当前位置: 仪器信息网 > 行业主题 > >

疏水扩容器

仪器信息网疏水扩容器专题为您提供2024年最新疏水扩容器价格报价、厂家品牌的相关信息, 包括疏水扩容器参数、型号等,不管是国产,还是进口品牌的疏水扩容器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合疏水扩容器相关的耗材配件、试剂标物,还有疏水扩容器相关的最新资讯、资料,以及疏水扩容器相关的解决方案。

疏水扩容器相关的论坛

  • 上海应物所等研究发现带有极性基团的表面也有疏水特性

    表面的亲疏水性质在蛋白质折叠、两亲分子的自组装、微流动技术、分子的识别检测技术和自清洁表面材料的制备等多个学科领域及应用技术研究中都起着关键的作用。对表面的亲疏水性质的误判,会导致对表面和表面附近物质的相互作用的错误理解,进而影响对整个系统的物理分析和相应的实验、应用设计。 由于水分子是极性分子,所以带有极性基团的分子对水有很强的亲和力,可以吸引水分子并且易溶于水。因此一般认为,这类带有极性基团的分子形成的固体材料的表面容易被水润湿,是亲水表面。目前在实验和实际应用中,一般人们就通过在表面修饰极性基团的手段从而使得表面变亲水。 事实果真如此吗?最近,中国科学院上海应用物理研究所水科学和技术研究室的王春雷博士和方海平研究员等通过理论分析发现,固体表面的亲水和疏水特性(浸润性)还明显依赖于表面上极性分子的偶极长度。通过理论模型和分子动力学模拟证明,偶极长度存在一个临界值,当表面上极性分子的偶极长度小于此临界长度时,无论极性分子的偶极矩有多大,水分子仍无法“感受”到固体表面偶极的存在,从而使带有极性基团的表面也有疏水特性;当偶极长度大于此临界长度时,随着偶极矩和偶极长度增大,固体表面会变得越来越亲水。相关研究结果发表在国际学术期刊Scientific Reports (2012, 2, 358)上。 为什么会这样呢?当一个带有极性基团的分子在水中,其正、负极性基团分别被水中的氧和氢原子所吸引(水中的氧和氢原子分别带有负、正电),或者形成氢键,会导致这个分子与水分子产生强大的亲和力。当这些分子形成固体材料的表面时,如果分子小,偶极长度短,水分子之间的空间位阻效应(拥挤效应)不能保证水分子中的氢原子被吸引到表面上的负电荷,同时氧原子被吸引到正电荷(如图的下半部分)。这导致整体表面的电偶极与水之间的相互作用较弱,表现出“意外的”疏水特性。当偶极长度增大,空间位阻效应减弱,更多的水分子中的氢原子(或氧原子)被吸引到与表面上的负(或正)电荷很近的距离,界面变得更亲水。分子动力学模拟还证实该临界偶极长度的存在具有普适性,即很多类型的极性表面上均存在这样的临界偶极长度。 在此以前,该研究组曾在2009年提出,当固体表面的电偶极排布合适,使得吸附在表面的第一层水表现出有序,可以导致第一层水上面出现(只有不完全亲水表面才有的)水滴,该表面呈现“表观的疏水” (Phys. Rev. Lett., 2009, 103, 137801; J. Phys. Chem. C, 2011, 115, 3018)。这一理论预言已得到澳大利亚课题组的实验证实(Soft Matter, 2011, 7, 5309; Langmuir, 2011, 27, 10753)。这些工作说明了有极性基团的表面也可以表现出疏水或者“表观的疏水”性质,并有助于描绘表面的亲疏水性质与极性基团之关联的完整图像。 该项研究工作由上海应物所、上海大学、四川大学和浙江大学的研究人员合作完成,得到了中国科学院、国家自然科学基金委、科技部、中国博士后科学基金会、上海市科学技术委员会和上海市人民政府(通过上海超级计算中心)的共同资助。 论文链接http://www.cas.cn/ky/kyjz/201205/W020120522494508564815.jpg 上图:水中的氧原子(桔黄色哭脸)和氢原子(黄色小球)分别被表面上正、负极性基团所吸引,空间位置受到约束。当表面上正、负极性基团的距离比较小时,表面附近的水分子会非常拥挤,导致不稳定。下图:表面附件的水分子间距离增大后,系统达到稳定。但不能保证水分子中的氢原子(黄色小球)被吸引到表面上的负电荷,同时氧原子(绿色笑脸)被吸引到正电荷,使水分子感受不到表面电荷的吸引力,从而使固体表面表现出疏水特性。

  • 冷凝水试验箱排放热动力疏水阀这样实现

    冷凝水试验箱排放热动力疏水阀这样实现

    [url=https://www.instrument.com.cn/netshow/SH101036/][b]冷凝水试验箱[/b][/url]热动力盘式排水阀是排水不连续、结构牢固的管道排水阀的一种,适用于蒸汽干线、伴热管网、家用采暖和小型采暖设备。  1、设备启动时,冷凝水进到排水阀门,在工作压力差的功效下将阀板推到阀座,进而快速清除箱内的杂质。[align=center][img=,690,690]https://ng1.17img.cn/bbsfiles/images/2022/11/202211171703162755_79_5295056_3.jpg!w690x690.jpg[/img][/align]  2、当冷凝水试验箱进入排水阀时,阀板仍然被推离阀座,说明圆盘式排水阀的排放动作不受温度影响。  3、蒸汽进入时,在蒸汽流的吸引力下,阀板迅速粘附在阀座上,因为蒸汽的流速比凝水的流速快。同时,阀板将阀口密封严密,因为阀板上部(整个阀板)受应力面积大于下部(蒸汽进水口)受应力面积。  4、关闭阀口时,阀盖内封上阀板上部的蒸汽,形成蒸汽室,在强制再次打开设备后,强制再次打开凝水室内的压降。  热力圆盘式疏水阀中有一个阀板,它不但是敏感元器件,也是作用元器件。启动设备时,冷凝水试验箱会出出现在管路中,冷凝水试验箱被工作压力推开,迅速排出来,当疏水阀中的汽流量很大时,汽体会迅速进到疏水阀。当阀板关掉时,阀板两边都遭受压力,阀板下边的应力地区要小于上边的应力地区。由于疏水阀的汽室的压力来源于汽体压力,因此阀板上边的力大于下边的力,阀板紧闭。当汽体捕集室的汽体被冷却到凝结后,汽室的压力消退;设备在工作压力的功效下开启推动阀板,持续排污,循环系统和间断排污。

  • 【分享】GE 疏水和反相柱使用方法

    GE 蛋白纯化的疏水和反相柱使用方法,英文版的.需要自己研究.[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=123777]GE Hydrophobic Interaction[/url]

  • 【第六届原创大赛“我爱分坛”队——队员招募】-扩容了,欢迎加入。

    http://simg.instrument.com.cn/bbs/images/default/em09502.gif无门槛,无任务,无压力。每篇原创作品奖励168积分,金币奖励规则由队员讨论决定。 小道消息,据说没有金币了,奖礼品。礼品看来也不好得啊。----------------------------------------------------------------------------------------------目前队员名单(14人):tangtang、王子、baby073125、金条、andrew-zhang、凤仪、尘、人气、tang566、雾老师、燕飞、给力,影子,美丽。达到扩容门槛,欢迎报名加入。

  • 高氯酸根是亲水性还是疏水性

    高氯酸根是极性分子,按照相似相溶原理,他应该是亲水性的啊。为什么我在有的文章里看到他有极强的疏水性。高氯酸根到底是亲水还是疏水的?谢谢

  • 色谱柱的疏水性与含碳量的关系

    我想请问一下是否含碳量越高,疏水性就越高,为了提高保留时间和分离度,则是否流动相中的有机相比例就越高?反之,含碳量越少,则疏水性就越弱,则流动性的水相比例就越高?请问可以这样认为吗?

  • 帮忙分析一下红外光谱测试的亲水和疏水纳米二氧化硅所得图谱

    帮忙分析一下红外光谱测试的亲水和疏水纳米二氧化硅所得图谱

    [color=#444444]刚刚使用红外光谱测试了亲水和疏水纳米二氧化硅,我想知道各个峰值所代表的是哪种基团,还有写文章时候需要在此图上标注哪些相关信息。望专业人士给予帮助,想通过亲水和疏水材料表面基团分析它们吸附水和气的特性,如果哪位能给提一些具体意见的话就更好了,感激不尽!!![/color][color=#444444][img=,690,325]https://ng1.17img.cn/bbsfiles/images/2019/09/201909301458005016_2115_1806906_3.png!w690x325.jpg[/img][img=,690,325]https://ng1.17img.cn/bbsfiles/images/2019/09/201909301458011027_2570_1806906_3.png!w690x325.jpg[/img][/color]

  • 【原创】简述自由半浮球蒸汽疏水阀结构特点及工作原理

    自由半浮球蒸汽疏水阀结构特点及工作原理 自由半浮球蒸汽疏水阀未开始工作时,自由半浮球沉落在发射管上,当疏水处于排水状态时,蒸汽经过过滤网和发射管进入阀体,当蒸汽体积增加到一定程度时,浮力使半浮球上浮,在蒸汽压力作用下,半浮球靠向疏水喷咀将其封闭,阻止了蒸汽外逸。当大量凝结水进入自由半浮球蒸汽疏水阀阀体时,半浮球内蒸汽体积减少,此半浮球在自身重力作用下落,半浮球脱离疏水喷咀,完成了一个工作循环。继而周而复始运动,起到自动排水阻汽的目的。 自由半浮球蒸汽疏水阀适用范围:城建、化工、冶金、石油、制药、食品、饮料、环保

  • 疏水DES 低共熔溶剂

    请问一下疏水性的DES(长链烷醇类的)除了薄荷醇和正辛醇、十二醇、十四醇,还有其他的可以合成DES的吗?找了很多文献都没有看到

  • 【求助】请教:疏水层析和反相层析相比对蛋白质吸附能力较弱

    请教:疏水层析和反相层析相比对蛋白质吸附能力较弱??原文大意如下——疏水等系和反相层析的原理都是利用疏水作用分离蛋白质、多肽的但是二者使用的介质和流动相有一定的差别其中疏水层析介质的极性反相层析介质的极性所以疏水层析的介质对于蛋白质的吸附能力较弱 可以使用温和的盐水就可以洗脱但是反相层级的介质极性较弱 需要更强的有机溶剂洗脱之【问题是——蛋白质应该是水溶性的啊? 应该是和极性更强的疏水层析介质接近 继而疏水层析介质对蛋白质的吸附能力更强?????????????????????】 [em0808]

  • 【资料】5种疏水性SPE小柱方法比较

    5种疏水性SPE小柱方法比较样品:血清中的间苯二酚(极性的),醋氨酚(中等极性的),甲苯酰胺(非极性的)SPE小柱:硅胶基质C4 , C18 , C18 Light Load ;聚合物基质的H2O-Philic DVB(亲水性DVB), H2O-Phobic DVB (疏水性DVB)活化与平衡:1ml甲醇,1ml去离子水上样:0.025 mg/mL 间苯二酚(极性的),醋氨酚(中等极性的),甲苯酰胺(非极性的) 于1 mL 去离子水淋洗:1 mL 95:5 KH2PO4 pH 3:methanol或1 mL DI water洗脱:2*0.5ml甲醇实验比较了5种疏水性填料小柱对三种不同极性分析物的萃取效果,并比较了淋洗剂不同对回收率的影响,结果表明,聚合物基质的两种小柱,对三种不同极性的样品的萃取效果最好,并表明在C18硅胶基质的小柱上,淋洗剂极性对回收率结果很大,而在聚合物基质的H2O-Philic DVB小柱上,淋洗剂影响比较小。详细的HPLC谱图及回收率结果及方法讨论,可以点击下面链接下载:

  • 【原创大赛】【欧波同材料分析研究中心】从荷叶效应到超疏水表面——从自然到人工合成

    【原创大赛】【欧波同材料分析研究中心】从荷叶效应到超疏水表面——从自然到人工合成

    [b][b]前言:[/b][/b]在盛夏时节安静的池塘边,正是观赏荷花的好时候。在红花绿叶的点缀下,夏日仿佛多了一丝清凉舒缓。每当提到荷花(莲花),总能想起周敦颐在《爱莲说》中 “予独爱莲之出淤泥而不染,濯清涟而不妖”的诗句。[color=#333333]荷花历来被佛教尊为神圣净洁之花,并且极力宣传并倡导学习荷花的这种清白、圣洁的精神。另外,李白的诗句“清水出芙蓉,天然去雕饰”,也表明荷花具有天然之美。荷花即青莲,青莲与“清廉”谐音,因此荷花也被用以比喻为官清正,不与人同流合污,这主要是指在仕途中。比如,有一幅由青莲和白鹭组成的名为“一路清廉”的图画,就被很多文人置于自己的书房中。[/color][color=#333333]可是,莲为什么可以出淤泥而不染呢?这就要讲到莲花的“自清洁”和“不沾湿”特性了。[/color][align=center][color=#333333][img=,690,459]https://ng1.17img.cn/bbsfiles/images/2018/09/201809111012069537_964_2516543_3.png!w690x459.jpg[/img][/color][/align][color=#333333][/color][b][b]荷叶响应:[/b][/b][align=left][color=#333333]如果留心观察莲花的叶子,你就会发现荷叶上总是干干净净的,好似不留一点灰尘。这是因为荷叶表面的特殊结构有自我清洁的功能,即荷叶的“自清洁”特性。此外,我们经常会看到这样的场景:当水滴在荷叶上时,水并没有完全铺展开,而是以水珠的形式停留在荷叶上,而且只要叶面稍微倾斜,水珠就会滚离叶面。这就是荷叶的“不沾湿”特性。荷叶的“自清洁”和“不沾湿”特性被统称为“荷叶效应”。这一概念最早是由德国波恩大学的植物学家巴特洛特提出的。[/color][/align][align=center][img=,540,304]https://ng1.17img.cn/bbsfiles/images/2018/09/201809111012430687_6323_2516543_3.png!w540x304.jpg[/img][/align][align=center]图1荷叶效应[/align][b][b]超疏水特性:[/b][/b][color=#333333]其实,荷叶的“不沾湿”特性也被称为“超疏水”特性。那么,如何界定“超疏水”这一概念呢?在明确“超疏水”这一概念前,我们要先了解表面化学中的一个概念——接触角。如下图所示,接触角指的是“液-固”界面的水平线与“气-液”界面切线之间通过液体内部的夹角θ。有了这一概念,我们可以很方便地表示液体对固体的润湿情况。当夹角θ小于90°[/color]时,我们称该液体可以湿润固体。当[color=#333333]θ大于90°时,该液体不能湿润固体。当θ大于150°时,该固体表面具有超疏水特性。通俗地讲,我们可以认为这种固体表面有很强的排斥水的能力。[/color][align=center][img=,650,225]https://ng1.17img.cn/bbsfiles/images/2018/09/201809111012556307_6626_2516543_3.png!w650x225.jpg[/img][/align][align=center]图2 浸润与不浸润的特征[/align][align=left][color=#333333]在自然界中,奇异的性质往往是其独特的结构决定的。那么,你肯定会问:“荷叶的特性是否与它的结构有关呢?”答案是肯定的。扫描电子显微镜的发展给我们的科学研究带来了更多的可能,也使得我们能够观察到荷叶的微观结构。通过电子显微镜的成像结果,我们可以清晰地看到荷叶表面有许多突起的“小山包”(这类结构被称为“乳突”如图3(a))。这些乳突的尺寸通常在6微米左右,这些乳突的平均间距在12微米左右。而这些乳突是由许多直径在100纳米左右的纳米蜡质晶体组成。由此可见,荷叶表面存在复杂的“微米-纳米”双重结构,正是这些结构使得荷叶产生了“超疏水”和“自清洁”的双重特性。[/color][/align][align=center][img=,690,516]https://ng1.17img.cn/bbsfiles/images/2018/09/201809111013077477_9002_2516543_3.png!w690x516.jpg[/img][/align][align=center]图3 荷花叶片的SEM图像 (a)低倍图像(b)[color=#333333] “乳突”高倍图像(c)叶片底部高倍图像(d)“乳突”尺寸对应的接触角曲线分布[/color][/align][align=center] [/align][b][b]由荷叶到仿生技术:[/b][/b][color=#333333]自然界的生物都经历了漫长的演化过程,在物竞天择下,生物自身的结构和功能都经过了长期的筛选、发展和优化,具有极高的效能。荷叶的“自清洁”性能,并不是简单的美观功效,清洁程度直接影响叶片的光合作用效率。那么不仅仅是荷叶,在自然界中具有自清洁功能的生物还有很多种,比如蝴蝶的翅膀具有的超疏水结构,保证蝴蝶翅膀不会粘连露水影响飞行。水黾的脚具有绒毛结构,确保了水黾在水面上能以每秒钟滑行100倍于自身长度的距离,这都由于水黾腿部上有数千根按同一方向排列的多层微米尺寸的刚毛。而这些像针一样的微米刚毛的直径不足3微米,表面上形成螺旋状纳米结构的构槽,吸附在构槽中的气泡形成气垫,从而让水黾能够在水面上自由地穿梭滑行,却不会将腿弄湿。还有蚊子的复眼,它是由许多尺寸均一的微米半球组成,其表面还覆盖有无数精细的纳米乳突结构,这种纳米乳突结构的尖端与雾滴接触的面积无限小,具有理想的超疏水特性,从而确保了蚊子的复眼具有理想的超疏水防雾性能。[/color][align=center][img=,517,405]https://ng1.17img.cn/bbsfiles/images/2018/09/201809111015091396_319_2516543_3.png!w517x405.jpg[/img][/align][align=center]图4 蝴蝶翅膀,水黾足,蚊子复眼的超疏水结构[/align][align=center] [/align]那么面对自然界演化生成的超疏水结构,科学家也进行了进一步的研究,其超疏水表面的制备方法有多种:溶胶-凝胶法、相分离法、模板法、蚀刻法、化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积法、自组装法等等,下图为具有独特形状的表面微米阵列(如图5)纳米阵列(如图6),使得它们具有很好的疏水特性。[align=center][img=,690,408]https://ng1.17img.cn/bbsfiles/images/2018/09/201809111015259467_5266_2516543_3.png!w690x408.jpg[/img][/align][align=center]图5不同形态的人工合成的超疏水结构[/align][align=center][/align][align=center][img=,690,940]https://ng1.17img.cn/bbsfiles/images/2018/09/201809111015517337_7606_2516543_3.png!w690x940.jpg[/img][/align][align=center]图6 超疏水结构碳纳米管阵列[/align]经过先进结构材料的表面改性,我们常见的水也可以变得很有趣,比如我们可以用手切割水珠(图7),利用涂有超疏水材料的刀片对水滴进行切割(图8)。日常生活上,通过先进疏水材料的应用我们可以使得衣物不再被水或者油污污染,减少洗涤衣物的麻烦。在军事上,由于疏水材料的使用使得水的阻力明显下降,有效的提升了舰载的行驶速度。[align=center] [/align][align=center][img=,396,213]https://ng1.17img.cn/bbsfiles/images/2018/09/201809111016242856_7728_2516543_3.png!w396x213.jpg[/img][/align][align=center]图7超疏水表面上流动的水珠[/align][align=center][/align][align=center][img=,400,285]https://ng1.17img.cn/bbsfiles/images/2018/09/201809111016390737_7536_2516543_3.png!w400x285.jpg[/img][/align][align=center]图8超疏水表面涂层的刀片切割水滴[/align][b][b]结束语:[/b][/b][align=left][color=#333333]从荷叶效应到超疏水结构材料的合成制备,实际上是一个仿生学研究的过程。它将生物的结构、功能和行为应用于现代工程系统和技术设计中,解决人类所遇到的科学技术问题。仿生不是对自然模型的简单复制,而是对大自然中生物的理解、升华和具有创新价值的“重塑”。在这“重塑”的过程中,电子显微科学技术对其发展与促进的是十分巨大的。[/color][/align]

  • 疏水性PTFE滤膜如何过水溶液?

    如果水溶液中含有强酸强碱,聚醚砜、尼龙之类的材料是无法耐受的,那么可以考虑用PTFE来过滤。PTFE滤器分为疏水性和亲水性两种。疏水性PTFE,水溶液无法过膜。进行表面改性的,带有极性基团的PTFE, 称为亲水性PTFE。如果混合溶液中水溶液比例大于70%,那么建议用亲水性PTFE。如果一定要用疏水性PTFE滤器来过纯水样品,可以用水溶性有机溶剂,比如3mL乙醇,先润湿滤膜,然后再过滤。

  • 纺织纤维成分定量疏水性样品

    遇到疏水性样品该进行什么样的前处理比较好,目前遇到的样品是绵羊毛、聚酯纤维、氨纶针织面料,在次氯酸钠溶解绵羊毛的时候出现了不溶于溶剂的问题?

  • 疏水层析柱在液相上条件优化

    疏水层析柱在液相上条件优化

    大家好请教个条件优化的问题,在液相上走疏水柱走抗体偶联药物,(8个不同等电点的蛋白峰),bufferA是高盐硫酸铵,bufferB是低盐,五个峰一直分不开,而且是峰不高,但走峰时间较长。尝试优化了bufferB的梯度,或者改变buffer的1pH值,都不行。大家有经验的有什么好的建议?谢谢啦。

  • 【分享】水三相点容器

    【分享】水三相点容器

    [font=Verdana]一、简介[img]http://ng1.17img.cn/bbsfiles/images/2010/08/201008302038_239946_1638489_3.jpg[/img][/font][align=center]图1 NIM水三相点容器结构示意图图1中,1温度计阱 2 内融层 3 冰套4高纯水 5冰却水[/align] 水三相点是热力学温度的唯一基准点,也是ITS-90国际温标重要的定义固定点。水三相点通常是利用如图1所示的水三相点容器来复现的。 为了加强对水三相点的深入研究,近年来,在国家质量监督检验检疫总局专项经费的资助下,“高质量水三相点容器的研制及水三相点的研究”课题建立了一套新的高质量水三相点容器制作系统,研制出一系列不同结构、尺寸的高质量水三相点容器。在此基础上,研究了冰桥、环境、水源、冻制方法、水的纯化等因素对水三相点温度的影响。这些理论、实验研究提高了水三相点的复现水平,填补了国内研究的空白,为中国计量科学研究院参加CCT-K7水三相点容器国际关键比对奠定坚实的基础。 依据科学技术成果鉴定证书(成果登记号:G219-2004),该课题达到国际先进水平。[font=宋体, MS Song] [/font]

  • 【求助】输配水管的浸泡问题

    请教一下各位达人,本人现有一台净水器需要验证它的输配水管是不是符合要求。参考的方法是《生活饮用水输配水设备及防护材料卫生安全评价规范(征求意见稿)》中的附录A,其中,输配水管的浸泡实验是这样写的:1.3.2浸泡1.3.2.1输配水管(包括容器)1.3.2.1.1 浸泡条件:受试产品接触浸泡水的表面积与浸泡水的容积之比应不小于在实际使用条件下最大的比例。对于输配水管应使用该类产品中直径最小的。1.3.2.1.2 浸泡试验A 用试验用充满浸泡水受试水管或水箱,不留空隙,两端用包有聚四氟乙烯薄膜的干净软木塞或橡皮塞塞紧,避光在23±2℃(用于冷水)或60±2℃(用于热水)下进行浸泡24±1h。B 对管件等部件如不能在部件内部进行浸泡试验时,可将部件放在玻璃容器内浸泡,条件同上。C 另取相同容积玻璃容器,加满试验用浸泡水,在相同条件下进行浸泡,作空白对照。困惑如下:由于检测的项目比较多,需要用的浸泡液至少2L,但这台净水器的输水管也就1米左右的长度,而且管径很小,按上述方法浸泡一次的话,也就100mL多一些。而标准上又没有写可以浸泡多次,还有,水里面的有些指标需要尽快分析的,这浸泡一泡就是一天,所以也影响分析结果。问题如下:1、请问我应该怎样做这个浸泡实验? 2、是否有我考虑不全或考虑错误的地方?请知道的老师点化!不胜感激!补充:感谢各位的点化,不过,我就是没有更多的输水管用来浸泡,否则我也不会这么苦恼。还请有好招的同行继续点化,谢谢!!

  • 【请你出招-18】分析用水(纯水)的容器问题

    [size=4][font=黑体]关于分析用水的容器资料上是这样描述的:"各级分析用纯水使用密闭,专用聚乙烯和专用的玻璃容器.新容器在使用前需用20%盐酸浸泡2-3天,再用化验用水反复冲洗数次."[/font][/size][color=#00008B]我想问的是为什么要用20%盐酸浸泡2-3天,其作用是什么?各位平时使用的装水容器,也这么做过吗?[/color]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制