当前位置: 仪器信息网 > 行业主题 > >

近红外光度计

仪器信息网近红外光度计专题为您提供2024年最新近红外光度计价格报价、厂家品牌的相关信息, 包括近红外光度计参数、型号等,不管是国产,还是进口品牌的近红外光度计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合近红外光度计相关的耗材配件、试剂标物,还有近红外光度计相关的最新资讯、资料,以及近红外光度计相关的解决方案。

近红外光度计相关的论坛

  • 【讨论】紫外可见近红外光度计PK

    生产紫外可见近红外光度计的厂商不是太多,自己知道型号有日立:U-4100岛津:UV-3600、UV-3700听说瓦里安、PE也有相关的仪器,请大家报报型号,说说指标。比较一下吧

  • 【求助】怎样选择最好?(1)紫外可见分光光度+傅里叶近红外红外光谱仪 (2)紫外可见近红外分光光度+傅里叶红外光谱仪

    主要是测量固体、粉末和液体在不同波长的反射和透射,不必知道材料的组分。大概属于定性分析的范围,不是定量分析。怎么配置仪器最好(1)紫外可见分光光度计+傅里叶近红外红外光谱仪 分光光度计到900nm或1100nm,900nm - 25 um由傅里叶近红外红外光谱仪测量。(2)紫外可见近红外分光光度计+傅里叶红外红外光谱仪 分光光度计到2.5 um,2.5 um - 25 um由傅里叶红外红外光谱仪测量。这两种配置方法是否可行?有哪些型号可以完成?价格上哪个配置更合算?50万能否搞定两个仪器。请各位大侠指点迷津。谢谢!节日快乐![em09506]

  • 【求助】怎样选择最好?(1)紫外可见分光光度+傅里叶近红外红外光谱仪 (2)紫外可见近红外分光光度+傅里叶红外光谱仪

    主要是测量固体、粉末和液体在不同波长的反射和透射,不必知道材料的组分。大概属于定性分析的范围,不是定量分析。怎么配置仪器最好(1)紫外可见分光光度计+傅里叶近红外红外光谱仪 分光光度计到900nm或1100nm,900nm - 25 um由傅里叶近红外红外光谱仪测量。(2)紫外可见近红外分光光度计+傅里叶红外红外光谱仪 分光光度计到2.5 um,2.5 um - 25 um由傅里叶红外红外光谱仪测量。这两种配置方法是否可行?有哪些型号可以完成?价格上哪个配置更合算?50万能否搞定两个仪器。请各位大侠指点迷津。谢谢!节日快乐!

  • 近红外光谱仪、红外光谱仪有什么区别?

    近红外光谱仪、红外光谱仪有什么区别?咱们常规使用的紫外可见分光光度计,似乎只可以液体测量?而我见到过近红外光谱可以液体测量,也可以固体直接扫描测量,红外光谱是不是像近红外一样的测量样品呢?

  • 傅立叶红外与紫外可见近红外分光光度计的差异

    近同时用中红外傅立叶红外和紫外可见近红外分光光度计做了透光率的测试,发现在红外2500nm之后二者重叠部分透光率存在很大差异,傅接近100而光度计才40左右,想请问这两种测试的透光率是一个概念吗?有人说,两者测试波段不一样,2500以下紫外可见近红外分光光度计准确;2500以上傅里叶红外准确。但是因为测试时傅立叶并没有校准这一步,而分光光度计我校准了,为什么还是傅利叶准确呢?

  • 有关紫外可见近红外分光光度计测试的问题

    俺单位有一台PE Lambda 40P紫外可见近红外分光光度计一台,测试波长从190nm到1100nm,十几万买的,现想开始对外测试服务,不知有关紫外可见近红外分光光度计测试收费的标准如何,请问各位大侠一般的测试收多少银子? 谢谢[emo04]

  • 【求助】紫外可见近红外分光光度计选购

    各位老师好,最近想购置一台紫外可见近红外的分光光度计,主要用于光学薄膜的反射率,透射率,吸收等测试,光谱范围在300nm-2500nm,着手国外的设备,精度要求高一些,大家给推荐推荐啊

  • 【原创】傅里叶变换红外光谱仪和红外光栅分光光度计比较如何?

    傅里叶变换红外光谱仪和红外光栅分光光度计的对比如何? 傅里叶变换红外光谱仪与红外光栅分光光度计相比,具有:光通量大、测量速度快、测量精度高、分辨率高、信噪比高、可以一次取得全波段光谱等特点。 其二者的性能相比,傅里叶红外光谱仪和其他类型红外光谱仪一样,都是用来获得物质的红外吸收光谱,但测量原理却不相同。在色散型红外光谱仪中,光源发出的光先照射试样,而后再经分光器(光栅或棱镜)分成单色光,由检测器检测后获得光谱。但在傅里叶变换红外光谱仪中,首先是把光源发出的光经干涉仪变成干涉光,再让干涉光照射样品。经检测器获得干涉图,得不到我们常见的红外吸收光谱,实际吸收光谱是由计算机将干涉图进行傅里叶变换得到的。 从两类红外光谱仪的原理比较可知,傅里叶变换红外光谱仪有其独到之处,它与一般色散型红外光谱仪截然不同,它没有分光系统,测量时是应用经干涉仪调制了的干涉光,可一次取得全波段光谱信息。与红外光栅分光光度计相比具有高光通量,测量速度快、测量准确度高、信噪比高、操作简便等特点,已逐渐替代了早期的红外光栅分光光度计,应用前景十分广泛。

  • 近红外光谱区不同波段吸光度差异疑惑

    近红外光谱区不同波段吸光度差异疑惑

    http://ng1.17img.cn/bbsfiles/images/2015/08/201508170900_561037_2347397_3.png上图是典型农产品的近红外光谱图,可以看到,合频吸收带、一级倍频吸收带、二级、三级等的吸光度大小成明显递减趋势的,请问,这如何解释?

  • 【讨论】日立 U4100紫外可见近红外 分光光度计的波长校正与故障维修

    [em09503] 请教各位大虾,有谁了解 日立U4100紫外可见近红外 分光光度计的波长校正及常见故障维修?波长传动机构的更换?传动轴加润滑油?光学镜片的更换?波长校正不是单指UV Solution里面的自动校正,而是656.1和486.0超出范围,自动校正失败后如何手动校正?手动:基线平坦度Abs如何校正?NoiseLevel如何校正?546.1 ,871.6 ,253.7如何校正?其他方面等?有图片就更好了。

  • 【原创大赛】基于“吸光度-浓度变化率”波段选择方法提高近红外光谱建模能力

    【原创大赛】基于“吸光度-浓度变化率”波段选择方法提高近红外光谱建模能力

    [align=center][b]基于“吸光度-浓度变化率”波段选择方法提高[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]建模能力[/b][/align][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]定量分析是一种二级分析方法,利用校正模型对未知含量或性质参考值的样品基于[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]数据进行预测,以测定未知待测样品的浓度或性质参考值,根据预测结果评价模型的预测能力和有效性。由于[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]吸收峰严重重叠,信号吸收较弱,背景干扰严重。因此需要运用波段选择方法提取有效波段,常用的波段选择方法包括前向间隔偏最小二乘法(forwardintervalpartialleastsquares, FiPLS)、反向间隔偏最小二乘法(backwardintervalpartialleastsquares, BiPLS),相关系数法(correlationcoefficient, CC)和无信息变量消除算法(uninformativevariableelimination, UVE)等。本实验对近红外建模物质的浓度与吸光度的变化率进行研究,提出了新的波段选择方法:“吸光度-浓度变化率”方法(Ratioof absorbance to concentration,RATC),弥补了常用波段选择的缺陷,构建了血浆蛋白含量检测模型。1材料1.1试剂血浆样品(山东泰邦生物制品有限公司,中国);去离子水。1.2仪器和软件AntarisⅡ傅里叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url],液体采样附件;液体玻璃小管(4×50mm,KimbleChase 德国);Matlab2015a(美国Mathworks公司);PLS_Toolbox工具箱(美国EigenvectorResearch)。2方法2.1光谱采集采用傅里叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url](Antaris II FT-NIR)液体温控透射采样模块,控制温度为37℃下,采集原料人血浆样品光谱。光谱扫描范围和分辨率为10000-4000cm[sup]-1[/sup]和8cm[sup]-1[/sup],扫描次数为32次,参比为空气,每隔1小时校正背景。实验室环境为温度26℃,湿度30%。2.2 校正集验证集划分方法需要划分校正集和验证集的样品:原料人血浆样品20份,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]建模属性为总蛋白含量值;2.3 数据处理及模型建立研究采用MATLAB2015a数学软件以及PLS_Toolbox 1.95工具箱对光谱数据进行处理,对建模物质的吸光度和浓度进行变化率分析,选出用于建模的波数点,针对[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术的建模分析,以验证均方根误差(RMSEP)值作为其建模预测能力的主要指标。通过讨论不同物质的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析模型建模结果,验证所提波段选择方法的可行性和应用性。3 “吸光度-浓度变化率”波段选择原理及方法本文提出了一种[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]模型的波段选择方法,基于“吸光度浓度变化率”对校正样品集中所有样品进行波段选择,其具体过程为:步骤1:预先设定校正样品集中共有n个样品,每个样品光谱中共有N个变量,对于校正样品集所有样品来说,每个变量则有n个吸光值和n个浓度值;其中,N和n均为大于1的正整数;步骤2:依次计算每个变量下相邻样品的吸光值差值和浓度差值的比值V,最终在每个变量下得到(n-1)个比值V,再计算所有比值V的平均值V[sub]mean[/sub];V[sub]i[/sub]=|(A[sub]i[/sub]-A[sub]i[/sub][sub]+[/sub][sub]1[/sub])|/(C[sub]i[/sub]-C[sub]i[/sub][sub]+[/sub][sub]1[/sub]) (1)V[sub]mean[/sub]=[img=,50,50]https://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img] (2)A[sub]i[/sub]表示第i个样品的吸光值,A[sub]i[/sub][sub]+[/sub][sub]1[/sub]表示第i+1样品的吸光值;C[sub]i[/sub]表示第i个样品的浓度值,C[sub]i[/sub][sub]+[/sub][sub]1[/sub]表示第i+1个样品的浓度值;V[sub]1[/sub]表示第1个样品与其相邻的第2个样品的吸光值差值和浓度差值的比值;V[sub]2[/sub]表示第2个样品与其相邻的第3个样品的吸光值差值和浓度差值的比值;V[sub]3[/sub]表示第3个样品与其相邻的第4个样品的吸光值差值和浓度差值的比值;V[sub]4[/sub]表示第4个样品与其相邻的第5个样品的吸光值差值和浓度差值的比值;V[sub]n[/sub][sub]-[/sub][sub]1[/sub]表示第n-1个样品与其相邻的第n个样品的吸光值差值和浓度差值的比值。步骤3:对于校正样品集中样品光谱的N个变量来说,得到N个V[sub]mean[/sub]值,将N个变量按照其V[sub]mean[/sub]值进行排序;步骤4:按照V[sub]mean[/sub]值由大变小的顺序依次选择出相应变量,直至所有变量全部选完,停止建模,记录所有情况的建模结果。其中,V[sub]mean[/sub]值越大,则代表吸光值因浓度变化所产生的响应越大,同时V[sub]mean[/sub]即为所提出的波段选择方法的关键值,命名为“吸光度-浓度变化率”值。从V[sub]mean[/sub]值最大的变量开始建模,随后按照V[sub]mean[/sub]值由大变小的顺序,采取依次增加一个变量的方法,开始建立[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]模型,简化流程图如图4-1所示。[align=center][img=,580,560]https://ng1.17img.cn/bbsfiles/images/2019/08/201908161623164821_3386_3237657_3.png!w580x560.jpg[/img][/align][align=center]图4-1“吸光度-浓度变化率”波段选择方法简化流程图[/align]具体应用例证如图4-2所示:校正样品集有20个样品,其浓度值分别为C[sub]1[/sub],C[sub]2[/sub],…,C[sub]20[/sub]。[align=center][img=,670,461]https://ng1.17img.cn/bbsfiles/images/2019/08/201908161623371131_5892_3237657_3.png!w670x461.jpg[/img][/align][align=center]图4-2“吸光度-浓度变化率”波段选择方法具体例证过程[/align]本文将所提出的波段选择方法用于血浆蛋白含量检测模型的构建中,讨论血浆蛋白含量变化同样品吸光度之间的变化率,进而选择合适的波段用于建模。[b]4 实验结果4.1 近红外建模样品集划分[/b]对三种样品进行校正集和验证集的划分结果如表4-1所示,其结果全部满足验证集的参数值范围在校正集之内,同时对于不同样品的不同属性的校正集和验证集来说,其平均值和标准偏差值也比较接近,满足[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]建模校正集和验证集的划分要求。[align=center]表4-1不同样品不同属性的校正集验证集数据统计结果[/align] [table][tr][td] [align=center]样品[/align] [align=center](检测参数) [/align] [/td][td] [align=center]样品集[/align] [/td][td] [align=center]样本数[/align] [/td][td] [align=center]最大值[/align] [/td][td] [align=center]最小值[/align] [/td][td] [align=center]平均值[/align] [/td][td] [align=center]标准偏差[/align] [/td][/tr][tr][td=1,2] [align=center]原料人血浆[/align] [align=center](蛋白含量值)[/align] [/td][td] [align=center]校正集[/align] [/td][td] [align=center]15[/align] [/td][td] [align=center]76.80[/align] [/td][td] [align=center]40.56[/align] [/td][td] [align=center]59.34[/align] [/td][td] [align=center]12.31[/align] [/td][/tr][tr][td] [align=center]验证集[/align] [/td][td] [align=center]5[/align] [/td][td] [align=center]73.16[/align] [/td][td] [align=center]41.89[/align] [/td][td] [align=center]57.56[/align] [/td][td] [align=center]11.65[/align] [/td][/tr][tr][td=1,2] [align=center]玉米[/align] [align=center](水分值)[/align] [/td][td] [align=center]校正集[/align] [/td][td] [align=center]60[/align] [/td][td] [align=center]10.99[/align] [/td][td] [align=center]9.38[/align] [/td][td] [align=center]10.22[/align] [/td][td] [align=center]0.39[/align] [/td][/tr][tr][td] [align=center]验证集[/align] [/td][td] [align=center]20[/align] [/td][td] [align=center]10.94[/align] [/td][td] [align=center]9.64[/align] [/td][td] [align=center]10.27[/align] [/td][td] [align=center]0.36[/align] [/td][/tr][tr][td=1,2] [align=center]玉米[/align] [align=center](蛋白质含量值)[/align] [/td][td] [align=center]校正集[/align] [/td][td] [align=center]60[/align] [/td][td] [align=center]3.83[/align] [/td][td] [align=center]3.09[/align] [/td][td] [align=center]3.50[/align] [/td][td] [align=center]0.18[/align] [/td][/tr][tr][td] [align=center]验证集[/align] [/td][td] [align=center]20[/align] [/td][td] [align=center]3.82[/align] [/td][td] [align=center]3.18[/align] [/td][td] [align=center]3.48[/align] [/td][td] [align=center]0.18[/align] [/td][/tr][tr][td=1,2] [align=center]玉米[/align] [align=center](油脂值)[/align] [/td][td] [align=center]校正集[/align] [/td][td] [align=center]60[/align] [/td][td] [align=center]9.71[/align] [/td][td] [align=center]7.66[/align] [/td][td] [align=center]8.73[/align] [/td][td] [align=center]0.53[/align] [/td][/tr][tr][td] [align=center]验证集[/align] [/td][td] [align=center]20[/align] [/td][td] [align=center]9.60[/align] [/td][td] [align=center]8.11[/align] [/td][td] [align=center]8.49[/align] [/td][td] [align=center]0.32[/align] [/td][/tr][tr][td=1,2] [align=center]玉米[/align] [align=center](淀粉值)[/align] [/td][td] [align=center]校正集[/align] [/td][td] [align=center]60[/align] [/td][td] [align=center]66.47[/align] [/td][td] [align=center]62.83[/align] [/td][td] [align=center]64.62[/align] [/td][td] [align=center]0.90[/align] [/td][/tr][tr][td] [align=center]验证集[/align] [/td][td] [align=center]20[/align] [/td][td] [align=center]65.60[/align] [/td][td] [align=center]63.63[/align] [/td][td] [align=center]64.91[/align] [/td][td] [align=center]0.48[/align] [/td][/tr][tr][td=1,2] [align=center]汽油[/align] [align=center](辛烷值)[/align] [/td][td] [align=center]校正集[/align] [/td][td] [align=center]45[/align] [/td][td] [align=center]89.60[/align] [/td][td] [align=center]83.40[/align] [/td][td] [align=center]87.15[/align] [/td][td] [align=center]1.57[/align] [/td][/tr][tr][td] [align=center]验证集[/align] [/td][td] [align=center]15[/align] [/td][td] [align=center]88.70[/align] [/td][td] [align=center]84.50[/align] [/td][td] [align=center]87.25[/align] [/td][td] [align=center]1.46[/align] [/td][/tr][/table][b]4.2 血浆样品[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]建模结果4.2.1“吸光度-浓度变化率”方法在血浆蛋白含量建模中的应用[/b]利用“吸光度-浓度变化率”方法对血浆样品进行数据分析,得到每个波数点下的V[sub]mean[/sub]值如图4-3所示,按照其V[sub]mean[/sub]值由大到小排列波数点,依次递增波数点个数进行建模,即得到不同[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]模型结果。[align=center][img=,653,353]https://ng1.17img.cn/bbsfiles/images/2019/08/201908161624210201_7336_3237657_3.png!w653x353.jpg[/img][/align][align=center]图4-3血浆样品不同波数点的V[sub]mean[/sub]值[/align][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]血浆蛋白含量建模结果如图4-4所示,最小的RMSEP值为0.495,模型的RPD值为23.535>3,无模型过拟合现象,所涉及变量数为50个,具体波数点如表4-2所示。获得最佳模型的波数点大部分都分布在6200-6400cm[sup]-[/sup][sup]1[/sup],分析此处的特征吸收峰信息,多为N-H的一级倍频信息。[align=center][img=,653,353]https://ng1.17img.cn/bbsfiles/images/2019/08/201908161625411205_2487_3237657_3.png!w653x353.jpg[/img][/align][align=center]图4-4 血浆蛋白样品[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术的建模结果[/align][align=center]表4-2血浆蛋白样品进行[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术的建模变量[/align] [table][tr][td] [align=center]波数(cm[sup]-[/sup][sup]1[/sup])[/align] [/td][td] [align=center]波数(cm[sup]-[/sup][sup]1[/sup])[/align] [/td][td] [align=center]波数(cm[sup]-[/sup][sup]1[/sup])[/align] [/td][td] [align=center]波数(cm[sup]-[/sup][sup]1[/sup])[/align] [/td][td] [align=center]波数(cm[sup]-[/sup][sup]1[/sup])[/align] [/td][/tr][tr][td] [align=center]6363.940[/align] [/td][td] [align=center]6360.083[/align] [/td][td] [align=center]6321.514[/align] [/td][td] [align=center]6294.515[/align] [/td][td] [align=center]6267.517[/align] [/td][/tr][tr][td] [align=center]6367.797[/align] [/td][td] [align=center]6387.082[/align] [/td][td] [align=center]6317.657[/align] [/td][td] [align=center]6414.080[/align] [/td][td] [align=center]6425.651[/align] [/td][/tr][tr][td] [align=center]6371.654[/align] [/td][td] [align=center]6390.938[/align] [/td][td] [align=center]6313.800[/align] [/td][td] [align=center]6417.937[/align] [/td][td] [align=center]6263.660[/align] [/td][/tr][tr][td] [align=center]6356.226[/align] [/td][td] [align=center]6340.798[/align] [/td][td] [align=center]6402.509[/align] [/td][td] [align=center]6290.658[/align] [/td][td] [align=center]6259.803[/align] [/td][/tr][tr][td] [align=center]6375.511[/align] [/td][td] [align=center]6336.941[/align] [/td][td] [align=center]6309.943[/align] [/td][td] [align=center]6286.801[/align] [/td][td] [align=center]7208.608[/align] [/td][/tr][tr][td] [align=center]6352.369[/align] [/td][td] [align=center]6329.228[/align] [/td][td] [align=center]6406.366[/align] [/td][td] [align=center]6282.944[/align] [/td][td] [align=center]6255.946[/align] [/td][/tr][tr][td] [align=center]6348.512[/align] [/td][td] [align=center]6333.084[/align] [/td][td] [align=center]6306.086[/align] [/td][td] [align=center]6421.794[/align] [/td][td] [align=center]6429.508[/align] [/td][/tr][tr][td] [align=center]6379.368[/align] [/td][td] [align=center]6398.652[/align] [/td][td] [align=center]6302.229[/align] [/td][td] [align=center]6279.087[/align] [/td][td] [align=center]6252.089[/align] [/td][/tr][tr][td] [align=center]6383.225[/align] [/td][td] [align=center]6394.795[/align] [/td][td] [align=center]6410.223[/align] [/td][td] [align=center]6275.230[/align] [/td][td] [align=center]7204.751[/align] [/td][/tr][tr][td] [align=center]6344.655[/align] [/td][td] [align=center]6325.371[/align] [/td][td] [align=center]6298.372[/align] [/td][td] [align=center]6271.374[/align] [/td][td] [align=center]6433.365[/align] [/td][/tr][/table][b]4.2.2 同常规波段选择方法的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]建模比较[/b]为考察“吸光度-浓度变化率”方法的预测能力高低,将其同其他常规变量选择方法 (FiPLS, BiPLS, CC, UVE) 对相同光谱数据进行处理,建立的近红外模型结果对比如图4-5所示。从图4-5中可明显看出,同其他变量选择方法相比,RATC得到了最小的RMSEP值(RMSEP=0.495g/L)。综上所述,对于原料人血浆样品的总蛋白定量来说,RATC方法减少了参与[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]建模的变量数,提高了血浆蛋白含量建模的预测能力,是一种有效的变量选择方法。[align=center][img=,622,370]https://ng1.17img.cn/bbsfiles/images/2019/08/201908161626000014_401_3237657_3.png!w622x370.jpg[/img][/align][align=center]图4-5 不同血浆蛋白含量的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]建模结果比较[/align][align=center][b] [/b][/align][b]5小结[/b]本文基于吸光度浓度变化率来对校正样品集中所有样品进行波段选择;其过程为:预先设定校正样品集中共有n个样品,每个样品光谱中共有N个变量,对于校正样品集所有样品来说,每个变量则有n个吸光值和n个浓度值;其中,N和n均为大于1的正整数;依次计算每个变量下相邻样品的吸光值差值和浓度差值的比值V,最终在每个变量下得到(n-1)个比值V,再计算所有比值V的平均值V[sub]mean[/sub];对于校正样品集中样品光谱的N个变量,得到N个V[sub]mean[/sub]值,将N个变量按照其V[sub]mean[/sub]值进行排序;按照V[sub]mean[/sub]值由大变小的顺序依次选择出相应变量,直至所有变量全部选完,停止建模,记录所有情况的建模结果。同常规波段选择方法比较,该方法从三个方面进行了改进,不仅减少了参与[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]建模变量的数目,提高了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]模型的预测能力。丰富了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]模型的波段选择方法,给[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]模型使用者提供“吸光度-浓度变化”波段选择方法。同时由于是根据物质的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]吸光度和浓度的关系建立的波段选择方法,某种程度上,该方法更能够反应物质的化学信息,即吸光度随着浓度变化率,使得该波段选择方法具有广泛的可行性和通用性。

  • 近红外测生物组织中的二甲基亚砜,甘油,丙二醇

    如题,近红外光谱仪能对生物组织内的这三种物质同时进行定量分析吗?另外,ms还是有一种仪器叫近红外分光光度计,请问近红外光谱仪和近红外分光光度计有什么区别,我这种情况用近红外分光光度计能行吗?谢谢!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制