当前位置: 仪器信息网 > 行业主题 > >

红外数值读法

仪器信息网红外数值读法专题为您提供2024年最新红外数值读法价格报价、厂家品牌的相关信息, 包括红外数值读法参数、型号等,不管是国产,还是进口品牌的红外数值读法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外数值读法相关的耗材配件、试剂标物,还有红外数值读法相关的最新资讯、资料,以及红外数值读法相关的解决方案。

红外数值读法相关的耗材

  • 可见,红外,中红外单模光纤(0.3-4.3 um)
    见,红外,中红外单模光纤(0.3-4.3 um) 超宽波段(0.3-4.3 um)、可定制化单模光纤! 昊量光电公司推出超宽波段(0.3-4.3 um)可见到中红外单模光纤,光纤材料主要为ZrF4氟化物材质,其中ZrF4系列芯径为6.5 um;包层直径为125 um,数值孔径为0.23。同时我们可提供定制化不同芯径产品系列(1-20 um 可选)、数值孔径(0.1-0.35可选)的单模光纤及双包层掺杂单模光纤系列,主要应用于光纤传输。我们以满足客户需求为主旨,提供的多样化、可靠性产品将是您的最佳选择! 单模光纤、紫外单模光纤、中红外单模光纤、全波段单模光纤、光纤传输 昊量光电公司推出超宽波段(0.3-4.3 um)可见,红外,中红外单模光纤,光纤材料主要为ZrF4氟化物材质,其中ZrF4系列芯径为6.5 um;包层直径为125 um,数值孔径为0.23。 以上产品参数均为标准品,我们可以根据客户的实际需求实现产品定制化服务!我们可提供定制化不同芯径产品系列(1-20 um 可选)、数值孔径(0.1-0.35可选)的单模光纤及双包层掺杂单模光纤系列,主要应用于光纤传输。我们以满足客户需求为主旨,提供的多样化、可靠性产品将是您的最佳选择! 主要特点:l全波段(0.3-4.3 um)单模光纤l可提供定制化产品主要应用:u 光纤传输参数指标:标准ZFG单模光纤FiberOperatig wavelength? Core? CladNAAttenuationCutoffwavelengthBendingradiusOperatingTemperatureZFG0.3-4.3 um6.5 um125 um0.3≤ 0,05 dB/m [2 - 3,4μm]≤ 0,1 dB/m [3,4 - 3,6μm]≤ 1 dB/m [3,6 - 4,3μm]1.95 um≥ 20mm-180- 150°C 可提供定制的单模光纤具体参数:Fiber type? CoreCore typeNADopant(concentration up to 100 000 ppm)Single mode1 to 20 umCircular0.1 to 0.35Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb可提供定制的双包层单模光纤具体参数:? CoreNADopant(concentration up to 100 000 ppm)2nd core shape1 to 20 um0.1 to 0.35Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, YbD shape, parallel, etc….
  • 红外能量光纤
    红外能量光纤 采用低羟基石英芯,在可见至红外波段具有优异的传输性能。光纤类型IR105/125IR200/220IR300/330IR400/440IR600/660IR800/880IR1000/1100数值孔径0.22±0.020.22±0.020.22±0.020.22±0.020.22±0.020.22±0.020.22±0.02羟基含量低羟基低羟基低羟基低羟基低羟基低羟基低羟基折射率结构阶跃型阶跃型阶跃型阶跃型阶跃型阶跃型阶跃型纤芯直径(μm)105.0±3.0200.0±3.0300.0±6.0400.0±8.0600.0±10.0800.0±15.01000.0±20.0包层直径(μm)125.0±3.0220.0±3.0330.0±5.0440.0±10.0660.0±10.0880.0±15.01100.0±20.0涂层直径(μm)250.0±10.0320.0±10.0450.0±15.0550.0±15.0840.0±20.01100.0±30.01400.0±50.0芯层材料纯石英纯石英纯石英纯石英纯石英纯石英纯石英包层材料氟掺杂石英氟掺杂石英氟掺杂石英氟掺杂石英氟掺杂石英氟掺杂石英氟掺杂石英涂覆层材料丙稀酸树脂丙稀酸树脂丙稀酸树脂丙稀酸树脂丙稀酸树脂丙稀酸树脂丙稀酸树脂工作温度范围(℃)负45至85负45至85负45至85负45至85负45至85负45至85负45至85光纤接口:SMA905,FC,FC/PC等均可定制。光纤插针:金属插针,陶瓷插针,裸光纤等均可定制。保护套:金属铠装护套,PVC护套等均可定制。
  • 红外高速相机配件
    红外高速相机配件是中红外波段(1.2-4.8微米)的线扫描相机,非常适合快速运动物体的热成像测量,它可以在 1.2-4.8微米的波段范围内实现双带(波长)线扫描。它能够测量物体的表面温度而不需要用户提供发射系数等数值,而双波长测量的功能也使得红外高速相机配件应用到表面探测,湿气成分测量等领域。 红外高速相机配件特色测量光谱范围1.2-4.8微米热电制冷,高可靠性不需要维护无移动光学器件,坚固耐用而且便携;帧频高达400Hz 双波段;红外高速相机配件应用在线产品检测 (比如塑料薄膜);温度测量;监测金属型材,热轧钢板热图绘制检测火车发热的轴承或轮毂;水分检测 红外高速相机配件参数探测器:256像素PbSe探测器;帧频:390/1320Hz重量:约7千克;尺寸:11' ' x10.5' ' x4.5‘’ 输出:12bit Video
  • 多晶卤化物红外光纤
    多晶卤化银红外光纤(PIR)产品简介:FlexiRay 产品系列包含多晶卤化银红外光纤(PIR),应用于红外区域的特种光纤的发展造就了纤芯/包层多晶红外光纤(PIR)的诞生。PIR光纤在4~18μm的光谱范围内是具有高透过率的,可使用的温度范围是4K~420K。工程师采用真空挤出法把高质量的AgCl:AgBr固溶晶体制成纤芯/包层结构的多晶红外光纤。我们可根据客户要求,给PIR光纤安装耐用的PEEK-聚合物保护套并安装SMA连接头。也可以根据客户的要求设计并制造不同的光纤耦合部件。产品应用:CO和CO2激光系统的传输 / 灵活的红外成像系统 / 灵活的辐射线测定(远程测温范围100—600K) / 光纤探头用于远程控制在线红外光谱(气体光谱和液体光谱)产品特点:4μm到18μm之间高效传输 / 无毒、高柔软性 / 适用于CO2激光传输,传输功率高达50W / 10.6μm (0.1-0.5 dB/m)低损耗 / 标准光纤直径从0.3mm到1.0mm可选 / 无老化效应 / 光纤长度可达20m(直径0.5mm)产品技术参数:常规标准型号型号PIR240/300PIR400/500PIR600/700PIR900/1000类型阶跃型多模阶跃型多模阶跃型多模阶跃型多模纤芯直径,μm240±10400±10600±10860±20包层直径,μm300+0/-10500+0/-15700+0/-151000+0/-20保护套,μm没有没有没有没有数值孔径,NA0.35±0.050.35±0.050.35±0.050.35±0.05最小弯曲半径,mm4575100150参数纤芯/包层 组成AgCl:AgBr传输光谱范围3 - 18μm纤芯折射率2.15菲涅尔损耗25%传输损耗10.6μm0.2 - 0.4 dB/m有效数值孔径 NA0.35 +/- 0.05熔点410 °C工作温度–273 to +140°C纤芯/包层直径(标准)见上表连续CO2激光损伤阈值12 kW/cm2抗拉强度 70Mpa最小弯曲半径(固定)5 x [光纤直径]最小弹性弯曲半径150 x [光纤直径]
  • 大宽带中红外(1.5~10μm)光子晶体光纤
    Microphotons推出一系列适用于中红外波段(1.5~10μm)的光子晶体光纤(PCF),包括单模、高非线性PCF等等,同时我们可以提供定制其他例如多模光子晶体光纤、保偏光子晶体光纤等(在其中,芯径、数值孔径将被改变)。可以加FC/PC连接头,3mm铠甲套管。除以下列出的不同种类光子晶体光纤之外, 我们还可为客户定制不同材料基质不同结构设计的PCF(硫化物、碲化物、硒化物等),例如保偏光子晶体光纤、锥形光子晶体光纤等等。产品特征:工作波段1.5~10μm低传输损耗极好的空间光束质量应用领域:中红外光束传输(QCL, OPO)非线性应用:超连续谱技术参数型号AsSe SM1AsSe SM2玻璃材料As32Se68Refractive Index@1.55μm2.81Nonlinear Refractive Index n2=1.1×10-17(m2/W) (=500×n2silica)工作波段范围(μm)3-91.5-8典型衰减值(dB/m)2.5@1.55μmαα纤芯直径(μm)=13包层直径(μm)=125典型数值孔径@5μm0.4零色散波长点(μm)=5各个波长处衰减度MP-ASSE-SM1 MP-ASSE-SM2订购型号:MP-AsSe-SM1中远红外全波段单模光子晶体光纤参数:工作波段范围(μm)3-9,典型衰减值(dB/m)2.5@1.55μm,α,纤芯直径(μm)=13,包层直径(μm)=125,典型数值孔径@5um:0.4,零色散波长点(μm)=5MP-AsSe-SM2 中远红外全波段单模光子晶体光纤参数:工作波段范围(μm)1.5-8,典型衰减值(dB/m)2.5@1.55μm,α,纤芯直径(μm)=13,包层直径(μm)=125,典型数值孔径@5um:0.4,零色散波长点(μm)=5有意者欢迎咨询我司!
  • Optran®中红外(MIR)卤化银光纤 4-18 μm
    总览这款独特的光纤包含光敏化合物(AgCl、AgBr),在中红外范围内提供极低的衰减值,非常适合中红外(MIR)范围。工作波长4-18µm数值孔径0.25技术参数产品应用CO2激光制导、傅里叶变换红外光谱仪(FTIR)、激光表面处理等应用的首选。优点针对一氧化碳和二氧化碳激光进行了优化在中红外范围内提供极低的衰减值稳定灵活防潮材料提供高度可靠的连接器有纤芯/包层或纯纤芯版本技术参数波长Optran 中红外4-18μm光纤折射率 数值孔径 (NA)低0,13 ± 0,02标准0,25 ± 0,02高0,35 ± 0,02技术数据波长/光谱范围Optran MIR: 4 – 18 µm光纤折射率0,13 0,02 | 0,25 0,02 | 0,35 0,02工作温度-60至+110℃标准直径纤芯/包层(µm)400/500µm | 600/700µm | 860/1000µm计算指数(核心)2,1反射损耗@ 10.6 μm25%最小弯曲半径100 ×包层直径最高功率30 Watt衰减值关于波长:见第19页衰减值比较下图概述了与Optran各类光纤波长相关的衰减值:
  • 中红外多模氟化物光纤跳线
    中红外多模氟化物光纤跳线特性ZBLAN氟化锆 (ZrF4)波长范围285 nm - 4.5 μm,或者氟化铟(InF3)波长范围310 nm - 5.5 μmZrF4纤芯尺寸:?100 μm、?200 μm、?450 μm或?600 μmInF3纤芯尺寸:?100 μm兼容可见光波长对准光束用于光谱技术,红外对抗(IRCM)系统和医学领域菲涅尔反射损耗低:每面我们的IRPhotonics® 多模氟化物跳线设计用于中红外光谱范围的低损耗传输。它们使用Thorlabs的氟化物光纤制造,ZBLAN氟化锆(ZrF4)跳线的传输范围在285 nm至4.5 μm,而我们的氟化铟(InF3)光纤跳线的传输范围在310 nm - 5.5μm。ZrF4光纤,InF3光纤和低羟基石英光纤的比较曲线请看右边。这些氟化物光纤跳线提供与标准石英光纤跳线相似的机械灵活性,环境稳定性好,并且中红外光谱范围内的衰减曲线平稳(详情参见规格标签)。由于氟化物玻璃的透射范围低至紫外线范围,因此可见光(比如由光纤耦合激光器产生的激光)可沿着相同光纤作为对准辅助进行传播。光纤跳线的数值孔径(NA)在其特定衰减度范围上保持相对恒定(参见曲线标签)。每条跳线两端的终端接头为分别与SMA905或FC/PC连接组件兼容的金属插芯连接器(详情参见FC连接器标签)。每条跳线包括两个保护帽,它们用来保护插芯端以屏蔽灰尘和其它危害。可单独购买用于兼容FC/PC的跳线的CAPF(塑胶质)和CAPFM(金属)替换保护帽,或用于SMA905终端跳线的CAPM(橡胶)和CAPMM(金属)替换保护帽。对于光谱学和照明应用,Thorlabs还制造两根光纤的氟化物分叉光纤束。MIR Fluoride Fiber Selection GuideSingle Mode Patch CablesMultimode Patch CablesBifurcated Fiber BundlesReflection/Backscatter Probe BundlesMIR Fiber Overview氟化锆(ZrF4)光纤比氟化铟(InF3)光纤在中红外范围内提供更平坦的衰减,而InF3光纤比ZrF4光纤在更长波长下具有透明性。跳线中通常使用的石英光纤在中红外范围内不具透明性。使用建议由于氟化物玻璃比标准石英玻璃更软,因此不能用Kimwipes擦拭纸来清洁这些跳线。其它氟化物光纤特定的使用建议请参见操作标签。与无端光纤相比,这些跳线所能承受的zui大功率是受连接器限制的。取决于应用,我们推荐以约300mW的zui大CW功率使用这些跳线。中红外应用这些跳线由于它们的宽传输范围和平稳衰减度,非常适用于我们的量子级联激光器(QCL)和带间级联激光器(ICL),它们在中红外范围内提供宽带或单波长发射。它们也与我们的SLS202L稳定型光源良好匹配,这种稳定光源提供了从可见光到中红外范围的黑体辐射光谱。我们推荐将?100 μm纤芯的跳线与我们的光谱分析仪配合使用。其它应用实例如下图所示。氟化物跳线可通过光纤转接件连接到我们的中红外光电探测器。InF3跳线的310 nm - 5.5 μm波长范围使其非常适用于利用我们稳定光源的照明应用。在这种装置中,使用一根ZrF4跳线将中红外光传播到气相光谱应用的样本腔中。(图中装置的更多信息请看这里。)In-Stock Multimode Fiber Optic Patch Cable SelectionStep IndexGraded IndexFiber BundlesUncoatedCoatedMid-IROptogeneticsSpecialized ApplicationsSMAFC/PCFC/PC to SMASquare-Core FC/PC and SMAAR-Coated SMAHR-Coated FC/PCBeamsplitter-Coated FC/PCFluoride FC and SMALightweight FC/PCLightweight SMARotary Joint FC/PC and SMAHigh-Power SMAUHV, High-Temp. SMAArmored SMASolarization-Resistant SMAFC/PCFC/PC to LC/PC裸纤规格CableItem #PrefixFiberOperatingWavelength RangeaAttenuation(Click for Plot)CoreDiameterCladdingDiameterCore/CladConcentricityNAbBend Radius(Short Term/Long Term)MF11MF12InF3Multimode310 nm - 5.5 μm≤0.45 dB/m(for 2.0 - 4.6 μm)100 ± 2.0 μm192 ± 2.5 μm≤2.0 μm0.26 ± 0.02 @ 2.0 μm≥15 mm / ≥147 mmMZ11MZ12ZrF4Multimode285 nm - 4.5 μm≤0.2 dB/m(for 2.0 - 3.6 μm)100 ± 2.0 μm192 ± 2.5 μm≤2.0 μm0.20 ± 0.02 @ 2.0 μm≥25 mm / ≥147 mmMZ21MZ22200 ± 10 μm290 ± 10 μm≤3.0 μm≥40mm / ≥80 mmMZ41MZ42450 ± 15 μm540 ± 15 μm≤5.0 μm≥50 mm / ≥125 mmMZ61MZ62≤0.25 dB/m(for 2.0 - 3.6 μm)600 ± 20 μm690 ± 20 μm≤10.0 μm≥75 mm / ≥160 mm光纤的工作波长范围定义为衰减度每米的透过率50%)的区域。曲线标签中含有其它波长的NA数值孔径曲线。短期弯曲半径受到不锈钢护套的限制。曲线该标签包含了我们的氟化物光纤的衰减,数值孔径和折射率随波长变化的曲线图。下图中阴影部分表示可以保证光纤满足衰减规格的特定波长范围。我们的纤芯直径为100 μm,200 μm,和450 μm的ZrF4线缆在 2.0到3.6 μm范围上衰减度≤0.2 dB/m (每米透过率≥95%),我们的纤芯直径为600 μm 的ZrF4线缆在2.0到3.6 μm范围上衰减度≤0.25 dB/m(每米透过率≥94%)。相比之下,我们的InF3光纤跳线在2.0到4.6 μm范围上衰减度≤0.45 dB/m (每米透过率≥90%)。在质量控制时,范围外的性能并没有经过严格检测,而且可能因工序不同而变化。为了减小因工序引起的变化,特别是在波长范围的两端,我们在不停地完善新材料的工艺。如果您担心收到的光纤不满足您的需求,关于目前提供的产品详情请联系技术支持。衰减该曲线图是从五根独立抽取的纤芯直径200 μm的ZrF4光纤测量的衰减曲线。这些数据代表我们的纤芯直径为100 μm,200 μm和450 μm光纤的数据。该图中的曲线是从五根单独抽取的纤芯直径600 μm的ZrF4光纤测量的衰减曲线。该曲线图是从五根单独抽取的纤芯直径100 μm的InF3光纤测量的衰减曲线。数值孔径这些数值孔径值是利用下图所示的折射率计算得到的。这些数值孔径值是利用下图所示的折射率计算得到的。折射率这些折射率是用Sellmeier方程计算得到的。下表列出拟合中用到的Sellmeier系数。这些折射率是将Sellmeier方程拟合测量数据得到的。下表列出拟合中用到的Sellmeier系数SellmeierEquationSellmeier CoefficientsCoefficientCoreCladdingu00.55220.705674u10.74830.515736u21.0072.204519u30.0430.087503u40.1130.087505u516.18623.80739A0.96211SellmeierEquationSellmeier CoefficientsCoefficientCoreCladdingu00.476273380.68462594u10.769368930.4952746u25.018354971.4841315u30.01795490.0680833u40.118650930.11054856u543.6454575924.4391868A11操作该标签描述了在日常使用中标准石英光纤跳线和氟化物光纤跳线之间的相似和不同之处。环境因素一般的实验室温度和湿度不会影响光纤的完整性。但是应该避免拉伸、直接接触液态水或水蒸气。FC接头使用标准石英光纤跳线是一般选择FC/PC或FC/APC接头,因为PC和APC抛光面为圆顶头可以使匹配的两根跳线的纤芯直接接触,从而将跳线界面之间接触损耗降到zui小。因为氟化物玻璃壁石英玻璃更软,抛光后会是平头光纤端。根据跳线的不同,光纤端可以根据插芯稍微地凹下去一点。因此,氟化物光纤跳线既不是FC/PC接头(PC指直接接触)也不是FC/APC(APC指有角度的直接接触)接头。平光纤端不会影响输出是耦合到自由空间的应用,但是在连接FC接头的光纤跳线时,比如通过匹配套管或连接头连接时会有传输损耗,因为光纤纤芯没有直接接触。由于FC终端的跳线之间的间隔一般要小于SMA905终端(使用空气间隔插芯)的跳线间的典型间隔,这些损耗经常可以被忽略。下图是一根氟化物成品跳线末端的二维图和三维图。标准FC/PC接头为圆顶型末端面FC终端的氟化物跳线有平坦的抛光末端面该图为一根平面抛光FC氟化物跳线的?100微米纤芯末端的二维表面轮廓图。X和Y轴的单位是 微米。虚线圆和直线用于眼睛观察指导。金属插芯和跳线内侧的界面根据蓝色虚线圆中的绿色圆查看。该图为一根平面抛光FC氟化物跳线的?100微米纤芯末端的三维分布图。虚线圆用于眼睛观察指导。金属插芯和跳线内侧的界面根据黑色圆和蓝色圆之间的的圆形凹陷来查看。入纤方式多模光纤未充满条件对于在NA较大时接收光的多模光纤来说,光耦合到光纤的的条件(光源类型、光束直径、NA)对性能有着极大影响。在耦合界面,光的光束直径和NA小于光纤的芯径和NA时,就出现了未充满的入纤条件。这种情况的常见例子就是将激光光源发射到较大的多模光纤。从下面的图和光束轮廓测量可以看出,未充满时会使光在空间上集中到光纤的中心,优先充满低阶模,而非高阶模。因此,它们对宏弯损耗不太敏感,也没有包层模。这种条件下,所测的插入损耗也会小于典型值,光纤纤芯处有着较高的功率密度。展示未充满条件的图(左边)和使用FT200EMT多模光纤进行的光束轮廓测量(右边)。多模光纤过满条件在耦合界面,光束直径和NA大于光纤的芯径和NA时就出现了过满的情况。实现这种条件的一个方法就是将LED光源的光发射到较小的多模光纤中。过满时会将整个纤芯和部分包层裸露在光中,均匀充满低阶模和高阶模(请看下图),增加耦合到光纤包层模的可能性。高阶模比例的增加意味着过满光纤对弯曲损耗会更为敏感。在这种条件下,所测的插入损耗会大于典型值,与未充满光纤条件相比,会产生较高的总输出功率。展示过满条件的图(左边)和使用FT200EMT多模光纤进行的光束轮廓测量(右边)。多模光纤未充满或过满条件各有优劣,这取决于特定应用的要求。如需测量多模光纤的基准性能,Thorlabs建议使用光束直径为光纤芯径70-80%的入纤条件。过满条件在短距离时输出功率更大;而长距离(10 - 20 m)时,对衰减较为敏感的高阶模会消失。实验观测Thorlabs实验观测:利用多模光纤修改光束轮廓我们在此给出探索多模光纤输出光束轮廓如何受到光束入射角影响的实验测量结果。有些应用中可能需要其他诸如高帽或甜甜圈等轮廓的光束分布,而不需要一般光学元件提供的固有高斯分布。这里,我们探索了改变聚焦激光束进入多模光纤跳线时的入射角所产生的影响。将光垂直聚焦于光纤面,会产生近高斯输出光束轮廓(图1),增大入射角则会产生高帽(图2)和甜甜圈(图3)形状的光束轮廓。这些结果展现了利用多模光纤改变光束轮廓的方法。实验中,我们使用一根M38L01纤芯?200μm、数值孔径0.39的阶跃折射率光纤跳线(裸纤型号FT200EMT)作为聚焦光束耦合的待测光纤。将输入光以0°、11°和15°入射到多模光纤的入射面,分别产生初始轮廓、高帽轮廓和甜甜圈轮廓。每次改变角度时,都要优化输入光纤的对准,同时用功率计监测输出功率,确保实现zui大的耦合。然后,在9秒的曝光时间下采集图像,并评估光束轮廓的形状。注意,曝光过程中,会在耦合光学元件之间(待测光纤之前)手动旋转1500 grit的散射片,以减少空间相干,形成干净的输出光束轮廓。假设一种光线追迹模型,存在两种沿着多模光纤传播的常见光线:(a)子午光线,每次反射之后都通过光纤的中心轴,和(b)斜光线,不通过光纤的中心轴。下面的图片展现了实验过程中观察到的三种基本光线传播情况。图4和图6分别绘制出了子午光线和斜光线通过多模光纤的传播,以及在光纤输出端的相关理论光束分布。如图6所示,斜光线沿着光纤以与半径r为圆的内部焦散线相切的螺旋路径传播。图5描绘了子午光线和斜光线的光束传播和光束分布。我们通过改变光耦合到多模光纤的入射角,修改子午光线与斜光线的传播,使输出光束从近高斯分布(主要是子午光线,请看图1)变成高帽分布(子午光线和斜光线混合,请看图2),再变成甜甜圈分布(主要是斜光线,请看图3)。图4到图6显示的光束轮廓都在离光纤端面5 mm处获得。这些结果体现了利用标准的多模光纤跳线以一种相对低成本的方法将入射高斯轮廓修改成高帽和甜甜圈轮廓,且损耗极微。有关使用的实验装置和总结结果详情,请点击这里。图 1.入射角为0°时获得的近高斯光束轮廓(垂直于光纤面)图 2.入射角为11°时获得的高帽光束轮廓图 3.入射角为15°时获得的甜甜圈光束轮廓图 4.对应近高斯输出轮廓的子午光线传播图 5.对应甜甜圈轮廓的斜光线传播图 6.对应高帽轮廓的子午光线和斜光线传播氟化铟中红外光纤跳线,纤芯?100 μm,数值孔径0.26? SMA905,或带金属插芯、兼容FC/PC的接头? 库存提供1米和2米的长度? 长度可定制,具体联系技术支持? 硬质,?3.0 mm塑料护套? 包含两个保护帽SMA905终端的跳线:不锈钢端帽兼容FC/PC接头的跳线:塑料端帽每根氟化物跳线都标有产品型号,关键参数以及批次。Item #PrefixFiberOperatingRangeaAttenuation(Click for Plot)CoreDiameterCladdingDiameterNAbBend Radius(Short Term/Long Term)ConnectorsJacketOperatingTemperatureMF11InF3Multimode310 nm - 5.5 μm≤0.45 dB/m(for 2.0 - 4.6 μm)100 ± 2.0 μm192 ± 2.5 μm0.26 ± 0.02@ 2.0 μm≥15 mm / ≥147 mmSMA905Blue PVDF(?3 mm)-55 to 90 °CMF12FC/PC-Compatibleca. 光纤的工作波长范围定义为衰减度小于3 dB/m(每米的透过率大于50%)的区域。b. 曲线标签中有其它波长下的NA数值孔径曲线图。c. 更多信息请看FC接头标签。产品型号公英制通用MF11L1氟化铟光纤跳线,纤芯?100 μm,数值孔径0.26,SMA905,1 mMF11L2氟化铟光纤跳线,纤芯?100 μm,数值孔径0.26,SMA905,2 mMF12L1氟化铟光纤跳线,纤芯?100 μm,数值孔径0.26,FC/PC,1 mMF12L2氟化铟光纤跳线,纤芯?100 μm,数值孔径0.26,FC/PC,2 m氟化锆中红外光纤跳线,纤芯?100 μm,数值孔径0.20? SMA905,或带金属插芯、兼容FC/PC的接头? 库存提供1米和2米的长度? 长度可定制,具体请联系技术支持? 硬质,?3.0 mm塑料护套? 含有两个保护端帽SMA905终端跳线:不锈钢端帽兼容FC/PC接头的线缆:塑料端帽每根氟化物跳线都标有产品型号,关键参数以及批次Item #PrefixFiberOperatingRangeaAttenuation(Click for Plot)CoreDiameterCladdingDiameterNAbBend Radius(Short Term/Long Term)ConnectorsJacketOperatingTemperatureMZ11ZrF4Multimode285 nm - 4.5 μm≤0.2 dB/m(for 2.0 - 3.6 μm)100 ± 2.0 μm192 ± 2.5 μm0.20 ± 0.02@ 2.0 μm≥25 mm / ≥147 mmSMA905Blue PVDF(?3 mm)-55 to 90 °CMZ12FC/PC-Compatiblec光纤的工作波长范围定义为衰减度小于3 dB/m(每米的透过率大于50%)的区域。曲线标签中有其它波长下的NA数值孔径曲线。更多信息请看FC接头标签。产品型号公英制通用MZ11L1Customer Inspired! 氟化锆光纤跳线,纤芯?100 μm,数值孔径0.20,SMA905,1 mMZ11L2Customer Inspired! ?100微米纤芯,0.20NA,SMA转SMA氟化锆跳线,2米长MZ12L1Customer Inspired! ?100微米纤芯,0.20NA,FC转FC氟化锆跳线,1米长MZ12L2Customer Inspired! ?100微米纤芯,0.20NA,FC转FC氟化锆跳线,2米长氟化锆中红外光纤跳线,纤芯?200 μm,数值孔径0.20SMA905,或带金属插芯、兼容FC/PC的接头库存提供1米和2米的长度长度可定制,具体请联系技术支持硬质,?3.0 mm塑料护套含有两个保护端帽SMA905终端跳线:不锈钢端帽兼容FC/PC接头的跳线:塑料端帽每根氟化物跳线都标有项目号,关键参数以及批号Item #PrefixFiberOperatingRangeaAttenuation(Click for Plot)CoreDiameterCladdingDiameterNAaBend Radius(Short Term/Long Term)ConnectorsJacketOperatingTemperatureMZ21ZrF4Multimode285 nm - 4.5 μm≤0.2 dB/m(for 2.0 - 3.6 μm)200 ± 10 μm290 ± 10 μm0.20 ± 0.02@ 2.0 μm≥40 mm / ≥80 mmSMA905Blue PVDF(?3 mm)-55 to 90 °CMZ22FC/PC-Compatibleca. 光纤的工作波长范围定义为衰减度小于3 dB/m(每米的透过率大于50%)的区域。b. 曲线标签中有其它波长下的NA数值孔径曲线。c. 更多信息请看FC接头标签。产品型号公英制通用MZ21L1氟化锆光纤跳线,纤芯?200 μm,数值孔径0.20,SMA905,1 mMZ21L2氟化锆光纤跳线,纤芯?200 μm,数值孔径0.20,SMA905,2 mMZ22L1氟化锆光纤跳线,纤芯?200 μm,数值孔径0.20,FC/PC,1 mMZ22L2氟化锆光纤跳线,纤芯?200 μm,数值孔径0.20,FC/PC,2 m氟化锆中红外光纤跳线,纤芯?450 μm,数值孔径0.20? SMA905或兼容FC/PC的金属套接头? 库存长度为1 m? 若需定制长度,请联系技术支持? ?3.8 mm不锈钢套,最小弯曲半径为50 mm? 包括两个保护端帽SMA905端口的跳线: 不锈钢端帽兼容FC/PC接头的跳线:塑料端帽光纤端帽的俯视图光纤端帽的仰视图每根氟化物跳线都刻有产品型号,关键规格。产品批号在单独的白色套管上给出。Item #PrefixFiberOperatingRangeaAttenuation(Click for Plot)CoreDiameterCladdingDiameterNAbBend Radius(Short Term/Long Term)ConnectorsJacketOperatingTemperatureMZ41L1ZrF4Multimode285 nm - 4.5 μm≤ 0.2 dB/m(for 2.0 - 3.6 μm)450 ± 15 μm540 ± 15 μm0.20 ± 0.02@ 2.0 μm≥50 mm / ≥125 mmSMA905Stainless Steel(?3.8 mm)-55 to 90 °CMZ42L1FC/PC-Compatiblec光纤的工作波长范围定义为衰减度小于3 dB/m(每米的透过率大于50%)的区域。曲线标签中包含其它波长下的数值孔径曲线。由不锈钢套限制。请参见FC接头标签查看更多详情。产品型号公英制通用MZ41L1氟化锆光纤跳线,纤芯?450 μm,数值孔径0.20,SMA905,1 mMZ42L1氟化锆光纤跳线,纤芯?450 μm,数值孔径0.20,FC/PC,1 m氟化锆中红外光纤跳线,纤芯?600 μm,数值孔径0.20? SMA905,或带金属插芯、兼容FC/PC的接头? 库存提供1米长度? 可定制长度,具体联系技术支持? ?8.0 mm的不锈钢护套,zui小弯曲半径是140 mm? 附带两个保护帽SMA905端头的跳线: 不锈钢保护帽FC/PC端头的跳线: 塑料保护帽光纤端的俯视图光纤端的仰视图每个氟化物光纤跳线上刻有产品型号和关键规格。产品批号在单独的白色套管上给出(未图示)。Item #PrefixFiberOperatingRangeaAttenuation(Click for Plot)CoreDiameterCladdingDiameterNAbBend Radius(Short Term/Long Term)ConnectorsJacketOperatingTemperatureMZ61L1ZrF4Multimode285 nm - 4.5 μm≤0.25 dB/m(for 2.0 - 3.6 μm)600 ± 20 μm690 ± 20 μm0.20 ± 0.02@ 2.0 μm≥75 mm / ≥160 mmSMA905Stainless Steel(?3.8 mm)-55 to 90 °CMZ62L1FC/PC-Compatiblec光纤的工作波长范围定义为衰减度小于3 dB/m(每米的透过率大于50%)的区域。曲线标签含有其它波长下的NA的曲线图。更多信息请看FC接头标签。产品型号公英制通用MZ61L1氟化锆光纤跳线,纤芯?600 μm,数值孔径0.20,SMA905,1 mMZ62L1氟化锆光纤跳线,纤芯?600 μm,数值孔径0.20,FC/PC,1 m
  • IRF-S系列硫族化物非线性中红外光纤
    IRF-S系列硫族化物非线性中红外光纤IRflex的非线性中红外光纤(IRF),由超高纯度的硫系玻璃制成,是为生成和/或指导中波红外波长(MWIR)(2 - 10μm)而专门设计和制造的。一套基于光纤的硫系玻璃的相关专利已经授权给IRflex来自美国的海军研究实验室(NRL)。这些专利,结合IRflex经验丰富的团队,使IRflex找到了非线性中红外应用先进的解决方案。硫系玻璃由硫族元素的混合物:硫、硒和碲制成。由于其有很多有前途的性能,如传输中、远红外区域的光谱,较低的声子能量值,较高的折射率值,相对于硅有非常大的非线性,硫系玻璃光纤对于需要高功率激光传输、化学传感、热成像和温度监测的中红外应用来说,是理想的材料。商业可用,IRflex的IRF-S系列非线性中红外光纤,由超高纯度的硫系玻璃制成,是为生成和/或指导从1.5到6.5μm,具有高传输效率的中红外波长和约100倍的非线性石英玻璃光纤而专门设计和制造的。IRF-S-100和IRF-S-200多模光纤典型的光损失为0.05 db@3.3μm和0.08db@3.3μm,这是市场上最低的。 IRF-S-100光纤最初被设计是用于大功率红外对抗(IRCM)导弹防御激光器。IRF-S-5、IRF-S-7、 IRF-S-9和IRF-S-10单模纤维有广泛的传输范围(2 - 6μm)。考虑到他们约5、7、9和10μm的内芯直径以及0.3 - 0.32的数值孔径,对于相对截止波长大于1.988,2.930,3.560和4.380μm的光纤,阶跃光纤是真正的单模光纤。波长小于临界值的,对于整个的光纤传输范围,通过适当的耦合,发射光束在短光纤(IRF-S-50多模光纤被开发来用于中红外组合器的制造。用我们的IRF-S-100作输出光纤,50/85μm内芯/包层的设计非常适合制作7 x1光纤组合器。优点非常低的损耗高功率处理强度机械灵活性高可靠性和重复性应用中红外激光光束传输红外光谱学化学传感科学和医学诊断红外成像系统非线性超连续谱的产生红外对抗(IRCM)商业可用的模型IRF-S系列中红外光纤内芯直径 (μm)包层直径(μm)操作波长 (μm)IRF-S-551001.5 - 3IRF-S-771401.5 - 4.4IRF-S-991701.5 - 5.3IRF-S-10101701.5 - 6.5IRF-S-5050851.5 - 6.5IRF-S-1001001701.5 - 6.5IRF-S-2002002501.5 - 6.5参数传输范围 (μm)1.5 to 6.5典型的光损失 (dB/m)μm)内芯/包层结构As2S3玻璃内芯折射率2.4有效数值孔径 (NA)0.28 - 0.32内芯不圆度 (%)内芯/包层不圆度误差(μm)拉伸测试 (kpsi)应用生物和化学剂检测化学传感定向红外对抗(IRCM)激光手术和医疗诊断非线性应用
  • 1.1-6.5um 中红外硫系玻璃光纤跳线
    本系列其它产品型号 共3条 名称货号货期 描述参数1.1-6.5um 中红外硫系玻璃光纤跳线 (芯径 500um,包层 550um APC-FC)CIR500/550-100-FC/APC-FC/APC-MP37C80010198波长范围:1.1 - 6.5 µ m 纤芯直径:500±10um 包层直径:550±15um NA:0.3±0.03 连接头类型:FC/APC 金属保护套管 PVC涂层 OD:3.7mm工作波长: 1.1-6.5µ m 数值孔径: 0.30 1.1-6.5um 中红外硫系玻璃光纤跳线 (芯径 500um,包层 550um PC-FC)CIR500/550-100-FC/PC-FC/PC-MP37C80010149波长范围:1.1 - 6.5 µ m 纤芯直径:500±10um 包层直径:550±15um NA:0.3±0.03 连接头类型:FC/PC 金属保护套管 PVC涂层 OD:3.7mm工作波长: 1.1-6.5µ m 数值孔径: 0.30 1.1-6.5um 中红外硫系玻璃光纤跳线 (芯径 8um,包层 300um)CIR8/300C80010002工作波长 1.1-6.5um;线芯直径 8±1um;数值孔径 0.25±0.02;包层 300±15um;保护层 400±20um;最小弯曲半径 60mm工作波长: 1.1-6.5µ m 数值孔径: 0.25 总览硫系玻璃光纤在1.1-6.5um的光谱范围内传输中红外激光,使用直径为8um-500um的高性能CIR芯/包层光纤。广泛应用于QCL的功率传输、光谱学、柔性红外成像系统等。CIR光纤电缆可采用各种标准光纤直径、SMA-905、FC/PC、FC/APC连接器和几种类型的保护管。采用双聚合物夹套的先进拉伸工艺,使CIR光纤具有优异的机械强度和较高的柔韧性。在上述的光谱范围内,低的光学损耗和较小的吸收峰确保了CIR光纤在广泛的应用中的成功使用。1.1-6.5um 中红外硫系玻璃光纤跳线,1.1-6.5um 中红外硫系玻璃光纤跳线产品特点● 在1.1-6.5um范围内高透射率● 在2.5-4um和4.5-5um范围内超低光损耗0.2-0.3dB/m● 芯径为8-500um的包芯结构● 温度范围为-50℃到90℃产品应用● 中红外光谱● 柔性红外测温● 柔性红外成像系统● 量子级联激光器的功率传输技术参数光纤类型多模波长范围1.1-6.5um光纤芯/包覆尺寸见订购信息有效数值孔径见订购信息最小弯曲半径取决于护套Peek管-130mm;金属聚氯乙烯涂层管-80mm;不锈钢管-80mm;不锈钢硅酮涂层管-130mm连接端头SMA-905,FC/APC或者FC/PC温度范围-50℃到90℃波长透射率图测试应用演示我们使用了上海筱晓的中红外3-5um的光纤准直透镜,4.1um QCL-FP量子级联激光器,1.1-6.5um的中红外硫系玻璃光纤,索雷博的光功率计进行了空间光耦合效率测试实验。1、我们对QCL-FP激光器使用软件界面控制,调整参数,用索雷博的功率计对输出的空间光功率测量,测量结果为106mW 2、再把中红外光纤插入准直镜上,用支架支撑,对准激光器的空间输出光,用功率计检测通过光纤的输出结果,得到如上图功率计的显示值,2.32mW,通过比对,我们最终输出的光纤耦合效率有2.2%。3 通过调整不同的激光器输出功率大小,所测量的准直光纤耦合功率大小如下图所示:4、可以看出,我们的光纤耦合输出的功率与空间光的大小呈现线性的关系,性能稳定,所以我们可以使用3-5um的中红外准直透镜,使我们的空间光转化为光纤输出,可以很方便的连接光谱仪以及波长计等分析设备,这样,我们就不需要花大量时间去用于对光等工作,节省我们的时间,还可以用于大功率激光的衰减与分析,一些测试激光设备都是小功率输入,功率过高,有可能会打坏设备,这样就可以对我们的设备进行一个保护型号及订购编号类型芯径(um)包层(um)保护套(um)数值孔径(NA)最小弯曲半径(mm)CIR8/300单模8±1300±15400±200.25±0.0260CIR50/250少模50±3250±10410±200.13±0.0250CIR250/300多模250±10300±15400±300.3±0.0360CIR340/400多模340±10400±15510±300.3±0.0380CIR500/550多模500±10550±15700±300.3±0.03100公司简介筱晓(上海)光子技术有限公司成立于2014年,是一家被上海市评为高新技术企业和拥有上海市专精特新企业称号的专业光学服务公司,业务涵盖设备代理以及项目合作研发,公司位于大虹桥商务板块,拥有接近2000m² 的办公区域,建有500平先进的AOL(Advanced Optical Labs)光学实验室,为国内外客户提供专业技术支持服务。公司主要经营光学元件、激光光学测试设备、以及光学系统集成业务。十年来,依托专业、强大的技术支持,以及良好的商务支持团队,筱晓的业务范围正在逐年增长。目前业务覆盖国内外各著名高校、顶级科研机构及相关领域等诸多企事业单位。筱晓拥有一支核心的管理团队以及专业的研发实验室,奠定了我们在设备的拓展应用及自主研发领域坚实的基础。主要经营激光器/光源半导体激光器(DFB激光器、SLD激光器、量子级联激光器、FP激光器、VCSEL激光器)气体激光器(HENE激光器、氩离子激光器、氦镉激光器)光纤激光器(连续激光器、超短脉冲激光器)光学元件光纤光栅滤波器、光纤放大器、光学晶体、光纤隔离器/环形器、脉冲驱动板、光纤耦合器、气体吸收池、光纤准直器、光接收组件、激光控制驱动器等各种无源器件激光分析设备高精度光谱分析仪、自相关仪、偏振分析仪,激光波长计、红外相机、光束质量分析仪、红外观察镜等光纤处理设备光纤拉锥机、裸光纤研磨机
  • 红外叶表面温度传感器,红外叶表面温度传感器
    红外叶表面温度传感器,红外叶表面温度传感器,试剂,操作,说 明:1、基本参数说明:(在使用本传感器前必须先了解以下参数) 1)RTD温度信号输出: Vt (Td为转换后数字量) 2)RTD环境温度: Ta (单位为℃) 3)红外信号输出电压: Vo (Vd为转换后数字量) 4)红外物体温度: To (单位为℃)2、传感器类型参数: 1)电压型红外叶表面温度传感器: 供电电压范围:5~12V(7~24V供电时需定制,另外功耗将增加4mA) 输出电压信号:0~2.5V 理论测温范围:0~100℃ 平均功耗电流:0.45mA 注意:在此,测温范围与电压信号范围不是线性对应关系! 2)电流型红外叶表面温度传感器: 供电电压范围:7~24V 输出电流信号:0~25mA 理论测温范围:0~100℃ 平均功耗电流:4~25mA 注意:在此,测温范围与电压信号范围不是线性对应关系!红外叶表面温度传感器,红外叶表面温度传感器,试剂,操作,说 明,功能及特点: .具备环境温度信号采集、输出功能; .采用集成性红外热电堆温度传感器; .测量精度较高,重复性、一致性较好; .采用环氧树脂封装,防水抗震性好; .电压输出式传感器具备低功耗特点。4、适用范围: .可广泛用环境、温室、实验室等的红外温度测量。
  • VIR-MIR-2000中红外高效激光荧光感应卡
    VIR-MIR-2000中红外高效激光荧光感应卡 (MAKE INVISIBLE MIR VISIBLE)本激光荧光感应卡,形状小巧,方便携带,激光感应卡是标准尺寸: 20×25mm,最大承受功率有20W。它可显示MIR激光光束,弥补了市面上2um激光感应卡的空缺,给常用的2um激光器在光路搭建,实验测试方面提供了便捷,安全可靠,性能优良,可以在感应卡上观察到明显光束,降低 了寻找不可见的中红外激光的光斑大小以及位置的难度,,2um高效激光感应卡可感应1900-2100nm波长范围内的激光。感应卡的材料是耐磨损,耐高温的陶瓷材料,感光区被涂敷在其前表面,可轻松对中红外2um附近的红外光及其焦点进行定位。而且,我们的感光卡不需要给光敏区充电,即使在黑暗中的连续光进行探测时,发射量也是稳定连续的,使用寿命长。产品特点 激光准直与检测 低阈值功率 定制尺寸和形状轮廓 覆盖波段:1900-2100nm 高灵敏度,高性能 陶瓷衬底可以承受最大20W的功率产品应用 激光准直与检测 激光光路的搭建技术参数备注:本产品不包括杆架座等波长对比测试我们对感应卡进行了1950nm和2004nm波长的激光器进行测试,得到如下的现象:对感应卡测试系统图1.对2004nm的激光进行测试:2004nm的激光在22mW处的测量光斑2004nm激光在22mW处的数值2004nm的激光在1W处的测量光斑2004nm激光在1W处的数值2.对1950nm的激光进行测试:1950nm的激光在21mW处的测量光斑1950nm激光在21mW处的数值1950nm的激光在1.3W处的测量光斑1950nm激光在1.3W处的数值在激光测量的过程中,我们测得,2004nm的激光在3.8mW处时,激光感应卡就可以显示出明显的激光的光斑,1950nm的激光在6mW处也可以明显的显示出激光的光斑,我们可以清晰的观察到激光的形状,亮度。产品信息VIR-MIR-2000-0 MIR-中红外NIR-近红外2000激光的波长(nm)标准尺寸 (20×25mm) 1-可定制尺寸
  • testo 835-T1 红外测量仪器
    testo 835-T1 红外测量仪器产品参数:红外传感器testo 835-T1testo 835-T2testo 835-H1光学分辨率50:150:150:1激光瞄准4点4点4点量程-30 ~ +600 °C-10 ~ +1500 °C-30 ~ +600 °C精度±1数位±2.5 °C (-30.0 ~ -20,1 °C )±1.5 °C (-20.0 ~ -0,1 °C )±1.0 °C (+0.0 ~ +99.9 °C )±1%测量值(其余量程)±2.0 °C或 ±1%测量值±2.5 °C (-30.0 ~ -20.1 °C )±1.5 °C (-20.0 ~ -0.1 °C )±1.0 °C (+0.0 ~ +99.9 °C )±1%测量值(其余量程 )分辨力0.1 °C0.1 °C (-10.0 ~ +999.9 °C )1 °C (+1000.0 ~ +1500.0 °C )0.1 °CK型热电偶testo 835-T1testo 835-T2testo 835-H1量程-50 ~ +600 °C-50 ~ +1000 °C-50 ~ +600 °C精度±1数位±(0.5 °C +0.5%测量值)±(0.5 °C +0.5%测量值)±(0.5 °C +0.5%测量值)分辨力0.1 °C0.1 °C0.1 °Ctesto湿度传感器量程0 ~ 100 % RH精度±1数位±2 %RH±0.5 °C分辨力0.1 °C0.1 %RH0.1 °Ctd仪器参数光谱范围8 ~ 14μm发射率0.10 ~ 1.00 (最小调整间隔0.01)发射率表可存储20个数值激光瞄准点开/关内存可存储200个数值报警(上限/下限)红外温度,热电偶温度报警信号声光报警操作温度-20 ~ +50 °C存储温度-30 ~ +50 °C材料/外壳ABS + PC尺寸193 x 166 x 63 mm重量514 g电池类型3节AA型电池(或USB供电)电池寿命25小时(一般25°C,不带激光和背光显示)10小时(一般25°C,不带背光显示)显示器点阵自动关闭背光:30 s仪器:120 s符合标准EN 61326-1:2006保修期1年,延长保修请登录http://www.testo.com.cn/warranty-extension_zh.htmltd style=testo 835-T1 红外测量仪器
  • testo 835-T2 红外高温测量仪器
    testo 835-T2 红外高温测量仪器产品参数:红外传感器testo 835-T1testo 835-T2testo 835-H1光学分辨率50:150:150:1激光瞄准4点4点4点量程-30 ~ +600 °C-10 ~ +1500 °C-30 ~ +600 °C精度±1数位±2.5 °C (-30.0 ~ -20,1 °C )±1.5 °C (-20.0 ~ -0,1 °C )±1.0 °C (+0.0 ~ +99.9 °C )±1%测量值(其余量程)±2.0 °C或 ±1%测量值±2.5 °C (-30.0 ~ -20.1 °C )±1.5 °C (-20.0 ~ -0.1 °C )±1.0 °C (+0.0 ~ +99.9 °C )±1%测量值(其余量程 )分辨力0.1 °C0.1 °C (-10.0 ~ +999.9 °C )1 °C (+1000.0 ~ +1500.0 °C )0.1 °CK型热电偶testo 835-T1testo 835-T2testo 835-H1量程-50 ~ +600 °C-50 ~ +1000 °C-50 ~ +600 °C精度±1数位±(0.5 °C +0.5%测量值)±(0.5 °C +0.5%测量值)±(0.5 °C +0.5%测量值)分辨力0.1 °C0.1 °C0.1 °Ctesto湿度传感器量程0 ~ 100 % RH精度±1数位±2 %RH±0.5 °C分辨力0.1 °C0.1 %RH0.1 °Ctd仪器参数光谱范围8 ~ 14μm发射率0.10 ~ 1.00 (最小调整间隔0.01)发射率表可存储20个数值激光瞄准点开/关内存可存储200个数值报警(上限/下限)红外温度,热电偶温度报警信号声光报警操作温度-20 ~ +50 °C存储温度-30 ~ +50 °C材料/外壳ABS + PC尺寸193 x 166 x 63 mm重量514 g电池类型3节AA型电池(或USB供电)电池寿命25小时(一般25°C,不带激光和背光显示)10小时(一般25°C,不带背光显示)显示器点阵自动关闭背光:30 s仪器:120 s符合标准EN 61326-1:2006保修期1年,延长保修请登录http://www.testo.com.cn/warranty-extension_zh.htmltesto 835-T2 红外高温测量仪器
  • 德国德图testo830-T2 红外温度仪
    产品介绍德国德图testo830-T2红外温度仪,2点激光瞄准,带报警功能,可设置限值,并可外接探头,实现接触式测量,12:1的距离系数比,测量快速,使用广泛. 可外接一个测温探头,可接触式测温,实现一机两用。德国德图testo830-T2红外温度仪的特点:超过限值可声光报警背光显示, 发射率可调可外接探头,实现接触式测量2点激光瞄准, 12:1距离系数比显示即时测量数据,并可锁定当前数据0.5s的反应时间,可迅速读取测量数值通用技术参数存储温度-40 ~ +70 ° C操作温度-20 ~ +50 ° C电池类型9V 块状电池电池寿命15 h重量200 g尺寸190 x 75 x 38 mm探头类型 (测量值)量程外接探头(K型)-50 ~ +500 ° C精度± 0.5 ° C 或+0.5%测量值分辨率0.1 ° C红外测温-30 ~ +400 ° C精度± 1.5 ° C 或 ± 1.5% 测量值 (+0.1 ~ +400 ° C)± 2 ° C 或 ± 2% 测量值 (-30 ~ 0 ° C)分辨率0.5 ° C
  • (非掺杂) 单模氟化物光纤 芯径 9um 截止波长3.45um 数值孔径 0.26
    ZBLAN光纤通过调整芯径和孔径,可以将单模光传输到4um波长,单模氟化物光纤(SMFF)比MFF传输更稳定,更适合于精确光谱。特别是波长为3um的波段,由于C-H和N-H的振动,产生了许多很强的吸收带,非掺杂的SMFF是红外光谱中常用的光波导。纤芯直径9um数值孔径0.26技术参数产品应用● 中红外放大器● 中红外系统搭建 ● 中红外光源 ZSF-6/125-N-0.20ZSF-6/125-N-0.26ZSF-7.5/125-N-0.20ZSF-7.5/125-N-0.26ZSF-9/125-N-0.20ZSF-9/125-N-0.26光纤类型阶跃指数型单模光纤数值孔径0.20±0.010.26±0.010.20±0.010.26±0.010.20±0.010.26±0.01截止波长(um)1.852.42.32.92.63.45损耗@1.5um(dB/m)0.1芯径(um)6±16±17.5±17.5±19±19±1包层直径(um)123±3涂覆层直径(um)460±30芯/包层玻璃ZBLAN氟化物玻璃涂层材料UV固化丙烯酸酯实验测试半径1.25cm定制参数参数数值光纤类型阶跃指数型单模光纤截止波长(um)0.6-2.5um数值孔径0.16±0.02, 0.21±0.02, 0.26±0.02芯径2-12um涂覆层直径(um)123±3包层直径(um)460±30涂层材料UV固化丙烯酸酯实验测试半径1.25cm订购信息例如:ZSF-6/125-N-0.206/125----------6=芯径为6um;125=涂覆层为125um0.20------------0.20=数值孔径 0.2产品应用● 中红外放大器● 中红外系统搭建 ● 中红外光源 订购信息例如:ZSF-6/125-N-0.206/125----------6=芯径为6um;125=涂覆层为125um0.20------------0.20=数值孔径 0.2
  • 耐高温红外光纤
    耐高温红外光纤 采用聚酰亚胺作为光纤涂敷层,适合应用于高温恶劣环境下的通信、传感等领域。光纤类型UV50/125PI UV200/220PI UV300/330PI UV400/440PI UV600/660PI数值孔径0.22±0.020.22±0.020.22±0.020.22±0.020.22±0.02羟基含量高羟基高羟基高羟基高羟基高羟基折射率结构阶跃型阶跃型阶跃型阶跃型阶跃型纤芯直径(μm)50.0±3.0200.0±4.0300.0±6.0400.0±10.0600.0±10.0包层直径(μm)125.0±3.0220.0±4.0330.0±7.0440.0±9.0660.0±10.0涂层直径(μm)145.0±5.0250.0±5.0360.0±10.0470.0±10.0690.0±15.0芯层材料纯石英纯石英纯石英纯石英纯石英包层材料氟掺杂石英氟掺杂石英氟掺杂石英氟掺杂石英氟掺杂石英涂覆层材料聚酰亚胺聚酰亚胺聚酰亚胺聚酰亚胺聚酰亚胺工作温度范围(℃)负65至300负65至300负65至300负65至300负65至300光纤接口:SMA905,FC,FC/PC等均可定制。光纤插针:金属插针,陶瓷插针,裸光纤等均可定制。保护套:金属铠装护套,PVC护套等均可定制。
  • 非掺杂 MMFF多模氟化物光纤 (纤芯数值孔径 0.29;芯径95±5um, 0.35-4um)
    ZBLAN多模光纤具有广泛的透明窗口。由于芯层和包层均由氟化物玻璃组成,光纤在0.35-4um波长范围内具有良好的透明性,是近红外和中红外光谱光波导的最佳选择,既可以提供带松套管的光纤也可以提供裸光纤。纤芯直径95um数值孔径0.29技术参数产品应用● 中红外光波导● 近红外光波导● 光纤传输类型ZMF-400/500-N-0.29ZMF-160/200-N-0.29ZMF-100/125-N-0.29光纤类型阶跃型多模光纤纤芯直径(um)400±25160±1095±5涂覆层直径(um)500±25200±10123±5包层直径(um)600±30480±30460±30数值孔径0.29±0.01损耗@2.5um(dB/m)0.1纤芯/包层涂覆玻璃ZBLAN氟化物玻璃涂层材料UV固化丙烯酸酯参数数值光纤类型阶跃型多模光纤数值孔径0.22±0.02,0.27±0.02,0.30±0.02堆芯/包覆比80/100包层直径(um)123±3,200±10,500±25涂覆层直径(um)460±30,480±30,600±30涂覆层材料UV固化丙烯酸酯非掺杂MMFF损耗谱订购信息例如:ZMF-400/500-N-0.29400/500 -----400=纤芯直径400um;500=包层直径500um0.29 ---------0.29=数值孔径0.29产品应用● 中红外光波导● 近红外光波导● 光纤传输订购信息例如:ZMF-400/500-N-0.29400/500 -----400=纤芯直径400um;500=包层直径500um0.29 ---------0.29=数值孔径0.29
  • 高透射率 多晶中远红外光纤连接器 FlexiRay® 3 - 17 μm
    总览筱晓光子公司提供FlexiRay光纤连接器,宽中红外光谱范围是3 - 17 μm。FlexiRay光纤连接器基于多晶红外(PIR-)光纤,广泛应用于中红外光传输、光谱、远距离温度传感等领域。多晶红外光纤连接器有各种标准直径,不同的连接器(SMA-905, FC/PC, FC/APC)和几种类型的保护套。我们先进的制造技术确保了连接器套圈内精确的光纤位置和完美的光纤端面质量。装运前,每根光纤连接器都会经过详细的质量监控。工作波长3-17µm技术参数产品应用:中红外光谱灵活的红外高温测量灵活的红外成像系统量子级联激光器的功率传输CO和CO2激光器的功率传输产品特点:3 - 17µm范围内的高透射率9 - 13μm时,低光损耗0.2 - 0.3 dB/m纤芯/包层结构,纤芯直径范围为240至860µm最小老化效应不吸水且无毒不同长度多晶光纤的透射光谱(标准质量等级)不同长度多晶光纤的透射光谱(光谱质量等级)产品规格光纤类型 多晶阶跃折射率多模波长范围 3 - 17μm纤芯/包层尺寸(µm) 参见标准光纤参数 有效数值孔径0.30±0.03最小弯曲半径(取决于保护套) PEEK管–130mm ,金属PVC涂层管–80mm ,不锈钢管–80mm ,不锈钢硅涂层管–130mm 连接器SMA-905, FC-PC 或 FC-APC 温度范围 -50℃至+80℃ *对于高温或低温应用,请向我们询价。电缆和光纤的温度范围不一样 长度≤ 15m,取决于光纤直径 标准多晶光纤参数产品编号类型纤芯µm包层µm保护套µm数值孔径**弯曲半径最小值mmPIR240/300突变型多模光纤240±15300+0/-15无0.30±0.0345PIR400/500突变型多模光纤410±15500+0/-15无0.30±0.0375PIR600/700突变型多模光纤600±20700+0/-15无0.30±0.03100PIR900/1000**有效值突变型多模光纤860±201000+0/-25无0.30±0.03150
  • 中红外光纤
    中红外光纤特性ZBLAN氟化锆(ZrF4)光纤,透射范围从285 nm到4.5 μm氟化铟(InF3)光纤,透射范围从310 nm到5.5 μm多模光纤和跳线选项:纤芯尺寸: ?100- ?600 μm数值孔径:0.20- 0.26中红外单模光纤和跳线选项:ZrF4:单模工作范围2.3 - 4.1 μmInF3:单模工作范围3.2 - 5.5 μm提供光纤束和反射/散射探测光纤束灵活的生产工艺,用于标准产品和定制产品应用光谱学光纤激光器超连续谱光源环境监测医学诊断化学传感红外成像Thorlabs能够制造多种中红外光纤和光纤跳线;其他纤芯尺寸和配置的光纤还在研发当中。库存以供当天发货的标准产品包括单模和多模跳线,以及用于透射应用的分叉光纤束和用于光谱应用的反射/散射探测光纤束。这些产品中所用光纤的规格包含在下表中。如需中红外裸纤,请联系技术支持。我们的IRphotonics® 中红外光纤和跳线,基于ZBLAN氟化锆(ZrF4)和氟化铟(InF3)玻璃,提供出色的机械灵活性,良好的环境稳定性,分别在285 nm - 4.5 μm或310 nm - 5.5 μm光谱范围上具有较高的透射率。与我们的其余光纤选择相同,氟化物光纤也具有一系列纤芯直径、截止波长和数值孔径,适合于多种应用(请看下表中的光纤规格)。这些光纤用专有技术制造,提供shi界级的纯度、尺寸控制和强度。这种技术使我们能ji佳地控制光纤的光学和机械性质,可以实现许多种配置(更多信息,请看中红外制造标签)。氟化物光纤在中红外波长范围内提供一个平坦的衰减曲线(见曲线标签),这是因为它们的羟基(OH)含量极低。氟化物玻璃的折射率接近石英的折射率;因此,与硫化物玻璃相比,用氟化物玻璃制成的光纤具有更低的回波损耗和更低的菲涅耳反射。氟化锆(ZrF4)光纤在中红外波段提供比氟化铟(InF3)光纤更平坦的衰减度,而InF3光纤比ZrF4光纤在更长波长下透光。通常使用于光纤跳线的石英光纤在中红外波段不透光。更多关于光纤跳线之间的不同,请看曲线标签。定制您的中红外光纤和跳线库存有多种类型的单模和多模氟化物光纤跳线,我们也提供分叉光纤束和反射/散射探测光纤束。我们正在开发许多其它纤芯和配置的跳线。裸纤手动选择超低损耗中红外光纤,满足严格的衰减要求定制纤芯和包层几何形状提供双聚合物包层功率承受能力加强跳线定制选项:光纤类型、长度、终端和套管OEM跳线镀增透膜的跳线加强型跳线,用于恶劣的环境中红外多模光纤规格Fiber TypeOperatingWavelengthaCoreDiameterAttenuationbNALong-TermBend RadiusShort-TermBend RadiusCladdingDiameterCoatingDiameterOperatingTemperatureZrF4(ZBLAN)285 nm - 4.5 μm100 ± 2 μmc0.20 ± 0.02≥155 mm≥25 mm192 ± 2.5 μm270 ± 15 μm-55 to 90 °C200 ± 10 μmc,d≥80 mm≥40 mm290 ± 10 μm355 ± 15 μm450 ± 15 μmc,e≥125 mm≥30 mm540 ± 15 μm650 ± 25 μm600 ± 20 μmc,e≤0.25 dB/m(from 2.0 - 3.6 μm)≥160 mm≥75 mm690 ± 20 μm770 ± 30 μmInF3310 nm - 5.5 μm100 ± 2 μmc≤0.45 dB/m(from 2.0 - 4.6 μm)0.26 ± 0.02≥155 mm≥15 mm192 ± 2.5 μm287 ± 15 μm-55 to 90 °Ca. 光纤的工作波长范围定义为衰减度小于3 dB/m的区域(每米透过率大于50%)。b. 请看上面的曲线图。c. 库存提供使用这些光纤制造的跳线。d. 库存提供使用这些光纤制造的反射探测光纤束。e. 库存提供使用这些光纤制造的分叉光纤束。中红外单模光纤规格Fiber TypeTransmissionRangeSMOperatingWavelengthCoreDiameteraAttenuationNALong-TermBend RadiusShort-TermBendRadiusbOperatingTemperatureZrF4(ZBLAN)285 nm- 4.5 μm2.3 - 4.1 μm9 ± 0.5 μm(from 2.3 - 3.6 μm)0.19 ± 0.02@ 2 μm≥30 mm≥10 mm-55 to 90 °CInF3310nm - 5.5 μm3.2 - 5.5 μm9 ± 0.5 μm(from 3.2 - 4.6 μm)0.26 ± 0.02@ 2 μm≥30 mm≥10 mm-55 to 90 °Ca. 库存提供使用这些光纤制造的跳线。b. 测量用于?125 μm包层如有裸纤和定制跳线相关的需求,请联系技术支持。多模氟化物光纤跳线该曲线图包含五根独立的?200 μm纤芯的ZrF4光纤的测量衰减度。该数据代表我们的?100 μm, ?200 μm和?450 μm纤芯的光纤。该曲线图含有从五根独立的?600 μm纤芯的ZrF4光纤测量的衰减度。该曲线图包含从五根独立的?100 μm纤芯的InF3光纤测量的衰减度。制造能力制造ZBLAN氟化锆(ZrF4)和氟化铟(InF3)光纤在高达5.5 μm的中红外波段透光且损耗低灵活的生产设备和计划,可生产原型和标准产品Thorlabs的光纤拉丝制造间除了生产石英光纤外,还能生产ZBLAN氟化锆(ZrF4)和氟化铟(InF3)光纤。ZrF4和InF3光纤分别在300 nm - 4.5 μm或300 nm - 5.5 μm光谱范围上透过率较高,且没有材料吸收峰值,具有出色的机械强度和良好的环境稳定性。氟化物光纤是在中红外波段透光的理想选择。中红外波段的低衰减度由极低羟基(OH)含量辅助实现。对比于其它在中红外范围内透光的光纤,氟化物光纤还具有更低折射率和更低的色散。Thorlabs的氟化物光纤非常适合用于包含中红外光谱、光纤传感器、成像和光纤激光的应用。氟化物预成型件的生产和光纤拉丝工艺Thorlabs的氟化物光纤利用能提供shi界级纯度、尺寸控制和强度的技术制造。玻璃成分在手套箱受控环境中混合和熔化,实现高纯度。玻璃熔化后,将它倒入预成型磨具中,并进行冷却。制备之后,将预成型件装入光纤塔顶部的下料单元当中,拉丝成光纤。氟化物玻璃光纤利用与石英光纤相似的预成型技术进行拉丝。该技术已经非常成熟,并且被证实在控制光纤参数方面非常有效,比如光纤直径、同心度和折射率。氟化物玻璃的拉丝温度范围低于石英,显著缩短了冷却时间。因此,我们的氟化物光纤塔比石英光纤塔矮很多。右下图为我们氟化物光纤塔的细节。Thorlabs的中红外光纤研究人员和工程师团队在氟化物玻璃研究和开发、生产和光纤拉丝方面有许多年丰富经验。我们的团队分为两组:一组人员致力于目录产品的生产,第二组人员致力于研发和定制光纤产品的制造。它们的专业知识,加上光纤塔的灵活配置和拉丝时间表,使我们能够生产产品目录中的产品以及定制产品。关于我们定制氟化物光纤能力的详情,请联系技术支持。氟化物光纤表征和测试 Thorlabs拥有一支致力于测试和表征我们光纤产品的团队。我们精确测量每根拉伸光纤的性能,以确保其符合我们的高标准质量。广泛的测试也为我们的光纤拉丝团队提供反馈,从而能够严格控制制造过程中的每一步。客户可以要求对任何Thorlabs生产的光纤进行定制测试,然后随附出货光纤。也可根据要求测试客户提供的第三方光纤样品。可用的测试和服务在右边的列表中提供;请联系技术支持咨询。测试和表征能力光谱衰减测量UV / Visible / NIR / MIR波段SM或MM光纤和块状玻璃SM光纤截止波长测量光纤NA测量光纤玻璃/涂覆层几何图形测量,测量准确度达到亚微米级多模光纤中红外高功率屏蔽光纤拉力测试缺陷/破损分析光纤涂覆层的固化程度测试如需Thorlabs或第三方光纤的测试,请联系技术支持。中红外光纤拉丝塔示意图实验观测Thorlabs实验观测:利用多模光纤修改光束轮廓我们在此给出探索多模光纤输出光束轮廓如何受到光束入射角影响的实验测量结果。有些应用中可能需要其他诸如高帽或甜甜圈等轮廓的光束分布,而不需要一般光学元件提供的固有高斯分布。这里,我们探索了改变聚焦激光束进入多模光纤跳线时的入射角所产生的影响。将光垂直聚焦于光纤面,会产生近高斯输出光束轮廓(图1),增大入射角则会产生高帽(图2)和甜甜圈(图3)形状的光束轮廓。这些结果展现了利用多模光纤改变光束轮廓的方法。实验中,我们使用一根M38L01纤芯?200μm、数值孔径0.39的阶跃折射率光纤跳线(裸纤型号FT200EMT)作为聚焦光束耦合的待测光纤。将输入光以0°、11°和15°入射到多模光纤的入射面,分别产生初始轮廓、高帽轮廓和甜甜圈轮廓。每次改变角度时,都要优化输入光纤的对准,同时用功率计监测输出功率,确保实现zui大的耦合。然后,在9秒的曝光时间下采集图像,并评估光束轮廓的形状。注意,曝光过程中,会在耦合光学元件之间(待测光纤之前)手动旋转1500 grit的散射片,以减少空间相干,形成干净的输出光束轮廓。假设一种光线追迹模型,存在两种沿着多模光纤传播的常见光线:(a)子午光线,每次反射之后都通过光纤的中心轴,和(b)斜光线,不通过光纤的中心轴。下面的图片展现了实验过程中观察到的三种基本光线传播情况。图4和图6分别绘制出了子午光线和斜光线通过多模光纤的传播,以及在光纤输出端的相关理论光束分布。如图6所示,斜光线沿着光纤以与半径r为圆的内部焦散线相切的螺旋路径传播。图5描绘了子午光线和斜光线的光束传播和光束分布。我们通过改变光耦合到多模光纤的入射角,修改子午光线与斜光线的传播,使输出光束从近高斯分布(主要是子午光线,请看图1)变成高帽分布(子午光线和斜光线混合,请看图2),再变成甜甜圈分布(主要是斜光线,请看图3)。图4到图6显示的光束轮廓都在离光纤端面5 mm处获得。这些结果体现了利用标准的多模光纤跳线以一种相对低成本的方法将入射高斯轮廓修改成高帽和甜甜圈轮廓,且损耗极微。图 1.入射角为0°时获得的近高斯光束轮廓(垂直于光纤面)图 2.入射角为11°时获得的高帽光束轮廓图 3.入射角为15°时获得的甜甜圈光束轮廓图 4.对应近高斯输出轮廓的子午光线传播图 5.对应甜甜圈轮廓的斜光线传播图 6.对应高帽轮廓的子午光线和斜光线传播
  • 红外线紫外线防护眼镜
    红外线紫外线防护眼镜(镜片为深绿色)优势特点1.最新专利款式——镜框护眉处边缘并有微小、垂直的防尘孔,既可以让眼 睛透气,又能防光照射。2.同样复合树脂材料的侧防护,有效抵挡正、侧面的飞溅物。3.聚碳酸酯镜面DX绿色涂层,防雾、防化、防红外线紫外线。4.镜腿可以上下、长短调节(4步可调长度)、适应不同脸型、方便佩戴。
  • testo 835-H1 红外测温仪(带湿度模块) testo 835-H1 红外测温仪(带湿度模块)
    testo 835-H1 红外测温仪(带湿度模块)产品参数:红外传感器testo 835-T1testo 835-T2testo 835-H1光学分辨率50:150:150:1激光瞄准4点4点4点量程-30 ~ +600 °C-10 ~ +1500 °C-30 ~ +600 °C精度±1数位±2.5 °C (-30.0 ~ -20,1 °C )±1.5 °C (-20.0 ~ -0,1 °C )±1.0 °C (+0.0 ~ +99.9 °C )±1%测量值(其余量程)±2.0 °C或 ±1%测量值±2.5 °C (-30.0 ~ -20.1 °C )±1.5 °C (-20.0 ~ -0.1 °C )±1.0 °C (+0.0 ~ +99.9 °C )±1%测量值(其余量程 )分辨力0.1 °C0.1 °C (-10.0 ~ +999.9 °C )1 °C (+1000.0 ~ +1500.0 °C )0.1 °CK型热电偶testo 835-T1testo 835-T2testo 835-H1量程-50 ~ +600 °C-50 ~ +1000 °C-50 ~ +600 °C精度±1数位±(0.5 °C +0.5%测量值)±(0.5 °C +0.5%测量值)±(0.5 °C +0.5%测量值)分辨力0.1 °C0.1 °C0.1 °Ctesto湿度传感器量程0 ~ 100 % RH精度±1数位±2 %RH±0.5 °C分辨力0.1 °C0.1 %RH0.1 °Ctd仪器参数光谱范围8 ~ 14μm发射率0.10 ~ 1.00 (最小调整间隔0.01)发射率表可存储20个数值激光瞄准点开/关内存可存储200个数值报警(上限/下限)红外温度,热电偶温度报警信号声光报警操作温度-20 ~ +50 °C存储温度-30 ~ +50 °C材料/外壳ABS + PC尺寸193 x 166 x 63 mm重量514 g电池类型3节AA型电池(或USB供电)电池寿命25小时(一般25°C,不带激光和背光显示)10小时(一般25°C,不带背光显示)显示器点阵自动关闭背光:30 s仪器:120 s符合标准EN 61326-1:2006保修期1年,延长保修请登录http://www.testo.com.cn/warranty-extension_zh.htmltesto 835-H1 红外测温仪(带湿度模块)
  • testo 835-H1 红外测温仪(带湿度模块)
    testo 835-H1 红外测温仪(带湿度模块)产品参数:红外传感器testo 835-T1testo 835-T2testo 835-H1光学分辨率50:150:150:1激光瞄准4点4点4点量程-30 ~ +600 °C-10 ~ +1500 °C-30 ~ +600 °C精度±1数位±2.5 °C (-30.0 ~ -20,1 °C )±1.5 °C (-20.0 ~ -0,1 °C )±1.0 °C (+0.0 ~ +99.9 °C )±1%测量值(其余量程)±2.0 °C或 ±1%测量值±2.5 °C (-30.0 ~ -20.1 °C )±1.5 °C (-20.0 ~ -0.1 °C )±1.0 °C (+0.0 ~ +99.9 °C )±1%测量值(其余量程 )分辨力0.1 °C0.1 °C (-10.0 ~ +999.9 °C )1 °C (+1000.0 ~ +1500.0 °C )0.1 °CK型热电偶testo 835-T1testo 835-T2testo 835-H1量程-50 ~ +600 °C-50 ~ +1000 °C-50 ~ +600 °C精度±1数位±(0.5 °C +0.5%测量值)±(0.5 °C +0.5%测量值)±(0.5 °C +0.5%测量值)分辨力0.1 °C0.1 °C0.1 °Ctesto湿度传感器量程0 ~ 100 % RH精度±1数位±2 %RH±0.5 °C分辨力0.1 °C0.1 %RH0.1 °Ctd仪器参数光谱范围8 ~ 14μm发射率0.10 ~ 1.00 (最小调整间隔0.01)发射率表可存储20个数值激光瞄准点开/关内存可存储200个数值报警(上限/下限)红外温度,热电偶温度报警信号声光报警操作温度-20 ~ +50 °C存储温度-30 ~ +50 °C材料/外壳ABS + PC尺寸193 x 166 x 63 mm重量514 g电池类型3节AA型电池(或USB供电)电池寿命25小时(一般25°C,不带激光和背光显示)10小时(一般25°C,不带背光显示)显示器点阵自动关闭背光:30 s仪器:120 s符合标准EN 61326-1:2006保修期1年,延长保修请登录http://www.testo.com.cn/warranty-extension_zh.htmltesto 835-H1 红外测温仪(带湿度模块)
  • IRFLEX非线性中红外光纤 1.5-6.5um
    IRF-S系列非线性中红外光纤是由高纯度的硫化物玻璃(As2S3)拉制而成,可产生或传输1.5-6.5μm光信号,其非线性可为传统石英光纤的100倍。中红外光是一种波长比可见光长,比微波短的电磁波。IRflex公司专注于2-10μm的中红外波段的应用。IRflex生产的中红外光纤基于高纯度硫族化物玻璃,硫化物光纤凭借其独有的优势,可以满足先进的、苛刻的光纤设备应用。硫化物光纤主要包含一种或多种硫族元素如S、Se、Te等与少量其他元素如Ge、As、Sb等。As-Se光纤具有大得多的折射率(2.3)和很高的非线性系数。以S元素或Se元素为主的光纤可以分别实现在0.8~7μm和1~10μm范围内的低损耗传输。IRflex公司的非线性硫族化物中红外光纤可以很好的满足长距离传输过程中需要低损耗和高损伤阈值的应用。 光纤类根据数量价格,合同金额原则上不低于3500元产品特点● 低损耗 ●可承受功率高●机械灵活性●高可靠性、高重复性●纤芯的不圆度低于±1% ●纤芯/包层同心度误差低于2μm技术参数参数特性光纤型号纤芯/Clad/Coating直径(μm)截至波长(μm)工作波长(μm)*IRF-S-55/100/2801.9882.05 – 2.95IRF-S-6.56.5/125/3002.461.5 – 4.15IRF-S-77/140/3002.933.0 – 4.4IRF-S-99/170/3203.563.6 – 5.3IRF-S-5050/85/275-1.5 – 6.5IRF-S-100100/170/340-1.5 – 6.5IRF-S-200200/250/470-1.5 – 6.5IRF-S-400400/500/620-1.5 - 6.5备注: * 所有的光纤都可以传输1.5 to 6.5μm. 这里的中心波长 (μm) 是指超过50%以上的光在纤芯里传输。技术参数传输范围 (μm)1.5 – 6.5典型损耗(dB/m)0.05 @ 2.8μm玻璃成分As2S3折射率2.4数值孔径 (NA)0.28±0.02纤芯圆偏度 (%)芯/包同心度误差(μm)抗拉试验(KPSI)15耐化学性不溶于水、浓盐酸、非氧化酸、醇、丙酮、汽油和甲苯。溶于强碱溶液中,如KOH。差损测试曲线光纤色散测试图产品应用● 生物化学传感●非线性光学研究●激光医疗诊断●红外线干扰(IRCM)
  • 红外线紫外线防护眼镜
    优势特点1.最新专利款式——镜框护眉处边缘并有微小、垂直的防尘孔,既可以让眼 睛透气,又能防光照射。2.同样复合树脂材料的侧防护,有效抵挡正、侧面的飞溅物。3.聚碳酸酯镜面DX绿色涂层,防雾、防化、防红外线紫外线。4.镜腿可以上下、长短调节(4步可调长度)、适应不同脸型、方便佩戴。
  • Mid-IR中红外单模空芯光纤连接器(SMA跳线 内径 200um, λ 5-12 μm)
    单模光纤跳线,提供具有高斯光束轮廓的中红外激光束的两个标准选项。Mid-IR中空光纤的相对光谱透射率取决于中空光纤内部介质层的厚度。可以调整为一个特定的波长范围,较厚的涂层提供更好的传输较长的波长。我们提供4种标准的涂层选择。替代结构可用于其他波长区域,包括UV,可见光/近红外和太赫兹。中空光纤(即波导)是许多需要远程激光束传输的中红外应用的理想解决方案。技术参数中红外中空光纤空芯光纤(即波导)是许多需要远程激光束传输的中红外应用的理想解决方案。好处包括:透射率高λ=2-16μm单模选择λ≥5μmm 非高斯光束的滤波 耦合效率高( 95%)大功率(可达100w CW)无尽头反射结实耐用且灵活内部绝缘涂层中空纤维的相对光谱透射率取决于沉积在中空纤维内部的介电层的厚度。该厚度是我们可以完全控制的参数,并且可以针对特定波长范围进行调整,使用较厚的涂层可为更长的波长提供更好的透射率。我们提供 4 种标准涂层选项,涵盖整个中红外。其他波长区域(包括 UV、可见光/NIR 和 THz)可使用替代结构。技术参数玻璃塑料内部直径(ID)200μm300μm500μm750μm1000μm1500μm典型的损失(直接)*4 dB/m1 dB/m0.5 dB/m0.2 dB/m0.1 dB/m0.2 dB/m单模范围λ≥4μmλ≥8μmλ≥12μm---输出发散1/2角**50 mRad40 mRad30 mRad30 mRad30 mRad30 mRad最小弯曲半径5 cm5 cm10 cm20 cm50 cm5 cm最大功率* * *5 W10 W30 W50 W100 W30 W补充电缆长度0.1-1.0 m0.1-2.0 m0.1-5.0 m0.1-5.0 m0.1-5.0 m0.1-5.0 m*弯曲附加损失,与弯曲半径(R)的比例为1/R。**列出的值是λ=10μm,通常与波长线性。***连续波功率额定,假设适当的耦合和校准。初始对准应该总是在降低功率的情况下进行。 光纤内径 (ID)中空纤维的整体传输在很大程度上取决于纤维内径 (ID)。理论上,损耗可以用混合 HE lm 模式来描述。这种模式的衰减系数取决于内径为 1/(ID)3。此外,对模式#有很强的依赖性。较大的 ID 光纤损耗较低,但支持更多的模式(即多模)。较小的 ID 光纤具有较高的损耗,但会严重抑制高阶模式,因此可以提供单模输出。此外,这种单模光纤在滤除高阶模式和“清理”非理想光束方面非常有效。Guiding Photonics 也在开发锥形中空纤维,其中直径沿纤维长度逐渐变化。有效数值孔径上表中列出的输出发散角可以被认为是光纤的有效数值孔径 (NA)。使用术语“有效”NA 是因为这不等同于实芯光纤的 NA。实芯光纤的工作原理是全内反射,对于此类光纤,NA 是接收角方面的严格截止值。相比之下,我们的空芯光纤本质上是一个反射光管(即波导),这里的术语有效 NA 可以被认为是最佳耦合角,但不是严格的截止。中空纤维将以更高的 NA 引导光;然而,离最佳耦合越远,传输越低,离单模性能越远。可以在此处找到有关耦合的更多信息。曲线图
  • 超小型中红外光谱仪(3um - 4.4um)
    超小型中红外光谱仪(3um - 4.4um)所属类别: ? 光谱仪 ? 光纤光谱仪 超低价!能握在掌心的中红外光谱仪(3um~4.7um)!MIR系 列超小型中红外光谱仪拥有独特的性能特点。在紧凑的空间中,它包含由一个高性能微处理器运行的完整驱动和读出电路,通过简单易用的传感器控制软件可以为您 的应用选择合适的波长范围以优化您的测量。系统提供了一个光纤连接头或者开放空间的连接口,超小型中红外光谱仪可以帮助您把光谱仪和所有可用的光源和光纤探针链接。MIR系列超小型中红外光谱仪可以和光线连续的气体探测器或气室一并购买。作为一个选项传感器出售超紧凑微发光源。关键词:中红外光谱仪,光纤光谱仪,MEMS技术,无可移动部件,抗震性强,红外光谱仪,光谱探测器,Spectrometer,分光光度计,傅里叶变换光谱仪,干涉光谱仪MIR系 列超小型中红外光谱仪拥有独特的性能特点。在紧凑的空间中,它包含由一个高性能微处理器运行的完整驱动和读出电路,通过简单易用的传感器控制软件可以为您 的应用选择合适的波长范围以优化您的测量。系统提供了一个光纤连接头或者开放空间的连接口,可以帮助您把光谱仪和所有可用的光源和光纤探针链接。MIR系列超小型中红外光谱仪可以和光线连续的气体探测器或气室一并购买。作为一个选项传感器出售超紧凑微发光源。MIR系列超小型中红外光谱仪将气体测量带入了一个新的高度,由于非常稳定的波长校准和足够的分辨率,这些传感器适用于区分不同的碳氢化合物(C1-C5)。光谱传感器利用创新的基于MEMS的法布里-珀罗可调滤波器技术,该MIR系列超小型中红外光谱仪将气体测量带入了一个新的高度,由于非常稳定的波长校准和足够的分辨率,这些传感器适用于区分不同的碳氢化合物(专为苛刻的工业应用设计,MIR系列超小型中红外光谱仪将气体测量带入了一个新的高度,由于非常稳定的波长校准和足够的分辨率,这些传感器适用于区分不同的碳氢化合物(提供了极端的坚固性,即使在最苛刻的环境下也表现良好。通过改变气室的路径长度,可以改变灵敏度和检测范围。 l高性能l成本低l超小尺寸l坚固性优l多功能型l低功耗l可扩展性高 u 详细参数表技术参数参数值n 包括微处理器的完整驱动和读出电路n 工厂校准,不需要外部波长校准目标n 包含简单易用的基本软件n USB 供电n 光纤接口为SMAn 可选:微型发光源波长范围3um – 4.4um 探测器类型InGaAS 探测器光源微型光源波长点自由选择多达512个点,最小间隔0.05nm波长转换时间1ms波长分辨率(FWHM)35 – 45nm 重力影响波长0.01nm温度响应0.1nm/℃工作温度0℃ - 50℃ (不结露)光学接口SMA905(光纤: 400um, NA 0.22)电路接口USB2.0重量125g u 主要应用MIR系列光谱仪可以应用到过程和移动应用当中监控气体浓度。例如:甲烷,乙烷,丙烷,丁烷,戊烷和二氧化碳(CO2)。碳氢化合物是在许多应用中的关键质量参数,如石油和天然气工业,发电厂,海洋应用,天然气和沼气生产。 (M系列中红外光谱仪可以区分不同的碳氢化合物C1-C5) (二氧化碳(CO2)浓度测量) 分享到 : 人人网 腾讯微博 新浪微博 搜狐微博 网易微博 相关产品 惊爆价!4万元的红外光纤光谱仪(900~1700nm)! 中红外光纤(4um -16um) 量子级联激光器(3.8um~12um) 中红外激光光束分析仪 (1.5um~8um)
  • Optran® PUV, Optran® PWF 硅树脂包层石英光纤
    总览Optran PUV, Optran PWF硅树脂包层石英光纤硅树脂包层石英光纤确保了从紫外到近红外波长的低衰减传输,它们为纯石英光纤提供了高性价比的替代品,适用于从远程照明到光谱学的广泛应用。工作波长350-2200nm数值孔径0.40技术参数优点高性价比(与二氧化硅/二氧化硅光纤相比)高同心度阶跃折射率分布生物相容性材料可使用ETO和其他方法消毒应用从远程照明到光谱学等应用的首选。技术参数波长/光谱范围Optran PUV 和Optran PWF::350-2200nm数值孔径 (NA)0,40 ± 0,02工作温度-40至+150℃内径从100µm到2000µm可选羟基含量Optran PUV:高( 700 ppm)Optran PWF:低( 1 ppm)标准测试100 kpsi最小弯曲半径50 ×包层直径(短期机械应力)150 ×纤芯直径(在使用高激光功率时)
  • 中红外单模氟化物光纤跳线
    中红外单模氟化物光纤跳线特性氟化锆(ZrF4)光纤的单模工作范围为2.3 μm -4.1 μm,氟化铟(InF3)光纤为3.2μm- 5.5μm氟化锆(ZrF4)光纤的传输范围285 nm - 4.5 μm,氟化铟(InF3)光纤则为310 nm- 5.5 μm兼容可见光波长对准光束用于光谱学、环境传感和医学领域菲涅尔反射损耗低:每面我们的单模氟化物跳线IRPhotonics® 设计用于中红外光谱范围内的低损耗传输。这些单模跳线使用Thorlabs的氟化物光纤制造,氟化锆(ZrF4)光纤跳线的单模工作范围为2.3-4.1μm,而氟化铟(InF3)光纤跳线的单模工作范围为3.2 - 5.5μm。氟化锆ZrF4光纤和氟化铟InF3光纤衰减度的对比图请看右边曲线图。这些氟化物光纤跳线提供与标准石英光纤跳线相似的机械灵活性,环境稳定性好,并且中红外光谱范围内的衰减曲线平稳。由于氟化物玻璃的透射范围低至紫外线范围,因此可见光(比如由光纤耦合激光器产生的激光)可沿着相同光纤作为对准辅助进行传播。注意,由于可见光低于截止波长,因此它将仿佛在多模光纤中一样传播。 这些光纤跳线的数值孔径(NA)在特定SM工作范围上保持相对恒定(曲线图参见曲线标签)。MIR Fluoride Fiber Selection GuideSingle Mode Patch CablesMultimode Patch CablesBifurcated Fiber BundlesReflection/Backscatter Probe BundlesMIR Fiber Overview氟化锆(ZrF4)单模光纤跳线提供比氟化铟(InF3)光纤更低的衰减,但是氟化铟光纤对长波长的透光率比氟化锆光纤更大。关于其它衰减曲线,请参见曲线标签。每根跳线两端的终端接头为分别与FC/PC或FC/APC连接组件(详情参见FC连接器标签)兼容的陶瓷插芯连接器,并进行平面抛光或斜角面抛光。在对背反射较敏感的设置中,我们推荐使用斜角面FC连接器。每根跳线包括两个保护帽,它们用来保护插芯端不受灰尘和其它危害。可单独购买CAPF(塑料质)和CAPFM(金属)替换保护帽。使用建议由于氟化物玻璃比标准石英玻璃更软,因此不能用Kimwipes擦拭纸来清洁这些跳线。其它氟化物光纤特定的使用建议请参见操作标签。与无端光纤相比,这些跳线所能承受的zui大功率是受连接器限制的。取决于应用,我们推荐以约300mW的zui大CW功率使用这些跳线。每根氟化物跳线都标有产品型号、批次和主要规格。Stocked SM Patch Cables Selection GuideStandard CablesFC/PC to FC/PCFC/APC to FC/APCHybridAR-Coated CablesAR-Coated TEC SilicaHR-Coated SilicaBeamsplitter-Coated SilicaLow-Insertion-Loss SilicaMIR Fluoride Fiber中红外应用由于SM工作范围与我们的带间级联激光器(ICL)的发射范围重叠,因此若将这些跳线与我们的光谱仪结合使用,可以实现激光输出光谱的低损耗测量。其它应用实例见下图。单模氟化物跳线中的信号可以通过一个反射式准直器耦合到自由空间。FiberPorts可替代反射式准直器使用,它提供5个自由度的自由空间耦合,以及旋转调节。规格:Bare Fiber SpecificationsFiberZrF4Single ModeInF3Single ModeTransmission Range285 nm - 4.5 μm310 nm - 5.5 μmSM Operating Wavelength Range2.3 - 4.1μm3.2 - 5.5 μmAttenuation (Click for Plot)≤0.3 dB/m (Max) 0.15 dB/m (Typical)(for 2.3 - 3.6 μm)≤0.45 dB/m (Max)(for 3.2- 4.6 μm)Mode FieldDiametera(Click for Plot)10.75 μm @ 2.5 μm 14.80 μm @ 3.39 μm10.66 μm@3.39μmCutoff Wavelength≤2.3 μm≤3.2 μmNumerical Aperture (NA)b0.19 ± 0.02 @ 2.0 μm0.26 ± 0.02 @ 2.0 μmCore Diameter9 ± 0.5 μmCladding Diameter125 +1/-2 μmCore/Clad Concentricity≤2.0 μmBendRadius (ShortTerm/Long Term)≥10 mm / ≥40 mm≥10 mm / ≥30 mm模场直径(MFD)是一个标称值。它是近场中1/e2功率水平处的直径。更多信息请见模场直径定义标签。曲线标签包含其它波长处的NA曲线。曲线该标签包含氟化物光纤的以波长为自变量的衰减(测量值)曲线、弯曲衰减(测量值)曲线、模场直径(计算值)曲线和数值孔径(计算值)曲线。下面所显示的是单模跳线的数据;不同跳线之间可能会不同。如果您不确定这些光纤是否适用于您的应用请联系技术支持。衰减该曲线包含了我们单模ZrF4光纤的衰减测量值。曲线中的蓝色阴影区域表示单模波长工作范围(2.3-3.6 μm),橙色阴影区域表示光纤依然具有传输性,但为多模操作。截止波长用垂直虚线表示,是多模运行的起点,并随波长的变化而变化。接近1.9 μm处的峰值对应二阶模衰减。该曲线包含了我们单模InF3光纤的衰减测量值。曲线中的绿色阴影区域表示单模工作波长范围,衰减值≤0.45 dB/m,蓝色阴影区域表示单模工作波长范围,没有保证的衰减规格。橙色阴影区域表示光纤依然具有传输性,但为多模操作。截止波长用垂直虚线表示,是多模运行的起点,并随波长的变化而变化。接近2.9 μm处的峰值对应二阶模衰减。该曲线包含了用于我们单模ZrF4光纤的单环在五个不同弯曲半径时衰减测量值。曲线中的阴影区域表示单模波长范围(2.3 - 3.6 μm)。该曲线包含了用于我们单模InF3光纤的单环在四个不同弯曲半径时衰减测量值。曲线中的蓝色和绿色阴影区域表示单模波长范围(3.2 - 5.5微米)。色散该曲线包含了我们单模ZrF4光纤的计算的色散曲线,具有大约1.6微米的零色散波长。曲线中的阴影区域表示单模波长范围(2.3 - 3.6微米)。曲线包含了我们单模InF3光纤的计算的色散曲线,具有大约1.7微米的零色散波长。曲线中的阴影区域表示单模波长范围(3.2 - 5.5微米)。数值孔径该曲线包含了我们单模ZrF4光纤的数值孔径,根据以下曲线中的折射率。曲线中的阴影区域表示单模波长范围(2.3 - 3.6微米)。该曲线包含了我们单模InF3光纤的数值孔径,根据以下曲线中的折射率。曲线中的阴影区域表示单模波长范围(3.2 - 5.5 μm)。折射率.这里显示的折射率是将Sellmeier方程与测量数据拟合获得的。右表给出了拟合中所用的Sellmeier系数。SellmeierEquationSellmeierCoefficientsCoefficientCoreCladdingu00.54630.705674u10.75660.515736u21.7822.204519u30.0000.087503u40.1160.087505u521.26323.80739这些折射率是将Sellmeier方程与测量数据拟合获得的。右表给出了拟合中所用的Sellmeier系数。SellmeierEquationSellmeierCoefficientsCoefficientCoreCladdingu00.476273380.68462594u10.769368930.4952746u25.018354971.4841315u30.01795490.0680833u40.118650930.11054856u543.6454575924.4391868操作 该标签描述了在日常使用中标准石英光纤跳线和氟化物光纤跳线之间的相似和不同之处。物理操作 弯折为了保护,氟化物跳线使用塑料护套(PVDF聚合物),所以比典型的跳线护套更硬。只要护套不被强迫弯折,光纤不会受损伤。如果超过弯折限制塑料护套会变色。对于规定的弯折半径请参考下面的表格。关于光纤因为弯折导致的衰减的更多信息,请见曲线标签。 存储因为氟化物玻璃比标准石英玻璃更软,所以更容易刮伤,所以在跳线在不使用时盖上保护盖尤其重要。用于FC终端跳线的CAPF和CAPFM替换保护帽可单独购买。 清洁使用FS200光纤检测仪检查光纤头。如果有颗粒物,首先尝试使用缓流压缩空气吹去。如果压缩空气不够,可以使用我们的FCC-7020光学接头清洁器或MC-5擦镜纸来清洁。 请注意Kimwipes非常容易刮伤光纤头,所以不能使用。 重新抛光服务如果光纤头刮伤,Thorlabs可以免费重新抛光(由客户负责来回的运费)。请联系技术支持使用该服务。环境因素 一般的实验室温度和湿度不会影响光纤的完整性。但是应该避免拉伸、直接接触液态水或水蒸气。寿命终止处理 如果您要在本地废弃这种光纤跳线,请遵守所有适用的当地法规和条例,请注意氟化物玻璃主要由掺合氟化锆或氟化铟的氟化钡组成。FC接头使用标准石英光纤跳线是一般选择FC/PC或FC/APC接头,因为PC和APC抛光面为圆顶头可以使匹配的两根跳线的纤芯直接接触,从而将跳线界面之间接触损耗降到zui小。因为氟化物玻璃壁石英玻璃更软,它们在抛光后会是平面光纤端。根据跳线的不同,光纤端面可能相对插芯稍微地凹下去一点。因此,氟化物光纤跳线既不是FC/PC接头(PC指直接接触)也不是FC/APC(APC指有角度的直接接触)。平面光纤端面不会影响输出是耦合到自由空间的应用,但是在连接FC接头的光纤跳线时,比如通过匹配套管或连接头连接时会有传输损耗,因为光纤纤芯没有直接接触。由于FC终端的跳线之间的间隔一般要小于SMA905终端(使用空气间隔插芯)的跳线间的典型间隔,这种损耗经常可以被忽略。下图是一根氟化物成品跳线末端的二维图和三维图。标准FC/PC接头有圆顶端面FC终端的氟化物跳线有平坦的抛光末端面AFC终端氟化物光纤跳线有一个8度角抛光斜面该图为一根?100微米纤芯、平面抛光的FC氟化物光纤跳线末端的二维表面轮廓图。X和Y轴的单位都是微米。虚线圆和直线用于眼睛观察指导。金属插芯和跳线内侧的界面根据蓝色虚线圆中的绿色圆查看。该数据代表我们所有平面抛光的FC氟化物光纤跳线。该图为一根?100微米纤芯、平面抛光的FC氟化物光纤跳线末端的三维分布图。虚线圆用于眼睛观察指导。金属插芯和跳线内侧的界面根据黑色圆和蓝色圆之间的的圆形凹陷来查看。该数据代表我们所有平面抛光的FC氟化物光纤跳线。模场直径定义模场直径(MFD)的定义 模场直径(MFD)是单模光纤中传输的光束尺寸的一个量度。它是波长、纤芯直径和纤芯和包层折射率的一个函数。虽然许多光都被限制在纤芯传播,仍有一部分会在包层中传播。对于高斯分布,MFD是光功率降低到峰值水平的1/e2时的直径。 MFD的测量MFD的测量通过远场中的可变通光孔径方法(VAMFF)来完成。在光纤输出的远场处放置一个通光孔径,然后测量强度。在光路中放置连续变小的通光孔径,测量每个通光孔径下的强度水平;然后以功率和孔径半角(或数值孔径)为坐标作图得到数据。使用彼得曼第二定义确定MFD,该方法是不假设功率分布特定形状的数学方法。使用汉克尔变换可以从远处测量值确定近场处的MFD大小。左图是通过光纤传播的光束的强度分布。右图是通过光纤传播的光束的标准强度分布,图中标注了MFD和纤芯直径。氟化锆单模光纤跳线,2.3 - 4.1 μmItem #PrefixFiberSMOperatingWavelengthAttenuation(Max/Typical)(Click for Plot)Mode FieldDiametera(Click for Plot)CutoffWavelengthDiameter(Core/Cladding)NAbBend Radius(Short Term/Long Term)ConnectorsJacketOperatingTemperatureP1-23ZZrF4Single Mode2.3 - 4.1 μm≤0.3 dB/m /0.15 dB/m(for 2.3 - 3.6 μm)10.75 μm @ 2.5 μm14.80 μm @ 3.39 μm≤2.3 μm9 ± 0.5 μm /125 +1/-2 μm0.19 ± 0.02@ 2.0 μm≥10 mm /≥40 mmFC/PC-CompatiblecRed PVDF(?3 mm)-55 to 90 °CP3-23ZFC/APC-Compatiblec模场直径(MFD)是一个标称值。它是近场中1/e2功率水平处的直径。更多信息请见模场直径定义标签。曲线标签中包含其它波长时的NA曲线。请见FC接头标签获取更多细节。产品型号公英制通用P1-23Z-FC-1单模氟化锆光纤跳线,2.3 - 4.1 μm,FC/PC,1米P1-23Z-FC-2单模氟化锆光纤跳线,2.3 - 4.1 μm,FC/PC,2米P1-23Z-FC-5单模氟化锆光纤跳线,2.3 - 4.1 μm,FC/PC,5米P3-23Z-FC-1单模氟化锆光纤跳线,2.3 - 4.1 μm,FC/APC,1米P3-23Z-FC-2单模氟化锆光纤跳线,2.3 - 4.1 μm,FC/APC,2米P3-23Z-FC-5单模氟化锆光纤跳线,2.3 - 4.1 μm,FC/APC,5米单模氟化铟光纤跳线,3.2 - 5.5 μmItem #PrefixFiberSMOperatingWavelengthAttenuation(Click for Plot)Mode FieldDiametera(Click for Plot)CutoffWavelengthDiameter(Core/Cladding)NAbBend Radius(Short Term/Long Term)ConnectorsJacketOperatingTemperatureP1-32FInF3Single Mode3.2 - 5.5 μm≤0.45 dB/m(for 3.2 - 4.6 μm)10.66 μm@ 3.39 μm≤3.2 μm9 ± 0.5 μm /125 +1/-2 μm0.26 ± 0.02@ 2.0 μm≥10 mm /≥30 mmFC/PC-CompatiblecGreen PVDF(?3 mm)-55 to 90 °CP3-32FFC/APC-Compatiblec模场直径(MFD)是标称值。它是近场中1/e2功率等级处的直径。详情请看MFD定义标签。曲线标签包含其它波长下的NA曲线图。详情请看FC接头标签。产品型号公英制通用P1-32F-FC-1单模氟化铟光纤跳线,3.2 - 5.5 μm,FC/PC,1米长P1-32F-FC-2单模氟化铟光纤跳线,3.2 - 5.5 μm,FC/PC,2米长P3-32F-FC-1单模氟化铟光纤跳线,3.2 - 5.5 μm,FC/APC,1米长P3-32F-FC-2单模氟化铟光纤跳线,3.2 - 5.5 μm,FC/APC,2米长
  • 红外波片
    我们提供的红外波片是中红外和红外波段的红外相位延迟片,包括中红外半波片和中红外四分之一波片,红外波片净孔径从10mm-18mm,光谱范围为1.8-9.0微米。可提供产品:红外相位延迟片净孔径10mm的半波片和四分之一波片,红外波片波长选择有:2940nm,3000nm, 3500nm,4000nm,4500nm,5000nm,5500nm,6000nm,6500nm,7000nm,7500nm,8000nm,,9000nm等。红外波片参数:红外波片材料:Cadmium thiogallate (CdGa2S4)红外相位延迟片典型厚度:0,5 - 0,9 mm红外相位延迟片通光孔径:10mm红外相位延迟片表面平整度:中红外波片倒角:1,5-2,0 arcmin中红外波片透光范围:0,47 - 9,5 microns中红外波片双折射 (no-ne):~ 0,005 at IR红外相位延迟片折射率:no ~ 2,3红外相位延迟片热导率:~ 3W/(mxK)损伤阈值:0,6 - 0,8 J/cm2 at 20ns pulses金属保护环:25.4mml我Felles Photonic公司是中国规模最大的进口光学器件和仪器供应商!精通光学,服务科学,以超低的价格专卖进口高性能相位延迟片,红外波片,中红外波片,红外半波片,红外四分之一波片,红外二分之一波片,发货快,欢迎垂询。
  • 奥谱天成ATT2206近红外640×512红外焦平面
    产品简介 该产品采用近红外640×512红外焦平面读出电路芯片与近红外640×512红外焦平面元光敏芯片倒焊互联,实现对探测器信号的积分、存储和输出。光敏芯片采用背照射结构,中间距25×25um2。电路工作模式为先积分后读出模式,读出速率(Pixel Rate)20KHz~10MHz,建议初次调试驱动波形时,时钟采用500KHz。性能参数器件规模近红外640×512红外焦平面像元尺寸/um225×25像元中心距/um25光谱响应/um0.9~1.7功耗/mW100峰值探测率/cmHz1/2/W≥ 1×1012@5℃,1.55 μm峰值量子效率/%≥ 80@1.55μm满阱容量/Me-0.6动态范围/dB≥60工作温度范围/℃-20~60贮存温度范围/℃-40~70
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制