展. 光谱学与光谱分析, 2000, 20(2): 134-142.27 董守龙, 任芋, 黄友之.近红外光谱分析技术的发展和应用 .分析与检测. 2004, 11(6):44-46.28 陆婉珍. 现代近红外光谱分析技术.第2版. 中国石化出版社, 2007.29 王燕岭. 浅谈近红外光谱分析技术. 现代科学仪器, 2005, 24(4):87-87.30 褚小立,袁洪福,陆婉珍. 近红外分析中光谱预处理及波长选择方法进展与应用. 化学进展,2004,16(4):528-542.31 梁逸曾, 俞汝勤. 分析化学手册.第十分册,化学计量学-第2版. 化学工业出版社, 2000.32 刘树深, 易忠胜. 基础化学计量学. 科学出版社, 1999.33 徐广通, 袁洪福, 陆婉珍. CCD近红外光谱谱图预处理方法研究. 光谱学与光谱分析, 2000,20(5):619-622.34 Dhanoa M S, Sanderson R. Comment on "The structural relationship: regression in biology". Canadian Journal of Zoology, 2010, 88(8):821-823.35 Isaksson T, Naes T. The Effect of Multiplicative Scatter Correction (MSC) and Linearity Improvement in NIR Spectroscopy. Applied Spectroscopy, 1988, 42(7):1273-1284.36 Chen, J. , Iyo, C. , Terada, F. , Kawano, S. Effect of Multiplicative Scatter Correction on Wavelength Selection for near Infrared Calibration to Determine Fat Content in Raw Milk. Journal of Near Infrared Spectroscopy, 2002,10(1):301-307.37 高志明, 李井会, 高礼让,小波分析在化学中的应用进展. 化学进展, 2000, 12(2):13-14.38 邵学广, 庞春艳, 孙莉. 小波变换与分析化学信号处理. 化学进展, 2000, 12(3):233-244.39 郭怀忠, 张尊建. 小波变换及其在分析化学中的应用. 药学进展, 2000, 24(1):5.40 Cai C , Harrington P D . Different Discrete Wavelet Transforms Applied to Denoising Analytical Data. Journal of Chemical Information & Modeling, 1998, 38(6):1161-1170.41 Bakshi B R . Multiscale analysis and modeling using wavelets. Journal of Chemometrics, 1999. 13: 415-434.42 姜黎, 张军, 陈哲,等. 基于不同波段对成品汽油的模式识别分析. 光谱实验室, 2010(03):426-430.43 欧阳思怡, 谢小强, 刘燕德. 水果内部品质近红外动态在线检测研究进展. 湖北农业科学, 2013(10):4-10.44 Spiegelman, C. H. , Greensill, C. V. , Walsh, K. B. , Wolfs, P. J. Calibration Transfer between PDA-Based NIR Spectrometers in the NIR Assessment of Melon Soluble Solids Content. 2001, 55(5):647-653.45 Palermo, R. N. , Short, S. M. , Anderson, C. A. , Tian, H. , Iii, J.. Determination of Figures of Merit for Near-Infrared, Raman and Powder X-ray Diffraction by Net Analyte Signal Analysis for a Compacted Amorphous Dispersion with Spiked Crystallinity. Journal of Pharmaceutical Innovation, 2012, 7(2):56-68.46 Chau, F. T. , Shih, T. M. , Gao, J. B. , Chan, C. K.. Application of the Fast Wavelet Transform Method to Compress Ultraviolet-Visible Spectra. Applied Spectroscopy, 1996,50(3), 339-348.47 Eriksson, L. , Johansson, E. , Kettanehwold, N. , Trygg, J. , C Wikstr?m, & Wold, S. Multi- and Megavariate Data Analysis : Part II: Advanced Applications and Method Extensions. Umetrics Inc, 2008(4):362.48 Lin H D, Bruce L M. Projection pursuits for dimensionality reduction of hyperspectral signals in target recognition applications.Geoscience and Remote Sensing Symposium, 2004. IGARSS '04. Proceedings. 2004 IEEE International. IEEE, 2004.49 张钧萍, 张晔, 周廷显. 成像光谱技术超谱图像分类研究现状与分析. 中国空间科学技术, 2001, 21(1):8.50 A. Rehman, A. Khan, M. A. Ali, M. U. Khan, S. U. Khan and L. Ali, Performance Analysis of PCA, Sparse PCA, Kernel PCA and Incremental PCA Algorithms for Heart Failure Prediction,2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), 2020, 1-5.51 C. Yumeng and F. Yinglan, Research on PCA Data Dimension Reduction Algorithm Based on Entropy Weight Method,2020 2nd International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), 2020, 392-396.52 Koren Y . Factorization meets the neighborhood: A multifaceted collaborative filtering model.Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , 2008. ACM, 2008.53 Liancheng Wang, W Liu, Y Zhang. Graphene-based transparent conductive electrodes for GaN-based light emitting diodes: Challenges and countermeasures. Nano Energy, 2015,12:419-436.54 Li, Z. , Chen, W. , Lian, F. , Ge, H. , Guan, A.. Wavelength Selection Method Based on Differential Evolution for Precise Quantitative Analysis Using Terahertz Time-Domain Spectroscopy. Applied Spectroscopy, 2017, 71(12):2653-2660.55 陈建安, 郭大伟, 徐乃平, 遗传算法理论研究综述. 西安电子科技大学学报, 1998, 25(3):6.56 张国民. 遗传算法的综述. 科技视界, 2013(9):2.57 温国基,戴连奎,刘薇. 基于遗传算法与线性叠加模型的混合物组成拉曼光谱定量分析. 分析化学,2021,49(1):85-94. 58 淡图南, 戴连奎. 基于PLS投影分析的光谱波段选择方法. 光谱学与光谱分析, 2009,2(2):4. 59 尼珍,胡昌勤,冯芳.近红外光谱分析中光谱预处理方法的作用及其发展.药物分析杂志,2008,28(5):824-829.60 Bumghi C,Lee J H,Kim D H. Solving local minima problem with large number of hiddennodes on two-layered feed-forward artificial neural networks. Neurocomputing,2008,71(16):3640-3643.61 徐广通,袁洪福,陆婉珍.现代近红外光谱技术及应用进展.光谱学与光谱分析,2000,2(2):134-142.62 褚小立,袁洪福,陆婉珍.近红外分析中光谱预处理及波长选择方法进展与应用.化学进展,2004,4(4):528-542.63 李圆.淀粉接枝共聚丙烯酰胺聚合物凝胶体系的研究与应用.中国地质大学(北京),2018.64 黄亚曦,贾鑫.自然条件下可降解农膜光降解性能的研究.石河子大学学报(自然科学版),2012,30(2):239-243.65 梁晓凡,黄定海.利用红外光谱研究聚合物玻璃化转变时的构象变化.高分子通报,2011(11):90-97.66 Huang Guangbin, Zhu Qinyu, Siew C H. Extreme Learning Machine: Theory and Applications. Neurocomputing, 2006,70(1-3): 489-501.67 张文杰,焦安然,田静,王晓娟,王斌,徐晓轩.卷积神经网络和支持向量机算法在塑料近红外光谱分类中的模型应用.分析测试学报,2021,40(7):1062-1067.68 刘辉军,魏超宇,韩文,姚燕.基于全卷积神经网络的黄花梨采收期可见-近红外光谱检测方法.光谱学与光谱分析,2020,40(9):2932-2936.69 陆婉珍. 现代近红外光谱分析技术.第2版. 中国石化出版社, 2007.70 郭隆海. 近红外光谱分析技术在线检测乳液聚合反应的应用. 北京化工大学, 2008.71 赵彦如, 陈东辉, 佟金. 近红外分析技术及其应用. 华中农业大学学报, 2005(S1):4.72 Garcia D, Kim J S, Eisenberg A. Near infrared studies of styrene-sodium methacrylate ionomers.. Journal of Polymer ence Part B Polymer Physics, 1998, 36(16):2877-2886.73 Vieira R A M, Sayer C, Lima E L. In-line and in situ monitoring of semi-batch emulsion copolymerizations using near-infrared spectroscopy.. Journal of Applied Polymer Science, 2010, 84(14):2670-2682.74 Furukawa T, Watari M, Siesler H W. Discrimination of various poly(propylene) copolymers and prediction of their ethylene content by near‐infrared and Raman spectroscopy in combination with chemometric methods. Journal of Applied Polymer Science, 2003, 87(4):616-625.75 Thomas, Rohe, and, et al. Near infrared (NIR) spectroscopy for in-line monitoring of polymer extrusion processes. Talanta, 1999, 50(2):283-290.76 Determination of diethyleneglycol content and number of carboxylic end groups in poly(ethylene terephthalate) fibers using imaging and conventional near infrared spectroscopy. Polymer Testing, 2016, 49:15-21.77 W.A. Macdonald, New advances in poly(ethylene terephthalate) polymeriza-tion and degradation, Polym. Int. 2002,51 (10) 923.78 Romao W, Spinace M, Paoli M. Poli(Tereftalato de Etileno), PET: Uma Reviso Sobre os Processos de Síntese, Mecanismos de Degradao e sua Reciclagem. Polímeros, 2009, 19(2):121-132.79 Shin J, Lee Y. Optimization of the pre-polymerization step of polyethylene terephthalate (PET) production in a semi-batch reactor. Chemical Engineering Journal, 1999, 75(1):47-55.80 Yun, Hu, Jianming. C?H···OC Hydrogen Bonding and Isothermal Crystallization Kinetics of Poly. Macromolecules, 2006, 39(11):3841-3847.81 Kunioka M, Tamaki A, Doi Y. Crystalline and thermal properties of bacterial copolyesters: poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Macromolecules, 1989, 22(2):694-697.82 Doi Y, Kitamura S, Abe H. Microbial Synthesis and Characterization of Poly(3-hydroxybutyrate-co-3-hydroxypropionate). Macromolecules, 1994, 28(14):4822-4828.83 Ishida K, Asakawa N, Inoue Y. Structure, Properties and Biodegradation of Some Bacterial Copoly(hydroxyalkanoate)s. Macromolecular Symposia, 2005, 224(1):47-58.84 Chan C H, Kummerlwe C, Kammer H W. Crystallization and Melting Behavior of Poly(3‐hydroxybutyrate)‐Based Blends. Macromolecular Chemistry & Physics, 2004, 205(5):664–675.85 Jung H C, Lee H S, Yong S C. Blends of a thermotropic liquid crystalline polymer and some flexible chain polymers and the determination of the polymer-polymer interaction parameter of the two polymers. Polymer Bulletin, 1998,41, 387–39486 Nattaporn, Suttiwijitpukdee, Harumi. Effects of Hydrogen Bond Intermolecular Interactions on the Crystal Spherulite of Poly(3-hydroxybutyrate) and Cellulose Acetate Butyrate Blends: Studied by FT-IR and FT-NIR Imaging Spectroscopy. Macromolecules, 2012, 45(6):2738–2748.87 Hocking, P. J.; Marchessault, R. H. Polyhydroxyalkanoates. In Biopolymers from Renewable Resources; Kaplan, D. L., Ed.; Springer-Verlag: Berlin, 1998; 220.88 Ken'ichiro, Matsumoto, Hiromi, et al. Isolation and Characterization of Polyhydroxyalkanoates Inclusions and Their Associated Proteins in Pseudomonas sp. 61-3. Macromolecules, 2002.89 Zhu S, Song Z, Shi S. Fusion of Near-Infrared and Raman Spectroscopy for In-Line Measurement of Component Content of Molten Polymer Blends.. Sensors, 2019, 19(16):3463-3469.90 Thosar SS, Forbess R A, Kemper M. Determination of copolymer ratios of poly(lactide-co-glycolide) using near-infrared spectroscopy.. Journal of Pharmaceutical & Biomedical Analysis, 1999, 20(1-2):107.91 Furukawa T, Watari M, Siesler H W. Discrimination of various poly(propylene) copolymers and prediction of their ethylene content by near‐infrared and Raman spectroscopy in combination with chemometric methods.. Journal of Applied Polymer Science, 2003, 87(4):616-625.92 Tran M C D. Visualizing the effect of gold nanocages on absorption, imaging, and lower critical solution temperature phase transition of individual poly(NiPAM)-based hydrogel particles by near infrared multispectral imaging microscopy.. Analytical Chemistry, 2011, 83(9):3520-3527.93 Song K H, Kim C, Cobley C M, et al. Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model.. Nano Letters, 2009, 9(1):183-188.94 Au L, Chen Y, Fei Z, et al. Synthesis and optical properties of cubic gold nanoframes.. Nano Research, 2008, 1(6):441.95 Portney N G, Ozkan M. Nano-oncology: drug delivery, imaging, and sensing.. Analytical & Bioanalytical Chemistry, 2006, 384(3):620-630.96 N. A. Peppas,, Y. Huang,, M. Torres-Lugo,, J. H. Ward, and, and J. Zhang . Physicochemical Foundations and Structural Design of Hydrogels in Medicine and Biology.. Annual Review of Biomedical Engineering, 2000 2(1), 9-2997 Balabin R M, Smirnov S V. Melamine detection by mid- and near-infrared (MIR/NIR) spectroscopy: A quick and sensitive method for dairy products analysis including liquid milk, infant formula, and milk powder.. Talanta, 2011, 85(1):562-568.98 程旎,李小昱,赵思明,李建博,高海龙.鱼体新鲜度近红外光谱检测方法的比较研究.食品安全质量检测学报,2013,4(02):427-432.99 李民赞,郑立华,安晓飞,孙红.土壤成分与特性参数光谱快速检测方法及传感技术.农业机械学报,2013,44(03):73-87.100 Ba T L. Application of deep learning and near infrared spectroscopy in cereal analysis.. Vibrational Spectroscopy,2020, 101 Ulrici A, Serranti S, Ferrari C. Efficient chemometric strategies for PET–PLA discrimination in recycling plants using hyperspectral imaging.. Chemometrics & Intelligent Laboratory Systems, 2013, 122(1):31-39.102 王玲, 李定明, 张丽华,等. 近红外光谱法快速测定水溶液中硝酸肼与硝酸羟胺的含量. 中国原子能科学研究院年报, 2010(1):269-270.103 张彦君,蔡莲婷,丁玫,邵波,杨载松.近红外技术在聚丙烯物性测试中的应用研究.当代化工,2010,39(1):93-97.104 Xie J , Yuan H , Song C . Online determination of chemical and physical properties of poly(ethylene vinyl acetate) pellets using a novel method of near-infrared spectroscopy combined with angle transformation. Analytical Methods, 2019, 11(18):2435-2442.105 J. Wei, X. Luo and X. Lin, Preparation and Characterization of Polyethylene/Ethylene Vinyl Acetate Composite Non Dropping Greenhouse Film, Mater. Sci. Forum, 2012, 724,237–240.106 Zhang L , Watanabe S , Noda I , et al. Spectral inter-conversion analysis of thermally induced structural changes in polyethylene crystals. Vibrational Spectroscopy, 2012, 60:92-97.107 Agrisuelas J , D Giménez-Romero, JJ García-Jare O,Vis/NIR Spectro electrochemical analysis of poly-(Azure A) on ITO electrode. Electrochemistry Communications, 2006, 8(4):549-553.108 Shinzawa H , Nishida M , Tanaka T. Thermal behavior of drawn poly(lactic acid)-nanocomposite fiber probed by near-infrared hyperspectral imaging based on roundtrip temperature scan. Analytical Methods, 2012, 4(8):2259-2265.109 Nishida M , Ogura T , Shinzawa H. Tensile properties of polyhydroxyalkanoate/polycaprolactone blends studied by rheo-optical near-infrared (NIR) spectroscopy. Journal of Molecular Structure, 2016:92-97.110 Oliveira, L.S.; Franca, A.S.; Camargos, R.R.S.; Ferraz, V.P. Coffee oil as a potential feedstock for biodiesel production. Bioresour. Technol. 2008, 99:3244–3250.111 Nunes, A.A.; Franca, A.S.; Oliveira, L.S. Activated carbons from waste biomass: An alternative use for biodiesel production solid residues.. Bioresour. Technol. 2009, 100, 1786–1792.112 Chisti, Yusuf. Biodiesel from microalgae..Biotechnology advances 2007,25(3): 294-306.113 Rashid U , Anwar F . Production of biodiesel through optimized alkaline-catalyzed transesterification of rapeseed oil. Fuel, 2008, 87(3):265-273114 Balabin R M , Lomakina E I , Safieva R Z . Neural network (ANN) approach to biodiesel analysis: Analysis of biodiesel density, kinematic viscosity, methanol and water contents using near infrared (NIR) spectroscopy. Fuel, 2011, 90(5):2007-2015.115 杨忠, 刘亚娜, 吕斌,等. 非接触式可见光-近红外光谱法快速预测天然高分子材料表面粗糙度的研究. 光谱学与光谱分析, 2013(3):4.116 Ding C , Han A , Ye M , Synthesis and characterization of a series of new green solar heat-reflective pigments: Cr-doped BiPO4 and its effect on the aging resistance of PMMA (Poly(methyl methacrylate)). Solar Energy Materials and Solar Cells, 2019, 191:427-436.117 G. Scott and D. Gilead, Biodegradable Polymers: Principles and Applications, Chapman & Hall, London, 1995.132:324-331.118 Zhang, FC, Wang, Implementing plant-derived isosorbide and isomannide as comonomers for polyester synthesis: Effects of crystallization properties on optical properties. J APPL POLYM SCI, 2017, 2017,134(43):1-7.119 Garlotta, D. A Literature Review of Poly(Lactic Acid) . Journal of Polymers and the Environment,2001.9z; 63–84. 120 D. L. Kaplan, Biopolymers from Renewable Resources., Springer Verlag, Berlin, 1998,1:1-2.121 A, L. T. Lim , R. A. B , and M. R. B . Processing technologies for poly(lactic acid) .Progress in Polymer Science,2008,33(8):820-852.122 Gupta B , Revagade N , Hilborn J . In vitro degradation of dry-jet-wet spun poly(lactic acid) monofilament and knitted scaffold. Journal of Applied Polymer Science, 2010, 103(3):2006-2012.123 Jeeju P P , Jayalekshmi S , Chandrasekharan K , et al. Enhanced linear and nonlinear optical properties of thermally stable ZnO/poly(styrene)–poly(methyl methacrylate) nanocomposite films. Thin Solid Films, 2013, 531(15):378-384.124 Wesley I J, Larsen N, Osborne B G, et al. Non-invasive Monitoring of Dough Mixing by Near Infrared Spectroscopy. Journal of Cereal Science, 1998, 27(1):61-69.125 Lee K, Chylla R W, Janota T E. Determination of Hydroxyl Number in Polymers by Infrared Spectroscopy: Comparison of Near-IR and Mid-IR. Applied Spectroscopy, 1993, 47(1):94-97.126 Miller C E, Edelman P G, Ratner B D, et al. Near-Infrared Spectroscopic Analyses of Poly (ether urethane urea) Block Copolymers. Part I: Bulk Composition. Applied Spectroscopy, 1990, 44(4):581-586.127 Marinus, P, B, et al. Process analysis: properties of poly (ethylene terephthalate) measured by near infrared spectroscopy, 1. At-line analysis of poly (ethylene terephthalate) chips. Macromolecular Chemistry & Physics, 1995.128 Honigs D E, Hirschfeld T B, Hieftje G M. Near-infrared determination of several physical properties of hydrocarbons. Anal. Chem.; (United States), 1985, 57:2(2):443-445.129 Howland H, Hoag S W. Analysis of curing of a sustained release coating formulation by application of NIR spectroscopy to monitor changes physical–mechanical properties. International Journal of Pharmaceutics, 2013, 452(1-2):82-91.130 Gendre C, Genty M, Boiret M, et al. Development of a Process Analytical Technology (PAT) for in-line monitoring of film thickness and mass of coating materials during a pan coating operation. European Journal of Pharmaceutical Sciences, 2011, 43(4):244-250.131 Leitner R, Mairer H, Kercek A. Real-time classification of polymers with NIR spectral imaging and blob analysis. Academic Press Ltd. 2003.132 M. Laurent, Devaux J, Carlier V. Maleic anhydride-grafted polypropylene: FTIR study of a model polymer grafted by ene-reaction. Polymer, 2005, 46(19):8062-8067.133 A M L, A O G, B A G. Quantification of PLA contamination in PET during injection moulding by in-line NIR spectroscopy. Polymer Testing, 2014, 38(18):46-52.134 F LA MANTIA, F.P., BOTTA, L., MORREALE, M., et al. Effect of small amounts of poly(lactic acid) on the recycling of poly(ethylene terephthalate) bottles. Polymer Degradation and Stability,2012,97(1):21-24.135 Wesley I J, Larsen N, Osborne B G. Non-invasive Monitoring of Dough Mixing by Near Infrared Spectroscopy. Journal of Cereal Science, 1998, 27(1):61-69.136 Moghaddam L , Rintoul L , Halley P J. In-situ monitoring by fibre-optic NIR spectroscopy and rheometry of maleic anhydride grafting to polypropylene in a laboratory scale reactive extruder. POLYMER TESTING -LONDON-, 2012, 31(1):155-163137 Bettini S H P, Agnelli J A M. Grafting of maleic anhydride onto polypropylene by reactive processing. I. Effect of maleic anhydride and peroxide concentrations on the reaction. Journal of Applied Polymer Science, 1999, 74(2):256-263.138 Bettini S H P , Agnelli J A M . Evaluation of methods used for analysing maleic anhydride grafted onto polypropylene by reactive processing. 2000, 19(1):3-15.139 S, H, P, et al. Grafting of maleic anhydride onto polypropylene by reactive extrusion. Journal of Applied Polymer Science, 2002, 85(13):2706-2717.140 Sclavons M , Laurent M , Devaux J. Maleic anhydride-grafted polypropylene: FTIR study of a model polymer grafted by ene-reaction. Polymer, 2005, 46(19):8062-8067.141 A, Mc Lauchlin , O. G. A , and A. G. B . "Quantification of PLA contamination in PET during injection moulding by in-line NIR spectroscopy. Polymer Testing 38.18(2014):46-52.142 A MANTIA, F.P., BOTTA, L., MORREALE, M. Effect of small amounts of poly(lactic acid) on the recycling of poly(ethylene terephthalate) bottles. Polymer Degradation and Stability,2012,97(1):21-24.143 Saerens, Dierickx, Quinten. In-line NIR spectroscopy for the understanding of polymer-drug interaction during pharmaceutical hot-melt extrusion. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 81(1):230-237.144 杨辉华, 郭拓, 马晋芳, 等. 一种近红外光谱在线监测新方法及其在中药柱层析过程中的应用. 光谱学与光谱分析, 2012, 32(5):4-10.145 杨华生, 吴维刚, 谭丽霞,等. 麦芽炒制过程中近红外在线监测模型的建立及"炒香"终点判断研究. 中国中药杂志, 2017, 42(3):8-14.146 A Salgó, Gergely S. Analysis of wheat grain development using NIR spectroscopy. Journal of Cereal Science, 2012, 56(1):31-38.20郭中原, 慎石磊, 周新奇,等. 豆粕品质在线监测近红外分析系统的研制与应用. 粮食与饲料工业, 2020(4):6.147 Q. Zhang and S. C. Zhu, Visual interpretability for deep learning: a survey, Frontiers of Information Technology & Electronic Engineering, 2018, 19(1) : 27-39.148 S. Chakraborty, Interpretability of deep learning models: a survey of results, IEEE Smart World, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation, 2017.149 M. Du, N. Liu and X. Hu, Techniques for interpretable machine learning, arXiv preprint, arXiv:1808.00033, 2018.150 L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, L. Kagal, Explaining explanations: An overview of interpretability of machine learning,In DSAA, 80-89, 2018.151 R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti & D. Pedreschi, A survey of methods for explaining black box models, ACM computing surveys (CSUR), 2019,5(51),93-97.152 A. Adadi and M. Berrada, Peeking inside the black-box: A survey on Explainable Artificial Intelligence (XAI), IEEE Access,2018, 6: 52138-52160.153 Z. C. Lipton, The mythos of model interpretability, Queue, 2018,3(16), 31–57.154 贾小丹. 基于森林算法对不平衡数据分类问题的研究.兰州大学,2021.155 F. L. Fan, J. Xiong, M. Li and G. Wang, On Interpretability of Artificial Neural Networks: A Survey, in IEEE Transactions on Radiation and Plasma Medical Sciences, 2021,5(6): 741-760156 Y. Wang, H. Su, B. Zhang and X. Hu, Interpret neural networks by identifying critical data routing paths, In CVPR, 2018.157 J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow, M. Hardt, and B. Kim, Sanity checks for saliency maps, In NeurIPS, 2018.158 J. L. Kolodner, An introduction to case-based reasoning, Artificial intelligence review, 1992,1(6): 3-4.159 C. Chen, K. Lin, C. Rudin, Y. Shaposhnik, S. Wang, T. Wang, An interpretable model with globally consistent explanations for credit risk, arXiv preprint, arXiv:1811.12615, 2018.160 A. Dosovitskiy, T. Brox, “nverting visual representations with convolutional networks,In CVPR, 2016:4829-4837.161 A. Mahendran, A. Vedaldi, Understanding deep image representations by inverting them, In CVPR, 2015:5188-5196.162 J. T. Springenberg, A. Dosovitskiy, T. Brox and M. Riedmiller, Striving for simplicity: The all convolutional net, arXiv preprint, arXiv:1412.6806, 2014.163 M. D. Zeiler and R. Fergus, “isualizing and understanding convolutional networks, In ECCV, 2014:818-833.164 D. Erhan, Y. Bengio, A. Courville, P. Vincent, Visualizing higher-layer features of a deep network,University of Montreal,20109,3:1314-1319 165 A. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox & J. Clune, Synthesizing the preferred inputs for neurons in neural networks via deep generator networks,In NeurIPS , 2016:3387-3395.166 A. Nguyen, J. Clune, Y. Bengio, A. Dosovitskiy, J. Yosinski, Plug & play generative networks: Conditional iterative generation of images in latent space, In CVPR, ,2017:4467-4477.167 C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, R. Fergus, Intriguing properties of neural networks, arXiv preprint, arXiv:1312.6199, 2013.168 D. Bau, B. Zhou, A. Khosla, A. Oliva, A. Torralba, Network dissection: Quantifying interpretability of deep visual representations, In CVPR, 2017. 169 A. Karpathy, J. Johnson and L. Fei-Fei, Visualizing and understanding recurrent networks, arXiv preprint, arXiv:1506.02078, 2015.170 Y. Li, J. Yosinski, J. Clune, H. Lipson, J. E. Hopcroft, Convergent Learning: Do different neural networks learn the same representations? , In ICLR, 2016.171 J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, H. Lipson, Understanding neural networks through deep visualization, arXiv preprint, arXiv:1506.06579,2015.172 B. Zhou, A. Khosla, A. Lapedriza, A. Oliva and A. Torralba, Object detectors emerge in deep scene cnns, arXiv preprint, arXiv:1412.6856. 2014.173 T. Lindeberg, A computational theory of visual receptive fields, Biological cybernetics,2013, 6(107): 589-635. 174 P. W. Koh and P. Liang, Understanding black-box predictions via influence functions,In ICML, 2017.175 A. Bansal, A. Farhadi and D. Parikh, Towards transparent systems: Semantic characterization of failure modes,In ECCV, 2014.176 H. Lakkaraju, E. Kamar, R. Caruana and E. Horvitz, Identifying unknown unknowns in the open world: Representations and policies for guided exploration,In AAAI, 2017. 177 Q. Zhang, W. Wang and S. C. Zhu, “Examining CNN representations with respect to dataset bias,In AAAI, 2018.178 W. S. McCulloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity, The bulletin of mathematical biophysics, 1943,5(4):115-133.179 I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville and Y. Bengio, Generative adversarial nets,In NeurIPS, 2014, 2672-2680.180 A. H. Marblestone, G. Wayne and K. P. Kording, “oward an integration of deep learning and neuroscience, Frontiers in computational neuroscience, 2016,94(10),14-20.181 Allison M D and Nhan T and Joshua A and Michaela B and Giuseppe D G and Javier D and Philip H and Scott H and Mia L and Mark S. Neubauer and Jennifer N and Seda O and Maurizio P and Thea A and Steffen B and Jurgen B and Anne-Sophie B and Richard J. Bonventre and Tomas E. Muller Bravo and Markus D and Zhen D and Nick F and Amir G and Ekaterina G and Kyle J H and Christian H and Babar K and Sehoon K and Thomas K and Yaling L and Kin H Land Tri N and Gianantonio P and Seyedramin R and Ryan A. R and Kate S and Justin S and Sougata S and Dmitri St and William T and Savannah T and Kai L U and Ricardo V and Belinavon K and Thomas K. W and Maria Acosta F and Anthony A and Thomas C and Leonardo C and Daniel D and Caterina D and Maria DG and Elham E K and Farah F and Davide G and Benjamin H and Duc H and Burt H and Shih-Chieh H and Sergo J and Iris J and Raghav K and Ryan K and Erik K and Jeffrey K and Pan L and Sandeep M and Ethan M and Patrick M and Andres M and Jovan M and Mohammed A M and Farouk M and Eric M and Srishti N and Rohin N and Noah P and Zhiqiang Q and Sang E P and Subramanian R and Dylan R and Simon R and Ashish S and Sioni S and Pietro V and Jean-Roch V and Olivia W, Applications and Techniques for Fast Machine Learning in Science,arXiv,2021: 2110.13041182 Ligon SC, Liska R, Stampfl J, Gurr M, Mulhaupt R. Polymers for 3D printing and customized additive manufacturing. Chem. Rev.2017, 117:10212–10290.183 Serrano-Gotarredona T. STDP and STDP variations with memristors for spiking neuromorphic learning systems. Frontiers in Neuroscience,2013,7(2)134–149.184 Yang T, Sze V. Design considerations for efficient deep neural networks on processing-in-memory accelerators. IEEE International Electron Device Meeting (IEDM’19) ,2019:22.1.1–22.1.4185 George S, Kim S, Shah S, Hasler J, Collins M, Adil F. A programmable and configurable mixed-mode FPAA SoC. IEEE Transactions on Very Large Scale Integration Systems 2016,24: 2253–2261.186 Lukosevicius M, Jaeger H. Reservoir computing approaches to recurrent neural network training. Computer Science Review,2009,3(3),127–149.187 褚小立,陈瀑,李敬岩,刘丹,许育鹏.近红外光谱分析技术的最新进展与展望.分析测试学报,2020,39(10):1181-1188.188 陶焕明,高美凤.基于改进免疫遗传算法的近红外光谱变量选择方法.分析测试学报,2021,40(10):1482-1488189 胡爱琴,袁洪福,宋春风,李效玉.近红外离散波长光谱基线漂移校正方法研究.光谱学与光谱分析,2014,34(10):2606-2611.190 Degang, Song, Liu.Baseline correction method based on doubly reweighted penalized least squares.. Applied optics, 2019, 58(14):3913-3920.191 褚小立,史云颖,陈瀑,李敬岩,许育鹏.近五年我国近红外光谱分析技术研究与应用进展.分析测试学报,2019,38(05):603-611.192 王海朋,褚小立,陈瀑,刘丹,李敬岩,许育鹏.光谱基线校正算法研究与应用进展.分析化学,2021,49(08):1270-1281.193 Zhang Feng, Tang Xiaojun, Tong Angxin. An Automatic Baseline Correction Method Based on the Penalized Least Squares Method. Sensors (Switzerland). 2020,20,(7):2015194 TANG Xiao-jun, WANG Jin, ZHANG LeiSpectral baseline correction by piecewise dividing in fourier transform infrared gas analysis. Spectroscopy and Spectral Analysis, 2013, 33(2): 334-339195 Liu Jinchao et al. Deep convolutional neural networks for Raman spectrum recognition: a unified solution.. The Analyst, 2017, 142(21) : 4067-4074.196 L.G. Weyer, S.C. Lo.Spectra-Structure Correlations in the Near-Infrared . Handbook of Vibrational Spectroscopy. Chichester, UK: John Wiley and Sons, Ltd, 2006.197 Singh, S., Szostak, R., Czarnecki, M.A. Vibrational Intensities and Anharmonicity in MIR, NIR and Raman Spectra of Liquid CHCl3, CDCl3, CHBr3, and CDBr3: Spectroscopic and Theoretical Study. J. Mol. Liq. 2021,336: 116-127.198 Kuenzer, U., Hofer, T.S. A Four-Dimensional Numerov Approach and Its Application to the Vibrational Eigenstates of Linear Triatomic Molecules: The Interplay Between Anharmonicity and Inter-Mode Coupling. Chem. Phys. 2019,520: 88–99.199 Grabska J, Be? KB, Mayr S, Huck CW. Theoretical Simulation of Near-Infrared Spectrum of Piperine: Insight into Band Origins and the Features of Regression Models. Applied Spectroscopy. 2021;75(8):1022-1032.200 Yukihiro Ozaki. Introduction of Quantum Chemical Calculation for near Infrared Spectroscopy. NIR News, 2016, 27(7) : 8-11.

  • 【资料】近红外光谱法在药物分析中的应用

    [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法在药物分析中的应用冯艳春 胡昌勤(中国药品生物制品检定所 北京 100050) 近红外(Near Infrared,NIR)光谱的波长范围是780~2526nm(12820~3959cm-1),通常又将此波长范围划分为近红外短波区(780~1100nm)和近红外长波区(1100~2526nm)。由于该区域主要是O-H,N-H,C-H,S-H等含氢基团振动光谱的倍频及合频吸收,谱带宽,重叠较严重,而且吸收信号弱,信息解析复杂,所以虽然该谱区发现较早,但分析价值一直未能得到足够的重视。近年来,由于巨型计算机与化学统计学软件的发展,特别是化学计量学的深入研究和广泛应用,使其成为发展最快、最引人注目的光谱技术[1]。而且由于该技术方便快速,无需对样品进行预处理,适用于在线分析等特点,在药物分析领域中正不断得到重视与应用。1[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的测量根据NIR光谱的获得方式,通常有透射(Transmittance)和漫反射(DiffuseReflectance)两种[2]。透射测定法的定量关系遵从Lambert-Beer定律,主要适用于液体样品,其正常的工作波长范围是850~1050nm[3]。浙江大学的史月华等人用该原理,在93%~97.4%的浓度范围内利用维生素E在6061~5246cm-1处的近红外吸收峰面积积分值和其浓度关系建立回归方程,对已知浓度的样品进行预测,误差及相对误差均在0.79%~0.9%内[4,5]。漫反射测定法是对固体样品进行近红外测定常用的方法。当光源垂直于样品的表面,有一部分漫反射光会向各个方向散射,将检测器放在与垂直光成45o角的位置测定散射光强的方法称为漫反射法。漫反射光强度A与反射率R的关系为 式中,R1为反射光强,R0为完全不吸收的表面反射光强。国内已有人先后用漫反射技术测定了精氨酸阿司匹林[6] 、安乃近[7] 、芦丁和维生素E[8] 等的含量,并且用反射光谱法对磺胺噻唑[9]进行质量评价。 以透射和漫反射为测试基础,为适应不同物质在不同状态时直接测定其[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url],90年代以来光纤技术在NIR中得到了广泛应用。光纤不仅可方便的传输光谱信号,各式各样的光纤探头还极大地方便了NIR进行各类快速在线分析。2[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术在药物分析中的应用2.1应用范围[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法在药物分析领域中的应用范围相当广泛,它不仅适用于药物的多种不同状态如原料[10]、完整的片剂、胶囊与液体等制剂[11],还可用于不同类

  • 热重红外光谱怎样判别是否含SO2

    新手菜鸟一个,看文献说做热重红外分析煤燃烧过程的气体污染物,如SO2,NO等,自己做了一个,但是拿到结果傻眼了,应该怎么判断是否产生了硫、氮污染物呢?麻烦高手指点一下,实在是零基础,想附上红外结果,可是怎么上传不了呢,截图一张。

  • 【原创大赛】热重/红外光谱联用的实验条件设定

    【原创大赛】热重/红外光谱联用的实验条件设定

    [size=24px][/size][size=18px][color=#ff0000][b]说明:本文最初发布于“热分析与吸附”公众号([url=http://mp.weixin.qq.com/s?__biz=MzI5MjUzMzQ0OA==&mid=2247484448&idx=1&sn=8310254a77bf263915c9d16289f5e77a&chksm=ec7ea187db0928915648270dbcbbe4ef2f90ae26bfd0a94471946f77d02e7bf8a5186502549d&token=52155117&lang=zh_CN#rd]链接[/url]),欢迎关注公众号了解更多的热分析与吸附内容。[/b][/color][/size][font=华文楷体][size=14.0pt]概括来说 ,热重/光谱联用的实验条件设定主要包括热重仪实验条件设定、红外光谱仪实验条件设定以及传输管线和气体池的实验条件设定三部分内容。[/size][/font][font=华文楷体][size=14.0pt]1. [/size][/font][font=华文楷体][size=14.0pt]热重仪实验条件设定[/size][/font][font=华文楷体][size=14.0pt]在之前的《热分析/质谱联用的实验条件设定》中详细阐述了热重仪的实验条件设定方法,为了便于阅读并保持内容的完整性,在本部分对热重仪实验条件设定内容的描述基本与该文中的这部分内容相似。在下文叙述的内容中将这部分内容中的质谱改为了红外光谱,并增加了一些需要注意的问题。[/size][/font][font=华文楷体][size=14.0pt]实验时应根据实验需要选择实验时的实验气氛种类及流速、温度控制程序(主要包括加热/降温速率、温度范围、等温条件等)、坩埚类型、样品制备等方面的内容。[/size][/font][font=华文楷体][size=14.0pt](1)气氛种类及流速选择[/size][/font][font=华文楷体][size=14.0pt]为了便于实验时样品产生的气体产物能够实时地被红外光谱检测,在实验时通常使用动态的实验气氛。如果需要考察样品在设定的温度程序下的热裂解行为(试样不与动态气氛发生反应,气氛的作用只是将热重仪产生的气体产物传送给红外光谱进行检测),此时需要使用惰性气氛(如Ar、He等气体)。氮气虽然对于大多数实验而言是惰性气氛,但其对于对于一些反应是反应性气氛,在选择氮气作为实验气氛时应充分考虑在实验过程中产物是否与其发生反应。如果在实验时需要考察样品与气氛的氧化、还原等反应过程,此时应根据需要选择特定的气氛,常用的气氛有O[sub]2[/sub]、CO[sub]2[/sub]与惰性气体的混合气体。[color=red]注意:与热分析/质谱联用技术在选择气氛时应充分考虑质谱检测时需要考察的质量数不同,而在进行热分析/红外光谱联用实验时不需要尽可能选择分子量较小的气体,如He。[/color]由于红外光谱检测不到一些非极性分子如N[sub]2[/sub]、H[sub]2[/sub]、Ar、He、O[sub]2[/sub]等气体的信息,因此可以方便地采用以上这些气体作为载气。但是,红外光谱对于空气中含有的微量H[sub]2[/sub]O和CO[sub]2[/sub]等小分子十分敏感,在实验时通常通过扣除空白背景的方法来消除这些小分子的影响。如果在实验时采用了CO[sub]2[/sub]作为气氛,虽然在实验前可以通过背景扣除来消除CO2的信息,但由于在红外气体池中气流的影响,造成气体分布不均匀仍会得到CO2的信息。在实验得到的红外光谱图中将会看到明显的CO[sub]2[/sub]的吸收峰,有时甚至会出现由于背景扣除引起的负峰现象(图1)。[/size][/font][align=center][img=,564,242]https://ng1.17img.cn/bbsfiles/images/2020/06/202006151731511640_5037_1879291_3.png!w564x242.jpg[/img][/align][align=center][b][font=华文楷体][size=14.0pt]图1 实验中使用CO[sub]2[/sub]气氛得到的气体红外光谱图[/size][/font][/b][/align][b][font=华文楷体][size=14.0pt]在选择合适的气体种类后,还应选择合适的气氛流速。气氛流速的大小决定着气体产物由热重仪经传输管线到达红外光谱仪检测器的时间,选择不同的流速时,应使用已知产物的样品(如一水草酸钙或碳酸钙)来确定这个时间延迟,以使红外光谱仪检测产物与热重仪质量减少保持同步。[/size][/font][font=华文楷体][size=14.0pt](2)温度控制程序设定[/size][/font][font=华文楷体][size=14.0pt]实验时应根据需要选择合适的温度控制程序,主要包括加热/降温速率、温度范围、等温条件等。常用的温度程序为在一定的温度范围内一定的加热速率进行加热样品,例如,在室温~800摄氏度范围内以20℃/min的加热速率进行实验。实验时,还可根据实验需要选择较为复杂的加热/等温/降温的加热速率(如图2)。[/size][/font][font=华文楷体][size=14.0pt]需要特别指出,在较慢的加热速率或者等温条件下,样品的质量变化过程较慢,由此得到的气体产物的浓度较低。如果需要检测含量较低的气体产物,此时应选择较快的加热速率。另外,也可通过加大样品量的方法来提高气体产物的浓度。[/size][/font][/b][align=center][img=,564,477]https://ng1.17img.cn/bbsfiles/images/2020/06/202006151732063171_3368_1879291_3.png!w564x477.jpg[/img][/align][align=center][b][font=华文楷体][size=14.0pt]图2 较复杂的温度控制程序[/size][/font][/b][/align][b][font=华文楷体][size=14.0pt](3)坩埚类型的选择[/size][/font][font=华文楷体][size=14.0pt]坩埚在实验过程为盛载样品的容器,在实验过程中不能与样品发生任何形式的反应,也不能对分解过程起加速或减速的作用。常用的坩埚材质为氧化铝和铂,铝坩埚由于其自身化学性质较活泼而易与产物发生反应,在热重实验时较少使用。[/size][/font][font=华文楷体][size=14.0pt]另外,应根据热重仪的样品支架的形状选择合适尺寸的坩埚。由于气体产物需要及时由载气经传输管线传输至红外光谱仪,通常不在坩埚上方加盖(扎孔)。[/size][/font][font=华文楷体][size=14.0pt](4)样品制备[/size][/font][font=华文楷体][size=14.0pt]样品量、样品状态等因素对于实验结果有着较大的影响,实验时应根据需要选择合适的样品量和样品状态。通常使用的样品量为所使用的坩埚体积的三分之一到二分之一。对于一些分解较为快速的样品,样品量加至覆盖坩埚底部即可。对于一些在实验过程中可能会发生剧烈分解的含能材料,样品用量还应进一步减少。[/size][/font][font=华文楷体][size=14.0pt]对于一些容易挥发的样品而言,在制样时应快速,以免由于实验时间过长引起其组成的变化。[/size][/font][font=华文楷体][size=14.0pt]2. [/size][/font][font=华文楷体][size=14.0pt]红外光谱仪实验条件设定[/size][/font][font=华文楷体][size=14.0pt]红外光谱仪的实验条件设定取决于所使用的仪器,通常设定的实验条件包括检测时间、叠加次数和光谱分辨率。理论上,对于一些结构较复杂的气体分子和气体混合物应使用较高的光谱分别率,但是光谱分辨率越高,检测时间也越长,基线的噪声也越大。[/size][/font][font=华文楷体][size=14.0pt]大多数红外光谱仪常用的检测器是利用硫酸三甘肽晶体(简称TGS)极化随温度改变的特性制成的一种红外检测器,经氘化处理后称为DTGS(Deuterated Triglycine Sulfate)。DTGS热释电型检测器,其工作原理是由于温度的变化,热释电晶体会出现结构上的电荷中心相对位移,使它们的自发极化强度发生变化,从而在它们的两端产生异号的束缚电荷。对于常用的DTGS检测器而言,在8cm[sup]-1[/sup]的光谱分辨率下,得到一张红外光谱的时间约为1秒钟。在4cm[sup]-1[/sup]的光谱分辨率下,则约需要5秒钟左右。在1cm[sup]-1[/sup]下,约需要几十秒的时间才可以得到一张红外光谱图。[/size][/font][font=华文楷体][size=14.0pt]有时为了提高分析复杂的气体分子和气体混合物的能力,在红外光谱仪上还配置了MCT检测器。MCT检测器的灵敏度很高,至少比DTGS大10倍。其由宽频带的半导体碲化镉和半金属化合物碲化汞混合形成,其组成为Hg1-xCdx Te ,x≈0.2,改变x值,可获得测量波段不同灵敏度各异的各种MCT检测器。MCT属于光电导型检测器,其工作原理为在光线作用下,对于半导体材料吸收了入射光子能量, 若光子能量大于或等于半导体材料的禁带宽度,就激发出电子-空穴对,使载流子浓度增加,半导体的导电性增加,阻值降低,这种现象称为光电导效应。MCT检测器在液氮温度下工作。对于常用的MCT检测器而言,在1cm[sup]-1[/sup]的光谱分辨率下,得到一张红外光谱的时间约为1秒钟。[/size][/font][font=华文楷体][size=14.0pt]在实验时,为了提高检测信号的灵敏度通常会采用多次叠加的方法。实际上,在热分解过程中由于气体分子的浓度在时刻发生变化,采用这种叠加有时会得到异常的结果。对于一些变化较为缓慢的过程,可以采用叠加的方法来提高检测的灵敏度。[/size][/font][font=华文楷体][size=14.0pt]对于TG/IR实验,红外光谱仪的检测时间应与热重仪的温度控制程序所需的时间保持一致。[/size][/font][font=华文楷体][size=14.0pt]3. [/size][/font][font=华文楷体][size=14.0pt]传输管线和红外光谱气体池的实验条件设定[/size][/font][font=华文楷体][size=14.0pt]传输管线的作用是防止气体产物在由热重仪传输到红外光谱仪气体池以及在流经红外光谱气体池过程的冷凝现象,通常通过改变传输管线和气体池的温度的方法来尽可能地避免这种冷凝现象。[/size][/font][font=华文楷体][size=14.0pt]实验时,需要设定合适的温度条件来得到理想的结果。传输管线和红外气体池的温度过高会引起热稳定性不高的产物分子发生二次分解,温度过低则会造成产物的冷凝。不同的热重/红外光谱联用仪的传输管线和气体池的最高温度范围差别较大。应根据实验需要选择合适的传输管线和气体池的工作温度,一般来说红外气体池的温度应大于等于传输管线的温度。[/size][/font][/b]

  • 什么是 热重分析仪 TG或TGA热重分析仪,热重分析原理的应用

    什么是 热重分析仪 TG或TGA热重分析仪热重分析(Thermogravimetric Analysis,TG或TGA),是指在程序控制温度下测量待测样品的质量与温度变化关系的一种热分析技术,用来研究材料的热稳定性和组份。TGA在研发和质量控制方面都是比较常用的检测手段。热重分析在实际的材料分析中经常与其他分析方法连用,进行综合热分析,全面准确分析材料。根据国际热分析协会(International Confederation for Thermal Analysis,缩写ICTA)的定义,热重分析指温度在程序控制时,测量物质质量与温度之间的关系的技术。这里值得一提的是,定义为质量的变化而不是重量变化是基于在磁场作用下,强磁性材料当达到居里点时,虽然无质量变化,却有表观失重。而热重分析则指观测试样在受热过程中实质上的质量变化。热重分析仪热重分析所用的仪器是热天平,它的基本原理是,样品重量变化所引起的天平位移量转化成电磁量,这个微小的电量经过放大器放大后,送入记录仪记录;而电量的大小正比于样品的重量变化量。当被测物质在加热过程中有升华、汽化、分解出气体或失去结晶水时,被测的物质质量就会发生变化。这时热重曲线就不是直线而是有所下降。通过分析热重曲线,就可以知道被测物质在多少度时产生变化,并且根据失重量,可以计算失去了多少物质(如CuSO4·5H2O中的结晶水)。从热重曲线上我们就可以知道CuSO4·5H2O中的5个结晶水是分三步脱去的。TGA 可以得到样品的热变化所产生的热物性方面的信息。热重分析通常可分为两类:动态法和静态法。⒈静态法:包括等压质量变化测定和等温质量变化测定。等压质量变化测定是指在程序控制温度下,测量物质在恒定挥发物分压下平衡质量与温度关系的一种方法。等温质量变化测定是指在恒温条件下测量物质质量与温度关系的一种方法。这种方法准确度高,费时。热重分析仪结构2、动态法:就是我们常说的热重分析和微商热重分析。微商热重分析又称导数热重分析(Derivative Thermogravimetry,简称DTG),它是TG曲线对温度(或时间)的一阶导数。以物质的质量变化速率(dm/dt) 对温度T(或时间t)作图,即得DTG曲线。热重分析法可以研究晶体性质的变化,如熔化、蒸发、升华和吸附等物质的物理现象;研究物质的热稳定性、分解过程、脱水、解离、氧化、还原、成份的定量分析、添加剂与填充剂影响、水份与挥发物、反应动力学等化学现象。广泛应用于塑料、橡胶、涂料、药品、催化剂、无机材料、金属材料与复合材料等各领域的研究开发、工艺优化与质量监控。热重法的重要特点是定量性强,能准确地测量物质的质量变化及变化的速率,可以说,只要物质受热时发生重量的变化,就可以用热重法来研究其变化过程。热重法已在下述诸方面得到应用:⑴无机物、有机物及聚合物的热分解: ⑵金属在高温下受各种气体的腐蚀过程;⑶固态反应;⑷矿物的煅烧和冶炼;⑸液体的蒸馏和汽化;⑹煤、石油和木材的热解过程;⑺含湿量、挥发物及灰分含量的测定;⑻升华过程;⑼脱水和吸湿; ⑽爆炸材料的研究;⑾反应动力学的研究;⑿发现新化合物;⒀吸附和解吸;⒁催化活度的测定;⒂表面积的测定;⒃氧化稳定性和还原稳定性的研究;⒄反应机制的研究。18. 还可以作为测量固体表面酸碱度的表征手段。http://www.faruiyiqi.com/upfile/article/20141018156682889985.jpg热重分析仪FR-TGA-101热重分析仪热重分析法(TG、TGA)是在升温、恒温或降温过程中,观察样品的质量随温度或时间的变化,目的是研究材料的热稳定性和组份。广泛应用于塑料、橡胶、涂料、药品、催化剂、无机材料、金属材料与复合材料等各领域的研究开发、工艺优化与质量监控。测量与研究材料的如下特性:热稳定性、分解过程、吸附与解吸、氧化与还原、成份的定量分析、添加剂与填充剂影响、水份与挥发物、反应动力学。

  • 近红外与中红外光谱分析的区别

    近红外光(NIR)是介于可见区和中红外区间的电磁波,不同文献中对其波长范围的划分不尽相同,美国试验和材料协会(ASTM)规定为700 nm至2500 nm。 根据红外辐射在地球大气层中的传输特性,通常分为近红外(0.75μm到3μm)、中红外(3μm到30μm)、远红外(30μm到1000μm)。 那么,在分析原理和方法上,近红外和中红外到底有什么不同呢?

  • 热分析及红外光谱应用技术研讨会

    香港城市大学深圳研发中心 “热分析及红外光谱应用技术研讨会地点: 深圳市南山区科技园科苑南路虚拟大学园A区102教室日期: 2005年6月24 (星期五) 性质与宗旨本次研讨会将围绕塑胶行业分析技术展开。内容包括三大热分析技术——差示扫描量热分析技术,热重分析技术,动态热机械分析技术。珀金埃尔默(香港)有限公司热学仪器部主管Ms.Michelle Lee 将着重介绍三种不同仪器的操作方法,仪器性能与测试效果。 香港城市大学物理及材料科学系Dr.C.Y.Chung将介绍不同塑胶材料的红外光谱分析方法,以及红外光谱分析技术在塑胶失效分析以及性能改善中的应用。 本研讨会适合于注塑厂,吹塑厂,塑胶及色母原料生产厂家,塑胶成型工厂之工程部门主管及品质部门人士参加。研讨内容 单元 (一)珀金埃尔默(香港)有限公司热学仪器部Ms .Michelle Lee 24-6-2005 9:30-10:30 AM -差示扫描量热分析技术在塑胶行业的应用-热重分析技术在塑胶行业的应用-动态热机械分析技术在塑胶行业的应用Coffee Break 单元(二) 香港城市大学物理及材料科学系Dr.C.Y.Chung 24-6-200511:00-12:30 AM -红外光谱在失效分析中的应用-傅立叶变换红外光谱用于塑胶性能改善

  • 【原创】近红外与中红外光谱分析的区别

    近红外与中红外光谱分析的区别 是介于可见区和中红外区间的电磁波,不同文献中对其波长范围的划分不尽相同,美国试验和材料协会(ASTM)规定为700 nm至2500 nm。NIR常被化分为短波近红外(SW-NIR)和长波近红外(LW-NIR),其波段范围分别为700—1100 nm和1100—2500 nm。 1800年,Herschel 首次发现了NIR光谱区 1900年前后,NIR光谱仪器使用玻璃棱镜和胶片记录器,其光谱范围局限于700 nm—1600 nm。50年代的商品NIR光谱仪使用硫化铅光敏电阻作检测器,其波长范围能延伸至3000 nm,能用于定量分析,但,由于NIR消光系数低和谱带宽而解析困难,该技术并没有获得广泛应用。60年代,Karl Norris 使用漫反射技术对麦子水分、蛋白和脂肪含量进行研究,发现NIR光谱用于常规分析的实用价值。随计算机发展和化学计量学(Chemometrics)诞生,NIR和化学计量学结合产生了现代NIR光谱学。NIR最先应用于农业领域。80年代,光谱仪器制作和计算机技术水平有了大的提高,NIR被广泛应用于在工业和其它领域。近几届匹司堡分析仪器会议上,NIR已成为红外光谱分析报道的热点。NIR在线分析应用给石化工业带来了巨大经济效益,更是引人注目。 根据红外辐射在地球大气层中的传输特性,通常分为近红外(0.75μm到3μm)、中红外(3μm到30μm)、远红外(30μm到1000μm)。 主要区别是波长不同,应用领域不同。 红外吸收光谱法是定性鉴定化合物及其结构的重要方法之一,在生物学、化学和环境科学等研究领域发挥着重要作用。无论样品是固体、液体和气体,纯物质还是混合物,有机物还是无机物,都可以进行红外分析。红外光谱法广泛应用于高分子材料、矿物、食品、环境、纤维、染料、粘合剂、油漆、毒物、药物等诸多方面,在未知化合物剖析方面具有独到之处。 (NIR)分析技术是近年来分析化学领域迅猛发展的高新分析技术,越来越引起国内外分析专家的注目,在分析化学领域被誉为分析“巨人”,它的出现可以说带来了又一次分析技术的革命。 近红外区域按ASTM定义是指波长在780~2526nm范围内的电磁波,是人们最早发现的非可见光区域。由于物质在该谱区的倍频和合频吸收信号弱,谱带重叠,解析复杂,受当时的技术水平限制,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]“沉睡” 了近一个半世纪。直到20世纪50年代,随着商品化仪器的出现及Norris等人所做的大量工作,使得[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术曾经在农副产品分析中得到广泛应用。到60年代中后期,随着各种新的分析技术的出现,加之经典[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术暴露出的灵敏度低、抗干扰性差的弱点,使人们淡漠了该技术在分析测试中的应用,从此,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]进入了一个沉默的时期。80年代后期,随着计算机技术的迅速发展,带动了分析仪器的数字化和化学计量学的发展,通过化学计量学方法在解决光谱信息提取和背景干扰方面取得的良好效果,加之[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在测样技术上所独有的特点,使人们重新认识了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的价值,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在各领域中的应用研究陆续展开。进入90年代,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在工业领域中的应用全面展开,有关[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的研究及应用文献几乎呈指数增长,成为发展最快、最引人注目的一门独立的分析技术。由于近红外光在常规光纤中具有良好的传输特性,使[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在在线分析领域也得到了很好的应用,并取得良好的社会效益和经济效益,从此[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术进入一个快速发展的新时期。 我国对[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术的研究及应用起步较晚,除一些专业分析工作人员以外,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术还鲜为人知。但1995年以来已受到了多方面的关注,并在仪器的研制、软件开发、基础研究和应用等方面取得了较为可喜的成果。但是目前国内能够提供整套[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术([url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析仪器、化学计量学软件、应用模型)的公司仍是寥寥无几。随着中国加入WTO及经济全球化的浪潮,国外许多大型分析仪器生产商纷纷登陆中国,想在第一时间占领中国的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析仪器市场。由此也可以看出[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术在分析界炙手可热的发展趋势。在不久的未来,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术在分析界必将为更多的人所认识和接受。 现代[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析是将光谱测量技术、计算机技术、化学计量学技术与基础测试技术的有机结合。是将[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]所反映的样品基团、组成或物态信息与用标准或认可的参比方法测得的组成或性质数据采用化学计量学技术建立校正模型,然后通过对未知样品光谱的测定和建立的校正模型来快速预测其组成或性质的一种分析方法。 与常规分析技术不同,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]是一种间接分析技术,必须通过建立校正模型(标定模型)来实现对未知样品的定性或定量分析。具体的分析过程主要包括以下几个步骤:一是选择有代表性的样品并测量其[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url];二是采用标准或认可的参考方法测定所关心的组分或性质数据;三是将测量的光谱和基础数据,用适当的化学计量方法建立校正模型;四是未知样品组分或性质的测定。由[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术的工作过程可见,现代[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术包括了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]、化学计量学软件和应用模型三部分。三者的有机结合才能满足快速分析的技术要求,是缺一不可的。 与传统分析技术相比,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术具有诸多优点,它能在几分钟内,仅通过对被测样品完成一次[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的采集测量,即可完成其多项性能指标的测定(最多可达十余项指标)。光谱测量时不需要对分析样品进行前处理;分析过程中不消耗其它材料或破坏样品;分析重现性好、成本低。对于经常的质量监控是十分经济且快速的,但对于偶然做一两次的分析或分散性样品的分析则不太适用。因为建立[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]方法之前必须投入一定的人力、物力和财力才能得到一个准确的校正模型。 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]主要是反映C-H、O-H、N-H、S-H等化学键的信息,因此分析范围几乎可覆盖所有的有机化合物和混合物。加之其独有的诸多优点,决定了它应用领域的广阔,使其在国民经济发展的许多行业中都能发挥积极作用,并逐渐扮演着不可或缺的角色。主要的应用领域包括:石油及石油化工、基本有机化工、精细化工、冶金、生命科学、制药、医学临床、农业、食品、饮料、烟草、纺织、造纸、化妆品、质量监督、环境保护、高校及科研院所等。在石化领域可测定油品的辛烷值、族组成、十六烷值、闪点、冰点、凝固点、馏程、MTBE含量等;在农业领域可以测定谷物的蛋白质、糖、脂肪、纤维、水分含量等;在医药领域可以测定药品中有效成分,组成和含量;亦可进行样品的种类鉴别,如酒类和香水的真假辨别,环保废弃物的分检等。 相信随着科学技术的不断发展,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术这一先进的技术必将得到广泛的认同和应用。

  • 红外分析中遇到的问题

    在我的研究中遇到这样的问题:固体二氧化硅,表面主要吸附位点为硅烷醇基团Si-OH;腐殖酸,表面主要作用位点为羧基-COOH。二者在水溶液中,在中性pH下都解离出氢离子而带负电。如果假设二者通过配位作用生成Si-O-OC-的结构(OC为碳氧双键),那么这个过程在红外分析和XPS分析中会在谱图上如何表现呢(假设使用没有和腐殖酸反应的二氧化硅固体作为参照)?

  • [转贴]:近红外光谱法在药物分析中的应用

    近红外(Near Infrared,NIR)光谱的波长范围是780~2526nm(12820~3959cm-1),通常又将此波长范围划分为近红外短波区(780~1100nm)和近红外长波区(1100~2526nm)。由于该区域主要是O-H,N-H,C-H,S-H等含氢基团振动光谱的倍频及合频吸收,谱带宽,重叠较严重,而且吸收信号弱,信息解析复杂,所以虽然该谱区发现较早,但分析价值一直未能得到足够的重视。近年来,由于巨型计算机与化学统计学软件的发展,特别是化学计量学的深入研究和广泛应用,使其成为发展最快、最引人注目的光谱技术[1]。而且由于该技术方便快速,无需对样品进行预处理,适用于在线分析等特点,在药物分析领域中正不断得到重视与应用。 [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=16164][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法在药物分析中的应用[/url]

  • 红外分析中遇到的问题

    在我的研究中遇到这样的问题:固体二氧化硅,表面主要吸附位点为硅烷醇基团Si-OH;腐殖酸,表面主要作用位点为羧基-COOH。二者在水溶液中,在中性pH下都解离出氢离子而带负电。如果假设二者通过配位作用生成Si-O-OC-的结构(OC为碳氧双键),那么这个过程在红外分析和XPS分析中会在谱图上如何表现呢(假设使用没有和腐殖酸反应的二氧化硅固体作为参照)?

  • 红外分析中遇到的问题

    在我的研究中遇到这样的问题:固体二氧化硅,表面主要吸附位点为硅烷醇基团Si-OH;腐殖酸,表面主要作用位点为羧基-COOH。二者在水溶液中,在中性pH下都解离出氢离子而带负电。如果假设二者通过配位作用生成Si-O-OC-的结构(OC为碳氧双键),那么这个过程在红外分析和XPS分析中会在谱图上如何表现呢(假设使用没有和腐殖酸反应的二氧化硅固体作为参照)?

  • 【原创大赛】热分析/红外光谱联用的理论基础

    【原创大赛】热分析/红外光谱联用的理论基础

    [font=华文楷体][/font][font=华文楷体][size=24px][color=#ff0000][b]本文最初发在“热分析与吸附”公众号([url=http://mp.weixin.qq.com/s?__biz=MzI5MjUzMzQ0OA==&mid=2247484442&idx=1&sn=9323d796ef1c48d441880a7ae64158b1&chksm=ec7ea1bddb0928ab0aed46cb54c861ebac7ad99f36125cb064f816d1694fef4797c16bc236e9&token=66278860&lang=zh_CN#rd]链接[/url]),欢迎关注公众号了解更多的与热分析和吸附相关的内容。[/b][/color][/size][/font][b][font=华文楷体][size=14.0pt]在本文中简要地介绍与热分析红外光谱联用技术(以下简称TA/IR)相关的一些基本知识。[/size][/font][font=华文楷体][size=14.0pt]1. [/size][/font][font=华文楷体][size=14.0pt]热分析联用简介[/size][/font][font=华文楷体][size=14.0pt]为了保持内容的系统性,本部分内容与《热分析/质谱联用的数据分析方法 第1部分 理论基础》中的部分内容相同。[/size][/font][font=华文楷体][size=14.0pt]联用技术是近年来分析仪器的一个发展趋势,许多常规的分析仪器如色谱、X射线衍射、各类光谱仪等都已实现了与其他分析技术的联用,热分析仪当然也不例外。早在两千多年前,我国战国时期的楚国诗人、政治家屈原在《楚辞卜居》中就已指出“尺有所短,寸有所长。物有所不足,智有所不明”。这告诉我们每种分析技术均有其独特的优势,但我们也应清醒地认识到它们自身也会存在着一定的不足。只有在实际应用中对每种分析技术扬长避短,充分发挥其优势,才可以达到事半功倍的效果。其实,在许多中文版本的文献资料中,对联用技术的描述通常使用“联用”而不是“连用”来表述,这也充分表明联用技术不是简单地将两种或多种技术连接或拼接在一起,而是要在实际上有机地、合理地将其组合在一起。也就是说,对于由多种技术的联用仪而言,其不仅仅满足于可以达到1+1+…+1 = N的效果,而且应达到1+1+…+1 N的效果。当然,对于一些不成功的联用技术而言,有时达到的效果可能为1+1+…+1 N,甚至等于0。[/size][/font][font=华文楷体][size=14.0pt]由常规的热分析可以得到在热分析实验过程中所研究的对象在一定的气氛和程序控制温度下由于其结构、成分变化而引起的质量、热效应、尺寸等性质的变化信息。通过将热分析技术与常规的分析技术如红外光谱技术、质谱、色谱、显微技术、拉曼光谱、X射线衍射等联用,可以得到在物质的性质发生发生变化的过程中产物的结构、成分、形貌、物相等的变化信息。通过这些信息,可以使我们了解到物质在一定的气氛和程序控制温度下所发生的各种变化的更深层次的一些信息,对于过程中的反应机理、动力学信息有更深刻的认识。热分析联用技术的特点和优势可以概括为实时、全面、高效,但我们也应清醒地认识到对于一些高温分解产生的气体分析时在传输过程中的冷凝现象的影响,一些高温产物在传输管线中的冷凝会导致由红外光谱、色谱和/或质谱进行气体分析时丢失一部分气体产物的信息。当前应用最为广泛的热分析联用技术主要有:(1)热重-差热分析、热重-差示扫描量热法以及显微热分析等,这属于同时联用的范畴;(2)热分析与红外光谱技术、质谱的联用,这属于串接式联用的范畴;(3)热分析与[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]等技术的联用,由于与热分析联用的这类技术自身在分析时需要一定的时间,因此通常称该类技术为间歇式联用技术。其实,这类技术也属于串接式联用的范畴。[/size][/font][font=华文楷体][size=14.0pt]2. [/size][/font][font=华文楷体][size=14.0pt]热分析/红外光谱联用技术简介[/size][/font][font=华文楷体][size=14.0pt]由于对红外光谱技术的详细描述内容已经超出了本文的范围,因此在本部分内容中我们仅讨论在应用时所必需的一些与IR相关的背景知识。[/size][/font][font=华文楷体][size=14.0pt]傅里叶变换红外光谱法(FTIR)是基于分子与近红外(12500~4000cm[sup]-1[/sup])、中红外(4000-200cm[sup]-1[/sup])和远红外(200~12.5cm[sup]-1[/sup])光谱区电磁辐射相互作用的原理。当红外辐射通过一个样品,根据不同分子的结构特性样品会吸收一定频率的能量,引起分子或分子的不同部分(官能团)在这些频率下振动。通过红外光谱法可以得到分子的官能团相关的结构信息。与质谱法相比,由于红外线的能量比较低,没有离子化、裂解或者破碎发生,因此FTIR可以用于分子官能团的鉴别。但是FTIR比MS的灵敏度低很多,可用来分析含量较高的物质的结构信息。[/size][/font][font=华文楷体][size=14.0pt]在实际应用中,仅采用红外光谱法对由多组分共混、共聚或复合成的材料及制品进行研究时,经常会遇到这些材料中混合组分的红外吸收光谱带位置很靠近,甚至还发生重叠,相互干扰,很难判定,仅依靠FTIR法有时就不能满足要求。而用热分析测定混合物时,不需要分离,一次扫描就能把混合物中几种组分的熔点按高低分辨出来,但是单独用其定性灵敏度不够。[/size][/font][font=华文楷体][size=14.0pt]通过将热分析与红外光谱技术联用,可利用FTIR法提供的特征吸收谱带初步判定几种基团的种类,再由热分析技术提供的熔点和曲线,即可以准确地鉴定共混物组成。对于相同类型不同品种材料的共混物、掺有填料的多组分混合物和很难分离的复合材料的分析鉴定既准确,又快捷,是一种行之有效的方法。[/size][/font][font=华文楷体][size=14.0pt]概括地说,热分析红外光谱联用(简称TA/IR)联用技术是在程序控制温度和一定气氛下,通过红外光谱仪在线监测由热分析(主要为热重仪、热重-差热分析仪以及热重-差示扫描量热仪)中由试样逸出的气体的信息的一种热分析联用技术,常见的联用形式有TG/IR、TG-DTA/IR以及TG-DSC/IR等技术。[/size][/font][font=华文楷体][size=14.0pt]为了叙述方便,本系列内容中涉及热分析/红外光谱联用技术的内容中的热分析部分仅以TG为例进行叙述。[/size][/font][font=华文楷体][size=14.0pt]3. [/size][/font][font=华文楷体][size=14.0pt]热重/红外光谱联用技术的工作原理[/size][/font][font=华文楷体][size=14.0pt]热重/傅里叶变换红外光谱联用法(TG/FTIR),简称热重/红外光谱联用法(TG/IR),是一种常见的热分析联用技术。该类方法通过可以加热的传输管线将热重仪与红外光谱仪串接起来的一种技术,属于串接式联用技术。[/size][/font][font=华文楷体][size=14.0pt]该方法是一种利用吹扫气(通常为氮气或空气)将热重仪在加热过程中产生的逸出产物通过设定温度下(通常为200℃-350℃的金属管道或石英管)的传输管线进入到红外光谱仪的光路中的气体池中,并通过红外光谱仪的检测器(通常为DTGS检测器和MCT检测器)分析判断逸出气体组分结构的一种技术。实验时,随着热重仪的温度变化,在由热重仪测量待测样品的质量随温度的变化的同时,由红外光谱仪测量在不同的温度下由于质量的减少引起的气体产物的官能团随温度的变化信息。实验数据以热重曲线和红外光谱图的形式表示,通过实验可以得到不同温度下的样品的质量以及所产生气体的红外光谱图。[/size][/font][font=华文楷体][size=14.0pt]4. [/size][/font][font=华文楷体][size=14.0pt]热重/红外光谱联用仪的工作原理[/size][/font][font=华文楷体][size=14.0pt]常用的TG/IR仪的结构框图如图1所示。[/size][/font][/b][align=center][img=,627,245]https://ng1.17img.cn/bbsfiles/images/2020/06/202006120735508616_9426_1879291_3.png!w627x245.jpg[/img][/align][align=center][b][font=华文楷体][size=14.0pt]图1 TG/IR仪的结构框图[/size][/font][/b][/align][b][font=华文楷体][size=14.0pt]TG/IR[/size][/font][font=华文楷体][size=14.0pt]仪主要由热重仪主机(主要包括程序温度控制系统、炉体、支持器组件、气氛控制系统、温度测量系统、称量系统等部分)、红外光谱仪主机(包括检测器、气体池等部分)、联用接口组件(包括加热器、隔热层等部分)、仪器辅助设备(主要包括自动进样器、冷却装置、机械泵等部分)、仪器控制和数据采集及处理各部分组成。[/size][/font][font=华文楷体][size=14.0pt]所有从TG仪器中流出的气体都会流入红外光谱仪中的一个加热的气体池,红外光谱仪的检测器以非常快的速度(如每秒1次)记录下不同时刻或温度下产生的气体的红外光谱图,可将获得的光谱(吸光度对波数)与[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]红外光谱库中的光谱进行比对和分析。[/size][/font][font=华文楷体][size=14.0pt]5. [/size][/font][font=华文楷体][size=14.0pt]由热重/红外光谱联用技术可得到的信息[/size][/font][font=华文楷体][size=14.0pt]通过TG/IR实验除了可以得到热分析部分的数据外,还可以得到以下信息:[/size][/font][font=华文楷体][size=14.0pt](1)Gram-Schmidt曲线[/size][/font][font=华文楷体][size=14.0pt]通过软件还可以在整个光谱范围内将每一个单独的FTIR光谱的光谱吸收积分,结果被显示成强度对时间的在线曲线,这就是通常所说的Gram-Schmidt曲线(简称GS曲线),GS曲线是总红外吸收的定量度量,显示逸出气体浓度随时间的变化(如图2)。[/size][/font][/b][align=center][img=,360,288]https://ng1.17img.cn/bbsfiles/images/2020/06/202006120736095008_322_1879291_3.png!w360x288.jpg[/img][/align][align=center]图2[/align][b][font=华文楷体][size=14.0pt](2)不同温度或时间下的三维红外光谱图[/size][/font][font=华文楷体][size=14.0pt]在程序控制温度下,由试样逸出的气体通过红外光谱仪实时检测到的三维红外光谱图如图3所示。图3是由实验时所得到的所有的红外光谱图组成的,由图可以得到不同结构的气体分子所对应的官能团的总体变化过程。[/size][/font][/b][align=center][img=,558,472]https://ng1.17img.cn/bbsfiles/images/2020/06/202006120736243985_5910_1879291_3.png!w558x472.jpg[/img][/align][align=center] [b][font=华文楷体][size=14.0pt]图3三维红外光谱图[/size][/font][/b][/align][align=center][/align][b][font=华文楷体][size=14.0pt](3)官能团剖面图 functional group profile(FGP)[/size][/font][font=华文楷体][size=14.0pt]FGP[/size][/font][font=华文楷体][size=14.0pt]常用来表示在实验过程中逸出的气体中特定的波数随测量时间或温度的变化关系,通常通过对实验过程中所选光谱区域上的红外光谱数据的吸光值积分来得到该剖面图。在软件中,一些这样的剖面图是可以实时计算得到的。[/size][/font][font=华文楷体][size=14.0pt]通过官能团剖面图可以用来描述在具有某一官能团的物质在不同温度或时间下产生的气体量的变化,如图4所示。图4中为产生的气体产物中在1507 cm[sup]-1[/sup]、1650cm[sup]-1[/sup]和2380 cm[sup]-1[/sup]处有特征吸收的官能团随温度的变化曲线,由此可以得到该类物质在不同温度下的浓度变化信息。[/size][/font][/b][align=center][b][font=华文楷体][size=14.0pt] [img=,444,361]https://ng1.17img.cn/bbsfiles/images/2020/06/202006120736420628_8092_1879291_3.png!w444x361.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图4 具有不同的能团的物质的浓度随温度的变化曲线[/size][/font][/b][/align]

  • 近红外光谱法在药物分析中的应用(转载)

    近红外(Near Infrared,NIR)光谱的波长范围是780~2526nm(12820~3959cm-1),通常又将此波长范围划分为近红外短波区(780~1100nm)和近红外长波区(1100~2526nm)。由于该区域主要是O-H,N-H,C-H,S-H等含氢基团振动光谱的倍频及合频吸收,谱带宽,重叠较严重,而且吸收信号弱,信息解析复杂,所以虽然该谱区发现较早,但分析价值一直未能得到足够的重视。近年来,由于巨型计算机与化学统计学软件的发展,特别是化学计量学的深入研究和广泛应用,使其成为发展最快、最引人注目的光谱技术。而且由于该技术方便快速,无需对样品进行预处理,适用于在线分析等特点,在药物分析领域中正不断得到重视与应用。 [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=836]相关附件[/url]

  • TGA热重分析

    [align=left]大家好,今天我们来聊一下TGA热重分析仪。[/align]首先我们讲下热分析仪的发展史,1887年Le Chatelier利用升温速率变化曲线来鉴定粘土;1899年Roberts-Austen提出温差法;1903年Tammann首次使用热分析这一术语;1915年 本多光太郎奠定了现代热重法的初步基础,提出热天平这一术语;1945年 首批商品热天平生产,本世纪60年底初开始研制和生产较为精细的差热分析仪;1964年 Waston提出差示扫描量热法;1979年中国化学会溶液化学、化学热力学、热化学和热分析专业委员会成立;1980年在西安召开第一届热化学、热力学和热分析学术讨论会,第二次会议1984年在武汉召开,之后逢双年召开。热重分析仪定义:在不同的热条件(恒定速度升温或等温)下对样品的质量变化加以测量的动态技术。热重曲线:又称TG曲线,由TG试验获得的曲线。如下图所示,以重量为纵坐标,由上至下质量减少,以温度或时间为横坐标由左至右增加。影响热重曲线因素主要有仪器因素,测试条件和样品因素• 仪器因素[list=1] [*]气体的浮力和对流 [*]坩埚材料 [*]挥发物再冷凝的影响 [*]支持器和炉子的几何形状 [*]天平和记录部件的灵敏度[/list]• 测试条件[list=1] [*]升温速率 [*]炉内温度[/list]• 样品因素[list=1] [*]样品量 [*]样品的几何形状 [*]样品的装填方式 [*]样品的属性[/list]热重分析仪特点主要有以下两点:第一点:定量性强,能准确地测量物质的质量变化而变化的速率,不管引起这种变化的是化学的还是物理的;第二点:是使用最多,最广泛的热分析技术。热重分析仪类型有分为等温热重法和动态热重法热重分析仪主要由天平、加热炉、程序控温系统和记录仪组成。根据试样与天平横梁支撑点之间的相对位置,热天平可分为下皿式,上皿式与水平式三种。在操作热重分析仪时我们需要注意以下几点:1.不可用力过大,造成样品支架不可挽救的损坏;2.可升华的固体尽量避免;3.热降解期间会产生大量炭黑的样品应避免;4.腐蚀性样品,特别是酸应避免,测试必须用Pt坩埚 5.样品量一般不低于1 mg 6.TGA仪器内部构造为一精密光学天平,故实验中避免震动,严禁擅自挪动仪器位置;7.请勿用手挂铂金盘,避免损伤铂金吊钩;8.进行开机操作前务必确认电源线路、进气管道、冷却水管道连接正常由于热重法具有定量性强,能准确测量物质的质量变化及变化的速率的特点,可以说,只要物质受热时发生重量的变化,就可以用热重法来研究其变化过程。热重法所测的性质包括腐蚀,高温分解,吸附及解析附,溶剂的损耗,氧化还原反应等。目前广泛应用于塑料、橡胶、涂料、药品、催化剂、无机材料、金属材料与复合材料等各领域的研究开发、工艺优化与质量监控。对于TGA来说,炉体的冷却时间和天平的稳定时间非常重要。不同的厂家这两项指标不同,选购不好将直接影响用户的工作效率。下面先分析一下炉体冷却时间和天平的稳定时间对工作效率的影响,有的厂家天平需要半小时甚至更长时间才能稳定,有的厂家天平只需要几分钟就能稳定。TGA测试是很费时间的,天平稳定快,冷却速率快的TGA一天(10个小时)能测试四个样品时间还有剩余 天平稳定慢,冷却速率慢的TGA一天(10小时)也就测试2个试样,时间还很紧张。所以选择TGA的时候,首先要考虑天平的稳定时间,这样才能保证使用时的方便性。其次,试样皿的选用。适合TGA分析的试样皿要求能耐高温,而且针对不同的分析样品应该选择合适的试样皿。通常用的试样皿有铂金的、陶瓷、石英、玻璃、铝等。像碳酸钠一类碱性样品,测试时不要用铝、石英、玻璃、陶瓷试样皿。铂金试样皿,对有加氢或脱氢的有机物有活性,也不适合作含磷、硫和卤素的聚合物样品。[color=#333333]你听懂了吗?是不是对TGA热重分析仪有更深的了解了呢?[/color][color=#333333][/color]

  • 关于热重-红外结果异常的问题

    关于热重-红外结果异常的问题

    最近做了几个热重-红外联用测试,热重结果倒还正常,红外结果明显有问题,特别是低波数区(如图所示),求教高手该如何解决这个问题。http://ng1.17img.cn/bbsfiles/images/2016/09/201609261601_612162_3101342_3.png

  • 【求助】近红外与其他分析仪器连用技术的研究

    [em09506]傅立叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]与色谱联用可以进行多组分样品的分离和定性,与显微镜联用可进行微量样品的分析鉴定,与热失重联用可进行材料的热稳定性研究,与拉曼光谱联用可得到红外光谱弱吸收的信息。实践证明,红外光谱联用技术是一种十分有效的实用技术,现已实现联机的有[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-红外、高效液相色谱-红外、超临界流体色谱-红外、薄层色谱-红外、热失重-红外、显微镜-红外及[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-红外-质谱等,这将进一步提高分析仪器的分离分析能力。我目前急需这方面的中英文材料或者研究建议,请大侠们多指教,能给我更多的帮助并且大家也可多多交流。[em09505]

  • 【原创】近红外光谱分析技术在药学领域中的应用

    [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术在药学领域中的应用摘要:综述了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术在药学领域中的应用,包括[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法在原料药的分析、药物制剂的分析和制药过程中的质量控制等等。关键词 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url],药学,应用 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术自70年代以来取得了重要进展,特别在药学领域,已有大量文献介绍[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术在这些方面的应用。1 原料药的分析 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法可用于原料药活性成分的分析。Mark等使用马氏距离分类技术,通过[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]对制药原料进行定性鉴别。Shah等则分别用马氏距离法和SIMCA法这两种分类方法对制药原料的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]进行分类。另外,原料药的结晶状态、粒径和密度在制剂生产和控制主要活性成分的过程中非常重要,可用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]对原料药的不同物理性质进行检测。Dreassi等利用近红外反射光谱,根据药物的不同物理性质,对扑热息痛、布洛芬等几种原料药进行了成功的鉴别。2 药物制剂的分析 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术在药物制剂的分析方面的应用有了很大的发展。在早期,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法和传统分析方法一样,需要用溶剂提取制剂样品中的待测成分后进行测定。随着近红外分析仪的发展,计算机科学和化学计量学的进步,可以用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法对制剂样品进行无损分析。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术所具备的这种传统分析方法无可比拟的优越性,也为实现生产过程实时在线的质量控制提供了新的手段。2.1 制剂中活性的含量测定 最早使用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]对片剂药物进行含量测定的是FDA的Sherken。他用近红外法测定一系列的甲丙氨酯标准溶液,建立了计算甲丙氨酯片含量的校正方程。几年后,Zappala等继续考察了近红外对片剂和缓释胶囊中甲丙氨酯的含量分析,对Sherken的方法作了改进。Allen用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法定量测定了片剂中的卡立普多、非那西丁和咖啡因。为降低近红外分析的检测限,Corti等尝试在分析前用氯仿进行提取,测定了口服避孕药中的炔雌醇和炔诺酮。Chasseur使用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析了西米替丁颗粒的含量,并用紫外光谱法作对照,结果基本一致。Corti等在用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析胶质和粉末基质中酮替芬含量时,考察了校正样品的浓度范围对结果的影响,并在此基础上分析了雷尼替丁片的含量。为建立用于药物制剂的可靠而稳定的数学模型,Jouan-Rimbaud等考察了多种校正方法后发现,可以通过特征选择改善多元校正。 Jensen等将[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]用于胺碘酮薄膜包衣片的分析,为消除薄膜包衣可能产生的干扰,在采集[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]前除去了包衣。而Wang等在第9届[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]国际会议上的一篇报告指出,除去包衣并不必要。他们用近红外发射光谱透过厚的胶囊壁,成功地测定了雷尼替丁胶囊中活性成分的含量。2.2 药物制剂的鉴别和分类 Ciurczak等用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]对含三种活性成分的药物制剂进行了分析,分别考察了光谱的减除、光谱的再现和判别分析等数据处理方法在制剂的组成成分鉴别和制剂样品分类中的应用。Corti等将马氏距离用于[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的分类,对10种抗生素制剂进行定性区分,所有待测样品都得到了很好的分类。Wu等采用主成分分析和偏最小二乘算法进行光谱的特征选择,从而实现对不同剂量的同种药物制剂的区分。Lodder等在1987年提出了基于近红外反射分析检测完整胶囊的方法。为达到快速、简便测定胶囊的目的,他们设计了一种特殊的反射器,无需打开胶囊剂,即可直接放入反射器进行测定。Lodder等还将[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]用于对片剂的直接测定,使用改进的载样装置分析阿司匹林片剂,得到了较好的分类结果。Dempster等开发了一种非侵入式近红外反射分析法,采用光纤传感器透过包装材料直接测定样品,能够识别成分相同,但包衣材料不同的片剂。 在国内,任玉林等对近红外在药品无损分析中的应用进行了一系列研究。他们应用几种多变量统计分类技术,对磺胺噻唑、美迪康等粉末药品进行了非破坏性分析,成功地鉴别出合格药、劣药和假药。2.3 水分的测定 由于水分子在近红外区有一些特征性很强的合频吸收带,而其它各种分子的倍频与合频吸收相对较弱,这使[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]能够较为方便地测定药物和其它化学物质中水分的含量。Jones等利用近红外分析对冻干剂中的含水量进行了测定。用这种方法每小时可测定40个样品,并且结果与Karl Fischer法一致。作者认为,近红外法避免了空气中水分的干扰,因此与Karl Fischer法相比有其优越性。Corti等也将[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法应用于盐酸雷尼替丁片中含水量的分析控制。2.4 片剂的溶出度测定 Zaunikos等将[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法用于卡马西平片的溶出度测定。Drennen等继续进行了这方面的研究,用近红外法对溶出度不同的卡马西平片进行了正确分类。3 制药过程中的质量控制 制药过程控制分析是药物分析的一个重要研究内容。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析的最大特点是操作简便、快速,可不破坏样品进行原位测定,可不使用化学试剂,不必对样品进行预处理,可直接对颗粒状、固体状、糊状、不透明的样品进行分析。这些特点使得近红外分析技术特别适宜于在线的过程控制分析。3.1 粉末混合过程控制 Sekulic等使用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]对粉末混合均匀性进行在线监测。混合物样品中含10%苯甲酸钠、39%微晶纤维素、50%乳糖和1%滑石粉。首先用商品[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]收集样品的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]数据,然后用软件包对数据进行处理。结果表明,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术作为一种对药物混合均匀性的“实时”的非侵入式分析方法是可行的、有效的。3.2 包衣过程监控 Kirsch等发现片剂样品[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的变化与包衣的厚度之间存在相关性。他们对[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法在片剂的包衣过程监控中的应用作了进一步的考察。在用乙基纤维素(EC)或羟丙基纤维素(HPMC)进行包衣的过程中,按一定的时间间隔取样,测定片剂样品的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]。采用二阶导数变换和多元散射校正两种方法对光谱进行处理,然后用主成分分析建立计算包衣厚度的校正模型。由于[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法具有非破坏性,可以进一步测定样品的溶出度,考察包衣厚度与溶出度的相关性,从而更好地控制包衣制剂的质量。 为控制药物活性成分的释放,研究人员正在研究一种以包衣技术为核心的制剂新工艺,即在缓释药物片心外包上一层含有快速释放药物的包衣。这需要一种能够对外层包衣中药物活性成分进行快速、非破坏性的定量分析方法,对这种高精度要求的包衣过程进行监控。Buchanan等选择了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法,所得结果与HPLC测试结果一致。这表明能够用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法更加快速有效地对新的包衣工艺进行质量评价。3.3 片剂生产过程控制 Dreassi等对近红外反射分析在抗生素片剂生产控制中的应用进行了研究,采用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析法结合化学计量学方法对抗菌素头孢呋肟酯片剂的生产进行全过程监测。他们用对原始光谱数据的判别分析、对主成分分析得分的判别分析和聚类分析三种方法分别对头孢呋肟酯的原料药、颗粒、片心和片剂进行了鉴别,结果较好;并用多元线性回归和偏最小二乘法对该化合物的含量和含水量进行定量分析,也取得了满意的结果。 近年来,随着仪器、软件以及样品处理技术的发展,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在药学领域中的应用取得了很大进步。使用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术对药物制剂进行快速的非破坏性分析已成为可能,制药工业企业也已开始发展近红外方法对药物生产过程的各个环节进行监控。并且,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术已得到药品质量管理部门如美国FDA和加拿大卫生部(Health Protection Branch)的重视。由此可见,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术受到了越来越多的关注。随着[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]技术的不断提高和化学计量学的发展,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术在药学领域中的应用将越来越广泛。

  • 【原创大赛】热分析/质谱联用的仪器分析软件中热重部分的数据处理与作图

    【原创大赛】热分析/质谱联用的仪器分析软件中热重部分的数据处理与作图

    [font=华文楷体][/font][font=华文楷体][size=14pt][b][color=#3366ff]注:本文最初发于《热分析与吸附》公众号,[url=http://mp.weixin.qq.com/s?__biz=MzI5MjUzMzQ0OA==&mid=2247484368&idx=1&sn=0de4d622ceba3f1af5c6b6d1c1f684a0&chksm=ec7ea677db092f612a1cc4701af60cf453391fabff2794955128cefd47d7a37b016c3d486fdf&token=106295096&lang=zh_CN#rd]原文链接[/url],欢迎关注公众号了解更多的与热分析和吸附相关的内容[/color][/b][/size][/font][b][font=华文楷体][size=14.0pt]本部分将介绍实验结束后的数据处理过程。由于本部分内容较多,为了叙述和阅读的方便,本部分将以实验室在用的美国Perkin Elmer公司的热重/红外光谱/[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]质谱联用仪为例简要介绍热分析/质谱联用中与热重部分的数据处理与作图相关的内容,在下一部分内容中将介绍与质谱部分的数据处理与作图相关的内容。[/size][/font][font=华文楷体][size=14.0pt]1. [/size][/font][font=华文楷体][size=14.0pt]实验样品信息[/size][/font][font=华文楷体][size=14.0pt]样品:一水合草酸钙(白色粉末);[/size][/font][font=华文楷体][size=14.0pt]实验气氛:高纯He,流速100mL/min;[/size][/font][font=华文楷体][size=14.0pt]坩埚:敞口氧化铝坩埚;[/size][/font][font=华文楷体][size=14.0pt]温度范围:室温-900℃;[/size][/font][font=华文楷体][size=14.0pt]加热速率:20℃/min[/size][/font][font=华文楷体][size=14.0pt]仪器:美国PerkinElmer 热重(型号Pyris 1)/红外光谱(型号Frontier)/[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url](型号Clarus680)/质谱(型号Clarus SQ8T)联用仪;[/size][/font][font=华文楷体][size=14.0pt]传输管线温度:热重仪至红外光谱仪温度、红外光谱仪气体池温度、红外光谱仪至[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]温度、GC/MS八通阀温度均为280℃,泵抽速60mL/min,由TL-900联用装置控制(图1)。[/size][/font][/b][align=center][img=,558,480]https://ng1.17img.cn/bbsfiles/images/2020/06/202006090804397673_2956_1879291_3.png!w558x480.jpg[/img][/align][align=center][b][font=华文楷体][size=14.0pt]图1[/size][/font][/b][/align][b][font=华文楷体][size=14.0pt]GC/MS[/size][/font][font=华文楷体][size=14.0pt]仪工作条件:柱温箱280℃,载气He流速1mL/min,MS传输线温度280℃、EI源、源电压70eV、源温度280℃;其他参数见图2. [/size][/font][font=华文楷体][size=14.0pt]MS[/size][/font][font=华文楷体][size=14.0pt]检测通过选择离子扫描(质量数为12、18、28、32、44)和全范围离子扫描(质量数范围44-300)进行。[/size][/font][/b][align=center][img=,690,469]https://ng1.17img.cn/bbsfiles/images/2020/06/202006090804561376_5834_1879291_3.png!w690x469.jpg[/img][/align][align=center][b][font=华文楷体][size=14.0pt]图2[/size][/font][/b][/align][b][font=华文楷体][size=14.0pt]2. [/size][/font][font=华文楷体][size=14.0pt]热重曲线分析[/size][/font][font=华文楷体][size=14.0pt]打开需分析的热重曲线的原始文件,打开后界面如图3所示。点击Display菜单中的weight%选项,将纵坐标由绝对质量换算为以百分比表示的相对质量(图4)。点击Temperature/time图标(图5),将横坐标由时间转换为温度(针对线性加热的实验条件)。坐标转换后的曲线如图6所示。图6中的TG曲线中,随温度升高先后出现了失去一分子结晶水、失去一分子CO和失去一分子CO2的三个失重过程。[/size][/font][/b][align=center][img=,404,243]https://ng1.17img.cn/bbsfiles/images/2020/06/202006090805118263_5265_1879291_3.png!w404x243.jpg[/img][/align][align=center][b][font=华文楷体][size=14.0pt]图3[/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt] [img=,447,398]https://ng1.17img.cn/bbsfiles/images/2020/06/202006090805262347_8583_1879291_3.png!w447x398.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图4[/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt] [img=,562,209]https://ng1.17img.cn/bbsfiles/images/2020/06/202006090805385064_2880_1879291_3.png!w562x209.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图5[/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt][img=,562,268]https://ng1.17img.cn/bbsfiles/images/2020/06/202006090805498981_6279_1879291_3.png!w562x268.jpg[/img] [/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图6[/size][/font][/b][/align][b][font=华文楷体][size=14.0pt]如需得到微商热重(DTG)曲线,则选中Math菜单下的Derivative选项(图7),可得到如图8所示的DTG曲线。图8中右侧的Y轴所对应的为DTG曲线,左侧的Y轴所对应的则为TG曲线。如需对DTG曲线进行平滑处理,则选中图7中的Smooth选项,在弹出的窗口(图9)中设置需平滑的范围和平滑次数,平滑后的曲线如图10所示。[/size][/font][/b][align=center][b][font=华文楷体][size=14.0pt] [img=,562,327]https://ng1.17img.cn/bbsfiles/images/2020/06/202006090806007117_8271_1879291_3.png!w562x327.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图7[/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt][img=,562,273]https://ng1.17img.cn/bbsfiles/images/2020/06/202006090807061823_1075_1879291_3.png!w562x273.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图8[/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt] [img=,424,230]https://ng1.17img.cn/bbsfiles/images/2020/06/202006090806531189_8898_1879291_3.png!w424x230.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图9[/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt][img=,558,274]https://ng1.17img.cn/bbsfiles/images/2020/06/202006090807190910_1332_1879291_3.png!w558x274.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图10[/size][/font][/b][/align][align=center][/align][b][font=华文楷体][size=14.0pt]点击图11中的Calc菜单中的相关选项,分别计算每一失重台阶所对应的百分比及其特征温度,分析后的曲线如图12所示。需要指出,在分别对TG和DTG曲线进行分析时,应用鼠标首先选中需分析的曲线,选中后的曲线显示较粗(如图8和图10)。[/size][/font][/b][align=center][img=,301,397]https://ng1.17img.cn/bbsfiles/images/2020/06/202006090807319702_2966_1879291_3.png!w301x397.jpg[/img][/align][align=center][b][font=华文楷体][size=14.0pt]图11[/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt][img=,558,275]https://ng1.17img.cn/bbsfiles/images/2020/06/202006090807499866_9742_1879291_3.png!w558x275.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图12[/size][/font][/b][/align][align=center][/align][font=华文楷体][size=14.0pt]3. [/size][/font][font=华文楷体][size=14.0pt]热重曲线分析结果的导出[/size][/font][font=华文楷体][size=14.0pt]由于软件中经归一化、平滑、微分等处理后的分析结果不能一键导出,在数据导出时建议采用以下方法:[/size][/font][font=华文楷体][size=14.0pt](1)原始数据的导出[/size][/font][font=华文楷体][size=14.0pt]点击File菜单下的Export data选项(图13),选择导出的文件格式(.txt或.csv),并保存为相应的文件,导出的数据如图14所示。需要注意,[color=red]通过这种方式导出的文件为经平滑、微分等处理前的数据![/color] [/size][/font][align=center][img=,440,424]https://ng1.17img.cn/bbsfiles/images/2020/06/202006090808011001_6739_1879291_3.png!w440x424.jpg[/img][/align][align=center][b][font=华文楷体][size=14.0pt]图13[/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt][img=,690,239]https://ng1.17img.cn/bbsfiles/images/2020/06/202006090808155641_7273_1879291_3.png!w690x239.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图14[/size][/font][/b][/align][b][font=华文楷体][size=14.0pt]图14中,第一列为实验时间(单位为分钟),第二列为样品质量(单位为mg),第四列为程序温度(单位为℃),第五列为程序温度(单位为℃)。在其他作图软件中进行作图时通常用第五列中的样品温度作为横坐标,第二列中的质量作为纵坐标进行分析。当然,第二列中的质量需要进行归一化处理。在公众号文章《Origin软件中热重曲线的作图方法》中以Origin软件为例介绍了相应的处理方法,此处不做赘述。[/size][/font][font=华文楷体][size=14.0pt](2)数据处理后的数据导出方法[/size][/font][font=华文楷体][size=14.0pt]如需导出经归一化、平滑、微分等处理后的分析数据,可选中Edit菜单下的Copy或CopyImage选项复制数据或者图片到作图软件中进行进一步处理(图15)。为了便于分析,也可以复制到空白的Excel表中再导入至其他软件中进行进一步处理。图16给出了将TG曲线和DTG曲线复制到一个Excel文件中的实例,供参考。也可将曲线分析后的图片直接复制到该表格中,如图17。[/size][/font][/b][align=center][b][font=华文楷体][size=14.0pt] [img=,438,219]https://ng1.17img.cn/bbsfiles/images/2020/06/202006090808279901_2592_1879291_3.png!w438x219.jpg[/img][/size][/font][/b][/align][align=center][font=华文楷体][size=14.0pt]图15[/size][/font][/align][align=center][font=华文楷体][size=14.0pt][img=,609,455]https://ng1.17img.cn/bbsfiles/images/2020/06/202006090808403512_4838_1879291_3.png!w609x455.jpg[/img][/size][/font][/align][align=center][font=华文楷体][size=14.0pt]图16[/size][/font][/align][align=center][font=华文楷体][size=14.0pt][img=,690,231]https://ng1.17img.cn/bbsfiles/images/2020/06/202006090808535773_6875_1879291_3.png!w690x231.jpg[/img][/size][/font][/align][align=center][font=华文楷体][size=14.0pt]图17[/size][/font][/align]

  • 红外线气休分析仪的基本原理

    红外线气休分析仪的基本原理是基于某些气体对红外线的选择性吸收。红外线分析仪常用的红外线波长为2^12Hm。简单说就是将待测气体连续不断的通过-定长度和容积的容器,从容器可以透光的两个端面的中的一一个端面一侧入射一束红外光,然后在另-个端面测定红外线的辐射强度,然后依据红外线的吸收与吸光物质的浓度成正比就可知道被测气体的浓度。本项目中采用的是ABBA02000系列仪表,配以URAR26红外模块。朗伯一比尔定律一其物理意义是当一束平行单色光垂直通过某一均匀非散射的吸光物质时其吸光度与吸光物质的浓度及吸收层厚度成正比。这就是红外线气体分析仪的测量依据。红外线气体分析仪的特点1、能测量多种气体:除了单原子的惰性气体和具有对称结构无极性的双原子分子气体外,CO、C02、NO、N02、NH3等无机物、CH4、C2H4等烷烃、烯烃和其他烃类及有机物都可用红外分析仪器进行测量 2、测量范围宽:可分析气体的。上限达100%,下限达几个ppm的浓度。进行精细化处理后,还可以进行痕量分析 3、灵敏度高:具有很高的监测灵敏度,气体浓度有微小变化都能分辨出来 4、测量精度高:一般都在+/-2%FS,不少产品达到+/-1%FS。与其他分析手段相比,它的精度较高且稳定性好 5、反应快:响应时间一般在10S以内6、有良好的选择性:红外分析仪器有很高的选择性系數,因此它特别适合于对多组分混合气体中某--待分析组分的测量,而且当混合气体中-种或几种组分的浓度发生变化时,并不影响对待分析组分的测量。[b][color=#ffffff]更多参考:分析仪http://www.china-endress.com[/color][/b]

  • 关于热重-红外结果异常的问题

    关于热重-红外结果异常的问题

    最近做了几个热重-红外联用的样,发现红外结果明显有些问题,特别是低波数区,请高手指导下该如何解决http://ng1.17img.cn/bbsfiles/images/2016/09/201609261609_612163_3101342_3.png

  • 【转帖】高聚物红外光谱分析的试样制备

    高聚物红外光谱分析的试样制备谢狄霖 陈忠 福建省医学院科学研究所,福州350001 厦门大学化学系,厦门360005摘 要:结合实际工作经验,介绍了高聚物试样红外光谱检测中常有的热压铸膜法,溶解铸膜法,热熔附着法,溶解附着法,热裂解法等试样制备技术。来源:维普

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制