当前位置: 仪器信息网 > 行业主题 > >

精密分馏系统

仪器信息网精密分馏系统专题为您提供2024年最新精密分馏系统价格报价、厂家品牌的相关信息, 包括精密分馏系统参数、型号等,不管是国产,还是进口品牌的精密分馏系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合精密分馏系统相关的耗材配件、试剂标物,还有精密分馏系统相关的最新资讯、资料,以及精密分馏系统相关的解决方案。

精密分馏系统相关的论坛

  • 气相、液相系统精密度

    气相、液相系统精密度

    http://ng1.17img.cn/bbsfiles/images/2017/02/201702101356_01_2758828_3.jpg个人认为,这段内容表述了无论气相还是液相,系统精密度是每次进行批处理序列时都需要进行考察的的内容,请问关于系统精密度这个,大家都是怎么做的?是只在方法学考察里进行,还是日常监测也在做?还有,如果是气相外标法测定残留, 需要平行配置两个标准品进样吗?还是只配置一个就行?分别进几针?

  • 色谱精密度

    我的色谱不分馏尽样是精密度很好,但分馏是却不好为什么?

  • 化学精密仪器数据导入LIMS系统

    有没有老师实验室采用了LIMS系统,像常规的化学精密仪器[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url],ICP数据是如何导入系统?可以分享下大概流程吗?还有,一般在报告审核会看仪器导出的原始记录,这个会设定自动上传吗?

  • 循环肿瘤细胞(CTCs)检测分选进样系统微小正负压精密控制的解决方案

    循环肿瘤细胞(CTCs)检测分选进样系统微小正负压精密控制的解决方案

    [align=center][img=压力驱动分选进样系统,690,371]https://ng1.17img.cn/bbsfiles/images/2022/06/202206231002395286_2664_3384_3.png!w690x371.jpg[/img][/align][color=#000099]摘要:在循环肿瘤细胞等细胞分选进样系统中,需要在一个标准大气压附近很小的正负压范围对压力进行精密控制,这就对控制方法、气体流量调节阀、压力传感器和控制器提出了更高的要求。本文将针对这些技术问题,提出高精度正负压精密控制解决方案,并详细介绍控制方法和其中软硬件的功能和技术指标,由此可实现0.5%的控制精度。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#000099]一、问题的提出[/color][/size]循环肿瘤细胞(Circulating Tumor Cells,CTC)分选已被认为是癌症诊断和预后的有效工具,要求相应的检测装置能够执行所有实验过程而无需任何人工干预的自动、快速且灵敏。对于一些基于压力驱动液体流动原理的进样系统,要求通过精确控制气体的压力, 确保进样过程中流量稳定并实现自动反馈调节,并需要气压供应装置提供正压和负压以使检测装置中的泵及阀门动作。但在目前的CTC检测装置进样系统中,气压的精密控制还存在以下几方面的问题需要解决:(1)现有的气压供应装置无法提供微小的气压,常会导致泵的薄膜破损而无法使用,且现有的气压供应装置亦无法提供常压,使泵的薄膜在检测过程中无法回到平坦状态,造成细胞破损,故需要有可以提供微气压及常压至检测装置的气压供应装置。为了解决此问题,给微流道芯片提供正压、负压或常压,专利CN 216499436U“气压供应装置”中提出了一种非常复杂的概念性解决方案,标称正压气体的压力大小调节至 1~6psi,负压气体的压力大小调节至?1~6psi,正负压微调节阀可以精密至±0 .01psi。但这些指标恰恰是微压力调节阀的关键,如果没有能达到这种技术指标的调节阀,所述方案根本无法实现。(2)上海理工大学王固兵等人在2020年发表的“基于气压驱动的循环肿瘤细胞分选进样系统的设计与实现“一文中,提出了一种采用德国tecno PS120000 比例电磁阀的技术方案。但这种工业用比例阀主要是用于高压气体的压力控制,口径也较大,控制精度显然不能满足微小正负压的精密控制,而且无法外接高精度压力传感器来提升控制精度,根本无法实现文中提出的达到压力输出精度为1mbar(0.015psi)的指标,相对于1bar大气压这相当于达到0.1%的控制精度,这个指标显然不切合实际。从上述报道可以看出,细胞分选进样系统的压力控制需要在一个标准大气压附近很小的正负压范围对真空压力进行精密控制,这就对控制方法、气体流量调节阀、压力传感器和控制器提出了更高的要求。本文将针对这些技术问题,提出高精度正负压精密控制解决方案,并详细介绍控制方法和其中软硬件的功能和技术指标,由此可实现0.5%的控制精度。[size=18px][color=#000099]二、解决方案[/color][/size]本文所提出的解决方案是实现在一个标准大气压附近±10psi(或±700mbar)范围内的正负压精密控制,控制精度达到0.5%。即提供一个可控气压源解决方案,采用双向控制模式的动态平衡法,结合高精度步进电机和微小流量电动针阀、高精度压力传感器和双通道PID控制器,气压源可进行高精度的正压、负压和一个大气压的可编程输出。微小正负压精密控制的基本原理如图1所示,具体内容为:[align=center][img=气压驱动分选进样系统,690,377]https://ng1.17img.cn/bbsfiles/images/2022/06/202206231005336655_4666_3384_3.png!w690x377.jpg[/img][/align][align=center]图1 微小正负压精密控制原理框图[/align](1)控制原理基于密闭空腔进气和出气的动态平衡法。这是一个典型闭环控制回路,2通道PID控制器采集真空压力传感器信号并与设定值进行比较,然后调节进气和抽气调节阀的开度,最终使传感器测量值与设定值相等而实现真空压力的准确控制。(2)控制回路分别配备了抽气泵(负压源)和气源(正压源),以提供足够的负压和正压能力。(3)为了覆盖负压到正压的所要求的真空压力范围(如-10psi至+10psi),配置一个测试量程覆盖要求范围内的高精度绝对压力传感器,绝对压力传感器对应上述真空压力范围输出数值从小到大的直流模拟信号(如0~10VDC)。此模拟信号输入给PID控制器,由PID控制器调节进气阀和排气阀的开度而实现压力精确控制。采用绝对压力传感器的优势是不受当地大气气压变化的影响,无需采取气压修正,更能保证测试的准确性和重复性。(4)当控制是从负压到正压进行变化时,一开始的进气调节阀开度(进气流量)要远小于抽气调节阀开度(抽气流量),通过自动调节进出气流量达到不同的平衡状态来实现不同的负压控制,最终进气调节阀开度逐渐要远大于抽气调节阀开度,由此实现负压到正压范围内一系列设定点或斜线的连续精密控制。对于从正压到负压压的变化控制,上述过程正好相反。[size=18px][color=#000099]三、方案具体内容[/color][/size]解决方案中所涉及的微小正负压力发生器的具体结构如图2所示,主要包括高压气源、电动针阀、密闭空腔、压力传感器、高精度PID控制器和抽气泵。[align=center][img=气压驱动分选进样系统,690,465]https://ng1.17img.cn/bbsfiles/images/2022/06/202206231006045409_5247_3384_3.png!w690x465.jpg[/img][/align][align=center]图2 微小正负压精密控制的压力发生器结构示意图[/align]在图2所示的微小正负压控制系统中,密闭空腔上的工作压力出口连接检测仪器,密闭空腔左右安装两个NCNV系列的步进电机电动针阀,此电动针阀本身就是正负压两用调节阀,其绝对真空压力范围为0.0001mbar~7bar,最大流量为40mL/min,步进电机单步长为12.7微米,完全能满足小空腔的正负压精密控制。在图2所示的控制系统中使用了两个电动针阀来实现正负压任意设定点的精确控制,也可以从正压到负压的压力线性变化控制,也可以从负压到正压的压力线性变化控制。对于循环肿瘤细胞(CTCs)检测仪器进样系统中的微小正负压控制,要求是在标准大气压附近的真空压力精确控制,如控制精度为±0.5%甚至更小,一般都需要采用调节抽气阀的双向动态模式,即通过双通道PID控制器,一个通道用来恒定进气口处电动针阀的开度基本不变,另一个通道根据PID算法来调节排气口处的电动针阀开度。除了上述恒定进气流量调节抽气流量的控制方法之外,循环肿瘤细胞(CTCs)检测仪器进样系统中的微小正负压的控制精度,主要由压力传感器、PID控制器和电动针阀的精度决定。本方案中的PID控制器采用的是24位AD和16位的DA,电动针阀则是高精度步进电机,因此本解决方案的测试精度主要取决于压力传感器精度,一般至少要选择0.1%精度的压力传感器。对于进样系统中的微小压力控制,往往会要求密闭容器在正负压范围内进行多次往复变化,因此采用了可存储多个编辑程序的PID控制器,设定程度是一条多个折线段构成的曲线,由此可实现正负压往复变化的自动程序控制。在本文所述的解决方案中,为实现正负压的精密控制,如图2所示,针对负压的形成配置了抽气泵。抽气泵相当于一个负压源,但采用真空发生器同样可以达到负压源的效果,负压源采用真空发生器的优点是整个系统只需配备一个高压气源,减少了整个系统的造价、体积和重量,真空发生器连接高压气源即可达到相同的抽气效果。[size=18px][color=#000099]四、总结[/color][/size]本文所述解决方案,完全可以实现循环肿瘤细胞(CTCs)检测仪器进样系统中微小正负压的任意设定点和连续程序形式的精密控制,并且可以达到很高的控制精度和速度,全程自动化。本方案除了微小正负压的自动精密控制之外,另外一个特点是系统简单,正负压控制范围也可以比较宽泛,整个系统小巧和集成化,便于形成小型化的检测仪器。本文解决方案的技术成熟度很高,方案中所涉及的电动针阀和PID控制器,都是目前上海依阳实业有限公司特有的标准产品,其他的压力传感器、抽气泵、真空发生器和高压气源等也是目前市场上常见的标准产品。本文所述解决方案,同样可以适用于各种其他基于气压驱动的微流控进样系统。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 准确度?正确度?精密度?还在为此凌乱吗。。。。。。

    准确度?正确度?精密度?还在为此凌乱吗。。。。。。

    实验室的化验人员经常需要进行准确度试验,如检验设备(包括采样设备、制样设备、化验设备以及新研制的设备)的投入使用,新检验方法(包括标准方法、非标准方法以及新研制的方法)的验证等都需要进行准确度试验,准确度试验包括正确度试验和精密度试验。任何一个设备或测量方法都应验证其正确度和精密度是否符合预期用途的要求。但很多化验人员对三者之间的区别和关系还存在一些模糊的认识,经常把正确度当做准确度来使用,今天小编抽空整理了一些资料,关于准确度、正确度、精密度到底有哪些区别和联系呢?http://ng1.17img.cn/bbsfiles/images/2015/12/201512091921_577114_2961690_3.jpg综上所述,准确度包括了正确度和精密度。而正确度是准确度的各重要的组成部分。为评价(度量)准确度而进行的试验称为准确度试验,准确度试验同样也包括了正确度试验和精密度试验这两部分。在日常实验室工作中,我们会遇到这样的情况:比如用ICP 测同一元素含量,实验室内同一实验员不同重复间的误差、不同实验员间的误差、不同实验室间误差应控制在什么范围?其实,这就涉及到了中间精密度验证的问题了。在一组测量条件下的测量精密度,包括相同测量程序、相同操作者、相同测量系统、相同操作条件和相同地点,并且在短时间段内对同一或相似被测对象重复测量。简单地说中间精密度是处于重复性条件与再现性条件之间的条件下得到的精密度。精密度可以从三个层次来考察:重复性、中间精密度、重现性重现性:指不同实验室之间不同分析人员测定结果的精密度。当分析方法将被法定标准采用时,应进行重现性试验。重复性:配制6份供试品溶液(不添加杂质对照品溶液,为准确度提供依据),由1个分析人员在尽可能相同的条件下进行测试,所得6份供试品溶液中的杂质含量,其相对标准差应不大于15%。重复性测定可在规定范围内,至少用9次测定结果进行评价,如制备3个不同浓度的试样,各测定3次,或100%的浓度水平,用至少测定6次的结果进行评价。中间精密度:是指在同一试验室,由于实验室内部条件改变,如时间、分析员、仪器设备、测定结果的精密度。验证设计方案中 变动因素一般为日期、分析人员、设备。配置6份供试品溶液(一般为0.1%),分别由不同分析人员、不同日期、不同仪器进行测试,所得12个杂质含量数据的相对标准差应不大于20%。简言之。。。。见下图http://ng1.17img.cn/bbsfiles/images/2015/12/201512091921_577115_2961690_3.jpg精密度计算http://ng1.17img.cn/bbsfiles/images/2015/12/201512091922_577116_2961690_3.jpg中间精密度试验时应考察不同日期、不同分析人员、不同仪器下对精密度的影响,有关物质中间精密度的结果评价及可接受标准可以看一下2010版中国药典附录V D高效液相色谱法,附录第30页!有详细的描述!1)含量低于0.5%,RSD%应小于10%。2)含量在0.5%-2%,RSD%应小于5%。3)含量大于2%,RSD%应小于2%。中间精密度的验证:分别考察同一实验室不同人员、不同时间、不同仪器设备测定结果之间的精密度。具体操作:①、对照品溶液的配制:同⑵。②、供试品溶液的配制:同⑵。分别精密量取相同体积的上述各溶液进液相,按外标法以峰面积计算不同的分析人员在不同的时间、不同的仪器设备上测得的供试品溶液中被测成分的含量(可算其相对于制剂标示量的百分含量),计算组内的平均含量及含量的RSD,并与另一组(不同的分析人员、不同时间、不同仪器设备)测得的结果比较,计算组间的RSD,应小于2%。这时候,仿佛应该插个题外话,那就是检测限和定量限的问题了(其实这个话题咱们说过很多了),今天呢, 不废话,直接说精华。1.检测限系指试样中的被分析物能够被检测到的最低量,但不一定要准确定量。该验证指标的意义在于考察方法是否具备灵敏的检测能力。因此对杂志限度试验,需证明方法具有足够低的检测限,以保证检出需控制的杂质。直观法直观评价可以用于非仪器分析法,也可用于仪器分析方法。检测限的测定是通过对一系列已知浓度被测物的试样进行分析,并以能准确、可靠检测被测物的最小量或最低浓度来建立。信噪比法用于能显示基线噪音的分析方法,即把已知低浓度试样测出的信号与噪声信号进行比较,计算可检出的最低浓度或量。一般以信噪比为3:1时相应的浓度或注入仪器的量确定检测限,其他方法有基于工作曲线的斜率和响应的标准偏差进行计算的方法等。无论用何种方法,均应用一定数量的试样,其浓度为近于或等于检测限,进行分析,以可靠地测定检测限。2.定量限http://ng1.17img.cn/bbsfiles/images/2015/12/201512091922_577117_2961690_3.jpg我们来举个例子说吧!以GC为例,分析方法中间精密度验证中,要求不同的分析人员采用相同的分析方法、在不同的时间、使用不同的仪器进行测试,以确认方法的适用性。问题是,不同的仪器参数设置一般是不同的,除了检测器温度、进样器温度、柱温能保持不变外,其它如分流比(有的仪器有,有的没有),载气流速等似乎不能保证完全一样,这种情况下做出来的中间精密度数据有效吗?我觉得中间精密度验证不一定要求仪器参数完全一样,甚至平时操作的时候可能用到跨品牌的仪器,只要方法一致就有可比性,用分流的就都用分流的,用不分流就都用不分流,用恒流模式就都设定为恒流模式的,不要求使用完全一模一样的仪器。为什么要做精密度和回收率试验? 测量方法确认技术分成以下几类。 (1)正确度试验(标准物质分析试验、回收率试验、不同方法的比对试验。 (2)精密度试验(室内重复性、中间精密度、协同试验、极差试验。 (3)检出限的确定。 (4)测量范围试验。 (5)影响结果因素的系统评价。 (6)结果不确定度的评价。根据测量方法预期用途的特定要求,选用以上至少两项确认试验或评价技术,以便得到与特定要求相关的技术指标。在没有系统偏差或系统偏差不显著时,精密度好,则正确度高。否则精密度好,正确度不一定高。方法精密度好,才可能采用最少的重复测定次数得到准确的结果。从这个意义上说,方法的精密度对正确度有很大影响。因此,测量方法的精密度要优于正确度的限量,才能满足测量方法正确度的要求。实践中通常把残留分析检测方法的精密度试验简化为高(略低于检测方法的最高限量)、中(检出限的两倍)、低(略高于检出限)3个浓度各进行不少于10次的测试。应用线性回归原理进行测量的方法一般在线性范围内选择包括检测低限、检测高限在内的6个质量水平样品分别进行不少于3次的测试。检测结果经统计应满足拟确认测量方法精密度的要求。化学分析方法一般采用Horwite方程:cM=2(1-0.5lgc)(%)(c为浓度水平,1,10,100,1000,,)评价方法的精密度。 对于组成不十分清楚的试样, 常采用加入回收法。在试样中加入已知量的被测组分与等量的另一份相同的试样平行进行分析, 求得加入的被测组分的回收率, 由回收率检查系统误差的大小。提高试验精密度和采用回收试验,都是为了尽可能减少实验误差,使得试验更准确。简单而言:就是准确度用回收率试验,精密度用测定6次结果进行rsd评价。

  • 气相色谱精密度差

    安捷伦气相色谱7820,顶空进样器是7697,现在进样的峰面积的RSD在10%左右,比原来的精密度差很多,重装过柱子,卸过进样口,检查过喷嘴,都没有解决,最后是更改了柱流速和分流比进行了调节变好的,有没有人遇到这种情况

  • 显微成像系统的真空压力和气氛精密控制解决方案

    显微成像系统的真空压力和气氛精密控制解决方案

    [align=center][b][img=显微镜探针冷热台的真空压力和气氛精密控制解决方案,600,484]https://ng1.17img.cn/bbsfiles/images/2023/11/202311021102101876_7960_3221506_3.jpg!w690x557.jpg[/img][/b][/align][size=16px][color=#333399][b]摘要:针对目前国内外显微镜探针冷热台普遍缺乏真空压力和气氛环境精密控制装置这一问题,本文提出了解决方案。解决方案采用了电动针阀快速调节进气和排气流量的动态平衡法实现0.1~1000Torr范围的真空压力精密控制,采用了气体质量流量计实现多路气体混合气氛的精密控制。此解决方案还具有很强的可拓展性,可用于电阻丝加热、TEC半导体加热制冷和液氮介质的高低温温度控制,也可以拓展到超高真空度的精密控制应用。[/b][/color][/size][align=center][size=16px][color=#333399][b]====================[/b][/color][/size][/align][size=16px][color=#333399][b][/b][/color][/size][size=18px][color=#333399][b]1. 问题的提出[/b][/color][/size][size=16px] 探针冷热台允许同时进行样品的温控和透射光/反射光观察,支持腔内样品移动、气密/真空腔、红外/紫外/X光等波段观察、腔内电接线柱、温控联动拍摄、垂直/水平光路、倒置显微镜等,广泛应用于显微镜、倒置显微镜、红外光谱仪、拉曼仪、X射线等仪器,适用于高分子/液晶、材料、光谱学、生物、医药、地质、 食品、冷冻干燥、 X光衍射等领域。[/size][size=16px] 在上述这些材料结构、组织以及工艺过程等的微观测量和研究中,普遍需要给样品提供所需的温度、真空、压力、气氛、湿度和光照等复杂环境,而现有的各种探针冷热台往往只能提供所需的温度变化控制,尽管探针冷热台可以提供很好的密闭性,但还是缺乏对真空、压力、气氛和湿度的调节及控制能力,国内外还未曾见到相应的配套控制装置。为了实现探针冷热台的真空压力、气氛和湿度的准确控制,本文提出了相应的解决方案,解决方案主要侧重于真空压力和气氛控制问题,以解决配套装置缺乏现象。[/size][size=18px][color=#333399][b]2. 解决方案[/b][/color][/size][size=16px] 针对显微镜探针冷热台的真空压力和气氛的精密控制,本解决方案可达到的技术指标如下:[/size][size=16px] (1)真空压力:绝对压力范围0.1Torr~1000Torr,控制精度为读数的±1%。[/size][size=16px] (2)气氛:单一气体或多种气体混合,气体浓度控制精度优于±1%。[/size][size=16px] 本解决方案将分别采用以下两种独立的技术实现真空压力和气氛的精确控制:[/size][size=16px] (1)真空压力控制:采用动态平衡法技术,通过控制进入和排出测试腔体的气体流量,使进气和排气流量达到动态平衡从而实现宽域范围内任意设定真空压力的准确恒定控制。[/size][size=16px] (2)气氛控制:采用气体质量流量控制技术,分别控制多种工作气体的流量,由此来实现环境气体中的混合比。[/size][size=16px] 采用上述两种控制技术所设计的控制系统结构如图1所示。[/size][align=center][size=16px][color=#333399][b][img=显微镜探针冷热台真空压力和气氛控制系统结构示意图,690,329]https://ng1.17img.cn/bbsfiles/images/2023/11/202311021103195907_6925_3221506_3.jpg!w690x329.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#333399][b]图1 真空压力和气氛控制系统结构示意图[/b][/color][/size][/align][size=16px] 如图1所示,真空压力控制系统由进气电动针阀、高真空计、低真空计、排气电动针阀、高真空压力控制器、低真空压力控制器和真空泵组成,并通过以下两个高低真空压力控制回路来对全量程真空压力进行精密控制:[/size][size=16px] (1)高真空压力控制回路:真空压力控制范围为0.1Torr~10Torr(绝对压力),控制方法采用上游控制模式,控制回路由进气电动针阀(型号:NCNV-20)、高真空计(规格:10Torr电容真空计)和真空压力程序控制器(型号:VPC20201-1)组成。[/size][size=16px] (2)低真空压力控制回路:真空压力控制范围为10Torr~1000Torr(绝对压力),控制方法采用下游控制模式,控制回路由排气电动针阀(型号:NCNV-120)、低真空计(规格:1000Torr电容真空计)和真空压力程序控制器(型号:VPC20201-1)组成。[/size][size=16px] 由上可见,对于全量程真空压力的控制采用了两个不同量程的薄膜电容真空计进行覆盖,这种薄膜电容真空计可以很轻松的达到0.25%的读数精度。真空计所采集的真空度信号传输给真空压力控制器,控制器根据设定值与测量信号比较后,经PID算法计算后输出控制信号驱动电动针阀来改变进气或排气流量,由此来实现校准腔室内气压的精密控制。[/size][size=16px] 在全量程真空压力的具体控制过程中,需要分别采用上游和下游控制模式,具体如下:[/size][size=16px] (1)对于绝对压力0.1Torr~10Torr的高真空压力范围的控制,首先要设置排气电控针阀的开度为某一固定值,通过运行高真空度控制回路自动调节进气针阀开度来达到真空压力设定值。[/size][size=16px] (2)对于绝对压力10Torr~1000Torr的低真空压力范围的控制,首先要设置进气针阀的开度为某一固定值,通过运行低真空度控制回路自动调节排气针阀开度来达到真空压力设定值。[/size][size=16px] (3)全量程范围内的真空压力变化可按照设定曲线进行程序控制,控制采用真空压力控制器自带的计算机软件进行操作,同时显示和存储过程参数和随时间变化曲线。[/size][size=16px] 显微镜探针冷热台内的真空压力控制精度主要由真空计、电控针阀和真空压力控制器的精度决定。除了真空计采用了精度为±0.25%的薄膜电容真空计之外,所用的NCNV系列电控针阀具有全量程±0.1%的重复精度,所用的VPC2021系列真空压力控制器具有24位AD、16位DA和0.01%最小输出百分比,通过如此精度的配置,全量程的真空压力控制可以达到很高的精度,考核试验证明可以轻松达到±1%的控制精度,采用分段PID参数,控制精度可以达到±0.5%。[/size][size=16px] 对于探针冷热台内的气氛控制,如图1所示,采用了多个气体质量流量控制器来对进气进行精密的流量调节,以精确控制各种气体的浓度或所占比例。通过精密测量后的多种工作气体在混气罐内进行混合,然后再进入探针冷热台,由此可以准确控制各种气体比值。在气氛控制过程中,需要注意以下两点:[/size][size=16px] (1)对于某一种单独的工作气体,需要配备相应气体的气体质量流量控制器。[/size][size=16px] (2)混气罐压力要进行恒定控制或在混气罐的出口处增加一个减压阀,以保持混气罐的出口压力稳定,这对准确控制校准腔室内的真空压力非常重要。[/size][size=18px][color=#333399][b]3. 总结[/b][/color][/size][size=16px] 综上所述,本解决方案可以彻底解决显微镜探针冷热台的真空压力控制问题,并具有很高的控制精度和自动控制能力。另外,此解决方案还具有以下特点:[/size][size=16px] (1)本解决方案具有很强的适用性和可拓展性,通过改变其中的相关部件参数指标就可适用于不同范围的真空压力,更可以通过在进气口增加微小流量可变泄漏阀,实现各级超高真空度的精密控制。[/size][size=16px] (2)本解决方案所采用的控制器也可以应用到冷热台的温度控制,如帕尔贴式TEC半导体加热制冷装置的温度控制、液氮温度的低温控制。[/size][size=16px] (3)解决方案中的控制器自带计算机软件,可直接通过计算机的屏幕操作进行整个控制系统的调试和运行,且控制过程中的各种过程参数变化曲线自动存储,这样就无需再进行任何的控制软件编写即可很快搭建起控制系统,极大方便了微观分析和测试研究。[/size][size=16px] 在目前的显微镜探针冷热台环境控制方面,还存在微小空间内湿度环境的高精度控制难题,这将是我们后续研究和开发的内容之一。[/size][size=16px][/size][align=center][size=16px][color=#333399][b]~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • 气密真空冷热台的真空度精密控制

    气密真空冷热台的真空度精密控制

    [align=center][img=冷热台真空度控制,690,451]https://ng1.17img.cn/bbsfiles/images/2022/03/202203071147131858_3924_3384_3.png!w690x451.jpg[/img][/align][color=#990000]摘要:针对气密真空冷热台目前存在的真空度控制精度差和配套控制系统价格昂贵的问题,本文介绍采用国产产品的解决方案,介绍了采用数控针阀进行上游和下游双向控制模式的详细实施过程。此方案已经得到了应用和验证,可实现宽范围内的真空度精密控制,真空度波动可控制在±1%以内,整个控制系统具有很高的性价比。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000]一、问题的提出[/color][/size]气密真空冷热台是同时可用于真空和气密环境的精密温控冷热平台,具有加热和制冷功能,适合显微镜和光谱仪等应用对样品在可控的真空度环境下进行精确加热或制冷。根据用户要求,针对目前的各种气密真空冷热台,在真空度控制方面,还需要解决以下几方面的问题:(1)无论是进口还是国产真空冷热台,真空度测量和控制还采用皮拉尼真空计,使得配套的控制系统无法实现真空度的精密控制,如无法满足研究和模拟冷冻干燥过程的精度要求。(2)气密真空冷热台普遍体积较小,在宽泛的真空度范围内,实现精确控制一直存在较大难度,真空度的波动性较大,而真空度的波动性又反过来影响温度的稳定性。(3)进口配套的真空度控制系统,不仅控制精度达不到要求,而且价格昂贵。针对气密真空冷热台存在的上述问题,本文将介绍采用国产产品并具有高性价比的解决方案,并介绍了详细的实施过程。[size=18px][color=#990000]二、解决方案[/color][/size]气密真空冷热台真空度精密控制系统的整体结构如图1所示,整个系统主要包括真空计、数控针阀、PID控制器和真空泵。[align=center][color=#990000][img=冷热台真空度控制,690,396]https://ng1.17img.cn/bbsfiles/images/2022/03/202203071148328248_6901_3384_3.png!w690x396.jpg[/img][/color][/align][align=center][color=#990000]图1 冷热台真空度精密控制系统结构示意图[/color][/align]为提高真空度测控精度,采用了测量精度更高(可达满量程0.2%)的电容式真空计,可覆盖0.01~760Torr的真空度区间。如果需要更高真空度环境,也可以同时采用皮拉尼真空计进行测控。为实现全宽量的真空度控制,将两只数控针阀分别安装在冷热台的进气口和排气口。通过分别采用上游和下游控制模式,可实现全量程波动率小于±1%的精密控制。控制器是精密控制的关键,方案中采用了24位A/D和16位D/A的高精度PID控制器,独立的双通道便于进行上游和下游气体流量调节和控制。总之,通过此经过验证的真空度控制方案,可实现高性价比的精密控制。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 覆盖高真空、低真空和正压的全量程综合校准系统精密控制解决方案

    覆盖高真空、低真空和正压的全量程综合校准系统精密控制解决方案

    [size=16px][color=#6666cc][b]摘要:针对工作范围在5×10[font='times new roman'][sup]-7[/sup][/font]~1.3×10[font='times new roman'][sup]6[/sup][/font]Pa,控制精度在0.1%~0.5%读数的全量程真空压力综合测量系统技术要求,本文提出了稳压室真空压力精密控制的技术方案。为保证控制精度,基于动态平衡法,技术方案在高真空、低真空和正压三个区间内分别采用了独立的控制方法和不同技术,所涉及的关键部件是微小进气流量调节装置、中等进气流量调节电动针阀、排气流量调节电动球阀、正压压力电子调节器和真空压力PID控制器。配合相应的高精度真空压力传感器,此技术方案可以达到控制精度要求,并已得到过试验验证。[/b][/color][/size][align=center][img=全量程真空压力综合测量系统的高精度控制解决方案,690,384]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121052314254_1235_3221506_3.jpg!w690x384.jpg[/img][/align][size=16px][/size][b][size=18px][color=#6666cc]1. 项目概述[/color][/size][/b][size=16px] 真空压力综合测量系统是一个用于多规格真空传感器测量校准的高精度动态真空压力测量系统,主要由一套真空稳压室、一套电容薄膜真空测量模块、一套冷阻复合真空测量模块、一套高精度真空测量模块,其技术要求如下:[/size][size=16px] (1)真空稳压室体积为1L;[/size][size=16px] (2)真空稳压室含有10路VCR转接接头;[/size][size=16px] (3)真空稳压室加热烘烤温度范围:室温到200℃;[/size][size=16px] (4)冷阻复合真空测量模块量程为(5×10[font='times new roman'][sup]-7[/sup][/font]~1×10[font='times new roman'][sup]5[/sup][/font])Pa;[/size][size=16px] (5)冷阻复合真空测量模块含有通讯接口,提供0~10V电压信号;[/size][size=16px] (6)电容薄膜真空测量模块量程为10Torr,测量精度为0.5%;[/size][size=16px] (7)电容薄膜真空测量模块接口为8VCR接口;[/size][size=16px] (8)电容薄膜真空测量模块含有通讯接口,提供0~10V电压信号;[/size][size=16px] (9)高精度真空测量模块量程为0.1~10000Torr;[/size][size=16px] (10)高精度真空测量模块测量精度为读数的0.1%;[/size][size=16px] (11)配备高精度真空测量模块的控制器,满足真空测量模块的使用要求,包含通讯接口。[/size][size=16px] 从上述技术要求可以看出,整个系统的真空压力范围覆盖了负压和正压,具体的全量程覆盖范围用绝对压力表示为5×10-7~1.3×106Pa,其中包含了高真空(5×10[font='times new roman'][sup]-7[/sup][/font]~1.3×10[font='times new roman'][sup]-1[/sup][/font]Pa)、低真空(1.3×10[font='times new roman'][sup]-1[/sup][/font]~1.3×10[font='times new roman'][sup]5[/sup][/font]Pa)和正压(1.3×10[font='times new roman'][sup]5[/sup][/font]~1.3×10[font='times new roman'][sup]6[/sup][/font]Pa)的精密测量和控制,更具体的是要在一个稳压室内实现三个真空压力范围的不同测量和控制精度。以下将对这些技术要求的实现,特别是对真空压力的精密控制技术方案和相关关键配套装置给出详细说明,其他通用性的装置,如机械泵和分子泵则不进行详细描述。[/size][size=18px][color=#6666cc][b]2. 高精度宽量程真空压力控制技术方案[/b][/color][/size][size=16px] 真空压力控制系统的技术方案基于动态平衡法控制原理,即在一个密闭容器内,通过调节进气和出气流量并达到相应的平衡状态来实现真空压力设定点的快速控制。在动态平衡法实际应用中,只要配备相应精度的传感器、执行器和控制器,可以顺利实现设计精度的控制。为此,针对本项目提出的技术指标,基于动态平衡法,本文所提出的具体技术方案如图1所示。[/size][align=center][size=16px][color=#6666cc][b][img=01.真空压力综合测量控制系统结构示意图,690,410]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121043350021_6971_3221506_3.jpg!w690x410.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b]图1 高精度全量程真空压力控制系统结构示意图[/b][/color][/size][/align][size=16px] 对应于项目技术指标中的高真空、低真空和正压压力控制要求,图1所示的真空压力控制系统由三个相对独立的控制系统来实现项目技术要求,具体内容如下:[/size][size=16px][color=#6666cc][b]2.1 高真空度控制系统[/b][/color][/size][size=16px] 基于动态平衡法原理,对于高真空控制,需要采用上游控制模式,在分子泵全速抽气条件下,需要在上游(进气端)通过精密调节微小进气流量,来实现高真空范围内任意真空度设定点的恒定控制。如图1所示,高真空控制系统主要包括了冷阻真空计、微量进气调节装置和真空压力控制器,这三个装置构成一个闭环控制系统,它们的精度决定了高真空度的最终控制精度。[/size][size=16px] 需要说明的是高真空和低真空控制系统公用了一套机械泵和分子泵,高真空控制时需要分别使用机械泵和分子泵,而在低真空控制时仅使用机械泵。[/size][size=16px] 对于高真空传感器而言,可根据设计要求选择相应量程和测量精度的真空计,其测量精度最终决定了控制精度,一般而言,控制精度会差于测量精度。[/size][size=16px] 在高真空控制中,关键技术是精密调节微小进气流量。如图1所示,微量进气调节装置有电动针阀、泄漏阀和压力调节器组成,可实现0.005mL/min或更低的微小进气流量调节。[/size][size=16px] 微量气体调节时,首先通过压力调节器来改变泄漏阀的进气压力,使泄漏阀流出相应的微小流量气体,然后通过调节电动针阀来改变进入真空稳压室的气体流量。压力调节器和电动针阀的控制则采用的是24位AD、16位DA和0.01%最小输出百分比的双通道真空压力PID控制器。[/size][size=16px][color=#6666cc][b]2.2 低真空度控制系统[/b][/color][/size][size=16px] 基于动态平衡法原理,对于低真空控制,则需要分别采用上游(进气端)和下游(排气端)两种控制模式。如图1所示,两种控制模式的具体内容如下:[/size][size=16px] 在低真空的0.01~10Torr范围内,需要采用10Torr量程的电容真空计,并在机械泵全速抽气的条件下(电动球阀全开),通过动态改变电动针阀的开度来调节进气流量以实现设定真空度的精密控制。同时在电动针阀的进气端增加一个压力调节器以保证电动针阀进气压力的稳定。[/size][size=16px] 在低真空的10~760Torr范围内,需要采用1000Torr量程的电容真空计,并在固定电动针阀开度和机械泵全速抽气的条件下,通过动态改变电动球阀的开度来调节排气流量以实现设定真空度的精密控制。[/size][size=16px] 同样,在低真空控制系统中也同样采用了高精度的双通道真空压力控制器,两路输入通道分别接10Torr和1000Torr的薄膜电容真空计,两路输出控制通道分别接电动针阀和电动球阀,由此可实现两个低真空范围内的真空度精密控制。[/size][size=16px] 尽管电容真空计可以达到0.2%的测量精度,但要实现项目0.5%的控制精度,需要电动针阀和电动球阀具有很快的响应速度,电动针阀要求小于1s,而电动球阀要求小于3s,另外还要求真空压力控制器也同样具有很高的测量和调节精度,这些要求同样适用于高真空度控制。[/size][size=16px][color=#6666cc][b]2.3 正压压力控制系统[/b][/color][/size][size=16px] 对于正压压力控制采用了集成式动态平衡法压力调节器,并采用了串级控制方法。如图1所示,正压控制系统由压力调节器、压力传感器和真空压力控制器构成的双闭环控制回路构成。采用相应精度和量程的压力传感器和压力调节器可实现0.1%以内的控制精度。[/size][size=18px][color=#6666cc][b]3. 低真空控制解决方案考核试验和结果[/b][/color][/size][size=16px] 对于低真空精密控制解决方案,我们进行过相应的考核试验。低真空上游和下游控制考核试验装置如图2和图3所示,其中分别采用了10Torr和1000Torr薄膜电容真空计。[/size][align=center][size=16px][color=#6666cc][b][img=02.上游控制模式考核试验装置,550,371]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121044011178_1432_3221506_3.jpg!w690x466.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b]图2 上游控制模式考核试验装置[/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b][img=03.下游控制模式考核试验装置,550,338]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121044250558_2395_3221506_3.jpg!w690x425.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b]图3 下游控制模式考核试验装置[/b][/color][/size][/align][size=16px] 上游和下游不同真空度设定点的控制结果如图4和图5所示。[/size][align=center][size=16px][color=#6666cc][b][img=04.上游低真空度考核试验曲线,550,333]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121044433769_7471_3221506_3.jpg!w690x418.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b]图4 低真空上游考核试验曲线[/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b][img=05.下游低真空度考核试验曲线,550,327]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121045002696_1848_3221506_3.jpg!w690x411.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b]图5 低真空下游考核试验曲线[/b][/color][/size][/align][size=16px] 上游和下游不同真空度设定点的恒定控制波动率如图6和图7所示。[/size][align=center][size=16px][color=#6666cc][b][img=06.上游模式低真空度恒定控制波动度,550,309]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121045233797_3751_3221506_3.jpg!w690x388.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b]图6 上游模式低真空恒定控制波动度[/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b][img=07.下游模式低真空度恒定控制波动度,550,340]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121045436717_8569_3221506_3.jpg!w690x427.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b]图7 下游模式低真空恒定控制波动度[/b][/color][/size][/align][size=16px] 通过上下游两种控制模式的考核试验,可得出以下结论:[/size][size=16px] (1)配备有目前型号电动针阀、电动球阀和 PID 控制器的低真空控制系统,在采用了薄膜电容真空计条件下,恒定真空度(压强)控制的波动率可轻松的保持在±0.5%以内。[/size][size=16px] (2)由于真空控制系统中进气或出气流量与真空度并不是一个线性关系,因此在整个测控范围内采用一组 PID 参数并不一定合适,为了使整个测控范围内的波动率稳定,还需采用 2 组或2组以上的 PID 参数。[/size][size=18px][color=#6666cc][b]4. 正压压力控制解决方案考核试验和结果[/b][/color][/size][size=16px] 对于正压压力控制解决方案,同样进行过相应的考核试验。正压压力精密控制考核试验装置如图8所示,其中采用了测量精度为0.05%的压力传感器。[/size][align=center][size=16px][color=#6666cc][b][img=08.正压压力考核试验装置,600,336]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121046014855_1011_3221506_3.jpg!w690x387.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b]图8 正压压力考核试验装置[/b][/color][/size][/align][size=16px] 考核试验的压力范围为表压0.1~0.6MPa,选择不同的设定点进行恒定控制并检测其控制的稳定性。全量程的正压压力控制结果如图9所示。[/size][align=center][size=16px][color=#6666cc][b][img=09.正压压力考核试验曲线,600,337]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121046261180_1880_3221506_3.jpg!w690x388.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b]图9 正压压力考核试验曲线[/b][/color][/size][/align][size=16px] 为了更直观的演示正压压力控制精度,将每个压力设定点时的控制过程进行单独显示,以检测测定正压压力的稳定性,图10显示了不同正压设定点恒定控制时的正压压力和控制电压信号的变化曲线。[/size][align=center][size=16px][color=#6666cc][b][img=10.不同正压设定点恒定控制时的压力和控制电压试验曲线,690,555]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121046471416_4804_3221506_3.jpg!w690x555.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b]图10 不同正压设定点恒定控制时的压力和控制电压试验曲线[/b][/color][/size][/align][size=16px] 通过所用的正压压力精密控制解决方案和考核试验结果,证明了此解决方案完全能够实现0.1%高精度的正压压力控制,具体结论如下:[/size][size=16px] (1)采用串级控制和模式,并结合后外置超高精度(0.05%)的压力传感器和真空压力控制器,完全可以有效提高压力调节器的压力控制精度,可实现0.1%超高精度的压力控制。[/size][size=16px] (2)如果选择更合适和狭窄的压力控制范围,还可以达到0.05%的更高控制精度。[/size][size=16px] (3)高精度0.1%的压力控制过程中,真空压力控制器的测量精度、控制精度和浮点运算是决定整体控制精度的关键技术指标,解决方案中采用的24位ADC、16位DAC和高精度浮点运算0.01%的输出百分比,证明完全可以满足这种高精度的控制需要。[/size][size=18px][color=#6666cc][b]5. 总结[/b][/color][/size][size=16px] 针对真空压力综合测量系统对高真空、低真空和正压精密控制的技术要求,解决方案可以很好的实现精度为0.1%~0.5%读数的精密控制,考试验证试验也证实此控制精度。[/size][size=16px] 更重要的是,解决方案提出了高真空度的精密控制方法和控制系统配置,这将解决在高真空度范围内的任意设定点下的恒定控制难题,为高真空度范围的计量校准测试提供准确的标准源。[/size][align=center][size=16px]~~~~~~~~~~~~~~~~~[/size][/align][size=16px][/size]

  • 精密仪器溯源方法的研究

    这是我在做的毕业设计:请问大家怎么做呢?谢谢内容要求:(包括规定阅读的文献、应完成的程序、图纸、实验、说明书等)1、查阅量值溯源体系系统与精密仪器溯源方法等相关的期刊文献资料。2、论述精密仪器的各种常用溯源方法。3、针对存在国家基准的某种精密仪器加以论述。4、针对不存在国家基准的某种精密仪器加以论述。5、试进行溯源方法的不确定度评定。6、按要求写出毕业论文。

  • 泽攸精密携手松山湖材料实验室成功研制出电子束光刻系统

    [color=#000000]国产电子束光刻机实现自主可控,是实现我国集成电路产业链自主可控的重要一环。近日,松山湖材料实验室精密仪器联合工程中心产业化项目研发再获新突破:项目团队成功研制出[b]电子束光刻系统[/b],在全自主电子束光刻机整机的开发与产业化过程中取得阶段性进展,初步实现了电子束光刻机整机的自主可控,标志着[b]国产电子束光刻机研发与产业化迈出关键一步。[/b][/color][color=#000000]电子束光刻是利用聚焦电子束对某些高分子聚合物(电子束光刻胶)进行曝光并通过显影获得图形的过程,而产生聚焦电子束并让聚焦电子束按照设定的图形扫描的仪器就叫做电子束光刻机。它是推动我们当前新材料、前沿物理研究、半导体、微电子、光子、量子研究领域的重要手段之一。此前,全球电子束光刻机市场高度集中,主要由美日企业垄断,我国尚未掌握该领域核心技术,装备长期依赖进口。[/color][color=#000000]松山湖材料实验室精密仪器研发团队作为首批入驻实验室的团队之一,专注于材料和半导体领域的精密加工、表征和测量设备研发。团队负责人许智已从事相关研究近20年,参与承担多项国家重点研发计划专项工作及国家重大科研装备研制项目,近5年带领产业化团队研发的精密仪器成果转化填补多项国产空白,产值超亿元,产品出口美国、英国、德国、澳大利亚。[/color][color=#000000]为了研制具有自主知识产权的电子束光刻机整机,精密仪器研发团队在松山湖材料实验室完成一期项目研发并成立产业化公司后,带资回到实验室进入“滚动发展”模式:产业化公司东莞泽攸精密仪器有限公司与实验室共同投资2400万元进行第二阶段研发,目标是打造集科研与产业化为一体的电子束装备技术创新基地。通过深入开展电子束与新材料交叉领域的前沿技术研发,实现关键装备和共性技术的自主可控,切实提升我国在电子束加工与制备领域的整体创新能力和产业竞争力。[/color][color=#000000]目前,东莞泽攸精密仪器有限公司已基于自主研制的扫描电镜主机,完成电子束光刻机工程样机研制,并开展功能验证工作。通过对测试样片的曝光生产,可以绘制出高分辨率的复杂图形,朝着行业先进水平稳步前进。该成果标志着泽攸科技在电子束光刻机关键技术和整机方面的自主创新能力获得重大提升。下一步,团队及产业化公司将持续完善电子束光刻机的性能指标,使其达到批量应用及产业化的要求。[/color][来源:松山湖材料实验室][align=right][/align]

  • 【分享】正解精密度、正确度、精确度

    1.精密度 计量的精密度(precision of measurement),系指在相同条件下,对被测量进行多次反复测量,测得值之间的一致(符合)程度。从测量误差的角度来说,精密度所反映的是测得值的随机误差。精密度高,不一定正确度高。也就是说,测得值的随机误差小,不一定其系统误差亦小。 2.正确度 计量的正确度(correctness of measurement),系指被测量的测得值与其“真值”的接近程度。从测量误差的角度来说,正确度所反映的是测得值的系统误差。正确度高,不一定精密度高。也就是说,测得值的系统误差小,不一定其随机误差亦小。 3.精确度 计量的精确度亦称准确度(accuracy of meas-urement),系指被测量的测得值之间的一致程度以及与其“真值”的接近程度,即是精密度和正确度的综合概念。从测量误差的角度来说,精确度(准确度)是测得值的随机误差和系统误差的综合反映。

  • 方法的精密度

    方法的精密度精密度(precision)是指用一特定的分析程序在受控条件下重复分析均一样品所得测定值的一致程度,它反映分析方法或测量系统所存在随机误差的大小。极差、平均偏差、相对平均偏差、标准偏差和相对标准偏差都可用来表示精密度大小,较常用的是标准偏差。在讨论精密度时,经常要遇到如下一些术语:1. 平行性平行性系指在同一实验室中,当分析人员、分析设备和分析时间都相同时,用同一分析方法对同一样品进行双份或多份平行样测定结果之间的符合程度。2. 重复性重复性系指在同一实验室内,当分析人员、分析设备和分析时间三因素中至少有一项不相同时,用同一分析方法对同一样品进行的两次或两次以上独立测定结果之间的符合程度。3. 再现性再现性系指在不同实验室(分析人员、分析设备、甚至分析时间都不相同),用同一分析方法对同一样品进行多次测定结果之间的符合程度。方法精密度用变异系数(C.V.)表示。 CV =标准偏差/平均值 X 100% 根据Horwity方法,实验室内和实验室间分析方法的变异系数范围如表7-5。表7-5 残留分析方法的实验室间和实验室内变异系数分析浓度C.V(%)实验室间实验室内10 mg/kg1171 mg/kg1611100μg/kg231510μg/kg32211μg/kg45300.1μg/kg6443

  • 精密度、正确度、精确度三者之间关联

    1.精密度 计量的精密度(precision of measurement),系指在相同条件下,对被测量进行多次反复测量,测得值之间的一致(符合)程度。从测量误差的角度来说,精密度所反映的是测得值的随机误差。精密度高,不一定正确度(见下)高。也就是说,测得值的随机误差小,不一定其系统误差亦小。 2.正确度 计量的正确度(correctness of measurement),系指被测量的测得值与其“真值”的接近程度。从测量误差的角度来说,正确度所反映的是测得值的系统误差。正确度高,不一定精密度高。也就是说,测得值的系统误差小,不一定其随机误差亦小。 3.精确度 计量的精确度亦称准确度(accuracy of measurement),系指被测量的测得值之间的一致程度以及与其“真值”的接近程度,即是精密度和正确度的综合概念。从测量误差的角度来说,精确度(准确度)是测得值的随机误差和系统误差的综合反映。 图1是关于计量的精密度1正确度和精确度的示意图。 设图中的圆心O为被测量的“真值”,黑点为其测得值,则 图(a):正确度较高、精密度较差; 图(b):精密度较高、正确度较差; 图(c):精确度(准确度)较高,即精密度和正确度都较高。 通常所说的测量精度或计量器具的精度,一般即指精确度(准确度),而并非精密度。也就是说,实际上“精度”已成为“精确度”(准确度)的习惯上的简称。至于精度是精密度的简称的主张,若仅针对精密度而言,是可以的;但若全面考虑,即针对精密度、正确度和精确度三者而言,则不如是精确度的简称或者本意即指精确度更为合适。因为,在实际工作中,对计量结果的评价,多系综合性的,只有在某些特定的场合才对精密度和正确度单独考虑。那么,为何不去简化(如果说是“简化”的话)一个常用术语,而偏要去简化一个不常用的术语呢!再说,就大多数计量领域和计量工作者来说,已经习惯于“精度”来表示“精确度”或准确度了,何不顺其自然呢?

  • 【求助】顶空精密度不好

    最近在做顶空实验,测水里的乙醇,精密度总是不好,有时候偏差很大,不知道什么原因,刚接触顶空一个多月。顶空条件是: 70度平衡40分钟,不振摇;进样环和传输线的温度是80度 20ml的顶空瓶,样品5ml; 瓶压16.9psi,加压0.2min; 环取样0.15min,环平衡时间0.05min; 柱头压8psi,载气压力8.2psi; 分流比:5:1; 0.32mm的柱子。 大家帮忙看看哪里有问题,仪器配样应该没问题的。

  • 显微镜冷热台真空度的精密控制

    显微镜冷热台真空度的精密控制

    [align=center][img=真空冷热台,500,326]https://ng1.17img.cn/bbsfiles/images/2022/03/202203060829340674_8408_3384_3.png!w690x451.jpg[/img][/align]摘要:针对气密真空冷热台目前存在的真空度控制精度差和配套控制系统价格昂贵的问题,本文介绍采用国产产品的解决方案,介绍了采用数控针阀进行上游和下游双向控制模式的详细实施过程。此方案已经得到了应用和验证,可实现宽范围内的真空度精密控制,真空度波动可控制在±1%以内,整个控制系统具有很高的性价比。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px]一、问题的提出[/size]气密真空冷热台是同时可用于真空和气密环境的精密温控冷热平台,具有加热和制冷功能,适合显微镜和光谱仪等应用对样品在可控的真空度环境下进行精确加热或制冷。根据用户要求,针对目前的各种气密真空冷热台,在真空度控制方面,还需要解决以下几方面的问题:(1)无论是进口还是国产真空冷热台,真空度测量和控制还采用皮拉尼真空计,使得配套的控制系统无法实现真空度的精密控制,如无法满足研究和模拟冷冻干燥过程的精度要求。(2)气密真空冷热台普遍体积较小,在宽泛的真空度范围内,实现精确控制一直存在较大难度,真空度的波动性较大,而真空度的波动性又反过来影响温度的稳定性。(3)进口配套的真空度控制系统,不仅控制精度达不到要求,而且价格昂贵。针对气密真空冷热台存在的上述问题,本文将介绍采用国产产品并具有高性价比的解决方案,并介绍了详细的实施过程。[size=18px]二、解决方案[/size]气密真空冷热台真空度精密控制系统的整体结构如图1所示,整个系统主要包括真空计、数控针阀、PID控制器和真空泵。[align=center][img=真空冷热台,690,396]https://ng1.17img.cn/bbsfiles/images/2022/03/202203060828037872_2582_3384_3.png!w690x396.jpg[/img][/align][align=center]图1 冷热台真空度精密控制系统结构示意图[/align]为提高真空度测控精度,采用了测量精度更高(可达满量程0.2%)的电容式真空计,可覆盖0.01~760Torr的真空度区间。如果需要更高真空度环境,也可以同时采用皮拉尼真空计进行测控。为实现全宽量的真空度控制,将两只数控针阀分别安装在冷热台的进气口和排气口。通过分别采用上游和下游控制模式,可实现全量程波动率小于±1%的精密控制。控制器是精密控制的关键,方案中采用了24位A/D和16位D/A的高精度PID控制器,独立的双通道便于进行上游和下游气体流量调节和控制。总之,通过此经过验证的真空度控制方案,可实现高性价比的精密控制。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【求助】请教Agilent 6890 气相色谱的精密度调试

    各位同仁,想请教一下:我安捷伦6890[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]FPD检测器测农药时,仪器的精密度不好,主要有哪些影响因素,怎么调?希望能给个比较详细的答复,非常感谢。备注:进样口隔垫、密封圈、衬管都换过,且衬管是去掉玻璃棉的,用的是不分流进样,程序升温,自动进样,只是检测器不能自动点火,每次需要手动点火。希望高人指点,谢谢。

  • 【转帖】日本地震对我国精密测量和计量产生影响

    这次日本地震的震级达到了9.0级,释放的能量较大,其低频振动分量传递较远,对我国高精密计量仪器有显著的影响。 据了解,高精密测量和计量仪器对环境振动的要求极高。美国环境科学和技术研究院经过大量的理论和实验研究推荐:微米级的测量要求1~100赫兹频带内的环境振动控制在12.5微米/秒以下(VC-C级),否则无法保证精密测量的测量精度。例如,1000倍的精密显微镜,要想保证其测量精度,必须对环境振动进行严格控制,否则就会出现丢失像素,甚至丢失整帧图像的问题;而对于测量精度更高的扫描电子显微镜和透射电子显微镜,则要求环境振动控制在VC-D级(即1~100赫兹频带内的环境振动控制在6微米/秒以下);对于纳米级的精密测量,例如半导体线宽、三磷酸腺苷及DNA测量,对环境振动的要求更高。美国国家标准和技术研究院(NIST)还针对纳米尺度的计量开展了大量研究,制定了纳米计量需要满足的环境振动标准。 据蔡晨光介绍,由于日本地震的影响,中国计量科学研究院的环境振动远远超出了精密计量所需要控制的量级。“虽然计量院昌平基地的一些精密实验室位于地下14米,可以隔离掉一部分地表传播的地震波,但是对于深度传播的低频地震波却无法进行有效衰减,致使高精密测量仪器无法正常工作。”他举例说,由于地震的影响,精密质量比较仪会长时间内无法稳定,致使高精度的质量量值无法传递和溯源;纳米尺度的精密测量仪器也会受影响而导致无法正常工作。 蔡晨光说,目前中国计量科学研究院昌平基地还没有建立起环境振动的实时监测系统,还无法实时、有效、准确地评估日本大地震这类偶发事件对高精度计量溯源系统的具体影响。“我国现在急需建立环境振动的实时监测系统。”

  • 【讨论】分析方法中间精密度验证

    [size=3][font=Times New Roman]GC[/font][font=宋体]分析方法中间精密度验证中,要求不同的分析人员采用相同的分析方法、在不同的时间、使用不同的仪器进行测试,以确认方法的适用性。现在的问题是,不同的仪器参数设置一般是不同的,除了检测器温度、进样器温度、柱温能保持不变外,其它如分流比(有的仪器有,有的没有),载气流速等似乎不能保证完全一样,这种情况下做出来的中间精密度数据是有效的吗?大家是如何处理的?[/font][font=Times New Roman]不好意思,验证项目搞错了,已更正。[/font][/size]

  • 光谱分析仪精密度差产生的原因

    在光谱分析仪测定过程中,精密度是重要指标之一,与光谱仪本身、方法设置、分析测试人员水平有关系,没有高精密度的方法,就无法保证数据的准确性。操作者在工作中会经常碰到测试数据波动大,常量分析ESD%大于2%等故障现象。这种现象就是数据精密度差的表现,也就是专业上所说的信号噪声大。上面阐述了等离子炬形成的条件,下面[url=http://www.huaketiancheng.com/][b]原子发射光谱仪[/b][/url]小编从环境因素、光源系统。试样引入系统和光学系统详细分析数据光谱分析仪精密度差产生的原因。  在环境因素中,环境温度没有在规定范围内时会发生谱峰偏移;排风量不稳定会使“火焰”跳跃。例如,排风口与阵风方向相对或者快速开关实验室推拉门,容易导致排风量忽大忽小。ICP光谱仪巨力振动源(如车间)、强磁场(光电直读光谱仪)接近,会导致数据不稳定。可以采取控制环境因素的办法来保证,它是保证光谱分析仪数据精密度的必要条件之一。  光谱分析仪开机后,光室温度变化应小于±1°C,若光谱分析仪温度未稳定在该值,光室内光学元素由于受温度影响,各光学元件的相对位移产生变化,导致待分析谱线位置漂移和分析数据失真。因此仪器主要应充分预热,在光室温度稳定在其仪器额定值时才可以进行测定。  在光源系统中,等离子炬温度也会影响其精密度变化,影响因素有载气流量。载气夜里、频率和输入功率和低点离电位的释放及。载气流量增大,中心部位温度下降;温度随载气气压的降低而增加;频率和输入功率的增大激发温度随之增高;引入低点离电位的释放剂的等离子体,其温度将增加。RF功率不稳定会影响数据精密度,如果RF功率有1%的漂移,元素强度值就能发生1%的变化,其原因是因为氩气不纯或者循环水温度突然发生变化造成的,可以用氩线的稳定性来检测。  在光谱仪试样引入系统中,首先要检测样品溶液是否均匀,比如容量瓶定容是否摇匀;查看仪器登记记录,检查等离子气的流量和压力、雾化气体的流速和压力及试液提升量等指标是否和上次一致,这是因为气体压力和流量的变化会影响到原子化效率和基态原子的分布导致数据精密度变差;由于仪器长时间进行检测工作,蠕动泵管弹性变差。蠕动泵管的经常挤压部位颜色变暗时,蠕动泵管则需要更换。上节所述进样系统毛细管、泵管、雾化器和中心管发生堵塞或者炬管太脏,会使雾化效率降低导致数据精密度表差,可采用延长冲洗时间,试样盒硝酸溶液(1+5)间隔进样等两种方式来解决,有机样品用煤油解决。泵夹优化不好,或者泵管泵夹松动,致使进样不均匀导致光谱强度值发生改变,可重新设置泵速,调节泵管,并且经常要给泵柱和轴承上油保持其润滑。  影响光谱分析仪的其他方面,分析谱线的选择不合适,多数靠近CID边缘20个像素的谱线强度通过较低也会导致数据精密度变差,尽管它们有的谱线没有光谱干扰,但是位于紫外区波长190nm元素谱线以下的建议少用,如果要用,应用99.999%的氩气吹扫检测器8h以上。快门故障或者狭缝积灰导致部分元素数据精密度变差,其特点是长波谱线、短波谱线要么分别变差要么同时变差。此故障可以采取延长积分时间来应急,等待维修人员维护。谱线积分时间不会增加信号的强度,但可以改善精密度与检出限。不过太长的积分时间将影响的分析速度。  对于用光电倍增管做检测器的光谱分析仪,还应该注意曝光很差也会影响数据的精密度,故障现象可以分为全部元素差和部分元素差。如果发生全部元素差的现象,操作者可以通过一次检查高压电源输出是否稳定,实验灯是否接触不了,高压插头是否没有插牢和积分箱输出控制芯片是否失效。光电倍增管座是否损坏,高压衰减器拔盘开关是否完好以及该元素的积分拨盘是否完好等方面确认故障。

  • 测量的精密度、准确度和精确度的区别是什么

    这是人们在测量中常常容易混淆的三个名词,虽然它们都是评价测量结果好坏的,但涵义有较大的差别。1 测量的精密度高,是指偶然误差较小,这时测量数据比较集中,但系统误差的大小并不明确;2 测量的准确度高,是指系统误差较小,这时测量数据的平均值偏离真值较少,但数据分散的情况,即偶然误差的大小不明确; 3 测量精确度(也常简称精度)高,是指偶然误差与系统误差都比较小,这时测量数据比较集中在真值附近; 用打靶时弹着点为例,说明上述三个词的意义。用靶心表示其值位置,黑点为每次测得值的位置,甲图表示射击的精密度高但准确度较差,即系统误差较大;乙图表示射击的准确度高,但精密度较差,即偶然误差较大;丙图表示精密度和准确度都比较好,称为精确度高,这时偶然误差和系统误差都比较小;

  • 这次石墨炉精密度不好,却是这种原因!不知大家碰到过没有?

    石墨炉精密度不好,重现性差,一般的分析测试人员无非会从以下几个方面逐项排查:1、进样针偏差;2、进样管路气泡;3、修改升温程序等。我最近碰到的问题都与以上的几个方面无关。我们的计算机系统是2004年装的window2000系统,从去年开始就发现系统不好启动,当时也没在意,精密度不好的问题也经常出现,我们开始还以为是原子吸收仪器使用时间长的必然,总是在调试仪器上下功夫,可这样的问题还是隔三差五地出现,弄得我们好被动。直到最近发现进样臂经常悬空停在半空,又以为是进样臂问题,又在忙着调试仪器,不成想,最后window2000 竟然启动不起来了,不得以更换了主机,重装了系统,嘿,原来的问题竟迎刃而解了。现在测了几次,精密度、重现性都很好!

  • 测定结果精密度差都有哪些原因?

    ICP测定,结果精密度差都有哪些原因导致的?首先就是进样系统稳定,这个比较多,从进样管,雾化器,雾化室,中心管,矩管等去找原因,接着排风扇风速不稳定,导致火焰飘动太大,没有优化好蠕动泵泵管位置,比如进样有气泡存在问题等等,大家说说还有哪些原因客观导致测定结果精密度差啊?

  • 赛多利斯精密电子天平正确使用方法

    赛多利斯电子天平是精密通用型产品,此产品通常使用电磁力传感器(见称重传感器),组成一个闭环自动调节系统,稳定性好,准确度高。是传感技术、模拟电子技术、数字电子技术和微处理器技术发展的综合产物,具备自动校准、自动显示、超载保护等多种功能。  关于赛多利斯电子天平天平正确使用方法:  1、检查并调整精密天平至水平位置。  2、使用前先检查电源电压是否匹配(必要时配置稳压器),按仪器要求通电预热至所需时间。  3、预热足够时间后打开精密天平开关,精密天平则自动进行灵敏度及零点调节。待稳定标志显示后,可进行正式称量。  4、称量时将洁净称量瓶或称量纸置于称盘上,关上侧门,轻按一下去皮键,精密天平将自动校对零点,然后逐渐加入待称物质,直到所需重量为止。  5、被称物质的重量是显示屏左下角出现“→”标志时,显示屏所显示的实际数值。  6、称量结束要及时除去称量瓶(纸),关上侧门,切断电源,并做好使用情况登记。  7、慢慢旋动升降枢钮,开启精密天平,观察指针的摆动范围,若指针摆动偏向一边,可调节精密天平梁上零点调节螺丝。  注意:赛多利斯电子天平的精密度很高,产品的操作步骤也很严谨,我们将要称量的物质从左门放入左盘中间,按先在托盘精密天平上称得的初称质量用镊子夹取适当砝码从右门放入右盘中央,用左手慢慢半升升降枢钮(因精密天平两边质量相差太大时,全升升降枢钮可能导致吊耳脱落或损坏刀刃),视指针偏离情况由大到小添减砝码。待克组砝码试好后,再加游码调节。在加游码调节精密天平平衡过程中,右门必须关闭,这时可以将升降枢钮全部升起,等指针摆动停止后,要使标牌上所指刻度在零点或附近。 电子天平|精密天平|实验室仪器 欢迎到赛多利斯官网和仪器商城网选购实验室仪器!

  • 【分享】精密测量技术和仪器的发展情况

    精密测量是一门具有自身专业体系、涵盖多种学科、理论性和实践性都非常强的前沿科学,而熟知测量技术方面的基本知识,则是掌握测量技能,独立完成对机械产品几何参数测量的基础。我国精密测量技术和仪器的现状仍然远远不能满足国内机械装备制造业迅速发展的需求,尤其是在先进测量技术和仪器的基础理论研究、共性关键技术的开发方面与国外的差距越来越大。 精密测量仪器适用于生产现场的在线数字化测量技术与仪器,特别是复杂精密轮廓加工的在机测量与反馈修正补偿技术与装置,如数控成形齿轮磨在机测量技术与装置、汽轮机叶片现场在线测量技术与装置等。在量仪方面我国与国外的差距大,主要体现在以下几个技术领域。数控机床测量技术与仪器方面,尤其是以激光测量系统为代表的高精度动态、静态数控机床精度及性能的测试技术以及精度补偿技术等。高性能激光测量系统主要用于数控机床以及三坐标测量机等高档数控装备的精度检测和评定。 目前,以高精度、全自动刀具预调测量仪系列的产品在我国开发起步较晚,在北京机床展览会上才有哈量和天津天门亮相展出了采用带面阵CCD的数字式刀具预调测量仪样机。此后,国内天津天门、成量等均在开发,但是技术水平、质量上还有一定的差距。我国以成都工具研究所为主研制生产的国产激光干涉测量系统,与国外先进水平相比还有一定差距。数控刀具测量技术与仪器方面,尤其是高精度CNC数控刀具测量技术、数控刀具在机测量技术以及数控刀具预调测量技术与仪器。

  • 【原创】仪器仪表准确度和精密度有什么不同?

    准确度是指仪器多次测量的平均值与真值相符合的程度;精密度是指仪器多次测量时各次测定值之间彼此相符合的程度。好的精密度是获得良好准确度的先决条件。精密度不好,不可能有良好的准确度;精密度好,却不一定能保证准确度也好。精确度取决于随机误差,准确度主要取决于系统误差,同时也受到随机误差的影响。系统误差的影响可以用修正值来修正,随机误差的影响无法加以修正,只能用标准偏差来评估。

  • 精密电阻到底有多精密

    精密电阻到底有多精密

    分享一下有关精密电阻的知识何为精密电阻,一般指精度高(万分之一以上)、温漂低(10ppm以下)及长期稳定性(年变化率小于50ppm)。从品种上讲可以有金属膜电阻、线绕电阻、金属箔电阻。但从整体指标上看,金属箔电阻明显要比其它几类电阻精密得多。第一只金属箔电阻是1962年由物理学家 FelixZandman博士发明的,在随后发展的五十多年间,金属箔电阻在要求高精度、高稳定性、高可靠性的应用方面远远超越其他电阻技术,满足了各种行业的高端应用需求,如航空航天、军用装备、精密测量、医疗设备等领域。目前世界上有三家公司掌握着这种电阻的生产技术,分别是以色列的Vishay(威世精密测量集团,包括被Vishay收购的AE)、中国的山东航天正和电子有限公司(原济宁元器件三厂)、中国的北京718友晟电子有限公司(原北京718厂)。从金属箔电阻的整体技术水平上来说,威士精密测量集团占有绝对的优势。尤其是新研发的Z-Foil金属箔电阻技术,使各项技术指标又有了大幅提高,如在-55℃~+125℃温度范围内、+25℃参考温度下,Z箔电阻具有±0.2 ppm/°C 典型TCR。 下面讲一讲其作为精密电阻的一些主要技术参数n 温度系数(TCR)l ±5 ppm/oC 典型(-55 oC to +125 oC, +25 oC ref.)n 额定功率l 1W at +125 oCn 负载寿命稳定性: ±0.005 %(50ppm) at +70 oC, 5000 小时n 精度: 0.005 % (十万分之五)n 阻值范围: 0.5Ω to 1 MΩn 静电放电负荷 (ESD) 至少25, 000 Vn 无感无容设计n 上升时间: 1 ns 无振铃n 热稳定时间 1sec (常规阻值的稳态值在10ppm以内)n 电流噪声: 0.010 μV (RMS)/Volt加载电压( - 40 dB)n 热EMF: 0.05μV/oCn 电压系数: 0.1 ppm/V

  • 【原创】精密电化学加工

    我最近新引进世界上最先进的德国PEMtec的精密电化学加工设备:PEM技术是一种在震动电极的电化学下沉腐蚀技术。直流电脉冲作用在电极和工件之间。根据震动电极的几何形状工件作为阳极被电解。几乎所有复杂几何结构的金属都能被加工,如回火钢,轴承钢,合金钢。PEM开启了不能使用传统工艺加工或者使用传统加工方式不经济的领域的应用。PEM优势 * 加工过程中没有电极耗损!仅用单个电极就可以重复生产无限量的产品。 * 加工后工件上没有热应力!不影响工件现有属性。不会产生微观裂纹。延长工件的寿命。 * 不产生氧化层!工件无需后序加工。 * 高效率的加工速度,对孔腔的表面速度可达0.5mm/min。 * 电极的表面质量是可以复制。粗糙度可达Ra 0.05µ m,在连接处具有不同的光洁度。 * 加工件上没有机械应力!可以加工壁较薄的结构件。 * 不会影响工件磁极属性。PEM Technology 技术优势●使用PEM制程工具电极不会造成损耗。 ▲只要一个电极可以重覆制造完全相同的产品。●不会有热应力残留,不会产生氧化层,不须要二次加工。●低温制程,不会影响材料本质。 ▲不会影响材料本质和结构。 ▲可以延长工件寿命。●一般制程的表面粗糙度品质Ra ≤ 0,5 μm, 取决于电极制作的表面品质。●可以作镜面加工。●高效率加工制程,因材料不同加工速度为 0.1 – 0.8 mm/min。●理想的电极材料为黄铜,但是其它导电材料都是可以作为电极。例如,红铜,高品质的钢,和石墨等等‧ ‧ ‧ 。●总而言之,PEM Technology 总合了EDM和ECM的优点,减少由这两种特殊加工技术的缺点。更重要的是,使用者必须衡量传统机械加工和特殊机械加工的特点为您生产的产品作最佳的选择。PEM 精密电化学切削应用范围●依功能分类:▲电解开孔,如轮机翼冷却孔。▲电解圆割加工,如曲孔。▲电解微小孔加工。▲精微成型。▲电解切穿,如深孔或盲孔加工。▲凹部加工(cavity sinking)。▲电解成型 (shaping), 如曲面加工。▲电解复印。▲电解除屑加工,如去毛边导角‧ ‧ 。●精密电化学加工的应用主要以传统方式不易完成的加工为主,有以下几个方向:▲内齿轮加工。▲花键孔加工。▲涡轮叶片加工。▲一体成形轮叶加工。▲高消耗性模具,如锻造模, 玻璃模, 压铸模等…。▲燃料电池极板。▲精密零配件。▲精密医疗器材。▲精密齿轮。PEM在汽车工业的应用 Exhaust pipe flange排气管法兰 * 汽车排气系统的不锈钢排气管法兰片,图中可以看到毛坯,电极和成品。 * 球面凹处为准备焊接的排气管的焊缝。 * 同一个型号的发动机一年销售量需求150,000个排气管法兰片。 * 同时加工30个零件, 并在10分钟内完成。 Diesel pump 柴油泵 柴油泵上无缝隙交叉孔的加工。椭圆形交叉孔。盲孔。表面光滑有利流动。无毛刺。每年450,000个。可以同时加工48个零件燃料电池制造 汽车用燃料电池反应金属板。用印刷电路技术覆盖抗腐蚀不锈钢板,用精密电化学工艺加工,然后清除电解残余。制造出的锐角表面无毛刺。PEM加工技术还可以应用在其他传统加工难以加工的材料的地方,例如模具制造,医疗器械,锻压模具等等,详情请浏览www.renpro.com.cn

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制