当前位置: 仪器信息网 > 行业主题 > >

红外实例分析

仪器信息网红外实例分析专题为您提供2024年最新红外实例分析价格报价、厂家品牌的相关信息, 包括红外实例分析参数、型号等,不管是国产,还是进口品牌的红外实例分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外实例分析相关的耗材配件、试剂标物,还有红外实例分析相关的最新资讯、资料,以及红外实例分析相关的解决方案。

红外实例分析相关的资讯

  • 北京理化分析测试技术学会-红外光谱分析技术高级培训班
    布鲁克推荐北京理化分析测试技术学会 预祝培训课程圆满成功,红外光谱学得以更广泛有效的应用。红外光谱分析技术高级培训班通知(第二期) 红外光谱作为经典、传统的分子结构分析手段之一,已历经百多年的发展。该方法至今仍然在官能团结构解析、未知物结构鉴定中占有独特且无法取代的地位。甚至在复杂混合物体系的分析中红外光谱法也独具导向作用,展示出无与伦比的活力。尤其是从90年代后期以来,红外光谱测量信号的数字化和分析过程的绿色化使该技术具有典型的时代特征。随着仪器制造和计算机技术的发展,以及统计学和化学计量学方法被广泛地应用于红外光谱的数据分析,使红外光谱技术已经和正在逐步地被用于现场应急分析和在线过程分析。为提高红外光谱分析与应用技术水平,系统了解国内外红外光谱的检测标准,缩短国内外在该技术上的掌握和应用上的距离,北京理化分析测试技术学会、北京光谱学会于2013年05月26日-31日在北京共同举办红外光谱分析与应用技术培训班,由北京理化分析测试技术学会承办,特聘请国内知名专家授课。培训将执行全国分析检测人员能力培训委员会(NTC)发布的全国分析检测人员能力培训考核大纲(ATC009/A:2011-1 红外光谱分析技术考核与培训大纲)内容要求,授课方式理论培训与实际操作相结合,以实际操作为主,加强学员的动手能力,达到熟练掌握标准实验方法的目标。培训结束可参加全国分析检测人员能力培训委员会(NTC)组织的技术能力考核,考核通过者,将获得由NTC发放的《分析检测人员技术能力证书》,此证书可作为实验室认证认可及增项的资质证明。 一、培训时间:2013年05月26日-31日(26日全天签到)二、培训地点:北京市海淀区西三环北路27号,北科大厦一层,北京科技条件市场培训中心三、培训日程:见附表四、注册方式:①培训费共计2800元(含教材费、午餐费、实验耗材费)。住宿费用自理,附近汉庭等快捷酒店,学员如有需要可自行选择。交费时间2013年5月4日前交费2013年5月5日后交费培训费2500元2800元 ②考核费:500元(含NTC理论考试、实操考核,NTC证书等费用),有相关工作经历人员可参加NTC考核。 ③缴费方式(汇款)账户名称:北京理化分析测试技术学会账户号:4043200001801900001154开户行:华夏银行北京紫竹桥支行汇款用途处表明:红外光谱培训五、联系方式北京理化分析测试技术学会于靖琦 010-68731259;13521470325E-mail:gpnh88@126.com报名者请填写以下回执,并于2013年5月4日前 E-mail至联系人邮箱。如有其它需要,请在备注中说明。 北京理化分析测试技术学会2013年3月27日 《红外光谱分析与应用技术培训班》回执(复印有效)工作单位 职务 单位地址 邮编 姓 名 性别 年龄 职称 固定电话 手机 E-mail 住 宿是□;否□发票抬头 备 注参加NTC考核:是□;否□ 培训日程 第一天基础理论知识 (1)基础知识分子光谱概述;红外光谱发展史;分子光谱振动理论;基本术语。(2)红外光谱解析红外光谱与分子结构;红外光谱解析三要素;常见化合物的红外光谱解析、混合物红外谱图的解析方法、近红外光谱解析(3)红外光谱定量分析基础包括郎伯-比尔定律和峰高度和峰面积的计算等。(4)红外光谱分析的特点(5)红外光谱分析的新进展第二天红外光谱仪器设备与操作 (1)红外光谱仪器的基础知识仪器的发展;仪器的主要部件(光源、分光系统和检测器);傅里叶变换红外光谱仪;色散型红外光谱仪;红外光谱的主要干扰及其消除(2)红外光谱仪的主要技术指标分辨率、信噪比、稳定性波数和光度重复性、波数和光度准确度、背景能量分布和谱图的质量评价等(3)红外光谱制样技术常规制样技术、采样技术、联用技术和低温红外光谱技术等(4)红外光谱仪的使用日常分析操作和仪器使用要求及注意事项。(5)红外光谱仪的维护日常维护、分束器、检测器、光源的维护,常见故障与排除,紧急情况的处理原则等(6)红外光谱仪的仪器校准和期间核查仪器校准和期间核查第三天红外光谱分析结果的数据处理 (1)红外光谱数据分析的特点(2)常规数据处理技术坐标转换、基线校正、光谱平滑、光谱归一化、光谱求导、光谱差减、光谱去卷积等其他数据处理方法。(3)多元数据处理技术光谱比对、光谱检索、模式识别、定量分析和二维相关红外光谱技术。 第四天红外光谱分析标准与应用(1)红外光谱分析方法常见通用技术规范一红外光谱分析方法通则、傅里叶变换红外光谱仪检定规程、色散型红外光谱仪性能规范、红外光谱定性分析方法通用技术规范、法庭涂料的检定和比较指南。(2)红外光谱法在燃油、润滑油分析中的应用应用示例:测量脂肪酸甲酯的含量。(3)红外光谱法在半导体产品分析中的应用应用示例:测量硅单晶中III、V族杂质的含量。(4)红外光谱法在刑侦技术领域的应用应用示例:微量物证的理化检验。(5)红外光谱法在高分子材料分析中的应用应用示例:橡胶分析。(6)红外光谱法在药物分析中的应用应用示例:化学药、化学原料药等的红外光谱分析;中药红外光谱分析通用方法;中药无机成分的鉴别;中药活性成分的鉴别。(7)红外光谱法在食品、保健品分析中的应用应用示例:食品及油脂中反式脂肪酸含量的检测;奶粉主要营养成分的整体分析(8)红外光谱法在生物医学分析中的应用应用示例:生物可降解材料的快速筛选。(9)红外光谱法在宝石鉴定中的应用应用示例:翡翠鉴定。(10)近红外光谱分析方法标准与应用实例标准示例:近红外分析定标模型验证和网络管理与维护通用规则;应用示例:测定稻谷中蛋白质的含量。第五天红外光谱分析方法常见通用技术规范二 (1)红外光谱分析方法通则(2)傅里叶变换红外光谱仪检定规程(3)色散型红外光谱仪性能规范(4)内反射光谱法规范(5)红外显微分析方法通用规范(6)GC/IR通用技术规范(7)TGA/IR通用技术规范(8)LC/IR通用技术规范(9)红外光谱定性分析方法通用技术规范(10)红外光谱定量分析方法通用技术规范(11)红外光谱多元定量分析规范(12)多元校正方法验证的规范(13)开放光路FTIR测量气体和水蒸汽的技术规范(14) 法庭涂料的检定和比较指南。
  • 食品加工分析中的近红外方法
    这种方法允许同时对多个参数进行快速无损地分析近红外分析是基于样品中分子对近红外辐射(800 nm-2500 nm)的响应。当近红外光照射到样品上,要么被样品吸收,要么就发生散射,从而产生了能够反映样品物理性质和化学组成的光谱。近红外是一种间接的测量方式,必须借助于传统的标准化学分析方法的结果建立标定模型。采用化学计量学建立的模型可以用来分析混合物或者天然产物中物质的含量,如谷物和肉类。同时标定自身的数据丰富广泛,在日常检测时非常快速高效。优化近红外分析的小技巧1保持样品的一致性分析的样品应和标定在建模时使用的样品有相同的特性。例如,建模时使用小麦中蛋白质数据所建立的标定就不适用于其它谷物中蛋白质的分析。由于水分和样品颗粒大小也会影响近红外光谱,所以也要保证样品采用相同的处理方式。2校正样品均匀覆盖全部范围特别重要的一点是,建模时选取具有代表性的样品并使得参考值均匀地分布在日常检测所期望的范围内。例如,少量且数值相近的样品建立的模型就无法对一个变化较大的属性给出准确的预测结果。主成分分析(PCA)是一个有效的对比样品差异性的统计工具。3关注参考值可靠的近红外标定依赖参考值。如凯氏定氮测蛋白、索氏提取测脂肪这些参考方法有助于近红外分析得到准确的结果。这些参考方法在整个近红外方法建立过程中都应保持不变,因为不同的分析方法的准确性和精密的都有所区别。考虑这些方法的标准误差和测量不确定度,应为每项属性保留一份当前参考方法的记录。4使用近红外以辅助参考方法使用近红外方法,您能从批量化的检测中获益。专为离线和旁线设计的近红外分析仪器可以分别安装在实验室或生产部门,作为像凯氏定氮仪、脂肪提取器、色谱系统和滴定等传统分析仪器的补充。下述的例子就展示了使用近红外对节省分析支出的贡献:回报实例每天 10 个实验室样品可以节约花费月 15 欧元,一年以 200 天计算共节省 30000 欧元。假如一台近红外光谱仪的售价在 40000 欧元,只需1年就投资就能收获回报。获得额外的收益。试剂溶液以及其它相关实验耗材的使用量都显著地减少,近红外分析在极大地节约成本的同时还保证了安全性。此外,由于近红外分析速度的优势还能提升实验室的效率。步琦解决方案ProxiMate™ 是一台适合放置在产线旁的设备,它拥有 IP69 认证且支持触控,即使戴着手套也不会影响操作,具有强大且稳定的性能。不仅能够使用仪器提供的校准模型,而且也可使用整合在仪器中的自动校准 AutoCal 功能,轻松建立您的专属模型。步琦解决方案的更多信息:https://www.buchi.com/zh/products/instruments/proximate寻找更多有关我们近红外产品的信息:https://www.buchi.com/zh/knowledge/applications
  • 波通公司中标新型整粒谷物近红外分析仪的大单
    波通仪器公司和他在土耳其的合作伙伴ABP宣布他们已经中标土耳其谷物协会(TMO)的近红外大单。按照招标要求波通公司和ABP要准备250套近红外整粒谷物分析仪安装在土耳其TMO的每个谷物分析终端。 经过对几款近红外仪器的详细评估后,TMO发现只有Inframatic是全部满足招标要求的仪器。Inframatic整粒谷物分析仪发货时配有容重检测单元和各种类型谷物曲线。合同还包括通讯方案、仪器监控和多年的服务技术支持协议。 波通仪器公司CEO Sven Homlund说&ldquo 我们感到很自豪赢得可能是全球史上近红外谷物分析仪采购最大的合同,进一步证实了我们优秀的产品和客户服务的实力,巩固了我们在谷物行业作为最佳供应商的地位&rdquo
  • PerkinElmer推出PM2.5红外分析解决方案
    请下载:PerkinElmer PM2.5 颗粒物来源红外分析解决方案进行 PM2.5 颗粒物对大气环境污染评估时,不仅要考察其对本地污染状况,而且也需要分析来自其它地区或其它国家的越境污染的影响。不仅要静态追踪 PM2.5 行业污染源头,而且要可能地动态追踪其迁移变化途径。 实例:PerkinElmer(日本)与客户合作开展的利用FT-IR成像设备对大气中PM2.5颗粒物污染状况的评估。配置:PerkinElmer FT-IR 及 SpotlightTM 400 红外成像仪 右图:在富士山顶可采集的颗粒物中,对来自太平洋方向的小笠原气团与大陆气团这2种气团进行了评估。Fig.2 中显示的是一例颗粒物 IR 成像结果,分别是小笠原气团到达的 7 月 20 日所捕集的颗粒物和大陆气团到达的 8 月 23 日 2.5 µ m 级所捕集的成像结果。根据可视图像,发现捕集的颗粒物相似,对官能团分布(成分分布)成像,表明来自小笠原气团的气溶胶中有机物较少而硫酸盐明显。另一方面大陆气团中不仅检测出硫酸盐还检测出有机物和氧化硅。 请点击查阅相关应用文章
  • 4小时→15秒!福斯在线分析制糖行业应用实例
    我们过去完成一次检测,需要工人从产线采样再拿到实验室进行检测,平均4小时检测一次的Pol(旋光度),现在通过福斯ProFoss&trade 在线近红外分析方案,每15秒获得一次在线检测结果,这大大改善了生产效率和反应速度,使我们的生产决策变得快速及时和高效。利用实时数据来客观、有效地判断物料状态和指标水平,这为及时调整和干预生产创造了充分可能!巴西甘蔗制糖企业USINA PITANGEIRAS,生产总监Joao Henrique De Andrade近红外光谱技术在制糖生产中的应用研究早在1998年进入我国制糖行业,至今已广泛应用在甘蔗、混合汁、青汁、糖浆等中间产物的旋光度、糖度、纯度、色值、浊度、还原糖等指标的快速测定。实验结果表明,对糖厂生产的各种中间品和成品,与常规化学测定方法相比,利用近红外光谱技术可进行快速无损分析,无论从分析时间还是人工操作误差来看,近红外都使效率大幅提高,也已成为现代智能化工业必不可少的一部分。福斯近红外光谱技术+在线由检验人员定时取样送至实验室,使用福斯实验室NIR DS3近红外品质分析仪(60秒分析时间)进行快速分析,已比传统化学方法大大提高检验效率。现在,福斯将近红外光谱技术与在线相结合,ProFoss&trade 可安装于生产线上任何关键节点,实现在生产的同时不间断连续检测Pol、白利度、水分、纤维等指标参数,大大提高关键工艺环节的控制效率,实现质量精细化管理。巴西著名的蔗糖制糖企业USINA PITANGEIRAS如何使用福斯ProFoss实现工艺升级在甘蔗进入第一个压榨滚轮和离开最后一个压榨滚轮的两个位置各安装了ProFoss&trade ,前后的Pol、纤维、水分等关键指标发生的变化都能清楚的被检测并记录下来,实现了在线压榨萃取系统的生产控制,以秒为单位地减少不必要的浪费损失。计算出加工过程中POL的损失和利用率,对于量化评价和改善加工工艺(出成率)具有重要的实际意义和经济价值。例如年产200万吨,仅0.5%的产量提升就等于创造了500,000美元的新利润。甚至,根据当前市场行情来决定产出的主产品和副产品之间的比例都可以通过福斯在线分析系统来实现。在连续生产中,每6分钟就会有一车新的甘蔗要投入生产,利用在线实时检测能及时地针对不同批次有差异的原料进行工艺调整和适配。该公司正在计划未来要在加工的更多关键环节引进福斯的在线分析系统,继续寻找探索能提升利润率的节点。基于在线分析方案快速、准确的检测结果,整个系统能自动检测并指导生产回归到目标阈值,实现控制自动化、智能化生产。ProFoss&trade 在甘蔗加工中典型安装点目前,福斯为制糖企业免费提供色值、POL、白利度、纤维和水分等关键指标的成熟基础定标模型,多模工控通讯方案可以结合数字化智能化生产管理,实现在线分析监控和优化生产过程,为企业持续创造利润。ProFoss&trade 性能优势无间断连续检测,真正在线无旁路高度标准化,性能稳定,定标模型无缝转移灵活安装点位,生产过程关键点控制,实现精细化质量管理适用液体、固体、粘稠状等多种形态物料单台或多台仪器与SCADA系统整合实现闭环控制防爆认证IECEx,防爆认证ATEX,工业IP69级防水防飞溅数字化功能助力工厂智能化管理
  • 随手可得的红外分析-安捷伦Cary 630 闪耀全国分子光谱会
    随手可得的红外分析-安捷伦Cary 630 闪耀全国分子光谱会 2012年10月20日,由中国光谱学会光谱专业委员会、中国化学会物理化学委员会主办,韶关学院、韶关市化学化工学会承办的第十七届全国分子光谱学学术会议在誉为粤北历史文化名城的广东省韶关市隆重召开。来自全国高等院校、科研机构、企事业单位的200余位代表参加了此次会议。(安捷伦公司展台) 安捷伦科技(中国)有限公司全程参与了此次会议,分子光谱产品工程师宋建华先生发表了大会报告,介绍了红外新移动测量的新技术。近年来FTIR应用的最新需求即能够应用于移动测量和现场分析。只有实现现场分析和移动测量,红外光谱的测量才能真正普及。现场分析需要仪器能够在非常环境中应用,适合进行车载和便携,光源、激光、干涉仪器使用寿命长并无需维护。基于移动测量的需求,安捷伦推出了多款现场分析红外光谱仪,包括Cary 630傅立叶变换红外光谱仪和4100 ExoScan手持式傅立叶变换红外光谱仪。(分子光谱产品工程师宋建华先生作大会报告) Agilent新一代Cary630是一款革命性的红外光谱仪,实现了真正的现场和移动测量,获得了IBO设计金奖。Cary 630采用独特Flexture干涉仪设计实现了仪器的小型化和耐用性,仅占用20 x 20厘米的工作台空间,3.8公斤(8磅)重。其专利的液体分析技术相对于传统的液体池,更加简单方便,可应用于粘稠样品的分析,省却了复杂的清洗工作。报告中例举了Cary 630专利液体分析技术应用于润滑油性能评价、脂肪酸甲酯含量测定的分析实例。 此外,Cary 630可以采用不同的附件对样品进行分析:包括透射样品仓、钻石ATR、专利TumblIR固定光程液体分析附件、专利Dialpath可变光程液体分析附件和漫反射附件。附件更换采用独特的轨道滑入式方法,无需准直,软件可自动识别附件类型。 移动式的红外,扩展了红外光谱的应用范围,使得红外分析不再局限在实验室进行。除了移动式的红外,安捷伦也有着非常全面的传统的实验室的分子光谱产品线,可以提供从实验室到现场分析的全面完整的解决方案。 如需了解更多产品信息,请登录:http://www.chem.agilent.com/zh-cn/Products/Instruments/molecularspectroscopy/Pages/default.aspx关于安捷伦科技 安捷伦科技公司(纽约证交所:A)是全球领先的测量公司,同时也是化学分析、生命科学、电子和通信领域的技术领导者。公司的 18,700 名员工为 100 多个国家的客户提供服务。在 2011 财政年度,安捷伦的业务净收入为 66 亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn。
  • 讲座:紫外可见近红外分光光度计在材料分析中的最新应用和通用技巧
    紫外-可见-近红外分光光度计是分析光学材料的主要工具。材料样品形状各异(如薄膜、透镜、小尺寸、大尺寸等),测量要求多变(透过、反射、角度、偏振等),对分光光度计有很高的要求。作为世界一流的光谱仪器制造商,日立高新技术公司高度关注此方面,在此为大家介绍光学材料领域的最新应用和解决方案。   在3月24日上午10:00-12:00的网络讲堂上,我们将以“日立紫外可见近红外分光光度计在材料分析中的最新应用和通用技巧”为主题,给大家介绍镀膜材料、偏振片、棱镜、遮热涂料等典型样品的应用实例,对光学性能分析常见的问题,分析原因并提供测量建议,期待大家的参与!? 报名网址:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/1791关于日立UH4150紫外-可见-近红外分光光度计,请点击:http://www.instrument.com.cn/netshow/SH102446/C185793.htm 关于日立高新技术公司: 日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。更多信息敬请关注:http://www.instrument.com.cn/netshow/SH102446/
  • 第四届近红外光谱分析技术培训班在京开课
    p  仪器信息网讯 2015年9月11日,中国仪器仪表学会a href="http://www.instrument.com.cn/zc/255.html" target="_self" title=""strong近红外光谱/strong/a分会举办的“第四届近红外光谱分析技术培训班”在北京总后青塔招待所开课。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201509/insimg/4eb724ee-b361-40c6-98bd-5140f1df8223.jpg" title="3.jpg"//pp style="text-align: center "培训班课堂/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201509/insimg/777c8c19-1e63-44c6-8f7d-051a54378f65.jpg" title="4.jpg"//pp style="text-align: center "近红外光谱分会副理事长、中国农业大学 闵顺耕 正在授课/pp  近红外光谱分析技术的研究和应用在我国发展十分迅速,每年都会有大批研究生、研发技术人员和应用工程师加入到近红外光谱分析技术的队伍中。近红外光谱分会应众多近红外光谱用户的要求,举办了第四届近红外光谱分析技术培训班。培训班邀请国内知名专家学者系统讲解近红外光谱技术总论、化学计量学常用算法、建模技巧及模型维护、化学计量学算法进展、近红外工业应用实施实例剖析、以及近红外光谱成像技术等内容。/pp  “此次培训班报名非常踊跃,今天早上开课了还有学员来报名,现在已经达到了80多人。可以看到在教室的后边临时加了一排椅子,”近红外光谱分会副理事长、总后勤部油料研究所刘慧颖介绍到。/pp  2010年第一届近红外光谱分析技术培训班举办,至今已京举办了四届。对于这四届培训班的变化,近红外光谱分会副理事长、中石化石油化工科学研究院褚小立介绍,由于近红外光谱是一项更加偏向实用的分析技术,所以本届培训班在讲授近红外光谱技术的完整基础知识、技术最新进展之外,还将介绍近红外光谱技术的工业实际应用,为此特别邀请了严衍禄教授讲授近红外光谱分析技术的发展与几个新生长点、龚伟教授讲授国外工业实用近红外光谱技术。/pp  刘慧颖老师补充到,第一届近红外光谱分析技术培训班学员人数60多人,其中大学生占了大多数。而此次本训班的学员人数不但增加到了80多人,而且其中用户的比例明显增加了,主要来自于农产品、饲料、烟草、茶叶领域的用户,以及质检机构和第三方检测实验室的用户,还有来自近红外仪器公司的应用工程师。/pp  培训班课程安排:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201509/insimg/dbe2b4d0-c44a-4fff-b7aa-d6a23ee0f106.jpg" title="1.jpg"//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201509/insimg/8cac511e-a57d-4e0e-82db-5e3905647a74.jpg" title="2.jpg"//pp style="text-align: center "br//p
  • 第五届近红外光谱分析技术培训班在济南开课
    p  strong仪器信息网讯/strong 2017年10月20日-22日,中国仪器仪表学会近红外光谱分会举办的“第五届近红外光谱分析技术培训班”在济南华能大厦开课。/pp style="text-align: center "img title="课堂.jpg" src="http://img1.17img.cn/17img/images/201710/insimg/01d79ffe-5440-4848-b2c8-14583c0a4d61.jpg"//pp style="text-align: center "培训班课堂/pp  近红外光谱分析技术的研究和应用在我国发展十分迅速,每年都会有大批研究生、研发技术人员和应用工程师加入到近红外光谱分析技术的队伍中。近红外光谱分会应众多近红外光谱用户的要求,举办了第五届近红外光谱分析技术培训班。培训班邀请了袁洪福、倪力军、郁磊、罗苏秦、韩东海、闵顺耕、邵学广等国内知名专家学者系统讲解近红外光谱技术总论、化学计量学常用算法、建模技巧及模型维护、化学计量学算法进展、近红外工业应用实施实例剖析、以及近红外光谱成像技术等内容。/pp style="text-align: center "img title="课程1.jpg" src="http://img1.17img.cn/17img/images/201710/insimg/0119e105-8a07-402c-9266-e39a0386b7b8.jpg"//pp style="text-align: center "img title="课程2.jpg" src="http://img1.17img.cn/17img/images/201710/insimg/76f17187-bc48-4f64-ae90-c030448f42dc.jpg"//pp style="text-align: center "本次培训班课程安排/pp style="text-align: center "img title="臧恒昌1.jpg" src="http://img1.17img.cn/17img/images/201710/insimg/3e3ff89b-942a-4e30-b362-829f72251af0.jpg"//pp style="text-align: center "红外光谱分会山东工作站站长、山东大学教授臧恒昌/pp  自2010年举办第一届近红外光谱分析技术培训班,今年的培训班已经是第五届。据臧恒昌教授介绍,此次培训班座无虚席,学员人数达到了90人。来自高校和科研院所的学员较多,二者之和所占比例约为74%,另外来自企业的用户比例为17%(见图1)。学员中以学生为主,不过也有企业的总经理、研发总监,高校或科研院所的教授、研究员等,具体比例见图2。另外,此次培训班的学员共来自14个省市,其中以北京、山东的学员人数最多(见图3)。/pp style="text-align: center "img title="学员单位分布.png" src="http://img1.17img.cn/17img/images/201710/insimg/c12af785-7d5e-4e14-a0fc-08636c02bebe.jpg"//pp style="text-align: center "学员单位分布/pp style="text-align: center "img title="学员身份分布.jpg" src="http://img1.17img.cn/17img/images/201710/insimg/f6e43a4e-d6cc-458c-bf43-74a51a8bffc9.jpg"//pp style="text-align: center "学员身份分布/pp style="text-align: center "img title="学员地域分布.jpg" src="http://img1.17img.cn/17img/images/201710/insimg/e7ea4755-e918-4cb5-a89a-e835e765a611.jpg"//pp style="text-align: center "学员地域分布/pp style="text-align: center " /pp /p
  • 亚微米分辨红外+拉曼同步测量技术——打破传统芯片/半导体器件失效分析局面
    前言芯片是科技领域核心技术,是电子产品的“心脏”,是“工业粮食”。在新一轮科技革命与产业变革背景下,大力推动高科技产业的创新发展对于抢占全球高科技领域制高点、增强产业发展优势和提高国际竞争力的战略作用更加凸显。 而如何解决芯片/半导体器件有机异物污染问题,成为众多科研工作者的研究难题。虽然元素和无机分析存在高空间分辨率技术,如SEM-EDX,但在微米和亚微米尺度上识别有机污染物一直是巨大挑战。在过去的几十年里,传统的傅里叶变换红外光谱FTIR/ QCL显微技术虽然得到了广泛的应用,但在关键问题上存在一些局限性,例如相对较差的空间分辨率(5-20 μm)和对 10 μm的样品测试灵敏度较低、坚硬的金属界面可能会在接触样品表面时损坏ATR探针,以及污染可能在凹凸的区域,甚至在狭窄的缝隙内,使得ATR接触式测量难以实现。所以,如何在亚微米分辨率别和非接触条件下,实现芯片/半导体器件的有机缺陷和污染物的识别和表征是非常重要以及创新的一种手段。此外,许多样品的厚度小于100 nm,这在传统的FTIR测量中也是不可能实现的。 仪器介绍图1. 设备及原理图 基于光学-光热技术(O-PTIR)的亚微米分辨率红外拉曼同步测量系统mIRage可实现远场红外+拉曼显微镜的同步测量,该技术具有非接触、免样品制备、亚微米分析等优点,已广泛应用于硬盘和显示器等器件的成分分析。mIRage扩展集成的同步拉曼显微镜,主要用于目标物的应变/应力、掺杂浓度、DLC等测试。获取的高质量反射模式光谱可以通过亚微米红外拉曼同步测量系统mIRage在商业数据库中进行光谱比对检索,终确定亚微米到微米的污染物成分。mIRage光谱的显著优势:1. 亚微米红外空间分辨率,比传统FTIR/QCL显微镜提高30倍,达到500 nm;2. 非接触式测量,非破坏性,反射(远场)模式测量,无须制备样品;3. 高质量光谱(测试可兼容粒子形状/尺寸和表面粗糙度),没有色散/散射伪影问题;4. 可直接在商业数据库中匹配搜索 的污染识别和控制对于把控制造过程以及高科技产品开发至关重要,随着愈发严格的标准和产品尺寸的缩小,识别较小的污染物变得越来越重要和困难。mIRage的先进光学光热红外(O-PTIR)技术的出现彻底改变了微电子器件微小缺陷的红外化学分析方法。mIRage的工作原理是用宽可调谐的脉冲红外激光源激发样品,在样品中产生调制光热效应。通过光热效应提取并计算红外吸收, 通过检测反射探头光束强度的变化作为红外波数调谐的函数,从而提供红外吸收光谱。这种短波长脉冲探测光束(通常是532 nm)决定了红外测试空间分辨率,而不是传统FTIR/QCL显微镜中依赖的红外波长。由于其特的系统架构,短波长探测光束同样也能作为一个拉曼激光源,集成拉曼光谱仪后,mIRage系统可提供同一地点,同一时间,同一空间分辨率的亚微米红外+拉曼显微镜的检测结果。 精彩案例分享 在本文中,我们将介绍通过亚微米红外+拉曼同步测量技术对只有几微米尺寸的缺陷进行电子器件失效分析的研究,案例中的硬盘组件和显示组件由希捷技术提供。 图2为微电子器件免制样,原位测量数据。该案例展示了互补的、验证性的mIRage红外光谱和拉曼光谱的信息。尽管mIRage红外光谱是在反射模式下采集的,但它完全可以与FTIR/ATR数据库中的光谱相媲美。通过与KnowItAll(Wiley)红外光谱和拉曼光谱数据库进行比对,确定这种特殊的污染物可能是一种聚醚(缩醛)材料。污染可能源于研发过程中的异物,包括聚合物、润滑剂等。在此次测试中,mIRage获取的谱图与标准谱峰位重合度超过95%。图2. 左:可见图像显示6 µm缺损位置,右上:与标准数据库比对未知物质的红外光谱;右下:与数据库比对未知物质的拉曼光谱 在许多情况下,传统红外仪器可能会收到一些物质的影响无法直接接触到污染物。图3显示了金属薄膜下20 μm的黑色污染,从金属薄膜的白色圆形分层中可以看到,这是由于有缺陷的薄膜晶体管显示器突出造成的。传统的ATR显微镜的使用将受到薄膜存在的限制,阻碍直接接触污染粒子。此类样品可以通过mIRage进行光谱焦平面定位实现光谱检查,无需额外的样品制备或对粒子进行物理提取。特别是在1706 cm−1波段有强宽红外吸收带的存在,表明污染粒子可能是硫化的苯乙烯-丁二烯橡胶(SBR),已氧化形成羧酸。图3. 左上角:样品和测量的示意图;左下:光学图像缺陷;右:缺陷区域不同位置的mIRage红外光谱。颜色对应于光学图像上的标记。 结论综上所述,我们引进的革命性红外拉曼同步测量系统mIRage在显微红外方面取得了重大进展,如亚微米分辨率测量(~500 nm)、非接触模式测量(非ATR)、非破坏性和免样品制备、点线/面多模式分析、无任何色散/散射伪影以及提供数据库检索等。希捷科技选择mIRage系统是为了研究制造工艺和产品早期开发的污染改善问题。本文介绍的基本原理和实例表明mIRage在识别硬盘和相关精细电子行业的缺陷和污染方面有诸多优势。在红外显微光谱的重要发展领域中,mIRage技术具有颠覆性的潜力。而拉曼光谱仪的联用进一步拓展了它的能力,实现亚微米红外+拉曼显微镜同步测量(同一时间、同一点、同一空间分辨率),以提供互相印证的补充和确认信息。亚微米分辨红外拉曼同步测量系统mIRage的应用领域正在不断扩大,涵盖了聚合物、药学、司法鉴定、半导体器件缺陷分析、生命科学、环境地质、古生物等众多传统领域。
  • 红外沼气分析仪应用新趋势——模块化红外气体传感器
    本文介绍了检测沼气成分的五种主要方法:奥氏气体分析法、热催化燃烧检测法、热导元件检测法、气相色谱GC检测法、红外气体分析法,分析了这五种检测方法的特点及其在我国沼气服务体系中的适应性,并总结了目前最适宜我国大中型沼气工程沼气成分监测的分析方法是红外沼气成分分析技术。1、奥氏气体分析法 奥氏气体分析法是一种经典的化学式手动分析方法,该方法是利用溶液吸收法来测定CO、CO2和O2浓度,CH4和H2浓度则在爆炸燃烧法后用吸收法测定,剩余气体为N2。目前传统的奥氏气体分析方法在沼气成分检测中应用较少。针对农村沼气服务体系的特定应用,通常采用检测管法,该方法操作更简便,常用的检测管有H2S、O2、CO2、CO等,但没有直接测量CH4浓度的检测管,CH4浓度是通过计算所得,即100%-[ CO2 ]-[空气]-[H2S]-[ CO ]等,因此存在一定误差。 奥氏气体分析仪具有结构简单、价格便宜、维修容易等优点,常用于CO2、O2、CO、H2、烃类等气体浓度的测定,在实验室里应用广泛。但该仪器长期运行成本高,仅每年购买试剂和玻璃器皿至少要1万多元,且必须对气体进行人工取样,才可在实验室内进行分析,其中分析人员的操作技能和“态度”对分析的精确度也有着较大影响。同时奥氏气体分析仪只能对单一成分逐个进行检测分析,不具备多重输入和信号处理功能,分析费时,操作繁琐,响应速度慢,效率低,难以实时在线地分析现场工况,现逐渐被全自动分析仪器替代。2、热催化燃烧检测方法 热催化燃烧检测方法是利用两只热催化(黑白)元件——补偿元件和桥臂电阻构成惠斯顿电桥加一恒定电压,将铂丝加热到500℃,当遇到空气中的可燃气体时,测量元件在催化剂的作用下,在元件表面发生催化反应,使得温度升高,阻值增大,电桥输出不平衡,以此来测定甲烷浓度。该方法是检测甲烷泄漏最简单、经济的方法,在我国煤矿安全检测领域具有广泛应用。但载体催化元件只能检测0~4%的甲烷浓度,当空气中甲烷浓度超过5%后,元件会发生“激活”现象,造成永久损坏。同时检测设备需要频繁标定,热催化元件的仪器使用寿命一般在1年内,精度较差(10%),而在高H2S条件下,易造成传感器中毒甚至报废,使用寿命大大缩短。3、热导元件检测方法 不同气体的导热系数存在差别,热导元件检测方法就是根据这一特性,来测定气体的体积浓度。沼气的主要成分是CH4和CO2 ,被测沼气的导热系数由CH4和CO2共同决定。对于彼此之间无相互作用的多组分气体,其导热系数可近似地认为是各组分导热系数浓度的加权平均值。因此,根据沼气的导热系数与各组分导热系数之间的关系,就可以实现沼气多组分气体浓度的测定。 目前该检测方法已广泛应用在煤矿瓦斯抽排领域,也可用于沼气中甲烷浓度的测量。但该类型传感器使用寿命一般在2年左右,且该传感器对于低浓度测量,具有较大局限性,如无法测量浓度低于5%的甲烷浓度,如果用于甲烷的泄露报警将会造成较大误差。4、气相色谱GC检测方法 气相色谱GC分析方法是利用气体物理吸附能力的差别,将采样的气体在色谱中分离然后,热导检测器通过热电阻与被测气体之间热交换和热平衡来实现其CH4、CO2、O2等气体浓度的检测,该检测方法分离效能高,对物理化学性能很接近的复杂混合物质都可以进行定性、定量检测,灵敏度较高。气相色谱分析原理示意图 由于柱温与载气对分离结果的具有较大影响,其中柱温对分离结果的影响比载气的大,所以在检测过程中,除了要经常更换色谱柱外,还需要对色谱柱温和载气流速进行适度的调节,以免影响分离结果造成误差。同时色谱价格相对较贵,需要采样,不能实现在线分析。5、红外气体分析方法 当对应某一气体特征吸收波长的光波通过被测气体时,其强度将明显减弱,强度衰减程度与该气体浓度有关,两者之间的关系遵守朗伯一比尔定律,也就是红外光谱检测方法的基本原理。红外气体分析技术作为一种快速、准确的气体分析技术在实际应用中十分普遍。由于该方法是采用物理原理,分析气体不与传感器发生反应,因此传感器使用寿命很长,该类型传感器不仅可以用于测量沼气泄露的低浓度报警,也可以用于高浓度的沼气成分测量。 由上表可知,红外气体分析技术相较于奥氏、热催化、热导元件、气相色谱气体分析技术,具有响应时间快、灵敏度高、使用寿命长、仪器操作方便等优势。但对国内用户而言,红外气体分析技术普遍存在NDIR传感器价格昂贵、维护困难、产品质量参差不齐等问题。针对这些问题,四方仪器对NDIR传感器进行了升级,将红外传感器进行模块化设计,一个传感器对应检测一个气体组分,拆卸维护方便,使得仪器在体积、性能、维护、价格上具有以往仪器无法比拟的优势。 如沼气分析仪(智能便携型)Gasboard-3200Plus,采用自主知识产权的模块化红外传感器,可实现CO、CO2、CH4等多组分气体浓度的快速测量。同时其H2S、O2浓度测量可拓展,流速、流量可采集,体积轻量化,APP终端智能化等创新设计,弥补了沼气成分、流量一台仪器不可同时测量,长距离、大规模沼气项目监测设备不易携带,监测数据获取流程复杂等的不足,可广泛用于生物沼气、污水处理废气和垃圾填埋气体等沼气成分的可靠准确且经济有效的监测。在满足行业标准应用的同时,仪器测量组分还可根据用户需求定制,轻巧便携,实用性大大提高。模块化红外气体传感器工作原理6、结论 在沼气技术服务体系建设中,气体分析仪发挥了十分重要的作用,在选择配置时需要考虑仪器的使用寿命、功能、质量保障体系、实用性、性价比等因素。在奥氏吸收、热导元件、热催化、气相色谱、红外光谱的气体分析仪中,从寿命、功能、实用性等方面考虑,可优先选择红外方法的仪器;如果仅测量甲烷浓度或检测泄露,可以考虑基于热导和热催化原理的仪器;如果用于实验室定性与定量的精准测量,也可以考虑色谱分析方法。 但随着沼气生产和过程控制要求的逐渐提高,不断实现技术创新升级的红外沼气分析仪将逐渐取代奥氏吸收、热导元件、热催化、气相色谱等气体成分检测技术,成为我国大中小型沼气工程沼气成分监测与工艺过程调控必不可少的气体成分监测设备。(来源:沼气圈)
  • 直播预告:日化行业中表界面常用的表征方法及应用实例分析
    活动背景表界面参数在日化行业中扮演着重要的作用,可以影响产品的触感、功能、效果、和稳定性。因此,在日化产品的研发和生产过程中,越来越多的厂商开始重视表界面参数并通过标准化的测量程序实现对产品性能的多维度评价。本月19日上午10:00克吕士将举办主题为《日化行业中表界面常用的表征方法及应用实例分析》的线上研讨会。这次我们非常荣幸能够邀请到纳爱斯集团有限公司日用化工领域高级工程师徐杰作为本期讲座的嘉宾,徐杰作为项目负责人主导完成了日化产品泡沫多维度评价方法研究工作,探索了动态泡沫分析仪的实际应用,并通过差异化的自动测试程序实现了泡沫性能的多维度评价,在本次讲座中也将从分析仪器、常用参数、应用实例等多个方面和大家进行分享。KRÜ SS的应用专家张晶晶也会解析表界面参数在日化行业(比化妆品中的乳化、分散、增溶、发泡和清洁等)的作用,并结合多个实例进行介绍和讲解。本次研讨会完全免费热诚期待您的参加!专家团队:讲座安排:报名方法2023年10月19日(周四)上午10:00开始本次讲座通过微吼进行,可通过手机APP或PC客户端参与直播。您可以通过以下链接或者关注我司公众微信号(克吕士科学仪器),在底部“互动”选项中选择“直播大厅”即可找到这期活动的直播入口,进行报名,期待您的参与!。
  • 五个工程师与一个气质独特的中红外气体分析解决方案
    烟气、尾气等污染气体中所含有的氮氧化物、硫氧化物等成分,对我们的健康有着很大的威胁。需要分辨出它们,监测排放,中红外波段光这时就大有用处了。对3μ m~10μ m波段的中红外光有吸收特性的污染物们,通过光学的方法就能被迅雷不及掩耳盗铃之势地监测到,可谓是中红外光一出手,就知污染有没有。但是,重点来了!完成一套探测系统,光源和探测器都是必要的。在这个如此微妙的波段,要想有一个“两全”的整体配套解决方案,可不是那么容易的事情。虽然不容易,但总还是有的!量子计级联(QCL)× InAsSb光伏探测器这两位就是挑起气体监测大梁的干将了。而关于这个气质独特的中红外气体分析解决方案,有5位滨松工程师表示有话要说一说̷̷Topic 1 “两全”的中红外气体分析解决方案Q:中红外的光学法分析具有什么特征?大石:气体分析包括气体色谱分析、质量分析,而这些都需要采集样本后带到实验室进行分析。如果通过使用激光的中红外光学法,则实现在线监测。更加实时和便捷,应用范围也更广泛。杉山:我们多致力于中红外波段气体的分析,并为这样的应用提供了相应的激光器。在波段3μ m~10μ m间,包括甲烷、二氧化碳、一氧化碳、硫氧化物、氮氧化物等许多有害气体都能够通过这种方法被测得。 Q:中红外波段的探测器和光源器件开发是否有难以攻破的课题?杉山:之所以特意选择中红外波段的气体分子为对象,是因为气体分子的吸收具有明显性的优势。从光发射角度来看,对计测也是非常有利的。饭田:一方面,对于探测器来讲,在中红外波段背景光的增强,也就意味着干扰的出现,对探测有着不良的影响。此外,在该波段想要制作理想的探测器非常困难,并且也很难实现高灵敏度的性能。正因如此,同时提高探测器在中红外波长的灵敏度,以及激光光源的性能非常重要。而能就这两方面进行同步开发,也体现了滨松的技术实力吧。(笑)大石:尤其是仪器制造客户开发新产品时,若在开发初期不提高精度,那么开发也毫无意义。为此,核心的探测器和激光器必须保持最好的状态。因为对这一点有深刻的认识,目前我们开发的产品才能够在客户那里稳定地、持续地发挥出良好的作用。 Q:完成探测器和激光光源配套的方案有什么困难?方案对于客户有什么价值?杉山:无论是探测器还是激光光源,都存在很多开发难题,同时挑战两种器件的厂家也鲜有出现。就激光光源来说,因为“1成分=1波长”,故而需要开发与被测对象气体相同数量的激光光源。开发成本大,产品化后的商务风险也很高。大石 :从客户角度,探测器和光源都来自同一个厂家是具有很大优势的。比如,目前多数的仪器制造商都是从不同厂家分别购买的探测器件和光源。但若开发出来的设备没有达到预期的性能时,由于器件来自不同的地方,就很难知道配合使用过程中的问题所在。落合:若探测器和光源都是由同一厂家生产的,就可以进行相互评估,找出问题所在,从而提高测量设备的性能,缩短开发设备的时间。利用中红外波段QCL(量子级联激光器)的激光吸收分光是非常新的分析计测技术,今后也将以高灵敏度、高分辨率的优势,成为气体分析的选择并得到普及。采用QCL(量子级联激光器)和InAsSb光伏测器的极微量气体分析示意图 Topic 2:单一波长振动量子级联激光器(QCL)和性能稳定的InAsSb光伏光伏探测器Q:滨松分别为光源和探测器部分提供怎么样的产品?杉山:光源器件的代表是量子级联激光器(QCL)。它的开发初衷其实是想用于通过呼吸分析来进行“癌症筛查”的应用,这是有我们前任社长昼马辉夫先生提出的。虽然遗憾的是目前仍没有确立这种技术,但QCL在气体分析领域仍然发挥了独特的作用。饭田 :光探测部分则是InAsSb(铟砷锑)光伏探测器。目前我们提供2种类型的产品,覆盖2.5μ m~8μ m的波长区域。 量子级联激光器(QCL)InAsSb光伏探测器Q:QCL和InAsSb光伏探测器各自有什么特别的性能吗?杉山:首先说一下QCL。一般的半导体激光器,如果在数百nm中有多个波长发生震动时,光谱带宽变宽,受到多种气体的干扰,测量精度下降。而QCL采用的是DFB(分布式反馈激光器)结构,在内部设置了衍射光栅,可使光谱带宽非常狭小的单一波长振动。但是DFB很难实现产量,在产品化之初,我们为提高产品的合格率投入了非常多的精力。落合 :在不断提高DFB结构的制造技术同时,我们也推进了内置准直透镜的新产品的开发。新产品从激光芯片射出的光的范围变得更宽,因此与之前的产品相比,客户在设计光学系统时,无需再为激光通过对象物而改变光的形状。 Q:在内部置入准直透镜时,是否也付出了相当的精力?落合:以往没有准直镜的QCL产品需要客户自己调整光轴。中红外光是不可见光,无论是在光学材料还是特殊的光学系统设计上都是相当花时间的。在QCL封装外部设置透镜的话,因为没有大小的要求,所以是比较容易对准的。但是,若是内置透镜,就需要在狭小的封装空间内,与光轴完成高精度的对准以及固定。同时还必须考虑因光学材料的反射产生的噪音的影响。杉山:发射光斑大小只在10μ m*10μ m左右,要将这大约只有头发直径十分之一的光斑与光轴对准,可不是简单的事。而在出货检验时,安装了准直仪的透镜轴如果稍有偏差,都会成为不合格品。内置准直透镜的新型QCL滨松QCL获2016年日本激光学会产业“优秀奖”Q:QCL有什么典型应用?落合:比如说同位素检测。CO2虽是唯一的物质,但它也存在拥有不同质量数的C和O的“兄弟”同位素,其光吸收波长都各不相同。CO 2和13CO 2的吸收波长同是4.329μ m,而12CO 2 的吸收波长是4.328μ m。求出同位素之比,就可以知道排出源(植物、土壤、燃烧等)和形成原因,同位素检测可以说是激光QCL的真正的应用价值所在。Q:探测部分的InAsSb光电探测器又有着什么特点呢?朝仓:InAsSb光电探测器是含有In(铟)、As(砷)、Sb(锑)的化合物半导体。以前,作为3μ m~10μ m的红外探测器而得到广泛使用的是MCT光伏探测器、MCT光导探测器。但MCT中使用了RoHS指令中所禁止的汞、镉,所以我们重新开发了不含这些禁令污染物的器件。饭田:InAsSb光伏探测器的研制,需要同时在晶体生长和制程两个方面进行新的推进。话虽简单,但一方面现有的技术并不适用于新产品,而且还要开发出半导体材料的最佳生长方法和制程。晶体是在作为基板的硅晶片上形成薄膜层来进行生长的,它的品质与器件的特性息息相关,以此,为了得到高品质的晶体必须要不断改良其生长技术。制程则要通过改良设备的结构,来实现产品高灵敏度的性能。不过,最终我们都掌握了两方面的新技术。朝仓:MCT的个体差异性非常明显,而InAsSb光伏探测器不含汞、镉,且具有稳定性高、偏差小的优点,具有更大的优势。若固定产品规格,则会是非常好的量产化产品。 Topic 3 使用分子吸收的计测的应用范围广Q:客户对产品有什么样的反应?大石:有客户对QCL和InAsSb光伏探测器的配套组件进行了评估,显示出的性能渐渐地得到了客户的认可。因为覆盖了气体所含成分所吸收的狭小的波段,恰好显示出了QCL发光波长范围小的优势。我们也可以满足想要生产此类设备的厂家的需求。杉山:采用分子吸收计测是光学法的关键。不仅是气体,液体和固体也可以利用这样的方法进行分析,比如水分和胆固醇。Q:今后有怎样的推进计划?落合:目前的QCL产品覆盖了4μ m~10μ m波段,我们也在扩充能够覆盖更长波长范围的产品。当然,与之对应的是,我们接下来也将涉及10μ m附近的探测器的开发。朝仓:是的,光探测部分的InAsSb光伏探测器目前涵盖了2.5μ m~8μ m。我们打算将其延伸到11μ m、12μ m。大石:今后,无论是光探测器还是激光光源,都将同时覆盖10μ m左右的长波长领域。另外,我们构想着将这两个器件组成一个模块,更加高效地为客户实现气体探测的应用。
  • 约克仪器百台MGA6红外烟气分析仪为祖国蓝天青山绿水保驾护航
    自2018年,德国MRU公司发布新一代红外烟气分析仪MGA6系列以来,国内已有超过一百家单位成为了新产品的使用者,市场销量已超过两百台,MGA6系列产品凭借过硬的产品实力和完善的售后保障,成为进口红外烟气分析仪的爆款热卖产品。并赢得用户的高度赞扬! 非分散红外烟气检测技术 作为用于排放检测的成熟的技术,在国内外已经有多年的应用经验,在各种工况下均有良好的表现,特别是应用于中国标准的超低排放应用。从上一代产品开始,德国MRU公司的非分散红外分析仪就为国家环保工作做出了重要的贡献。非分散红外烟气分析仪从原理上解决了电化学仪器精度低,抗干扰能力差的先天不足。同时,相比较于其它光学类检测方法,红外仪器有着更长的寿命,更稳定的性能,更好的长期使用经济性以及更完善的理论和技术支持。在烟气排放检测中始终处于核心位置。 自2018年,德国MRU公司发布新一代红外烟气分析仪MGA6系列以来,国内已有超过一百家单位成为了新产品的使用者,市场销量已超过两百台,MGA6系列产品凭借过硬的产品实力和完善的售后保障,成为进口红外烟气分析仪的爆款热卖产品。并赢得用户的高度赞扬! 今年疫情期间 在工厂停工,车辆停驶的情况下,多地仍然出现了数次重污染天气,环保人更加认识到任重道远,作为环境监测的基础仪器设备,MGA6系列产品一直陪伴着辛劳的工作人员,努力完成好每一次监测任务。约克仪器团队也克服国内外各种困难,做好疫情期间的交货和售后工作,为实现蓝天青山绿水的目标做出自己的贡献。 目前,国内范围内使用MGA6系列红外烟气分析仪的地市级以上环境监测站超过100多个单位,仅华东区域近两年就陆续采购了近50套MGA6系列产品,还有更多的监测机构在计划采购中,约克仪器今年为配合国家刺激经济的号召,陆续出台更多政策和服务计划,让更多用户可以用上更好的产品,为祖国蓝天计划尽心竭力!详情请咨询约克仪器各地办事处。
  • 精打细算,助粮油企业降本增效 ——近红外分析仪在粮油企业应用的效益分析
    近红外光谱技术应用在粮油行业已有多年的时间,自2010年以来,粮油行业包括小麦或小麦粉、稻谷、玉米、大豆等在内的相关的国家标准已有十余项,检测指标包括水分、蛋白、脂肪、淀粉等含量的测定。近红外光谱技术以其特有的快速、无损、准确的特点,成功应用于粮油行业。 作为国内唯一拥有全线近红外分析产品的龙头企业,聚光科技(杭州)股份有限公司在国内粮油行业占据近三分之一的市场份额,积累了大量模型的同时,对国内粮油行业的现状和粮油企业的需求也有了充分的了解和认识。聚光科技致力于为粮油企业提供高性价比的好产品,让产品满足用户使用需求的同时,还能为用户带来额外的效益,助力用户开源节流,降本增效。聚光科技Sup-NIR系列近红外分析仪到底能给粮油企业带来什么,让粮油企业它如此青睐?且听笔者慢慢分析。没有近红外的日子,粮油企业是怎么进行常规检测的? 目前粮油行业常规检测还是多用传统检测手段,传统的分析方法需要大量消耗水、电、及化学试剂。 粮油行业常见指标的传统检测方法与近红外检测方法时间对比如下: 时间就是金钱!这是生产企业生存的第一法则! 试想一下,一个粮油生产企业每天投入近10个小时的时间,至少3人次的人力去做大量的实验来检测上述5个指标,费时费力不说,前处理、人为分析等多个环节都会给检测的结果带来不可避免的误差,导致结果不准确。检测结果不准确,直接影响粮油生产企业原料采购和生产产品的品质检测。相同的样品,相同的条件,只要3分钟,近红外分析仪就能给出全部5个指标的检测结果! 近红外是如何减少企业化验成本的?以国内一家年产量10万吨的油脂企业为例:传统的分析方法需要大量消耗水、电、及化学试剂,而近红外分析只需耗用极少量的电力,无需其它任何试剂。化验室测试粗蛋白、水分、灰分,原料平均每月需分析450个样品(分析粗蛋白、水分、灰分、粗脂肪),采用近红外检测后,这些样品所耗的试剂、水、电等费用可全部节约。具体数字见下表。表1 采用近红外分析方法节约水电试剂费用明细 说明:采用近红外分析,每月累计节约费用近3387元,以上样品分析是以每批为计算,若不足满批,则成本会更高。故合计每年节约费用在:37257元。对于该企业来说,每年仅是水费、电费和试剂费就可节省最少37257元,还不包括因此节省下来的人力成本。因为常规理化检测需要接触有毒试剂,对身体健康不利,因此造成化验人员不固定,每次新化验人员上岗,均需进行培训,并且管理难度增大。采用近红外设备分析后,化学试剂使用量减少,对环境污染减少,可节约减排费用。同时人员流动相对减少,因此可节省员工培训时间,降低管理难度,从而间接创造收益。 近红外是如何帮助企业降低原料采购成本的? 油脂行业的生产成本中,原料成本大约占用了85%的比例,其它如工人工资、能源等只占到15%左右。因此,控制原料成本是提高效益、创造利润的重要环节。销售价格由原料成本+固定成本+人工/费用+毛利组成,由下表可计算出:当原料成本节约了1%时,毛利由5%增长为6%,实际增长率=20%。 以大豆油生产企业为例进行效益分析: (1)豆粕中水分控制效益分析: 检测水分含量,调整干燥(蒸汽)工序中物流速度与蒸汽量,调节水分含量: 水分含量偏高,采取降低物流速度或提高烘蒸温度; 水分含量偏低,采取加大蒸汽流量; 水分效益分析 : 水分每增加0.1%,带来3元/吨的利润; 水分控制由原来的平均12.5%提升到12.8%,则增加了0.3%的水分,即可带来9元/吨的利润;(2)豆粕中蛋白控制效益分析: 检测蛋白含量,调整豆皮或高蛋白豆粕加入量,调节蛋白含量: 蛋白含量偏高,采取加入豆皮; 蛋白含量偏低,采取加入高蛋白豆粕; 蛋白效益分析: 蛋白每降低0.1%,带来15元/吨的利润; 蛋白控制由原来的平均43.5%降低到43.3%,则降低了0.2%的蛋白,即可带来30元/吨的利润;(3)豆粕中残油控制效益分析: 检测残油的目的主要为控制加工工艺,平衡效率和效益: 一般残油小于0.5%,则豆子浸泡时间过长,影响生产效率,即产量变低; 一般残油大于0.7%,则豆子浸泡时间不足或轧胚、浸出工序异常,出油率偏低,影响效益; 近红外是如何帮助企业控制原料和粕类品质的? 在油脂品质控制中,控制原料和粕类品质,可带来巨大收益。 假设大豆粗脂肪为18%,价格约3500元/吨。大豆粗脂肪每增加一个百分点,每吨的价格就要高60元左右。如能严格控制检测含油量,按质定价可以节约不少成本。 假设豆粕粗蛋白含量43%左右,价格约3100元/吨 豆粕粗蛋白含量每高一个百分点,每吨价格就要高50-100元。利用近红外技术快速检测豆粕粗蛋白,可以通过添加低价的豆皮,对豆粕的粗蛋白含量进行精确调控。再以年产量10万吨豆粕的油脂厂为例,以粗蛋白检测为例:表2 采用近红外方法后仅节约蛋白一项可增加的效益 根据以上两个表,可估算出:在采用近红外分析技术后,对于示例中的油脂厂,每年可节约的水电试剂费为37257元;严格质量控制,仅节约蛋白可增加41万元收益。同样如果能严格控制水分含量和收购原料时含油量和水分含量,可带来非常可观的收益。除了有形的开源节流,对于生产企业的无形的品牌和知名度也有正面的影响。近红外分析仪可在2~3分钟内快速反映成品质量是否合格,加快了成品出厂周期,减轻了成品库负荷。成品抽检频率可提高上百倍,减少了不合格品的流出,从而保证产品质量的稳定性,提高了客户满意度。另外近红外快速分析仪还可以通过快速检测减少堆装时间、节省部分装运费用;通过快速分析原料适当降低原料库存,节省资金利息;降低质量事故,减少差错成本;使采购部门快速判断原料质量和价格,增加采购机会。综上所述,采用近红外带来的收益主要有如下部分: 直接节约实验室化验成本 按质论价,降低原料成本 快速控制原料和粕类品质 降低人员管理难度,节约管理费用 降低环境污染,节约减排费用 稳定产品质量,提高企业信誉,带来无形收益。 注重的效益粮油企业在寻求着各种能够节能降耗的方法,提高效益的同时降低成本,还要保证产品的质量和用户的满意度。用户的需求就是仪器生产企业的动力,聚光科技开发出的SupNIR系列近红外分析,不仅能够快速无损地检测多种指标,还能够替用户精打细算,降本增效,因此受到广大粮油企业的欢迎。目前国内包括山东三维油脂、嘉里粮油(青岛)有限公司、鲁花集团等大中型粮油企业都已采购聚光科技的近红外分析仪,相信有了用户的大力支持,聚光科技会推出更多更好的服务! ps:更多近红外在细分领域的应用请点击专题查看http://www.fpi-inc.com/jgzt/welcome.php?7
  • 考虑探测器非理想性的红外偏振成像系统作用距离分析
    在背景与目标红外辐射量差距不大或背景较为复杂等情况下,传统红外成像技术对目标进行探测与识别的难度较大。而红外偏振探测在采集目标与背景辐射强度的基础上,还获取了多一维度的偏振信息,因此在探测隐藏、伪装和暗弱目标和复杂自然环境中人造目标的探测和识别等领域,有着传统红外探测不可比拟的优势。但同时,偏振装置的加入也增加了成像系统的复杂度与制作成本,且对于远距离成像,在红外成像系统前加入偏振装置对成像系统的探测距离有多大的影响,也有待进一步的研究论证。据麦姆斯咨询报道,近期,中国科学院上海技术物理研究所、中国科学院红外探测与成像技术重点实验室和中国科学院大学的科研团队在《红外与毫米波学报》期刊上发表了以“考虑探测器非理想性的红外偏振成像系统作用距离分析”为主题的文章。该文章第一作者为谭畅,主要从事红外偏振成像仿真方面的研究工作;通讯作者为王世勇研究员,主要从事红外光电系统技术、红外图像信号处理方面的研究工作。本文将从分析成像系统最远探测距离的角度出发,对成像系统的探测能力进行评估。综合考虑影响成像系统探测能力的各个因素,参考传统红外成像系统作用距离模型,基于系统的偏振探测能力,建立了红外偏振成像系统的作用距离模型,讨论了偏振装置非理想性对系统探测能力的影响,并设计实验验证了建立模型的可靠性。红外成像系统作用距离建模目前较为公认的对扩展源目标探测距离进行估算的方法是MRTD法。该方法规定,对于空间频率为f的目标,人眼通过红外成像系统能够观察到该目标需要满足两个条件:①目标经过大气衰减到达红外成像系统时,其与背景的实际表观温差应大于或等于该频率下的成像系统最小可分辨温差MRTD(f)。②目标对系统的张角θT应大于或等于相应观察要求所需要的最小视角。只需明确红外成像系统的各项基本参数与观测需求,我们就可以计算出系统的噪声等效温差与最小可分辨温差,进而求解出它的最远探测距离。红外偏振成像系统作用距离建模偏振成像根据成像设备的结构特性可分为分振幅探测、分时探测、分焦平面探测和分孔径探测。其中分时探测具有设计简单容易计算等优点,但只适用于静态场景;分振幅探测可同时探测不同偏振方向的辐射,但存在体积庞大、结构复杂,计算偏振信息对配准要求高等问题;分孔径探测也是同时探测的一种方式,且光学系统相对稳定,但会带来空间分辨率降低的问题;分焦平面偏振探测器具有体积小、结构紧凑、系统集成度高等优势,可同时获取到不同偏振方向的偏振图像,是目前偏振成像领域的研究热点,也是本文的主要研究对象。图1为分焦平面探测系统示意图。图1 分焦平面探测器系统示意图本文仿真的分焦平面偏振探测器,是在红外焦平面上集成了一组按一定规律排列的微偏振片,一个像元对应着一个微偏振片,其角度分别为 0°、45°、90°和135°,相邻的2×2个微像元组成一个超像元,可同时获取到四种不同的偏振态。图1为分焦平面探测系统结构示意图。传统方法认为在红外成像系统前加入偏振装置后,会对系统的噪声等效温差与调制传递函数MTF(f)产生影响,改变系统的最小可分辨温差,进而改变系统的最远探测距离。本文将从偏振装置的偏振探测能力出发,分析成像系统的最小可分辨偏振度差,建立红外偏振成像系统的探测距离模型。我们首先建立一个探测器偏振响应模型,该模型将探测器视为一个光子计数器,光子被转换为电子并在电容电路中累积,综合考虑探测器井的大小、偏振片消光比、信号电子与背景电子的比率以及入射辐射的偏振特性,通过应用误差传播方法对结果进行处理。从噪声等效偏振度(NeDoLP)的定义出发,NeDoLP是衡量偏振探测器探测能力的指标,即探测器对均匀极化场景成像时产生的标准差。对其进行数学建模,进而分析得到红外偏振成像系统的最远探测距离。图2 DoLP随光学厚度变化曲线对于探测器来说,积分时间越长,累积的电荷越多,探测器的信噪比(SNR)就越高,但这种增加是有限度的。随着积分时间的增加,光生载流子有更多的时间被收集,增加信号。然而,同时,暗电流及其相关噪声也会增加。对于给定的探测器,最佳积分时间是在最大化信噪比和最小化暗电流及噪声的不利影响之间取得平衡,为方便分析,我们假设探测器工作在“半井”状态下。通过以下步骤计算红外偏振成像系统最远作用距离:a. 根据已知的目标和背景偏振特性以及环境条件,计算在给定距离下,目标与背景之间的偏振度差在传输路径上的衰减。b. 结合系统的探测器性能参数,确定目标在给定距离下是否可被观察到。如果不能则减小设定的距离。目标被观察到需同时满足衰减后的偏振度差大于或等于系统对应于该频率的最小可分辨偏振度差MRPD,目标对系统的张角θT大于或等于相应观察要求所需要的最小视场角。c. 逐步增加距离,直到目标与背景之间的偏振度差不再满足观察要求。这个距离即为成像系统最远作用距离。τp (R)为大气对目标偏振度随探测距离的衰减函数,可根据不同的天气条件,根据已有的测量数据进行插值,计算出不同探测距离下大气对目标偏振度的衰减,图4. 5给出了根据文献中测量数据得到的偏振度随光学厚度增加衰减关系图。这里给出的横坐标是光学厚度,不同天气条件下,光学厚度对应的实际传播距离与介质的散射和吸收系数有关。综上,我们建立了传统红外成像系统和考虑了偏振片非理想性的红外偏振成像系统的作用距离模型,下面我们将对模型的可靠性进行验证,分析讨论探测器各参数对成像系统探测能力的影响。验证与讨论由噪声等效偏振度的定义可知,其数值越小,代表偏振探测器的性能越优秀。下面我们对影响红外偏振成像系统探测性能的各因素进行讨论,并设计实验验证本文建立模型的正确性。偏振片消光比消光比是衡量偏振片性能的重要参数,市售的大面积偏振片的消光比可以超过200甚至更多。对其他参数按经验进行赋值,从图3可以看到,对于给定设计参数的探测器,偏振片消光比超过20后,随着偏振片消光比的增加,探测器性能上的提升微乎其微。对于分焦平面探测器,为实现更高的消光比,不可避免地要牺牲探测器整体辐射通量。由于辐射通量降低而导致的信噪比损失可能远远超过消光比增加所获得的收益。这一结果同样可以对科研人员研制偏振片提供启发,对需要追求高消光比的偏振片来说,增大透光轴方向的最大透射率要比降低最小透射率更有益于成像系统的性能。图3 偏振片消光比与探测器噪声等效偏振度关系图探测器井容量红外探测器的井容量是指探测器像素在饱和之前能够累积的电荷数量的最大值。井容量是衡量红外探测器性能的一个关键参数,井容量通常以电子数(e-)表示。较大的井容量意味着探测器可以在饱和之前存储更多的电荷,从而能够在更大的亮度范围内准确检测信号。这对于在具有广泛亮度变化的场景中捕获清晰图像至关重要。从图4可以看出,增大探测器井的容量,同样能很好的提高成像系统的偏振探测能力。图4 探测器井容量与探测器噪声等效偏振度关系图然而,井容量的增加可能会导致像素尺寸增大或探测器面积减小,这可能对系统的整体性能产生负面影响。因此,在设计红外探测器时,需要权衡井容量、像素尺寸和其他性能参数,以实现最佳性能。目标偏振度虽然推导出的噪声等效偏振度公式包含目标偏振度这一参量,但目标的偏振度本身对探测器的噪声等效偏振度没有直接影响。NeDolp 是一个衡量探测器性能的参数,它主要受探测器内部噪声、电子学和其他系统组件的影响。然而,目标的偏振度会影响探测器接收到的信号强度,从而影响信噪比(SNR)。从图5也可以看出,探测器的NeDolp受目标的偏振度影响不大。图5 目标偏振度与探测器噪声等效偏振度关系图读取噪声与产生复合噪声比值读取噪声主要来自于探测器的读出电路、放大器和其他电子元件。它通常在整个光强范围内保持相对恒定。产生复合噪声是由光子的随机到达和电荷生成引起的,与光子数成正比。在低光强下,产生复合噪声通常较小;而在高光强下,它会逐渐变大。通过计算读取噪声和产生复合噪声的比值,可以确定系统的性能瓶颈。如果读取噪声远大于产生复合噪声,这意味着系统在低光强下受到读取噪声的限制。在这种情况下,优化读出电路和放大器等元件可能会带来性能提升。如果产生复合噪声远大于读取噪声,这意味着系统在高光强下受到产生复合噪声的限制。在这种情况下,提高信号处理和光子探测效率可能有助于改善性能。从图6可以看出,降低读取噪声与产生复合噪声比值可以有效提升系统偏振探测能力。图6 δ与探测器噪声等效偏振度关系图信号电子比例综合图4~6可以看出,提升β的数值可有效提高探测器的偏振探测能力,由β的定义可知,对于确定井容量的探测器,β的取值主要取决于探测器的各种噪声与积分时间,降低探测器的工作温度、优化探测器结构、减少表面和界面缺陷等途径都可以降低探测器的噪声,调节合适的积分时间也有助于探测系统的性能提升。实验验证根据噪声等效偏振度的定义,利用面源黑体与红外可控部分偏振透射式辐射源创建一组均匀极化场景。如下图7所示,黑体发出的红外辐射,经过两块硅片,发生四次折射,产生了偏振效应,通过调节硅片的角度,即可产生不同线偏振度的红外辐射。以5°为间隔,将面源黑体平面与硅片间的夹角调为10°~40°共七组。每组将面源黑体设置为40℃和70℃两个温度,用国产自主研制的红外分焦平面偏振探测器采取不少于128帧图像并取平均,然后将每组两个温度下相同角度获得的图像作差,以减少实验装置自发辐射和反射辐射对测量结果的干扰,差值图像就是透射部分的红外偏振辐射。对差值图像进行校正和去噪后,即可按公式计算出探测器对均匀极化场景产生的偏振度图像。计算出红外辐射的线偏振度,为减小测量误差,仅取图像中心区域的像元进行分析。该区域像元的标准差就是该成像系统的噪声等效偏振度(NeDoLP)。探测器具体参数如表1所示。图7 实验示意图表1 偏振探测器参数利用本文建立的探测器仿真模型计算出硅片的线偏振度仿真值,公式19计算出硅片线偏振度的理论值,与实验的测量值进行对比,图8展示了三组数据的变化曲线,从图中可以看出,三组数据存在一定偏差,这可能与硅片调节角度误差、面源黑体稳定性、干涉效应、硅片摆放是否平行等因素有关,但在误差允许的范围内,实验验证了偏振探测系统的性能,也证明了本文建立仿真模型的可靠性。NeDoLP测量结果如表2所示。图8 线偏振度理论值、测量值与本文模型仿真值曲线图表2 实验结果从上表可以看到NeDoLP的测量值与仿真值的差值基本能控制在5%以内,实验结果再次印证了本文设计的模型的可靠性。实例计算应用建立的模型对高2.3m,宽2.7m,温度47℃,发射率为1的目标的最远探测距离进行预测,目标差分温度6℃;背景温度27℃;发射率1;目标偏振度30%,背景偏振度1%,使用3.2节中样机的探测器参数,最后,采用文献中介绍的“等效衰减系数-距离”关系的快速逼近法对红外探测系统最远作用距离R进行求解,得到表3的结果。表3 红外成像系统的最远作用距离根据红外探测系统最远探测距离,利用本文第二节提出的方法,得到不同探测概率下红外偏振成像系统最远作用距离结果如表4所示。表4 红外偏振成像系统的最远作用距离所选例子为目标与背景偏振度差异大于其温差,所以在这种探测场景下红外偏振成像系统的探测能力要优于红外成像系统。探测器的参数不同,探测场景与目标的变化都会对模型的结果产生影响,但本文提供的成像系统作用距离模型可为实际探测中不同应用场景下的成像系统选择提供参考。结论针对不同的探测场景,红外成像系统与红外偏振成像系统在最远探测距离方面哪个更有优势并没有定论,探测目标的大小,背景与目标的温差与偏振度差,大气透过率,具体探测器的参数等因素都会对成像系统的最远探测距离产生影响。经实验验证,本文所建立的非理想红外偏振成像系统的响应模型是可靠的,可以用于估算成像系统的最远作用距离,针对不同的探测场景,读者可通过实验确定探测器的具体性能参数,利用仿真软件或实验测量的方式获取探测目标的温度与偏振信息,明确探测环境的具体大气参数,利用模型对红外成像系统与偏振成像系统的最远作用距离进行预估,选择更具优势的成像系统。这项研究获得上海市现场物证重点实验室基金(No. 2017xcwzk08)和上海技术物理研究所创新基金(No. CX-267)的资助和支持。论文链接:http://journal.sitp.ac.cn/hwyhmb/hwyhmbcn/article/abstract/2023041
  • 波通公司推出第三代二极管阵列近红外分析仪
    DA 7250提高了实验室和加工现场的分析准确度和效率。DA 7250的仪器可以更加准确地分析更多类型的产品,更多的参数以及在几乎所有的环境下都可以使用,它将无任何移动配件、内置温度校准的光学系统和稳定的固态硬盘集成到一个满足IP65(防尘/防水)安全级别的密闭室里,可以保证在任何需要的地方都能最大化地实现它的价值。DA 7250避免了很多其它近红外仪器可能发生的常见故障。采用大面积扫描,最大化地平均样品的检测,同时采用高能输出的二极管阵列技术,确保不均匀样品的准确分析。仪器可以自动校准波长和吸光度。采用非接触分析,很多类型的样品都可以得到准确的分析-基本不需要样品的制备或清理-排除掉交叉污染样品池的误差。仪器操作流程简单,确保操作者可以正确反复的操作,监控加工生产过程。仪器自带大量可转移的覆盖许多产品和参数的曲线和数据库,方便快速的分析。现有的应用包括:谷物、饲料、面粉、油脂、乳品、肉类、零食、宠物食品、淀粉和乙醇等加工领域。更多丰富的产品类型-整粒谷物、粉状样品、膏状样品、浆状样品、液体样品-还有样品量的多少-从几克到350克都可以检测。DA 7250结合最新更新的软件的特点和功能可以实现联网工作或远程监控,与第三方LIMS系统或加工过程软件衔接容易。通过WEB报告功能,分析结果可以随时在屏幕或者任何与网络连接的设备上啥看。DA 7250可以准确地满足提高质量和过程控制的需求,几乎可以分析任何产品,可以放置在任何地方,随时可以分析,在保证了简单的常规分析要求的同时也可以满足高级分析的需求。
  • 新疆分析测试中心选择赛恩思高频红外碳硫仪SES-902 为土壤三普项目注入科技动力
    近日,新疆分析测试中心采购的赛恩思高频红外碳硫仪已完成安装调试,这款设备将服务土壤三普项目,可检测土壤、矿石等样品中的碳硫元素含量。中国科学院新疆理化技术研究所分析测试中心前身是1983年成立的原新疆化学所技术装备室和1986年原新疆物理所技术室,2002年整合成立新疆理化所分析测试中心,2011年以其为主体获得科学院所级中心择优支持,是研究所直接管理的以大中型分析测试仪器为主要手段进行分析测试服务的机构。赛恩思高SES-902采用燃烧红外光谱仪法,能够实现对固体材料中碳硫元素的高精度检测,确保检测结果达PPM级,是应用广泛的碳硫检测技术。赛恩思高频红外碳硫仪SES-902的引入不仅是新疆分析测试中心的技术升级,更是对赛恩思仪器科技实力的认可。相信在未来,赛恩思仪器将持续引领科技前沿,为更多领域的科研和环保工作提供有力支持。
  • 中国傅立叶近红外分析仪行业前景分析
    《2022-2028年全球与中国傅立叶近红外分析仪行业调研及发展前景预测报告》是在大量的市场调研基础上,主要依据国家统计局、商务部、发改委、国务院发展研究中心、傅立叶近红外分析仪相关行业协会、国内外傅立叶近红外分析仪相关刊物的基础信息以及傅立叶近红外分析仪行业研究单位提供的详实资料,结合深入的市场调研资料,立足于当前全球及中国宏观经济、政策、主要行业对傅立叶近红外分析仪行业的影响,重点探讨了傅立叶近红外分析仪行业整体及傅立叶近红外分析仪相关子行业的运行情况,并对未来傅立叶近红外分析仪行业的发展趋势和前景进行分析和预测。  产业调研网发布的《2022-2028年全球与中国傅立叶近红外分析仪行业调研及发展前景预测报告》数据及时全面、图表丰富、反映直观,在对傅立叶近红外分析仪市场发展现状和趋势进行深度分析和预测的基础上,研究了傅立叶近红外分析仪行业今后的发展前景,为傅立叶近红外分析仪企业在当前激烈的市场竞争中洞察投资机会,合理调整经营策略;为傅立叶近红外分析仪战略投资者选择恰当的投资时机,公司领导层做战略规划,提供市场情报信息以及合理参考建议,《2022-2028年全球与中国傅立叶近红外分析仪行业调研及发展前景预测报告》是相关傅立叶近红外分析仪企业、研究单位及政府等准确、全面、迅速了解目前傅立叶近红外分析仪行业发展动向、把握企业战略发展定位方向不可或缺的专业性报告。
  • 【我与近红外的故事】曾仲大:近红外数据分析之路
    p  span style="font-family: 楷体,楷体_GB2312,SimKai "strong随感:/strong“我与近红外的故事”征文近一年了,看过许多老师情真意切的表达,真是把乐趣融入到了近红外的研究与应用之中,也更加深切地感受到同行们对国内近红外发展的使命感和责任感。而自己与近红外的故事,几次动笔却都没能写下几个字。时间肯定不是借口,惰性真是害人啊。好在拖到春节,总算能静下心来了。就像与近红外的相遇相知,既是机缘巧合,更是某种必然吧。/span/pp  初识近红外,都是博士毕业一年以后的事了。那时已经在香港理工大学周福添教授课题组从事博士后研究一年多了,主要方向还是老本行-化学计量学基础算法研究,解决中药和代谢组学等复杂体系分析中的数据处理问题,从GC-MS,LC-MS到中药指纹与药物活性关系。一次Daniel MOK博士找到我,询问是否有意愿到陈新滋院士课题组从事中药质量分析与鉴别方面的工作,陈院士那时是理大副校长(后任香港浸会大学校长,现受聘中山大学教授、学委会主任),研究组的条件与学术水准自不必说,就这样幸运地开始了近二年的近红外数据分析之旅。/pp  对香港熟悉的朋友一定对其大街小巷的名贵中药材印象深刻,尤其是弥墩道,应该是内地赴港旅游人士的必经之地吧,一是去旺角购买电子产品的旅游大巴必定经过这里,另一方面则是这条大道两旁大大小小的中药材店。记得第一次见到时,很是疑惑哪来的那么多冬虫夏草、燕窝和野生人参?说回到陈院士负责的这个研究课题,由香港赛马会中药研究院提供500万研究经费,对包括上述中药,以及石斛、灵芝、阿胶等在内的30味名贵中药材进行质量鉴别分析和研究,目的是帮助那些大街小巷的药材经销店铺,中间批发商,甚至普通消费者,以快速、经济、简便的方法识别药材真假,甚至质量等级。这些药材大多价格不菲,若能够有效识别真假,其商用价值可想而知!顺便一提,香港赛马会中药研究院很多年前已经解散,个中原因无法深究,但在目前国家大力践行中医药研究开发与应用的今天,这也算是一件憾事吧,包括设想中的香港国际中医药中心。/pp  说到这里,近红外分析可以派上用场了!无论是十年前,还是十年后的今天,应没有什么分析技术比近红外更适合完成这项使命,综合考虑时间效率、分析成本,亦或是平衡多重因素影响下定性定量分析结果的准确性!记得当时我们使用的是FOSS公司的XDS快速含量分析仪(Type XM 1100 Series),以及Polychromix手持式近红外分析仪(Model: 1600-2400)。由于项目定位于实际应用,需要适应不同场合下的快速分析,对数据分析本身的要求同样也是比较高的,比如涉及模型传递,尽可能简化数据分析的过程及对使用者的要求,亦确保结果的准确可靠性。基于此编写了功能完备的近红外数据分析软件系统,一站式地完成近红外数据分析的完整流程,从各种各样的预处理方法到特征选择,再到定性定量模型的构建、评价与验证预测,以及模型传递等。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201706/insimg/137c0a6d-7548-46ef-beea-f984cce33ba7.jpg" title="2_副本.jpg"//pp style="text-align: center "中药质量分析与鉴别项目中用到的近红外分析仪 (图1和图2)。/pp  说实在的,那时对化学计量学的多元校正方法并不是特别熟悉,我的整个硕士和博士研究,都是多元分辨方向,也就是如何从中药和烟草等复杂体系分析的联用仪器数据中,发展“数学分离”的方法,获取化学纯组分的定性定量信息,即纯组分的光谱和色谱信息。幸运的是,得益于在梁逸曾教授研究组六年时间里耳濡目染的学习,比如许青松教授对统计分析的讲解,杜一平教授的QSAR研究等等,使得我无论对复杂数据的理解,还是化学计量学方法的应用与发展,都有足够基础支持我去解决近红外数据分析中遇到的各种问题。在香港的几年时间里,梁教授每年也都会利用假期去香港一段时间,与香港同行合作交流化学计量学及其应用方面的成果,更是继续指导我解决研究中遇到的实际难题。每每想到这些,总会浮现与恩师相处过程中的点点滴滴。至于上面提到的中药质量分析研究项目,我们对包括阿胶、珍珠、川贝母、藏红花、黄连在内的多味中药进行了深入分析研究,获得了非常不错的结果,陈院士对此也给予了很高的评价。很清楚地记得因此第一次上了电视新闻,是香港亚洲卫视针对我们使用近红外分析技术,如何快速识别真假中药,及其质量等级的采访报道。当然,这些研究很多也是和理工大学的同事,以及杨大坚教授(现任重庆市中药研究院院长)、董玮玮博士等一起完成的,我主要负责数据分析,以及数据软件产品开发与实现方面的工作。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201706/insimg/ac0a45a1-23c7-43bf-8467-f0cb1a6ccb8d.jpg" title="3_副本.jpg"//pp style="text-align: center "中药质量分析与鉴别项目交流会 (图3),及与日本Yukihiro Ozaki教授交流(图4)。/pp  离开香港后,很长一段时间内都没有与近红外分析有直接的关联。先是在Philip Marriott 教授课题组做research fellow,从事全二维色谱数据分析方面的工作,主要方向是全二维分离的模拟、预测,以及化学计量学新方法的发展。2012年回国后则作为引进人才,在中科院大连化物所许国旺教授研究组,从事代谢组学数据分析与高分辨LC-MSn数据处理新算法的研究等。看似这些工作与近红外分析不怎么挨着边,但老实说,同其他研究一样,数据分析也是一通百通的事!数据来源与数据结构可能不一样,数据背景与数据分析结果,以及数据处理方法亦可能存在差别,但数据分析的本质却是高度一致的,无论是色谱分离的模拟,亦或是代谢小分子标志物的发现!从这个意义上来说,也算是一直在这个圈子吧。/pp  近红外技术的发展,面临非常多的机会,无论从国内快检还是工业智能化的需要来看,还是从国外近红外发展的轨迹来看。然而近红外分析更广阔的应用,仍有一系列需要解决的难题,这其中当然包括仪器硬件的小型化、便携式,以及智能化与场景化。但从数据及数据分析的角度来说,快速、准确的模型构建,模型的通用性、更新及转换等仍是需要加以研究的内容。基于此,离开化物所后创办的大连达硕信息技术有限公司,第一个数据产品“魔力”,便专注近红外数据的分析,这也算是真正走在了近红外技术与数据分析的商业应用之路上。希望能够以智慧化、便捷化的方式,分析挖掘科学研究与工业应用中的海量数据。无论对于近红外分析的初入者,还是有了相当经验的人员,一旦采集到数据,便能快速得到好用的模型及结果,这也是目前非常欠缺的,主要原因就在于近红外数据分析的过程长,可变因素多,涉及的算法也很多,传统上要快速得到一个好用的模型并不容易。尽管大多数研究者并没有把数据分析提升到特别核心的位置,但其价值显而易见,甚至在某些方面可与硬件本身相得益彰,弥补硬件的物理劣势!/pp  另一方面,近红外分析以其简单方便的前处理,加上非常快速的数据采集方式,使得数据的获取,甚至大数据的积累顺理成章。然而即使对同一组数据,不同的研究者亦极有可能得到完全不同,甚至相反的分析结果或结论,即使在固定分析方法的情况下!这是一个容易被忽视,却又至关重要的问题,否则不管如何将近红外分析的硬件评价,以及实验测试全过程标准化,也无法得到可相互比较的结果。数据“横看成岭侧成峰”的魅力,不应是由于数据分析方法或人员的不同导致,而是数据背景的属性差异或者数据分析目的的不同产生。基于此,我们也正采用近红外数据分析的通用准则,使用粒子群等最优化的方法,开发全新的近红外数据分析软件产品,自动优选数据分析算法,以及方法的使用顺序,并全局优化方法的参数。这样我们获得数据后,只需按照标准化的流程一步一步走,便可获得最优的数据分析模型与模型结果。从而使得近红外数据的分析,如同实验分析一样,结果的重现性与可比性也就不再是个问题。避免像现在这样,往往是漫无目的的数据探索,耗费漫长时间也不一定能得到合适好用的模型!这无论在研究中,还是在工业生产中,都是需要花大力气迎接的挑战。在这一过程中,得到了袁洪福教授、吴海龙教授、邵学广教授、杜一平教授、褚小立教授、闵顺耕教授等诸多老师的大力支持与帮助。从老师们关切的眼神中,能读懂那份殷殷之情,也唯有努力做点事情,为国内近红外的发展做些有益的工作,方不负此情。/pp  近红外分析能做的事情很多,近红外数据分析如是,尤其站在移动互联时代,站在大数据分析挖掘的视角与高度。近红外有其自身特有的巨大优势-本身就是物联网中的一个绝佳传感器!从这个意义上来说,近红外分析代表着某种未来,只是通往未来的路上,还需要我辈站在前辈的肩膀上,不断付出智慧和汗水。/pp  “师者也,教之以事而喻诸德也。”,数据分析之路上,深深地烙上了梁逸曾教授的影响。亦师亦友者,感恩、深切缅怀您。/pp style="text-align: right "span style="font-family: 楷体,楷体_GB2312,SimKai "  2017年1月30日于浙江西湖/span/pp  strong个人简介/strong/pp/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201706/insimg/e1424397-960a-4e21-a206-9245429e6328.jpg" title="1_副本.jpg"//pp  曾仲大,男,博士,现任大连达硕信息技术有限公司总经理。/pp  曾博士师承梁逸曾教授,2006年获得工学博士学位,主要从事化学计量学基础算法研究,以及色、质、光谱等分析技术在制药、烟草和代谢组学等复杂体系分析中的应用及其数据分析挖掘等。近年来在大数据的分析与应用方面亦有涉猎。/pp  曾博士先后工作于香港理工大学、澳洲RMIT大学、Monash大学,以及中国科学院大连化学物理研究所。迄今已发表SCI论文40余篇,在2013-2016近三年时间里,以第一作者或合作者在美国分析化学杂志发表7篇研究论文,同时获邀为TrAC等权威期刊撰写化学计量学及化学数据分析处理方面的综述。/pp  曾博士曾获得中国科学院大连化学物理研究所“所百人”引进人才计划,大连“海创工程”计划、高层次人才创新创业支持计划、新兴技术创新成长计划,以及国家人社部高层次海归人才创业计划的支持。公司主要提供复杂化学与生物数据分析服务,数据挖掘软件产品开发,以及个性化数据应用的整体解决方案。/pp  strong人生格言:/strong有志者,事竟成。/p
  • 便携式近红外光谱技术在食品分析中的应用
    HAMAMATSU(滨松) PHOTONICS近红外光谱在食品分析中的作用近红外光谱(NIR)是指在750至2500 nm的电磁光谱近红外区域内研究物质和光之间的相互作用[1]。当红外光与样品分子相互作用时,每个波长反射、透射和吸收的电磁能的量取决于样品中存在的键类型[1]。C-H、N-H和OH振动键在近红外区域最普遍,决定了给定物质的光谱形状。近红外光谱通常用于测量和量化样品的近似成分,如蛋白质、水分、干物质、脂肪和淀粉。此外,近红外光谱反映了其物理性质或特性[1]。因此,当应用于食品时,样品的近红外光谱不仅可以提供有关食品化学成分的信息,还可以通过不需要使用试剂的无损、快速和清洁的方法提供有关其功能的信息[2]。便携式仪器的影响直到最近,近红外技术才向小型化设备发展,使近红外分析从实验室进入现场成为可能。便携式近红外光谱是监测作物质量、确定最佳种植条件和收获时间的绝佳工具。鉴于食品易受含量变化的影响,需要保持新鲜以防止质量损失,以及非法掺假的可能性,控制食品质量的重要性怎么强调都不为过。此外,食品生产、配送链的复杂性以及将分析时间降至最低的需要,使便携式光谱仪在该领域向前迈出了革命性的一步[5][6]。用于食品分析的近红外光谱示例Parastar等人将计算技术应用于近红外分析仪获得的吸收光谱,能够准确区分新鲜肉和解冻肉,并根据鸡的生长条件对鸡柳进行正确分类[3]。使用类似的工具,Kucha和Ngadi能够评估猪肉末的新鲜度[4]。这些计算方法,通常被称为“化学计量学”,使用多种算法和统计技术,如多元线性回归、偏最小二乘回归和主成分分析来分析来自光谱仪的数据。这些方法将光谱信息转化为与样品相关的化学和功能特性[2]。便携式近红外分析仪改善奶牛健康,优化灌溉和收割时间便携式近红外分析仪已被用于饲料和牧草的农场监测,以评估其质量。在这个过程中,将饲料样本放在扫描仪前进行分析,并将结果提供给农民或营养学家。这使他们能够及时做出有关提要的管理决策,将获得结果所需的时间从几天缩短到几秒钟。例如,牛饲料中玉米青贮饲料的干物质含量每天变化很大,在六个月内高达41%。通过现场调整,奶牛可以获得更一致的口粮,从而改善牛群的总体健康状况。这是通过血液参数的变化和乳腺炎的减少来观察的,从而增加了产奶量。此外,这项技术可以潜在地减少饲料浪费,从而降低成本并增加收入[7]。便携式近红外光谱法的另一个有价值的应用领域是对作物生长各个阶段的实地评估。Tardaguila等人研究了在不同环境条件下生长的八个不同品种的160片葡萄叶片的吸收波长。他们专门针对含水量评估来确定葡萄酒行业灌溉的优化策略[8]。在收获季节,近红外光谱已被用于评估橄榄果实[9]、葡萄[10]和番茄[11]在树上的成熟度,从而优化收获时间,甚至使用农业机器人实现自动化水果采摘。收获后,近红外光谱技术有助于农民、消费者和质量控制官员对产品质量进行快速无损检测。这项技术还允许检测由于将传统生产的水果错误标记为有机水果而导致的菠萝欺诈[12]。FTIR光谱提供更高的通量和更好的灵敏度在近红外光谱中,分析有机材料的吸收光谱主要有两种方法。第一种方法是基于二极管阵列的光谱学。该技术使用色散光栅将从样品反射或透射的光分离为其波长分量。然后将每个分量聚焦在线性检测器阵列的不同像素上。这种方法速度相当快,可以用于实时测量。然而,二极管阵列光谱仪的光通量与其光谱分辨率成反比,这限制了其有效性。此外,在近红外区域敏感的线性阵列的高成本可能会限制其在某些应用中的应用,特别是在农业和食品中。获得吸收光谱的第二种方法是傅立叶变换干涉测量法。在这种方法中,入射光被分成两条路径,一条指向固定反射镜,另一条指向可移动反射镜。当这些路径被重新组合时,就会得到干涉图。通过对该干涉图进行傅立叶变换,可以获得入射光的光谱,并且通过适当的校准,可以确定样品的吸收光谱。使用这种技术,可以同时测量所有波长,在不影响光谱分辨率的情况下提供更好的吞吐量和更高的灵敏度(通常被称为“Fellgett的优势”)。在该技术中,仅使用单个NIR光电探测器而不是阵列,从而保持低成本。滨松光子的FTIR引擎为食品行业带来了新的曙光滨松的FTIR引擎C15511-01是一个紧凑的傅立叶变换红外光谱模块,对1.1µm至2.5µm范围内的近红外光具有灵敏度,并具有USB连接。该设备的特点是在手掌大小的外壳中有一个迈克尔逊光学干涉仪和控制电路。为了补偿元件小型化造成的光损失,滨松光子公司的工程师为FTIR引擎配备了一个大型可移动MEMS反射镜和一个高灵敏度InGaAs PIN光电二极管。这种MEMS元件的特殊设计抵消了外部振动和器件内部杂散光反射的影响。可移动MEMS反射镜的位置使用专用激光系统进行连续和精确的监测,以确保最高的波长再现性。一般来说,滨松的FTIR引擎可以提供与更大、更昂贵的台式设备相当的高灵敏度、高分辨率和高速测量。使用FTIR引擎进行红外光谱分析有两种测量方法:“反射测量”和“透射测量”。使用这些方法,我们测量了坚果(杏仁、腰果、核桃)和酒精饮料(啤酒、清酒和白兰地)的光谱。透射测量:酒精饮料吸收光谱的比较及其酒精浓度的估计FTIR引擎C15511-01用于观察几种酒精饮料产生的吸收光谱的差异。将液体放入对近红外透明的石英池中,提供1mm的光路长度。使用卤素灯作为本实验的光源。来自灯的宽带光部分被液体吸收,并通过光纤部分传输到FTIR引擎。图中所示的吸收光谱是在室温下获得的,平均128次扫描,并减去参考测量值。这些光谱的形状主要受水中的OH基团(吸收波长:1450 nm和1900 nm)和醇中的CH基团(吸收光谱波长在2100 nm和2500 nm之间)的影响。还测量了纯水和乙醇的光谱,并将其添加到图中进行比较。此外,使用2300nm处的吸收峰来估计每种饮料中的酒精浓度。该测量显示的值与液体中酒精的实际存在一致,证实了使用这种紧凑的设备和方法进行精确估计的可能性。漫反射测量:使用近红外光谱对坚果进行分类当照射到样品上的光的一部分被其表面颗粒有规律地反射时,其余的则穿透样品。在这里,光通过折射透射、光散射和表面反射反复散射,直到它离开待测量的样品。通过该测量获得的漫反射光谱与样品的吸收光谱相似。漫反射信号通常比通过透射获得的信号弱。因此,使用这种方法的主要挑战之一是提高照明效率。在传统配置中,使用光纤将来自单个卤素灯的宽带光引导到样品。滨松光子最近设计了L16462-01,这是一种针对漫反射测量进行优化的创新光源。该装置配备了多个灯,以特定角度靠近样品。通过光纤收集从样品散射的光,并将其引导至NIR光谱仪。这种配置可测量信噪比,最大限度地减少杂散光的影响。e照射到样品上的部分光被其表面颗粒规则反射,其余部分穿透样品。在这里,光通过折射透射、光散射和表面反射反复散射,直到它离开待测量的样品。通过该测量获得的漫反射光谱与样品的吸收光谱相似。食物过敏是一种遗传易感个体在食用某些食物成分后出现不利免疫反应的情况。这种反应可能导致立即或延迟的症状,可能是严重或致命的[13]。在过去的几十年里,这种免疫紊乱已经成为全世界关注的一个重要问题,在西方国家,至少有8%的儿童和5%的成年人受到影响。它给医疗系统带来了相当大的压力,并可能严重限制日常甜梅干动[14]。许多种类的坚果,包括核桃(胡桃)、腰果(西方腰果)和杏仁(甜梅干),都被欧洲法规1168/2011列为过敏原,只要存在于食品中,就需要添加到成分表中[15]。出于这些原因,坚果的检测和分类对于食品工业来说是必要的。滨松利用近红外光谱对杏仁、腰果和核桃的吸收光谱进行了研究和分类。使用FTIR引擎C15511-01和新的灯L16462-01获得测量结果。将坚果放置在光源上,无需任何预先准备,平均进行128次扫描以获得每个样品的吸收光谱。所获得的光谱的特征在于1600-1800nm处的峰,这是由从脂质和蛋白质拉伸的CH的第一泛音引起的。当观察光谱的二阶导数时,各种光谱之间的差异更加明显。通过主成分分析法可以对不同种类的坚果进行分类。结论近红外光谱在食品工业中的潜在应用已经被许多科学出版物广泛记录了几年。便携式仪器的出现正在将分析从实验室转移到现场,将结果的时间从几天大幅缩短到几秒钟。最值得注意的是,这种由滨松MEMS技术驱动的硬件小型化在不影响灵敏度或分辨率的情况下实现。新的计算技术正在不断发展,以分析和比较吸收光谱,并估计食品中特定化合物的含量。这些方法使整个行业的非技术用户越来越容易访问该技术。便携式FTIR分析仪是解决食品行业许多重大挑战的宝贵工具。例如,它们可以帮助提高作物产量,从而在面临粮食需求增加时提供一种替代毁林的方法。将这些技术融入农业可以在优化灌溉和限制整个供应链的食物浪费时限制水浪费。最后,FTIR分析仪可以帮助改善我们的食物质量,使其对我们和所有依赖我们的动物更安全、更健康。参考文献[1] K. B. Beć, J. Grabska, and C. W. Huck, “Near-Infrared Spectroscopy in Bio-Applications”, Molecules, vol. 25, no. 12, p. 2948, Jun. 2020, doi: 10.3390/molecules25122948.[2] D. Cozzolino, “The Ability of Near Infrared (NIR) Spectroscopy to Predict Functional Properties in Foods: Challenges and Opportunities”, Molecules, vol. 26, no. 22, p. 6981, Nov. 2021, doi: 10.3390/molecules26226981.[3] H. Parastar, G. van Kollenburg, Y. Weesepoel, A. van den Doel, L. Buydens, and J. Jansen, "Integration of handheld NIR and machine learning to 'Measure & Monitor' chicken meat authenticity" in Food Control, vol. 112, pp. 107149, 2020. doi: 10.1016/j. foodcont.2020.107149. [4] Kucha, C.T., Ngadi, M.O. “Rapid assessment of pork freshness using miniaturized NIR spectroscopy”. Food Measure 14, 1105–1115 (2020). https://doi.org/10.1007/s11694-019-00360-9 [5] J.-H. Qu, D. Liu, J.-H. Cheng, D.-W. Sun, J. Ma, H. Pu, and X.-A. Zeng, "Applications of Near-infrared Spectroscopy in Food Safety Evaluation and Control: A Review of Recent Research Advances" Critical Reviews in Food Science and Nutrition, vol. 55, no. 13, pp. 1939-1954, 2015. doi: 10.1080/10408398.2013.871693.[6] K. B. Beć, J. Grabska, and C. W. Huck, “Miniaturized NIR Spectroscopy in Food Analysis and Quality Control: Promises, Challenges, and Perspectives,” Foods, vol. 11, no. 10, p. 1465, May 2022, doi: 10.3390/foods11101465.[7] "Can On-Farm NIR Analysis Improve Feed Management?", Penn State Extension. [Online]. Available: https://extension.psu. edu/can-on-farm-nir-analysis-improve-feed-management.[8] J. Tardaguila, J. Fernández-Novales, S. Gutiérrez, and M.P. Diago, "Non-destructive assessment of grapevine water status in the field using a portable NIR spectrophotometer", J. Sci. Food Agric., vol. 97, pp. 3772-3780, 2017. doi: 10.1002/jsfa.8241.[9] A. J. Fernández-Espinosa, "Combining PLS regression with portable NIR spectroscopy to on-line monitor quality parameters in intact olives for determining optimal harvesting time", Talanta, vol. 148, pp. 216-228, 2016. doi: 10.1016/j.talanta.2015.10.084.[10] G. Ferrara, V. Marcotuli, A. Didonna, A. M. Stellacci, M. Palasciano, and A. Mazzeo, “Ripeness Prediction in Table Grape Cultivars by Using a Portable NIR Device”, Horticulturae, vol. 8, no. 7, p. 613, Jul. 2022, doi: 10.3390/horticulturae8070613.[11] H. Yang, B. Kuang, and A.M. Mouazen, "In situ Determination of Growing Stages and Harvest Time of Tomato (Lycopersicon Esculentum) Fruits Using Fiber-Optic Visible—Near-Infrared (Vis-NIR) Spectroscopy", Applied Spectroscopy, vol. 65, no. 8, pp. 931-938, 2011. doi: 10.1366/11-06270.[12] C. L. Y. Amuah, E. Teye, F. P. Lamptey, K. Nyandey, J. Opoku-Ansah, and P. O. Adueming, "Feasibility Study of the Use of Handheld NIR Spectrometer for Simultaneous Authentication and Quantification of Quality Parameters in Intact Pineapple Fruits", Journal of Spectroscopy, vol. 2019, Article ID 5975461, 9 pages, 2019. doi: 10.1155/2019/5975461.[13] Z. Husain and R.A. Schwartz, "Food allergy update: more than a peanut of a problem", International Journal of Dermatology, vol. 52, pp. 286-294, 2013. doi: 10.1111/j.1365-4632.2012.05603.x.[14] S. H. Sicherer and H. A. Sampson, "Food allergy: Epidemiology, pathogenesis, diagnosis, and treatment", The Journal of Allergy and Clinical Immunology, vol. 133, no. 2, pp. 291-307.E5, Feb. 2014. doi: https://doi.org/10.1016/j.jaci.2013.11.020 [15] A. Luparelli, I. Losito, E. De Angelis, R. Pilolli, F. Lambertini, and L. Monaci, “Tree Nuts and Peanuts as a Source of Beneficial Compounds and a Threat for Allergic Consumers: Overview on Methods for Their Detection in Complex Food Products”, Foods, vol. 11, no. 5, p. 728, Mar. 2022, doi: 10.3390/foods11050728.本文来源:HAMAMATSU PHOTONICS(滨松电子),Applications for portable NIR spectroscopy in food analysis,www.hamamatsu.com供稿:符 斌,北京中实国金国际实验室能力验证研究有限公司
  • 富吉瑞“闯关”科创板,红外热成像“江湖”或再添新势力
    日前,北京富吉瑞光电科技股份有限公司(以下简称“富吉瑞”)科创板IPO获上交所受理,华英证券为其保荐机构。公司拟发行不超过1900万股,募集资金5亿元。本次募集资金扣除发行费用后,拟将34,681.32万元用于光电研发及产业化和研发中心建设项目;26,780.90万元用于光电研发及产业化建设项目;7,900.42万元用于研发中心建设项目;9,764.03万元用于工业检测产品研发及产业化建设项目;5,554.65万元用于补充流动资金项目。富吉瑞是一家主要从事红外热成像产品和系统的研发、生产和销售,并为客户提供解决方案的高新技术企业。公司以红外热成像技术为基础,以图像处理为核心,逐步向固态微光、短波、紫外、可见光等方向拓展。2018年和2019年,归属于母公司所有者的净利润分别为42.48万元和1,392.31万元。2019年,公司的营业收入为16,490.14万元。 目前,我国在红外热成像领域,已有高德红外、大立科技、久之洋、睿创微纳等“企业前辈”。作为新入局“闯关者”,富吉瑞在招股书中透露了一些与同行业公司的对比分析情况:产品定位对比高德红外为中小板上市公司,成立于1999年,主要业务涵盖红外焦平面探测器、红外热像整机及以红外热成像为核心的综合光电系统、新型完整武器系统;自全资收购湖北汉丹机电有限公司以来,高德红外主要业务中增加了传统非致命性弹药、信息化弹药等系列军工产品。睿创微纳为科创板上市公司,成立于2009年,产品主要包括非制冷红外热成像MEMS芯片、红外热成像探测器、红外热成像机芯、红外热像仪、激光产品及光电系统。久之洋为创业板上市公司,成立于2001年,产品主要分为三类,一类是红外热像仪系列产品;第二类是激光测距仪系列产品;第三类是融合上述两类技术、根据用户需求定制的红外/激光组合系列产品。大立科技为中小板上市公司,成立于1984年。大立科技的主要业务涵盖非制冷红外焦平面探测器、红外热成像仪及以热成像技术为核心的光电系统。能够独立研发、生产热成像技术相关核心器件、机芯组件到整机系统。富吉瑞同时发展制冷与非制冷光电成像产品,产品主要包括制冷与非制冷机芯、制冷与非制冷热像仪和制冷与非制冷光电系统等,尤其在制冷型高端光电成像产品领域拥有较长时间的技术积累;公司已经拓展到多光谱领域。关键业务数据、指标对比富吉瑞2017年至2020年的前三季度分别实现营收7610.87万元、8768.10万元、1.65亿元、2.16亿元;归母净利润则从报告期初的亏损2202.84万元,跃升至盈利4208.28万元。2020年前三季度,高德红外营收规模达19.36亿元,归母净利润为7.96亿元;睿创微纳营收规模也在10亿元以上;大立科技营收1.52亿元;久之洋营收9012.51万元。从主营业务毛利率来看,2020年1月至9月,高德红外、睿创微纳、久之洋、大立科技分别为68.91%、63.21%、36.76%、61.83%,行业平均值为57.68%。而富吉瑞当期的主营业务毛利率仅为43.52%,低于可比上市公司平均水平。市场地位对比在军用红外热成像产品方面,富吉瑞与主要竞争对手存在产品技术方案的差异,产品的性能和指标也有所不同,公司产品与主要竞争对手产品所配套的武器装备型号不完全相同,所以无法直接进行对比。通过富吉瑞在十三五期间作为核心部件供应商,多次配合总体单位获得军品型号竞标第一名,获得批量订单,在一定程度上能反映富吉瑞在军用红外热成像领域的市场地位。在民用红外热成像产品方面,各公司在不同的细分领域深耕。从产品角度来看,富吉瑞与各主要竞争对手的部分业务领域存在一定交叉,但产品的应用场景、使用方法、呈现的最终成像效果都存在一定差异,在民用红外热成像领域,由于实际场景的多样性,富吉瑞与主要竞争对手均基于自身的技术储备方向形成自身优势产品。技术对比 在技术实力方面,由于富吉瑞产品的高度定制化特征,根据客户要求,产品的技术指标、参数等存在一定差异,且军工企业的技术指标参数等需严格保密,因此公开渠道无法获取各可比公司的技术指标参数。与同行业上市公司对比,富吉瑞主要有三大技术特点:(1)富吉瑞技术环节主要集中在探测器与最终产品之间的中游环节,主要包括光学系统技术、图像算法与处理技术、电路技术、光电系统技术等。(2)富吉瑞致力于多光谱融合横向拓展路线,通过产品设计、技术综合应用与优化、先进技术的适用,提供光电成像产品。(3)富吉瑞拥有完备的制冷与非制冷光电成像技术,尤其在制冷型红外热成像技术方面拥有长期的技术积累。百舸争流,奋楫者先。富吉瑞能否闯关成功,让我们拭目以待。
  • MOFs、页岩气、催化材料研究者常备物性分析武器TOP5大揭秘(含实例分析)
    p style="text-align: justify text-indent: 2em " 气体吸附是用多孔固体吸附剂,将气体或液体混合物中一种或数种组分浓集于固体表面,而与其他组分分离的过程。吸附过程能够有效脱除一般方法难于分离的低浓度有害物质, 具有净化效率高、可回收有用组分、设备简单、易实现自动化控制等优点。/pp style="text-align: justify text-indent: 2em "另一方面,气体吸附分析技术也是多孔材料比表面和孔径分布分析的不可或缺的手段,静态气体吸附分析是一个分析过程,而不是一个测量过程。首先要根据样品性质选择正确的预处理和分析条件,以获得准确的实验数据。其次,针对孔结构的计算必须考虑材料的固有性质,如表面极性、孔型(圆柱孔、狭缝孔、球状孔等)甚至孔与孔之间的连接方式等。正确地计算材料的孔分布不仅要求实验的准确性,更要求对样品性质有清晰地认识,方可选择正确的计算方法和模型,进而获得有意义的结果。/pp style="text-align: justify text-indent: 2em "气体吸附分析与研究在MOFs、有机聚合物、页岩气、煤层、固体沥青、催化材料等主题的研究中有重要的应用,仪器信息网特汇总了从2017年至今发布的气体吸附主题相关硕博论文,并汇总整理出了相关研究分析中使用最多的几类仪器,以飨读者。/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "strong1、表界面物性测试仪器/strong/span/pp style="text-align: justify text-indent: 2em "毫不意外,表界面物性测试仪是气体吸附主题科研领域应用最多的仪器。使用最多的主要包括两类,一类是物理吸附仪,一类是压汞仪:/pp style="text-align: justify text-indent: 2em "strong(1)物理吸附仪/strong/pp style="text-align: justify text-indent: 2em "物理吸附是由分子间作用力(范德华力)产生的吸附。它存在于被带入并接触吸附气体(吸附物质)的固体(吸附剂)表面。所涉及的分子间作用力都是相同类型的,除了吸引色散力和近距离的排斥力外,由于吸附剂和吸附物质的特定几何形状和外层电子性质,通常还会发生特定分子间的相互作用。任何分子间都有作用力,所以物理吸附无选择性,活化能小,吸附易,脱附也容易。它可以是单分子层吸附和多分子层吸附。在气体吸附主题的研究中,物理吸附仪常被用来检测样品的比表面及孔径分布或着检测样品对某种特定气体的吸附能力。/pp style="text-align: center "img width="250" height="284" title="1.jpg" style="width: 250px height: 284px max-height: 100% max-width: 100% " alt="1.jpg" src="https://img1.17img.cn/17img/images/201907/uepic/8241c285-6ded-4aa7-ba4e-846d68028b42.jpg" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strongASAP 2020研究级超高性能全自动气体吸附仪/strong/pp style="text-align: justify text-indent: 2em "strong例:【ZIFs 材料的合成及其对 CH4/N2吸附分离性能研究】/strong/pp style="text-align: justify text-indent: 2em "ZIF-8样品的比表面积和孔径分布的测定在物理吸附仪上进行。样品在测试前,先在 150 º C 下真空活化 5 h,以氮气作为吸附质在-196 º C 下测试。ZIF-8 材料的比表面积采用 BET 模型计算,比表面积为 1425 m2/g,t-Plot 计算的微孔比表面积为1388 m2/g,微孔孔容为 0.65 m3/g,ZIF-8的N2吸附等温线属于典型的 ?型的吸附等温线,脱附曲线与吸附曲线重合的非常好,没有产生滞后现象,是一个典型的微孔材料。/pp style="text-align: justify text-indent: 2em "strong(2)压汞仪/strong/pp style="text-align: justify text-indent: 2em "压汞仪使用汞侵入法来测定总孔体积、孔径分布、孔隙率、密度和传输性。在气体吸附主题的研究中,压汞仪主要用来测试大孔材料孔径分布,该仪器可以测得4-7500nm的孔结构。其原理如下:由于存在表面张力,需要外加压力液态汞才能进入固体的孔隙中,被浸入的孔隙大小与所加压力成反比。因此测量压力与汞体积的变化关系,通过数学模型就可以算出孔径分布等数据。/pp style="text-align: center "img width="250" height="250" title="2.jpg" style="width: 250px height: 250px max-height: 100% max-width: 100% " alt="2.jpg" src="https://img1.17img.cn/17img/images/201907/uepic/dd46ad94-43c6-40c3-a71b-0fd1c5737265.jpg" border="0" vspace="0"//pp style="text-align: center "strong精微高博YG-97A型压汞仪/strong/pp style="text-align: justify text-indent: 2em "strong例:【SiO2基固态胺吸附剂的制备及其二氧化碳吸附性能研究】/strong/pp style="text-align: center text-indent: 2em "strongimg width="300" height="184" title="a.jpg" style="width: 300px height: 184px max-height: 100% max-width: 100% " alt="a.jpg" src="https://img1.17img.cn/17img/images/201907/uepic/c0e98e35-d160-4f99-9518-cb88d78f9aea.jpg" border="0" vspace="0"//strong/pp /pp style="text-align: justify text-indent: 2em "上图是不同NH(4)cl添加量下样品的大孔孔径分布。可以看出,样品具有尖锐的大孔孔径分布,据以往研究,这表明凝胶发生了亚稳态分解相分离或SD旋节分解。当NH(4)Cl添加量为0.0408g(MSQ-4)和0.0568g(MSQ-6)时,样品的大孔呈双峰分布,孔径分布在之间,而样品MSQ-5的大孔分布呈更加尖锐的单峰,孔径分布在0.5-5μm之间,中位径在2.1μm左右,可见NH(4)cl的添加量对大孔骨架的形成也有一定影响。/pp style="text-align: justify text-indent: 2em "br//pp style="text-align: justify text-indent: 2em "strong2、红外光谱仪 strongbr//strong/strong/pp style="text-indent: 2em "红外光谱仪是利用物质对不同波长的红外辐射的吸收特性,进行分子结构和化学组成分析的仪器。红外光谱仪通常由光源,单色器,探测器和计算机处理信息系统组成。在气体吸附主题的研究中,红外光谱仪主要用于分析分子结构和化学键,分析吸附剂吸附前后官能团变化。/pp style="text-align: center "strongimg width="250" height="250" title="3.jpg" style="width: 250px height: 250px max-height: 100% max-width: 100% " alt="3.jpg" src="https://img1.17img.cn/17img/images/201907/uepic/707a1c51-59fb-4c2b-9151-f7389a3089b4.jpg" border="0" vspace="0"//strong/pp style="text-align: center text-indent: 0em "strong布鲁克VERTEX 70v红外光谱仪/strong/pp style="text-indent: 2em "strong例:【MOFs材料对异味气体吸附及其衍生物气敏特性研究】/strong/pp style="text-align: justify text-indent: 2em "为了研究CH3SH在HKUST-1上的吸附机理,我们以吸附效果最好的大八面体HKUST-1为研究对向,对吸附前后HKUST-1的FTIR进行表征,综合分析探讨吸附机理。采用傅立叶变换红外光谱仪将2wt%样品与98wt%K br在研钵中研细混合均匀后压片,然后将压好的片放置在红外加热灯下放置1h来脱除水。得到的红外图谱基线由软件矫正。HKUST-1吸附前后的FTIR谱图变化如下图a所示。/pp style="text-align: center "img width="300" height="223" title="b.jpg" style="width: 300px height: 223px max-height: 100% max-width: 100% " alt="b.jpg" src="https://img1.17img.cn/17img/images/201907/uepic/3d98339e-4c01-4a80-9524-0b7263e8320c.jpg" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "吸附前HKUST-1的FTIR谱图与之前文献报道的HKUST-1的特征振动峰符合较好。吸附后的谱图发生了明显变化。FTIR谱图上出现了三处新的振动峰,位于图示位置,其中两处振动峰归属于-coo基团质子化的峰,一处归属于Cu-S的振动峰。由此可以推断出CH3SH在HKUST-1上发生了化学吸附,且化学反应发生在CH3SH中的-SH与HKUST-1的Cu之间。/pp style="text-align: justify text-indent: 2em " /pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(0, 176, 240) "3、电子显微镜/span/strong/pp style="text-align: justify text-indent: 2em "电子显微镜是如今表征样品形貌、尺寸、组织、结构等对应图像的主流方法之一,在气体吸附分析的研究中使用最多的是扫描电镜和透射电镜。扫描是电镜利用极狭窄电子束去扫描样品,利用电子束与样品作用发射的二次电子信号成像。透射电镜把加速和聚集的电子束透射到非常薄的样品上,与样品中原子碰撞的电子会产生立体角散射成像。透射式电子显微镜常用于观察那些用普通显微镜所不能分辨的细微物质结构;扫描式电子显微镜主要用于观察固体表面的形貌。/pp style="text-align: center "img width="250" height="250" title="4.jpg" style="width: 250px height: 250px max-height: 100% max-width: 100% " alt="4.jpg" src="https://img1.17img.cn/17img/images/201907/uepic/6beab381-83f3-4978-84ce-b890e74ee40e.jpg" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strongFEI 450/660场发射扫描电子显微镜/strong/pp style="text-align: justify text-indent: 2em "strong例:【基于核磁共振流态分析的页岩微纳米孔隙类型划分方法】/strong/pp style="text-align: justify text-indent: 2em "本次研究借助高分辨率场发射扫描电子显微镜对SZS-6和PS-2样品进行镜下拍照来获取泥页岩的图像学孔隙形态特征,为获得完整清晰的电镜图像对样品进行氩离子抛光处理,同时为避免对样品的原始孔隙结构的破坏未对样品进行镀金或镀碳处理。/pp style="text-align: justify text-indent: 2em " /pp style="text-align: justify text-indent: 2em "strong4、X 射线仪器/strong/pp style="text-align: justify text-indent: 2em "在气体吸附分析主题的研究中常用的X射线类仪器为X射线衍射仪和X射线光电子能谱仪两大类:/pp style="text-align: justify text-indent: 2em "strong(1)X射线衍射仪/strong/pp style="text-align: justify text-indent: 2em "X射线衍射仪是利用X射线衍射法对物质进行非破坏性分析的仪器,由X射线发生器、测角仪、X射线强度测量系统以及衍射仪控制与衍射数据采集、处理系统四大部分组成。主要分为粉末X射线衍射仪和单晶X射线衍射仪两大类。粉末X射线衍射仪主要用来分析材料的物相成分、含量以及测定晶格参数等。单晶X射线衍射技术则主要用来分析出物质分子内部的原子空间结构。/pp style="text-align: center "img width="250" height="250" title="5.jpg" style="width: 250px height: 250px max-height: 100% max-width: 100% " alt="5.jpg" src="https://img1.17img.cn/17img/images/201907/uepic/a20cf10b-b203-4e99-92be-434a5cc746dc.jpg" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong日本理学MiniFlex 600台式X射线衍射仪(便携式衍射仪/strong/pp style="text-align: justify text-indent: 2em "strong 例:【1,3,5-苯三四唑系列金属有机骨架材料的合成及其用于乙炔—乙烯分离的性能研究】/strong/pp style="text-align: justify text-indent: 2em "通过粉末 X-射线衍射测试分析M-BTT(合成的MOFs样品)材料的X射线衍射数据进而与模拟的XRD谱图进行对比来确定物相。测试条件为:Cu靶Kα1辐射(λ=0.15418),Ni滤波,步长0.01° ,电压30KV,电流15mA,扫描角度为2.5-40° ,扫描速度均为8摄氏度/min。/pp style="text-align: justify text-indent: 2em " /pp style="text-align: justify text-indent: 2em "strong(2)X 射线光电子能谱仪/strong/pp style="text-align: justify text-indent: 2em "X 射线光电子能谱技术是一种表面分析方法, 使用 X 射线去辐射样品,使原子或分子的内层电子或价电子受激发射出来,被光子激发出来的电子称为光电子,可以测量光电子的能量和数量,从而获得待测物组成。XPS 主要应用是测定电子的结合能来鉴定样品表面的化学性质及组成的分析,其特点在光电子来自表面 10 nm 以内,仅带出表面的化学信息,具有分析区域小、分析深度浅和不破坏样品的特点。比如,可以通过计算峰面积对元素不同价态进行定量分析,分析部分吸附剂吸附前和吸附后的表面元素价态分布。/pp style="text-align: center text-indent: 0em " img width="250" height="250" title="6.jpg" style="width: 250px height: 250px max-height: 100% max-width: 100% " alt="6.jpg" src="https://img1.17img.cn/17img/images/201907/uepic/607401e9-93d4-43bf-b5a0-142ae754aed6.jpg" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong岛津 AXIS SUPRA X射线光电子能谱仪/strong/pp style="text-align: justify text-indent: 2em "strong例:【MOF膜的新型合成路线和分离性能研究】/strong/pp /pp style="text-align: center "img width="300" height="274" title="c.jpg" style="width: 300px height: 274px max-height: 100% max-width: 100% " alt="c.jpg" src="https://img1.17img.cn/17img/images/201907/uepic/c140c8c1-96aa-4abe-88af-7c657f93cd1e.jpg" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "从Zn2+粒子处理前后的g-C3N4的高分辨XPS图可以验证g-C3N4纳米片和Zn 2+有相互作用力的存在。通过对各峰进行综合分析,可以表明Zn2+确实能够固定在g-C3N4纳米片上。从而为ZIF-8 的连续生长提供充足的成核位点。 /pp style="text-align: justify text-indent: 2em "br//pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(0, 176, 240) "5、热分析仪/span/strong/pp style="text-align: justify text-indent: 2em "热分析仪是在程序温度和一定气氛下,测量物质的物理性质与温度或时间关系的仪器。在气体吸附研究中使用最多的仪器是热重分析仪和差示扫描量热仪,该类仪器主要用于分析随温度变化,物质的质量所发生的变化以及变化速率,即通过程序控温测定物质的质量与温度的变化关系。/pp style="text-align: center "img width="250" height="250" title="7.jpg" style="width: 250px height: 250px max-height: 100% max-width: 100% " alt="7.jpg" src="https://img1.17img.cn/17img/images/201907/uepic/27b89176-0265-47e3-b7f9-6448de9ff93d.jpg" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strongPerkinElmer TGA 4000热重分析仪/strong/pp style="text-align: justify text-indent: 2em "strong例:【SiO2基固态胺吸附剂的制备及其二氧化碳吸附性能研究】strongbr//strong/strong/pp /pp style="text-align: center "img width="300" height="210" title="d.jpg" style="width: 300px height: 210px max-height: 100% max-width: 100% " alt="d.jpg" src="https://img1.17img.cn/17img/images/201907/uepic/f0da5c88-16d6-4fe2-a729-63b8207311c6.jpg" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "本研究使用热重分析仪对样品的热性能进行了表征。从上图样品MP-3的TG/DTA曲线可以看出,在100摄氏度左右有一个小的吸热峰,对应于100摄氏度左右的质量损失,这主要归因于样品中吸附水的挥发,而在200摄氏度附近有一个尖锐的放热峰,这可能是由PEG分解放热导致的,从中推断PEG存在于凝胶相中,而不是溶剂相。/pp style="text-align: justify text-indent: 2em "在气体吸附主题相关的研究领域,其他常用的仪器还有元素分析仪、核磁共振仪、气象色谱仪、GC-MS、流变仪、试验机、原子力显微镜、原子吸收分光光度计等,很多时候也会用到扩散系数测定仪、密度仪、接触角测定仪、渗透率测试仪等。/pp style="text-align: center text-indent: 0em "strong欢迎扫描下方二维码添加仪器信息网材料类微信大V号小材子:XCZ3i666/strong/pp style="text-align: center "strongimg style="max-width: 100% max-height: 100% width: 300px height: 300px " src="https://img1.17img.cn/17img/images/201907/uepic/9030f73e-547b-4dc6-b7d5-502b208db42b.jpg" title="微信图片_20190605094648.jpg" alt="微信图片_20190605094648.jpg" width="300" height="300" border="0" vspace="0"//strong/p
  • 我国近红外光谱分析技术和应用多方位全面发展——参加全国第九届近红外光谱学术会议心得体会
    华东理工大学化学与分子工程学院 杜一平教授课题组2022年10月20日至22日,由中国仪器仪表学会近红外光谱分会和仪器信息网联合举办的全国第九届近红外光谱学术会议通过网络线上的方式举办。本次会议邀请到国内经验丰富的近红外光谱分析专家学者、仪器专家,以及国外知名学者和海外华裔学者就近红外光谱分析技术进行深入交流与探讨。会议共安排了81场报告,共有近3000人相聚云端,共同分享和见证近红外光谱技术的最新突破和进展。以下从化学计量学方法、应用领域、仪器发展几个角度依次介绍此次会议的主要内容与收获:一、化学计量学、变量选择、模型改进与转移颇受关注化学计量学在近红外光谱分析技术的实际应用中发挥了极其重要的作用。南开大学邵学广教授进行了题为《近红外光谱分析中的化学计量学方法》的报告,邵老师从近红外光谱数据建模流程出发,详细讲述了建模样本及质量考察、参考值、光谱、奇异样本、验证集等对模型的影响。并对近年近来红外光谱建模比赛进行总结,呼吁广大学子深入思考建模原理,采取有效手段提高模型预测能力。最后邵老师还强调了机器学习在未来化学计量学中应用的重要性,引发了与会观众关于模型建立的广泛讨论;华东理工大学的杜一平教授在《相关性组分对近红外光谱分析模型的影响》报告中指出,近红外光谱分析技术在中药提取过程中能够准确检出低于检测限的组分,很可能是样品中各组分浓度相关性变化对定量分析模型产生了“借助”影响,并通过实验验证了,当样品中含有与被测组分浓度相关性高的其他组分将有利于提升模型性能,这一切入点也引起人们对近红外光谱模型更深入的思考;暨南大学潘涛教授进行了题为《近红外光谱模式识别的模型补偿融合方法》的报告,潘涛教授借鉴了博弈论和概率论的思想,提出了一种光谱模式识别的模型补偿投票策略,还分享了应用于血清乳腺癌与正常对照的二分类和饮用水三分类的实例,均能取得明显优于单个模型的判别效果。在变量选择和模型转移方面,天津工业大学的卞希慧副教授重点介绍了萤火虫算法、蝴蝶优化算法、灰狼算法等群体智能优化的光谱变量选择方法,并应用于实际样品光谱的变量选择。来自温州大学的陈孝敬教授做了题为《偏最小二乘法的几种改进研究》的报告,从子空间方法、鲁棒统计、模型行为探索这三个方向提出了对偏最小二乘法的改进,从而提升了模型的性能。华东理工大学的倪力军教授做了题为《基于多步波长筛选实现近红外光谱校正模型转移》的报告,根据SIFT与SDSS、相关系数分析相结合的三步波长筛选方法,实现模型建立及转移过程中无需从机样品信息,可直接传递到从机的目的。会议上,还有诸多专家学者的优秀报告涉及光谱预处理方法、变量选择、模型转移等,这对于实际工作均有指导意义。二、在农产品生产与加工、生物制药等多领域全面进步农产品分析是近红外光谱的传统应用领域,本次会议中也有多位专家学者报告了近红外光谱在农业产品品质分析领域的最新进展。桂林理工大学陈华舟教授在题为《基于Lévy飞行的神经网络优化模型应用于鱼粉NIR定量分析》中提出以反向传播神经网络(BPNN)为基本模型,采用Lévy飞行的方式对网络运算过程进行优化,提升了鱼粉NIR定量分析模型的预测能力。基于此,其提出了实现神经网络(NN)参数选择自适应调控以及在物联分布式节点联合分析中进行应用转化的展望;温州大学的黄光造老师在奶粉掺假方面提出了一类分类方法识别食品掺假的思路,采用单类样本对自编码器建模,通过样品输入自编码器后的重建误差实现了掺假奶粉的鉴别。区别于传统的判别分析要求未知掺假食品的情况要与训练集中掺假情况一致,一类分类方法只将纯净食品作为训练集样品去判别未知情况的掺假,具有一定的通用性。这也为食品掺假检测提供了新的思路。海南大学云永欢副教授从基础理论、方法开发、实际应用三个方面全方位做了报告,重点讲述了基于集群分析发展的多种变量选择方法,并展示了罗非鱼新鲜度高光谱成像分析、短视频传感器用于食品检测等应用研究,并对近红外光谱分析技术在特色农产品中的应用研究提出展望。近红外光谱分析技术在药品领域的质量检测同样重要。山东大学李连副研究员团队开展了以水为探针的无标记近红外光谱表征的系列研究,利用中药水光谱组学实现了中药提取过程(浸润、溶解与释放)的机理可视化,同时实现生产过程的终点判断。该团队还设计了人血浆蛋白醇沉过程智能终点判断系统以攻克生产过程光谱稳定获取与预测难点,利用图谱转换技术开展中药口服液快速检测仪(TCM-OL-001)集成研究,致力于突破PAT应用过程中的技术瓶颈,推动我国制药生产的连续化;此外,来自山东大学药学院的研究生介绍了一种基于近红外光谱技术的中药连续逆流提取设备的开发,实现了CQAs连续提取过程的快速无损监测与提取终点识别。近红外光谱分析技术在烟草分析领域已得到了广泛的应用,本次会议中王家俊高工、刘泽高工、郑博文工程师作为烟叶加工领域的专家分别介绍了近红外光谱技术在卷烟生产过程质量评估、烤烟产地鉴别、烟叶工业分级效果评价等方面的实际应用,推动了领域内管理与标准规范的建立方法。此外,还有多位专家和青年学者介绍了近红外光谱技术在工业生产和农产品鉴别领域的应用,比如:柑橘品质检测、废旧纺织品识别、木材树种识别、茶叶品质快速检测、白酒年份鉴别、中药在线监测与质量检测、牛初乳中掺假成熟乳鉴别、煤炭无损测量、花生冻伤检测系统、鸭梨霉心病在线检测、调和油定量分析等方面的应用,会议上精彩的报告令人应接不暇,这也意味着近红外光谱分析技术的应用范围更加宽广。三、仪器改进与全新采样模式应运而生随着近红外光谱分析技术应用领域不断扩大,特殊、复杂样品的检测问题随之产生,会议上多位专家介绍了仪器改进与创新解决方案。汉阳大学的Hoeil Chung教授对近红外光谱仪器进行了创新改进,将胆汁样本以单液滴形式处理,实现了通过胆汁的近红外光谱数据分析来判别胆囊癌,以及全氟化碳捕获的微塑料物质的定量检测;无锡迅杰光远科技有限公司技术总监兰树明针对颗粒样品提出新的IAS解决方案,基于侧照式采样、均质化混样、大光斑、多点光纤收集设计形成全新的混样系统,尽可能减少颗粒排布干扰对于光谱的干扰;因斯布鲁克大学的Christian Wolfgang Huck教授在报告中详细介绍了微小型近红外光谱仪的现状和未来,以及微型便携式仪器在植物分析、收获时间优化、黑松露质量检测等方面的实际应用。本次会议内容严谨而充实,参会代表与专家学者们就近红外光谱分析技术开展深入的交流与讨论。不仅如此,会议还揭晓了第四届“陆婉珍近红外光谱奖”获得者,他们为近红外光谱技术的发展与应用持续贡献着自己的力量。会议闭幕式还评公布了12位优秀青年报告奖获奖名单,为广大青年学子树立了优秀榜样。如今,近红外光谱技术进入网络化时代,它将结合大数据、人工智能等新兴技术,向小型化、智能化方向不断发展,其应用领域也更加广阔。随着全国第九届近红外光谱学术会议的圆满落幕,近红外光谱技术的影响力也将进一步扩大,同时吸引更多的学者加入到队伍中,共同推动近红外光谱技术的持续发展!
  • 热烈祝贺红外煤气分析仪斩获2016中国仪器仪表学会“优秀产品奖”
    第27届中国国际测量控制与仪器仪表展览会(MICONEX 2016,简称多国仪器仪表展)日前在北京国际展览中心圆满闭幕。 在展会同期举办的2016中国仪器仪表学会“科学技术奖”颁奖盛典上,由我司自主研发生产的红外煤气分析仪一举斩获中国仪器仪表学会“优秀产品奖”,再次成为业界瞩目的焦点。 优秀产品奖颁奖现场 中国仪器仪表学会“科学技术奖”是经国家科技部批准,在国家科技奖励主管部门注册,经国家科学技术奖励工作办公室颁证,由中国仪器仪表学会设立的面向全国仪器仪表领域的综合性奖项,旨在表彰在仪器仪表科技工作中做出突出贡献的单位和个人,鼓励自主创新、团结协作,促进科学研究、技术开发与社会发展密切结合,促进科技成果转化,提高我国仪器仪表的综合实力和水平,在业内享有极高的声誉。 此次代表我司获奖的红外煤气分析仪产品,是一款针对煤炭、生物质气化热解转化气体成分快速测量的仪器,产品家族包含Gasboard-3100(在线型)和Gasboard-3100 P(便携型)两个型号。采用国际领先的NDIR非分光红外技术和基于MEMS的TCD热导技术,软硬件配置先进,精度高、性能稳定且功能强大,目前在钢铁、化工、煤气化、生物质气化裂解等领域都有着极为广泛的应用。 四方仪器是武汉四方光电科技有限公司旗下的全资子公司,肩负着气体成分流量仪器仪表业务相关的研发与市场销售工作,包括环境监测系统生产销售项目、工业过程分析系统生产销售项目、分析仪器生产销售项目、仪器仪表研发中心项目等。 秉承“把握关键技术,实现产业创新”的发展理念,以自主知识产权的传感器技术为依托,四方仪器将继续在气体分析仪器仪表的研发、生产、销售及行业监测解决方案等领域持续创新,推动行业发展。查看颁奖详情:2016年中国仪器仪表学会“科学技术奖”颁奖仪式举办
  • 红外热成像技术的市场分析
    根据某知名安防市场调研报告,至2019年全球红外热成像市场将达到8亿美元,在此之前,该市场的复合增长率将达到惊人的14%,远高于视频监控的复合增长率预期,尤以亚太地区的增长势头最猛。毫无疑问,红外热成像技术蕴藏了巨大的市场需求,但是根据调研报告,全球视频监控市场在2014年即达到约140亿美元,同期红外热成像市场还不足其市场的2%,从数据分析可以看到,红外热成像技术还远未得到安防市场的充分认可,市场应用前景可期。在中国乃至全球,红外热成像产业面临的挑战都很相似,这需要相关企业共同解决。首先,如何建立并加深客户对红外热成像技术的认知度,如何让客户真正了解其相较于普通视频监控技术的优势。对此,很多厂商已经在产品推广、客户培训方面加大投入。其次,原有红外厂商仅销售红外热成像摄像机并不能让客户满意,必须推出基于红外热成像技术的整体解决方案,在红外热成像摄像机中增加智能分析和功能,提高红外热成像的系统效率,扩大应用范围,真正解决客户的痛点。 红外热成像技术未来的发展随着MEMS技术的不断突破,红外探测器必然向着更小尺寸、更大分辨率、更低功耗的趋势发展,热成像探测器成本的降低,使得红外热成像技术在安防行业的广泛应用成为可能。而采用非制冷焦平面阵列探测器的红外热成像摄像机未来必将大量应用于智能安防监控中,并将在智能分析、多光谱图像融合等技术方面取得较大进展。未来5~10年间,红外热成像技术将成为与可见光摄像技术相匹敌的热门产业,二者优势互补,真正实现多光谱全天候视频监控,将安防视频监控行业推向新的高度。 本文来自仪器仪表商情网
  • 诚邀参加第13期岛津红外谱图解析高级应用课程
    自2006年12月,岛津上海分析中心成功举办第一期红外谱图解析高级课程起,至今已经成功举办了12期,该课程已经成为岛津分析中心的一门特色课程。本课程旨在帮助岛津各行业的红外用户提高分析技术人员的专业素质水平,特别是谱图解析的能力,以便更好地发挥红外分析方法的重要作用。第13期红外高级课程将于2012年12月18日~21日在岛津上海分析中心举办。本课程特邀请中国科学院上海有机化学研究所著名红外光谱专家吴天明教授讲授《红外光谱谱峰规律和特征基团频率》,内容包括红外制样技术、红外光谱解析与应用实例、导数光谱应用等;岛津公司应用工程师讲授IRsolution软件的高级应用和红外附件使用技巧等。培训地点:岛津企业管理(中国)有限公司 上海分析中心上海市淮海西路570号红坊E楼授课专家:吴天明 中国科学院上海有机化学研究所 高级工程师 上海红外光谱应用技术协会 理事长课程安排:2012年12月18日~21日,共四天:12月18日08:40-09:00 报到,领取培训资料09:00-10:00 红外光谱仪附件介绍与应用实例(岛津应用工程师)10:00-11:30 如何得到良好的红外光谱图--制样技术(中科院红外光谱专家)11:30-13:00 午餐及休息13:30-16:30 红外光谱谱图解析--谱峰规律(一),应用实例 (中科院红外光谱专家)12月19日09:00-11:30 红外光谱谱图解析--谱峰规律(二),应用实例 (中科院红外光谱专家)11:30-13:00 午餐及休息13:30-16:30 红外光谱谱图解析--谱峰规律(三) ,应用实例(中科院红外光谱专家)12月20日09:00-11:30 红外光谱谱图解析--特征基团频率(一) ,应用实例(中科院红外光谱专家)11:30-13:00 午餐及休息13:30-16:30 红外光谱谱图解析--特征基团频率(二),应用实例 (中科院红外光谱专家)12月21日09:00-11:30 IRsolution软件谱库建立、搜索和附件实践(岛津应用工程师)11:30-13:00 午餐及休息13:30-14:15 红外谱库专家系统KnowITAll讲座(岛津应用工程师)14:30-16:30 导数光谱应用,Q&A,与红外专家面对面交流 (中科院红外光谱专家) 该课程为高级课程,因此参加人员应具有一定工作经验、能够掌握仪器原理、基本操作熟练。为突出学习效果,使各位学员皆能有时间与授课老师进行交流、形成互动、有所收获,本次课程将严格控制学员数量,以报名顺序为准,截至16名为止,还请理解与谅解为盼! 报名咨询:联 系 人: 姜晓蕾联系电话:021-22013641传 真:021-22013643岛津热忱邀请您参加此次高级培训班并恭候您的光临。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳及成都5个分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 第三届在线分析仪器发展论坛:在线质谱仪、在线近红外光谱技术发展现状
    仪器信息网讯 2010年11月1日,由中国仪器仪表学会分析仪器分会与北京雄鹰国际展览有限公司联合主办的“第三届中国在线分析仪器应用及发展国际论坛暨展览会”在北京国际会议中心隆重召开。来自中石油、中石化、中海油、煤化工、中化集团等下属企业及市政环保等用户及厂商代表400余人参加了本次论坛。仪器信息网作为特约媒体应邀参加了本次会议。  除大会报告外,会议同期举办了在线分析仪器展览会等活动,并设立A、B两个分会场对在线分析仪器技术分别进行探讨。其中,A分会场由北京化工大学袁洪福教授、浙江大学潘再生教授联合主持,多位在线分析领域的专家学者、厂商代表就“标准气体的使用”、“在线质谱的应用”、“在线经红外质谱技术及应用”等方面作了精彩的报告。会议现场  过程/在线质谱仪的应用  过程质谱仪根据质谱定性定量的原理对工业过程进行在线监测,在多个行业有着广泛的应用前景。在本分会场上,上海舜宇恒平科学仪器有限公司、赛默飞世尔科技(中国)有限公司分别探讨了过程质谱仪的研发及应用状况。  上海舜宇恒平科学仪器有限公司黄晓晶女士以“国产过程质谱仪的应用”为题,介绍了过程质谱仪应用领域,阐述了国产过程质谱仪的发展机会与发展现状。  在报告中,黄晓晶女士通过列举应用实例,阐明过程质谱仪依据其自动化程度高,测量范围广,分析速度快,仪器稳定性、可靠性好等特点,在石化行业广泛应用,使企业节省了原料及能源,提高了生产效率,增加了经济效益。过程质谱仪在石化行业应用的领域包括:乙烯裂解炉,环氧乙烷/乙二醇,催化剂活性评价,烯烃生产以及合成氨、甲醇装置等一些反应剧烈,需要进行快速在线分析的场合。  关于国产过程质谱仪的发展状况,她表示,国外过程质谱仪“单机价格昂贵”、“售后服务成本高”、“定制服务可行性差”等方面的问题为国产过程质谱仪的发展提供了机会。  2009 年,上海舜宇恒平科学仪器有限公司整合多方技术优势,推出了SHP8400 过程气体质谱分析仪。该款仪器打破了进口过程质谱仪的市场垄断,填补了我国在该项技术的空白。此仪器一经推向市场,即受到各方面的广泛关注。该仪器采用多通旋转阀和电磁阀为进样系统,检测系统采用四极杆质量分析器和电子轰击型离子源,检测器有法拉第筒和电子倍增器两种。该仪器优异的性价比使其在石化行业的应用极具潜力。  “大力发展过程质谱仪的国产化,努力提升过程质谱仪的性价比,开拓其在石化行业的应用具有十分重要的意义”,黄晓晶女士在其报告最后指出。上海舜宇恒平科学仪器有限公司黄晓晶女士  赛默飞世尔科技(中国)有限公司王清华先生则介绍了在线质谱仪的主要应用情况。其在报告中详细介绍了赛默飞世尔科技推出的Prima/Sentinel PRO、Prima dB、APIX dB/Quattro系列在线质谱仪的工作原理、仪器性能及应用领域。该系列仪器在化工、制药、钢铁冶炼、环境监测等领域得到广泛的应用。赛默飞世尔科技(中国)有限公司王清华先生  在线近红外光谱分析技术  由于在线近红外光谱分析技术具有“分析精密度高”和“稳定性好”等优点,可有效地解决过程质量信息的自动化测量难题,目前已被广泛地用于石化、制药、粮食、食品等工业领域。  在会上,北京化工大学袁洪福教授为大家介绍了在线近红外光谱分析技术及其应用现状。他表示,近红外光谱分析技术是一种快速、高效的质量分析技术,在解决大批量样品品质分析,现场质量分析,和过程控制分析方面是其它分析技术难以比拟的,被誉为“分析巨人”。  他在报告中指出,我国正在处于生产结构调整时期,即从粗放的传统生产模式向精确数字化的现代生产模式转变的时期,扭转过去高耗能和高污染的状况,向节能减排,生产最优化,合理利用有限的宝贵资源,集约型循环经济方面发展。  在工业上,采用在线近红外分析技术可实时监测原料,中间产物,和产品的性质,实现产品收率和质量最优化,凭借工业的规模生产特点,产生巨大的经济效益。在农业上,未来发展是“精准农业”,而近红外分析仪可直接用于土壤和施肥等种植管理和收获等全过程的品质检测,提高农产品质量和产量,推行优质优价政策,将会产生巨大的经济效益和社会效益。北京化工大学袁洪福教授  标准气体的应用及常见问题  作为气体行业的一个重要分支,标准气体在工业生产上发挥着独特的规范和保证质量的作用。目前,标准气体广泛应用于石油石化、环境检测、电力能源、地震监测、仪器仪表校正等诸多领域。其制备方法包括:称量法、渗透法、分压法、扩散法、静态容量法、饱和法、流量比混合法、指数稀释法、体积比混合法。  大连大特气体有限公司曲庆先生在会上除了为与会者介绍了标准气体的应用方面,还详细介绍了标准气体使用的注意事项,包括“取样阀门的选择、取样管线的选择、取样气路的气密性检查、样品气的置换、标准样品的转移、使用温度的要、进样”等方面需注意的问题。  此外,大连大特气体有限公根据多年的气体分析经验以及通过与广大客户的长期交流,总结了一些标准气体分析技术上的常见问题,并在会上与参会者进行交流探讨,包括“微量氧的分析、易吸附气体的分析、含有饱和蒸汽压较低组分的标准气体的分析、液化标准气体进样”等方面的问题。大连大特气体有限公司曲庆先生  其他在线分析技术及规范  除上述报告外,浙江大学金钦汉教授作了“过程控制技术的新发展——微型模块化实时在线控制技术”的会议报告。金钦汉教授在报告中表示,该技术对流程工业提高反应效率、加快反应速率、减少中间环节、提高自动化程度起到非常重要的作用。浙江大学金钦汉教授  重庆川仪分析仪器有限公司郑杰先生作了“在线分析传感器及仪表研究与发展探讨”的会议报告,对在线分析传感器及仪表的主要特性、在线分析传感器及仪表技术发展现状与趋势进行了研究分析,提出我国在线分析传感器与仪表技术发展思路建议:在国家政策引导与支持下,产学研用资源整合、优势互补,充分利用微机械与微电子、计算机、信号处理、传感、故障诊断等多学科综合技术,开展传感器与仪表相关基础研究、设计制造技术研究与应用技术研究,在研究与产业化过程中,尤其要在灵敏度、选择性、稳定性、可靠性、环境适应性方面下工夫,力求达到国际先进水平,甚至领先水平。重庆川仪分析仪器有限公司郑杰先生  中国石化工程建设公司孙磊女士对“石油化工在线分析仪系统设计规范”进行了简要介绍,该规范包括“适用范围、规范性引用文件、术语和定义、一般规定、采用系统、常用在线分析仪表、分析小屋、在线分析仪管理系统”等八方面内容,规定了石油化工生产装置、公用工程及辅助设施中在线分析仪系统的工程设计原则和设计方法,适用于石油化工新建、扩建和改建工程的在线分析仪系统工程设计。中国石化工程建设公司孙磊女士
  • 诚邀参加岛津红外谱图解析高级应用培训班
    一直努力为科学工作者提供更加完善的分析仪器和高效迅捷的分析方法的世界知名分析仪器供应商岛津公司,为了帮助岛津各行业的红外用户提高仪器使用效率,充分发挥仪器和软件的作用,提高分析技术人员的专业素质和技术水平,将从2012年6月12日开始,特别举办为期4天的红外光谱高级应用培训班。 培训班特邀请中国科学院上海有机化学研究所著名红外光谱专家吴天明教授讲授《红外光谱谱峰规律和特征基团频率》,内容包括红外制样技术、红外光谱解析与应用实例、导数光谱应用;岛津公司应用工程师讲授IR-Solution软件的应用和红外附件使用技巧等。 培训地点:岛津企业管理(中国)有限公司 岛津全球应用技术开发支持中心上海市淮海西路570号红坊E楼 讲师:吴天明 教授 中国科学院上海有机化学研究所 高级工程师上海红外光谱应用技术协会 理事长 课程安排:高级培训班日程(2012年6月12日~15日,共四天): 6月12日 08:40-09:00 报到,领取培训资料09:00-10:00 红外光谱仪附件介绍与应用实例(岛津应用工程师) 10:00-11:30 如何得到良好的红外光谱图--制样技术(中科院红外光谱专家)11:30-13:00 午餐及休息13:30-16:30 红外光谱谱图解析--谱峰规律(一),应用实例 (中科院红外光谱专家) 6月13日09:00-11:30 红外光谱谱图解析--谱峰规律(二),应用实例 (中科院红外光谱专家)11:30-13:00 午餐及休息13:30-16:30 红外光谱谱图解析--谱峰规律(三) ,应用实例(中科院红外光谱专家) 6月14日09:00-11:30 红外光谱谱图解析--特征基团频率(一) ,应用实例(中科院红外光谱专家)11:30-13:00 午餐及休息13:30-16:30 红外光谱谱图解析--特征基团频率(二),应用实例 (中科院红外光谱专家) 6月15日09:00-11:30 IRSolution软件谱库建立、搜索和附件实践(岛津应用工程师)11:30-13:00 午餐及休息13:30-14:15 红外谱库专家系统KnowITAll讲座(岛津应用工程师)14:30-16:30 导数光谱应用,Q&A,与红外专家面对面交流 (中科院红外光谱专家) 此次学习班为高级培训班,因此,参加人员应具有一定工作经验、能够掌握仪器、基本操作熟练。为突出培训效果,使各位学员皆能有时间与授课老师进行交流、形成互动、有所收获,本次学习班将严格控制学员数量,以报名顺序为准,截至16名为止,还请理解与谅解为盼!报名联系方式如下: 联 系 人: 姜晓蕾 邮 编: 200052联系电话:021-22013641 传 真:021-22013643 岛津热忱邀请您参加此次高级培训班并恭候您的光临。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 红外/近红外光谱分析技术在乳粉生产中的应用
    pspan style="color: rgb(255, 0, 0) "strong  一、引言/strong/span/pp  乳制品含有的蛋白质、脂肪、乳糖和其他固形物等具有较高的营养价值,是促进人体生长发育及维持健康水平的必需营养成分。目前市售的奶粉品种众多,质量参差不齐,在巨大的经济利益驱动下,出现了“阜阳奶粉事件”、“还原奶事件”、“光明牛奶回奶事件”、“雀巢奶粉事件”以及“三聚氰胺事件”,这些都说明了牛奶质量控制的重要性和紧迫性。那么如何为牛奶生产厂家确保原料奶的质量,并准确、快速地对流水线生产中的各个关键点进行控制?/pp  传统的奶制品质量检测用化学分析方法,主要有气相色谱、液相色谱、电泳、PCR和免疫ELISA等,取样化验过程复杂,实时性较差,大大影响了生产效率,而且往往涉及专用仪器与分析方法、耗费时间较长、分析过程繁琐、分析费用高,增加了现场检测及在线质量控制的难度。国家也出台了一系列相应的国家标准检测方法,如原料乳与乳制品中三聚氰胺检测方法(GB/T22388-2008)和原料乳中三聚氰胺快速检测液相色谱法(GB/T22400-2008)等。面对目前日益增长的市场需求,传统化学分析方法的效率已经明显滞后,开发快捷灵敏、无损易行的现代分析技术,对乳品生产的质量监控具有重要的意义。/pp  分子光谱技术(包括近红外,中红外等)是20世纪80年代后期迅速发展起来的一项测试技术,在欧美等国,它已成为乳制品成分分析的重要手段,并为乳品权威分析机构,如国际乳品联合会 (IDF)以及美国分析化学家学会(AOAC)等权威机构所认可。随着我国乳品行业的发展,采用快速、准确、可靠的乳品分析技术以适应WTO的要求已成为当前乳品企业发展的关键所在。目前,国内外许多乳制品厂家,如蒙牛、伊利、雀巢,光明、君乐宝等已经将FOSS公司的分析解决方案(包括中红外和近红外光谱分析仪)用于原奶收购和生产过程的质量监控。/ppstrong  span style="color: rgb(255, 0, 0) "二、红外/近红外分析技术在乳品行业的使用现状/span/strong/pp  随着社会对乳制品质量安全的不断重视,目前乳品企业对奶粉的质量把控越来越严格,奶粉的理化指标,如脂肪、酸度、乳糖、蛋白、蔗糖、水分和灰分等通常决定了奶粉的类别和质量,只有在生产过程中严格检测和把控这些指标才能生产出合格的奶粉。目前传统的奶粉检测方法对于这些理化指标的检测耗时长且繁琐,而奶粉的生产过程是一个连续的过程,长时间的分析检测无法满足奶粉生产过程中的有效控制。红外/近红外光谱分析技术以其快速、多组分和无损分析的特点在农牧业食品石油化工等行业中被广泛应用,同样在奶粉的检测中潜力巨大。/pp  目前国内奶粉的生产工艺一般包括原料乳验收→预处理与标准化→浓缩→喷雾干燥→冷却储存→包装→成品,在整个过程中有多个关键控制点需要检测多个指标,而这些点非常适合使用红外/近红外光谱分析技术进行快速分析。据了解,国内目前约有90%以上的规模化生产的乳粉企业都在采用红外/近红外光谱技术对其从原料奶、中间配料以及最终的奶粉实现全程化的监控和控制。目前国内几家大的乳粉企业,如伊利、蒙牛、雀巢、君乐宝、飞鹤等均已将这些红外/近红外的快速检测技术应用于如下几个环节的监控中,取得了不错的效果,既保证了产品质量的一致性,又最大程度的节约了生产成本。/ppstrong  1. 原料乳验收/strong/pp  原料奶位于乳业产业链的最上游, 其质量安全将直接影响到乳品的质量与安全, 从这个意义上讲, 能否从源头上紧抓原料奶的质量控制, 将直接关系到整个乳业的质量安全。通常在牛场仅对牛乳的质量做一般的评价,在到达乳品厂后需要通过若干检验对其成分和卫生质量进行测定。乳品企业一般实行“以质论价,优质优价”的政策或办法,可以鼓励奶农自觉改善饲养管理,提高原料乳质量,同时有利于企业对原料乳的分级处理。/pp  我国部颁标准规定原料乳验收时的理化指标包括脂肪、蛋白质、酸度、密度、抗生素等等。为了防止牛奶兑水,通常会检测液体乳的冰点,因为兑水后的牛奶冰点会升高。目前,对于液体原料乳中脂肪、蛋白、酸度等的检测,大多数乳企使用基于傅里叶变换的中红外光谱分析技术 (a href="https://www.instrument.com.cn/netshow/C193216.htm" target="_blank" style="text-decoration: underline "span style="color: rgb(0, 112, 192) "如FOSS的MilkoScan FT1乳品分析仪/span/a),这种检测方案不仅仅用于原料乳的按质论价,同时也应用于液体乳制品生产过程以及成品控制。同时,中红外光谱技术还可以通过与天然鲜奶拥有的特定光谱进行比对,迅速发现可疑的鲜奶样品,对提高乳制品的质量和保护消费者的利益具有重要的意义。/pp  strong2. 预处理及标准化/strong/pp  在全脂奶粉的生产中,标准化主要是通过对原料乳的脂肪含量调整,使之达到成品的标准要求(即原料乳中的脂肪含量与无脂干物质含量的比值达到乳粉的标准化值)。/pp  在配方奶粉生产中,通常需要根据目标人群进行配方设计,调整宏观成分含量,并在对液体乳进行预处理后,加入一定的添加剂,如婴幼儿配方粉需要尽量调整乳品中各组分的含量模拟母乳。在这个过程中,营养组分的调整,添加剂量的控制都会影响最后生产的乳粉是否合格。而检测不合格的产品通常会要返工处理,提高了生产成本和时间成本。在这个处理过程中,有效的监督检测手段必不可少,目前全球有超过85%的大中型乳品企业(如Arla Food,Nestle, Fonterra,以及国内的伊利、君乐宝等)已经使用了Milkoscan FT1乳成分分析仪进行旁线分析,实现标准化过程中快速分析反应,有效的减少了产品的波动,即时调整配方配比,提高了生产效率,产品稳定性也大大提升。/pp strong 3. 真空浓缩与喷雾干燥/strong/pp  从液态奶变成固体奶粉,需要进行干燥工艺,首先对液态乳进行真空浓缩,真空浓缩能够节省能量,对奶粉颗粒的物理性状有显著影响。液态乳经过浓缩后,喷雾干燥时,粉粒较粗大,具有良好的分散性和冲调性,能迅速复水溶解,可以改善乳粉的保藏性等。所以在真空浓缩时原料乳浓缩的程度直接影响乳粉的质量,特别是溶解度。在真空浓缩时,通常要求浓缩程度越高越好,因为一般真空浓缩的时间要比喷雾干燥节省至少10倍,但是浓缩至太高的浓度对于后续的喷雾干燥又存在不利影响,因此对真空浓缩水分的实时控制能够节约生产成本,提高生产效率。/pp  浓缩后的乳打入保温罐内,立即进行喷雾干燥。喷雾干燥直接影响乳粉的溶解度、水分、杂质度、色泽和风味,对产品质量影响很大。喷雾干燥过程中对乳品水分的控制非常重要,奶粉要求水分为2.0~5.0%,若为4.0~6.0%,也就是水分提高到3.5%以上,就会造成奶粉结块,则商品价值就低,同时,水分提高后奶粉易变色,贮藏期降低 当乳粉水分含量提高至6.5~7.0%时,储存一小段时间后,其中的蛋白质就有可能完全不溶解,产生陈腐味,同时产生褐变。此外,奶粉的水分含量过高,还可能导致营养素损失、微生物滋长、奶粉结块变质等问题。但乳粉的水分含量也不宜过低,否则易引起乳粉变质而产生氧化臭味,一般喷雾干燥生产的乳粉水分含量低于1.88%时就易引起这个缺陷。/pp  常规的水分检测方法测量速度和准确度一直存在一定的矛盾,而水分对于乳粉生产非常重要。为了解决这个问题,目前乳品企业常使用近红外光谱分析技术(a href="https://www.instrument.com.cn/netshow/C132525.htm" target="_blank" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "如FOSS的近红外分析方案NIRS DS 2500/span/a) 进行干燥过程的控制。/pp  与传统方法相比,近红外光谱分析技术具有测量速度快、操作方便、不破坏样品、不用前处理试剂等特点,目前,乳企使用近红外光谱仪做旁线检测,检测一个样品时间小于1分钟,检测速度频率大幅提高,控制基本实现实时性 而且近红外仪器稳定,具有IP65防水防尘级别,能适应车间环境 现场操作非常简单,样品直接装入样品杯中,装样简单不易出错,多组分结果直接显示,不需要专业的人员对数据结果进行分析,生产线普通工人都能进行分析操作。大大提高了生产效率,节约了生产成本,提高了产品质量。/pp  除了旁线分析外,现在逐渐流行的在线检测能够实现生产过程真正的实时质量监控,能做到有问题即时发现,如果与生产控制系统直接对接,能实时调整喷雾干燥生产工艺,对奶制品质量控制有着重大的意义。目前国内已有乳粉生产企业(如君乐宝,飞鹤乳业)引入a href="https://www.instrument.com.cn/netshow/SH100345/C335078.htm" target="_blank" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "FOSS的Profoss/span/a近红外在线检测解决方案,在乳粉生产中进行高频率、高分辨率的生产过程控制,控制水分的含量,获得稳定的水分、脂肪和蛋白含量,使生产更接近于目标规格,提高了产量,获得了最佳的物质平衡。而且,减少了返工、开工波动,以及不必要的重复劳动,生产效率得到极大的提高,基本上在一年左右能收回投资。/pp  strong4. 成品质量控制/strong/pp  在喷雾干燥冷却后乳粉便要进行包装出厂,包装出厂的乳粉必须经过检测分析合格后才能出厂销售。如婴幼儿配方奶粉,通常需要检测蛋白质、脂肪、水分、乳糖、酸度和灰分等等理化指标,这些理化指标使用常规检测方式进行全部检测需要几天的时间,费时费力,而且受化验室人员化验水平影响较大。目前乳品企业使用近红外光谱仪,进行成品分析,可以快速测定婴幼儿配方奶粉中的水分、蛋白、脂肪、酸度、灰分、乳糖等指标,单个样品测量耗时在1分钟内,以上所有指标同时测出,快速高效,同时也避免了由于人员操作误差导致的检测一致性差的问题。/pp  综上所述,在奶粉的整个生产工艺中各个关键控制点,几乎都可以使用红外/近红外光谱技术进行分析检测,通过使用红外/近红外分析技术对奶粉生产过程的监控能有效提高产品的合格率,在企业的成本控制,以及为消费者提供安全合格乳制品方面具有非常好的实际效果。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 305px " src="https://img1.17img.cn/17img/images/201908/uepic/3663ffed-3880-4cfd-bc5a-2087797f79f1.jpg" title="微信图片_20190812103309.png" alt="微信图片_20190812103309.png" width="600" height="305" border="0" vspace="0"//pp style="text-align: center "strong红外/近红外技术用于乳粉生产过程中的检测控制点/strong/pp  红外/近红外技术以其快速,操作简单为乳企的整个生产链条提供了巨大的便利,但在实际使用红外/近红外技术进行从原料奶到成品奶粉的检测过程中,采用的检测模块或者模型的准确性显得尤为重要。一个预测性能良好的模型一定是基于前期大量数据库的积累而来的,建模数据的指标范围,建模数据对应的样品量,以及采用的建模方法等均决定了后期模型的准确程度,所以在目前的红外/近红外推广和使用过程中,提供硬件性能可靠的红外/近红外检测方案的同时,配备的检测模块或者模型的预测性能显得尤为重要。以a href="https://www.instrument.com.cn/news/20190812/490937.shtml" target="_blank"DS 2500/a近红外检测分析仪在奶粉检测中所配备的数据库情况为例, 从目前主要客户的使用效果来看,预测效果好,数据准确性高,能够帮助客户很好的指导生产。/pp  目前a href="https://www.instrument.com.cn/news/20190812/490937.shtml" target="_blank"DS 2500/a近红外分析仪配备的配方奶粉、脱脂奶粉、乳清粉等奶粉模型预测性能如下:/ptable border="1" cellspacing="0" cellpadding="0" width="551" align="center"tbodytr class="firstRow"td width="93" rowspan="8"p style="text-align:center "全脂奶粉及婴幼儿配方奶粉/p/tdtd width="66"p style="text-align:center "成分/p/tdtd width="102"p style="text-align:center "定标范围/p/tdtd width="75"p style="text-align:center "定标误差(SECV)/p/tdtd width="124"p style="text-align:center "定标样品数量/p/tdtd width="91"p style="text-align:center "相关系数/p/td/trtrtd width="66"p style="text-align:center "水分/p/tdtd width="102"p style="text-align:center "1.54-4.50/p/tdtd width="75"p style="text-align:center "0.17/p/tdtd width="124"p style="text-align:center "4640/p/tdtd width="91"p style="text-align:center "0.90/p/td/trtrtd width="66"p style="text-align:center "蛋白/p/tdtd width="102"p style="text-align:center "9.50-31.02/p/tdtd width="75"p style="text-align:center "0.35/p/tdtd width="124"p style="text-align:center "4468/p/tdtd width="91"p style="text-align:center "0.99/p/td/trtrtd width="66"p style="text-align:center "脂肪/p/tdtd width="102"p style="text-align:center "5.09-39.31/p/tdtd width="75"p style="text-align:center "0.40/p/tdtd width="124"p style="text-align:center "4313/p/tdtd width="91"p style="text-align:center "0.99/p/td/trtrtd width="66"p style="text-align:center "酸度/p/tdtd width="102"p style="text-align:center "4.91-14.91/p/tdtd width="75"p style="text-align:center "0.89/p/tdtd width="124"p style="text-align:center "3785/p/tdtd width="91"p style="text-align:center "0.75/p/td/trtrtd width="66"p style="text-align:center "灰分/p/tdtd width="102"p style="text-align:center "2.55-6.10/p/tdtd width="75"p style="text-align:center "0.07/p/tdtd width="124"p style="text-align:center "1373/p/tdtd width="91"p style="text-align:center "0.99/p/td/trtrtd width="66"p style="text-align:center "乳糖/p/tdtd width="102"p style="text-align:center "33.44-58.22/p/tdtd width="75"p style="text-align:center "0.54/p/tdtd width="124"p style="text-align:center "1151/p/tdtd width="91"p style="text-align:center "0.98/p/td/trtrtd width="66"p style="text-align:center "蔗糖/p/tdtd width="102"p style="text-align:center "0- 18.81/p/tdtd width="75"p style="text-align:center "0.42/p/tdtd width="124"p style="text-align:center "1267/p/tdtd width="91"p style="text-align:center "0.98/p/td/trtrtd width="93" rowspan="3"p style="text-align:center "脱脂奶粉/p/tdtd width="66"p style="text-align:center "水分/p/tdtd width="102"p style="text-align:center "2.67-4.34/p/tdtd width="75"p style="text-align:center "0.11/p/tdtd width="124"p style="text-align:center "1425/p/tdtd width="91"p style="text-align:center "0.85/p/td/trtrtd width="66"p style="text-align:center "蛋白/p/tdtd width="102"p style="text-align:center "31.23-38.59/p/tdtd width="75"p style="text-align:center "0.22/p/tdtd width="124"p style="text-align:center "898/p/tdtd width="91"p style="text-align:center "0.97/p/td/trtrtd width="66"p style="text-align:center "脂肪/p/tdtd width="102"p style="text-align:center "0.37-1.13/p/tdtd width="75"p style="text-align:center "0.02/p/tdtd width="124"p style="text-align:center "558/p/tdtd width="91"p style="text-align:center "0.97/p/td/trtrtd width="93" rowspan="5"p style="text-align:center "乳清粉/p/tdtd width="66"p style="text-align:center "水分/p/tdtd width="102"p style="text-align:center "2.43-6.69/p/tdtd width="75"p style="text-align:center "0.46/p/tdtd width="124"p style="text-align:center "494/p/tdtd width="91"p style="text-align:center "0.80/p/td/trtrtd width="66"p style="text-align:center "蛋白/p/tdtd width="102"p style="text-align:center "60.02-90.26/p/tdtd width="75"p style="text-align:center "0.92/p/tdtd width="124"p style="text-align:center "596/p/tdtd width="91"p style="text-align:center "0.97/p/td/trtrtd width="66"p style="text-align:center "脂肪/p/tdtd width="102"p style="text-align:center "3.44-9.88/p/tdtd width="75"p style="text-align:center "0.13/p/tdtd width="124"p style="text-align:center "379/p/tdtd width="91"p style="text-align:center "0.99/p/td/trtrtd width="66"p style="text-align:center "灰分/p/tdtd width="102"p style="text-align:center "2.09-5.44/p/tdtd width="75"p style="text-align:center "0.03/p/tdtd width="124"p style="text-align:center "362/p/tdtd width="91"p style="text-align:center "0.99/p/td/trtrtd width="66"p style="text-align:center "pH/p/tdtd width="102"p style="text-align:center "6.4-6.95/p/tdtd width="75"p style="text-align:center "0.02/p/tdtd width="124"p style="text-align:center "486/p/tdtd width="91"p style="text-align:center "0.96/p/td/tr/tbody/tablepstrong  三、红外/近红外分析技术在国内乳品行业的应用前景/strong/pp  前已述及,红外/近红外分析技术不需要样品的准备过程,是一种无损化的分析技术,同时该项技术具有快速准确的特点,能够满足实时、快速分析的要求。只要提供稳定可靠的定标,就可以对待分析样品给出准确的分析结果。随着我国乳品行业的发展,红外/近红外光谱分析技术必将逐步取代目前在国内占主流的传统化学分析方法,在乳制品及其相关行业发挥越来越大的作用。另外,随着乳品行业有关红外/近红外相关标准的逐步引入,未来红外/近红外技术在乳品行业也必将像饲料、粮油和纺织等其他行业有章可依、有据可鉴。/pp  基于近几年乳品行业发展的特点,个人认为未来国内红外/近红外技术在乳品行业的应用有以下两方面需求:/pp  其一,目前在国内,红外/近红外技术在乳品行业的应用以液态奶和乳粉的快速检测为主,主要因为国内目前乳品行业的消费产品类型(只包括液奶和乳粉)相对比较单一。在欧美诸多国家,红外/近红外技术在奶酪、黄油、稀奶油、浓缩乳清等类型样品的检测中已经发挥着很大的作用,可以预期随着国家由“喝奶”向“吃奶”的消费导向的普及,国内消费者对于奶酪,黄油等的消费需求会有所上升。后期,红外/近红外技术应用于奶酪、黄油以及浓缩乳清等样品的检测也必将逐渐深入。/pp  其二,国外的液体乳主要以保鲜的巴氏奶为主,这与其完善的冷链系统及经济水平有关。近几年我国的液体奶市场增长迅速,但主要以保质期较长的UHT奶为主。随着我国乳品工业的发展和人们对液体乳新鲜度的要求,近几年,国家大力推广“优质乳工程”,倡导企业生产新鲜度更高,营养更丰富的优质乳。/pp  加入国家“优质乳工程”的企业对奶源有了更高的要求,如更低的体细胞和细菌数,更高的蛋白和合理的脂肪含量,同时,对一些功能性指标(如乳铁蛋白,糠氨酸等)的检测也提出了要求。由此可见,随着国家“优质乳工程”的实施,企业自身的检测需求必将促使红外/近红外快速检测技术朝着准确度要高,检测指标更全面等方向进行改进和提高。可以预期,未来的红外/近红外检测技术不仅要准确地检测脂肪、蛋白、总固等常规指标,而且也需要具有检测一些功能性新指标,如巴氏奶和鲜奶中的乳铁蛋白,以及UHT奶中的糠氨酸等方面的检测能力。/pp style="text-align: right "span style="font-family: 楷体, 楷体_GB2312, SimKai "strong(供稿:FOSS 罗海峰)/strong/span/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制