当前位置: 仪器信息网 > 行业主题 > >

可变形反射镜

仪器信息网可变形反射镜专题为您提供2024年最新可变形反射镜价格报价、厂家品牌的相关信息, 包括可变形反射镜参数、型号等,不管是国产,还是进口品牌的可变形反射镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合可变形反射镜相关的耗材配件、试剂标物,还有可变形反射镜相关的最新资讯、资料,以及可变形反射镜相关的解决方案。

可变形反射镜相关的资讯

  • 首个中红外波长超级反射镜制成
    来自奥地利、美国和瑞士的科学家组成的国际科研团队,研制出了首个中红外波长范围超级反射镜,有望用于测量微量温室气体或用于切割和焊接的工业激光器等领域。研究论文发表于最新一期《自然通讯》杂志。在可见光波长范围内,现有金属反射镜的反射率为99%。在近红外范围,专用反射镜涂层的反射率高达99.9997%;但迄今最好的中红外反射镜的反射率为99.99%,光子丢失率是近红外超反射镜的33倍。人们一直希望将超反射镜技术扩展到中红外领域,以促进很多领域取得重大进展,如测量与气候变化有关的微量气体、分析生物燃料,以及提升广泛应用于工业和医疗领域的切割激光器和激光手术刀的性能等。此次,研究团队研制出的中红外超反射镜的反射率高达99.99923%。为制造出中红外超级反射镜,研究团队结合传统薄膜涂层技术与新型半导体材料和方法,开发出一种新涂层工艺。为此,他们先研制出直径为25毫米的硅基板,然后让高反射半导体晶体结构在10厘米的砷化镓晶片上生长,接着将其分成更小的圆形反射镜,再将这些反射镜安装到硅基板上,得到了超级反射镜并证明了其性能。研究人员指出,这款新型超反射镜的一个直接应用是显著提高中红外气体分析光学设备的灵敏度,可准确计量微量环境标志物,如一氧化碳等。
  • 2021数理科学部发布X射线反射镜等10个重大项目指南,拟资助5个
    8月5日,国家自然科学基金委员会发布“十四五”第一批重大项目指南及申请注意事项。其中,2021年数理科学部共发布10个重大项目指南,拟资助5个重大项目,项目申请的直接费用预算不得超过1500万元/项。2021年数理科学部共发布10个重大项目指南如下:“超大型航天结构空间组装动力学与控制”重大项目指南“材料长效使役性能高通量表征的力学理论与实验方法”重大项目指南“活动星系核反馈在星系演化中的作用”重大项目指南“致密天体活动与爆发的宽能段时变与能谱研究”重大项目指南“基于强太赫兹源的声子调控诱导电子新结构与物性研究”重大项目指南“基于铌酸锂薄膜的超高速多维光场调控及其应用基础研究”重大项目指南“粲夸克衰变中标准模型的精确检验”重大项目指南“基于LHAASO实验的粒子天体物理前沿问题研究”重大项目指南“先进核能系统中材料的若干协同损伤作用机理研究”重大项目指南“高精度X射线反射镜的关键科学与技术问题”重大项目指南10个重大项目指南关键内容如下:“超大型航天结构空间组装动力学与控制”重大项目指南一、科学目标瞄准超大型航天结构的减重设计和空间组装需求,提出满足在轨动力学要求的组装结构轻量化设计新理论;建立空间组装过程的“轨道-姿态-结构”耦合动力学新模型,揭示空间组装过程的耦合动力学演化新规律;提出空间组装过程的“轨道-姿态-结构”一体化稳定控制新理论;探索解决超大型航天结构动力学试验“天地一致性”问题的新方案。二、研究内容(一)超大型航天结构的轻量化和可控性设计。(二)超大型航天结构空间组装过程的动力学演化。(三)空间组装过程轨道-姿态-结构一体化稳定控制。(四)空间组装过程动力学与控制的地面模拟试验。“材料长效使役性能高通量表征的力学理论与实验方法”重大项目指南一、科学目标建立基于全场分析的梯度材料表征力学理论,发展多重物性宏微观高通量测试技术,通过结构与性能关系的多尺度机理研究和机器学习,构建材料短时数据与长效使役性能之间的映射关系,实现对其使役寿命的精准预测,应用于具有重要战略意义的高速列车车轴材料和全固态电池材料。二、研究内容(一)基于梯度样品全场分析的高通量表征力学理论。(二)梯度样品宏观层次高通量表征实验方法。(三)梯度样品微观层次高通量表征实验方法。(四)机理驱动的使役行为跨时空尺度映射。“活动星系核反馈在星系演化中的作用”重大项目指南一、科学目标获得不同光度活动星系核风的观测证据、以及风的速度、质量流与活动星系核光度的定量关系;将低红移星系气体的探测深度和中高红移星系的光谱数量提高一个数量级,并结合数值模拟,得到在不同红移处星系以及星系际介质的各种性质,特别是星系的恒星形成率、气体含量、星系际介质的X射线、发射和吸收线,及其与活动星系核反馈的内在关系;发展并完成星系尺度上的高分辨率数值模拟程序,获得不同的反馈模式分别对星系中气体和恒星形成率的影响以及风与辐射各自在反馈中起到的作用;将基于最真实和准确的活动星系核物理,完成一组包含新模型的宇宙学数值模拟,大幅改进目前的宇宙学尺度星系形成与演化研究。二、研究内容(一)活动星系核风的观测研究:反馈的内边界条件。(二)星系尺度上的活动星系核反馈:观测研究。(三)星系尺度上的活动星系核反馈:数值模拟研究。(四)星系外大尺度上的研究:观测约束以及宇宙学数值模拟。“致密天体活动与爆发的宽能段时变与能谱研究”重大项目指南一、科学目标发现几百个伽马射线暴,建立MeV能区高统计性的伽马暴样本,理解伽马暴相对论喷流的伽马射线辐射机制;监测上百例引力波、高能中微子、快速射电暴等爆发现象,揭示它们的爆发机制以及黑洞、中子星等致密天体的并合物理过程和机制;系统地获得十余个吸积中子星双星和黑洞双星的高能X射线时变和能谱演化特征和分类,理解黑洞周围的吸积过程、相对论喷流的产生以及硬X射线辐射机制;测量约十个致密星(中子星或者黑洞)的基本参数(质量、磁场、自转),理解致密天体的基本性质;开展银道面巡天,监视约200个X射线天体的活动,发现致密天体硬X射线新的活动并且开展后随观测证认研究。二、研究内容(一)极端天体爆发的物理机制。(二)黑洞X射线双星系统吸积与喷流过程。(三)中子星X射线双星系统吸积盘与中子星相互作用。(四)河内宽能段的巡天监测和后随观测研究。“基于强太赫兹源的声子调控诱导电子新结构与物性研究”重大项目指南一、科学目标围绕声子调控诱导电子新结构与新奇物性的研究目标,在研究手段上发展必要的突破现有太赫兹光源性能极限的强场产生新方法,实现具有宽频(整体频谱范围覆盖0.1-50 THz)、强场(场强突破GV/m)、高重复频率、频谱连续可调等优异特征的强场太赫兹光源,并通过人工微结构实现太赫兹近场强光场微区再增强条件;重点开展强场下非平衡态电子的多自由度(电、热、磁、光、谷、轨道)动力学物理过程研究,揭示光子与各量子激发在超强太赫兹光场范畴内的相互作用新机理(如电子、声子及光子复合激发机理);探索实现声子态调控的远离平衡态的新型量子态(如高温超导相、拓扑量子相、Floquet量子态等)及化学反应(如合成氨反应)的远离平衡态相干操控新效应。二、研究内容(一)强场太赫兹源调控电子行为的理论研究。(二)超强太赫兹光场构筑及实验方法研究。(三)强场太赫兹源对量子材料相干调控研究。“基于铌酸锂薄膜的超高速多维光场调控及其应用基础研究”重大项目指南一、科学目标针对片上全域光场快速调控的需求,通过超限制备技术突破铌酸锂薄膜新微纳结构、少层结构加工工艺,利用铌酸锂材料自身的多重特性,实现对光场以及部分相干光场的多维度超高速调控,实现对光场的强局域与非线性调控;发展基于电光效应的人工微结构光场多维调控新方法,并阐明其物理机理。从基础铌酸锂薄膜材料微纳加工技术开始,到片上集成光子器件,最后到片上光场快速调控,建立不同于现有光场调控的新体系。二、研究内容围绕基于铌酸锂薄膜的超高速多维光场调控技术,发展基于电光效应的人工微结构光场多维调控新机理与方法;突破现有微纳加工技术的能力限制,开展铌酸锂薄膜刻蚀机理及微纳芯片制造工艺研究,利用高品质铌酸锂薄膜光场调控芯片实现超高速多维光场调控及其应用。(一)铌酸锂刻蚀机理及铌酸锂薄膜微纳芯片制造技术。(二)铌酸锂薄膜莫尔晶格结构中光场局域及片上非线性增强。(三)铌酸锂薄膜少层微纳体系时空光场多维联合调控。(四)基于铌酸锂薄膜的光场相干性快速调控及应用。“粲夸克衰变中标准模型的精确检验”重大项目指南一、科学目标利用BESIII采集的海量粲强子样本,特别是在3.773 GeV采集的20 fb-1的数据,充分发挥近阈粲强子成对产生、背景低和量子关联等独特优势,开展中性粲介子量子关联特性的研究,精确测量相关不同末态的平均强相位差和CP本征态成分比例,为CKM矩阵的相角的精确测量提供关键参数;精确测量CKM矩阵元和,检验CKM矩阵的幺正性,探索新的CP破坏来源;精确测量粲强子衰变常数和半轻衰变形状因子,与格点QCD理论计算值比较,刻度格点QCD计算,探寻超出标准模型新现象;系统地研究粲强子的强子末态衰变,研究强子谱学和末态相互作用,检验夸克味对称性;研究粲强子衰变,高精度检验轻子普适性,寻找稀有或禁戒的衰变过程,精确检验标准模型理论、寻找超出标准模型的新物理;在理论上发展和完善非微扰能区的格点QCD计算和有效理论模型,理解粲强子弱衰变的动力学,检验相关的唯象模型,提高对粲强子衰变中CP破坏、衰变常数和形状因子等理论预言的精度。二、研究内容(一)阈值处中性粲介子量子关联性研究。(二)粲强子的强子末态衰变机制研究。(三)精确测量CKM矩阵元和粲介子衰变常数。(四)精确测量粲介子半轻衰变形状因子和检验轻子普适性。(五)粲强子衰变中探索新粒子和新相互作用。“基于LHAASO实验的粒子天体物理前沿问题研究”重大项目指南一、科学目标瞄准银河系内1015eV宇宙线起源这一重大问题,基于LHAASO实验数据精确测量每个超高能伽马射线源的辐射能谱、空间分布和时变,联合国内外射电、光学、X射线等设备数据完成相应天体源的多波段观测和分析,建立和优化多波段辐射模型,研究带电粒子在天体中的加速过程与辐射特征,寻找宇宙线起源和加速证据,同时基于LHAASO数据完成银盘弥散伽马射线、膝区宇宙线分成分能谱和宇宙线大尺度各向异性测量,建立宇宙线在银河系内的起源、加速和传播的整体图像。二、研究内容(一)超高能伽马射线源的搜寻与测量。(二)伽马射线源多波段多信使研究。(三)伽马射线源内的粒子加速、辐射与输运过程的研究。(四)星际介质中弥散伽马射线相关物理研究。(五)基于宇宙线的能谱和各向异性测量研究其起源和传播。“先进核能系统中材料的若干协同损伤作用机理研究”重大项目指南一、科学目标瞄准服役于聚变能等先进核能的典型材料,充分利用国内大型托克马克、高热负荷测试和多束离子辐照等装置,厘清高能中子-嬗变氢氦、中子辐照-粒子流-热负荷两类协同损伤作用的耦合机制;阐明多种因素作用下材料遭受的协同损伤效应的机理;建立能够模拟上述协同损伤作用的实验与计算模拟方法;基于计算和实验模拟,实现在聚变堆等综合服役环境下国产低活化钢、氧化物弥散强化(ODS)钢、钨基合金等关键材料的筛选及性能评估。二、研究内容(一)高能中子辐照的离位损伤与氢、氦对材料的协同损伤作用机制研究。(二)高能中子辐照离位损伤与热负荷、粒子流对聚变堆第一壁协同损伤的作用机制研究。(三)多因素协同损伤效应的长时大尺度计算模拟方法建立。(四)聚变中子-氢-氦协同效应的多离子束模拟实验方法建立。“高精度X射线反射镜的关键科学与技术问题”重大项目指南一、科学目标基于超高精度反射镜表面形貌对相干X射线波前传输的影响,研究单晶硅纳米形貌的原子级构建规律,揭示超强X射线辐照下单晶硅材料和薄膜的损伤机理及力热变形机制;建立跨尺度全频谱纳米表面形貌的在线和离线高精度表征方法,发展大尺寸超高精度反射镜的复合加工技术和集成技术,实现相干X射线波前的在线实时操控和自适应主动补偿;形成具有自主知识产权的X射线高精度反射镜的全链条创新技术体系。二、研究内容(一)大尺寸复杂轮廓单晶硅纳米精度表面形貌构造规律研究。(二)全频谱纳米形貌的综合检测评估方法研究。(三)高亮度相干X射线与材料表面相互作用机制。(四)光机集成系统中跨尺度表面形貌的多物理场影响规律研究。
  • 太阳能材料反射率测定方法
    材料的表面反射率是目前太阳能行业中最常关注的测试项目之一。这类测试所涉及到的样品种类繁多,包括金属反射涂层、半导体材料与涂层以及防护玻璃上面的防反膜等。很多材料的反射同时包含了镜面反射和漫反射两种类型,这对测试方法是否能将光谱干扰降到最低、获得准确的反射率数据提出了挑战。材料表面的反射类型:A.镜面反射;B.漫反射镜面反射镜面反射率可以用不同类型的镜面反射附件(例如VW型反射附件、VN型反射附件和通用反射附件URA)进行测量。VN型反射附件(单次样品反射)和VW型反射附件(两次样品反射)是根据背景(V)和样品(N和W)测量模式的几何光路而命名。背景和样品测量模式切换过程中镜子的移动是手动操作的。URA是一种可变角度、单次样品反射的VN型附件,其中镜子的移动和入射角度的选择完全由软件控制电子步进马达自动调节。PerkinElmer的通用反射附件URA漫反射漫反射率可以用积分球进行测量。测试光线分别经过参比光路和样品光路中的光学元件,通过Spectralon积分球表面开口,进入球体内部的参比窗口和样品反射窗口。积分球体积越大,开口率越小,测试准确率越高。PerkinElmer 150mm积分球内部检测器前面安装了具有Spectralon涂层的挡板,避免了样品初次反射光线进入检测器。PerkinElmer的150mm积分球及光路示意图■ 测试样品 样品描述1镜面反射成分很少的漫反射材料2反射强度较低的镜面涂层3中等反射强度的镜面涂层4反射强度较高的镜面半导体材料■ 光谱结果 样品1(左上)、2(右上)、3(左下)、4(右下)的光谱。黑色曲线为150mm积分球测量结果,红色曲线为60mm积分球测量结果,绿色光谱曲线为URA测量结果。样品1:150mm积分球测量的光谱强度更高,因为该积分球的窗口面积比例低于60mm积分球。因此更多的样品漫反射光线可以被收集起来,更接近准确值。样品2:150mm积分球测量结果与URA附件测量结果非常接近。60mm积分球测量结果的反射率偏高,这是因为热点区域主导并且富集了检测器所测量的光线。此外,积分球内部的漫反射光线很少,因此基本没有光线通过开放窗口逃离。样品3:60mm积分球测量的光谱存在波长漂移和强度平移的问题。150mm积分球与URA附件测量的光谱之间存在一些不规则的差异。样品4:60mm积分球和URA附件的测试结果差异明显(5%R),150mm积分球与URA附件所测量的样品光谱也不再重叠。结论镜面反射非常强或者完全是镜面反射的样品需要使用URA、VN或者VW等绝对镜面反射率附件进行测量。太阳能行业的一些材料具有很强的镜面反射,但是也含有少量的漫反射成分。对于这种类型的样品,可以使用150mm积分球来测量。通过测量铝镜消除热点产生的光谱干扰,获得可以接受的绝对反射率数据。如果样品与参比铝镜的反射率比较接近,可以获得最佳的测试结果。更多详情,请扫描二维码下载完整应用报告。
  • 中国架起世界光谱望远镜之王
    中国国家重大科学工程——大天区面积多目标光纤光谱天文望远镜(英文简称LAMOST)中新社记者 孙自法/摄  新华网北京6月4日电 (记者 俞铮 王爱华) 24块造价昂贵的六边形反射镜,像被“上帝之手”操控,任意变幻镜面形状 每块对角径1.1米、厚25毫米的镜面,竟也能神奇地凹凸变形。这是世界上最强大光谱巡天望远镜的核心组件,采用的是中国人开创、全球独一无二的镜面自动拼接兼具变形高难度技术。  总面积20平方米的巨大反射镜自动拼接、变形的目的,是为了精确指向不同高度或位置的天体,配合50米长的钢筋混凝土巨型“镜筒”以及另一端同样拼接而成的30平方米主镜,这个建在距北京城东北170公里一座山上的超级望远镜即将开始对浩瀚星空进行“户口普查”。  中国科学院国家天文台兴隆观测基地的“大天区面积光纤光谱天文望远镜”4日通过了国家验收。  耗资2.35亿元人民币、貌似导弹发射架的这座超级望远镜,最高处超过15层楼,由口径3.6米的反射施密特改正镜、口径4.9米的球面主镜和焦面组成光学系统。成像的焦面上装着4000根可自动定位的光纤,连接16台光谱仪实时记录数据。望远镜每次夜间观测1.5小时,最多可获得4000条天体光谱。  300多年前牛顿偶然发现太阳光被三棱镜散解成有色光,启发后人用光波谱线确定物质的化学组成。光谱也是天文学家读懂不同天体化学组成、密度、大气、磁场信息的钥匙。人类成像巡天活动记下数百亿天文目标,仅万分之一已测过光谱。绝大多数遥远天体,依然是“知其然而不知其所以然”。  超级望远镜项目总工程师崔向群在接受新华社记者专访时说:“未来3到5年,科学家将用它获得2.4万平方度范围内250万颗恒星、250万个星系、150万个亮红星系、100万个类星体的光谱数据。”  伽利略率先制成了天文望远镜,此后无数望远镜观天400年。中国的这项天文观测计划雄心勃勃,旨在深入认识暗物质、暗能量、星系形成和演化。  崔向群说:“在同一块大镜面上采用可变形薄镜面主动光学技术和拼接镜面主动光学技术,在一个光学系统中同时采用两块大的拼接镜面,4000根光纤高精度控制定位,都是世界首创。”  这些首创技术一举解决了大视场望远镜兼具大口径的世界级难题。此前中国最大的光学望远镜口径为2.16米,同样矗立在兴隆基地,也用于光谱观测。  国际主动光学技术权威雷威尔逊评价:“中国的新设备是主动光学技术最先进和雄心勃勃的应用。”  新设备已进行了4次试观测,每次得到3600条光谱。崔向群说:“试观测结果令人满意,但设备仍需调试。好比每次都能准确打到靶子,不过还没打中10环。”  望远镜正式运行6年后,有望获取至少1000万条天体光谱数据。所有数据,将与国际科学界共享。  美国著名天文学家理查德埃里斯说:“一架大口径天文望远镜是人类文明进步的最好例子,看到了这个新家伙,我们才知道中国人都做成了些什么。”  中国人还打算在南极架一台新的超级望远镜,那里观测范围更大、条件更好。
  • 俞书宏院士团队和吴恒安教授团队成功揭示淡水河蚌铰链中可变形硬组织耐疲劳机制
    脆性材料作为结构或功能部件被广泛应用于航空航天、电子器件和组织工程等领域。由于人工脆性材料对微裂纹和不易察觉的缺陷很敏感,在长时间的循环载荷作用下,材料很容易累积损伤产生疲劳裂纹,进而存在失效的风险。随着可折叠穿戴设备的发展,对具有高疲劳抗性的可变形功能材料的需求日益凸显。通过模仿典型的生物矿物材料如珍珠母、骨骼等的结构设计可以提升脆性材料疲劳抗性,但这常依赖于疲劳裂纹扩展过程中增韧行为,然而一旦裂纹开始扩展,就会对器件的性能产生不可逆的影响,因此寻找并开发新的耐疲劳结构模型对未来可变形功能材料的设计制备具有重要的科学意义和应用价值。中国科学技术大学俞书宏院士团队和吴恒安教授团队成功揭示了双壳纲褶纹冠蚌铰链内的可变形生物矿物硬组织的耐疲劳机制,提出了一种多尺度结构设计与成分固有特性相结合的耐疲劳设计新策略,为未来耐疲劳结构材料的合理创制发展提供了新的见解。研究成果以“Deformable hard tissue with high fatigue resistance in the hinge of bivalve Cristaria plicata”为题,于6月23日发表在国际顶尖学术期刊《Science》上。审稿人评价称:“这份手稿展示了一个非常有趣的工作”、“这是一份令人兴奋的稿件。它集成了诸多表征技术来理解双壳纲铰链组织的显著疲劳抗性”、“这无疑激发了对生物复合材料的进一步研究,以设计抗疲劳性能增强的新材料”。同期《Science》观点栏目(Perspectives)以“A bendable biological ceramic”为题发表了评述(Science 2023, 380, 1216-1218),评述称“通过整合不同尺度的原理——从铰链的整体结构到单个晶体的原子结构——孟等人揭示了大自然如何主要从脆性成分中创造出抗疲劳、可弯曲、有弹性的结构。这些跨尺度原理要求在最精细的尺度上精确,而软体动物如此精确地沉积壳的细胞和分子机制是一个正在探索的领域”;“匹配生物精细控制对于对生物启发材料感兴趣的人类工程师来说是一个特别的挑战,正如开发模仿珍珠质强度和韧性的复合材料所面临的困难所证明的那样”;“尽管孟等人研究的力学性能与这种特殊生物体的需求相匹配,这些原理如何在更广泛的系统范围内得到完善,这是令人兴奋的前景。”论文共同第一作者为中国科学技术大学合肥微尺度物质科学国家研究中心博士研究生孟祥森,近代力学系周立川博士(现就职于合肥工业大学)、化学系刘蕾博士。我校俞书宏院士、吴恒安教授和茅瓅波副研究员为论文通讯作者。双壳纲动物褶纹冠蚌(Cristaria plicata)又称鸡冠蚌,是一种常见的淡水蚌类。为了满足生存需求(滤食、运动等),其外壳在一生中需要进行数十万次的开合运动,而连接两片外壳的铰链部位也会经历反复的受压和变形,表现出优异的耐疲劳性能。本工作中,研究人员揭示了铰链部位中的折扇形矿物硬组织所蕴含的跨尺度耐疲劳设计原理。从计算机断层扫描图(CT)和剖面光学照片可以看出,铰链可以分为两个不同的区域:外韧带(OL)和折扇形矿物硬组织(FFR)(图1,A和B)。研究人员首先观察了这两个区域在双壳开合过程中的运动行为(图1,D和E),并结合有限元分析(FEA),明晰了不同区域所承担的力学角色。在闭合过程中,OL发生拉伸,承担主要的周向应力并储存大部分弹性应变能;FFR区域在周向弯曲变形,并在受限的径向变形下提供强有力的径向支撑用以固定OL(图1,F到H)。图1(A)褶纹冠蚌和截面照片;(B)铰链切片照片和CT重构图;(C)在正常开合和过载状态下的疲劳测试结果;(D)开合前后铰链各区域形状变化及其轮廓图;(E)有限元模型对应的开合前后的铰链各区域形状变化及其轮廓图;(F)铰链有限元分析模型示意图;(G)开合状态下铰链各区域周向应力分布;(H)开合状态下铰链各区域径向应力分布。研究人员对FFR在不同尺度上的观察发现,其具有跨尺度多级结构特征。在宏观尺度上,FFR的扇形外形能使其在OL和外壳之间实现有效的载荷传递。进一步的深入观察发现,FFR由弹性有机基质和嵌入其中的脆性文石纳米线组成。文石纳米线直径约为100-200纳米,线的长轴方向在形貌上和扇形的径向方向一致,在晶体学上纳米线沿002晶向取向(图2,A到H)。考虑到文石晶体在002晶向的压缩模量远大于其他晶向,这种微观形貌和晶体学取向上的一致性意味着FFR能有效地为OL的拉伸提供支撑(图2,I和J)。这一结果也通过压缩力学和FEA模拟进行了进一步的验证。此外,FEA模拟结果显示,这种微米尺度上的软硬复合微观结构在压缩、拉伸、剪切三种受力状态下能够进行协调变形,在这个过程中有机基质承担了大部分的压缩和剪切应变,极大地减少了材料内部的应力集中,从而避免了文石纳米线侧向断裂,降低了FFR发生疲劳损伤的可能性。图2(A)FFR在纵向上的自然断面扫描图;(B)FFR在横向上的自然断面扫描图;(C和D)FFR脱钙处理之后的扫描图;(E和F)文石纳米线中的孪晶结构透射电子显微图片;(G和H)文石纳米线沿长度方向上的晶体学特征;(I和J)整个FFR中纳米线在形貌上和晶体学上的取向分析示意图。从FFR的横截面观察,文石纳米线呈近似六边形,研究人员通过高分辨透射电子显微镜也在纳米线中发现了纳米孪晶结构,考虑到文石纳米线沿002方向生长,这一结构可能与文石晶体Pmcn空间群易形成(110)孪晶界密切相关。这种沿纳米线纵向方向的孪晶结构的存在,在纳米尺度上大大强化了纳米线抗弯曲断裂的能力(图2,E和F)。与典型的天然硬质生物矿物材料(如骨骼、牙釉质)以及人工材料(如金属、水凝胶)等相比,FFR所展现的特殊之处在于它能在承担较大周向变形的同时,保持长时间的结构功能的稳定。这项研究从宏观到微纳米尺度上揭示了FFR的跨尺度多级结构设计原则(图3)。图3 典型生物和人工结构材料的耐疲劳设计机制。FFR中所具备的跨尺度结构特征使其在可变形能力上明显优于典型的生物矿物如牙釉质和骨骼,与常见的人工弹性体材料相比,FFR也一定程度保持了其高硬度和刚度。这项研究揭示了含脆性基元的生物矿物材料在较大形变下的耐疲劳设计新机制,填补了国际上含脆性组元的仿生耐疲劳材料设计的空白,所提出的整合跨尺度结构特征与功能特性的设计策略,能够在不同尺度上充分发挥每种成分的固有特性,从而实现材料整体性能的优化。这种兼顾变形性和耐疲劳性的跨尺度设计原则有望为未来功能材料的仿生设计和创制提供崭新思路。该研究得到了国家重点研发计划、新基石科学基金会、国家自然科学基金重点项目和中国科学院青促会等项目的资助支持。论文链接:https://www.science.org/doi/10.1126/science.ade2038Featured by Science Perspectives:https://www.science.org/doi/10.1126/science.adi5939
  • 光学薄膜透射反射性能检测方法进展
    随着智能穿戴设备、消费电子设备应用兴起,生物识别、物联网、自动驾驶、国防/安防等领域对光电镀膜材料的需求日益旺盛。不同行业根据使用场景,对光学镀膜的性能提出了更加多样化的需求,越来越多需要测试镀膜样品的变角度透射、变角度反射信号。传统变角度反射测试一般为相对反射率测试,需要通过参比镜进行数据传递,往往参比镜在不同角度下的绝对反射率曲线很难获取,给测试带来很大困难,同时在数据传递中也会增加误差的来源。随着智能穿戴设备、消费电子设备应用兴起,生物识别、物联网、自动驾驶、国防/安防等领域对光电镀膜材料的需求日益旺盛。不同行业根据使用场景,对光学镀膜的性能提出了更加多样化的需求,越来越多需要测试镀膜样品的变角度透射、变角度反射信号。传统变角度反射测试一般为相对反射率测试,需要通过参比镜进行数据传递,往往参比镜在不同角度下的绝对反射率曲线很难获取,给测试带来很大困难,同时在数据传递中也会增加误差的来源。本文主要介绍采用PerkinElmer紫外可见近红外光谱仪配置可变角度测试附件,直接测试样品不同角度下绝对反射率、透射率曲线,无需参比镜校准,操作简单方便,测试结果更加准确。附件为变角度绝对反射、变角度透射率测试附件,如下图所示,检测器和样品台均可以360度旋转,通过样品台和检测器配合旋转,测试不同角度下透射和反射信号。PerkinElmer Lambda1050+ 光谱仪自动可变角附件光路图图1 仪器外观图固定布局 工具条上设置固定宽高背景可以设置被包含可以完美对齐背景图和文字以及制作自己的模板下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。以下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。以下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。样品变角度透射测试采用自动可变角附件可以方便快捷的测试样品不同角度下透射数据,自动测试样品不同角度下P光和S光下透射率曲线,一次设置即可完成所有角度在不同偏振态下透射率曲线测试,无需多次操作,测试曲线如下图所示。图2 样品不同角度和偏振态下透射率测试数据样品变角度透射/反射曲线测试同一个样品,可以通过软件设置一次性测试得到样品透射和反射率曲线,如下图所示,该样品在可见波长下反射率大于99.5%,透射率低于0.5%,可同时表征高透和减反性能。图3 样品45度透射和反射曲线测试NIST标准铝镜10度反射率曲线测试采用自动可变角附件测试NIST标准铝镜10度下反射率曲线,如下图所示,黑色曲线为自动可变角附件测试曲线,红色为NIST标准值曲线,发现两条测试曲线完全重合,进一步证明测试系统的可靠性,可以准确测试样品的光学数据。图4 NIST标准铝镜10度反射率曲线测试(红色为NIST标准曲线)样品变角度全波长反射曲线测试(200-2500nm)软件设置不同的测试角度和偏振方向,自动测试样品不同角度下P光和S光偏振态下反射率曲线,如下图所示,200-2500nm整个波段下测试曲线均有优异信噪比,尤其是在紫外区(200-400nm),可以完成各波长范围的反射性能测试。图5 样品全波段(200-2500nm)变角度反射率测试不同膜系设计的镀膜样品性能验证测试样品600-1400nm下45度反射率曲线,该样品在1200nm以上属于高反射率,反射率大于99.5%,同时需要关注600-1200nm范围各个吸收峰情况,该波段下吸收峰非常尖锐,同时吸收峰较多,需要仪器具备高分辨率,从而准确测试出每一个尖锐吸收峰信号。图6 膜系设计验证样品45度反射率测试双向散射分布函数(BSDF)测试除了测试常规变角度透射和反射曲线外,自动可变角附件可以自动测试样品不同角度下透射和反射率信号,可以得出样品不同角度下的透射分布函数(BTDF)和反射分布函数(BRDF)信号,最终得到双向散射分布函数(BSDF)。采用该附件可方便测试样品双向散射分布函数(BSDF)、双向反射分布函数(BRDF)、双向透射分布函数(BTDF)等光学参数测试,测试结果如下图所示:图7 BRDF和BTDF测试如下图所示,测试样品不同波长下BSDF分布函数曲线(BRDF + BTDF),从而可以得出样品随不同角度下透射和反射信号变化情况。图8 样品不同波长下BSDF(BRDF+BTDF)测试窄带滤光片测试Lambda系列光谱仪为双样品仓设计,自动可变角测试附件可与标准检测器、积分球检测器自由更换。对于窄带滤光片样品,即需要准确测设带通区域的透过率、半峰宽,也需要准确测试截止区吸光度值(OD值),可直接切换标准检测器进行检测。图9 用于生物识别的滤光片透射和OD值测试数据图10 用于激光雷达的镀膜镜片透射和OD值测试数据综上,采用Lambda系列紫外/可见/近红外分光谱仪,搭配自动可变角测试附件、标准检测器、积分球等多种采样附件,可以组合出完备的材料光学性能测试平台,满足光学镀膜测试的多样化需求,更加准确便捷地得到样品的光学检测数据。
  • 北航: 具有高运动精度和高输出力的可变形磁流体机器人
    在生物医学研究中,对生物颗粒(如细胞和生物组织)的操作,特别是捕获和运输,是各种生物应用的基础。许多工具和驱动系统被设计用来提高操作的准确性和效率。磁驱动机器人具有精确操纵粒子或生物组织的能力,在生物医学、生物工程和生物物理学领域具有重要的潜力。然而,具有预定形状的刚性机器人的变形能力是有限的,这限制了其在狭小的空间的运动。 近日,北京航空航天大学机械工程学院仿生与微纳研究所冯林副教授等研发了一种可变小型机器人,该机器人是利用具有磁性和流体性质的铁磁流体这一新型材料所研制的。该磁流体基机器人不仅可以根据不同的磁场的分布形成不同的形状,从而完成不同的任务;并且还可以借助于操作平台的疏水处理,使得磁流体基机器人与基板间的摩擦减小,进而简单高效地提高了机器人的实际输出力。图1. 通过多种形状的永磁铁产生的集中磁场改变磁流体形状进而达到搬运不同模块的目的为了证明这种磁流体基机器人所具有的且刚性机器人所欠缺的实际应用能力,作者设计了几个验证实验:1.制造不同形状的永磁体并磁化,观察不同磁场下磁流体基机器人的变形情况;2. 打印不同形状的模块,测试磁流体机器人的搬运能力;3.打印狭缝,测试机器人穿越窄缝的性能。通过采用PμSL 3D打印技术(nanoArch S140,摩方精密),实现了验证实验中的搬运模块、永磁模具及狭缝的精密制造。图2. 永磁体的制造流程及磁流体基机器人的变形图3. 磁流体基机器人在平面上的三自由度运动图4. 磁流体基机器人穿越狭缝动画及实物演示该项研究成果获得国家重点研发计划(No.2019YFB1309700)及北京新星科技计划项目(No. Z191100001119003)支持,以“Deformable ferrofluid-based millirobot with high motion accuracy and high output force”为题发表于国际期刊《Applied PhysicsLetters》(北京航空航天大学陈迪晓硕士为第一作者)。文章链接:https://doi.org/10.1063/5.0042893官网:https://www.bmftec.cn/links/10
  • 北航: 具有高运动精度和高输出力的可变形磁流体机器人
    在生物医学研究中,对生物颗粒(如细胞和生物组织)的操作,特别是捕获和运输,是各种生物应用的基础。许多工具和驱动系统被设计用来提高操作的准确性和效率。磁驱动机器人具有精确操纵粒子或生物组织的能力,在生物医学、生物工程和生物物理学领域具有重要的潜力。然而,具有预定形状的刚性机器人的变形能力是有限的,这限制了其在狭小的空间的运动。 近日,北京航空航天大学机械工程学院仿生与微纳研究所冯林副教授等研发了一种可变小型机器人,该机器人是利用具有磁性和流体性质的铁磁流体这一新型材料所研制的。该磁流体基机器人不仅可以根据不同的磁场的分布形成不同的形状,从而完成不同的任务;并且还可以借助于操作平台的疏水处理,使得磁流体基机器人与基板间的摩擦减小,进而简单高效地提高了机器人的实际输出力。图1. 通过多种形状的永磁铁产生的集中磁场改变磁流体形状进而达到搬运不同模块的目的为了证明这种磁流体基机器人所具有的且刚性机器人所欠缺的实际应用能力,作者设计了几个验证实验:1.制造不同形状的永磁体并磁化,观察不同磁场下磁流体基机器人的变形情况;2. 打印不同形状的模块,测试磁流体机器人的搬运能力;3.打印狭缝,测试机器人穿越窄缝的性能。通过采用PμSL 3D打印技术(nanoArch S140,摩方精密),实现了验证实验中的搬运模块、永磁模具及狭缝的精密制造。图2. 永磁体的制造流程及磁流体基机器人的变形图3. 磁流体基机器人在平面上的三自由度运动图4. 磁流体基机器人穿越狭缝动画及实物演示该项研究成果获得国家重点研发计划(No.2019YFB1309700)及北京新星科技计划项目(No. Z191100001119003)支持,以“Deformable ferrofluid-based millirobot with high motion accuracy and high output force”为题发表于国际期刊《Applied PhysicsLetters》(北京航空航天大学陈迪晓硕士为第一作者)。文章链接:https://doi.org/10.1063/5.0042893官网:https://www.bmftec.cn/links/10
  • 北航《Applied Physics Letters》: 具有高运动精度和高输出力的可变形磁流体机器人
    在生物医学研究中,对生物颗粒(如细胞和生物组织)的操作,特别是捕获和运输,是各种生物应用的基础。许多工具和驱动系统被设计用来提高操作的准确性和效率。磁驱动机器人具有精确操纵粒子或生物组织的能力,在生物医学、生物工程和生物物理学领域具有重要的潜力。然而,具有预定形状的刚性机器人的变形能力是有限的,这限制了其在狭小的空间的运动。 近日,北京航空航天大学机械工程学院仿生与微纳研究所冯林副教授等研发了一种可变小型机器人,该机器人是利用具有磁性和流体性质的铁磁流体这一新型材料所研制的。该磁流体基机器人不仅可以根据不同的磁场的分布形成不同的形状,从而完成不同的任务;并且还可以借助于操作平台的疏水处理,使得磁流体基机器人与基板间的摩擦减小,进而简单高效地提高了机器人的实际输出力。图1. 通过多种形状的永磁铁产生的集中磁场改变磁流体形状进而达到搬运不同模块的目的为了证明这种磁流体基机器人所具有的且刚性机器人所欠缺的实际应用能力,作者设计了几个验证实验:1.制造不同形状的永磁体并磁化,观察不同磁场下磁流体基机器人的变形情况;2. 打印不同形状的模块,测试磁流体机器人的搬运能力;3.打印狭缝,测试机器人穿越窄缝的性能。通过采用PμSL 3D打印技术(nanoArch S140,摩方精密),实现了验证实验中的搬运模块、永磁模具及狭缝的精密制造。图2. 永磁体的制造流程及磁流体基机器人的变形图3. 磁流体基机器人在平面上的三自由度运动图4. 磁流体基机器人穿越狭缝动画及实物演示该项研究成果获得国家重点研发计划(No.2019YFB1309700)及北京新星科技计划项目(No. Z191100001119003)支持,以“Deformable ferrofluid-based millirobot with high motion accuracy and high output force”为题发表于国际期刊《Applied PhysicsLetters》(北京航空航天大学陈迪晓硕士为第一作者)。文章链接:https://doi.org/10.1063/5.0042893
  • 功能强大!科学家用CRISPR制造可变形智能材料
    p style="text-align: justify text-indent: 2em "还有什么是CRISPR不能做的吗?科学家已经使用这种基因编辑工具制造了大量基因改造生物,同时还用它来追踪动物发育、检测疾病以及控制害虫。/pp style="text-align: justify text-indent: 2em "如今,他们又发现了这种基因编辑工具的另一个应用——span style="color: rgb(0, 176, 240) "使用CRISPR创建智能材料,后者能够根据指令改变自己的形状。/span/pp style="text-align: justify text-indent: 2em "研究人员在日前出版的美国《科学》杂志上发表报告称,这种可变形的材料能够用来运送药物,并为几乎所有的生物信号“站岗放哨”。这项研究由剑桥市麻省理工学院生物工程师James Collins主持。/pp style="text-align: justify text-indent: 2em "Collins的团队研究的是由脱氧核糖核酸(DNA)链连接在一起的充满水的高分子聚合物(被称为DNA水凝胶)。为了改变这些材料的性质,Collins和他的团队采用了一种形式的CRISPR,后者使用一种叫做Cas12a的DNA剪切酶。(基因编辑器CRISPR-Cas9使用Cas9酶在需要的位置剪切DNA序列)/pp style="text-align: justify text-indent: 2em "Cas12a酶可以被编程来识别一种特定的DNA序列。这种酶会切断其目标的DNA链,然后切断附近的单链DNA。/pp style="text-align: justify text-indent: 2em "这一特性使得研究人员能够构建一系列由CRISPR控制的水凝胶,其中包含一个目标DNA序列以及单链DNA——当Cas12a识别出一个刺激物中的目标序列后,这些单链DNA就会断裂。/pp style="text-align: justify text-indent: 2em "单个DNA链的断裂触发水凝胶改变形状,或者在某些情况下完全溶解,进而释放有效载荷。/pp style="text-align: justify text-indent: 2em "例如,作为一项治疗的一部分,出于对刺激的响应,研究小组创造的这些水凝胶可以释放酶、药物甚至人类细胞。/pp style="text-align: justify text-indent: 2em "Collins希望这种水凝胶能被用来创建智能的治疗方法,例如在肿瘤存在时释放抗癌药物,或者在感染部位周围释放抗生素。/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "研究人员还将CRISPR控制的水凝胶集成到电子电路中。/span/pp style="text-align: justify text-indent: 2em "在一项尝试中,他们把水凝胶放入一个名为微流体室的小芯片状的装置中,这个装置与一个电子电路相连。当检测到来自包括埃博拉病毒和耐甲氧西林金黄色葡萄球菌等在内的病原体的遗传物质时,作为响应,该电路将会被关闭。/pp style="text-align: justify text-indent: 2em "研究团队甚至利用水凝胶开发了一个诊断工具原型——当它在实验室样本中识别出埃博拉病毒的遗传物质时便会发送无线电信号。如果一名团队成员在背包里携带了无线电探测器,他只需简单地走近这些样本就能识别出其中的阳性样本。/pp style="text-align: justify text-indent: 2em "纽约州康奈尔大学伊萨卡分校生物工程师Dan Luo说,CRISPR水凝胶是对其他响应性水凝胶的一次改进,因为科学家可以很容易地确定是什么触发了材料的变化。过去创造智能水凝胶时所使用的酶要么不能切割特定的DNA 序列,要么只能切割少量特定的序列,进而限制了它们的适应性。/pp style="text-align: justify text-indent: 2em "“我们现在正处于CRISPR的时代。”Collins说,“它已经接管了生物学和生物技术。我们已经证明,它现在可以进入材料和生物材料领域。”/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "CRISPR又被称为基因剪刀,是生物科学领域的游戏规则改变者,这种突破性的技术通过Cas9酶发现、切除并取代DNA的特定部分。/span这种技术的影响极其深远,从改变老鼠皮毛的颜色到设计不传播疟疾的蚊子和抗虫害作物,再到修正镰状细胞性贫血等各类遗传疾病等等。该技术十分精准、廉价、易于使用,并且非常强大。/p
  • 光的反射和折射定律改变将衍生新型光学元件
    中国学生在哈佛大学做博士后研究发现  人工界面改写光的反射和折射定律  光的折射和反射定律是几何光学的基础。但是美国哈佛大学物理学家用一系列实验演示了光线的传播可以不遵从这些经典定律。这意味着,或许有一天当你用一块平面镜端详自己容貌时,看到的却是哈哈镜的变形效果。  光在不同介质中的传播速度不一样。当一束光从空气中斜射向水中,光束的传播方向会发生改变,这就是所谓的折射现象。它的准确表述即折射定律是很多年前由物理学家斯涅尔、数学家笛卡尔以及费马确立的。这一定律表明,光线在界面的折射角仅由光在两种物质中的传播速度决定。而早在古希腊时期由欧几里德发现的反射定律更简单:光的反射角等于入射角。  经典的反射和折射定律都很自然地认为一个界面仅仅是区分两种物质的理想边界,换句话说,是两种介质而不是它们的截面影响了光的传播。哈佛大学研究人员的创新在于意识到界面可以成为决定光的传播的因素。他们的实验表明,精巧设计的界面能够干预光的传播。  研究人员利用硅片和空气界面处一层薄薄的金属阵列来演示一系列违背经典反射和折射定律的现象。这个阵列中的每个组成单元都类似微小的英文字母“V”,其大小和间距都远小于光的波长以及入射光束横截面的尺寸。这些“V”字形的单元的大小、夹角和朝向都不同,这样设计是为了控制光波和不同单元的相互作用时间:每个金属“V”都类似一个光的陷阱,能够将光波“囚禁”一段时间再释放出来。  阵列的设计使得这个“囚禁”时间沿界面从右向左线性增加,这样即使垂直入射,光束不同部分经历不同的时间延迟,透射以及反射光束就不再沿着垂直于界面的方向传播了。而当光以倾斜的角度入射,按不同的“界面”设计,反射和折射光可以被操纵朝向任何方向。反射角不一定等于入射角,反射光甚至可以被“反弹”回光源方向,而不是像一般情况那样折向远离光源方向。这就是平面镜可以有哈哈镜的效果的原因。  这项成果2日发表在美国新一期《科学》杂志上,第一作者虞南方目前在哈佛大学工程和应用科学学院做博士后研究,虞南方2004年本科毕业于北京大学电子学系,2009年在哈佛大学获博士学位。  利用界面来控制光束不同部分的时延是一个具有革新意义的概念。虞南方告诉新华社记者,他们已用这种人工界面产生了“光涡旋”,这种奇异的光束在空间里螺旋前进,因而可以用来操纵旋转微小的悬浮颗粒。他预计,这一概念将衍生出一系列有用的光学元件,比如可以纠正相差的超薄平面聚焦镜片、可以采集大范围入射阳光的太阳能汇聚装置。哈佛大学目前已就这一成果提出专利申请。
  • 定制镜面反射测量附件
    1. 镜面反射附件可以用来干什么呢? 镜面反射与我们的日常生活密切相关,如利用镜面反射进行照明和聚集能量的日光灯灯罩、高原上的太阳灶,另外,一些显示器面板,如电脑、手机的显示屏,需要使用增透膜(AR涂层),减少镜面反射,从而让屏幕的画面更清晰,减少鬼影和光斑。 在研发生产或质量检测中,需要对这些元件进行镜面反射测定,据此评价它们的性能。由于这些元件的种类多样,需要测定不同固定角度下的镜面反射,因此定制不同入射角的镜面反射附件可以直接测定不同元件的镜面反射率,提高评价效率。可用于测定光学玻璃,塑料,滤光片,镜子等样品。能够为从事玻璃,滤光片及化学领域的客户带来解决方案。2.镜面反射附件是什么样子的呢? 日立紫外-可见-近红外分光光度计UH4150在镜面反射测量中,可以提供4种固定入射角的标准选配附件,分别是5°,12°,30°和45°。凭借丰富的研发经验,日立可以定制不同固定入射光角度的镜面反射附件。附件的详细信息,请点击以下链接。https://www.instrument.com.cn/netshow/sh102446/s926340.htm有任何关于日立定制附件的问题,请拨打: 400-630-5821
  • 北航冯林课题组《Journal of Applied Physics》:具有全方位自适应移动性的可变形磁流体微型机器人
    磁活性流体或铁流体在外部磁场作用下可以改变其形状和粘度。它可以在较高浓度的磁性粒子中获得高的磁驱动力。由于其独特的性能,铁流体在众多领域有较为广泛的应用。当铁流体的载体液体和环境液体不相容时,前者因其高度的自聚性并不会在小体积中迅速分散。这一特性可以有效地防止磁性纳米粒子扩散过快。同时,基于其流体特性,铁流体具有较高的可变形性,并能通过狭窄的通道和障碍物。此外,铁流体在磁场中也具有高输出力。然而控制铁流体机器人在三维空间的运动,并使用机器人进行药物输送仍有待研究。近日,北京航空航天大学机械工程学院仿生与微纳研究所冯林副教授等研发了一种四线圈梯度磁场控制系统,该系统可以实现磁流体微型机器人在三维空间中的运动控制。同时,使用面投影微立体光刻3D打印技术(nanoArch S140,摩方精密),研究团队依据在药物递送的实际应用环境中可能出现的复杂环境进行设计并打印相关模型,并对磁流体微型机器人在药物递送相关领域的性质和优势展开了进一步的研究。相关成果以“Deformable Ferrofluid Microrobot with Omnidirectional Self-adaptive Mobility”为题发表在《Journal of Applied Physics》期刊上。图一 由电磁线圈系统控制在血管模型中移动的铁流体机器人的概念图及系统图。经过数值模拟和实际测量,该系统产生的磁场梯度可以达到4.14T/m,并可以实现对磁流体机器人的三维控制,最大的控制误差不超过0.3mm。最后,线圈系统控制铁流体液滴在最大内径为3毫米的三维血管模型中实现自主运动。控制效果的实现使得铁流体机器人在通过血管导航进行药物输送方面具有技术潜力。图二 (a) 磁流体机器人运动的示意图。(b)不同时刻的磁流体机器人的位置和状态。比例尺:5毫米。(复杂环境尺寸特征:长38mm宽22mm高5mm,其中折线和曲线通道直径为1.5mm,左下角圆柱阵列援助直径0.5mm,间距0.5mm。)通过对磁流体机器人的变形能力的研究,发现机器人可以通过比其直径小四倍的缝隙(图二)。同时 ,基于有限元模拟,磁流体机器人的变形可以使流场中的阻力减少43.75%,这使得磁流体机器人在人体血管高流速环境中运动成为可能。此外,利用3D打印的血管模型,对磁控系统控制微型机器人在三维血环境中运动能力进行了验证(图三)。图三 (a) 血管模型中磁流体运动的控制示意图。(b)三维血管模型中不同时刻铁流体机器人的真实位置和状态。比例尺:5毫米。该项研究成果获得国家重点研发计划(No. 2019YFB1309700)及北京新星科技计划项目(No. Z191100001119003)支持。 原文链接:https://doi.org/10.1063/5.0076653 作者: 纪易明
  • 如何测量绝对反射与相对反射?
    1. 前言光照射到物体上,由于物体的表面不同,通常会发生两种反射,镜面反射和漫反射,如图所示。图1 光在物体表面的反射示意图对于玻璃、镀膜基板、滤光片等表面光滑的零部件,镜面反射率是评价其光学特性的重要参数,测定反射率最常用的仪器是紫外可见近红外分光光度计。日立紫外产品线丰富,波长测试范围涵盖紫外可见区域到近红外区域,可以满足样品不同波长下的测量需求。2. 应用数据镜面反射根据测量方式的不同,分为相对反射率和绝对反射率。客户需要根据样品特征,选择不同的测量方式。日立具有5°到75°固定入射光角度的镜面反射附件,适用于多种样品的镜面反射测量。图2 绝对反射测量图3 相对反射测量绝对反射率通常使用V-N法进行测量,直接获得样品的反射特性,应用广泛。但是对于低反射率的样品,使用相对反射测量,可以有效扩大动态范围。 2.1 石英基板的相对反射率测量 • 测量附件图4 5o 相对反射附件• 测量结果 使用紫外可见分光光度计U-3900 的5o相对反射附件,以BK7玻璃为参考标准品测定石英基板的相对反射光谱。结果表明石英基板的相对反射率约为80%。 图5 石英基板的相对反射率通过日立U-3900的选配程序包,使用相对反射率得到转换后的绝对反射率,如下图所示。如果直接测定石英基板的绝对反射率,光谱易受噪声影响。图6 石英基板转换后的绝对反射率2.2 铝平面镜和金平面镜的绝对反射率金平面镜表面涂有金膜,该金膜在红外区域具有高反射率。铝平面镜是表面涂有铝膜,在可见光区到近红外区有较高的反射率和较小的角度依赖性。两者常作为相对反射测量时的标准面。• 测量附件图7 5 o绝对反射附件• 测量结果 使用紫外可见近红外分光光度计UH4150的5°绝对反射附件分析了金平面镜和铝平面镜的绝对反射率。 图8 金平面镜和铝平面镜的绝对反射率 结果表明,在可见光区域,铝平面镜的反射率超过80%。金平面镜的反射率在可见光区域较低,但其在近红外区域的反射率较高。因此在测量样品的相对反射率时,如果需要关注近红外区域,可以使用在近红外区具有高反射率的金平面镜作为标准面。 3. 结论样品的镜面反射率有两种测量方式,相对反射率和绝对反射率。对于低反射性样品,使用相对反射附件测量其相对反射率,可以获得信噪比良好的光谱,如玻璃基板上薄膜的反射率。对于通常的样品,可以直接使用绝对反射附件测量其绝对反射率。日立提供多种镜面反射测量附件,还可根据客户需求量身定制,满足各种样品的镜面反射率测量。
  • 如何测定潜望式镜头中棱镜的反射率?
    1. 前言智能设备的功能日益多元化,如人脸识别、测距、AR功能等。其中,相机在追求高分辨的同时,还要求外形小巧、高倍率变焦。传统相机镜头通过与智能设备垂直放置,实现高倍变焦,但变焦倍率越高,所需焦距越长,需要占用一定的纵深空间安装镜头,造成镜头部分较厚。图1 传统镜头示意图现在大多数手机制造商通过搭载潜望镜式镜头,实现了相机的小巧与高倍率变焦。潜望镜式镜头平行于智能设备安装,并通过棱镜改变光路方向,将焦距所需要的厚度转化为与智能设备平行的长度,同时实现了超薄化与高倍率变焦。图2 潜望式镜头的示例因此,测定潜望式镜头中棱镜的反射率至关重要,但棱镜元件尺寸很小,准确测定其反射率需要专业的附件。日立紫外可见近红外分光光度计UH4150可以选配微小棱镜测定附件,并通过专业定制支架测定潜望镜式镜头中的棱镜。2. 应用数据附件:微小棱镜附件,标配两种样品支架,适用于5~6mm立方体和7~20mm立方体;偏振附件图3 微小棱镜附件本次实验使用定制支架测定两种尺寸为5mm的直角棱镜。直角棱镜巧用临界角,可以使光路偏转90度。测定时,采用偏振附件求出S偏振和P偏振的反射率,分别计算出S、P偏振光的平均值。图4 两种棱镜的反射光谱测定结果表明即使是微小棱镜,也可得到低噪音的光谱,从而有效评价样品的光学特性。3. 总结棱镜是常用的光学元件,日立UH4150凭借优异的平行光束性能,通过安装精密的微小棱镜附件,可为小尺寸棱镜的光学评价提供准确的解决方案。
  • 日立应用|平板液晶电视中反射膜的光学评估
    液晶电视给我们的生活增添了更多光彩,几乎每家每户都在使用液晶电视获取信息或娱乐消遣。其中增亮膜、反射膜、扩散膜、导光板等是液晶模组的重要组成部分。分光光度计是检查光学组件特性的有利工具,今天我们重点介绍平板液晶电视中反射膜的评估。液晶模组内部结构液晶模组中的反射膜通过将光从导光板反射到正面来提高亮度。因此要求反射膜具有极好的反射特性,从而对光进行有效的利用。反射膜使用日立紫外-可见-近红外分光光度计UH4150搭配5°绝对反射附件、积分球检测器评估液晶显示屏中的反射膜。实验测量了三种反射膜的反射率,结果如图4所示。5°绝对反射附件 三种反射膜的反射光谱各反射膜的光反射率光源:D65视角:2°结果表明,样品C有最高的反射率,可以更好的利用光,增加显示的亮度和效果。日立紫外-可见-近红外分光光度计UH4150具有优异的平行光束特征,确保反射率和透过率的准确测定,大型样品仓和多种多样的附件,满足液晶模组中不同组件的评估。 UH4150公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 如何精确测定LED灯反射板的反射率?
    前言LED灯具有长寿命、安全可靠、节能环保等优点,在家用照明设备、显示屏、公共设施场所以及景观装饰等方面应用广泛,如汽车上的照明设备、景区内各种图案的装饰灯。LED灯通常由光源、外壳组成,光源装有反射板可以有效利用光源的能量,因此反射板的反射率会直接决定LED灯的光利用效率。而评价反射板的反射率,常用的检测仪器是紫外分光光度计。检测实例我们选取了生活中常见的一种LED灯,拆开发现反射板的四周是弧形表面,为获得准确的反射率,要对中间的平整表面进行测定,如图中红色圆圈标注的位置。但这个位置的直经只有5mm,如此小的测量位点,要使仪器光源的光斑中心完全照射到测定位置非常困难。图1 LED灯的反射板为了解决这类微小样品的测定难题,日立特别研发了微小样品全反射/漫反射测量系统定制附件,确保光源的光斑中心完全照射到测定位置。而且日立UH4150紫外-可见-近红外分光光度计的样品仓空间足够大,可以轻松安装这个附件。 测定时使用铝制平面镜作为标准参考,利用铝制平面镜的绝 对反射率将LED灯反射板的反射率的相对值转换为绝 对值,得到的反射板的全反射光谱如图所示。图2 LED灯反射板的反射光谱测定结果表明该反射板的反射率高达90%,可以有效利用LED灯光源的光通量,提高照明效率。 想获取更多信息,请拨打电话:400-630-5821。
  • 清华大学成功研制元成像芯片
    门捷列夫曾经说过:“科学是从测量开始的。”光学成像拓展了人类的认知边界,推动了科学的进步,同时也广泛应用于生活的方方面面。然而受到不可避免的镜面加工误差、系统设计缺陷与环境扰动的限制,实际成像分辨率与信噪比往往显著低于完美成像系统。如何实现无像差的完美光学成像,一直是光学中最重要且悬而未决的难题之一。记者从清华大学获悉,近日,该校成像与智能技术实验室提出了一种集成化的元成像芯片架构,为解决这一百年难题开辟了一条新路径。区别于构建完美透镜,研究团队另辟蹊径,研制了一种超级传感器,记录成像过程而非图像本身,通过实现对非相干复杂光场的超精细感知与融合,即使经过不完美的光学透镜与复杂的成像环境,依然能够实现完美的三维光学成像。该成果近日以“集成化成像芯片实现像差矫正的三维摄影”为题以长文形式发表在《自然》期刊上。减小光学像差是百年光学难题光线经光学系统各表面传输会形成多种像差,使成像产生模糊、变形等缺陷。光学系统设计的一项重要工作就是校正这些像差,使成像质量达到技术要求。传统光学系统主要为人眼所设计,秉持“所见即所得”的设计理念,聚焦在光学端实现完美成像。近百年来,光学科学家与工程师不断提出新的光学设计方法,为不同成像系统定制复杂的多级镜面、非球面与自由曲面镜头,来减小像差、提升成像性能。但由于加工工艺的限制与复杂环境的扰动,难以制造出完美的成像系统。“例如,由于大范围面形平整度的加工误差,难以制造超大口径的镜片实现超远距离高分辨率成像;地基天文望远镜,受到动态变化的大气湍流扰动,实际成像分辨率远低于光学衍射极限,限制了人类探索宇宙的能力,往往需要花费昂贵的代价发射太空望远镜绕过大气层。”研究团队负责人、中国工程院院士、清华大学自动化系教授戴琼海介绍。为解决这一难题,自适应光学技术应运而生,人们通过波前传感器实时感知环境像差扰动,并反馈给一面可变形的反射镜阵列,动态矫正对应的光学像差,以此保持完美的成像过程。基于此,人们发现了星系中心的巨大黑洞。然而,由于像差在空间分布非均一的特性,该技术仅能实现极小视场的高分辨成像,难以实现大视场多区域的同时矫正,并且由于需要非常精细的复杂系统,往往成本十分高昂。将所有技术集成在单个成像芯片上近年来,数字化的高速发展催生了计算光学这一交叉学科,为先进成像系统设计提供了新的思路。记者从清华大学获悉,早在2021年,该校自动化系戴琼海院士领导的成像与智能实验技术实验室研究团队发表于《细胞》期刊上的成果,就首次提出了数字自适应光学的概念,为解决空间非一致的光学像差提供了新思路。在此次最新的研究成果中,研究团队将所有技术集成在单个成像芯片上,使之能广泛应用于几乎所有的成像场景,而不需要对现有成像系统做额外改造,并建立了波动光学范畴下的数字自适应光学架构,通过对复杂光场的高维超精细感知与融合,在具备极大的灵活性的同时,又能保持前所未有的成像精度。“这一优势使得在数字端对复杂光场的操控能够媲美物理世界的模拟调制,就好像人们真正能够在数字世界搬移每一条光线一样,将感知与矫正的过程完全解耦开来,从而同时实现不同区域的高性能像差矫正。”戴琼海说。有望带来成像系统的颠覆性改变研究人员进一步介绍,上述元芯片的数字自适应光学能力有望带来成像系统的根本性改变。传统相机镜头的成本和尺寸都会随着有效像素数的增加而迅速增长,这也是高分辨率手机成像镜头即使使用了非常复杂的工艺也很难变薄、高端单反镜头特别昂贵的原因。戴琼海介绍,元成像芯片从底层传感器端为这些问题提供了可扩展的分布式解决方案,使得我们能够使用非常简易的光学系统实现高性能成像。除了成像系统存在的系统像差以外,成像环境中的扰动也会导致空间折射率的非均匀分布,从而引起复杂多变的环境像差。其中最为典型的是大气湍流对地基天文望远镜的影响,从根本上限制了人类地基的光学观测分辨率。数字自适应光学技术仅仅需要将传统成像传感器替换为元成像芯片,就能为大口径地基天文望远镜提供全视场动态像差矫正的能力。此外,元成像芯片还可以同时获取深度信息,相比传统光场成像方法,其在横向和轴向都具有更高的定位精度,为自动驾驶与工业检测提供了一种低成本的解决方案。戴琼海介绍,未来,课题组将进一步深入研究元成像架构,建立新一代通用像感器架构,或可广泛用于天文观测、工业检测、移动终端、安防监控、医疗诊断等领域。
  • 反射高能电子衍射仪
    反射高能电子衍射仪(Reflection High-Energy Electron Diffraction)是观察晶体生长最重要的实时监测工具。它可以通过非常小的掠射角将能量为10~30KeV的单能电子掠射到晶体表面,通过衍射斑点获得薄膜厚度,组分以及晶体生长机制等重要信息。因此反射高能电子衍射仪已成为MBE系统中监测薄膜表面形貌的一种标准化技术。  R-DEC公司生产的反射式高能电子衍射仪,以便于操作者使用的人性化设计,稳定性和耐久性以及拥有高亮度的衍射斑点等特长得到日本国内及海外各研究机构的一致好评和认可。特长 ◆可远程控制调节电压,束流强度,聚焦位置以及光束偏转◆带有安全闭锁装置◆镍铁高导磁合金磁屏蔽罩◆拥有高亮度衍射斑点◆电子枪内表面经特殊处理,能实现极低放气率◆经久耐用,稳定可靠◆符合欧盟RoHS指令   低电流反射高能电子衍射仪(Low Emission Reflection High-Energy Electron Diffraction)是利用微通道板技术,大幅减少对样品损伤的同时,并且保证明亮反射电子衍射图像的新一代低电流反射高能电子衍射仪。可以用于有机薄膜材料等结晶结构的分析研究。特长◆大幅度减少电子束对样品的损伤(相当于普通RHEED的1/500-1/2800)◆带有安全闭锁装置◆搭载高亮度微通道板荧光屏◆可搭载差动抽气系统◆kSA400 RHEED分析系统兼容◆符合欧盟RoHS指令
  • 综述:可变冷光阑红外探测器研究进展和关键技术分析
    为了进一步提高红外变焦光学系统的性能,兼顾其空间分辨率和灵敏度的要求,基于可变冷光阑技术的制冷型变F数红外探测器需求迫切。相较于传统的红外变焦光学系统,变F数红外变焦光学系统可在大视场和小视场切换时保持分辨率和灵敏度的平衡,提高光学系统的孔径利用率,进而缩小光学系统的径向尺寸,有利于红外光学系统成像质量的提升和小型化设计。昆明物理研究所科研团队对变F数与变焦之间的关系进行研究,概述了国内外在可变冷光阑红外探测器技术领域的研究进展,并对主流技术路线的关键技术难点进行了分析。相关研究内容以“可变冷光阑红外探测器研究进展和关键技术分析”为题发表在《红外技术》期刊上。变焦和变F数的关系变焦光学系统的理论依据:光学系统的焦距是一项重要的设计指标,其关系到系统的视场角、空间分辨率等关键性能。变F数与变焦的关系:为了理清变焦与变F数的关系,首先对传统的红外变焦系统进行分析。传统变焦系统中,探测器的F数是固定不变的,而光学系统(为方便讨论,将冷屏作为光学系统的一部分)的F数则分以下几种情况:① 假设系统在最长焦距时入瞳尺寸与物镜尺寸相等:该种情况下,光学系统的F数由最长焦距和物镜尺寸的比值决定,此时冷屏开口即为系统的孔径光阑。在系统由最长焦距切换到短焦状态时,孔径光阑及其尺寸均保持不变,入瞳由原来占满整个物镜逐步等比例缩小。由F数的公式可知,此时光学系统的F数保持不变。如图1所示,探测器的F数固定不变,为F/3,在长焦窄视场时,通光孔径被完全利用,见图中浅蓝色部分;当系统切换至短焦大视场状态时,通光孔径大幅减小,见图1中深蓝色部分。图1 传统变焦红外光学系统的孔径利用率示意图② 假设系统在最短焦距时入瞳尺寸与物镜尺寸相等:该种情况下,系统的F数由最短焦距和物镜尺寸的比值决定。在系统由短焦向长焦切换时,由于物镜尺寸固定,孔径光阑不再是冷屏开口,物镜边框成为了新的孔径光阑,也就是说此时虽然焦距在变大,但是入瞳直径保持不变,使得光学系统的F数逐步增加,并大于探测器的F数,造成冷屏效率的下降。如图2所示,光学系统的F数为F/6,探测器的F数为F/3,光学系统的F数大于探测器,光学系统自身产生的红外辐射大量的进入焦平面,大幅增加系统的NETD,干扰成像。图2 25%冷屏效率系统的辐射示意图实际的变焦光学系统设计时,往往是上述两种情况的平衡,通常不会只考虑某一个状态的性能。而对于变F数光学系统来说,在设计时保证系统在各个焦距下的孔径光阑均为探测器冷光阑,则当系统由长焦变换到短焦时,通过等比例增大冷光阑尺寸,可保证入瞳尺寸保持不变,通光孔径被充分利用,如图3所示。图3 变F数红外光学系统的孔径利用率示意图当系统由短焦变为长焦时,变F数光学系统可以通过等比例减小探测器冷光阑开口尺寸,使得探测器的F数变大,从而保持100%的冷屏效率,避免系统自身的杂散辐射进入焦平面,如图4所示。图4 100%冷屏效率系统的辐射示意图变焦光学系统可兼顾大视场搜索目标和极小视场识别目标的需求,但是由于探测器的F数固定不变,因此要么不能充分利用通光孔径,要么引入大量杂散辐射,不能达到最佳的成像质量。而变F数光学系统则可以很好地解决上述问题。因此理论上,凡是红外变焦光学系统应用的场合,变F数光学系统均可应用,具有广泛的应用前景。可变冷光阑红外探测器的研究进展可变冷光阑的优势可变冷光阑红外探测器技术是目前实现变F数红外系统的重要技术路线。相对于温阑来说,其具有以下几个优势:F数调节范围大且可连续调节。为了解决温阑自身及反射的杂散辐射对成像的影响问题,通常做成球面温阑,这使得F数调节范围小,通常只有两个F数可以选择,或者只能在某两个接近的F数之间进行调节,而可变冷光阑红外探测器可实现系统F数的连续可调,且调节范围较大。可降低系统的复杂度。在传统变焦光学系统中增加温阑设计,将大幅增加光学系统的复杂度和成本。而采用可变冷光阑红外探测器,只需针对探测器杜瓦封装结构进行设计和装配,可大幅降低系统的复杂度。可提升系统的灵敏度。长春光机所的常松涛等人研究了球面温阑对中波640×512(15 μm)红外探测器的NETD的影响,假设球面温阑的温度为20℃,球面温阑的发射率为0.01,当温阑发生0.5℃的温度变化时,温阑引入的NETD达到3.6 mK,虽然引入的NETD很小,但也接近目前探测器本身的NETD。而采用可变冷光阑探测器的方法,引入的NETD可进一步降低。可变冷光阑红外探测器的研究进展国外研究进展:美国弹道导弹防御局(BMDO)在2000年为高空观测系统(HALO)进行更新时设计了一个双波段红外分光系统。如图5所示,该系统在中波和长波的焦平面前端分别设置滤光片转盘,每个转盘上可放置5片不同带通的滤光片以及一片用于背景测试的空白片。美国OKSI公司的Nahum Gat等人先后开发了两套中继光学系统,如图6所示。2013年Nahum Gat等人提出了与杜瓦集成封装的内置式可变冷光阑结构,该结构相较于外置可变冷光阑结构来说结构紧凑,如图7所示。2014年,雷神公司的Jeffrey和Eric等人在Nahum Gat的基础上改进了刀片虹膜式的可变冷光阑结构,其结构示意图如图8所示。雷神公司的第三代前视红外系统是可变冷光阑探测器技术的集大成者。其冷光阑结构如图9所示。此外,雷神公司将中长双波段探测器芯片、双F数可变冷光阑、制冷机、制冷机驱动电路、成像控制电路、冷光阑控制电路等均集成为一个前视红外系统,该系统的体积和重量相对于第二代长波标准先进杜瓦组件(SADA Ⅱ)来说反而更小。包含中长双波段探测器芯片、双F数可变冷光阑、制冷机、成像控制电路、冷光控制电路等均在内的第三代前视红外系统的组成以及实物如图10所示。图5 HALO的双色红外系统图6 带可变冷光阑的真空密封结构和外置可变光阑与滤光片转盘的集成结构图7 刀片虹膜式可变冷光阑图8 双稳态螺线管驱动的可变冷光阑示意图图9 雷神公司可变冷光阑杜瓦俯视图图10 第三代前视红外系统的主要组成部件及系统的实物图国内研究进展:国内对基于可变冷光阑的变F数红外探测器研究较少。上海技物所于2001年发明了一种带可变冷光阑功能的用于红外探测器芯片中测的杜瓦(如图11所示),上海技物所的可变冷光阑结构用于芯片的中测筛选,对结构的小型化以及制冷时间、制冷量的要求不高,因此不适合正式的红外探测器。2014年长春光机所发明了一种与滤光片转盘相似的可变光阑机构(如图12所示)。在光学系统设计方面,613所于2017年设计了可以匹配不同F数探测器的中波大视场光学系统;中电科11所于2022年设计了F/2和F/4可调的变F数光学系统。图11 用于中测杜瓦的可变冷光阑图12 可变式的固定光阑目前国内对于可变冷光阑红外探测器的研究较少,相关产品不够成熟;国外也只有美国雷神公司对该技术进行深入研究,目前产品已进行小批量试制。通过对国内外研究现状的对比,可以发现雷神公司采用的与杜瓦集成封装的内置式可变冷光阑是实现变F数红外探测器的可行的技术路线。该技术路线有如下几点优势:1)集成度高:针对640×480(20 μm)的芯片封装,雷神公司的探测器体积和重量甚至还略小于SADA II探测器;2)可靠性高:可变冷光阑在制冷状态下可进行1万次的开合运动,在非制冷状态下可进行10万次的开合运动;3)功耗低:由于可变冷光阑机构与杜瓦进行集成封装,无需单独为其再配备制冷机,因此功耗不大于75 W,且常温降温时间小于10 min;4)响应时间快:虽然雷神的报道中没有明确说明F数的切换时间,但是根据其使用的压电电机的特性,F数的切换时间可满足光学系统视场切换时间的要求。可变冷光阑红外探测器的关键技术采用刀片虹膜式的可变冷光阑结构,并将其与杜瓦进行集成封装,存在以下关键技术:1)可变冷光阑杜瓦的整体设计技术可变冷光阑杜瓦与传统的固定光阑杜瓦在设计上有很大的不同,需从整体设计上来保证功能的实现。主要需考虑整体结构设计、光阑片的设计、驱动方式的选择、结构的温度控制、整体装配集成、小型化以及可靠性等多方面的技术。2)可变冷光阑精密装配技术可变冷光阑涉及到光阑片的精密装调、驱动电机的隔热装配以及整体结构的精密封装等装配步骤,由于其结构比传统冷屏结构复杂得多,且存在运动部件,其装配更加困难。而光阑片的装配精度关系到运动机构的长期可靠性以及运动过程中的摩擦力,同时影响驱动功率的大小;而驱动电机的装配精度关系到光阑片的受力均匀性以及温控效果;整体结构的装配精度关系到成像的质量。因此需从设计和工艺等多方面进行综合考虑,保证其装配精度及长期可靠性。3)微型电机设计和制造技术对于可变冷光阑来说,压电陶瓷电机是一种比较适合的驱动方式。压电陶瓷电机单位体积下的力矩较大,没有电磁干扰,具有断电自锁功能。一方面,为了缩小可变冷光阑红外探测器的体积,压电陶瓷电机的体积必须很小,另一方面,光阑片的运动阻力要求压电电机的力矩不能过小。因此需通过电机结构设计优化、高性能压电陶瓷的制造、电机制造工艺的改进等多个方面实现小型化大力矩电机的研制,将杜瓦的体积控制在可接受的范围内。4)杜瓦热固耦合设计技术可变冷光阑由于引入了复杂的运动机构,冷头热质量大幅增加,因此,需从结构设计以及材料选择等多方面进行研究和考虑,减小杜瓦热质量,解决快速制冷的问题。此外,可变冷光阑通过电机与杜瓦外壳热连接,需通过结构设计减小杜瓦的漏热。最后,光阑片之间通过叠加的方式互相贴合,热阻很大,需减小光阑片之间以及光阑片与冷屏之间的热阻,从而使光阑片温度降低至不影响焦平面成像的水平。5)可变冷光阑运动控制技术探测器的F数由冷光阑的开口尺寸决定,因此需精确控制冷光阑的运动,从而精确控制探测器的F数。压电陶瓷电机具有断电自锁的功能,即电机断电后可变冷光阑将立即停止运动,停在断电瞬间的位置,因此在控制方面只需要考虑可变冷光阑运动的反馈问题即可,这关键在于选择合适的小型化位置传感器,并结合可变冷光阑的结构设计,将传感器安装固定在合适的位置。6)光阑片表面镀膜技术光阑片表面需进行镀膜处理,膜层需满足摩擦系数小、耐磨以及反射率低3个条件。摩擦系数小可以减小光阑片之间的摩擦力,减小压电电机的力矩需求,有利于电机的小型化;耐磨性高则有利于可变冷光阑机构的可靠性,防止出现膜层脱落干扰成像的现象;反射率低则可以防止芯片的冷反射。结论这项研究从变焦和变F数的关系出发,阐述了变F数光学系统的优势。与传统的变焦光学系统相比,具有可变F数功能的变焦光学系统可兼顾系统的空间分辨率和灵敏度需求,提高系统的孔径利用率,有利于成像质量的提升和系统的小型化。对可变冷光阑的研究进展进行了分析,发现雷神公司的内置刀片虹膜式可变冷光阑是可行性高、性能优异的技术路线,并对该技术路线的关键技术进行了详细分析。对可变冷光阑红外探测器的研究和应用提供了参考。论文信息:http://hwjs.nvir.cn/cn/article/id/7222d189-ab24-490d-9bd9-98f665c31ed1
  • 镀膜片基底背面反射的影响——低反射率样品表征
    当光线照射到两种介质的分界面上时,一部分光线改变了传播方向返回原来的媒介中继续传播,这种现象称为光的反射。在自然界中,光的反射存在着镜面反射、漫反射和逆反射三种现象。光的反射示意图镜面反射是在光线入射到一个非常光滑或有光泽的表面上时发生的。光线在物体表面反射的角度和入射的角度,度数相同但方向相反。如果物体的表面和光源成精确的直角,那么反射光线会完整地反射回光源方向。光的漫反射是一种最常见的反射形式。漫反射发生在光线入射到任何粗糙表面上, 由于各点的法线方向不一致,造成反射光线无规则地向不同的方向反射。只有很少一部分光线可以被反射回光源方向,所以漫反射材料只能给人眼提供很少的可视性。逆反射(背面反射)是指反射光线从靠近入射光线的反方向,向光源返回的反射。当入射光线在较大范围内变化时,仍能保持这一特性。当石英片上镀膜后,石英片的逆反射会对镜面反射的结果有明显的影响。本文采用日立的UH4150紫外可见近红外分光光度计、5°绝对反射附件和60mm积分球测试分析逆反射的影响。 下面是2种不同工艺需求的测试数据图:左图为同一批次的2个镀膜样品,变量为基底是否进行了涂黑处理。通过数据可以明显的发现:涂黑处理后的反射率明显降低,在1370nm附近的反射率约为0.3%,这是因为涂黑处理使得基底的背面反射(逆反射)尽可能地消除。 右图为另一种工艺的产品,直接对样品进行测试,不需要额外的处理,可以得到1300 ~ 1600 nm范围内反射率低于0.2%的效果,符合产品的预期。一般遇到测试反射率低于0.5%的指标需求时,建议使用标准片测试。×总结根据测试的目的需求,基底是否处理对实际的测试结果有很大影响。样品的反射率测试,需要考虑背面反射的影响。日立的紫外可见近红外分光光度计UH4150结合镜面反射附件,可以准确的表征低反射率的样品性能。——the end——公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 光谱光度辐射度计Photo Research技术原理及介绍
    ‍‍简介美国Photo Researc公司成立于1941年,现地点位于纽约州罗彻斯特的North Syracuse(北锡拉丘兹),是一家专门致力于光度、色度、辐射度测量仪器研究、生产的世界著名公司;同时,PR也是全球第一家生产光谱式亮度计的厂家,在全球拥有13个自己独立的光学校准实验室,溯源NIST(美国国家计量局)标定标准;Aunion昊量光电作为Photo Research公司在国内的一级代理商,总部位于上海,在西安、成都分别建立办事处,为国内客户提供快捷的本地校准及维修服务。‍‍一、理论介绍PR-6系列和PR-7系列是真正意义上的的光谱辐射度计;通过物镜或者其他光学配件有效收集光学辐射信号(光信号)。光信号通过反射镜上的孔径光阑(洞)到达衍射光栅(参见图2)。光栅把光按波长展开,就像棱镜把白色的光转换成彩虹一样。一个宽带光,例如太阳光是由很多不同波长的光组成的。当衍射光栅暴露在这种类型的光下,它将从多角度反射光线产生了一个分散的光谱就像一道彩虹。类似地,如果光栅接触了一种单一光源,比如一束激光,那么只有激光的特定波长的光会被反射。图1 PR-788光谱测量范围对于PR-655、PR-670和PR-788测量波长范围是380纳米(nm)(紫色)到780nm(深红色)-即电磁波的可见光谱段 (参见图1)。衍射光谱到达CCD探测器;PR-655探测器是128位的线性探测器,PR-670探测器是256位的线性探测器,PR-788探测器是512位的线性探测器;每个探测器单元均代表不同的颜色。测量时,辐射光通过自适应灵敏度算法在某个特定的时间内被取样测量,自动适配感应器自动会根据光信号的强弱确定合适曝光时间。光测量后,探测器用同样积分时间再次测量探测器的暗电流,然后从每个探测器单元的光测量结果中减去暗电流的光信号贡献值。图2 简化方框图图3 PR系列亮度计光路图仪器出厂时已通过相应的校准系数校准光谱数据,校正系数包括波长精确度修正、光谱分布修正和光度修正。波长校准采用的是具有特征光谱的氦灯光源,线光源提供了已知的光谱发射谱线通过光栅分光后投射到多探测器上再通过软件显示;用于波长校准的氦谱线包括388.6nm,447.1 nm,471.3 nm,587.6 nm,667.8 nm,706.5 nm和728.13 nm;接下来,可用光谱校准系数校准这些数据;这些校准系数确保被测目标光谱能量分布(SPD)和由此计算出的数据比如CIE色度值经过了正确的溯源。最后,校准系数(光度系数)确保光度测试结果的准确性,如亮度或照度。重要参数计算公式校正后的光谱数据用来计算光度和色度值包括亮度,CIE 1931 x,y和1976 u’, v’的色坐标、相关色温(CCT)和主波长。以下是一些基本的光度色度参数计算公式:图4 CIE 1931 三刺激值函数CIE XYZ三刺激值和光度:X,Y,和Z是CIE的三刺激值。X表示红色,Y是绿色,Z是蓝色。Y还可表示光度值-在使用标准的MS-75镜头时,Y给出的是cd /m²-国际亮度单位。footlamberts(英制亮度单位)可以用cd / m²值乘0.2919 得到fc 单位数值。683是可将流明转换成瓦的一个常数。对于亮场环境(白天),555nm处683流明等同于1瓦的功率。S(l) = 校正的光谱数据, 是CIE三刺激值函数曲线,D(l)是光谱增量 ,对于PR-655的增量是4nm,PR-670的增量是2nm,PR-788的增量是1nm。得出这三个三刺激值表达后,有用的色度值比如CIE 1931 x,y和1976 u,v”可以通过下面的公式计算:CIE 1931 x, y:CIE 1976 u’, v’:光谱式亮度计:速度相对缓慢但是精度高,适合LCD\OLED\Mini-LED\Micro-LED\硅基OLED研发等领域。滤片式亮度计:速度快,但是精度差,适合背光模组,产线上Flicker以及响应时间测试。二、 Spectroradiometer 分光辐射度计SpectraScan分光辐射度计是测量辐射度的高端专业仪器. 具有专利的Pritchard观景器。它们易于使用,高准确性和可靠性,使这一系列产品最广泛应用于光的量测。PR-655 :多功能,极高性价比,配件丰富PR-670 :自动多光阑和自动快门,微区测量PR-680(L) :集光谱式与滤光片式一体,一机多用PR-740/745: 制冷型线阵探测器,超低亮度与超短时间内(最短200ms)测量,同类产品中最敏感。PR-745光谱范围扩展到380-1080nm。PR-788宽动态范围的分光亮度计:是基于超灵敏PR74X系列光谱测试系统而研制的,当前应用于R&D、QC、QA以及工厂生产。具有业界领先的1000000:1 的动态范围 ,它提供了在不必增加外部衰减或改变几何光学(例如测量场地尺寸)的情况下,即可从黑到全白测试设备输出的解决方案,这是在市场上可得到的最高速度。特别地,针对OLED屏幕测试 PR-788满足暗态和超高灵敏度的需求!较宽的动态范围:测试显示/背光不需要添加外部过滤或者改变光阑;可变的光谱带宽:光谱分辨率能够满足LCD甚至激光投影仪的显示技术;极暗态下亮度测试:0.000,034-6,850,000 cd/㎡高速循环时间:测试/校准显示产品的总时间急剧减少;USB、RS232,蓝牙接口:易于集成到自动测试环境(ATE)PR-730/740/735/745技术规格:PR-788 技术规格:光阑&对应光斑尺寸:PR-788亮度范围:三、应用光谱式亮度计在面板显示和照明行业有着广泛的应用。重要可以测量亮度,色度,亮度均匀性,色度均匀性,Gamma值以及某些光学材料的透过率和反射率等应用。还可以作为标准,来校正机差,以及校正成像亮度计参数。不仅是科研,也是工厂中亮度,色度测量解决方案的首选。
  • SpectraBlack 超低反射率漫反射目标板
    更易表征激光雷达和飞行时间 (ToF) 传感系统由于缺乏光谱平坦的光学反射材料,因此很难了解激光雷达和 ToF 系统在低反射率 (5%) 下的灵敏度。Labsphere (蓝菲光学)的 Spectrablack 漫反射目标板和材料有效解决了这个问题。Spectrablack 是一种低反射率、耐磨损的吸光材料,非常适合用于室内近标准传感器测试应用,以及OEM光学系统中的遮光/预防散射光。应用:ToF 和 LIDAR 低反射率范围测试遮光/吸光:利用微孔表面的吸光效果预防光学系统、光学测量仪器、相机等中的散射光降低光谱仪和分光光度计杂散光非反光片和一般遮光材料典型反射率*250 – 380 nm:1.5%380 – 780 nm:1.0 %780 – 2500 nm:1.1 %*反射值可能会有所不同。
  • 光伏材料的角度分辨反射/透射分析
    光学镀膜材料在太阳能行业应用广泛:由化学气相沉降法生成的氧化锌涂层,自然形成金字塔形表面质地,在薄膜太阳能电池领域被用于散射太阳光。将不同折射系数的高分子材料排列组成的全息滤光镜,将太阳光在空间上分成不同颜色的色带(棱镜一样),将不同响应波长的光伏电池调到每个波长的焦距处,从而形成一种新型的多结太阳能电池。位于硅太阳能电池前部的纳米圆柱形硅涂层起米氏散射的作用,因此增加了在更宽入射角范围和偏振情况下的光被太阳能电池的吸收。曲面型光电模块的渲染和原理图。3M可见镜膜能够使模块在可见光区表现为镜像,而在近红外光区变为黑色。对于所有的光学涂层——特别是那些非垂直角度接收阳光或者阳光入射的涂层,表征波长、角度和偏振测定的反射和入射就尤为关键。PerkinElmer公司的自动化反射/透射附件ARTA,可以测定任何入射角度、检测角度、S和P偏振光在250-2500nm的范围内的谱图,从而告诉我们:所有的入射光都去哪儿啦?装备了ARTA的LAMBDA紫外/可见/近红外分光光度计样品3M可见光镜膜:吸收紫外光,反射可见光,透过红外光。仪器PerkinElmer公司的LAMBDA 1050+紫外/可见/近红外分光光度计。150mm积分球,Spectralon涂层积分球包含硅和InGaAs检测器,检测样品200-2500nm的范围内的总透射谱和总反射谱。装备了150mm积分球的LAMBDA紫外/可见/近红外分光光度计ARTA,配备PMT和InGaAs检测器的积分球(60mm),能在水平面上围绕样品旋转340°,进行角度分辨测量。3M薄膜固定在ARTA样品支架上的照片实验结果用150mm积分球附件测量的3M薄膜的总反射和总透射谱图。薄膜在750nm附近具有预期的突变,在此处有将近100%的可见光反射率和约90%的红外光透射率。3M薄膜对于s(左图)和p(右图)偏振光的角度分辨反射谱图。对于所有的偏振情况,直至50˚的范围内反射到透射的转变都很急剧,但是有轻微的蓝移。对于入射角在约50˚以上的情况,s偏振光的转换终止,并且薄膜开始失去对光谱的分光功能。这种情况的一个明显后果就是在冬天或者纬度高于30˚的区域的夏季月份,曲面型光电镜片的工作效率都很低。更多详情,请扫描二维码下载完整应用报告。
  • 定制高反射样品测定附件
    1. 为什么需要定制高反射样品测定附件?一些光学镜,DVD或蓝光光碟,相机等的光学组件,反射率接近100 %,测定这类样品时,使用VN法得到的测量结果会超过100 %,不能得到样品的实际反射率。定制高反射率测定附件则可以解决这个问题,测定结果不会超过100 %,而且重现性高,这是光学薄膜领域进行研究的有利工具。使用VN法45度镜面反射附件和定制高反射样品测定附件对同一高反射样品重复测量五次,结果如图所示。可以看到定制高反射样品测定附件得到了高重现性和高精度的数据。 数据对比2. 定制的高反射样品测定附件是什么样的呢?这款附件是日立工程师和客户一起研发的,是只有日立才有的测量技术。入射光的角度为固定45度角,使用两个样品进行测量,光在两个样品之间进行多次反射。 附件详细信息猛戳以下链接: https://www.instrument.com.cn/netshow/sh102446/s926991.htm 有任何关于定制附件的问题,请拨打电话:400-630-5821
  • 透射与反射测量技术关键工具及颜色测量方法
    在现代科学研究和工业应用中,精确的物质性质测量是至关重要的。特别是在材料科学、光学工程以及生物医学领域,透射测量与反射测量技术的应用日益增多,它们在各自的领域内发挥着不可替代的作用。透射测量是指测量光线通过物质后的强度变化,以此来分析物质的特性;而反射测量则是基于光线打到物质表面后反射回来的光强变化进行分析。这两种测量技术虽然操作原理不同,但都旨在通过光与物质的相互作用来揭示物质的内在属性。一、透射测量与反射测量的比较分析透射式和反射式分光光度计均能利用光源的闪烁特性,覆盖360至750纳米范围内的全部波长光线进行照射。通过对透射光或反射光的测量,这些设备能够创建出色彩的量化图谱(即色彩“指纹”)。在反射光谱中,主要波长决定了颜色的属性。紫色、靛蓝及蓝色属于短波段,波长介于400至550纳米之间;绿色处于中波段,波长在550至600纳米;而黄色、橙色及红色表示长波段光。对于光亮增白剂(OBA)和荧光剂这类特殊物质,它们的反射率甚至可以超过100%。反射式分光光度仪通过照射光源至样本表面并记录以10纳米步长测得的反射光比例,以此来分析颜色。这种方法适用于完全不透明的物质,通过反射光的量化,可以准确测量其色彩。而配备透射功能的分光光度仪则是通过让光穿透样本,使用对面的探测器来捕获透过的光。这一过程中,探测器会测量透射光的波长及其强度,并把它们转换成平均透射率的百分比,以量化样本的特性。尽管反射模式能够用于分析半透明表面,但准确了解样本的透明度是必须的,因为这直接关系到最终数据的准确性。二、样品确实不允许光线穿透吗?测量透射率与评估不透明度并不总是等同的,因为不透明度涉及两个方面:是否能遮挡视线穿过的表面或基质,以及材料允许光线通过的程度。通常,您可能会认为您的手是不透光的,从某种角度来看,这是正确的。然而,当您把手电筒紧贴手掌并开启时,会发现光线能够从手的另一侧透射出来。半透明与透明材质的本质区别半透明材料允许光线穿透,却不允许清晰的视线通过。举个例子,经过蚀刻处理的浴室塑料门便是半透明的。相比之下,透明材料,如普通的玻璃板,可以让人从一侧清楚地观察到另一侧的物体。三、实际应用及解决方案考虑到涂料,当其涂布于墙面时,其不透明性足以覆盖下层材料,阻止透视效果。但要准确评估涂料的不透明度,我们需采用对比度分析法。一旦应用于基底,涂料通常表现出高不透明度,使得Ci7500台式色差仪成为其测量的理想工具。至于塑料,虽然肉眼看来我们可能无法通过塑料样本看穿,但它们可能具备一定的光透过性。比如,外观不透明的塑料瓶,在未经测试前其真实透光性难以判断。以过氧化氢瓶为例,其内容物若暴露于阳光下会迅速分解,因此这类瓶子通常呈棕色,以屏蔽阳光。然而,置于强烈光源下,这些瓶子是能透光的。鉴于成本考虑,过氧化氢瓶的制造尽量保持不透明。在纺织品的应用上,选择分光光度仪时需考虑具体的使用场景。美国纺织化学师与印染师协会(AATCC)推荐将样品折叠至四层以确保不透明度的测量。这一方法对于测量厚实的织物如灯芯绒裤或棉质卷料足够有效,但对于透明或薄的半透明尼龙材料,采用其他量化技术可能更为合适。请记住,在测量特定允许一定光线透过的纺织品时,按照ASTM的203%遮光测试标准,必须使用具备透射功能的分光光度仪进行测量。Ci7600台式分光光度仪、Ci7800台式分光色差仪和Ci7860台式色差仪均支持透射和反射模式测量,它们为需要同时评估不透明与半透明样本的应用场景提供了理想解决方案。这些设备能够执行三种主要测量方式:①直接透射测量:针对完全透明的样本设计,如塑料拉链袋和清晰的玻璃板。②全透射测量:适合那些允许光线穿透但视线模糊的半透明样本,比如橙汁、洗涤液以及2升容量的塑料瓶。③雾度测量:针对那些能够散射光线的半透明样本,如汽车尾灯的塑料覆盖件,这类样本散射红色光线,而不直接显露灯泡和灯丝。若您的需求仅限于测量完全不透明的表面,Ci7500台式色差仪或许更符合您的需求。然而,如果您的主要测量对象为不透明表面,偶尔也需测量一些允许光线透过的物体,那么具备透射测量功能的设备,如Ci7600台式测色仪或更高端的型号,将是更合适的选择。四、关于爱色丽“爱色丽彩通 ”总部位于美国密歇根州,成立于1958年。作为全球知名的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。如果您需要更多信息,请关注官方微信公众号:爱色丽彩通
  • 可变蒸镀领域型有机蒸发装置-最适合高品质有机薄膜的蒸镀以及多源蒸镀!
    控制蒸镀范围的同时,通过低蒸镀速率实现薄膜的制备可以实现高结晶性的有机薄膜的制备对少量有机材料的有效蒸镀,可削减材料使用成本采用飞行器设计,可实现基板附近的蒸镀Z操作台的使用,可避免与现有设备的干扰手动挡板及可变控制蒸镀范围,能将蒸镀腔的污染控制到最小蒸镀范围:&Phi 20~ (根据蒸镀距离可调整)蒸镀速度:数原子层/min安装法兰:&Phi 70ICF坩埚温度计:TYPE-K付挡板【可蒸镀材料】:分子:诱导体:分子 其他 用AEV-OD蒸镀的C40H20膜的X射线反射结晶结构          顶顶顶顶 水晶振动式膜厚计测定数据 (根据累计膜厚和蒸镀时间推算出的蒸镀率)
  • 100万!华中科技大学全内反射荧光显微镜成像系统采购项目
    项目编号:招案2022-0938(校内编号HW20220083)项目名称:华中科技大学全内反射荧光显微镜成像系统采购项目预算金额:100.0000000 万元(人民币)最高限价(如有):100.0000000 万元(人民币)采购需求:采购1套全内反射荧光显微镜成像系统(详见招标文件第三部分 采购需求);合同履行期限:签订合同后90日历天内完成供货、安装、调试验收;本项目( 不接受 )联合体投标。
  • 玻璃行业中的透射与反射色彩质量测量—色差仪
    玻璃作为一种常见的材料,广泛应用于建筑、汽车、家具等领域。在玻璃行业中,透射和反射是两个重要的性质。透射涉及玻璃对可见光的透明程度和色彩表现,而反射关乎玻璃表面镀膜的效果。本文将介绍如何使用在线ERX55分光光度仪和ColorXRAG3色度分析仪来监控色彩质量和测量玻璃镀膜的反射率。透射是玻璃行业中最重要的光学性质之一,它决定了玻璃对可见光的透明程度和色彩表现。当光穿过玻璃时,会受到折射现象的影响。折射是光在从一种介质传播到另一种介质时改变方向的现象。这种折射现象使得玻璃能够将光有效地传播到玻璃的另一侧,使我们能够透过玻璃看到外面的世界。在玻璃行业中,透射率是一个重要的参数。透射率定义为通过玻璃的光强与入射光强的比值。透射率越高,玻璃对光的透明度就越好。而对于特定波长的光,其透过玻璃的能量与光谱分布有关,因此,不同类型的玻璃可能对不同波长的光具有不同的透射率。透射率的测量通常使用分光光度计来完成。在线ERX55分光光度仪是高精度的测量仪器,可以用于测量透明薄膜的色彩、可见光透射和雾度,持续监控色彩质量。通过持续监控透明薄膜的色彩质量,生产厂家可以确保产品的一致性和稳定性。反射是另一个在玻璃行业中需要关注的光学现象。反射率是一个指标,用于衡量光线在物体表面反射的程度。在玻璃制造过程中,常常会在玻璃表面进行涂层处理,这些涂层能够改变玻璃的反射性能。通过合理设计涂层,可以实现特定的反射率,使玻璃在特定波长范围内表现出所需的特殊光学效果,如防紫外线、隐私保护等。玻璃作为非散射性物体,在传统的直接照明测量设备中无法准确提供色彩数据。为解决这一问题,ColorXRAG3色度分析仪成为了一种重要工具。该设备具备宽波长范围(330nm到1,000nm)和高光学分辨率(1nm),可在实验室中安装在支架上,对放置在样品支架上的玻璃板进行测量。同时,它也可用于在线测量,安装在玻璃板上方的横梁用于测量低辐射玻璃,或安装在玻璃板下方用于测量遮阳镀膜。ColorXRAG3色度分析仪具有紧凑型设计,可从距离玻璃板10mm处捕获非散射性样品的光谱数据和色彩反射值,甚至能鉴定多银层镀膜。该仪器采用氙气闪光灯,同时采用+15°:-15°、+45°:-45°和+60°:-60°三种光学结构,每秒进行一次测量,以实现全方位的色彩数据获取。其中,±15°的测量值与传统实验室测量的积分球光学结构结果相同,而±45°和±60°的测量值则可以显示不同观察角度下的色彩变化。ColorXRAG3色度分析仪的应用为玻璃行业提供了一种高效、准确的色彩测量解决方案,使生产厂家能够更好地控制透射与反射性能,提高产品质量,并满足不同市场需求,推动玻璃行业的持续发展。透射和反射是玻璃行业中非常重要的光学现象。透射性能决定了玻璃的透明度和色彩表现,而反射率则与玻璃表面的涂层处理密切相关。使用在线ERX55分光光度仪和ColorXRAG3色度分析仪,可以对玻璃产品的透射性能和反射性能进行精确测量和监控,从而保证玻璃产品的质量和性能达到预期要求。“爱色丽彩通”是丹纳赫公司旗下的品牌,总部位于美国密歇根州,成立于1958年。作为全球领先的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。
  • 210万!上海交通大学高速激光全内反射荧光显微镜成像系统采购项目
    项目编号:1069-224Z20224671(项目编号:招设2022A00206)项目名称:上海交通大学高速激光全内反射荧光显微镜成像系统采购项目预算金额:210.0000000 万元(人民币)采购需求:序号货物名称数量简要技术规格交货期1高速激光全内反射荧光显微镜成像系统1套电动聚焦机构:备有粗微调转换旋钮(最小调焦精度:≤10nm),行程10.5mm,物镜离开 / 回复按键和记忆回位按键,最大移动速度:3mm/秒。收到信用证后180天内交货合同履行期限:收到信用证后180天内交货本项目( 不接受 )联合体投标。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制