当前位置: 仪器信息网 > 行业主题 > >

红外数值读法

仪器信息网红外数值读法专题为您提供2024年最新红外数值读法价格报价、厂家品牌的相关信息, 包括红外数值读法参数、型号等,不管是国产,还是进口品牌的红外数值读法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外数值读法相关的耗材配件、试剂标物,还有红外数值读法相关的最新资讯、资料,以及红外数值读法相关的解决方案。

红外数值读法相关的资讯

  • 岛津应用:基于红外光谱仪和能量色散型X射线荧光分析仪分析树脂原材料
    为了保证产晶质量,使用安全优质的原材料是必要条件,原材料的重要性不言而喻。但对利润最大化的追求使得原料供应商往往按照性能要求下限来提供原材料,更有甚者在未告知的情况下替换材料,导致生产过程中出现各种品质问题。因此,对来料的性能监控十分关键。本文结合红外光谱仪(FTIR)和能量色散型X射线荧光分析仪(EDX)对树脂成份进行了全面分析,通过有机和无机结合的方式达到了对来料进行成分鉴定的目的。 了解详情,敬请点击《使用岛津红外光谱仪(FTIR)和能量色散型X射线荧光分析仪(EDX)分析树脂原材料》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 河南省有色金属行业协会发布《土壤和沉积物 挥发酚的测定 流动注射4-氨基安替比林分光光度法》等36项团体标准征求意见稿
    各会员单位、有关专家:根据《河南省有色金属行业协会团体标准管理办法》的有关规定,我会目前已完成《氧化铝生产球形草酸钠化学分析方法 氢氧化铝含量的测定 EDTA滴定法 》等36项团体标准报批稿。为进一步提高标准质量,现面向社会公开征集意见。征集意见时间截止到2023年12月29日。36项团体标准名称分别为:1-《氧化铝生产球形草酸钠化学分析方法 氢氧化铝含量的测定 EDTA滴定法》,2-《氢氧化铝晶种化学分析方法草酸根的测定离子色谱法》,3-《偕氨肟树脂化学分析方法氮含量的测定元素分析法》,4-《铝土矿物理分析方法比可磨系数的测定球磨法》,5-《预焙阳极生坯实验室焙烧技术规范》,6-《铝电解槽能效综合测试、计算与评价方法 第1部分:磁场测试方法》,7-《二次铝灰生产铝酸钙技术规范》,8-《煅烧白云石分析方法 耐磨指数、细粉率的测定》,9-《铝冶炼生产技术指标元数据规范》,10-《高导热绝缘氧化铝功能填料》,11-《生态地球化学评价动植物样品 锗含量的测定 电感耦合等离子体质谱法》,12-《土壤和沉积物 硒含量的测定 电感耦合等离子体质谱法》,13-《地下水 汞含量的测定 直接测汞法》,14-《生态地球化学评价动植物样品 汞含量的测定 直接测汞法》,15-《石英砂 二氧化硅含量的测定 重量法》,16-《铝土矿 稀土元素含量的测定 电感耦合等离子体质谱法》,17-《生态地球化学样品 银、硼和锡含量的测定 深孔电极发射光谱直读法》,18-《铁矿石 镓含量的测定 电感耦合等离子体质谱法》,19-《银矿石 银含量的测定 火焰原子吸收光谱法》,20-《铜矿石、铅矿石和锌矿石中银、铜、铅、锌含量的测定 火焰原子吸收光谱法》,21-《有色冶炼场地土壤重金属固化稳定化长效修复技术规范》,22-《医药包装瓶盖用铸轧供坯铝合金带材》,23-《隔墙装饰用百叶窗铝合金带材》,24-《铝电解用高导电石墨化阴极炭块标准》,25-《土壤 砷、锑、铋含量的测定 电感耦合等离子体质谱法》,26-《土壤 游离铁含量的测定 电感耦合等离子体发射光谱法》,27-《土壤和沉积物 有机质含量的测定 高频红外碳硫仪法》,28-《土壤 有效硅含量的测定 柠檬酸浸提-电感耦合等离子体质谱法》,29-《土壤 有效铅和有效镉含量的测定 电感耦合等离子体质谱法》,30-《土壤和沉积物 氰化物的测定 水汽蒸馏-流动注射-分光光度法》,31-《土壤和沉积物 挥发酚的测定 流动注射4-氨基安替比林分光光度法》,32-《土壤和沉积物 水溶性硫酸根的测定 水浸取-电感耦合等离子体原子发射光谱法》,33-《土壤和沉积物 六价铬的测定 电感耦合等离子体发射光谱法?》,34-《铝土矿钒含量的测定 分光光度法》,35-《印制电路钻孔盖板用铝合金板》,36-《标签用铝合金箔》。标准详情及意见反馈表见附件。联系人: 张老师 电 话:0371-63829438 13603457970邮 箱:hnys2007@126.com1.报批稿-氧化铝生产球形草酸钠化学分析分析 氢氧化铝含量的测定 EDTA滴定法.docx2.报批稿-氢氧化铝晶种化学分析方法 草酸根的测定 离子色谱法.docx3.报批稿-偕胺肟树脂化学分析方法 氮含量的测定 元素分析法.docx4.报批稿-铝土矿物理分析方法 比可磨系数的测定 球磨法.docx5.报批稿-预焙阳极生坯实验室焙烧技术规范.doc6.报批稿-铝电解槽能效综合测试、计算与评价方法 第1部分:磁场测试方法.doc7.报批稿-二次铝灰生产铝酸钙技术规范.docx8.报批稿-煅烧白云石分析方法 耐磨指数、细粉率的测定.docx9.报批稿-铝冶炼生产技术指标元数据规范.doc10.报批稿-高导热绝缘氧化铝功能填料.doc11.生态地球化学评价动植物样品 锗含量的测定 电感耦合等离子体质谱法(报批稿).doc12.土壤和沉积物 硒含量的测定 电感耦合等离子体质谱法(报批稿).doc13.地下水 汞含量的测定 直接测汞法(报批稿).doc14.生态地球化学评价动植物样品 汞含量的测定 直接测汞法(报批稿).doc15.石英砂 二氧化硅含量的测定 重量法(报批稿).doc16.铝土矿 稀土元素含量的测定 电感耦合等离子体质谱法-(1).docxocx17.生态地球化学样品 银、硼和锡含量的测定 深孔电极发射光谱直读法(报批稿).doc18.铁矿石 镓含量的测定 电感耦合等离子体质谱法(报批稿)(2)(1).d19.银矿石 银含量的测定 火焰原子吸收光谱法(报批稿).doc20.铜矿石、铅矿石和锌矿石中银、铜、铅、锌含量的测定 火焰原子吸收光谱法(报批稿).doc21.报批稿-有色冶炼场地土壤重金属固化稳定化长效修复技术规范.doc22.医药包装瓶盖用铸轧供坯铝合金带材(报批稿).doc23.隔墙装饰用百叶窗铝合金带材团标(报批稿).doc24.铝电解用高导电石墨化阴极炭块标准(报批稿 ).doc25.标准文本-土壤 砷、锑、铋含量的测定 电感耦合等离子体质谱法 报批稿.docx26标准文本-土壤 游离铁含量的测定 电感耦合等离子体发射光谱法 报批稿.docx27.标准文本-土壤和沉积物 有机质含量的测定 高频红外碳硫仪法 报批稿.docx28.标准文本-土壤 有效硅含量的测定 柠檬酸浸提-电感耦合等离子体质谱法 报批稿.docx29.标准文本-土壤 有效铅和有效镉含量的测定 电感耦合等离子体质谱法 报批稿.docx30.标准文本报批稿- 土壤和沉积物 氰化物的测定 水汽蒸馏-流动注射-分光光度法.docx31.标准文本报批稿-土壤和沉积物 挥发酚的测定 流动注射4-氨基安替比林分光光度法.docx32.标准文本报批稿-土壤和沉积物 水溶性硫酸根的测定 水浸取-电感耦合等离子体原子发射光谱法.docx33.标准文本报批稿-土壤和沉积物 六价铬的测定 电感耦合等离子体发射光谱法?.docx34.标准文本-铝土矿钒含量的测定 分光光度法11.27.docx35-印制电路钻孔盖板用铝合金板(2).doc36-标签用铝合金箔(4).doc河南有色协会团体标准征求意见反馈表.doc
  • 福斯技术提供了一个现代安全的方式执行标准降落数值测试
    福斯推出 Alphatec?FNo,提供了一个现代安全的方式执行标准降落数值测试,可用于评价谷物发芽的损伤程度,以及在烘焙和发芽前面粉和麦粒中的酶活性。 Alphatec FNo 是按照标准AACC方法中AACC 56-81B “降落数值的测定”方法来执行降落数值测定的一个可选方式,它包括几大显著优势:例如,冷凝盖可以防止放入样品时发生蒸汽喷射,避免潜在的伤害。另外,触摸屏式的操作更容易操作。 测定降落数值的安全方法 数十年来,现存的降落数值检测设备未有任何改进。现在,基于福斯在自动化操作和实验分析具有丰富经验,福斯开发了新的降落数值分析仪,并且具有重大的技术改进,例如,冷凝盖可以防止放入样品时发生蒸汽喷射,避免潜在的伤害。此外,采用隔热材料制作的样品水浴桶可以避免机体表面过热,降低烫伤的风险。溢流装置可以防止热水溢出。 触摸屏操作 福斯采用触摸屏加强该仪器的可操作化程度,这可以降低培训费用,保证任何人均可快速,无误的操作。实用化的设计还包括,可拆卸的架子和背部连接来保证工作台面的清洁。 作为福斯产品组合新增的一部分,Alphatec FNo 对为客户进行平稳和连续的分析操作体现了独特水准,福斯是一家业界认可的具有优良业绩的供应商,在全球范围内有超过11000台谷物分析仪器。 遵循标准方法 AACC标准中的方法AACC 56-81B “降落数值的测定”中,降落数值是谷物收购中表征谷物质量的重要指标。降落数值系统是谷物交易过程中检测谷物完整性的重要测试方法,是反映谷物中α-淀粉酶活性的参数,用于检测谷物发芽的损坏程度。对于优化面粉中的酶活力也非常重要,可以确保最终产品的质量,例如,面包,意大利面,面条和麦芽等的品质。 关于福斯 福斯是全球顶尖的食品业及农业产业分析解决方案供应商,帮助生产者实现其生产价值最大化。无论实验室分析还是在线解决方案,福斯采用各种技术从传统的实验室湿化学参照法到先进的近红外(NIR)和X射线等分析技术,满足客户需求。福斯一直处于创新前沿。 超过50000个福斯分析仪器正在全球各地实验室中运行,世界100强食品和农业产业公司中有90多家正在使用福斯的方案。 福斯是一家私有企业,拥有来自世界各地的1200多名员工。福斯在丹麦、瑞典、美国和中国均有制造及研发基地。福斯在25个国家设有销售服务公司及超过70家专业经销商销售福斯方案并提供服务。 福斯公司联系方式 北京:010-6846 7239上海:021-51695953广州:020-3828 8492邮箱:china@foss.com.cn
  • 影响盐雾试验箱试验数值精准的因素→喷嘴
    盐雾试验箱试验数值的精准是由很多的因素所影响的,一个因素的不正确,就会造成试验数值的不正确。那么数值的精准和箱体整体的制造工艺和设计都是有着密切关系的,但是除了这些外,喷嘴也是会影响数值结果的。那么有以下这些点是需要注意的。 喷雾是直接由喷嘴喷出的,那么不同品质的喷嘴喷出的喷雾也是不一样的,可以说喷嘴的好坏直接影响了试验的成败。所以首先选择一款好的喷嘴是很重要的,一款好的喷嘴在孔径、弯曲角度等就经过了严格的控制。 那么有了一款好的喷嘴,也要正确的使用才能发挥出它的功效。从安装的时候就需要注意了,安装的时候要轻拿轻放,不能用力过大而造成喷嘴的破损。另外就是喷雾的时候压力不要设置的过大,因为这也会造成喷嘴的破损。 喷嘴安装好后,使用的水也是需要注意的。普通的自来水会有杂质,那么这些杂质会给喷嘴造成堵塞。所以自来水是不能使用的,而是要使用蒸馏水或者去离子水。除了水中的杂质外,空气中的水汽和油等也会造成喷嘴的堵塞,所以还需要安装油水分离器来排除压缩空气中的水汽和油等杂质。 所以可见喷嘴对于试验数值的准确度有着重要的影响,那么除了初期的正确使用外,平时定期的维护也是必须的。这样 盐雾试验箱才能发挥出它应有的功效,达到试验的目的。
  • 波通公司签订降落数值仪最大订单
    波通公司宣布正在与澳大利亚阿德莱德市的维特拉公司签订降落数值仪的大订单,根据合同波通公司将在澳大利亚维特拉谷物处理系统中发货安装78台降落数值仪。 全套系统包括主机、冷却塔(节水)和振荡器(提高重复性),同时还购买了波通公司的实验室粉碎磨(带喂料器)来确保正确的样品制备。波通公司CEO, Sven Holmlund说&ldquo 我们很荣幸获得这次很可能是降落数值仪全球最大的合同&rdquo 这次订单进一步证实我们优秀的产品和服务质量,加强了我们在谷物行业作为最佳供应商的地位。
  • ATAGO无损非破坏(红外)糖度计知多少
    ATAGO提供可靠的光学和红外测试解决方案,应用覆盖食品,饮料,制药,化工及其他多种工业领域。如下是ATAGO无损非破坏(红外)糖度计的产品知识: Q:可测量哪种水果?A:苹果。未来规划(梨,番茄,桃子等等) Q:果皮颜色会影响测量结果吗?(红/绿苹果)A:不受颜色影响。 Q:水果生长过程中可以评定成熟度?A:可对水果进行全程种植监测。直接把仪器样品台贴合树上果实表面即可测出糖度,无需采摘。 Q:可否测量有关苹果加工类产品的糖度?A:可对水果进行全程种植监测。直接把仪器样品台贴合树上果实表面即可测出糖度,无需采摘。 Q:测量前需要对水果作哪些准备工作?A:无需切开果实,无需掰开,无需榨汁。 Q:可否测量有关苹果加工类产品的糖度?A:包装类产品可使用便携式糖度计PAL-O或者便携式糖酸一体机,详情可与ATAGO中国分公司联系。 Q:测量同一个果实出现不同数值?A:苹果糖度取决于日照时间和日照面积等因素,糖度读数只针对苹果与样品台接触面的数值。 Q:水果温度会影响测量吗?A:先让无损非破坏(红外)糖度计对水果温度适应片刻后方可测量。把仪器和水果放置在同一地方让其对周围环境温度适应片刻后方可测量。
  • 风云三号成功发射,助力红外高光谱等3台光电产品开机
    2021年7月5日北京时间7时28分,风云三号E星在酒泉卫星发射中心成功发射,上海技物所承担研制中分辨率光谱成像仪(微光型)、红外高光谱大气探测仪Ⅱ型、红外地平仪等3台(套)光电产品随星入轨,将按预定程序先后开机。  在充分继承D星技术的基础上,E星载荷进行了系统升级与性能优化:中分辨率光谱成像仪(微光型)可实现7个数量级辐射动态范围和低照度下微光成像;红外高光谱大气探测仪Ⅱ型在红外宽谱段连续高光谱探测、探测灵敏度和精度、观测覆盖能力上得到大幅提升。上述载荷有望填补晨昏轨道国际气象业务探测资料空白,并在提高全球数值天气预报精度和时效方面发挥重要作用。  风云三号E星是风云三号03批气象卫星的首发星,也是世界民用业务气象卫星家族中首颗工作在晨昏轨道的卫星,设计寿命8年,配置11台遥感载荷,主要用于获取数值预报应用需要的大气温度、湿度等气象参数,保障气象领域核心业务,提升天气预测预报能力;监测全球冰雪覆盖、海面温度、自然灾害、生态与环境,提高应对气候变化和气象防灾减灾综合能力;开展太阳、空间环境及其效应、电离层数据监测,满足空间天气预报和保障服务的需求。发射现场红外高光谱大气探测仪Ⅱ型研制团队
  • 能给大米“定价”的近红外——对话日本静冈制机株式会社近红外工程师石津裕之
    p  strong仪器信息网讯/strong日本静冈制机株式会社(简称静冈制机公司),一家具有100多年历史的大型农业机械制造公司,在加热器、农用机械等方面具有雄厚实力,同时也是近红外谷物粮食成分分析仪器专业制造商。/pp  早在本世纪之初,静冈制机就在日本先声夺人,开发出了面向市场的大米食味计。一炮走红之后,脚步并没有停下,2016年,静冈制机公司又推出了最新一代高精度近红外食味分析仪。这台食味计能在对大米的水分、蛋白质、直链淀粉、脂肪酸等成分精准测定的同时,更能够实时评定大米的食味值,大米好吃不好吃,由食味分析仪来一锤定音,为大米在流通环节中的“按质定价”提供了科学数据支撑。近日,这款产品的研发者、静冈公司近红外工程师石津裕之受中国农业大学韩东海教授邀请,到其实验室进行技术交流,仪器信息网编辑与他就近红外相关话题展开交流。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/2b02c641-ee06-491c-bbd3-279435f45a6e.jpg" title="11_副本.jpg"//pp style="text-align: center "strong日本静冈制机株式会社近红外工程师石津裕之(左)与中国农业大学韩东海教授(右)/strong/pp  span style="color: rgb(255, 0, 0) "strong大获成功的第五代大米食味分析仪/strong/span/pp  石津裕之与近红外的结缘起始于1999年。当时日本农业大量施用氮肥,作物吸收不了被雨水冲刷到河里,造成环境污染,在此背景下,石津裕之开始从事近红外仪器研发工作,用于检测目标物中的氮元素含量。此后,他还参与了水果糖度检测仪器的开发,在近红外仪器研发领域积累大量经验。/pp  2004年,怀揣近红外仪器研发兴趣的石津裕之加入日本静冈制机株式会社,围绕大米和茶叶研发了系列近红外仪器设备,新一代高精度近红外食味分析仪就是成果之一。石津先生介绍到:“我们最新研发的是静冈制机公司第五代大米食味分析仪,产品在前四代的基础上进行改进,可测定大米中的淀粉、蛋白、脂肪等成分,最终依据食味给大米打分。日本依据品质给大米定价,仪器判定的结果将直接影响大米定价。”/pp  作为一家主打大型农业机械的百年企业,近红外仪器在静冈制机公司的事业版图中占比仅为3%。但石津裕之表示:“近红外业务占比虽小,可仪器的附加值却很高。自公司第一代食味分析仪问世至今,台式仪器已售出400多台,便携式售出600多台,另外一款茶叶分析仪也有将近200台的销量。” 在日本生产大米食味分析仪的4家厂商中,也仅有静冈制机一家获得日本农林水产省和北海道设施协会的资质认定,这也是产品的核心竞争优势所在。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/46f70368-651b-4d78-92d7-f0b013090f72.jpg" title="22_副本.jpg"//pp style="text-align: center "strong石津裕之与中国农业大学近红外团队进行技术交流/strong/pp  span style="color: rgb(255, 0, 0) "strong消除近红外仪器“台间差”是关键/strong/span/pp  从事近红外仪器研发的十几年间,石津裕之当然也经历过许许多多,大大小小的攻关。当笔者询问在研发仪器时最看重什么时,他反复提到了“台间差”这个词。石津裕之表示:“大家都买了同一型号近红外仪器,检测同一批大米时候,稻农的仪器测得的数值是6.8,大米中间商的仪器也是测得6.8,到了销售成品米的超市的仪器那里,得出的结果却变成了7.0,这就提示有可能是仪器台间差造成的。在日本,数值相差0.1的大米价格上有可能差出几千日元,因此测量不仅要追求精度,也要注意同型号之间的台间差。”/pp  近红外仪器离散性大,如何消除每台仪器的台间差,这涉及到硬件开发、模型建立的环节,可以说是仪器研发的最大挑战。为消除台间差,石津裕之在这方面下了很大功夫,最终摸索出了依靠经验经验和提高分辨率的解决方法。/pp  石津裕之拿光栅举例,光栅的角度控制对近红外而言非常关键,为对光栅实施更好的控制,石津裕之在研发的仪器底部增加了一个特殊装置以调整光栅角度,提高仪器分辨率。他补充说:“尽管各零部件都是从市场上买回来的,但在组装和结构设计方面却加上了自己的想法。”此外,增加特殊滤光片以消除波长漂移,严格把控仪器温度,也是石津裕之消除仪器台间差的诀窍。/pp  此外,石津裕之认为仪器设备的维护也十分重要,这一点在于引导用户规范操作。静冈制机公司每年都会给用户销售大量大米标准样品,用于仪器的日常校准,既规范了操作,又创造了盈利。/pp  交谈最后,笔者询问了石津裕之对近红外发展的预期,他表示:“作为一项不可或缺的分析检测技术,未来对于近红外的需求肯定越来越多,而随着技术进步,仪器价格也将进一步降低。”/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/3669352e-81b3-48dc-8703-38ffb706c9fd.jpg" title="33_副本.jpg"//pp style="text-align: center "strong韩东海教授代表中国仪器仪表学会近红外光谱分会赠送礼物/strong/pp  采访结束后,韩东海教授也就本次对话发表了感悟:/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  在我们看到的专业新闻中,对于专家和学者的研究报道屡见不鲜,而对企业一线专业人员的报道少之又少。受技术、资金、成本、市场和经验积累等方方面面的限制,国内的近红外发展之路必然是研制各种各样的专用近红外仪器。基于傅里叶变换原理的仪器能够解决台间差,但因其成本高,难以大面积推广应用。而基于其他原理的仪器,如何消除台间差是个不可回避的问题。借日本静冈制机公司的石津裕之工程师来京之际,在我的建议下,仪器信息网的刘丰秋编辑牺牲休息时间,专程来我校对他进行了专访。/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  静冈制机的石津裕之工程师为了研制测量精度逼近化学检测精度的近红外食味分析仪采取了诸多特殊措施。除了上述报道的以外,还采用了光栅扫描结构而非CCD阵列 光谱预处理从不使用我们常用的一阶导和二阶导 蛋白质特征吸收波段选择了噪声较大的1000nm以上。这些看似非常规的做法,成为静冈制机取胜的法宝。更多细节因涉及企业秘密,不便披露。对石津工程师的采访虽然不能解答我们所有的问题,如能有些思路上的启迪和帮助,我们倍感荣幸。/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  在与石津裕之工程师交流过程中,我的感悟是为了研制一台专用的近红外仪器,一是要充分了解物料的光物性、检测精度要求。二是对待检测成分进行标准物的光学特性实验,探讨特征吸收峰或波段。三是制定消除台间差、温度修正、校正波长漂移特殊措施。四是在满足检测要求的情况,考虑如何降低成本,设计仪器结构。总而言之,近红外应用符合细节决定一切的道理。/span/p
  • 景区如何实现将监测数值在LED大屏上集中显示
    越来越多的景区都会在入口比较明显的位置安装一个大型的LED显示屏,上面实时显示景区内温度、湿度、风力、风向等气象要素的数值,让游客们能够直观的了解到景区内的环境状况,甚至一些景区的LED屏还会显示山上和山下的气温,一些游客不禁感叹景区工作的细致化,但还有一些游客更好奇的是景区如何实现将监测数值在LED大屏上集中显示的呢?起初是为了方便景区的安全管理,在一些重要地方安装了气象站监控主机,通过它来实时监测景区内各个监测点的温度、湿度、风力、风向等数值,为景区的环境质量提供依据。但由于这些地方位置偏远,供电不方便,气象站监控主机都是采用太阳能方式供电,然后采集气象数据,再通过GPRS的方式上传至监控中心的云平台,景区管理人员通过账号登陆云平台实时监测景区环境质量。但随着智慧景区时代的来临,各大景区为提高自身的竞争力,推出了“使游客未进景区却早已对景区环境了如指掌”的人性化服务。这项服务最关键的点就是是:把监控中心看到的数据转到景区的LED显示屏上,如何做到呢?这就要说一说通信服务器了。通信服务器是将远程监测设备的数据通过网口或GPRS无线传输的方式将数据中转的服务器,它可将景区监控中心的数据传输至LED大屏并实时显示。它的工作原理是什么呢?山东仁科测控生产的通信服务器具有网口和GPRS两路接口来获取数据。数据从哪来的呢?首先使用我们公司的网络型变送器测量现场的监测要素,借助网络信号把数据线上传到我司云平台,通信服务器借助云平台通过GPRS或者网口抓取数据,然后再把数据传输到LED显示屏上,在LED屏的位置不受地点的影响了,也就解决了监测点和显示点不在同一个位置的问题;无论采用哪一种方式都不会影响传输效果。有的景区范围大观光点多,可能需要好几台LED屏同时实时显示环境情况,怎么办?这也是通信服务器的第二个特点,它最多能接收32个节点数据,满足对多个分散广、距离远的测点传输数据,最多可同时向8台 LED 屏传输数据,并且无需人员值守,省时省力方便景区管理。为了方便游客能更直观的了解景区具体情况,景区管理人员可通过通信服务器根据具体的内容,把文字设置成文本、钟表或表格在LED屏上展示。现在,景区将物联网技术以传感器技术以及通信服务器加LED屏组成了一套完整的智慧旅游系统,在景区内设置LED显示屏实时显示景区内环境状况,也了智慧旅游的一种标志,它不仅方便了景区的管理,也是景区人性化服务的一种体现。
  • 澳大利亚集团公司CBH选用波通公司的降落数值仪,受益匪浅!
    澳大利亚集团公司CBH选用波通公司的降落数值仪,受益匪浅!CBH集团公司是澳大利亚最大的谷物组织,日前宣布自从增加购买使用降落数值仪后,获得几百万澳元的收益。在这样一个收获的季节,雨水的破坏时有发生,使用降落数值仪对收入的谷物进行彻底的检测可以将谷物从单一货载里分级,哪些是饲料用,哪些是一般常用,哪些是制粉等级的。这是简单的目视检测或者从粮仓里抽样检测都无法达到的效果。下面是CBH集团公司11月14日发表的新闻的原文,也可以通过链接进入其网站。更多关于降落数值仪信息请查看此链接: please click here.更多关于CBH的信息请查看: please click here.» 降落数值仪检测为谷物增值数百万(CBH新闻,2011年11月14日发布)。谷物种植者今年收获的季节收益增长了7.5百万美金,主要归因于CBH集团采用降落数值仪准确检测收入的谷物中受雨水损伤的谷物。CBH从收获季节开始就在受暴风雨影响严重的地区现场启用80多套降落数值仪,高峰期使用量甚至达到100多套。根据西澳大利亚谷物行业官方承认的小麦收购标准以及西澳大利亚谷物交易标准,任何批次被检测受发芽损害的谷物都归类为饲料级谷物,除非降落数值仪检测结果推翻此结果。通过使用降落数值仪,CBH可以将饲料级的受损谷物升级为正常使用级别的谷物甚至是APW和H2制粉级别的谷物CBH总经理Colin Tutt说:逐批采用降落数值仪检测,根据检测结果可以确保最佳的分类,排除视觉上认为是发芽损伤的谷物。这是让可能成为饲料级别的谷物升级为更高价值的制粉级别谷物的唯一方法。Mr Tutt说:&ldquo 到目前为止,CBH已经检测了3500批次的货物,预计价值达到7.5百万美金。考虑到我们只有10%的机会进入到预期的收获,因此很明显潜力很大。&rdquo Mr Tutt说&ldquo 降落数值仪检测每批货物的时间需要5-10分钟,而这额外的时间在忙碌的收购现场确实令人沮丧,但是我们劝谷物种植者这个耐心的等待是值得的,因为饲料级别的谷物和更高级别的谷物的价值是不同。我们的降落数值仪现场为种植者提升谷物的价值,这正是他们种植谷物所希望的,我们的目标是不要降低任何看上去有发芽受损的谷物成饲料级别的,然而当大面积的谷物受到气候恶化的影响时就会增加我们的难度。&rdquo CBH客户质量经理Dr Richard Williams说:&ldquo 损伤的谷物含有破损的淀粉和蛋白成分,会导致最终产品质量变差。使用受损的面粉制作的面包皮黑,里面发粘,严重时面包里面有空洞;而使用受损的面粉制作的面条会发粘,煮的时候容易断裂。&rdquo 他继续说:&ldquo CBH的管理计划是将逐批检测和现场监测结合以达到对小麦交货时的最佳分级从而保持WA在小麦供货质量上的的良好声誉&rdquo 。
  • 市民自购仪器检测核辐射 每天上网发布监测数值
    “从我个人监测出的数据看,北京的辐射环境在正常范围,并没有受到日本核泄漏的辐射影响。”作为环保半专业人士的程景先生,几天前自购了一台便携式核辐射检测仪,开始对身边的环境进行监测,并将监测结果发到网上,告知邻居们监测结果在正常范围,大家尽可放心。昨日程先生用剂量仪在小区内测量  家人邻居有担忧 自购辐射检测仪  “如果不是及时做了监测,我们一家可能早就因为恐慌飞到乌鲁木齐去了。”程先生介绍,日本发生地震并引发核电站事故后,他的妻子就开始担心核辐射会波及到中国,并把居住在离日本更近的辽宁亲戚接到北京来。“但她还是不放心,打算买机票去乌鲁木齐。而且,我家附近的邻居们也有些担心。”程先生称,他在上大学时学的是电子技术,对一些电子产品有一定知识储备,而且他现在是一家民间环保机构“达尔问自然求知社”的理事,同时担任该机构检测中心的志愿者兼顾问,经常免费为一些小区提供电磁辐射监测、室内甲醛监测、环境噪音监测等。  出于职业习惯和个人爱好,程先生先到网上查询,打算购买核辐射检测仪,“我买时剩最后一台,卖家告诉我,日本核事故发生后,很多沿海城市的卖家都从他这订货,我是第一个北京客户,买的时候1400元,没多久价钱就涨了30%。”据程先生了解,他所购买的个人剂量仪广泛应用于核电站、核设施工作人员剂量监测,放射医疗、放射性实验室工作人员剂量监测等用途,“我在新闻媒体上看到,福岛的核电站抢修人员身上佩戴了核辐射报警仪,一旦辐射当量累积到一定数值,就会报警、换人,应是同一种仪器。”  连续几天监测 数值均在正常范围  从3月16日至今,无论是在家里、在地铁上、在车里,程先生都带着剂量仪,随时监测周围环境的辐射剂量当量率。“根据这几天的监测,数值大致在0.08―0.28微西弗/每小时之间,说明咱们北京的辐射环境在正常范围内。”程先生指着一个黑色的类似遥控器样的小电子仪器让记者看,“这个数值是不断在变化的,就像监测噪音时的那个背景值一样。”记者注意到,该仪器长约六七厘米,宽约5厘米,电子屏中有两组数值,上边的一组会随着位置的移动随时变化,下边的一组几乎不变。“上边显示的是小时吸收率,下边显示的是累计值。”程先生介绍,根据国际标准,对日常工作中不接触辐射性工作的人来说,每小时的天然辐射当量率为0.22―1.1微西弗之间,属正常的辐射背景环境值,“我这几天监测到的数值都在这个范围内,而且我每天都会上环保部门的官网,将我监测的数值与官方的数值做对比,结果非常贴近。”  程先生说,为了验证他所购买的检测仪是否准确,他还特意借了一个价值6000多元的美国产的检测仪,“两个仪器放在相同的环境中,数值几乎没有差别。”  网上发布监测数值 让邻居们更放心  几天来,程先生每天都把测量数据发布到社区网上,不少邻居回帖称,“放心了,你做了一件大好事……”  程先生表示,人们之所以恐慌,是因为认知不够。“只从理论上讲核辐射不会扩散到北京,有些人可能还会将信将疑,我作为他们身边的邻居,每天用监测的数据证明与官方的数值接近,邻居们可能会更放心。”程先生表示,他还会继续监测,并打算将他购买的检测仪借给“达尔问自然求知社”的检测中心,供有疑惑的公众免费申请监测。
  • 铝塑复合膜的热封工艺中,热封压力的具体数值范围是多少?
    铝塑复合膜的热封工艺中,热封压力是一个至关重要的参数,它直接影响着复合膜的热封效果和产品质量。本文将深入探讨铝塑复合膜热封工艺中热封压力的具体数值范围,并结合实际应用场景,为读者提供全面的指导和参考。一、热封压力的重要性在铝塑复合膜的热封过程中,热封压力是确保两层或多层材料在热封温度下充分熔融并紧密结合的关键因素。适当的热封压力可以使得材料之间形成稳定的化学键合,提高热封强度,从而确保复合膜的密封性和耐用性。二、热封压力的具体数值范围热封压力的具体数值范围并非一成不变,它受到多种因素的影响,包括复合膜的材料类型、厚度、热封温度、热封时间等。因此,在实际应用中,我们需要根据具体情况来确定合适的热封压力数值范围。一般来说,对于常见的塑料复合膜材料,如CPP(聚丙烯)、OPP(取向聚丙烯)、PET(聚酯)等,其热封压力范围大致如下:CPP(聚丙烯):热封压力范围通常在0.5~0.7kg/cm² 之间。由于CPP材料具有较好的热封性能,因此在较低的压力下即可实现良好的热封效果。OPP(取向聚丙烯):热封压力范围也在0.5~0.7kg/cm² 之间。与CPP相似,OPP材料同样具有较好的热封性能,但需注意其取向性对热封效果的影响。PET(聚酯):热封压力范围相对较高,通常在1.5~2.0kg/cm² 之间。PET材料具有较高的熔点和强度,因此需要较高的热封压力才能实现充分的熔融和结合。然而,这些数值范围仅供参考,实际应用中还需根据复合膜的具体情况和热封设备的特点进行调整。例如,对于较厚的复合膜或需要更高热封强度的应用场景,可能需要适当提高热封压力;反之,对于较薄的复合膜或需要更低热封强度的应用场景,则可适当降低热封压力。三、热封压力的调整与优化在实际生产中,为了获得最佳的热封效果和产品质量,我们需要对热封压力进行精细的调整和优化。这主要包括以下几个方面:根据复合膜的材料类型和厚度选择合适的热封压力范围。根据热封设备的性能和特点调整热封压力的具体数值。例如,不同型号的热封机可能具有不同的压力调节范围和精度,需要根据实际情况进行调整。结合实际生产过程中的观察和测试,对热封压力进行微调。例如,通过观察热封后的复合膜表面是否平整、无气泡、无虚焊等现象,以及测试热封强度是否符合要求等方式来评估热封效果,并根据评估结果对热封压力进行相应的调整。注意热封温度、热封时间和热封压力之间的协调配合。这三个参数共同影响着热封效果,需要在实际生产中根据具体情况进行综合考虑和调整。总之,铝塑复合膜的热封工艺中热封压力的具体数值范围需要根据实际情况进行确定和调整。通过精细的调整和优化热封压力等参数可以确保复合膜的热封效果和产品质量满足要求。
  • 超1800!哈尔滨一环境监测点PM2.5数值爆表谁之过?
    p style="text-align: center"  img src="http://img1.17img.cn/17img/images/201611/insimg/2aa6a8fb-e3c7-41f6-9842-53af8c0ef4d4.jpg" title="00.jpg"//pp style="text-align: center "strong资料图/strong/pp  近日,哈尔滨市北郊一个大气环境监测点PM2.5数值超过1800!/pp  如此数值,让常年做气象环境监测工作的“老司机”也惊叹不已。事隔3天,当国家气象中心环境气象室高工桂海林向科技日报记者提起这个数值时,依然觉得不可思议。“即便春节燃放鞭炮,PM2.5数值都没有这么高,这实在是高的离谱了。”/pp  “不会是监测仪器出了问题?”记者问。/pp  “为了确保数值可靠,我们也与周边其他监测站点进行了比对。数值虽然没有这么高,但也都突破了1000。另外,我们还调取了气象卫星资料进行对比,发现附近有多个高热源火点,根据图像和数值分析,应该是农田焚烧秸秆。/pp  上周重污染天气从黑龙江开始,最终跨越1600多公里,波及7个省30多个城市,多个城市“爆表”,污染程度之重、影响范围之广为历年少有。/pp  东北地区相继有10个城市的空气质量指数(AQI)达到最高值500,其中黑龙江哈尔滨市、绥化市和大庆市等3个城市“爆表”持续时长分别为14小时、23小时和24小时(AQI值最高500,超过这一值称为“爆表”)。/pp  桂海林告诉科技日报记者,我国大气环境监测站点主要由环保部门和气象部门管理,环保部门的站点主要集中在城市,而气象部门的站点分布比较广,城郊、农村都有,污染源如果是农田焚烧,我们气象部门监测到的数值会更高一点。/pp  11月6日晚,环保部召开会议会商重污染成因,认为此次东北、华东地区大范围的污染过程,始于11月3日—4日黑龙江省哈尔滨、绥化和大庆一带,当地冬季燃煤采暖和生物质燃烧排放是导致区域性大范围重污染的“元凶”。/pp  11月7日,环保部卫星环境应用中心检测数据显示,2016年10月31日至11月6日期间,环境卫星共监测到秸秆焚烧火点756个,其中黑龙江省以580个火点数稳居第一,占此次监测到全国火点总数的76.7%,远超第二名山西省的66个火点数。/pp  其实,今年10月,黑龙江省印发《黑龙江省禁止野外焚烧秸秆改善大气环境质量实施方案》,将哈尔滨市、绥化市等区域划为秸秆禁烧区。/pp  该方案中鼓励在各地新建城区推广利用秸秆成型燃料锅炉供热(供蒸汽)替代现有燃煤锅炉,实行秸秆禁烧周报告制,在紧要时期实行日报制。/pp  有专家分析认为,秸秆焚烧是当地农民惯性行为,虽然近年来东北地区改为燃气供暖,秸秆不再需要作为柴火燃烧,但大多数农民图省事儿依然就地燃烧。/pp  这两天随着冷空气南下,大部地区的雾霾消散。但根据中央气象台预报,本周后期由于大气环流再次进入静稳状态,雾霾还会卷土重来。/pp  桂海林解释说,目前正处在秋冬季节转换时期,天气特点就是大雾、浓雾多发。由于空气中湿度较大,会让平常以干粒子形态呈现的霾,快速吸湿,不仅造成能见度转差,也会加重污染物的浓度,让空气质量进一步恶化。因此,一定要更严格管控污染源排放。/pp  中国环境科学研究院研究员柴发合表示,此次重污染过程从东北地区的哈尔滨开始,沿哈大线一路向西南偏南方向传输,直至山东半岛、江苏和安徽北部,波及范围如此之广,必须要进行各地各部门联防联控。只有厘清各地相互影响,切实落实责任,才能有效应对区域性重污染天气。/p
  • 盘点:红外成像系统进展
    p  随着检测器和数据处理系统的发展,傅里叶变换显微红外光谱技术在短短的二十几年间从单纯的显微镜与红外光谱联用,发展到了红外成像系统。/pp  将傅里叶变换红外光谱仪中的红外光束引入显微镜光路,可以获得在显微镜下观察到微小尺寸样品的光学影像及相应成分的红外光谱信息。由于红外光的波长较长,红外显微镜的空间分辨率一般在6um左右。若采用单点检测器收集红外光谱,则为傅里叶变换显微红外光谱仪 若采用阵列检测器收集红外光谱,则为傅里叶变换红外成像系统。红外图像系统的出现大大提高了样品的检测速度,目前在刑侦学、生物学、医学、化学、材料科学和矿物学等诸多领域都得到了广泛的应用。/pp  无论是显微红外光谱仪或是红外成像系统,使用者最关心的还是仪器的性能指标,也就是显微模式下红外光谱的信噪比及空间分辨率,另外,如何从红外光谱图像中提取有用的信息,也是大家所关心的,下面将综合这几点,介绍红外成像系统的进展。/pp  一、信噪比/pp  在红外显微镜和红外成像系统测试中,通过特殊设计的光学系统将测量光束直径缩小到微米甚至亚微米量级,从而可测试尺寸非常小的样品或者是大尺寸样品中非常小的区域,显然此时光通量远远小于常规红外光谱仪,若要获得高的信噪比,对整体光学系统的光路系统要求相应也有很大的很高,通常需要多个光学聚焦镜(卡塞格林镜)联合使用,才能保证红外光同轴,且能量损失最小,如图1所示为PerkinElmer公司红外光谱成像系统中的三卡塞格林镜光学系统。/pp  红外光先从光源到达卡塞格林镜1,该镜为聚焦镜,将光束聚焦,经过样品,到达卡塞格林镜2,即物镜上,在此光路图中,最重要的卡塞格林镜为3号镜,即到达检测器前,将红外光谱的信号再次聚焦,保证能量最大。/pp  高的光通量,才能保证高的信噪比,所以红外光谱成像系统中三卡塞格林镜的光路设计在一定程度上决定了其较高的信噪比。/pp style="text-align: center "img style="width: 450px height: 338px " alt="" src="https://img1.17img.cn/17img/old/NewsImags/images/201481101535.jpg"//pp style="text-align: center "span style="font-size: 14px "图1 PerkinElmer公司红外图像系统中的三卡塞格林镜光学系统/span/pp  如前所述,在红外显微镜和红外成像系统的光通量远低于常规红外光谱仪,且扫描速度较快,常规红外检测器不能满足要求,无论是单点还是图像分析,均需要使用液氮冷却的MCT检测器以保证在快速测量时的高信噪比。此处需要说明,虽然测试速度比较慢,但是单点检测器的信噪比更高、测量光谱范围更宽。/pp  红外成像系统所用检测器基本上可以分为两种,一是焦平面阵列检测器,另一种是线阵列检测器。焦平面阵列检测器包括两类,第一类主要是由红外显微镜和大面积焦平面阵列检测器(凝视型,以64*64和128*128为主)组成,凝视型同时以步进扫描技术(Step Scan)作支撑 第二类主要是由红外显微镜和小面积焦平面阵列检测器(非凝视型,以16*16和32*32为主)组成,非凝视型不需要步进扫描技术作支撑,而是采用了快速扫描(Rapid Scan)的技术。由于焦平面阵列检测器源于美国军方的技术,美国国防部对此类产品向中国大陆的出口进行了限制,目前仍存在禁运的问题。因此,国内市场上常见的红外光谱仪器公司如PerkinElmer、Thermo Fisher Scientific、JASCO等则提供双排跳跃式线阵列检测器(2*16或2*8)或线阵检测器(1*16),再结合快速扫描功能,实现红外光谱成像质量和速度的双重提高。目前各仪器厂商阵列检测器的信噪比从150/1~800/1不等。/pp  二、空间分辨率/pp  空间分辨率是指被测试的样品采用显微红外“见到”的最小测试面积。采用红外显微光谱仪器的可见光显微系统对样品进行观察,选择感兴趣的测试区域,然后将其划分成若干个采样微区,通常将这些采样微区称为“像素(pixel)”。像素的尺寸是由仪器测试能力与样品表征要求共同决定的。较小的像素尺寸可以提高测试结果的空间分辨率,但是光谱信噪比会降低,测量相同面积的区域时所需时间也要增加。/pp  由于红外光波长较长,易产生衍射现象,不能像可见显微镜将样品放大至1um甚至更小,一般常规的红外图像系统空间分辨率极限在6um左右,所获得的红外指纹图谱为6*6um区域的信息集合。/pp  若要提高红外光谱成像系统的空间分辨率,可以考虑选择衰减全反射(ATR模式)。由于常规红外光谱透射或反射成像时物镜与样品之间的介质为空气,而ATR模式中物镜与样品之间的折射率更高的内反射晶体为介质,因而光束半径可以更小,即成像测试时的空间分辨率更高。例如,锗的折射率是空气的4倍,因此以锗作为内反射晶体时,ATR模式的空间分辨率比常规透射或反射模式高4倍左右。所以,在仪器厂家的宣传中可见ATR模式空间分辨率为1.56um的说法,应特别注意,此时为其名义空间分辨率,或称像素空间分辨率,而非实际真正的空间分辨率。/pp  ATR模式包括ATR单点物镜与ATR成像附件两种测量方式。如图2所示,如果使用ATR单点物镜进行成像分析,每次只能测量与内反射晶体接触的一个像素,然后使晶体与样品脱离,移动样品使内反射晶体接触下一个像素并进行测量,直到获得所有像素的光谱。很明显的问题是,内反射晶体与样品接触后很容易被污染,影响后续像素测试结果的准确性,而且所有像素逐个测量的方式非常耗时。如果使用ATR成像附件,内反射晶体与所测样品一起固定在样品台上,二者之间没有相对位移,避免了晶体污染造成的测量误差。样品台同步移动内反射晶体与所测样品,改变红外光束在内反射晶体上的入射位置,完成所有像素的测量。由于可以使用阵列检测器,ATR成像的测试速度也非常快。但是,受到内反射晶体尺寸的影响,ATR成像的测试面积比较小(目前仪器上通常配备的反射晶体的直径为500um,最大可以定制直径为2 mm的晶体,但应同时考虑检测器、软件等因素)。此外, ATR单点物镜与ATR成像附件有个共同的问题:该方法只能测量距离内反射晶体表面几个微米深的样品部分 在样品表面与内部不一致时,该方法获得的一般只是表面信息。/pp style="text-align: center "img style="width: 450px height: 277px " alt="" src="https://img1.17img.cn/17img/old/NewsImags/images/201481101556.jpg"//pp style="text-align: center "图2 ATR红外光谱成像的两种测量方式。左:ATR单点物镜 右:ATR成像附件。/pp  2013年,Neaspec公司推出了nano-FTIR光谱仪,利用其独有的散射型近场光学技术发展出来的纳米傅里叶变换红外光谱技术,使得纳米级化学鉴定和成像成为可能。nano-FTIR光谱仪的工作原理如图3所示,将一束宽带中红外激光耦合进入近场显微镜(NeaSNOM),对原子力显微镜(AFM)针尖进行照明, 通过一套包含分束器、参考镜和探测器在内的傅里叶变换光谱仪对反向散射光分析,即可获得针尖下方20 nm区域内的红外光谱,使得红外光谱成像系统的的空间分辨率突破了微米的界限。该类型仪器综合了AFM的高空间分辨率,和FTIR的高化学敏感度,实现了对有机、无机材料的纳米级化学分辨。/pp style="text-align: center "img style="width: 450px height: 269px " alt="" src="https://img1.17img.cn/17img/old/NewsImags/images/201481101615.jpg"//pp style="text-align: center "图3 Nano-FTIR光谱仪的工作原理/pp  图4所示为在不使用任何模型矫正的条件下,nano-FTIR获得的近场吸收光谱,由图中可见,其分子指纹特征与使用传统FTIR光谱仪获得的分子指纹特征吻合度极高,这在基础研究和实际应用方面都具有重要意义,因为研究者可以将nano-FTIR光谱与已经广泛建立的传统FTIR光谱数据库中的数据进行对比,从而实现快速准确的进行纳米尺度下的材料化学分析。对化学成分的高敏感度与超高的空间分辨率的结合,使得nano-FTIR成为纳米分析的独特工具。/pp style="text-align: center "img style="width: 450px height: 271px " alt="" src="https://img1.17img.cn/17img/old/NewsImags/images/201481101630.jpg"//pp style="text-align: center "图4 Nano-FTIR所获得的光谱图与传统红外光谱图的比较/pp  但目前昂贵的价格,较为复杂的操作(需要与AFM联合使用),以及红外光谱波段的限制(每次扫描的波数范围有限),光谱分辨率有待提高等,仍是该类仪器需要克服的难题,同时也是未来发展的方向。/pp  三、红外光谱成像的信息提取/pp  使用合适的信息提取方法,从像素光谱中获得所需要的信息,是红外光谱成像技术应用的关键。成像所测量的数据为若干个像素的红外光谱,这些像素具有特定的空间位置,一般用横坐标和纵坐标来表示。如果按照测量时的空间位置进行排列,像素光谱数据需要表示为一个r*c*n维的矩阵,因此需要使用适当的数据处理方法,对上述矩阵进行降维。若将每张像素光谱均转换为反映特定信息的单一数值之后,再按照像素的空间位置将这些数值排列成一个r*c维的矩阵,然后以二维或三维图形表示出来,就得到了反映特定信息的数据采集区域的化学图像。/pp  常见的降维手段包括:像素光谱平均强度图像,该方法可以反映测试区域内样品数量较多的位置 像素光谱图像特征峰强度或面积图像,该方法可以反映测试区域样品中特征官能团的分布情况 使用模式识别方法对像素光谱进行分类,根据像素光谱所属类别将成像区域分割为不同部分,对各个部分的典型像素光谱进行解析,可以了解一些成分的分布情况等。/pp  本课题组近期也提出了两种新的振动光谱成像数据信息提取方法。 “主成分载荷乘积聚类分析-交替最小二乘法” 可用于没有参考信息时的样品化学成分非靶向解析 “偏最小二乘投影-相关系数法”,则主要用于已知目标成分的靶向检测,对微量成分的识别能力更强。若有兴趣可查阅相关文献,此处不多加描述。/pp style="text-align: right "  (撰稿人:清华大学 周群)/pp style="text-align: right "  注:文中观点不代表本网立场,仅供读者参考/p
  • 【综述】超声红外热成像技术国内研究现状与进展
    超声红外热成像技术具有选择性加热、可检测复杂工件裂纹缺陷的优点,是一种具有很大研究价值的无损检测方法。近期,南京诺威尔光电系统有限公司和上海复合材料科技有限公司的科研团队在《红外技术》期刊上发表了以“超声红外热成像技术国内研究现状与进展”为主题的文章。该文章第一作者和通讯作者为江海军,主要从事红外无损检测技术及图像处理方面的研究工作。本文介绍了超声红外热成像技术原理与系统组成,并对国内的发展历程、发展现状进行了回顾和总结。重点针对仿真研究、复合材料损伤、疲劳裂纹、金属构件裂纹、混凝土零件裂纹应用领域的研究现状进行了详细论述,最后展望了超声红外热成像技术的未来发展趋势。超声激励系统装置超声红外热成像系统一般包括超声激励源、红外图像采集系统、红外图像处理系统;超声激励源包括超声电源、超声换能器、超声枪,红外采集系统主要使用红外热像仪采集红外图像,超声红外热成像系统原理如图1所示。红外图像采集和超声激励之间需要同步,当超声枪头能量注入到试件表面时,红外热像仪开始采集图像,采集红外图像包括缺陷升温过程和降温过程。图1 超声红外热成像技术原理超声红外热成像检测技术最早由美国弗吉尼亚大学于1979年开始研究,2000年,美国韦恩州立大学的Lawrence Dale Favro等人首先使用超声波焊接发生器作为超声激发源进行金属疲劳裂纹检测。2003年,南京大学张淑仪等采用超声红外热成像技术对铝合金板疲劳裂纹进行了检测研究。近年来,国内有很多团队对超声红外热成像技术进行研究,研究重点包括理论仿真、金属裂纹检测、疲劳裂纹检测、航空发动机叶片裂纹检测、复合材料冲击损伤。北京航空航天大学研究人员主要研究复合材料脱粘/冲击缺陷;哈尔滨工业大学研究人员主要研究金属表面裂纹以及超声锁相红外热成像技术;陆军装甲兵学院研究人员主要研究仿真、超声激励参数(预紧力,夹具,激励方式,激励位置)对检测结果的影响,并将该技术引入到装甲设备缺陷检测;湖南大学研究人员主要对复合材料平底孔缺陷以及冲击损伤缺陷进行研究;火箭军工程大学主要研究合金钢裂纹缺陷、复杂型面裂纹缺陷、复合材料冲击损伤;福州大学研究人员主要研究超声激励参数(不同方向、频率、幅值)对金属焊缝裂纹缺陷的影响;西南交通大学研究人员主要研究超声激励对混凝土板裂纹的检测;南京水利科学研究院研究人员主要研究激发频率、功率、预紧力、声波吸收能力对混凝土裂纹检测的影响;中国南方航空工业有限公司和南京诺威尔光电系统有限公司研究人员主要研究航空发动机喷涂前和喷涂后叶片裂纹检测;武汉理工大学研究人员主要研究复合材料的螺栓连接件裂纹缺陷和分层缺陷的检测。超声红外热成像系统的核心是预紧力单元和夹具单元,预紧力单元一般靠机械弹簧或者气动系统产生预紧力;夹具单元需要根据检测试件的结构进行优化设计,夹具单元采用医用胶带或者刚性耦合方式把超声耦合进试件中,从而会使得各研究机构的系统装置有所差异,图2展示了部分研究机构的超声红外热成像系统装置。图2 超声红外热成像系统装置主要应用领域仿真研究金国锋对不同曲率复合材料裂纹缺陷进行仿真,仿真结果表明构件曲率越大,温升阶段斜率越大,缺陷信号越容易被激化。田干等用数值仿真方式研究了多模式超声激励形态,仿真结果表明多模式激励方法对于消除驻波非常有效,同时产生更为丰富的次谐波和高次谐波,可有效提高超声激励红外热成像技术的检测能力。徐欢等采用ANSYS和ABAOUS仿真软件对裂纹进行三维仿真,结合模态和谐响应分析手段,可以获取裂纹试件固有频率,对超声激励频率和裂纹生热提供了相关理论依据。郭怡等对宽度为10 μm钛合金裂纹进行了检测,并采用ANSYS模拟数值分析,与试验数据基本一致。蒋雅君采用ANSYS对混凝土板裂纹进行仿真,为混凝土裂纹检测提供了理论依据。复合材料损伤复合材料具有高比强度、高比刚度、耐腐蚀、耐老化、耐热性的优点,广泛应用在航空航天、新能源、建筑、汽车、体育等领域。复合材料在低速冲击下,承载能力弱、抗冲击性能差,容易出现基体开裂、分层、断裂等。J. Rantala、G. Busse等最早采用超声红外热成像技术检测复合材料内部缺陷。田干等采用超声红外热成像技术对航空复合材料进行数值仿真研究,建立含裂纹缺陷复合材料的有限元模型。金国锋、张炜等通过数值计算和试验研究了超声红外热成像技术对复合材料冲击损伤检测的适用性;吴昊等对复合材料螺栓连接件损伤检测,分析了螺栓预紧力对螺栓孔损伤生热特性的影响。李胤等研究了复合材料在不同冲击能量(24 J和29 J)的冲击损伤情况,检测结果与C扫进行对比,实验结果表明超声红外热成像技术具有检测速度快、检测精度高、结果直观的优点。杨正伟等研究复合材料在不同冲击能量(15 J和30 J)冲击下,复合材料分层损伤情况,检测结果与超声C扫进行对比,试验结果表明超声C扫损伤检测误差在30%,超声红外热成像损伤检测误差在5%。图3为作者采用超声红外热成像系统在不同低速冲击能量(10~50 J)下,复合材料冲击损伤检测图像,从图中可以看出冲击能量越大,损伤区域面积越大,且对于编织型复合材料,损伤裂纹具有延展性。图3 不同冲击能量试件检测图像疲劳裂纹闵庆旭等验证了超声红外热成像技术可用于金属疲劳裂纹的检测;高治峰等对航空航天7075铝合金疲劳裂纹进行检测,模拟和试验研究了激励参数和生热关系,并研究了检测参数对检测效果的影响;激励源距离裂纹15 mm时,检测效果最佳,侧面激励和正面激励都可以检测出7075铝合金疲劳裂纹,但侧面激励效果好于正面激励。郭伟等对喷涂层下基体疲劳裂纹进行检测研究,涂层厚度为300~400 μm,该方式可用于拉-拉疲劳载荷的二次拉伸制备的疲劳裂纹。韩梦等模拟裂纹开口宽度(5~30 μm)对激励后最高温度影响,开口宽度增加导致裂纹面接触降低和摩擦作用的减弱,导致开口宽度越大,最高温度反而越低,最后通过试验进行验证,如图4所示制作的宽度为20 μm疲劳裂纹以及检测结果。图4 金属疲劳裂纹检测金属构件裂纹金属构件,特别是异形结构的金属构件,其内部或者表面裂纹缺陷采用光激励红外热成像技术检测都难以实现检测。Guo等检测重型铝制飞机结构裂纹,发现该技术对闭合裂纹的探测效果良好。李赞等对金属构件裂纹发热情况开展研究,研究表明当激励于最佳位置时,裂纹发热最高。江涛等对汽车轮毂裂纹进行了检测,同时采用磁粉检测技术进行对比研究,对比研究发现超声红外热成像技术可以更好检测出轮毂内部裂纹以及看出裂纹延伸方向。敬甫盛等对35 kg重量的铁路机车钩舌进行裂纹检测,检测出中部L型裂纹和角端裂纹。冯辅周等对装甲车底板裂纹展开研究,表明该技术能够在3.5 s内实现对装甲车底板裂纹快速检测。作者采用超声红外热成像系统对8 kg锻钢块进行裂纹检测,裂纹位于试件端面,如图5所示,图5(a)为试件整体外观,图5(b)为试件端面图像,可以看出有一条无分叉的裂纹;检测结果如图6所示,展示了激励前后检测到图像的变化,对比激励前后图像可知,有一条裂纹信息,并且裂纹分叉了,存在一条隐裂纹,图6(c)中圈出部分,表明该技术可以探测到人眼看不见的裂纹信息。图5 锻钢块试件图6 锻钢块试件检测结果航空发动机叶片裂纹航空发动机叶片在交变拉应力、热腐蚀、扭转应力、高速冲击等复杂载荷的作用下,叶片容易生成裂纹。服役过程中,叶片裂纹在大应力作用下,小裂纹会扩展为大裂纹从而危害飞行安全。航空发动机叶片复杂,传统无损检测在复杂叶片时有各自的局限。借助超声红外热成像对试件形状不敏感的特点,国内外学者广泛开展了研究工作。Bolu等采用超声红外热成像技术对60个涡轮叶片进行检测,评估该技术对叶片裂纹检测的可靠性。寇光杰等采用ANSYS仿真模拟了合金钢叶片裂纹生热过程,采用激光切割预制裂纹进行检测,并分析了预紧力对检测效果的影响。苏清风对导向叶片和工作叶片服役过程中产生的裂纹进行检测,并测试预紧力对检测结果的影响。习小文等对航空发动机工作叶片进行研究,同时采用渗透检测进行比对,试验结果表明超声激励红外热成像可以检测出裂纹宽度为0.5 μm的裂纹信息,渗透检测无法检出,表明该技术对微小裂纹检测有优势。袁雅妮等针对2块无涂覆层和3块带涂覆层空腔叶片进行检测,并用荧光检测进行对比,结果发现荧光检测对于涂覆层空腔叶片容易出现漏检,表明超声红外热成像技术对受到叶片结构及涂覆层影响更小,能够检测含涂覆层空腔叶片裂纹。图 7为作者采用超声红外热成像系统对航空发动机工作叶片进行检测,同时采用渗透检测进行对比,图7(a)为工作叶片光学图像,图7(c)为超声红外热成像检测结果,可以看到叶片中部有一个裂纹,图7(b)为渗透检测结果,除了叶片中部裂纹,在叶片四周由于清洗渗透剂不干净,导致叶片边缘也会出现零星亮点区域。图7 工作叶片裂纹检测混凝土零件裂纹混凝土结构常见的缺陷是混凝土裂纹,裂纹严重削弱了混凝土结构的承载水平,加速了结构的老化程度,并严重影响了结构的安全性和耐久性。裂纹很难避免。一般来说,这项工作的主要目的是检测和处理裂纹。谢春霞等基于红外热像检测方法推导出了混凝土缺陷深度的定量计算公式;胡振华等以混凝土结构缺陷为检测目标,采用超声红外热成像检测技术对其进行了检测分析,证明了超声红外热成像缺陷检测技术对混凝土试件中肉眼不能发现的微小裂纹或隐裂纹的检测能力。Jia Yu等使用振动热成像技术检测混凝土零件中的裂缝,开发了声激励设备(声波和超声以及低功率和高功率激发设备),并研究了激发频率,功率和预紧力对声吸收能力的影响。Jia Yu等预制了充满标准微裂纹的预裂混凝土标本,以量化裂纹的可检测性,结果表明,超声激发热成像可以有效地检测出宽度为0.01~0.09 mm的混凝土裂缝。任荣采用ANSYS仿真研究V形裂缝混凝土板裂纹生热机理,并对激励位置、激励时间、激励频率等影响因素进行了模拟分析,图8所示为混凝土裂纹检测图像,圈出部分为裂纹区域。图8 混凝土裂纹检测发展趋势超声红外热成像技术在金属材料中可识别0.5 μm宽度的裂纹,在复合材料中可识别1.0 μm的裂纹,在混凝土材料中可识别10 μm量级的裂纹。超声红外热成像技术具有选择性加热的特点,仅对裂纹区域加热,正常区域不加热,可检测复杂结构试件,非常适合于金属裂纹、混凝土裂纹、航空航天叶片裂纹、复合材料损伤等材料的检测。超声激励方式与光激励方式不同,光激励方式系统比较统一;超声激励方式由于试件结构复杂,同时需要夹具固定试件并对激励头施加预紧力,例如金属疲劳裂纹夹具、航空发动机工作叶片夹具、航空发动机导向叶片夹具都不同,需要根据试件制作各自合适的夹具,系统比较复杂与多样,但如果针对同一类型的试件,可以制作统一的夹具、形成标准化的检测流程,因此超声红外热成像技术具有广阔发展前景,未来的研究重点包括以下3个方向:1)激励装置的优化。激励装置需要具备夹具单元和预紧力单元,夹具单元需要根据检测试件单独设计,预紧力单元有机械结构和气动结构。机械结构体积小、设计简单,但施加/释放预紧力需要手动旋转手柄;气动结构体积大、设计复杂,但可设计为自动施加预紧力和释放预紧力,从而可以实现集超声激励、自动装配、红外图像采集、红外图像处理一体化集成的超声红外热成像系统,以便适用于工业领域裂纹检测。2)检测标准化。超声激励与光激励具有很大不同,超声激励与检测人员经验有关,超声激励位置、超声激励时间、超声耦合效率都会影响检测结果。因此针对该技术形成统一检测规范和技术,可以加速该技术工程实践应用。3)缺陷检测自动化识别。超声红外热成像需要采集数百帧序列图像,从采集数百帧序列图像中识别出缺陷信息,相比于自动视觉检测,该方式需要人工判断、准确度依赖于检测人员主动判断,容易导致缺陷识别出现误检、漏检等情况。随着人工智能深度学习的兴起,深度学习模型具有图像特征信息感知能力,在大量数据训练的基础上,更容易实现缺陷的自动检测。结语与展望超声红外热成像技术经过几十年的发展,在生热特性、仿真研究、缺陷可检测性和检测材料应用领域取得了突出进展,但是在工业应用方面落后于光激励红外热成像技术;闪光灯红外热成像技术已形成国家标准,应用在飞机复合材料胶接质量、航天飞机耐热保护层脱粘检测、热障涂层缺陷检测等,并且有成熟的工业检测设备。目前超声红外热成像技术还基本处于实验室阶段,随着科学技术的发展,工业特别是航空航天对裂纹检测需求的提高,超声红外热成像技术也会从实验室逐步进入到工业、航天航天应用领域。论文链接:http://hwjs.nvir.c n /cn/article/id/6e1aff8c-e3f5-4c4d-aedd-d6074696f17a
  • 热分析/红外光谱联用的数据分析方法 第6部分 在Origin软件中GS曲线、FGP曲线以及实时红外光谱图(EGS图)的作图法
    p  本文转载自微信公众号热分析与吸附,作者为中国科学技术大学丁延伟老师,并已获转载授权。/ppstrong  /strong在《热分析/红外光谱联用的数据分析方法第4部分 仪器分析软件中热重部分的数据处理与作图》和《热分析/红外光谱联用的数据分析方法第5部分 仪器分析软件中红外光谱部分的数据处理与作图》中以实验室在用的美国PerkinElmer公司的热重/红外光谱/气相色谱质谱联用仪为例简要介绍了在仪器的数据分析软件中与热重部分和红外光谱部分相关的数据处理与作图相关的内容,在本部分内容中将简要介绍在Origin软件中GS曲线、FGP曲线以及实时红外光谱图的数据处理与作图相关的内容。由于在Origin软件中不同时刻/温度下的三维红外光谱作图十分繁琐,将在本系列内容第7部分中进行介绍。/pp  为了保持本系列内容的完整性,以下介绍的大部分内容主要来自本公众号2019年10月6日发布的《在Origin软件中热分析/红外光谱联用的数据作图方法》一文,其中做了相应的修改并增加了实时红外光谱图(EGS图)的内容。/pp  1. GS曲线的作图法/pp  一般来说,在由红外光谱分析软件Timebase得到的Excel格式的文件中主要有EGP曲线(即通常所说的GS曲线)文件和不同时刻温度下的逸出气体红外光谱图(即EGS)文件,一共两个文件。/pp  GS曲线可以直接由导出的Excel格式的GS曲线文件得到,通常说的官能团剖面图(即FGP曲线)可以由EGS文件中导出。/pp  在Origin软件中对GS曲线的作图十分简单,在Origin软件中导入曲线所对应的Excel文件(图1至图3)。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202001/uepic/1db6881e-d64f-41b6-8671-0ae37784c440.jpg" title="图1.jpg" alt="图1.jpg"//pp style="text-align: center "图1/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 308px " src="https://img1.17img.cn/17img/images/202001/uepic/62609940-652e-42c0-967b-5e4165a0c4eb.jpg" title="图2.jpg" alt="图2.jpg" width="500" height="308" border="0" vspace="0"//pp style="text-align: center "图2/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 543px height: 750px " src="https://img1.17img.cn/17img/images/202001/uepic/54de575b-3929-471b-ad4f-c5b07c3b38ce.jpg" title="图3.jpg" alt="图3.jpg" width="543" height="750" border="0" vspace="0"//pp style="text-align: center "图3/pp  选中A、B列,点击图4中plot选项,即可得到图5,即为EGP曲线。可以在图5中根据需要改变曲线的粗细、形状和颜色,在此不作详述。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202001/uepic/947a9618-194f-4302-aff3-fd6c2fa954a0.jpg" title="图4.jpg" alt="图4.jpg"//pp style="text-align: center "图4/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 557px height: 464px " src="https://img1.17img.cn/17img/images/202001/uepic/e4ce67e8-3c64-471d-8782-d1ece89f1798.jpg" title="图5.png" alt="图5.png" width="557" height="464" border="0" vspace="0"//pp style="text-align: center "图5/pp  2. 官能团剖面图(即FGP曲线)的作图法/pp  下面介绍由逸出气体红外光谱图(即EGS)文件得到FGP曲线的方法。通常在Timebase软件中,可以按照图6的方法,选中Save Time Resolved Data选项导出在实验过程中得到实验范围内不同时刻/温度的Excel格式的所有的红外光谱图。按照图1至图3的方法打开文件,得到如图7所示的界面。图7中,第1行“Long Name”中所对应的数值为温度值(即该行为温度行),1.98e+001即为19.8℃,其他以此类推。A列对应的为波数值(单位为cm-1),其他B、C、D...列所对应的为不同温度下的吸光值。也就是说,在图7中,由除A列以外的其他列作为纵坐标轴对A列按照图4的方法作图,可以得到在不同温度下的红外光谱图。另外,在图7中,如果选中温度行和特定的官能团(即特定的波数值)所对应的行进行作图,则可以得到FGP曲线。下面介绍FGP曲线的作图方法。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202001/uepic/f42afe19-16bd-432f-980f-506780617eab.jpg" title="图6.jpg" alt="图6.jpg"//pp style="text-align: center "图6/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202001/uepic/16d2682f-cb11-4132-8b1b-3be6cd40f10c.jpg" title="图7.jpg" alt="图7.jpg"//pp style="text-align: center "图7/pp  按照图8的方法分别选中2358cm-1所对应的行和温度行,复制整行。br//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202001/uepic/dcdf9257-47da-4d8b-ad2d-df3abf22d3cc.jpg" title="图8.jpg" alt="图8.jpg"//pp style="text-align: center "图8/pp  新建一个空白的Book文件,将温度行和对应波数(2358cm-1)的数值粘贴这两行,选中,点击Worksheet菜单下的Transpose选项(图9),将这两行转换为两列,转换后的表格如图10所示。删除图10中的第一行数据,按照图4的方法作图,即可得到CO2分子的特征官能团在2358cm-1处的FGP曲线(图11)。可以根据需要改变图中曲线的粗细、形状和颜色,在此不作详述。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202001/uepic/98c364bc-5af7-4f17-b010-d6c6e9ef31df.jpg" title="图9.jpg" alt="图9.jpg"//pp style="text-align: center "图9/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202001/uepic/3fe819c4-81c9-4309-8fa2-eebc7492a9da.jpg" title="图10.jpg" alt="图10.jpg"//pp style="text-align: center "图10/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202001/uepic/8c655662-483b-4efa-9b6e-86d7e8f314c3.jpg" title="图11.png" alt="图11.png"//pp style="text-align: center "图11/pp  3. 实时红外光谱图(EGS图)的作图法/pp  在本部分第2节中提到“在图7中,由除A列以外的其他列作为纵坐标轴对A列按照图4的方法作图,可以得到在不同温度下的红外光谱图。”也就是说,在导出的Excel格式的在实验温度/时间范围内的所有红外光谱文件中,选中A列和所对应的一列和/或多列时间/温度列即可得到不同温度/时刻下的实时红外光谱图。/pp  以下举例说明。图12是不同温度下的一水合草酸钙在加热过程中产生的气体产物的红外光谱图。图中第五行为不同的温度值,第A列为红外光谱的波数值。例如,需要比较第100℃、200℃、500℃和700℃下的红外光谱图的变化,则同时选中这些温度和波数(A列)所对应的列,复制并粘贴到新建的表格文件中,并定义相应列的名称(图13)。同时选中图13中A-E列,点击图4中plot选项,即可得到图14,即为不同温度下的红外光谱图。可以在图14中根据需要改变曲线的粗细、形状和颜色,在此不作详述。由图14可以看出,(1)样品在100℃时样品没有发生分解 (2)在200℃时产生了水,对应于结晶水的失去过程 (3)在400℃时产生了一氧化碳,少量一氧化碳被氧化为CO2 (4)700℃时的气体产物以CO2为主。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 220px " src="https://img1.17img.cn/17img/images/202001/uepic/a6b0f4c1-4385-4184-8530-572cc84c0cce.jpg" title="图12.jpg" alt="图12.jpg" width="600" height="220" border="0" vspace="0"//pp style="text-align: center "图12/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 557px height: 285px " src="https://img1.17img.cn/17img/images/202001/uepic/b989ef36-1508-4bde-b282-9029ef1766ff.jpg" title="图13.jpg" alt="图13.jpg" width="557" height="285" border="0" vspace="0"//pp style="text-align: center "图13/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202001/uepic/128d4fc6-623a-479c-9cdb-4f3865f22608.jpg" title="图14.png" alt="图14.png"//pp style="text-align: center "图14/ppbr//p
  • ASML:数值孔径0.75超高NA EUV光刻设备2030年登场
    据日本媒体报导,光刻机设备龙头阿斯麦(ASML)执行副总裁Christophe Fouquet近日在比利时imec年度盛会ITF World 2023表示,半导体产业需要2030年开发数值孔径0.75的超高NA EUV光刻技术,满足半导体发展。Christophe Fouquet表示,自2010年以来EUV技术越来越成熟,半导体制程微缩至2020年前后三年,以超过50%幅度前进,不过速度可能会在2030年放缓。故ASML计划年底前发表首台商用High-NA(NA=0.55)EUV微影曝光设备(原型制作),2025年量产出货。2025年开始,客户就能从数值孔径为0.33传统EUV多重图案化,切换到数值孔径为0.55 High-NA EUV单一图案化,降低制程成本,提高产量。High-NA EUV预估会有五大客户:英特尔、台积电、三星、SK海力士、美光,可最早使用设备。科林研发、柯磊、HMI和JSR及TEL等正与ASML合作,开发High-NA EUV材料与特用化学品。Fouquet表示,EUV光源输出功率一直稳步增加,ASML传统型号EUV光源输出功率为250W~300W,最新型号3600D增加到350W,现在研究层面已做到600W,800W指日可待。到2030年,使用High NA EUV的多重图案将与单一图案一起完成,以提高产量,并降低制程成本,需要更高数值孔径的EUV曝光(NA=0.75)。藉DUV、ArF、EUV和High-NA EUV技术形成图案的每个晶体管成本都不断变化,考量到新技术价格一定高于EUV每套3亿美元,High-NA EUV价格将非常可观,但仍取决于客户要求和开发成本。
  • 基于硫废物的高灵敏红外偏振器面世
    偏振图像可提供诸如阴影和表面形貌的信息,但目前的红外偏振器主要由昂贵且易碎的陶瓷制成,且其拥有的纳米光栅通常需通过耗时且成本高昂的干涉光刻法制造而成。现在,韩国科学家基于富硫聚合物,研制出一款高灵敏度基偏振器,不仅成本低廉且制造方法简单,相关研究刊发于最新一期《先进材料》杂志。通过“逆硫化”合成的富硫聚合物因在红外区域固有的高透射率而成为红外光学器件的合适候选材料,受到广泛关注。富硫聚合物主要由基于元素硫的主链组成,石油精炼过程中每年会产生700万吨硫磺,因此这种富硫聚合物可大规模生产。与常规红外材料不同,富硫聚合物可溶解在有机溶剂中,这意味着其可应用于基于溶液的旋涂方法。此外,富硫聚合物拥有的粘滞弹性和动态共价二硫键使其可被热纳米压印光刻(热NIL)技术模塑成不同的纳米结构。而且,基于富硫聚合物制造而成的偏振器,也能拥有双层结构,可通过以下3个步骤获得:旋涂富硫聚合物溶液、在旋涂的富硫聚合物基膜上使用热NIL工艺,以及在纳米光栅上进行金属沉积,由此得到的富硫聚合物基偏振器由自对准双层金属光栅和间隔层(用作光学腔)组成。基于上述方法,韩国汉阳大学研究人员制作了一种高灵敏度的富硫聚合物基偏振器。他们微调了热NIL条件,以高质量复制设计纳米光栅,并研究了间隔层的厚度,以最大化所有中波红外区域的透射。通过数值模拟设计,并考虑到光学性能和制造难度,该偏振器的节距为400纳米,经由包括温度、压力和时间在内的热NIL条件的系统研究,获得了面积为1平方厘米的高保真纳米光栅。
  • 人体红外测温仪的科普小知识:不建议用工业检测红外温度计
    p style="margin: 0px 0px 14px padding: 0px font-weight: 400 font-size: 22px color: rgb(51, 51, 51) text-indent: 2em "span style="text-indent: 2em font-family: sans-serif font-size: 16px "近期,新型冠状病毒感染的肺炎疫情严峻,测量体温成为防控疫情的必要手段。人体红外测温仪因其非接触、效率高、使用方便的特点在人流密集的各交通关口、医院、住宅小区、企事业单位广泛用。/span/pp style="text-align: left text-indent: 2em "span style="color: rgb(255, 255, 255) background-color: rgb(255, 0, 0) font-size: 18px "strong分类/strong/span/pp style="text-indent: 2em "常用的人体红外测温仪可分为strong红外热成像体温快速筛检仪/strong和strong红外体温计/strong两类。/pp style="text-indent: 2em "strong红外热成像体温快速筛检仪/strong,可在人流密集的公共场所进行大面积监测,自动跟踪、报警高温区域,与可见光视频配合,快速找出并追踪体温较高的人员。当红外热成像体温快速筛检仪集成人脸识别、手机探针等技术时,还能掌握体温较高人员的更多信息。/pp style="text-indent: 2em "strong红外体温计/strong又可分为strong红外耳温计/strong和strong红外额温计/strong,红外体温计设备简单、使用方便、价格实惠,应用,可实现对人员的依次、快速测温。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 226px " src="https://img1.17img.cn/17img/images/202002/uepic/ecce79d9-ccc2-4895-9bf2-5799f71421f9.jpg" title="1.jpg" alt="1.jpg" width="450" height="226" border="0" vspace="0"//pp style="text-indent: 2em "span style="background-color: rgb(255, 0, 0) font-size: 18px "strongspan style="background-color: rgb(255, 0, 0) text-indent: 2em color: rgb(255, 255, 255) "原理及测量方式/span/strong/span/pp style="text-indent: 2em "人体的热量会通过热辐射的形式散发到环境中,人体红外测温仪通过内置的传感器探测人体的热辐射,从而实现测量体温的目的。/pp style="text-indent: 2em "strong红外热成像体温快速筛检仪/strong利用红外测温技术对人体表面温度进行非接触式的快速测量,当被测温度达到或超过预设警示温度值时进行警示的仪器。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 500px height: 177px " src="https://img1.17img.cn/17img/images/202002/uepic/b0333c0b-9653-4df8-a095-286109107104.jpg" title="2.jpg" alt="2.jpg" width="500" height="177" border="0" vspace="0"//pp style="text-indent: 2em "strong红外耳温计/strong是利用耳道和鼓膜与探测器间的红外辐射交换测量体温的仪器;测量的是人体耳部鼓膜部位,测量前应清理耳道,将探头深入耳孔内测量,须配备卫生耳套使用,避免多人使用交叉感染。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 371px " src="https://img1.17img.cn/17img/images/202002/uepic/295a4666-925d-41a1-ac5f-57341cfaad84.jpg" title="3.jpg" alt="3.jpg" width="450" height="371" border="0" vspace="0"//pp style="text-indent: 2em "strong红外额温计/strong是利用皮肤与探测器间的红外辐射交换和适当的发射率修正测量皮肤温度的仪器。测量的是人体额头部位,将温度枪对准额心,如有汗水应擦干,与额头的距离建议在1-3厘米为佳。/pp style="text-indent: 2em "span style="color: rgb(255, 255, 255) background-color: rgb(255, 0, 0) font-size: 18px "strong使用注意事项/strong/span/pp style="text-indent: 2em "strong红外测温的优点/strong:一是与被测对象不接触,在测体温时不会造成不必要的感染;二是快速,通常测量时间小于1秒,一般不会超过2秒。因此十分适合于在发烧类疾病预防检测中应用。/pp style="text-indent: 2em "通常在人体温度37℃附近,红外热成像体温快速筛检仪的准确度能达到± 0.3℃,红外体温计能达到± 0.2℃。/pp style="text-indent: 2em "从测量准确度来说,红外耳温计测量准确度最高,红外额温计次之。但是,如果测量方法不正确,测量结果也会不准确。对于新购买的人体红外测温仪,或使用频繁以及对测量结果有怀疑时,应当对人体红外测温仪进行校准,以确定其修正值,则能尽量消除测温仪的系统误差。/pp style="text-indent: 2em "黑体辐射源可用于对人体红外温度仪的校准。其有效发射率、控温稳定度都有较高的要求。黑体温度通常采用铂电阻温度计或玻璃液体温度计等接触温度计测量,其温度与红外体温计测得值相比较以获得校准值。校准红外耳温计的黑体还需根据被检温度计的要求专门设计其开口形状和尺寸。/pp style="text-indent: 2em "strongspan style="background-color: rgb(255, 255, 0) "特别提示/span/strongspan style="background-color: rgb(255, 255, 0) ":不建议将工业检测用红外温度计用于测量人体温度。/span/pp style="text-indent: 2em "工业检测用红外温度计通常测量范围下限可达-20℃~-30℃,上限从200℃~1000℃都有,测量范围较广,准确度较低,在人体温度附近一般不会优于± 1.0℃。因此仅从测量准确度的要求来看使用工业检测用红外温度计来测量人体温度是不太合适的。/pp style="text-indent: 2em "上海市计测院建有华东地区准确度最高、测量范围最广的红外温度计量标准,可及时为疫情防控提供人体红外测温仪的计量校准服务。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 264px " src="https://img1.17img.cn/17img/images/202002/uepic/bf6ca908-56a7-4a88-b161-1ef8293bbe55.jpg" title="4.jpg" alt="4.jpg" width="450" height="264" border="0" vspace="0"//pp style="text-indent: 2em "span style="background-color: rgb(255, 0, 0) font-size: 18px "strongspan style="background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) "使用小贴士/span/strong/span/pp style="text-indent: 2em "经校准后的红外测温仪均会提供校准温度点和修正值,供实际使用。/pp style="text-indent: 2em "以图中这只已经过校准的红外额温计为例,实际测温时,若显示数值为36.4℃,则实际数值应为36.4℃+0.2℃=36.6℃。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 207px " src="https://img1.17img.cn/17img/images/202002/uepic/e1e44478-d5a3-4a98-aa27-7b4487a37be2.jpg" title="5.jpg" alt="5.jpg" width="500" height="207" border="0" vspace="0"//pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " Arial Narrow" white-space: normal text-indent: 2em text-align: center "-------------------------------------------br style="margin: 0px padding: 0px "//pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " Arial Narrow" white-space: normal text-indent: 2em "span style="font-family: arial, helvetica, sans-serif "strong style="margin: 0px padding: 0px "征稿活动:/strong“红外体温检测仪技术及相关应用”主题征稿活动进行中,一经入选,将在资讯栏目发布并支付一定稿酬,并择优邀请做线上专家报告span style="margin: 0px padding: 0px color: rgb(127, 127, 127) "(新冠病毒主题研讨会---红外体温检测仪检测技术与应用现状)/span。让我们共同努力,携手抗“疫”!span style="margin: 0px padding: 0px color: rgb(0, 176, 240) "(投稿或自荐邮箱:yanglz@instrument.com.cn)/span/span/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " Arial Narrow" white-space: normal text-indent: 2em "span style="margin: 0px padding: 0px color: rgb(0, 0, 0) font-family: arial, helvetica, sans-serif "更多红外体温检测仪技术与应用相关资讯点击关注以下专题:/span/pp style="text-align: center "a href="https://www.instrument.com.cn/zt/hwcwy" target="_blank"img style="max-width: 100% max-height: 100% width: 600px height: 131px " src="https://img1.17img.cn/17img/images/202002/uepic/bde094f1-56cd-4cf3-9247-45585be2bf41.jpg" title="1920_420_1(1).jpg" alt="1920_420_1(1).jpg" width="600" height="131" border="0" vspace="0"//a/p
  • 纽迈分析即将亮相第十二届全国岩土力学数值分析与解析方法研讨会
    " _ue_custom_node_="true"纽迈分析即将亮相第十二届全国岩土力学数值分析与解析方法研讨会 第十二届全国岩土力学数值分析与解析方法研讨会 讲座时间:2016年8月12日-18日讲座地点:甘肃省兰州市宁卧庄宾馆 会议预告:“第十二届全国岩土力学数值分析与解析方法研讨会”将于8月12日-18日在美丽的金城兰州举行,届时纽迈分析将亮相本次大会,并在第三分会场做题目为“低场核磁共振技术在岩土领域的新应用的技术报告”,期待您莅临纽迈展位,获取更多低场磁共振新应用技术和解决方案! 推荐仪器:MesoMR23-060V-I 核磁共振成像分析仪: 应用方向: 1、土体不同相态水含量测试分析2、冻土未冻水含量、水分状态及迁移情况研究3、土壤/岩石空隙结构(孔隙度、孔径分布)测试4、岩石、水泥等分层含水率动态分析(固化、渗流) 案例一 土壤冻融过程各相态水分定量分析 土壤冻结过程中T2弛豫图谱 试验温度范围内,毛细水较吸附水先结冰,毛细水含量随温度的降低而降低。 案例二 冻土未冻水含量研究 温度降低,水逐渐结成冰,冰的信号在核磁中不显示,根据NMR信号强度的减小换算未冻水含量。 附大牛报告安排8月14日上午主会场邀请报告报告地点:宁卧庄宾馆2号楼多功能厅
  • 中国科大在微波精密测量、海洋地震勘探和大气数值模拟方面取得新进展!
    近日,中国科学技术大学研究团队在微波精密测量、海洋地震勘探和大气数值模拟方面取得多项科技研发成果。基于里德堡原子的微波测量实现精密探测!中国科大郭光灿院士团队史保森、丁冬生课题组利用人工智能的方法,聚焦量子模拟和量子精密测量科学研究,实现了基于里德堡原子多频率微波的精密探测,相关成果日前发表于《自然-通讯》。具有较大电偶极矩的里德堡原子作为微波测量体系具有广泛应用前景,但多频率微波在原子中会引起复杂干涉模式,从而严重干扰信号接收与识别,这是基于里德堡原子的微波测量领域的诸多难题之一。因此,该成果对原子分子光物理学领域的研究具有重大意义,且该成果提出的是在不求解主方程的情况下有效探测多频率微波电场的方案,且在硬件上没有太高要求即可实现较高精度,为精密测量领域与神经网络交叉结合提供了重要参考,在通信、雷达探测等领域具有重要应用前景。高精度深水油气地震勘探数据采集装备成功应用于我国海洋地震勘探数据采集,打破了国际技术封锁和价格垄断!中国科学技术大学核探测与核电子学国家重点实验室曹平副教授团队,把在先进加速器、对撞机等大科学装置研究和建设上积累的先进的电子学测量技术和方法,应用于海洋石油勘探的重大国民经济领域,并与中海油田服务股份有限公司联合研发了高精度深水油气地震勘探数据采集装备。油气勘探是整个石油工业的基础和先导,关系着国民经济的发展和国家的战略安全。然而我国油气勘探,尤其是海洋油气勘探,所用的几乎全是进口装备,进口装备贵且在重要技术上对我国进行了限制,严重阻碍了我国勘探技术的发展。研究团队攻克了超长距离一体化精密采集传输、大覆盖范围多缆全局精确同步、可扩展的海量数据实时读出、水下电缆高可靠作业支撑等一系列关键核心技术难题,这套装备具备高密度采集、宽覆盖超长缆作业和可靠的海上作业等特点,可分辨相差1600万倍的信号,总探测覆盖面积达十几平方公里,精密采集通道规模达数万道,与国际水平相比,该装备的同步技术指标要高20倍,传输能力高1倍,下潜深度也突破了国外的沉放深度限制。新研发填补了国内外大气数值模拟的空白!中国科学技术大学科研团队基于新一代国产神威超算平台,研发了包含大气成分演变过程的全球高分辨率非静力平衡大气数值模式iAMAS,在大规模数据读写速度、并行计算效率、规模可扩展性、运行时效性等多个方面填补了国内外大气数值模拟的空白。
  • 食品加工分析中的近红外方法
    这种方法允许同时对多个参数进行快速无损地分析近红外分析是基于样品中分子对近红外辐射(800 nm-2500 nm)的响应。当近红外光照射到样品上,要么被样品吸收,要么就发生散射,从而产生了能够反映样品物理性质和化学组成的光谱。近红外是一种间接的测量方式,必须借助于传统的标准化学分析方法的结果建立标定模型。采用化学计量学建立的模型可以用来分析混合物或者天然产物中物质的含量,如谷物和肉类。同时标定自身的数据丰富广泛,在日常检测时非常快速高效。优化近红外分析的小技巧1保持样品的一致性分析的样品应和标定在建模时使用的样品有相同的特性。例如,建模时使用小麦中蛋白质数据所建立的标定就不适用于其它谷物中蛋白质的分析。由于水分和样品颗粒大小也会影响近红外光谱,所以也要保证样品采用相同的处理方式。2校正样品均匀覆盖全部范围特别重要的一点是,建模时选取具有代表性的样品并使得参考值均匀地分布在日常检测所期望的范围内。例如,少量且数值相近的样品建立的模型就无法对一个变化较大的属性给出准确的预测结果。主成分分析(PCA)是一个有效的对比样品差异性的统计工具。3关注参考值可靠的近红外标定依赖参考值。如凯氏定氮测蛋白、索氏提取测脂肪这些参考方法有助于近红外分析得到准确的结果。这些参考方法在整个近红外方法建立过程中都应保持不变,因为不同的分析方法的准确性和精密的都有所区别。考虑这些方法的标准误差和测量不确定度,应为每项属性保留一份当前参考方法的记录。4使用近红外以辅助参考方法使用近红外方法,您能从批量化的检测中获益。专为离线和旁线设计的近红外分析仪器可以分别安装在实验室或生产部门,作为像凯氏定氮仪、脂肪提取器、色谱系统和滴定等传统分析仪器的补充。下述的例子就展示了使用近红外对节省分析支出的贡献:回报实例每天 10 个实验室样品可以节约花费月 15 欧元,一年以 200 天计算共节省 30000 欧元。假如一台近红外光谱仪的售价在 40000 欧元,只需1年就投资就能收获回报。获得额外的收益。试剂溶液以及其它相关实验耗材的使用量都显著地减少,近红外分析在极大地节约成本的同时还保证了安全性。此外,由于近红外分析速度的优势还能提升实验室的效率。步琦解决方案ProxiMate™ 是一台适合放置在产线旁的设备,它拥有 IP69 认证且支持触控,即使戴着手套也不会影响操作,具有强大且稳定的性能。不仅能够使用仪器提供的校准模型,而且也可使用整合在仪器中的自动校准 AutoCal 功能,轻松建立您的专属模型。步琦解决方案的更多信息:https://www.buchi.com/zh/products/instruments/proximate寻找更多有关我们近红外产品的信息:https://www.buchi.com/zh/knowledge/applications
  • 树脂类填料的分类
    树脂通常有两部分组成:一部分为聚合单体和交联剂通过聚合反应生成的具有三维空间的网络骨架,这部分也被称为树脂骨架;另一部分为连接在骨架上的特殊功能基团。其中三维骨架类型和结构决定树脂主要的物理性能,如稳定性、孔结构、密度、溶胀度等;而三维骨架上连接的特殊官能团则在应用时对吸附何种物质起决定性作用。根据骨架上连接的官能团的类型和性质树脂可分为以下几种:非离子型树脂这类树脂中不含特殊的离子和官能团,与其他物质作用时主要依靠分子间的范德华力,而不形成化学键,对不同物质的吸附选择性主要依靠被吸附分子的极性确定。非离子型树脂对弱极性和非极性的有机化合物有很强的吸附作用,这类树脂广泛应用于药物分离、色素提取等领域。金属离子配位型树脂金属离子配位型树脂的骨架上带有特殊的配位基团和配位离子,可以与金属离子进行络合反应,使两者之间形成配位键,树脂与被吸附物质间通过配位键相互作用而吸附到树脂上的,该吸附过程为化学吸附。这类树脂也称为螯合树脂,多用于水溶液过渡金属离子的选择性分离与富集。螯合树脂的官能团是含有一个或多个配位原子的功能基团,可进行配位的原子都具有提供电子对的性质,常见配位原子主要为 O、N、S、P 等元素的原子。这些原子和被吸附物质作用时都可提供配位的孤电子对,因此螯合树脂也可根据配位原子的种类,分为氧配位型螯合树脂、氮配位型螯合树脂、硫配位型螯合树脂等。含有氧原子的螯合官能团有:—OH(醇、酚)、—COOH(羧酸)、—O—(醚、冠醚)、—CO—(醛、酮、醌)、—COOR(酯、盐)、—NO2(硝基)、—NO(亚硝基)等;以氮为配位原子的螯合官能团有:—NH(胺)、2C=NH(亚胺)、C=N—R(席夫碱)、C=N—OH(肟)、—CONH2(酰胺)、—N=N—(偶氮)等。离子型树脂 离子型树脂的骨架上所连的管能团是一种或几种具有化学活性的官能基团,其在水溶液中能离解出某些阳离子(如H+或 Na+)或阴离子(如OH-或Cl-),解离之后骨架上所带的离子基团可以与不同反离子通过静电引力发生作用,将带有相反电荷的离子型物质吸附到树脂上。在水溶液中与其他离子基团作用时,由于竞争性吸附,原来配对的反离子被新的离子取代。树脂中化学活性基团的种类决定了树脂的主要性质和类别。根据交换的离子,离子交换树脂可分为阳离子交换树脂和阴离子交换树脂,阳离子树脂又分为强酸性和弱酸性两类,阴离子树脂又分为强碱性和弱碱性两类。离子型树脂带的强酸性官能团有磺酸基(—SO3H),这种官能团在碱性、中性,甚至在酸性介质中都有交换功能;弱酸性的官能团有羧基(—COOH)或磷酸基(—PO(OH)2),这些官能团只有在pH=5~6,碱性或接近中性的介质中才有离子交换能力;强碱性官能团有季胺基团(NR3),这种官能团在酸性、碱性、中性介质中都可进行离子交换;弱碱性的官能团有伯胺(—NH2)、仲胺(—NHR)和叔胺(—NR2),这几种官能团只有在中性或酸性介质中进行离子交换。此外,树脂也可按化学结构分为极性和非极性树脂。非极性树脂是指由非极性单体聚合而成,如二乙烯苯为单体聚合而成的树脂。极性树脂又可分为强极性、极性和中极性树脂。强极性树脂是含有吡啶基、氨基官能团的树脂;中极性树脂一般有含酯基、羰基的单体聚合而成;极性树脂通常是含有酰氨基、亚砜基、氰基的单体聚合而成。
  • 35800公里外为地球大气做“CT”:静止轨道红外干涉大气三维探测载荷技术|上海市科学技术奖
    项目名称:静止轨道红外干涉大气三维探测载荷技术完成单位:中国科学院上海技术物理研究所完 成 人:丁 雷 等奖励等级:技术发明奖一等奖天气变化影响着人们穿衣、出行,乃至生活的方方面面,对气象开展准确监测是世界科学家们孜孜以求的目标。地球静止轨道气象卫星,相对地球静止不动,可以全天候获取我国所在区域的连续动态观测数据,犹如坚守岗位的“哨兵”。因此,发展静止轨道先进大气探测载荷技术是世界各国科技竞争制高点之一。由中国科学院上海技术物理研究所历经20年研究的静止轨道红外干涉大气三维探测载荷技术在国际上率先取得突破,该所研制的干涉式大气垂直探测仪(GIIRS)装载于我国第二代地球静止轨道气象卫星——风云四号卫星上,在国际上首次实现了静止轨道大气温度、湿度垂直三维探测,有效提高了长期数值预报精度,对我国和“一带一路”沿线国家和地区的天气预报和灾害预警具有重要意义。在35800公里外为地球大气做“CT”,是我国气象预报当之无愧的“独门秘笈”之一。2018年台风玛利亚内部温湿度信息探测01群雄逐鹿 拔得头筹大气在空间分布上是三维的,其温度、湿度和压强会随时间而变化,大气的运动和变化便是天气现象的本质。摸清大气垂直运动的“脉搏”,就能及时预报天气的发生与发展。如果能获取一幅动态大气三维“全息”影像,就能表征天气现象动态演变过程,为数值预报提供强有力的“诊断”依据,及时出具应急响应的“处方”。然而,在35800公里的地球静止轨道监测如同针尖大小地面上空大气层的变化,谈何容易,可谓差之毫厘、谬以千里!在国际上,静止轨道红外干涉大气三维探测载荷技术的研究起源于20世纪90年代,美国、欧洲和中国先后开展了本项技术研究。由于技术难度大、不成熟等问题,原计划在美国GOES系列、欧洲MTG-S项目上实施的载荷至今尚未在轨实现。而本获奖项目科研团队研制出的两台GIIRS仪器已经在2016年和2021年先后进入静止轨道工作,连续为全球提供高时效大气三维探测数据超过5年,我国已成为全球的唯一数据源。“GIIRS实现了好几个‘世界首次’,在预报服务中发挥了很好的作用!”中国气象局数值预报中心模式研发室副主任、风云四号卫星数值预报应用攻关团队首席专家韩威,给出如上评价。02自主创新 攻坚克难静止轨道红外干涉大气三维探测载荷技术究竟包含了哪些“法宝”和“绝招”,解决了哪些关键核心技术难题呢?看得细——大气目标精细光谱探测。实现大气温度和湿度参数的三维垂直结构观测需解析不同高度大气的红外吸收光谱,要求光谱分辨率达到0.625波数,在35800千米距离上进行大气光谱探测,需要建立新的精细光谱测量技术体制。看得准——低能量的高探测灵敏度。由于对地观测距离超过35800公里,到达轨道上的地球辐射能量值仅为低轨道的数千分之一;同时探测大气要求的高光谱分辨率,使得目标的辐射能量减小1.5个数量级以上,研制出更加灵敏的“视网膜”,即高性能新型红外探测器来提高探测转换效率、降低测量噪声。看得远——载荷极高指向观测稳定性。针对远距离观测,提出了二维扫描镜扩大仪器的视场,离轴主望远光学系统收集大气能量、动镜式傅立叶干涉仪进行探测、通过机械制冷机冷却面阵探测器和辐射制冷器冷却后光路、高性能探测器进行光电转换的高光谱载荷总体技术方案,并研制了集成化的载荷系统,系统解决了地球静止轨道进行高光谱、高灵敏度、高稳定大气三维探测的三大技术难题。看得清——复杂空间环境下高稳定探测。由于地球自转与公转带来的载荷温度变化超过210℃与载荷光学系统温度稳定度要求小于0.2℃的矛盾,突破多温区的高稳定度控制技术,达到“身处水深火热,内心平静如水”的状态。03气象灾害 尽收眼底静止轨道红外干涉大气三维探测载荷技术在台风等灾害天气预报和建党100周年活动等重大气象服务中发挥了重要作用。据相关统计显示,预报台风登陆地点的路径误差每减少1公里可避免直接经济损失约1亿元人民币,仅在2019年,GIIRS对台风“利奇马”的24小时路径预报误差从75公里降到50公里,直接减损效益估计超20亿元。此外,GIIRS在GRAPES数值预报中的成功应用,促进了全球静止卫星高光谱观测系统发展。在2019年美国召开的联合卫星大会上,美国天气局(NWS)局长指出:静止轨道高光谱探测将是下一步最大的进步;美国国家环境卫星信息资料中心NESDIS主任评价该载荷技术:促进了全球静止轨道卫星大气高光谱探测系统发展和卫星观测同化应用。在学术贡献上,国际和国内气象应用专家还利用GIIRS高频次、高光谱数据,针对NH3、四维风场等探测要素开展研究。面向国家战略亟需,中国科学院上海技术物理研究所创建了静止轨道大气三维探测全新技术体制,发明了具有完全自主知识产权的高光谱载荷技术,国际上率先实现了高频次的地球静止轨道大气三维结构精细探测,推动了风云四号卫星处于国际领先地位,获得了重大的应用价值和社会效益,得到各方的高度评价。站在时代的潮头回望历史,我们的科研人员心中仍谨记着周恩来总理1969年1月29日的重要指示:应该搞我们自己的气象卫星。五十多年来,风云系列气象卫星走出了从无到有、从小到大、从弱到强的成功之路。回首风雨,展望未来,上海技术物理研究所科研团队将接续奋进,紧密围绕气象领域和我国大气探测的战略要求,瞄准国际竞争制高点,为我国大气探测技术实现升级换代和逐步超越国际水平作出更多新的贡献!
  • 港东科技傅里叶红外光谱仪安装系列(二)--------国防科技大学
    傅里叶变换红外光谱仪是一种借助红外光被物质吸收情况,获得被测物质分子内部原子间相对振动和分子转动等信息,并根据所获得信息进行物质分子结构研究的分析仪器,应用傅里叶变换红外光谱仪测试涂料的红外光谱,根据成膜物质的特征峰可以轻松的对样品中的主体成分进行定性分析,方法操作简单,效果显著。可覆盖从产品研发、原料控制、合成生产到出货检验的全部过程,确保产品符合配方要求和质量规范,全面实现QC/QA管控环节。 涂层材料是涂覆在被保护或被装饰的物体表面,并能与被涂物形成牢固附着的连续薄膜,通常是以树脂、油、乳液为主,添加或不添加颜料、填料,添加相应助剂,用有机溶剂或水配制而成的粘稠液体。涂料中主体部分主要包括有机高分子化合物如天然树脂(松香、大漆等)、涂料(桐油、亚麻油、豆油、鱼油等)、合成树脂等混合配料和无机物组合的油漆(无机富锌漆等)。国防科技大学,位于湖南省长沙市,是直属中国共产党中央军事委员会领导的军队综合性大学,也一直是国家和军队重点建设的院校。是第一个五年计划国家156项重点建设工程之一,是中共中央1959年确定的全国20所重点大学之一,是国务院首批批准有权授予硕士、博士学位的院校,是全国首批试办研究生院的院校,是首批进入国家“211工程”建设计划的院校,是军队唯一进入国家“985工程”建设行列的院校,是纳入国家“双一流”建设支持的院校。 作为军队重点院校,不仅要求所选择的科学分析仪器具有参数高、使用稳定可靠等,还要求具有国产自主知识产权,技术安全可控,经过多方比较和测试,客户最终认定天津港东科技的FTIR-650型傅里叶变换红外光谱仪产品性能、主要技术指标和稳定可靠性均已达到国际同类产品先进水平,且具有国产自主知识产权,故选择天津港东科技的FTIR-650型傅里叶变换红外光谱仪作为实验室检测用仪器,应用于特种涂层材料的研发工作。 近日,天津港东科技的FTIR-650型傅里叶变换红外光谱仪已在国防科技大学完成安装和验收,现场实际使用效果,以及天津港东科技售后服务的专业水准,得到客户的高度赞扬和认可。 天津港东科技的FTIR-650型傅里叶变换红外光谱仪,已应用于国内上百家高等院校,其中不乏像清华大学、天津大学、南京大学、复旦大学等最顶尖985高校,并已成为高校教学和科研领域客户的首选品牌之一,产品质量、性价比以及售后服务,得到客户的一致认可。
  • 【瑞士步琦】近红外实现宠物食品的快速质量控制
    近红外实现宠物食品的快速质量控制随着生活水平的提高,越来越多的人选择饲养宠物作为陪伴,为自己和家庭提供精神方面的需求。在饲养过程中,比起自制营养丰富却复杂繁琐的宠物餐,方便且易存储的干粮就成为绝大多数饲主的首选。但对于品类繁多的宠粮,适口性问题是首当其冲的。对于消费者而言,它是一项重要的选粮标准,同时对于生产商来说,也是十分关注的因素之一。随着生产工艺的改进与逐步扩大的消费市场,各类宠物粮食都在竞相对比产品中有效成分的高低。尽管配方中高价值营养成分越高,越有利于宠物的生长。但宠粮的适口性并非仅依靠这一项来实现的,其与原料配比、新鲜程度、均匀性、粒径大小等多种因素都息息相关。而保证产品中有效成分的含量稳定则是确保一款产品拥有良好适口性的关键。▲步琦近红外光谱仪 N-500步琦近红外光谱仪对宠物食品质量控制中扮演重要角色。NIRFlex N-500 Solid 配备多种测量附件,适用于颗粒、粉末、粘稠胶体与液体样品,在不到 20 秒的时间内,通过旋转测量池完成对样品多点的平均取样测量。通过事先建立好的模型标定,在完成样品的近红外光谱扫描后,立即同时给出样品中水分、脂肪、蛋白质和矿物质含量的数值。一家专注研究宠物食品适口性的客户通过对步琦 NIRFlex N-500 连续 4 周分析结果进行跟踪并和传统方法对比,认为步琦近红外光谱能够准确地测定宠物食品中的主要成分的含量,满足保证产品质量一致性、规范性、和规格的生产控制需求。客户之声“步琦的近红外解决方案在硬件质量和结果的一致性方面令我们信服,在全球范围内的安装质量和与之对应的售后服务也都让人满意。”——Christèle Dioré,负责宠物食品的分析与测试
  • “基于可调谐红外激光的能源化学研究大型实验装置”通过验收
    3月8日至9日,国家自然科学基金委员会(以下简称“基金委”)组织专家,在中国科学技术大学对国家重大科研仪器研制专项(教育部推荐)“基于可调谐红外激光的能源化学研究大型实验装置”进行验收。基金委副主任谢心澄、化学科学部主任杨学明线上参会,基金委化学科学部常务副主任杨俊林、教育部科学技术与信息化司相关人员、项目验收组专家、项目四个承担单位负责人、项目组成员等50人参加了会议。会议分别由杨俊林和验收专家组组长主持。   谢心澄指出,国家重大科研仪器研制项目的定位是面向科学前沿和国家需求,以科学目标为导向,资助对促进科学发展、探索自然规律和开拓研究领域具有重要作用的原创性科研仪器与核心部件的研制,以提升我国的原始创新能力;建议专家在验收时重点考察仪器的原创性、研究目标的实现情况、仪器技术指标完成情况和指标的先进性,以及对解决重大科学问题、开拓新的研究领域,促进人才培养和推动学科发展所取得的作用。他强调,部门推荐项目验收通过后,基金委适时组织专家对项目进行后评估。因此,希望项目负责人加强后期管理,注重仪器的运行使用与开放共享,提高科研仪器的使用效率和水平,推动项目成果转化,为探索前沿和服务国家需求夯实技术基础。杨学明指出,过去5至10年,我国在化学领域批准建设的比较重大的科学装置对推动化学学科的发展非常重要,证明化学领域和物理领域的研究人员通过合作可以把一件比较困难的事情做好,证明我国在高端科学仪器研制方面具有很大的实力。厦门大学副校长江云宝代表项目四个承担单位发言。   专家组认真审阅了验收材料,听取了项目负责人厦门大学孙世刚院士作的项目工作报告,以及监理组相关人员作的监理情况报告,并进行了质询和现场考察,听取了仪器测试组报告、财务组验收意见及档案组审核情况报告。经过讨论,专家组认为:项目达到了预期研制目标,符合验收要求,同意通过验收。   “基于可调谐红外激光的能源化学研究大型实验装置”项目集厦门大学、中国科学技术大学、复旦大学和大连化物所的相关优势,建设了一套具有先进水平的波长连续可调、覆盖中红外到远红外波段的可调谐红外自由电子激光光源,以及基于红外自由电子激光为光源的固/气和固/液表界面反射吸收红外光谱实验线站、原子力显微红外光谱实验线站、和频光谱实验线站、光解离光谱实验线站和光激发光谱实验线站五条实验线站。各实验线站分别在四个参研单位研制,最终搬迁到中国科学技术大学与红外自由电子激光光源集成,经调试、验收后开放运行,为化学、物理、材料以及生物医学等相关领域提供了一个有力的工具和研发平台。   该项目的仪器研制历经8年,在项目团队全体成员的不懈努力下,克服各种困难,建成了我国第一个覆盖中、远红外波段的红外自由电子激光用户装置,具体包括:开发了包含光波导效应的光场数值计算方法和程序,实现了加波导的自由电子激光振荡器的模拟;研发了2856MHz次谐波可调、高重频电子枪,实现了基于同一台电子加速器的中红外和远红外两套振荡器的运行;建成了红外自由电子激光反射吸收光谱实验线站、上/下入射激发模式的红外自由电子激光—原子力显微镜实验线站和红外自由电子激光分子反应散射实验线站。   该项目中,大连化物所江凌研究员团队负责研制了一套基于红外自由电子激光的光解离光谱实验站,实现了金属化合物团簇的高灵敏红外光谱探测及结构表征,对诠释催化反应机制具有重要作用。
  • FLIR红外热像仪,助力高校提升学生工程实践能力
    随着教学理念的不断提升,各大高校越来越注重对于学生理论知识实践性应用的培养,特别是在工程应用方面,对于各种工程器材的熟悉和应用非常重要。为此,美国FLIR公司与高校实验室合作,使得学生能够通过FLIR红外热像仪进行光电实验,助力高校提升了学生的工程实践能力。一直以来,受限于实验器材的高昂成本,物理学院和光电学院对于光电技术研发和应用领域后备人才的培养有所力不从心,特别是对于红外热像仪的应用,更是缺乏实操经验,本科的教学计划中只有实践理论的学习,却没有相关内容的教学实验和实践环节,所以亟需完善红外热像领域人才培养体系中的实验教学部分。为了改变以上现状,北京理工大学光电学院光电创新教育实验基地针对光电信息工程专业本科四年级毕业实习课程进行了改革提升,在原有非成像光电测温系统的校内实习内容基础上,增加“光电成像测温系统”的实践教学内容,建成以“非接触式光电测量”为核心内容的实践教学内容体系,推出了“理论知识+专业实践”的教学体系,弥补了学生“光学不练”的教学缺憾,,有力的提高了本科教学体系对于工程实践能力的培养水平。最新提出的实践教学内容体系主要分为三个环节,分别是:红外热像仪的概述和FLIR C2 Education kits操作方法;研究测量距离和被测物体辐射率对测温结果影响;应用黑体模拟器的红外热像仪传递函数实验与研究。一、入门学习:如何使用红外热像仪首先,学生使用红外热像仪拍摄单片机电路板上电时的红外图像,实验场景如图1所示,然后将拍摄的图像导入到FLIR红外图像分析软件FLIR Tools+中。图1. 使用红外热像仪拍摄单片机系统电路板图2. 单片机系统电路板工作时的红外图像如图2所示可以清晰看到电路板最热区域Ar1为电路板的散热片,将该区域最热点温度记录下来。二、初步应用:验证测量距离和辐射率对测温结果的影响1、如何正确的调整测量距离测量温度?首先将平行线红外目标板接上电源,选取一块便于观察的区域,使用FLIR热像仪在距平行线目标板大约30cm、50cm、100cm的地方分别采集红外图像。 图3. 表面平行分布四条电热丝的平行线红外目标板 图4. 使用红外热像仪拍摄目标板图5. 平行线红外目标板的红外图像然后将不同距离下拍摄的红外图像导入到FLIR Tools+ 软件中(如图5),测量同一区域Ar1内最高温度点的温度。并且将温度和拍摄距离一一对应填入下面表1。通过热电偶接触式测温测得Ar1区域内最热点温度在38℃左右,通过对比可知红外热像仪在距离30cm时,测量的温度最接近真实温度。距离(CM)温度(℃)10034.65036.13038.2表1. 不同距离下的温度值在对比过程中,学生们可以清晰的看到红外热像仪中间有一个圆形测温点,只有当被测目标覆盖测温点大小(大约7 个像素)时,测量温度才是准确的。当被测目标不能覆盖测温圆环时需要拉近测量距离或者更换像素更高的红外热像仪,如果更远距离就需要借助长焦镜头来提高测量距离。如图6所示圆环所覆盖区域包含了被测对象和背景,那么31.8℃的测量温度是不准确的,正确的做法是图(b)所示。 图6. 借助红外热像仪中心圈来判断距离远近的图示(其中(a)为错误示范,(b)为正确示范)2、如何通过FLIR红外热像仪测试辐射率对测温结果的影响如图7向贴有黑色电工胶带和铝箔胶带金属杯中倒入适量的热水,保证水位超过了胶带最上沿。将红外热像仪的辐射率调为0.95,记录此时三种材料的测量温度。以温度最高的材料为基准,改变辐射率,使另外两种材料的测量温度等于基准材料,记录此时另外两种材料的辐射率。图7. 使用FLIR C2 拍摄外表面贴有电工胶带和铝箔纸的热水杯下图8是所示是电工胶带、铝箔纸、金属水杯在同一画面下的红外图像。图8. 贴有黑色电工胶带和铝箔胶带金属热水杯的红外图像调整辐射率可以得到不同温度(见表2):被测物体\设置不同辐射率辐射率0.95辐射率0.54辐射率0.25电工胶带sp155.2℃76.5℃123.5℃铝箔SP342℃55.2℃87.1℃不锈钢水壶SP2 32.6℃37.6℃55.2℃表2. 不同辐射率下各材料的温度值表格通过对比分析结果,学生们可以清楚的了解到辐射率对于测温结果的影响:被测物体辐射率影响测温准确度,非金属辐射率大于金属辐射率,高辐射率的非金属更接近真实温度。三、深入应用:对传递函数进行研究 图9. 使用FLIR C2 拍摄黑体模拟器内部的刀口红外图像图 图 10. 黑体模拟器刀口俯视图如图9接通黑体模拟器电源,盖上其上方的圆孔。将热电偶插入到黑体模拟器内部测温,当热电偶测温表上显示的温度稳定时,也就是黑体辐射处于稳定状态时,将FLIR C2红外热像仪镜头贴近黑体模拟器开孔,采集此时的图像。图10是黑体模拟器刀口俯视图,刀口结构是在铝板的右侧贴有黑纸。如图11是刀口的红外图像。图11. FLIR C2 拍摄的刀口红外图像在FLIR Tools+软件中改变辐射率数值,使得所测材料显示的温度与数字温度计上相同,记录此时的辐射率,分别测得铝和黑纸的辐射率。然后在FLIR Tools+软件中导出带有全辐射温度信息的CSV文件,即可将每个像素点的温度值导出。将图像的温度原始数据导入至MATLAB中,编程绘制出MTF曲线。如下图12、13、14所示分别是刀口边缘扩散函数、线扩散函数和调制函数MTF曲线。图12. 灰度曲线 图13. 点扩散函数图14. MTF曲线 FLIR红外热像仪走进学校实验室,从根本上解决了学校目前“光学不练”教学尴尬问题,通过“理论知识+专业实践”的教学体系,三个环节由简入繁,层层递进,不仅有效地提高了学生动手实操的能力,也为培养光电技术人才做出了应有的贡献。
  • 环氧树脂的羟值测定
    环氧树脂优良的物理机械和电绝缘性能、与各种材料的粘接性能、以及其使用工艺的灵活性是其他热固性塑料所不具备的。因此它能制成涂料、复合材料、浇铸料、胶粘剂、模压材料和注射成型材料,在国民经济的各个领域中得到广泛的应用。5月份,我们带来了环氧树脂水分含量检测的应用方案,现在我们带着环氧树脂羟值测定的应用方案与您见面了! 一、背景介绍羟值是指1g样品中羟基所相当的氢氧化钾的毫克数,以mgKOH/g表示。目前胶黏剂中的环氧树脂、聚酯多元醇和聚醚多元醇及聚氨酯等对羟值有要求。羟值是环氧树脂羟基含量的量度,可以直接反映出环氧树脂分子量的大小;在聚酯多元醇的合成过程中,利用羟值与酸值的测试来监控合成反应程度,用来检验树脂分子量是否符合产品出厂要求;在聚氨酯胶黏剂生成时,羟值与酸值大小,是异氰酸酯加入改性的重要依据。故我们需要对羟值进行检测。依据标准:GB/T 12008.3-2009 塑料 聚醚多元醇 第3部分:羟值的测定。 二、羟值测定方法1、测试原理用过量酸酐与产品中羟基反应生成酯和酸,多余的酸酐水解成酸,再用碱进行中和滴定。根据氢氧化钠的消耗量,可计算出产品的羟值。由于滴定终点颜色变化不易观察,因此通过电位来指示终点。 2、仪器及试剂:● ZDJ-5B型自动滴定仪● 231-01 pH玻璃电极+232-01参比电极● 咪唑、吡啶、邻苯二甲酸酐、0.5mol/L氢氧化钠标定滴定溶液 3、测试(1)样品前处理:● 向试料和空白锥形瓶中准确移取25ml邻苯二甲酸酐酰化试剂。摇动瓶子,至试料溶解,每个锥形瓶接上空气冷凝管,放在115+2℃油浴里30min。● 加热后,将装置从油浴中拿出并冷却至室温。用30ml吡啶冲洗冷凝管并取下冷凝管。将溶液定量转移到250ml烧杯中,用20mL吡啶冲洗锥形瓶。(2)空白测定:将空白样品置于滴定仪上,用氢氧化钠标准滴定溶液滴定至终点。(3)样品测定:将试样置于滴定仪上,用氢氧化钠标准滴定溶液滴定至终点。注意事项图1 样品测定曲线 (1)过量的水会破坏酯化试剂而干扰测定,试剂需要保持干燥,酰化试剂吸潮后需要重新配置。(2)酯化完成,冷却后,可以先加少量水,使过量的酸酐直接水解,在用氢氧化钠标准溶液进行滴定。(3)样品的取样量要进行估算,尽可能的使试料质量与理论计算值相近。 三、仪器推荐ZDJ-5B型自动滴定仪● 7寸彩色触摸电容屏,导航式操作;● 支持电位滴定;● 实时显示测试方法、滴定曲线和测量结果;● 可定义计算公式,直接显示计算结果;● 支持滴定剂管理功能;● 支持pH的标定、测量功能;● 支持USB、RS232连接PC,双向通讯;● 可直接连接自动进样器实现批量样品的自动测量。
  • 突破!全球最快响应的短波红外量子点探测器
    【背景介绍】短波红外(SWIR,1000 ~ 3000 nm)光由于受空气中颗粒物的散射较弱,使其在恶劣天气或生物组织中也能提供长距离的有效探测,并在成像场景中提供更多物质化学信息,同时对人眼更安全。这使得短波红外在光通信、远程遥感、自动化视觉技术、生物成像、环境监测和光谱技术等领域中发挥着关键作用。然而,目前市场上的短波红外传感器采用异质外延技术,但由于其制备方法繁琐,不适合大规模、低成本的3D成像应用。随着胶体量子点(QDs)的出现,其尺寸可调的光学特性使其成为探测短波红外光的理想选择。虽然近年来短波红外光电二极管结构探测器的响应时间有所缩短,但至今仍未达到纳秒级水平,这成为将胶体量子点应用于短波红外光电探测领域的主要挑战之一。【成果简介】据麦姆斯咨询报道,近日,比利时根特大学的邓玉豪(第一作者兼通讯作者)等人取得了一项突破性进展,成功利用超薄的胶体量子点吸收层,实现了基于胶体量子点的短波红外光电二极管(QDPDs)的纳秒级响应。这一研究成果创造了短波红外领域全球最快响应的胶体量子点光电探测器,相关内容以“Short-Wave Infrared Colloidal QDs Photodetector with Nanosecond Response Times Enabled by Ultrathin Absorber Layers”为题在国际著名期刊《Advanced Materials》上发表,为胶体量子点在超快短波红外探测技术的进一步研究和应用提供了重要参考。【核心创新】1. 作者通过优化超薄结构器件的制备方法,克服了传统方法的不足,得到1600整流比,42%外量子点效率,98%内量子效率的光电二极管器件。2. 作者通过结构优化,实现了超薄结构下量子点层2.5倍的吸收增强,使得超薄层仍然可以获得较高EQE。3. 作者通过厚度与面积优化,平衡了载流子迁移与RC延迟时间,最终得到创纪录的4 ns响应时间。【研究概览】图1 胶体量子点探测器响应时间的数值模拟。计算表明,漂移时间将限制厚度较大的器件的响应,而RC延迟效应将决定较薄器件的响应时间,通过降低器件面积,可以实现纳秒级的响应时间。图2 胶体量子点光电探测器制备流程优化。作者通过浓度梯度的交换法,提高了PN结的质量,得到了整流比1600的器件。图3 胶体量子点光电探测器结构示意图和性能。该器件的胶体量子点层优化为100 nm,器件的EQE达到了42%,利用结构形成法布里-珀罗腔,在超薄结构的基础上将量子点层的吸收增强了2.5倍,器件的内量子效率可以高达98%。图4 不同大小、不同厚度的胶体量子点光电探测器的响应时间。通过降低器件面积、优化器件厚度可以使得器件具有更快的响应,最终实现了4 ns响应时间的世界纪录,也是首次将胶体量子点短波红外探测速度逼近到了纳秒级别。图5 进一步提快胶体量子点光电探测器的响应分析。通过提高胶体量子点层的迁移率,该器件结构还可以继续优化,完全可以实现亚纳秒级的响应时间,这为接下来胶体量子点超快探测器的研究阐明了研究方向。【成果总结】这项研究工作实现了一项重大的突破,首次设计出超薄吸收层的胶体量子点光电探测器,成功在短波红外波段实现了纳秒级的响应时间。通过采用浓度梯度的配体交换方法,制备了具有高质量PN结的薄膜结构器件。该光电探测器在1330 nm处获得了42%的外部量子效率,这得益于在胶体量子点光电二极管内形成的法布里-珀罗腔和高效的光生电荷提取。此外,通过进一步提高载流子迁移率,该器件可以实现亚纳秒级的响应时间。这项研究的成功突破将对短波红外超快光电探测技术的未来发展产生重大的影响。论文链接:https://doi.org/10 . 1002/adma.202402002【作者简介】Yu-Hao Deng(邓玉豪)博士,比利时根特大学BOF博士后研究员,主要研究方向为胶体量子点材料与光电器件,以及钙钛矿材料表征与光电器件。邓博士之前已在Nature、Advanced Materials、Matter、Nano Letters、Physical Review Letters、Advanced Science等国际期刊上发表论文数篇。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制