当前位置: 仪器信息网 > 行业主题 > >

静态特性试验

仪器信息网静态特性试验专题为您提供2024年最新静态特性试验价格报价、厂家品牌的相关信息, 包括静态特性试验参数、型号等,不管是国产,还是进口品牌的静态特性试验您都可以在这里找到。 除此之外,仪器信息网还免费为您整合静态特性试验相关的耗材配件、试剂标物,还有静态特性试验相关的最新资讯、资料,以及静态特性试验相关的解决方案。

静态特性试验相关的论坛

  • 传感器校准技术,从实验室静态校准拓展到工作条件校准的高要求。

    计量测试行业将传感器校准技术,从实验室静态校准逐步提升拓展到面向工作条件的校准,即考虑了传感器激励特性、本征特性和环境特性的校准技术,并能够定量给出各种特性单独或综合条件下的误差特性,这对于现行的传感器校准技术提出了非常高的要求。 对于传感器在实验室条件下进行静态校准是常规计量工作的主要内容,技术标准比较完备,对于环境因素和被测参数相对稳定简单的工业过程和试验过程是能够满足要求的。然而,对于环境因素和被测参数特性较为复杂的试验过程来说,这种校准结果无法满足测试要求,主要原因是传感器的实际工作条件与实验室静态校准的差距太大,主要体现在以下 3 个方面:①激励( 输入信号) 由静态( 0 频) 向动态( 非 0 频率) 延伸 ②传感器的本征参数在现场安装之后随着工作状态的变化而发生了变化 ③传感器的使用受环境因素影响明显( 如温度、湿度、压力、振动、电磁场等) 。  上述这些差距,使得传感器在实验室静态校准的结果无法准确反映其实际的测量特性。目前存在大量的所谓“静标动用”的现象,即传感器在试验前进行实验室静态标定,然后试验中用于对动态信号的测试,实质上存在着很大的数据风险,在理论上可以认为是未经过校准。因此,只有在模仿实际工作条件的前提下,对传感器的校准才具有实用意义。

  • 国内有没有动态静态结合的试验机呢

    我的意思是静态试验机有动态的加力效果,而不是简单的动静态试验机,详细说一下吧,客户有台MTS的机器,看着明明是静态试验机,但是客户在做往复试验的时候加力的曲线竟然是类似于动态的正弦曲线,而且频率也固定。据我了解的国内的动态机只能达到这样的加力效果,但是最后只能得到循环次数,或力-时间曲线,想测某次循环的力值和变形等方面就不行了,而MTS的机器加力类似于动态机,得到的力-变形曲线和数值等等却类似于静态机,不知道人家是怎么做的

  • 静态容量法比表面及孔隙率测定仪

    静态容量法比表面及孔隙率测定仪在努力研发动态氮吸附仪的同时,我们也一直在关注静态容量法比表面及孔隙率仪的发展,毕竟在国外一直重点发展静态容量法比表面及孔径分析仪,而且近年来改进提高很快,目前进口仪器在我国仍然有相当大的市场占有量,为了进一步提高我国仪器的水平,尽快赶上国际先进,彼奥德从06年开始研究静态容量法氮吸附仪。说实在的,有关这方面的具体资料非常缺乏,除了原理,一切均需从头开始。经过近两年的努力,终于攻下了所有技术难关,我国自有的静态容量法比表面及孔径分析仪研制成功,并迅速进入市场,我们的静态仪器性能已经接近国际先进水平,而且具有许多自己的特色,有自己的独到之处。实事求是的看,静态容量法比表面及孔径分析仪的优点还是很多的。(1)静态容量法是在真空条件下改变氮气的压力,通过压力传感器直接测量氮压力,排除了其它因素带来的影响,而动态法要通过氮气和氦气相对量的改变以及二者流量的调节才能得到;(2)容量法样品的吸附与脱附过程是在静态下进行并达到吸附平衡,符合理想的吸附平衡条件,而动态法仅为相对的动态平衡;(3)静态容量法样品在吸附与脱附过程中,固定于液氮杜瓦瓶中,不像动态法每测一个压力点样品管都需要进出液氮杯一次,静态法不但节省了时间,而且大大减少了液氮的消耗;(4)只用氮气,不用氦气,而且氮气的消耗也极少,大大减少了测试的成本;(5)静态容量法每测一个压力点只需2分钟左右,而且可以根据需要测量很多点,例如多点BET比表面可测定6~20点以上,孔径分布测定可选25~100个点,测量的点数多有利于测量精度和可靠性的提高,相比之下,动态法多点BET比表面只测定5点左右,孔径分布测定只测10个点左右,而且在测量相同点数的条件下,静态法更节省时间;(6)在进行孔径分布测试时,静态容量法具有更显著的优势,其一,动态法受热导检测器灵敏度及流量调节精度的限制,孔径测试范围较小,一般在2~100nm,而静态容量法测试范围一般可达到0.5~400nm;其二,动态法不能测试出完整的等温曲线,而且测量的点数少,对孔径分布的分析比较粗糙,而静态容量法可以完整地测试等温吸附曲线和等温脱附曲线,实现对孔径分布比较精确的分析,而且能得到样品全面的吸附特性,进而可对样品的吸附类型和孔结构作出判断;其三,只有静态法才有可能对微孔进行定量分析;(7)静态容量法的仪器可以实现真正的全自动控制,包括不需要中途人为补充液氮,而且运行、控制、数据采集与处理、以及计算机操作,均更为简便、流畅、可靠和智能化,只要把试验条件输入计算机,试验过程全部自动完成,同步得到全部试验结果;(8)样品的预处理可同机甚至同位进行,利用主机的真空条件和单独的温控装置,使预处理更为充分,操作更为简便,测试结果更为可靠。总之,静态氮吸附仪是技术上更高一档的仪器,国产静态仪器的成功,无疑又提升了我国在这一领域的国际地位。

  • 【原创】动态仪器和静态仪器有什么区别?

    比表面及孔径分布是基于样品对氮气的等温吸附曲线,当氮气分压在0.05~0.35范围内,可根据BET方程计算比表面,当氮气分压≥0.4时,根据毛细凝聚理论计算孔径分布。静态容量法是测量氮气的等温吸附和脱附曲线的理想方法:在一个真空系统中,按设计要求逐步增加或减少氮气压力,利用气体状态方程,计算出每一个氮分压下样品的饱和吸附量或脱附量。和动态法相比,静态容量法比表面及孔隙率分析仪有以下八大优点: 1、精准度更高:氮气的压力是通过压力传感器直接测量得到的,排除了其它因素带来的影响,而动态法要通过氮气和氦气相对量的改变以及二者流量的调节才能得到; 2、真正达到吸附和脱附平衡:样品的吸附与脱附过程是在静态下进行并达到吸附平衡,符合理想的吸附平衡条件,而动态法仅为相对的动态平衡; 3、省液氮:样品在吸附与脱附过程中,固定于液氮杜瓦瓶中,不像动态法每测一个压力点样品管都需要进出液氮杯一次,不但节省了时间,而且大大减少了液氮的消耗; 4、测试成本低:只用氮气,不用氦气,而且氮气的消耗也极少,大大减少了测试的成本; 5、省时:静态容量法每测一个压力点只需2分钟左右,而且可以根据需要测量很多点,例如多点BET比表面可测定6~20点以上,孔径分布测定可选25~100个点,测量的点数多有利于测量精度和可靠性的提高,相比之下,动态法多点BET比表面只测定5点左右,孔径分布测定只测10个点左右,而且在测量相同点数的条件下,静态法更节省时间; 6、传感器更精密,测试结果更全面具有说服力:在进行孔径分布测试时,静态容量法具有更显著的优势,其一,动态法受热导检测器灵敏度及流量调节精度的限制,孔径测试范围较小,一般在2~100nm,而静态容量法测试范围可达到1~300nm;其二,动态法不能测试出完整的等温曲线,而且测量的点数少,对孔径分布的分析比较粗糙,而静态容量法可以完整地测试等温吸附曲线和等温脱附曲线,实现对孔径分布比较精确的分析,而且能得到样品完整的吸附特性,进而可对样品的吸附类型和孔结构作出判断; 7、真正的全自动控制:静态容量法的仪器可以实现真正的全自动控制,包括不需要中途人为补充液氮,而且运行、控制、数据采集与处理、以及计算机操作,均更为简便、流畅、可靠和智能化,只要把试验条件输入计算机,试验过程全部自动完成,同步得到全部试验结果; 8、预处理更合理:样品的预处理可同机甚至同位进行,利用主机的真空条件和单独的温控装置,使预处理更为充分,操作更为简便,测试结果更为可靠。

  • 【求助】有关静态箱收集气体的一些问题

    请教各位高手: 最近小弟准备做有关静态箱收集土壤释放气体的实验,苦于无法设计出一个比较完美的静态箱,希望各位能指点一下,如果能给点相关的资料,本人将不胜感激,在此谢谢了!

  • MTS官方辟谣“将退出静态产品市场”:谣言!正大力投入静态业务

    [color=#333333]近日,从全球知名力学性能测试与模拟系统供应商——MTS系统公司获悉,近期市场上流传MTS/SANS将退出静态产品市场或出售静态业务公司,甚至卖断相关产品线的不实消息。对于这些传言,3月13日,MTS材料测试系统总裁Bill Becker和MTS中国测试总裁David Saylor先生联名发出澄清函,公布了MTS静态和SANS未来在中国的发展。[/color][color=#333333]对于“公司某些竞争者和前雇员散播了关于MTS静态和SANS在中国未来发展的谣言。”大家怎么看[img]http://simg.instrument.com.cn/bbs/images/default/em09503.gif[/img][/color]

  • 向广大同仁们求教-做静态注射化学发光分析实验的要点!

    大家好!我是一名新手,最近在做静态注射化学发光分析实验,luminol+H2O2+酶+促进剂,可是遇到一个问题:在进行实验时发现,做一组相同浓度的对比实验,然而在保持参数不变的条件下(加样的量,样品浓度,仪器的工作参数)得倒得峰信号的强度差别很大,重现性差,多次反复试验后,感觉注射的速度快时得到的信号很强,慢一点,得到的信号就弱很多,(我用的是普通一次性针管),再次对实验各个条件出现误差的可能进行了排除,最后怀疑是注射方法产生了误差。但是找不到静态注射发光分析方面关于注射方法的严格的操作手册--就是对注射的速度,样品和发光剂的混合度(样品加太多则混合不均匀,发光强度受影响)方面的经验或总结。 只好到这里来请教一下前辈,老师,同学以及同仁们,希望大家给予帮助,在此感谢大家。敬祝工作学习愉快。 困惑的小钟

  • AA240静态基线

    想问一下AA240静态基线稳定性是按哪里的啦,我全部按钮都看过了都没看到有相关的按钮啊

  • 静态基线几个有趣的问题求解

    静态基线几个有趣的问题求解

    通过学习发现各位老师在做静态基线时坐标设置各不相同,相信各位大拿都有自己设置坐标的一套标准;前阵子拜读了安老师的大作《背景信号面面观》,觉得受益匪浅,一直想实践一下,却一直没有时间,今天正好有机会自己做一下Cu的静态基线,结果在检测过程中发现以下几个有趣的现象,发出来想看看各位大拿的观点。参考帖子资料:安老师的《背景信号面面观》,http://bbs.instrument.com.cn/shtml/20141010/5486739/index_1.shtml; 附件内李老师的《基线稳定性实验拷贝》; 第七届原创帖,《宝贝健康体检--原子吸收分光光度计期间核查》;http://bbs.instrument.com.cn/shtml/20140912/5455225/我使用的仪器:日立塞曼Z2700石墨炉设备;原装进口Cu阴极灯;附图灯光谱http://ng1.17img.cn/bbsfiles/images/2014/12/201412181235_527689_2858464_3.jpg预热30min后,首先根据安老师帖子内的坐标来设定,附图如下http://ng1.17img.cn/bbsfiles/images/2014/12/201412181239_527691_2858464_3.jpg附图二:http://ng1.17img.cn/bbsfiles/images/2014/12/201412181239_527692_2858464_3.jpg通过安老师的《背景信号面面观》中的现象(一)一节(相信很多人都看过,在这里我就不摘录过来了,没看过的可以根据我帖子内的链接自己去看一下),结合以上两个图,我是不是可以认为我的灯已经达到了平衡状态呢?但是我将横坐标时间放大之后却发现有这么一个现象,那就是背景基线还是在下飘,附图如下http://ng1.17img.cn/bbsfiles/images/2014/12/201412181246_527693_2858464_3.jpg于是我又将吸收的纵坐标进行了放大,发现吸收线也是随着参比线下降的http://ng1.17img.cn/bbsfiles/images/2014/12/201412181255_527695_2858464_3.jpg随之对背景基线进行了放大,附图如下http://ng1.17img.cn/bbsfiles/images/2014/12/201412181258_527698_2858464_3.jpg那么问题就来了,这种情况下到底达到没达到平衡呢?还是按照安老师帖子内论述的:超过30min后背景基线还在下飘,90%情况下,这只阴极灯发射强度已经明显减弱了?实际操作中,参比纵坐标,吸收纵坐标,时间横坐标该怎么设置才能完整的表现出静态基线的情况呢?目前已经过去了6小时,目前的各个图情况还是和上面所述的基本一致。讨论二:以下内容摘选自随机配备而来的设备使用手册:仪器的性能,通过出厂检查,是和产品的规格相匹配的。然而,当仪器使用一段时间后,某些性能由于有限的使用寿命的部件的老化(如消耗件)或类似的原因而降低。因此,性能需要检查。此外某些部件需要维护,定期的更换和清洗。用户能够利用它很容易的把当前的性能与原先的性能进行比较。(1) 波长准确度:使用汞灯来搜峰,并确认实际波长的偏差是在允许范围之内。波长准确度在253.7,546.1和871.6处检查。(2) 静态基线稳定性:使用Cu空心阴极灯来作为条件设置,在30min后,测量5分钟,看吸光度变化,确定在范围之内。标准为SD(0.005A)和N(±0.005A)。(3) 灵敏度检测:使用Cu标准液来测量灵敏度,使用20ppb浓度的标准液(检测时现配)检查吸光度≥0.16算合格。(参考值为0.2Abs)。讨论1:本处第二条静态基线的稳定性反应的是仪器的什么性能呢?我的理解是:如果静态基线不稳定,表明这个Cu灯坏了,也就无法进行第三条说的灵敏度检测了。你们的理解是?问题1:第二条所述中,标准为SD(0.005A)和N(±0.005A)各指的是什么呢?是指的基线吸光度漂移值和噪声波动值吗?

  • 静态基线几个有趣的问题求解

    静态基线几个有趣的问题求解

    通过学习发现各位老师在做静态基线时坐标设置各不相同,相信各位大拿都有自己设置坐标的一套标准;前阵子拜读了安老师的大作《背景信号面面观》,觉得受益匪浅,一直想实践一下,却一直没有时间,今天正好有机会自己做一下Cu的静态基线,结果在检测过程中发现以下几个有趣的现象,发出来想看看各位大拿的观点。参考帖子资料:安老师的《背景信号面面观》,http://bbs.instrument.com.cn/shtml/20141010/5486739/index_1.shtml; 附件内李老师的《基线稳定性实验拷贝》; 第七届原创帖,《宝贝健康体检--原子吸收分光光度计期间核查》;http://bbs.instrument.com.cn/shtml/20140912/5455225/我使用的仪器:日立塞曼Z2700石墨炉设备;原装进口Cu阴极灯;附图灯光谱http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_648226_2858464_3.jpg预热30min后,首先根据安老师帖子内的坐标来设定,附图如下http://ng1.17img.cn/bbsfiles/images/2014/12/201412181239_527691_2858464_3.jpg附图二:http://ng1.17img.cn/bbsfiles/images/2014/12/201412181239_527692_2858464_3.jpg通过安老师的《背景信号面面观》中的现象(一)一节(相信很多人都看过,在这里我就不摘录过来了,没看过的可以根据我帖子内的链接自己去看一下),结合以上两个图,我是不是可以认为我的灯已经达到了平衡状态呢?但是我将横坐标时间放大之后却发现有这么一个现象,那就是背景基线还是在下飘,附图如下http://ng1.17img.cn/bbsfiles/images/2014/12/201412181246_527693_2858464_3.jpg于是我又将吸收的纵坐标进行了放大,发现吸收线也是随着参比线下降的http://ng1.17img.cn/bbsfiles/images/2014/12/201412181255_527695_2858464_3.jpg随之对背景基线进行了放大,附图如下http://ng1.17img.cn/bbsfiles/images/2014/12/201412181258_527698_2858464_3.jpg那么问题就来了,这种情况下到底达到没达到平衡呢?还是按照安老师帖子内论述的:超过30min后背景基线还在下飘,90%情况下,这只阴极灯发射强度已经明显减弱了?实际操作中,参比纵坐标,吸收纵坐标,时间横坐标该怎么设置才能完整的表现出静态基线的情况呢?目前已经过去了6小时,目前的各个图情况还是和上面所述的基本一致。讨论二:以下内容摘选自随机配备而来的设备使用手册:仪器的性能,通过出厂检查,是和产品的规格相匹配的。然而,当仪器使用一段时间后,某些性能由于有限的使用寿命的部件的老化(如消耗件)或类似的原因而降低。因此,性能需要检查。此外某些部件需要维护,定期的更换和清洗。用户能够利用它很容易的把当前的性能与原先的性能进行比较。(1) 波长准确度:使用汞灯来搜峰,并确认实际波长的偏差是在允许范围之内。波长准确度在253.7,546.1和871.6处检查。(2) 静态基线稳定性:使用Cu空心阴极灯来作为条件设置,在30min后,测量5分钟,看吸光度变化,确定在范围之内。标准为SD(0.005A)和N(±0.005A)。(3) 灵敏度检测:使用Cu标准液来测量灵敏度,使用20ppb浓度的标准液(检测时现配)检查吸光度≥0.16算合格。(参考值为0.2Abs)。讨论1:本处第二条静态基线的稳定性反应的是仪器的什么性能呢?我的理解是:如果静态基线不稳定,表明这个Cu灯坏了,也就无法进行第三条说的灵敏度检测了。你们的理解是?问题1:第二条所述中,标准为SD(0.005A)和N(±0.005A)各指的是什么呢?是指的基线吸光度漂移值和噪声波动值吗?

  • 静态热-力分析TMA的应用原理

    静态热-力分析TMA分析原理:样品在恒力作用下产生的形变随温度或时间变化谱图的表示方法:样品形变值随温度或时间变化曲线提供的信息:热转变温度和力学状态

  • 【讨论】说说即将上市的MTS静态测试系统C系列新品给你带来的猜想

    据新闻报道MTS 静态测试系统C系列新品将于2010年9月9日在中国上海荣耀上市!C系列产品将拥有:新颖时尚的外观设计、试验机领域最专业的Test work软件、全球最先进的MTS Insigh控制器、人性化设计的操作平台、极高的性价比。对此新品的上市,对我们实验人带来了一丝猜想,从仪器的外观,质量、性能、价格究竟会怎么样呢?

  • 吹扫捕集与静态顶空的比较

    [align=center][size=32px][b]吹扫捕集与静态顶空的比较[/b] [/size][/align][size=16px]在我国用于测定环境水样中挥发性有机化合物(VOCs)多采用静态顶空法,但静态顶空法的灵敏度低,不能满足微量测定要求。运用吹扫捕集与[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]联用技术可测定饮用水、地表水及海水中的μg/L(甚至ng/L级)的VOCs,其检出限可以比静态顶空技术低10-1000倍。[/size][size=16px]那么,两种进样方式究竟有哪些区别呢?[img]http://p9.itc.cn/images01/20201118/e268952d807e456cb70bef711ea39b27.jpeg[/img]动态顶空也称吹扫捕集(purge-trapping)分析法,该方法是用惰性气体通入液体样品(或固体表面),把要分析的组分吹扫出来,使之通过一个盛有吸附剂的容器进行富集,然后再把吸附剂加热,使被吸附的组分脱附,用载气带入[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱中进行分析。吹扫捕集分析法适用于从液体或固体样品中萃取沸点低于200℃、溶解度小于2%的挥发性或半挥发性有机物,具有富集的功能,对痕量组分的分析比较有利。吹扫捕集法对样品的前处理无需使用有机溶剂,对环境不造成二次污染,而且具有取样量少、富集效率高、受基体干扰小及容易实现在线检测等优点。但是吹扫捕集法易形成泡沫,使仪器超载。且所用时间较多,吹扫中有可能引入杂质以及吸附剂性能的选择等。此外伴随有水蒸气的吹出,水对火焰类检测器也具有淬火作用。[b][size=20px]吹扫捕集与静态顶空比较[/size][/b]相同点:用氮气或氦气,或其他惰性气体将被测物从样品中抽提出来。不同点见下表。[img]http://p5.itc.cn/images01/20201118/8810823e39d14ee9b48cfa62b242b918.png[/img]静态顶空分析法普遍应用于环境样品土壤、泥浆和水等机体中易挥发物的分析。例如,水中三氯甲烷、四氯化碳、三氯乙烯、四氯乙烯、三溴甲烷等。同时也普遍用于制药行业中溶剂残留的分析。例如,药品中二氯甲烷、氯仿、三氯乙烯、1、4-二氧六环和苯等。许多用静态顶空技术分析的样品也可以用吹扫捕集技术分析。在我国用于测定环境水样中挥发性有机化合物(VOCs)多采用静态顶空法,但静态顶空法的灵敏度低,不能满足微量测定要求。运用吹扫捕集与[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]联用技术可测定饮用水、地表水及海水中的μg/L(甚至ng/L级)的VOCs,其检出限可以比静态顶空技术低10-1000倍。GB/T5750.8-2006 《生活饮用水标准检验方法有机物指标》附录A吹脱捕集/[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱法测定挥发性有机化合物中详细说明了采用吹扫捕集法对生活饮用水中28种挥发性有机物的检测方法。[b][size=20px]使用注意事项[/size][/b]1、温度选择样品的吹扫温度。水溶液大多在室温下吹扫,只要吹扫时间足够长,就能满足分析要求。有时为缩短吹扫时间,也可对样品加热,但升高温度的副作用增加了水的挥发。对于非水溶液,如某些肉类食品,则采用高一些的吹扫温度。捕集器温度。这里又有吸附温度和解吸温度之别。吸附温度常为室温,但对不易吸附的气体也可采用低温冷漠捕食技术。即用冷气、液态二氧化碳或液氮控制捕集管的温度。至于解吸温度,是吹扫--捕集技术的重要参数,应依据待测组分的性质和吸附的性质来优化确定。商品化自动吹扫—捕集进样器的解吸温度最高可达450℃,但在部分环境分析的标准方法(如美国EPA方法)均采用200℃左右的吹扫温度。连接管路的温度,它应足够设防止样品冷凝.环境分析常用的连接管温度为80-150℃。2、吹扫气流与吹扫时间吹扫气流速取决于样品中待测物的浓度、挥发性、与样品基质的相互作用(如溶解度)以及其在捕集管中的吸附作用大小。用氦气,流速范围为20-60ml/min。用氮气时可稍高一些,但氮气的吹扫效果不及氦气。原因是氮气在水中的溶解度比氦气大。注意,吹扫流速太大时会影响样品的捕集,造成样品组分的损失。解吸时的载气流速主要取决于所用色谱柱。用填充柱时为30-40ml/min,用大口径柱时为5-10ml/min;用常规毛细管柱时则要按分流或不分流模式来设置载气流速。吹扫时间是吹扫-捕集技术的重要参数之一,须根据具体样品来优化确定。原则上,吹扫时间越长,分析重现性和灵敏度越高。但考虑到分析时间和工作效率,应在满足分析要求前提下,选择尽可能短的吹扫时间。实际工作中可通过测定标准样品的回收率来确定吹扫时间。[/size]

  • 激光粒度仪静态样品池使用方法

    标准粒子选用北京海岸鸿蒙标准物质有限公司的编号为GBW(E)120021 的标准物质。使用方法:1.首先检查静态样品池的玻璃表面是否清洁,如果不清洁,用脱脂棉蘸无水乙醇进行清洗。2.将干净的静态样品池注约三分之二深的水后将上盖盖住(记住盖的方向),放入到激光粒度分析仪的检测口内,然后进行软件的参数设置和对中调整(注意在盖上盖子的时候一定不要使镜头中有气泡)。3.参数设置如下:http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif4.对中调整好以后,点击软件上背景按钮,当出现分析界面时,取出静态样品池,将样品池上盖取下(注意记得盖子的方向),向样品池中滴入几滴标准粒子液滴,然后用洗耳球对准液体进行吹气,使样品池中的粒子均匀分散。然后原方向盖上样品池盖,不能盖反,然后放入检测口内,点击分析进行测量。注意:这里只是一个静态样品池的使用方法,告诉你如何使用静态样品池测试标准粒子,并不能算作对仪器的标定。当测试结果与标准粒子标称值差别较大时,可致电我公司,我们可协助判断和校准仪器。

  • 动态色谱法和静态色谱法的对比

    动态色谱法和静态容量法是目前常用的主要的比表面测试方法。科学指南针检测平台工作人员将两种方法做比较,发现动态色谱法比较适合测试快速比表面积测试和中小吸附量的小比表面积样品(对于中大吸附量样品,静态法和动态法都可以定量的很准确),静态容量法比较适合孔径及比表面测试。他们之间有什么区别?

  • 【求助】DMA TAQ800静态力的设定

    请问使用DMA多频应力模式测试样品时,静态力的设定为多少N较合适?是否静态力设定越大测试的储能模量越高?样品为环氧树脂。一般使用多频应变模式,振幅设定为15um。谢谢!

  • 静态容量法氮吸附测试技术

    静态容量法测量氮吸附量与动态法不同,他是在一个密闭的系统中,改变粉体样品表面的氮气压力,从0逐步变化到接近1个大气压,用高精度压力传感器测出样品吸附前后压力的变化,再根据气体状态方程计算出气体的吸附量或脱附量。测出了氮吸附量后,根据氮吸附理论计算公式,便可求出BET比表面及孔径分布。静态容量法测试技术的关键因素主要有压力传感器的精度、死容积测量精度、真空密封性、试样温度和冷却剂液面的变化、样品室温度场的校正等。欧美等发达国家基本上均采用静态容量法氮吸附仪,我国每年的进口量也不少,但由于价格昂贵,在我国的应用受到限制,近来北京彼奥德科学技术有限公司已研制成功具有我国自主知识产权的SSA-系列静态氮吸附仪,代替进口已成必然趋势。

  • 静态容量法测试原理

    静态容量法测试通常在液氮温度下进行。在样品管中放置准确称量的经预处理的吸附剂样品,先经过抽真空脱气,再使整个系统达到所需的真空度,然后将样品管浸入液氮浴中,并充入已知量气体,吸附剂吸附气体会引起压力下降,待达到吸附平衡后测定气体的平衡压力,并根据吸附前后体系压力变化可计算吸附量。逐次向系统增加吸附质气体量改变压力,重复上述操作,测定并计算得到不同的平衡压力下的吸附量值。

  • ,静态吸附是室温下吸附30分钟。

    有关CO-TPD的疑问对催化剂做CO-TPD,请问用脉冲吸附和静态吸附,脱附的结果一样吗?脉冲吸附条件是室温下脉冲走平或注射30次,静态吸附是室温下吸附30分钟。

  • 压敏涂料宽域(1Pa~600kPa)静态标定精密控制解决方案

    压敏涂料宽域(1Pa~600kPa)静态标定精密控制解决方案

    [align=center][size=16px][img=压敏涂层特性校准实验中的温度、真空压力和氧浓度控制,600,393]https://ng1.17img.cn/bbsfiles/images/2023/10/202310311112470328_817_3221506_3.jpg!w690x453.jpg[/img][/size][/align][size=16px][color=#990000][b]摘要:针对客户提出的在温度-10℃~80℃、绝对压力1Pa~600kPa、氧浓度0~80%范围内实现对压力敏感涂料静态特性校准测试腔室的精密自动控制要求,本文提出了相应的解决方案。解决方案的主要技术内容是采用TEC半导体制冷器进行温度控制、采用动态平衡法和电控针阀进行真空压力控制、采用气体质量流量控制器和混气罐进行氧浓度控制。整个解决方案具有很高的控制精度和易实现性,且无需编程即可进行系统搭建和控制的特点。[/b][/color][/size][align=center][size=16px][color=#990000][b]================[/b][/color][/size][/align][size=18px][color=#990000][b]1. 项目背景[/b][/color][/size][size=16px] 压力敏感涂料(Pressure Sensitive Paint:PSP)表面压力测量技术是二十世纪八十年代后期发展起来的气动力光学测量技术,相比基于离散测压孔的测量技术,PSP作为一种非接触式测压技术,可在远距离获得测量表面的全场压力分布,避免破坏模型及干扰流场,并具有空间分辨率和数据采集率高的特点,在航空航天、汽车制造和叶轮机械等领域具有极广的应用前景,被视为二十一世纪世纪最具发展潜力的风洞试验技术之一。[/size][size=16px] 压敏涂料或涂层的性能评价分为静态和动态以下两种方法:[/size][size=16px] (1)静态特性测试:这是指在静止或非常缓慢变化的压力条件下,对压力敏感涂层的性能进行测试。这种测试通常用于评估涂层的灵敏度,即施加压力后涂层的响应程度。静态特性测试还包括测试在不同温度下涂层的灵敏度。[/size][size=16px] (2)动态特性测试:这是指在动态或快速变化的压力条件下,对压力敏感涂层的性能进行测试。这种测试通常用于评估涂层的响应速度,即涂层对快速变化压力的响应能力。[/size][size=16px] 最近,有用户提出了压力敏感涂料的静态特性测试需要,要求在静态特性测试仪器上实现真空压力和温度的精确控制,为压敏涂层提供可控的真空压力、氧浓度和温度环境,指标如下:[/size][size=16px] (1)对一正方形金属薄板进行单面加热,金属薄板上涂覆有压敏涂层。整个薄板样品放置在一顶部具有光学窗口的密闭腔体内,要求腔体内的真空压力可准确控制。[/size][size=16px] (2)样品尺寸:50mm×50mm×5mm。[/size][size=16px] (3)样品温度:-10~80℃,控温精度±0.1℃。[/size][size=16px] (4)真空压力:绝对压力1Pa~600kPa,精度为读数的±1%。[/size][size=16px] (5)氧浓度:0~80%,精度为±1%。[/size][size=16px] 本文将针对上述用户提出的技术要求,提出压敏涂层静态特性测试装置的温度、气压和气氛环境精密控制解决方案,为测试装置提供各种温度和可变真空压力的准确控制。[/size][size=18px][color=#990000][b]2. 解决方案[/b][/color][/size][size=16px] 从上述技术要求可以看出,压敏涂层静态特性测试所要求的环境控制变量分别为温度、真空压力(正负压)和氧浓度三个变量,而且这三个变量都要求具有可调的不同数值。为此,本解决方案将分别采用以下三种独立的技术实现这三个变量的精确控制:[/size][size=16px] (1)温度控制:采用基于帕尔贴原理的TEC半导体制冷技术,这种温控技术是目前比较适合-10~80℃温度范围的加热制冷技术,具有精度高、响应速度快、便于实施和结构简单的特点。[/size][size=16px] (2)真空压力控制:采用动态平衡法技术,通过控制进入和排出测试腔体的气体流量,使进气和排气流量达到动态平衡从而实现1Pa~600kPa(绝对压力)宽域范围内任意设定真空压力的准确恒定控制。[/size][size=16px] (3)氧浓度控制:采用气体质量流量控制技术,分别控制氧气和其他环境气体的流量,由此来实现混合气体中的氧浓度精密控制。[/size][size=16px] 采用上述三种控制技术所设计的控制系统结构如图1所示。[/size][align=center][size=16px][color=#990000][b][img=01.压敏涂料静态特性测试仪器的真空压力温度和氧浓度控制系统结构示意图,690,321]https://ng1.17img.cn/bbsfiles/images/2023/10/202310311113547719_3272_3221506_3.jpg!w690x321.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图1 压敏涂料静态特性测试仪器的真空压力温度和氧浓度控制系统结构示意图[/b][/color][/size][/align][size=16px] 如图1所示,压敏涂料的温度控制回路由铂电阻温度传感器、TEC制冷片、TEC电源换向器和TEC温度控制器构成。其中样品的快速加热和冷却采用了TEC半导体制冷片,通过TEC电源换向器改变加载到TEC片上的电流方向来分别进行加热和制冷,由此可实现-10~80℃范围内的快速精确的温度控制。为了保证涂层样品的温度均匀性,在样品和TEC制冷片之间布置了一个紫铜板,紫铜板内还镶嵌了一只铂电阻温度传感器以用来测量和控制样品温度。为了在真空环境内给TEC制冷片提供很好的散热能力,图1中设计了水冷板冷却方式,外部循环冷却水进入校准用的密闭腔体对水冷板提供冷却。压敏涂料样品的温度程序控制采用了VPC2021-2型号的TEC温度控制器,此控制器具有加热和制冷双向控制功能,具有程序控制功能,可根据设置的一些列温度点和升降温速率进行程序控制。此控制器自带计算机软件,可通过上位机进行远程设置和操作。[/size][size=16px] 如图1所示,真空压力控制回路由进气电动针阀、真空压力传感器、排气电动针阀、双通道真空压力控制器和真空泵组成。其中真空压力传感器由一些列不同量程的薄膜电容真空计和正压压力传感器构成(图1中并未全部汇出),以满足不同量程范围内的真空压力准确测量,一般的配备是0.1、10、1000Torr三只不同量程的电容真空计和一只硅压阻式压力计,这些真空计和压力计都可以很轻松的达到0.5%的测量精度。真空压力计所采集的气压信号传输给真空压力控制器,控制器根据设定值与测量信号比较后,经PID算法计算后输出控制信号驱动电动针阀来改变进气或排气流量,由此来实现校准腔室内气压的精密控制。[/size][size=16px] 这里需要说明的是,在动态平衡法真空压力控制过程中,对于绝对压力在1kPa~600kPa范围的较高气压区间,需要采用下游控制模式才能获得较高的控制精度,即固定进气电控针阀的开度保持进气流量恒定,通过快速自动调节下游排气电控针阀的开度来进行真空压力控制。对于绝对压力在1kPa以下的低压高真空区间,则需要采用上游控制模式才能实现较高精度的控制,即完全打开排气电控针阀,使真空泵全速抽取校准腔室内的气体,通过快速自动调节上游进气电控针阀的开度来进行真空度控制。[/size][size=16px] 为了实现两只电控针阀的单独调节,解决方案中配备了VPC2021-2系列的双通道真空压力控制器,两个独立的控制通道可分别用来进行上游和下游控制模式的运行,并进行独立的PID自动控制或手动控制。此控制器同样自带计算机软件,可通过上位机进行远程设置和操作。[/size][size=16px] 对于氧浓度的控制,如图1所示,采用了多个气体质量流量控制器来对进气进行精密的流量调节,以精确控制氧气浓度或氧气所占比例。通过精密测量后的多种工作气体在混气罐内进行混合,然后再进入校准腔室,由此可以准确控制校准腔室内的氧分压。在氧浓度控制过程中,还特别需要注意以下两点:[/size][size=16px] (1)对于某一种单独的工作气体,需要配备相应气体的气体质量流量控制器。[/size][size=16px] (2)混气罐压力要进行恒定控制或在混气罐的出口处增加一个减压阀,以保持混气罐的出口压力稳定,这对准确控制校准腔室内的真空压力非常重要。[/size][size=18px][color=#990000][b]3. 总结[/b][/color][/size][size=16px] 综上所述,本解决方案可以很好的实现用户提出的各项技术要求指标,并具有很高的控制精度和自动控制能力。另外,此解决方案还具有以下特点:[/size][size=16px] (1)本解决方案具有很强的适用性,通过改变其中的相关部件参数指标就可适用于不同控制范围的压敏涂料静态特性测试需要。[/size][size=16px] (2)解决方案中所采用的温度和真空压力控制器自带计算机软件,可直接通过计算机的屏幕操作进行整个控制系统的调试和运行,且控制过程中的各种过程参数变化曲线自动存储,这样就无需再进行任何的控制软件编写即可很快搭建起温度和真空压力控制系统,极大方便了压敏涂料静态特性的校准。[/size][size=16px][/size][align=center][size=16px][color=#990000][b][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • 静态基线稳定性测试

    想问一下,在静态基线稳定性测试中的"瞬时”测定方式,是哪种测定方式,用的是AA-6300 C的仪器,可是它写的是:单光束仪器与铜灯同时预热30min,是双光束的呀,最大漂移量和最大瞬时噪声分别怎么测定呢,是一起测定的吗

  • 静态基线不稳定

    静态基线不稳定

    刚购买了一台原子吸收仪,但是测铜的静态基线,发现总是稳定不下来(如图),开始比较稳定,过一段时间就会突然上升,再稳定一段时间,又再次上升。这是什么原因?求指教!http://ng1.17img.cn/bbsfiles/images/2016/10/201610211048_614609_2719452_3.jpg

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制