当前位置: 仪器信息网 > 行业主题 > >

气相弱极谱柱

仪器信息网气相弱极谱柱专题为您提供2024年最新气相弱极谱柱价格报价、厂家品牌的相关信息, 包括气相弱极谱柱参数、型号等,不管是国产,还是进口品牌的气相弱极谱柱您都可以在这里找到。 除此之外,仪器信息网还免费为您整合气相弱极谱柱相关的耗材配件、试剂标物,还有气相弱极谱柱相关的最新资讯、资料,以及气相弱极谱柱相关的解决方案。

气相弱极谱柱相关的资讯

  • 傅若农:PLOT气相色谱柱的诱惑力
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。  第一讲:傅若农讲述气相色谱技术发展历史及趋势  第二讲:傅若农:从三家公司GC产品更迭看气相技术发展  第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状  第四讲:傅若农:气相色谱固定液的前世今生  第五讲:傅若农:气-固色谱的魅力  看看下面这张图1,1 min 多一点时间就把苯到二甲苯几个难分离的混合物分开了,而且把间位和对位二甲苯也给分开了,遗憾的是间位和邻位二甲苯没有分开,当然只用了15 m 长的毛细管色谱柱,这种色谱柱叫做PLOT柱,这是半个世纪前在英国&ldquo 自然&rdquo 杂志(Nature)上一篇简短论文上报道的(Halasz I,Horvath C,Nature,1963,197:71-72)。这一工作是最早使用石墨化炭黑作固定相PLOT柱完成的,这一实例对想利用气相色谱用于石油和石化工业分析的人员来说有很大的诱惑力,为什么?这是因为色谱柱短、固定相耐温性好、无流失、分析时间短,可以把在气相色谱中最难分离的间、对二甲苯基线分离。  再看看图 2,这是最近云南师范大的袁黎明研究组把手性向列结构的介孔材料制备成PLOT柱分离手性化合物,这样的PLOT柱,柱高温、分辨率高、可作手性分离,扩展了PLOT柱的应用范围。在新的应用领域又体现了它的诱惑力。  图1 石墨化炭黑作固定相PLOT柱分离苯、甲苯、乙苯和二甲苯  色谱柱:15 m x 0.25mm,5.4mg 石墨化炭黑/m,柱温:245 ℃,  分流比:1:1050,进样:0.2&mu L  图2 手性相列内消旋硅胶PLOT柱分离手性化合物  (Anal Chem,2014,86:9595)  1、什么是PLOT柱  PLOT柱是多孔层开管柱(Porous Layer open tubular column)的缩写,早在上世纪50年代末毛细管色谱柱的发明人 Golay就指出:如果把光滑的毛细管壁变成均匀多孔的细颗粒,就会大大有利于毛细管柱的效能(M J R Golay,Gas Chromatography 1957),他在1960年又进一步详细阐述了这一方法,这种多孔层毛细管色谱柱可以降低相比率,同时又使固定液液膜比较薄,有利于传质阻力提高柱效,在具有多孔层毛细管内壁上涂渍一层可以增加内壁的表面积,多孔层物质可以用化学方法处理,也可以用颗粒悬浮物沉积到管壁上,于是早期的气相色谱开拓者们就循这一思路研发,1962-1963年Horvâ th等开发了这一类型的毛细管多孔层色谱柱。  大家知道Csaba Horvâ th (1930-2004)是液相色谱的开拓者之一,他是匈牙利人,上世纪50年代在匈牙利受到化学工程方面的高等教育,1962-1963年间在德国法兰克福大学(美音河畔的法兰克福)Halâ sz的实验室攻读博士期间,研究了无机色谱固定相,使用Golay的静态涂渍技术制备出多孔层气-液色谱柱(在氧化铁颗粒上涂渍聚乙二醇),这种色谱柱叫做载体涂渍开管柱(support-coated open-tubular ,SCOT),属于多孔层开管柱(PLOT)的一种,同时也制备了吸附型气-固色谱柱(见上图1)(Nature,1963,197:71-72)。  PLOT柱发展早期,很多研究是针对SCOT柱,即把填充柱使用的载体用某种胶粘附在毛细管壁上,然后再在这一载体上涂渍固定液。现在商品PLOT柱则严格地限于把多孔吸附剂以化学或物理方法粘附在毛细管内壁上,进行气-固色谱,所以有人也把它叫做&ldquo 吸附固相开管柱&rdquo (adsorption solid-phase open-tubular column,ASPOT)。  2、早期的填充毛细管柱到PLOT柱  由于填充气相色谱柱的分离能力有限,致使许多复杂的混合物无法分离,尽管开发了许许多多固定相,但是仍然由于填充柱柱效不高,无法满足实际工作的需要,而壁涂毛细管柱(WCOT),由于其液膜厚度的限制柱容量小,对低沸点物质保留作用小,对一些永久气体不能分离,而气-固色谱可以分离低沸点物质,但是柱效低对难分离的混合物受到限制,所以出现了填充毛细管气-固色谱柱,1962年Halasz和 Heine就制备了氧化铝的填充毛细管柱,他们把一根1mm直径洁净的钢丝穿入直径为2.2mm的玻璃管,在玻璃管和钢丝的空隙中装入吸附剂,把填充好吸附剂的玻璃管水平放在毛细管拉制机上,并小心地把钢丝移除,把玻璃管拉制成直径为0.3mm的毛细管。在作者的实验中使用的吸附剂是在400℃ 加热9h的氧化铝,吸附剂颗粒直径在 0.10-0.15mm之间,然后把毛细管在120℃下用氢气吹扫24h,以除去吸附剂吸附的水分。用这种10m长的色谱柱就可以把15个C5的烃类在6min 内分离开(Nature,1962,194:971),见下图3。  图3 填充毛细管气-固色谱柱分离芳烃的色谱  色谱柱:10m 柱温:80℃,色谱柱脱活:用晶体硫酸钠湿润载气  载气:氢气,流速:2.5ml/min , 分流比:1:600,FID 检测器  1&mdash 甲烷,2&mdash 乙烷,3&mdash 乙烯,4&mdash 丙烷,5&mdash 丙烯,6&mdash 乙炔,7&mdash 异丁烷,  8&mdash 正丁烷,9&mdash 丁烯-1,10&mdash 反丁烯-2,11&mdash 异丁烯,12&mdash 顺丁烯-2,  13-异戊烷,14&mdash 正戊烷,15&mdash 丁二烯(Nature,1962,194:971)  这种填充毛细管柱可能是由于制作麻烦未能普及,而1963年,Kirkland在开管柱中沉积氧化铝,制备了氧化铝PLOT柱(Anal Chem,1963,35(9):1297),之后,人们把Kirkland作为PLOT柱得第一发明人。前面我们提到Horvath C同时在1963年制备了石墨化炭黑的PLOT柱,因为Horvath C的工作发表在Nature上,可能被人忽视。不过很有意思,后来Kirkland和Horvath二人都成为赫赫有名的液相色谱先驱。由于PLOT柱在许多领域实际工作中得到应用,直到现在有大量商品化的PLOT气相色谱柱,得到广泛的应用。  3、现代商品化PLOT柱所使用的固定相和色谱柱类型  按照季振华1999年的综述(J Chromatogr. A, 1999),842:115&ndash 142),商品化PLOT柱所使用的吸附剂有:氧化铝、石墨化炭黑、分子筛、有机多孔聚合物等,见下表1。  表1 商品化PLOT柱所使用的吸附剂(固定相)  目前世界上几个著名的色谱柱生产厂家都有上述固定相的PLOT柱,比如安捷伦公司就有专门生产PLOT柱的生产线。这些PLOT柱可用于分析干气、低分子量的轻烃异构体和挥发性极性化合物(见表2)。HP家族中的PLOT柱有各种不同的规格,可满足不同领域的使用,有适用于大容量分析的530&mu m柱,如果要进行快速分析或进行GC/MS分析可以选择250&mu m或320&mu m的PLOT柱。  表2 HP-PLOT柱的应用  (1)HP-PLOT 分子筛柱  使用HP-PLOT 分子筛柱分析永久气体和惰性气体, HP-PLOT 分子筛柱是在柱内涂渍有固定化的5A分子筛,涂层厚度为12 ~50&mu m。这样可以保证对氮、氧、氩、甲烷和一氧化碳的分离。  把吸附剂键合到毛细管壁上,减少颗粒脱落的机会,以免颗粒进入系统的阀或检测器里,这样可以大大提高检测器的灵敏度和整个系统的精确性。  分析永久气体一般使用分子筛柱,HP-PLOT 分子筛柱有足够的柱效和柱容量用以很好地分离氮、氧、甲烷和一氧化碳。这种色谱柱适合于多种气体分析样品阀所要求的时间选择。在进行等温40℃分析时,氧和氩只能部分分离。如果要把它们完全分离,可以不用冷冻低温而使用厚膜HP-PLOT 分子筛柱, 可在接近环境温度下分析环境中的惰性气体。在35℃下可以把惰性气体及氧和氮很好地分离,分析时间不到10min。  HP-PLOT 分子筛柱的柱径规格为0.32和0.53mm, 为了能在不使用冷冻低温下分离氧和氩气,可以使用厚膜柱HP-PLOT MoleSieve/5A分子筛柱。薄膜HP-PLOT 分子筛柱是多种应用分析(包括常规的空气监测)的色谱柱,分析时间小于10s。使用薄膜HP-PLOT 分子筛柱可以在低温下分离氧和氩。  (2)HP-PLOT 三氧化二铝柱  HP-PLOT 三氧化二铝柱系列,包括使用三氧化二铝颗粒和各种脱活的三氧化二铝颗粒的涂层开管柱。所有HP-PLOT 三氧化二铝柱都适用于烃气流中C1-C6异构体的分离,每种类型的HP-PLOT 三氧化二铝柱都各有其特点和优点,如表3所述。  HP-PLOT 三氧化二铝柱的柱径从0.25mm到0.53mm, 0.53mm 柱的使用更为普遍,因为它的柱容量大,适合于大体积进样阀的应用。如使用0.53mm HP-PLOT 三氧化二铝KCl柱可分析乙烯和丙烯气体中的组分,用HP-PLOT 三氧化二铝柱检测烃类的检测限为10ppm。对0.32mm和0.53mm内径的所有三种色谱柱其温度上限均为200℃,对0.25mm柱可以在250℃下短时间使用。由于0.25mm柱的柱效高并且使用温度上限也较高,所以它可以用于高达C10的烃类 。  表3 HP-PLOT 三氧化二铝柱  (3)HP-PLOT Q柱  HP-PLOT Q柱是HP公司PLOT柱中应用广泛的色谱柱,HP-PLOT Q柱适合于以下对象的分离:  * 烃类(所有C1-C3异构体,一直到C14的链烃,天然气,炼厂气,乙烯,丙烯气体),  * 二氧化碳,空气/一氧化碳,水,  * 极性溶剂,含氧和含硫化合物。  HP-PLOT Q柱具有以下的点:  a 具有优良的机械稳定性,很少或没有碎片脱落,使其适合于有阀控制的分析和GC/MS的分析  b流失量小,减少老化时间,提高灵敏度  c 重复性好,节省工作时间和购置费用  d 最高恒温使用温度为270℃  4、近年出现新材料制备的PLOT柱  (1)金属有机框架材料(MOFs)制备的PLOT柱  近年金属有机框架材料(MOFs)风靡一时,趋之若鹜,尝试在各个领域中应用的文章数不胜数,在分析化学中的应用如下图 4 所示。  图4 金属有机框架材料(MOFs)在分析化学中的应用领域  何谓金属有机框架材料(MOFs)?金属有机框架化合物(MOFs)是由无机金属离子和有机配体,通过共价键或离子共价键自组装络合形成的具有周期性网络结构的晶体材料。其中,金属为顶点,有机配体为桥链。MOFs结构中的金属离子几乎包含了所有过渡金属离子。通常分为含氮杂环有机配体、含羧基有机配体、含氮杂环与羧酸混合配体三种类型。MOFs具有独特的孔道,可设计和调控它的尺寸和几何形状,并在孔道内存在开放式不饱和金属配位点,使其可用于吸附或分辨不同的气体或离子,MOFs极适宜于辨识特定的小分子或离子,在多相催化、气体分离和储存等方面有着广泛的应用(Li J, Sculley J, Zhou H,Chem Rev,2012, 112:869&ndash 932)。由于MOFs具有优异的性质,比如比表面高、热稳定性好、纳米级孔道结构均一、内孔具有功能性、外表面可修饰等,在分析化学领域有广泛的应用前景(Gu Z,Yang C, N Chang,et al,Accounts Chem Res,2012),MOFs在分析化学中有多种应用,也是气相色谱固定相很好的选项。  2006年陈邦林等(Chen B, Liang C,Yang J,Angew Chem,Inter Ed,2006, 45:1390 &ndash 1393)首次把金属有机框架化合物 MOF-508用作气相色谱固定相,用以分离直链烃和叉链烃,MOF-508的分子式为 Zn(BDC)(4,4&rsquo -Bipy)0.5(MOF-508:BDC=1,4-苯羧酸, 4,4&rsquo -Bipy=4,4&rsquo -联吡啶),其空间结构如图5,它据有简单的立方体带孔的框架,孔径可由两个互相穿插的情况来调节,其一维通道横截面大约为 0.4x0.4 nm,这样的结构对气相色谱分离烷烃具有很好的选择性。但是陈邦林是把金属有机框架材料MOF-508 制备成填充柱进行研究的。  图5 MOF-508 的空间结构  真正制备成毛细管柱,即多孔层毛细管色谱柱(PLOT柱)的研究是南开大学的严秀平研究组(Gu Z,Yan X, Angew Chem,In ted. 2010,47:1477)和云南师范大学的袁黎明研究组(Xie S,Zhang Z, Wang Z,et al, JACS,2011, 133:11892&ndash 11895)的工作。严秀平等在2010年在德国&ldquo 应用化学&rdquo 上发表了使用MOF-101作固定相分离二甲苯位置异构体和乙苯混合物以及其他苯取代化合物的工作,MOF-101是铬和对苯二甲酸的金属框架配位化合物(Cr3O(H2O)2F(BDC)3),具有较大的孔径(2.9&ndash 3.4 nm),适合于做气-固色谱的固定相,他们用动态法把MOF-101涂渍在15m长的大内径(0.53mm)石英毛细管柱上,所用的涂渍方法类似于1963年Horvath所用的方法:首先把MOF-101和乙醇制备成悬浮液,然后以气体压力灌注到毛细管(15m x 0.53mm id)中,以动态涂渍技术把固定相沉积到毛细管壁上,这一色谱柱,自然是PLOT柱了,色谱柱的横截面图如图6所示。用这一色谱柱分离三个二甲苯位置易购体得到十分漂亮的基线分离图,而且分离时间很短见图 7。  图6 MOF-101 毛细管柱的电镜横截面图  图7 MOF-101 毛细管柱分离二甲苯异构体的色谱  袁黎明研究组主要是研究MOFs的手性固定相,2011年他们合成了[{Cu(sala)}n] (H2sala = N-(2-羟苄基)-L-丙氨酸),涂渍成毛细管色谱柱,用以分离外消旋的烃类、醇类和Grob试剂,分离效果见表5。  2013年他们合成了三维开放框架手性MOF,Co(D-Cam)1/2(bdc)1/2(tmdpy) (D-Cam=D-樟脑酸 bdc=1,4-苯二羧酸酯,tmdpy=4,4&prime -三亚甲基联嘧啶),制备成毛细管手性色谱柱,这种Co(D-Cam)1/2(bdc)1/2(tmdpy)化合物具有手性构架的三维结构,具备内在手性的拓扑网络。把它制备成两种毛细管色谱柱,柱A为30m长的530&mu m的大内径柱,柱B为2m长的75&mu m小内径柱,用动态法制备毛细管色谱柱,在120℃下以正十二烷测试它们的柱效,分别为1450 plate/m和3100plate/m.使用烷烃、醇类、外消旋化合物和Grob试剂测试色谱柱。用柱B和商品手性柱分离一些外消旋化合物的分离因子对比见表4。  表4 [{Cu(sala)}n]柱上分离一些外消旋化合物的分离因子  2013年华南师范大学章伟光和郑盛润研究组也涉足MOFs用作气相色谱固定相的研究,他们把管状金属有机框架化合物 MOF-CJ3动态涂渍在毛细管柱中,研究色谱保留行为。MOF-CJ3是以1,3,5-苯三羧酸(TBC)为有机桥联基的管状MOFs,具有一维沿着C的方向延伸的管道,孔壁由TBC有机桥联基组成,它可以提供苯环和羧基形成超分子作用。研究者选择直链、叉链烃、二甲苯和乙苯以及芳香族位置异构体(如甲酚、对苯二酚和二氯苯)作分离测试物,并测定了麦氏常数见表5  表5 MOF-CJ3 色谱柱的麦氏常数    表6是近年使用各种MOFs作固定相的PLOT柱。  表6 各种MOFs作固定相的PLOT柱(J Chromatogr A,2014,1348:1-16)  (2) 介孔分子筛固定相的PLOT柱  1992年,Kresge等首次利用烷基季铵盐阳离子作为表面活性剂,合成了介孔分子筛如 MCM-41,此类介孔分子筛的比表面积大、孔径均一、孔径可调等特点,突破了微孔材料(如沸石)的孔径限制,扩大了用作气相色谱固定相的范围。 1998年赵东元等(现在是复旦大学教授,院士)用亲水的三嵌段共聚物聚环氧乙烷-聚环氧丙烷-聚环氧乙烷(即P123)制备了有序二维六方相介孔分子筛 SBA-15,其壁厚可达6.4nm,孔径可达30nm,并且具有较高的水热性能(100℃,50h)。SBA-15不仅弥补了MCM-41水热性能方面的不足,而且三嵌段共聚物具有可生物降解、无毒、价廉等特点,满足了环保要求,成为近年来的研究热点之一,在催化、吸附、分离、纳米组装、生物医药和传感等方面得到了广泛的应用。( 赵东元等. Science ,1998,279:548)  以前有人利用这类介孔材料的填充柱分离烃类混合物。最近袁黎明研究组把手性向列结构的介孔材料(CNMS)制备成PLOT柱分离手性化合物,这是PLOT柱向高温、高分辨、特殊分离型毛细管色谱方向发展(Anal. Chem. 2014, 86: 9595&minus 9602)。下表7是CNMS柱与典型手性色谱柱分离性能的比较。  表7 CNMS柱与环糊精和氨基酸聚硅氧烷手性色谱柱分离性能的比较  (3)碳纳米材料作固定相的PLOT柱  2005年 Mitra等首次把自组装碳纳米管使用化学蒸汽沉积(CVD)方法涂渍在长的毛细管色谱柱中,得到高的柱效,改变CVD条件会改变CNTs膜的厚度和形态,因而可调整色谱的选择性(Anal Chim Acta,2010,675 :207&ndash 212)。2006年 Mitra 等又利用鈷和鉬盐进行催化的化学蒸汽沉积方法吧单壁CNTs涂渍在毛细管色谱柱中,厚度达300nm,柱效可达每米1000理论塔板数,测试其麦氏常数属非极性固定相(Anal Chem,2006,78:2064&ndash 2070)。2003年至今发表的一些有关碳纳米材料作气相色谱固定相的研究的工作见表9  表8 有关CNTs作PLOT柱的研究的工作  小结  常规PLOT柱在石油和石化等领域有十分成功的应用,而各个大色谱柱生产商都供应各种类型通用和专用类型的PLOT柱。近年各种新材料的出现促使人们把它们制备成PLOT柱进行研究,有很成功的案例,但是没有看到有深入进行色谱柱工艺优化的研究,还没有达到商品色谱柱的性能。希望研究者自己或联合厂家协作进行深入的柱工艺研究,完成这类PLOT柱商品化的过度。下一讲和大家聊一聊&ldquo 顶空进样技术的过去和现在&rdquo 。(未完待续)  (作者:北京理工大学傅若农教授)
  • 气定神闲 谱写人生——傅若农教授90华诞寿宴记
    p style="text-indent: 2em "2019年4月20日,我国著名色谱分析专家傅若农教授迎来90岁生日,华诞庆典在北京理工大学国际交流中心举行。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/3e5b185c-87ea-438a-b9cd-c8e652fe48ca.jpg" title="01.jpg" alt="01.jpg" width="450" height="250" border="0" vspace="0" style="width: 450px height: 250px "//pp style="text-align: center "庆祝傅若农教授90华诞会场/pp  傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事色谱分析方面的教学与研究工作,直到1998年退休。/pp style="text-indent: 2em "中国化学会色谱专业委员会、北京理化分析测试技术学会等单位,以及张玉奎、张华丽等个人也向傅先生九十华诞表示热烈祝贺。汪正范、黄立财、桂三刚等多位傅若农教授的老朋友、老同事亲临现场祝福。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/4a9a9b31-d084-4332-9a7b-423c764dcf79.jpg" title="02.jpg" alt="02.jpg" width="450" height="250" border="0" vspace="0" style="width: 450px height: 250px "//pp style="text-align: center "傅若农老师致答词/pp  strongspan style="color: rgb(0, 112, 192) "从教近40年,桃李满天下/span/strong/pp  傅若农先生从教近40年,学术成就斐然,桃李满天下,为我国色谱事业培养了大批顶尖人才。span style="text-indent: 2em "其中有些已经成为高等院校学科带头人,继续传承傅老师的衣钵;有些成为企业高管,成长为企业的中流砥柱;有些则成为学会协会重要领班人,引领行业的发展。为了给恩师贺寿,几十位弟子亲到现场,更有多位弟子不远万里从美国、加拿大专程坐飞机赶回国,为傅先生送上生日祝福。/span/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/ec805860-8e1f-4faa-9ae7-4c1680103d8c.jpg" title="03.jpg" alt="03.jpg" width="400" height="350" border="0" vspace="0" style="width: 400px height: 350px "//pp style="text-align: center "学生为傅若农老师祝寿(一)/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/2a802aba-4325-4778-ba37-0128dbb87fcc.jpg" title="04.jpg" alt="04.jpg" width="400" height="260" border="0" vspace="0" style="width: 400px height: 260px "//pp style="text-align: center "学生为傅若农老师祝寿(二)/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/4bc056a6-773e-439c-a65e-4eebc2a53524.jpg" title="05.jpg" alt="05.jpg" width="442" height="280" border="0" vspace="0" style="width: 442px height: 280px "//pp style="text-align: center "学生为傅若农老师祝寿(三)/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/dcc74b9e-a468-4e46-bd55-d555495aefbc.jpg" title="06.jpg" alt="06.jpg" width="375" height="250" border="0" vspace="0" style="width: 375px height: 250px "//pp style="text-align: center "傅若农先生弟子、安捷伦大中华区气相色谱应用支持经理管振喜博士为来宾定制了具有纪念意义的水杯,上面印有傅若农先生的头像/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/30af6da3-b4ee-4345-8353-77bdb0e3beb4.jpg" title="07.jpg" alt="07.jpg" width="200" height="230" border="0" vspace="0" style="width: 200px height: 230px "//pp style="text-align: center "傅若农先生的弟子们共同编写了《师恩如海》图书,共同记录了师生之间的点点滴滴/pp  strongspan style="color: rgb(0, 112, 192) "支持民族企业,致力国产色谱水平提升/span/strong/pp  作为中国色谱界的知名专家,傅若农先生坚持帮助国产色谱企业发展,用毕生所学,帮助了一批国产色谱企业健康快速发展。国产知名气相色谱厂商浙江福立分析仪器股份有限公司就曾得到过傅先生的鼎力支持,如今福立已发展成为国产气相色谱企业的杰出代表。浙江福立分析仪器股份有限公司总经理黄立财参加宴会,为傅若农教授祝寿。傅若农先生殷切关怀国产气相色谱仪器发展,盼望国产气相色谱产品早日达到国际先进水平。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/87219cb0-897f-42f8-8bb5-b3a692d6ab45.jpg" title="08.jpg" alt="08.jpg" width="450" height="250" border="0" vspace="0" style="width: 450px height: 250px "//pp style="text-align: center "浙江福立分析仪器股份有限公司总经理 黄立财/pp  strongspan style="color: rgb(0, 112, 192) "笔耕不辍,心系广大一线用户/span/strong/pp  1998年受化工出版社邀请, 傅若农教授主编了《色谱技术丛书》,丛书全面介绍了当代色谱技术。该丛书出版后受到了广大读者的热烈欢迎, 大部分分册的印数都超过了10000册, 并获得第7届石油和化学工业协会优秀科技图书一等奖。2016年,86岁高龄的傅若农教授又开始着手丛书第三版的编辑工作。傅若农教授在退休期间,还参加了科技部组织的“科学仪器研制与开发”项目的“十五”和“十一五”国家科技攻关重大项目的跟踪专家组, 进行了多次检查和验收工作。/pp  在退休期间, 傅若农教授为仪器信息网的广大网友写了大量和色谱有关的文章(如:a href="https://bbs.instrument.com.cn/topic/6602016_1" target="_self"strong从国产气相产品看国内气相发展脉络及现状/strong/astrong、/stronga href="https://bbs.instrument.com.cn/topic/6602021_1" target="_self"strongPLOT气相色谱柱的诱惑力/strong/astrong、/stronga href="https://www.instrument.com.cn/news/20140902/140376.shtml" target="_self"strong气相色谱固定液的前世今生/strong/a)和专题讲座(a href="https://www.instrument.com.cn/zt/frnqxsp" target="_self"strong点此进入专题/strong/a),并主审了仪器信息网组织编写的《气相色谱百问精编》。针对气相色谱分析中出现的常见问题,结合农药残留检测、食品、医药、化工、环境保护等方面的实际应用,采用了大量实际应用的案例,做了较为详细的解答;傅若农先生行文简明扼要、深入浅出、通俗易懂、新颖实用,不论对刚刚学习气相色谱的人员,还是专门从事气相色谱分析和检测的一线人员,都有很大的帮助,在广大读者中反响热烈。/pp style="text-indent: 2em "在傅若农教授90华诞之际,仪器信息网色谱论坛网友特意准备了一副对联,献给傅先生。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/acaf02d0-e8b7-4995-9fd5-5c6efe20b9c0.jpg" title="09.jpg" alt="09.jpg" width="600" height="333" border="0" vspace="0" style="width: 600px height: 333px "//pp style="text-align: center "中国分析测试协会汪正范研究员与仪器信息网CEO唐海霞女士展示仪器论坛网友为傅若农教授准备的对联/pp  气定神闲,谱写人生,这也是傅若农教授为人处世的真实写照。听完大家的祝福后,傅老师感谢了大家的祝福和精心的策划、准备,表示:“在鲐背之年,能够再次和许久不见的学生聚在一起,我感到非常开心。”/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/925822fe-559c-4f7f-857b-43f59624e205.jpg" title="010.jpg" alt="010.jpg" width="600" height="333" border="0" vspace="0" style="width: 600px height: 333px "//pp style="text-align: center "傅若农教授90华诞合影/p
  • 鑫图Aries 16相机 | 钙钛矿闪烁体极弱光探测实验
    钙钛矿材料因其优异的光电性能备受关注,在光电领域有着广泛的应用前景。其中,其闪烁特性在X射线成像、辐射检测等领域具有重要意义。通过对钙钛矿闪烁体进行性能测试,可以评估其灵敏度、响应速度、能量分辨率等关键指标,为其在各种光电应用中的性能优化和实际应用提供依据。近期,华中科技大学牛广达教授组使用鑫图Aries16成功完成了低剂量条件下的钙钛矿闪烁体的实验测试。该实验使用X射线源产生的高能X射线照射样品后,经过闪烁体变换将X射线信号转化为可见光信号,最后由Aries 16进行探测。图 1 钙钛矿闪烁体弱光探测实验装置示意图“因为相机实验空间里存在X射线,如果进行长时间曝光,图像上会充满高能X射线带来的雪花点,而进行短时间曝光,信号又太弱,我们之前使用的相机没有办法获得高质量的图像,但Aries 16拍出的效果超出了我的想象。” 负责此次实验的刘博士这样评价Aries 16 的应用优势。图 2 Aries 16 HDR 2000ms 所拍摄的图像Aries 16 是鑫图在科学弱光成像领域攻克EMCCD替代的重磅新品。它具有16微米像元尺寸和 90%的量子效率水平,同时读出噪声实现了<1.0e- 的关键突破,在极弱光下成像信噪比几乎与EMCCD (CCD97) 相当,可以有效降低X射线对图像质量的干扰;同时其Global Reset 功能还结合了全局快门和卷帘快门两种传统曝光方式的优势,可实现所有行同时开始曝光,并从上到下依次结束曝光,实现高速、低噪声、无失真的图像拍摄。
  • 傅若农:气-固色谱的魅力
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。  第一讲:傅若农讲述气相色谱技术发展历史及趋势  第二讲:傅若农:从三家公司GC产品更迭看气相技术发展  第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状  第四讲:傅若农:气相色谱固定液的前世今生  一、 气-固色谱早于气-液色谱问世  大多数人知道1952年Martin和Synge由于发明了气相色谱而获得诺贝尔化学奖,但是,真正的第一台气-固色谱仪是Erika Cremer和她的学生在奥地利因斯布鲁克(Innsbruck)大学开发出来的。1944-1945年第二次世界大战正酣期间,Cremer和她的学生设计开发出第一台气-固色谱仪。在此期间有一段迷人的故事。  Erika Cremer(1900-1996)学的是物理化学,具有很好的吸附/解吸方面的研究背景。1940年,她进入奥地利因斯布鲁克大学参与了乙炔的氢化研究工作,她碰到的问题之一是测定混合物中的乙炔和乙烯的含量,她在开始时的试验是用选择性吸附方法进行测定,但是,她发现这两个化合物的吸附热的差别不足以使它们用经典的吸附方法得到分离,与此同时她很熟悉由Hesse写的液相色谱教科书(1943年出版),此书让她知道可以考虑使用吸附色谱的方法,用气体作流动相,利用吸附性差别来分离混合物。  Cremer经过研究和思考,总结了她的新思路并写成一篇短文,投送到Naturwissenschaften 杂志发表,该杂志于1944年11月29日收到她的论文,1945年2月杂志接受了她的论文, Cremer收到出版社的清样后立即校对返回。可是当出版社正准备以特刊付印时,出版社工厂在空袭中被炸毁,所以这篇论文葬身于废墟之中,一直未能发表,直到31年后的1976年才作为历史文件发表。  在第二次世界大战结束以后,奥地利因斯布鲁克大学的实验室大部分被毁了,但是Cremer的一个新来的研究生Fritz Prior,可以在他原来的中学(他原是这个中学的老师)进行试验,作为他的博士论文,Cremer决定进行在空袭中被炸毁论文中设想的气-固色谱仪器和方法,幸运的是她原来自己设计制作的热导池还在,她们组装的气相色谱仪具备了现代气相色谱仪的主要部件,氢气发生气做载气,有载气流量调节器,有一个进样系统,分离用色谱柱和一个热导检测器,这一方案现在还存放在德意志博物馆的波恩分馆中展出。  1947年春Prior的工作结束了,得到了正结果,这一仪器可以定量分离空气、乙炔、乙烯。下图是这篇论文的一张分离图。图 1 Prior 分离乙炔和乙烯的色谱色谱柱:u型管,直径1 cm,填充硅胶20 cm 柱温 25 ℃.A= 空气, B= 乙烯, C= 乙炔图 2 1959年Cremer在东德举行的气相色谱报告会时和当代四位著名色谱学专家的合影(中间是Cremer)(来源:L. S. Ettre,Chromatographia,2002,55:625)  二、 早期的气-固色谱的固定相  气-固色谱的出现早于气-液色谱,这也是因为在上世纪40-50年代有几位出色的物理化学家研究吸附剂的吸附理论,为气-固色谱奠定了理论和实际基础。  在上世纪后半页用于气-固色谱的吸附剂有硅胶、活性碳、氧化铝、分子筛、石墨化炭黑、碳分子筛、多孔聚合物等,这些吸附剂可以作填充柱的固定相,也可以填充或涂渍到玻璃、金属或弹性石英毛细管中。这些吸附剂的用途如表 1 所示。表 1 吸附剂的应用领域  1、硅胶吸附剂  气相色谱发展早期,硅胶可以用作气-固色谱的固定相,也可以用作气-液色谱的载体,由于硅胶制作工艺、原料表面积及孔径的不同,其分离性能有很大的差别,为此厂家进行了标准化的分级,有不同品牌和规格的色谱用硅胶,下表是Rhone- Progil 公司生产的球型多孔硅胶,而Waters公司又把其中的 Porasil 进一步筛分成不同粒度的产品。表 2 商品硅胶的型号和规格  我国当时的天津第二试剂厂也生产了DG-1,DG-2,DG-3和DG-4,其性能类似于Porasil A,Porasil B,Porasil C,Porasil D。例如Supelco公司和Sigma-Aldrich公司供应用于分析硫化合物的硅胶填充色谱柱:Chromosil 310和 Chromosil 330,有许多实际使用的报告。  硅胶吸附剂的填充柱使用者不多,但在分析硫化物的场合仍然有人在用,如上海大学的Hui Wang等使用Chromosil 310和 GDX 502(极性聚合物多孔小球)以吸附-解吸方是分析色谱方式分析氢气中 ppb 级 SO2. (Intern.J. hydrogen energy,2010,35:2994-2996)。  德国的 Martin Steinbacher等也是使用Chromosil 310 柱(152cm x 3.2mm id )分析土壤和大气中的微量的硫化羰和二氧化硫(Atmospheric Environment, 2004,38:6043&ndash 6052)。  英国的 Evelyn E. Newby 利用 Chromosil 330 柱(244cm x 3.2mm id )在60℃分析口腔气体中的硫化氢和甲基硫醇等气体,评价牙膏消除口臭的作用(Archives of oral biology 53,2008, Suppl. 1 :S19&ndash S25)。  美国的Julie K. Furne等利用Chromosil 330 柱(244cm x 3.2mm id )分析排泄物中的硫化氢。(J. Chromatogr.B, 2001,754:253&ndash 258)。  英国的M. Steinke 等使用Chromosil 330 柱(183cm x 3.2mm id )的顶空气相色谱法测定二甲基硫化物评价硫代甜菜碱裂解酶的活性。(J. Sea Research,2000, 43:233&ndash 244)。  2、 氧化铝吸附剂  氧化铝有5种晶形,在气相色谱里多用g型,它有很好的热稳定性和机械强度,其含水量不同吸附性就有很大的差异,所以在使用前要进行适当的活化处理。上世纪80年代已故色谱学者鞠云甫对氧化铝吸附剂做过深入研究,他得到如下的结论:  (1) 可用改变热处理温度的方法来控制g-氧化铝微球的比表面, 氧化铝微球在350 ℃ 发生相转变, 至420℃ 完全转变为g氧化铝。  (2) g-氧化铝微球表面的酸, 主要是路易斯酸可用涂渍固定液改性的方法予以降低。改性后的 g-氧化铝微球表面酸度低于国外氧化铝表面酸度, 这种改性减弱了固定相的极性。  (3)热处理温度对要分离组分的保留值有重大影响,如用0.3% 阿皮松-L 对经过500℃ 灼烧4小时得到的g-氧化铝微球改性而制得的固定相, 在85 ℃ 柱温下能够全分离C1-C 4的烃类15个组分。(鞠云甫等,燃料化学学报,1983,12(1):69-76)  但是后来的研究表明,人们用碱金属卤化物让氧化铝改性,也可以得到很好的效果。英国的 A. Braithwaitel等研究了用碱金属卤化物处理氧化铝的表面,得到以下的结论:  (1) 未改性氧化铝表面有路易斯酸活化点,可以与不饱和烃的p电子产生作用,比饱和烃的保留时间增加,同时不饱和烃的色谱峰会产生拖尾,用碱金属卤化物改性氧化铝表面会消除拖尾,但是也会影响饱和烃和不饱和烃的分离保留因子。  (2) 氧化铝的改性必须要减少路易斯酸活化点,以便形成更为均一的表面性能,假定氧化铝表面的改性过程是碱金属阳离子和阴离子的共同作用,那么改性剂的阴离子就有选择性封闭大部分路易斯酸活化点的作用,这些活化点就不能再和被分析物作用,但不是所有的卤化物阴离子都有这一作用。改性剂的阳离子也会影响氧化铝的吸附作用,主要是卤化物的阳离子随其阳离子体积的减小,使烯烃/烷烃的分离度增加。其原因显然是表面上的极性或者是表面上阳离子的电荷密度增加所致,或者是两种原因的结合所致。  (3) 假定阳离子对氧化铝表面的改性是由于它降低了吸附剂的吸附特性,从而降低了吸附物质和吸附剂的作用力,被改型吸附剂的活性就可以用改性剂的量来控制,但是只要很少量的改性剂就可以使色谱峰的拖尾消除,得到对称的色谱峰。改性剂浓度超过一个临界值盐就会析出来,就起不到封闭活化点的作用,改性剂的浓度在2-4%之间。(Chromatographia,1996,42(1/2):77-82)  3、分子筛吸附剂  1925年人们发现了天然泡沸石(如菱沸石)对水、甲醇、乙醇等蒸气有很强的吸附作用,而对丙酮、醚和苯等蒸气则不予吸附,这种泡沸石就是天然的分子筛。后来人们模仿天然泡沸石的生成条件,并不断改进合成工艺,合成了多种类型的人造分子筛。所以叫做分子筛,是因为泡沸石具有象笼子一样的结晶结构,笼子的孔穴大小一致,而且正好是与分子的尺寸大小相当,分子尺寸比泡沸石孔穴尺寸小的就容易吸附,相反就不吸附。  分子筛具有几何选择性:分子筛的结晶结构有一定的尺寸,不同类型的分子筛具有不同的尺寸,表 中的数据。因而分子筛的选择性和所用分子筛类型及被分离化合物的临界尺寸有关。所谓临界尺寸是指垂直于其长度的最大横截面的直径,一些化合物的临界尺寸见表3。表3 气固色谱用分子筛的几何尺寸  分子筛对极性分子和极化率大的分子作用力强,对极性分子和不饱和烃分子有较大的亲和力,如在4A 分子筛上吸附下列气体的能力依次加大:  O2 N2 CH4 CO C2H6 C2H4 CO2 C2H2  分子筛对有可成氢键的化合物有很强的作用力 如分子筛对水、CO2、NO2有不可逆吸附的作用。  分子筛具有一些其他吸附剂所没有的特点,如:即使在低浓度下对被吸附物质也有较高的吸附容量。在高温下对被吸附物质也有较高的吸附容量。在高流速下对被吸附物质也有较高的吸附能力。  使用分子筛应注意的问题:使用分子筛之前一定要活化,一般是在真空下于300~400℃干燥 3h 。或在550℃干燥2h。分子筛的型号不同,其分离性能也有很大的差异。分子筛对一些活性气体有不可逆吸附的特点,如H2O、CO2、NO2、H2S、SO2、Cl2、HCl等在分子筛上是可逆吸附。  分子筛在气固色谱中的应用:主要用于O2、N2 、CO、CH4等永久气体的分离,由于碳多孔小球的出现,分子筛的作用有一定程度的下降。  但是近年来由于介孔分子筛的出现,把分子筛的孔径提高到30nm,为分子筛的应用扩大了范围。1992年,Kresge等首次利用烷基季铵盐阳离子作为表面活性剂,合成了介孔分子筛如 MCM-41,此类介孔分子筛的比表面积大、孔径均一、孔径可调等特点,突破了微孔材料(如沸石)的孔径限制,在催化分离等方面有广阔的应用前景。但是由于 MCM-41 有孔径较小、孔壁较薄、水热稳定性及化学稳定性较差等缺点,使其应用受到很大的限制。1998年在美国加州大学圣芭芭拉分校作博士后研究的赵东元等(现在是复旦大学教授,院士)用亲水的三嵌段共聚物聚环氧乙烷-聚环氧丙烷-聚环氧乙烷(即P123)制备了有序二维六方相介孔分子筛 SBA-15(SBA 是Santa Barbara Amorphous[圣芭芭拉多孔]的字头),其壁厚可达6.4nm,孔径可达30nm,并且具有较高的水热性能(100℃,50h)。SBA-15不仅弥补了MCM-41水热性能方面的不足,而且三嵌段共聚物具有可生物降解、无毒、价廉等特点,满足了环保和经济发展的需求,成为近年来的研究热点之一,在催化、吸附、分离、纳米组装、生物医药和传感等方面得到了广泛的应用。下图是SBA-15不同孔径的结构图(文献来源:赵东元等. Science ,1998,279:548 宗蒙,黄英,赵阳,材料导报A:综述篇,2012,26(9):54-59)图3 SBA-15投射电镜图(A) 6nm, (B)8.9nm (C) 20nm, (D) 26nm  平均孔径数据来自BET和X-射线衍射结果.  国内一些单位把SBA-15介孔分子筛作为气-固色谱固定相,如中科院煤炭化学研究所的赵燕玲等研究了SBA-15介孔分子筛作为气相色谱固定相对含有甲烷、乙烷、乙烯、丙烷和丙烯的气态烃类混合物和正己烷/l-己烯、正庚烷/l-庚烯、正辛烷/1-辛烯 3 种液态烃类混合物的色谱分离性能 并与硅胶作为色谱固定相分离3 种液态烃类混合物的情况进行了比较。与常规色谱填料硅胶相比,SBA-15介孔分子筛更适合作为烯烃/烷烃分离的色谱固定相。(赵燕玲等,石油化工,2010,39(10):1110-1114)  4、高分子多孔小球(GDX)  高分子多孔小球是1966年 Hollis 用苯乙烯和二乙烯基苯进行共聚而得到的,他对这类聚合物的色谱分离性能进行了详细的研究,把它们叫做Porapak。他所研究 Porapak Q 是一种色谱分离性能十分优秀的气-固色谱固定相。不久出现了各种品牌的高分子多孔小球固定相。我国在60年代末中科院化学所也研究出这类高分子多孔小球固定相,把它们命名为GDX(Gaofenzi Duokong Xiaoqiu),是高分子多孔小球汉语拼音的字头。后来天津化学试剂二厂生产了GDX 101、GDX 102、GDX 103、GDX 104、GDX 105、GDX 201、GDX 301、GDX 501等牌号,上海化学试剂厂生产了叫做&ldquo 401.....404有机载体&rdquo 的高分子多孔小球。  (1) GDX的特点  a、GDX的疏水性很强,水峰可以在乙烷后洗脱出,为有机物中微量水的测定提供了一种优良的色谱固定相。  b、GDX是球形,大小均匀,有利于色谱柱的填充,提高了柱效。  c、改变聚合工艺条件,可改变GDX的极性和孔径,制出各种性能的的高分子多孔小球来。  (2) GDX的制备   GDX是用二乙烯基苯和苯乙烯在水中进行悬浮聚合而得。即把要聚合的单体分散在水中,在引发剂的作用下进行共聚,由于在原料中加入一定量的溶剂作稀释剂,在聚合过程中稀释剂不起反应,但它会在小球中占据一定空间,待聚合后把稀释剂赶出来,在高分子多孔小球中就形成了很多小孔。GDX的结构如图4。图 4 GDX的结构  (3) GDX的性质  GDX是白色或微黄色的圆球,比表面从几十到几百 m2/g,表观密度为0.1~0.5 g/mL,一般可耐高温250~270℃。国内外高分子多孔小球的性能见分析化学手册第5分册-气相色谱分析。  (4) GDX的应用  有机物中微量水的测定:如顺丁橡胶的合成中要求单体丁二烯含水量在3× 10-5 g/mL以下,用100 cm × 0.4cm i.d.GDX-105色谱柱,在120℃柱温下,载气流速 33mL/min,可很好地进行测定。有机溶剂和氯化氢中的微量水分可用GDX-104柱测定。  半水煤气成分的测定:用GDX-104(3.7m)和分子筛(3.0m)的串联柱,通过阀切换在GDX-104柱上分离CH4、CO、CO2。在分子筛柱上分离O2和N2。可避免CO2通过分子筛柱。  自从Hollis 开发出高分子多孔小球之后有很多近一步的研究,但是没有更多的突破,只是在扩大了应用方面有不少研究工作。  5、碳吸附剂  (1)活性碳  早期除去硅胶以外活性碳是气相色谱使用最早的固定相,开始主要使用工业级别的活性碳,但是,使用了一段时间以后,色谱性能不能令人满意,就把它改性,以适应色谱分离的要求。在制备活性碳当中,要得到所需要的性能,碳化和活化过程的参数中最最重要的是原料的选择和预处理。活性碳的基本性质决定于所用原料,使用的原料有自然的木头、泥炭、煤、果核、坚果的外壳以及人工合成物质,主要是聚合物。在没有空气和化学品条件下的碳化过程中,首先是大多数非碳元素(氢、氧和微量硫和氮)由于裂解的破坏而分解挥发了,这样元素碳就留下来,形成结晶化的石墨,其结晶以无规则方式相互排列,而碳则无规律地存在于自由空间里,这一空间是由于滞留在这里的物质被沉积和分解而形成的。进行碳化的目的是使之形成适当的空隙并形成碳的排列结构,碳化过程使碳吸附剂具有较低的吸附容量,使其比表面只有几个 m2/g,一直到没有所担心的过高的吸附性。为了得到高空隙度和一定的比表面积,碳化还要进行活化过程。从天然原料制得的活性碳要比从合成物制得的活性碳具有较高的灰分,从合成物制得的活性碳几乎没有灰分,并且具有很好的机械性能,不易压碎和被磨损。由天然原料制得的活性碳其吸附性能受到它表面化学结构的影响,而其表面性质又决定于与其键合在一起各种杂原子(如氧、氮、氢、硫、氯等)的种类,活性碳是没有特殊选择性,或选择性很小的吸附剂,制备良好的活性碳为多孔结构,主要是各种直径的微孔和介孔,其比表面可达1000 m2/g到2m2/g,或者更高一些,使其具有高的吸附容量。由于活性碳表面具有很大的化学和几何不均一性,特别是工业用活性碳尤为严重,即使是低沸点气体和轻烃,也会产生很厉害的拖尾。在气相色谱发展早期活性碳只用于分析稳定的气体特别是惰性气体和轻烃。上世纪 50年代初捷克的 Janak 和 60年代初波兰的 Zielinski 在使用活性碳作固定相分析气体混合物方面做了很多工作。此后由于气相色谱的发展和活性碳研究的深入,人们就对活性碳的表面进行改性,包括用化学方法除去活性碳中的灰分(除去无机杂质),在无氧气氛中进行高温处理除去活性碳表面结合的氧,用催化活化及高温碳沉积的方法对多孔结构进行改性。用活性碳填充的色谱柱出现拖尾不仅是由于活性碳上的微孔和孔径的不均一所造成毛细管凝聚,更重要的也还由于混合物中的一些成分在各种非碳物质上的强烈吸附所致,这些附加的物质有两类,在活性碳孔中的无机物,他们在表面上没有键合,部分灰分和杂原子(常常是氧和氢、硫、氮、卤素等),这些杂原子与碳骨架进行了化学结合。而且这些附加物会使进行色谱分离的物质产生可逆吸附。在气相色谱的应用中,活性碳的改性是把活性碳在150-200 ℃下处理几个小时,并在0.1 mm Hg真空下除去水分,这样不会影响吸附剂的表面性能。之后就出现了石墨化炭黑和碳分子筛。  (2)石墨化碳黑  为了克服活性碳的缺点,国内外早期进行了许多研究,就把碳黑在真空中或在还原性气氛中进行高温处理,如加热到3000℃,结果在碳表面上形成石墨状的晶形。这样处理之后,表面均匀、活化点也大为减少了。比表面由几百 m2/g 下降到 低于 30 m2/g 。所以大大改善了色谱峰形。提高了分析的再现性。据原苏联基先列夫的研究,认为在石墨化碳黑的表面上没有官能团,没有&pi 键,所以它的吸附性主要靠色散力起作用,因而石墨化碳黑的极性比角鲨烷还小。  为了适应各种样品的分离,可对它进行各种表面处理,如:  ① 涂渍少量固定液消除残存的少量活化点。  ② 分离酸性化合物时可用磷酸处理石墨化碳黑。  ③ 分离碱性化合物时可用有机碱处理石墨化碳黑。  ④ 在100℃下用氢气处理石墨化碳黑可除去表面的氧,适于还原性物质的分离。  (3) 碳分子筛 (碳多孔小球)  1968年 Kaiser 制备出一种碳吸附剂叫&ldquo 碳分子筛&rdquo ,国外的商品名是 Carbosieve B,它是用偏聚氯乙烯小球进行热裂解,得到固体多孔状的碳,其比表面为1000 m2/g,平均孔径为 1.2 nm 。  我国上海高桥化工厂、中科院化学所和天津试剂二厂相继研制成功这类碳分子筛,商品名叫做:碳多孔小球(TDX), 具体的牌号有 TDX-01 TDX-02。它们的堆积密度为 0.6 g/mL,比表面为 800 m2/g,碳多孔小球具有下面一些特点:  ① 非极性很强,表面活化点少,疏水性强,可使水峰在甲烷前或后洗脱出。  柱效高,1 m 色谱柱可有 1200~1500 理论塔板数。  ③ 耐腐蚀、耐辐射。  ④ 寿命长。  碳多孔小球用于一些永久气体的分析:TDX 可用于 H2、N2,、O2、CO、O2 、CH4、C2H2、C2H4、C2H6、以及C3的烃类和SO2等气体的分析。碳多孔小球即使在50℃的柱温下对N2,和O2也有一定的分离能力。TDX可很好地用于氮肥厂的半水煤气分析在半水煤气中含有N2, O2,CO, CO2和CH4,用TDX-1柱可把这些气体分开。TDX 可用于金属热处理气氛的分析在金属热处理中为了控制渗碳或渗氮的量,要分析热处理炉子里的气氛,所含组分类似于半水煤气,可用TDX-1柱进行分析。由于碳多孔小球的非极性很突出,极性化合物在这一固定相上的保留时间很短,同时由于它的表面上活化点很少,一些氢键型化合物可得到对称色谱峰。所以它适于分析这类化合物。碳多孔小球的表面类似于石墨化碳黑,对水的保留作用极差,但对烃类有较强的保留作用,因此可用碳多孔小球分析低碳烃中的水分。  三、 近年出现的气-固色谱固定相  1、碳纳米材料气相色谱固定相  自从1991年日本学者饭岛澄男(Sumio Iijima)发现了碳纳米管(CNTs)之后,改变了人们过去对碳的三种形态(金刚石、石墨和无定形碳)的认识,对碳纳米管不断进行研究,并竞相把这种新奇的材料用在各个领域,在2004年又出现了另外一种有趣的碳物质&mdash &mdash 石墨烯,G),CNTs和G是碳的两种同素异形体,他们具有sp2杂化网络,但是结构不同,CNTs具有管状纳米结构,由石墨烯片卷成管状,形成准一维结构,而G是打开纳米管形成的平面二维薄片。CNTs可分为单壁碳纳米管(SWCNTs)和多壁碳纳米管(MWCNTs),石墨碳家族的各种形态如图5所示。图 5 石墨碳家族的各种形态(Angew. Chem. Int. Ed. 2009, 48:7752-7777)  由于CNTs具有表面积大、活化点多、p-p键作用力强等特殊性能,适合于在气相色谱固定相中应用,而且它的纳米级多孔性能有利于减小传质阻力,可得到对称的色谱峰,目前它的应用主要限于标准的混合物,如烷烃、芳香族化合物、醇类、酯类、酮类。  厦门大学的袁东星早在2002年就是用比较纯净的碳纳米管做成填充柱进行研究,并与活性  炭、石墨化碳黑(Carbopack B)柱进行比较,比较它们分离醇、酮、醚、酯、有机酸类的性能。2005年 Mitra等首次把自组装碳纳米管使用化学蒸汽沉积(CVD)方法涂渍在长的毛细管色谱柱中,得到高的柱效,改变CVD条件会改变CNTs膜的厚度和形态,因而可调整色谱的选择性。2006年 Mitra 等又利用鈷和鉬盐进行催化的化学蒸汽沉积方法吧单壁CNTs涂渍在毛细管色谱柱中,厚度达300nm,柱效可达每米1000理论塔板数,测试其麦氏常数属非极性固定相。同年国内袁黎明研究组把单壁CNTs和离子液体组成混合气相色谱固定相,制备成毛细管色谱柱,CNTs可以改善离子液体的分离性能。此后有两年停滞,从2008年又有一些研究报告出现。到近5年CNTs作气相色谱固定相的研究又多起来,下表4列出2008年至今发表的一些有关CNTs作气相色谱固定相的研究的工作。表4 2008年后有关CNTs作气相色谱固定相的研究的工作  2、金属有机框架化合物作气相色谱固定相  金属有机框架化合物(MOFs)是由无机金属离子和有机配体,通过共价键或离子共价键自组装络合形成的具有周期性网络结构的晶体材料。其中,金属为顶点,有机配体为桥链。MOFs结构中的金属离子几乎包含了所有过渡金属离子。通常分为含氮杂环有机配体、含羧基有机配体、含氮杂环与羧酸混合配体三种类型。MOFs具有独特的孔道,可设计和调控它的尺寸和几何形状,并在孔道内存在开放式不饱和金属配位点,使其可用于吸附或分辨不同的气体或离子,MOFs极适宜于辨识特定的小分子或离子,在多相催化、气体分离和储存等方面有着广泛的应用。由于MOFs具有优异的性质,比如比表面高、热稳定性好、纳米级孔道结构均一、内孔具有功能性、外表面可修饰等,在分析化学领域有广泛的应用前景,MOFs在分析化学中有多种应用,也是极好的气相色谱固定相。  由于MOFs不容易涂渍在毛细管壁上。南开大学严秀平研究组用动态法把纳米级MOF-101涂渍在15m长的大内径(0.53mm)石英毛细管柱上,使最难分离的二甲苯三个位置异构体得到十分漂亮的基线分离,并用于多种混合物的分离上。图 6 二甲苯三个位置异构体的分离图  近几年国内严秀平研究组和云南师范大学的袁黎明研究组对MOFs作色谱固定相做了许多十分出色的工作,限于篇幅有机会再讨论。  另外固体固定相当今主要用于制备PLOT(多孔层开管柱,这一课题下次再讨论。  在结束此文之际,看到已故蒋生祥先生和郭勇博士团队今年发表的一篇有关碳基吸附剂-碳纳米管的综述(J Chromatogr A, 2014,1357:53&ndash 67)(但是此文只涉及碳纳米管作固相萃取和固相微萃取的论述,没有设计碳基吸附剂作气相色谱固定相的综述)。同时看到瞿其署先生团队在2014年发表的有关石墨烯的制备、性能及在分析化学中应用的综述论文(J Chromatogr A,2014,1362:1&ndash 15 ),有兴趣者可直接阅读。  小结  气-固色谱虽然它的应用广泛性远不如气-液色谱,但它还是一个很有用的方法,有它突出的魅力,是气-液色谱不能代替的技术。使用上述几种吸附剂制备的填充柱或PLOT柱,对低沸点混合物的分离具有独到的作用。不过,近年出现的多种纳米材料可作气-固色谱固定相,虽然它们具有独特的优点,但是还有待进行更深入的工作,形成商品柱,才能发挥其作用。目前实际应用的还是常规的气-固色谱固定相。下一讲,我将介绍PLOT柱的诱惑力。(未完待续)  (作者:北京理工大学傅若农教授)
  • 傅若农:从国产气相产品看国内气相发展脉络及现状
    pimg width="310" height="330" title="QQ截图20151103103317.jpg" style="width: 310px height: 330px float: left " alt="" src="http://img1.17img.cn/17img/images/201511/noimg/13989aad-1f89-4654-aa1f-2170af2df077.jpg"/  strong编者注:/strong傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。/pp  a href="http://www.instrument.com.cn/news/20140623/134647.shtml"span style="color: rgb(128, 0, 128) "第一讲:傅若农讲述气相色谱技术发展历史及趋势(1)/span/a/pp  a href="http://www.instrument.com.cn/news/20140714/136528.shtml"span style="color: rgb(128, 0, 128) "第二讲:傅若农:从三家公司GC产品更迭看气相技术发展 /span/a/pp span style="color: rgb(0, 0, 255) " strong1、 我国气相色谱仪的发展脉络/strong/span/pp  我国从上世纪50年代中期许多单位就开始了气相色谱法的研究和气相色谱仪的制造。/pp  在上世纪50年代国家科委组成专题攻关组,采取专家与生产厂家相结合的方式,主要在中国科学院大连石油研究所(后称中科院大连化学物理研究所)以及石油部石油科学研究院、 化工部北京化工研究院等研究机构展开研究。/pp  上世纪60年代初,北京分析仪器厂和北京化工研究院共同研制出我国首批商品化气相色谱仪——SP-02气相色谱仪,之后上海分析仪器厂也有商品化气相色谱仪问世。/pp  上世纪70年代初,北京分析仪器厂生产的SP-2305和上海分析仪器厂生产的100型气相色谱仪已逾千台,在国内达到普及应用的程度。/pp  上世纪80年代,北京分析仪器厂引进美国Varian公司(瓦里安,现气相产品线被布鲁克收购)的3700和3400系列气相色谱仪技术组装产品, 之后逐步提高国产化的程度, 先后推出3410、3420、3460等型号气相色谱仪。上海分析仪器厂则生产1001系列气相色谱仪,并组装HP公司(现安捷伦)的HP-5890-II系列气相色谱仪。/pp  1997年,北京分析仪器厂和北京瑞利分析仪器有限公司合并组建成北京北分瑞利分析仪器(集团)有限责任公司,现在气相色谱仪产品有:SP2020、SP3400、SP3420A、SP2100A、SP2100等。/pp  上海分析仪器厂和上海第三分析仪器厂重组整合为上海精密科学仪器有限公司,现上海仪电科学仪器股份有限公司。现在气相色谱仪产品有:GC122、GC112A、GC102M、GC102NJ/AF/AT、GC126、GC128等。/pp  山东鲁南化工仪器厂始建于1969年,设计生产了SP-501、SP-502型气相色谱仪,有不少用户。它经多次更名,现在叫山东鲁南瑞虹化工仪器有限公司,1998年以后,研制了SP-2000B、SP-6800A6、SP-6890型、SP-9890、SP-7890型气相色谱仪。/pp  四川仪表九厂是1965年建立的,现为重庆川仪自动化股份有限公司,过去有SC 1001系列气相色谱仪,现有SC-2000、SC-6000气相色谱仪。/pp  改革开放之后不断有民营企业加入到色谱仪研制、生产的行列,较早面向市场的是北京东西分析仪器有限公司(北京市东西电子技术研究所),其成立于1988年,已成为中国高速成长的民营企业之一。2013年8月东西分析仪器有限公司收购了澳大利亚通用分析仪器制造商GBC,尝试探索一条新的国际化、多元化的发展道路。气相色谱产品有:GC4000系列、GC4400便携式光离子化气相色谱仪,以及自主研发的GC-MS3100型气相色谱-质谱联用仪。/pp  1992成立的上海科创色谱仪器有限公司和1994年成立的上海天美科学仪器有限公司也都有不俗的表现。上海科创生产GC2002系列、GC900系列、GC9800(N)系列、GC9800系列、GC9900系列等气相色谱仪。上海天美的气相色谱仪产品有GC7700、GC7890、GC7900系列,上海天美的 GC 7980 气相色谱仪全部采用EPC(电子压力控制系统)控制气路,获得了2013年BCEIA金奖。/pp  浙江温岭福立公司1998年建立,最初主要生产气相色谱仪零配件,1999年开始涉足科学仪器的整机研发、制造,并且逐步发展成初具规模的科学仪器制造企业。其气相色谱产品有:GC9790、GC9790‖、GC9790SD、GC9750、GC9710、GC9720。/pp  进入21世纪一些非传统色谱仪生产厂家如北京普析通用仪器有限公司,以前主要生产光谱仪器,现在也涉足气相色谱仪的生产。另外一个异军突起的厂家是聚光科技(杭州)股份有限公司,也是非传统色谱仪生产厂家。他们自主研发的GC-2000型气相色谱仪,采用全电子气路控制技术,大屏幕彩色液晶显示屏,触屏控制,可进行方法编辑和仪器运行状态监控等操作,产品出口到伊朗,并自主研发微板气流控制装置,取得初步成功。/pp span style="color: rgb(0, 0, 255) "strong 2、我国气相色谱仪厂家奋起赶上国际先近水平,志在高远/strong/span/pp  据最近权威专家对我国气相色谱技术现状的总结:气相色谱技术已相对成熟,但是国内外相关仪器厂家仍然不断推出性能更稳定、功能更全面、自动化程度更高的气相色谱仪,特别是国产色谱仪的进步更加明显,据统计2013年气相色谱仪的国内市场需求已经超过10000台,国产气相色谱仪具有较高的市场占有率,气相色谱仪与各类质谱仪的联用日渐成为研究机构和法规实验室的常规手段。/pp  气相色谱仪的发展相对稳定,近年来没有明显的技术突破。在2013年BCEIA展会上,温岭福立和上海天美都推出了带EPC控制的高端气相色谱仪,两款产品都实现了3个检测器、9个气路(空气、氢气、尾吹气)和3个进样器9个气路(载气、分流、隔膜吹扫)共18路气体的EPC控制,控制精度达到了0.01 psi(国外气相色谱仪的控制精度达到了0.001 psi),上海天美的 GC 7980 气相色谱仪全部采用EPC控制气路,性能接近国际先进水平。这一款仪器通过自主研发的软件系统实现对仪器的完全控制,3路独立数字信号输出和3路模拟信号输出,3个模块化进样器可独立控温,具有10个独立控温区,主机可存储9个操作方法。/pp  气相色谱仪具备EPC气路控制是现代气相色谱仪的必备条件,科技部在‘十一五’国家科技支撑项目“色谱仪器关键零部件的研制与开发”项目中进行了相关立项,由上海精科和温岭福立共同研发气相色谱仪的气体压力和流量电子控制部件。这两个单位在研制期间,做了大量研究设计工作,比如上海精科购买了测试设备,建立了电子流量/压力控制模块测试方法,并把研制过程撰写了论文,发表在《光学仪器》2011年第4期(8月)上。上海精科也成功开发具有专利技术的EPC,初步实现流量数字设置,传感器检测反馈和高速电子阀件的闭环控制,这一装置用在其型号为的GC128气相色谱仪上。/pp  同时承担这一课题的温岭福立也把自己研发的EPC部件配置在高档气相色谱仪上,据我了解他们花了5年时间研发EPC,使用多国原器件进行对比研究,不断提升EPC的精度,目前已经可以达到0.001 psi。他们也自主研发了无阀气流切换的微流板技术,并把它用于中心切割的气相色谱分析,该技术已经在上海石化得到应用。/pp span style="color: rgb(0, 0, 255) "strong 3、国产气相色谱仪曾为我国气相色谱的发展作出贡献/strong/span/pp  近日网上新闻报道说有些单位拒绝购买国产仪器,我认为拒绝国产仪器是否正确要根据实际情况来看,不能说一定对与不对。根据我自己的经验和文献调查,我只能说国产气相色谱仪在我国的气相色谱发展中发挥了不可忽视的作用,立下了汗马功劳。下面用事实说明。/pp  strong(一) 国产仪器解决生产实际问题:/strong/pp  (1) 上世纪70-80年代生产第一线的分析检测大多是靠当时的国产仪器完成的。我举一个我亲身经历的例子。1975年上半年我们在山西一个化工厂办气相色谱培训班,为一线气相色谱操作工人做气相色谱的理论知识培训,当时这个厂主要是进行双基发射药和推进剂中硝化甘油(即三硝酸甘油酯,NG)等成分的定量测定,其中关键成分是NG的准确含量,它决定产品主要性能,在下一道工序进行之前必须得到它的确定数据。过去用化学分析方法费时费力,改用气相色谱法分析就很方便快速,但是在产品中NG的含量很高(25-40%),而要求的精度是千分之三,NG超过130度就开始分解。就在这样的条件下分析员是使用当时北京分析仪器厂生产的 SP 2304 A气相色谱仪(当时是为石化部门分析聚合物原料中微量水设计的仪器)。这一仪器可以说很简单,色谱柱柱箱和热导检测器放在一个恒温箱中,开机后要2-3h 才可以使温度恒定,记录仪还是使用上海生产的工业控制用电子电位差计。就是在这样的仪器和条件下,尽量发挥人的能动性和智慧,分析员经过一个月的强化训练,能够达到配合大工业生产的要求。现在回想起来这是一件很了不起的事。/pp  (2)第二个例子是我们实验室的经历。上世纪80年代初,我们上级机关所属的工厂要出口到德意志联邦共和国(西德)制造泡沫塑料的原料二硝基甲苯(DNT),西德要求产品必须要提供DNT六个位置异构体含量数据,这就必须要使用毛细管气相色谱仪来完成,而当时的生产厂既没有仪器也没有方法。于是就让我们实验室来完成这一工作。/pp  当时我们正是利用北京分析仪器厂的SP-2305E型气相色谱仪做研究工作。为了完成这一任务,我们请求北京分析仪器厂庞增义高工帮我设计并制作了毛细管柱接头,装在SP-2305E型气相色谱仪上,利用我们自己制备的玻璃毛细管柱,可以很好地进行毛细管色谱工作。为了能分析DNT六个异构体我们研究了多种不同固定相的毛细管柱,最后使用OV-225固定相涂渍的毛细管柱可以很好地分离DNT六个异构体,甚至用9m长的色谱柱也可以分离DNT所有6个异构体,最后把这一方法交给生产厂,为他们改装了SP-2305气相色谱仪,完成生产任务。(这一工作的论文发表在《高等学校化学学报》,1984,5(6):839-841)。/pp  (3) 第三个例子也是我们自己亲身经历的,我们承接了一个检测炸药厂废水中炸药的课题,我们也是使用北京分析仪器厂的 SP-2308气相色谱仪,以电子捕获检测器进行分析,使用北京分析仪器厂生产的OV-101毛细管色谱柱(21m x 0.25mm),用外标法进行定量分析,圆满地完成了任务。(工作发表在《兵工学报》,1987,(4):37-43)。/pp  strong(二) 使用国产仪器进行高质量气相色谱的科学研究/strong/pp  我统计了《色谱杂志》1984年到1988年5年里发表气相色谱研究的文章中所使用国产仪器和进口仪器的比例,见下表1。/pp style="text-align: center "strong表1 1984-1988年《色谱》杂志发表193篇气相色谱文章所用气相色谱仪的统计/strong/pp style="text-align: center "strongimg width="567" height="301" style="width: 567px height: 301px " alt="" src="http://img1.17img.cn/17img/old/NewsImags/images/2014811162013.jpg"//strong/pp  从上表看出气相色谱研究中国产仪器占一半多一些,其中主要是北京分析仪器厂和上海分析仪器厂的产品。国外进口仪器主要是日本岛津的产品。/pp  从这些文章中可以发现不乏有很多开创性论文是使用国产仪器完成的,例如:/pp  (1) 《色谱》1988,6(8):129是石油化工科学研究院陆婉珍院士研究组发表的“新型氧化铝填充毛细管色谱柱”的研究。这一工作实现了炼厂气中C1~C6的全部分离的开创性研究,这种色谱柱的保留值重复性好,柱负荷大,制备简单,寿命长。/pp  (2)《色谱》1985,3(7):121是中科院大连化学物理研究所张乐丰先生等的文章,他们用上海分析仪器厂的102G 气相色谱仪与Nicolt 7199 傅立叶变换红外光谱仪联用,进行GC-FTIR 有关重建色谱图中各类化合物的响应特征的研究。这在当时是难能可贵的研究工作。/pp  (3)《色谱》1988,6(4):227 是吉林化学工业公司研究院顾蕙祥老师等用石墨化炭黑固定相分析合成甲基叔丁基醚的反应产物。这是他们在研制石墨化炭黑固定相过程中的一篇应用性论文,研制石墨化炭黑固定相在当时是一项很有意义的工作。/pp  (4)《色谱》1988,6(4):179,南开大学元素所王琴孙先生等利用国产 SP-2305 气相色谱仪进行农药微量的残留量分析方法研究,这在现在来看似乎是不可思议的。/pp  这些例证说明当年在我国经济状况比较紧迫时,国产气相色谱仪为我们的生产和科研做出了历史性贡献。/pp  span style="color: rgb(0, 0, 255) "strong4、国产气相色谱仪近几年的状况/strong/span/pp  尽管国产气相色谱仪近几年有长足的进展,有些公司的产品已经和国外仪器的主要性能接近,但是总体的稳定性、耐用性、可靠性方面还有待进一步提高,人们对国产仪器的信任度还有待提高。此外,近年国家经济好转,一些大的研究单位和法定检测部门的科研经费充裕,为了保证检测数据和研究结果的可靠、可信、快速,在购置气相色谱仪时,自然首选进口仪器。不过还是有许多基层单位在大量使用国产气相色谱仪,据相关机构的调查和气相色谱仪生产厂家的销售记录,有大量国产气相色谱仪产品在出售。/pp  不过一些科学研究和大的法定测试部门所发表的论文大都使用进口仪器。我统计了在国内期刊上发表的775篇重要的GC论文,所使用的GC和GC/MS仪器 (2009年全年,2010年1-10月),结果表明使用最多的是安捷伦公司的气相色谱仪(6890 GC, 7890 GC和6890 GC-5973 MS,6890 GC-5975 MS,7890 GC-5973 MS,7890 GC-5975 MS),第二位的是日本岛津公司的气相色谱仪 第三位是赛默飞世尔的气相色谱仪。使用国产仪器的只有1.5%。/pp  此外,根据仪器信息网在气相色谱板块进行的气相色谱仪使用品牌调查(2011年8月-2012年12月,有效样本325个)显示,参与调查的用户中约26.7%用户使用国产气相色谱仪(见下图1)。/pp style="text-align: center "strong图1 仪器信息网气相色谱仪品牌调查调查结果(2011年8月-2012年12月)/strong/pp style="text-align: center "strongimg width="730" height="471" style="width: 559px height: 409px " alt="" src="http://img1.17img.cn/17img/old/NewsImags/images/201481116305.gif"//strong/pp   span style="color: rgb(0, 0, 255) "strong小结/strong/span/pp  国产气相色谱仪的厂家过去为我国气相色谱的发展作出了很大贡献,希望再接再厉,做大做强,尽快制造出全面赶上国际先进水平,可靠、耐用、皮实的气相色谱仪。希望气相色谱仪的用户在满足使用要求的情况下优先选用国产气相色谱仪。希望国家制定鼓励、支持国产仪器行业发展的政策,使国产仪器早日超越PAS(PerkinElmer、Agilent、Shimadzu)。下一章,我将为大家讲述气相色谱技术核心——气相色谱固定相的前世今生。(span style="color: rgb(0, 0, 255) "未完待续/span)/pp注:本稿在写作过程中得到了中国分析测试协会汪正范研究员的帮助,在此表示感谢。/pp style="text-align: right "(作者:北京理工大学傅若农教授)/pp /p
  • 走进牛津仪器ANDOR:普通相机到科学相机,为“弱光成像”点亮科技之光
    上世纪八十年代,在贝尔法斯特女王大学物理系,ANDOR创始人Donal Denvir在研究工作时发现当时应用的相机不能满足他们的实验需求,因此开发研制了一台全真空密封的相机供自己使用,新研制的相机成功应用于各种成像和光谱研究。此后,女王大学的其他研究团队和众多其他高校研究人员也对此类相机产生了科研需求。此背景下,1989年,ANDOR在贝尔法斯特女王大学创立,总部设立在北爱尔兰的贝尔法斯特, 致力于为学术、工业和政府机构客户提供专业的光学探测解决方案和优质服务。ANDOR总部创立32年以来,这家从实验室成功转化的企业已取得系列亮眼成绩,如2000年推出EMCCD相机,为单光子探测、多维活细胞显微观察等应用提供了强大而经济的解决方案,在生命科学等领域被广泛应用;2009年,联合推出sCOMS相机,被广泛应用于物理科学、生命科学、材料科学、工业等领域;2015年,ANDOR推出高速共聚焦显微成像系统Dragonfly,并在市场上取得巨大的成功。2015年,ANDOR加入牛津仪器,引领牛津仪器战略扩展至纳米生物领域。2020-2021两年期间,ANDOR中国实施多项调整措施,发挥出色供应链管理能力,进一步满足国内科研工作者的需求。如上,ANDOR已经发展成为科学成像、光谱解决方案和显微系统的全球知名品牌。其产品技术应用广泛,涵盖物理科学、生命科学,以及工业等领域。为全面认识ANDOR,BCEIA 2021期间,仪器信息网采访了牛津仪器ANDOR中国区经理朱飞,请其分享了他眼中的ANDOR,及ANDOR在中国市场的本土化发展现状。访谈现场(右:牛津仪器ANDOR中国区经理朱飞)从普通相机到科学相机:解决“弱光”、“快速”问题我们生活中常见的单反相机等普通相机与ANDOR主要产品技术的科学相机原理相同,都是一种利用光学成像原理形成影像并记录影像的设备。但也有许多不同之处,为便于理解,本次的访谈首先从结构功能和解决哪些问题两方面谈了科学相机的“科学”之处。结构功能方面的两点不同首先,科学相机的芯片尺寸更大。这意味着可以获得的光子数目更多,更灵敏的探测到光信号,即承载光子的能力越强。如此,在弱光条件下,科学相机相比普通相机,就可以展示其弱光成像的优势。其次,科学相机整体尺寸也更大,这与其配置更多智能化功能有关。比如,在傍晚使用普通相机拍照时,需要较长时间的曝光量,而科学相机或许只需几个毫秒就可以达到更高的清晰度。这是由于科学相机更高的灵敏度,除了芯片更大,另外基于ANDOR的UltraVac专利技术,将芯片密封于一个真空腔中,与外部环境间的热交换控制在最低水平,得以实现对芯片的深制冷,芯片噪声极大下降,进而大大降低了图像的噪点。科学相机主要解决的三个科学问题首先,科学相机解决的最多的是“弱光”成像问题,这是普通相机无法企及的。其次,科学相机可以解决动态范围大的问题,动态范围即在一个视场下最强信号与最弱信号的比值,比值越大,则包容的信息越多,更容易得到各层次都清晰的图像。比如拍摄火焰,普通相机会过曝,而科学相机则可以通过一定的方法,将火焰的每个层次都拍出来,这对于航天发动机的研究中通过火焰成像反演浓度配比、工艺等都十分重要。第三,科学相机可以解决“快”的问题,单反相机连拍功能可以每秒连拍几张照片,而科学相机则可以达到成千上万幅的帧速。而快速成像在物理科学、生命科学等领域都有着广泛的应用。光信号→电信号→数字信号拓展来讲,所有相机的功能都是一样的,就是把光信号转变成电子信号,然后电子信号再通过数位数模转换,转换成数字信号,所以我们看到的图像都是不同信号强度呈现的结果。科学相机大部分的探测器范围在200nm-1100nm之间,在这个波长范围内的光,科学相机都可以探测到。如果超出此范围,则可以在相机探测器前加一个材料(如晶体)将光的波长转换成可以探测的范围内,进而便可以用科学相机观测。比如,电镜中成像的相机,由于发射的二次电子等电子波长超出了科学相机的探测范围,因此往往会在探测器前加一个闪烁体,将其转变成科学相机可以探测的波长进而将信号转变成电信号,再通过数位数模转换成数字信号,最终得到电镜图像。ANDOR业务布局:纵向基于弱光成像,横向围绕多学科交叉纵向:围绕弱光、快速成像的五大产品线从产品层面而言,ANDOR希望产品技术契合的是“弱光”、“快速”成像领域。围绕“弱光”、“快速”,ANDOR推出一系列产品技术方案,并广泛应用于物理科学、生命科学等领域。“弱光”方面,比如EMCCD相机,在物理科学领域可以用于天文观测,通过观测一些恒星微弱的光变,来帮助科学家探寻系外星系。近年来,EMCCD相机在量子光学领域也被大量应用,主要用于冷原子的拍摄,进而探索原子更多纯粹的性能,这些都解决了“弱光”的问题。“快速”方面,是大多数科学研究领域都需要的技术需求。比如ANDOR于2009年推出的sCOMS相机在生命科学领域,应用于DNA测序、高内涵、高通量药物筛选,这些都需要快速的筛选速度,拍摄每秒上百幅的帧频,以极大提高观测的通量。天文观测时,大气抖动会导致星星闪烁,要消除这一现象,可以采用幸运成像的方式,将曝光时间调至很短,如毫秒级,不断拍摄,然后通过后期软件处理得到更清晰图像。再如,生命科学应用中的钙离子成像,通过电火花信号传导,过程很快,也需要短时间内快速拍摄多幅图像,才能通过图像分析整个动态过程。围绕“弱光”与“快速”,ANDOR产品主要涵盖五大类。一是科学相机,基于弱光成像,相关型号最为丰富,从灵敏度最高的可以探测到单光子级别的EMCCD,到业内广为使用的sCMOS相机,再到应用于需要长时间曝光的极弱光实验的专用CCD等。产品囊括观测范围小至细胞观察,大至整个宇宙星系观测的科学相机。二是光谱,主要包括光谱仪、紫外-近红外-短波红外光谱相机、光谱附件等。如2019年ANDOR推出智能化光谱仪,利用Adaptive Optics技术,给用户提供了区别于传统光谱仪的智能对焦功能,帮用户简化实验、操作更容易。三是显微成像系统,其中就包括2016年获得R&D 100(国际科技研发领域极为推崇的科技研发奖)的Dragonfly转盘共聚焦成像系统,其扫描速度相比传统点扫描快10倍以上,在市场上被广泛认可,并取得巨大成功。同时,ANDOR收购了Spectra Instrument公司,其Borealis™ 均匀化照明技术帮助ANDOR在显微成像均匀度方面脱颖而出,从小尺寸的细胞到大尺寸的组织等成像方面都具有明显优势。四是Imaris图像分析软件,在多维图像处理领域,三维、四维图像处理软件的客户主要是生命科学研究者,这些研究者用Imaris进行跟踪分析从而得到想要的结果,且该软件可以和高速共聚焦成像平台联合使用。具体应用包括细胞之间动态化研究、神经免疫学、癌症治疗研究等。五是光学恒温器,该产品系列今年首次纳入ANDOR,来自牛津仪器纳米科学部门。该产品系列主要服务于物理科学,为科学家提供从3k到500k范围的低温环境从事相关研究,比如,拉曼光谱、荧光光谱、太赫兹、傅里叶红外光谱等手段表征时,样品材料需要在低温条件下才能更加显著的吸收信号,而光学恒温器就为这些实验提供合适的低温环境。横向:多学科交叉发展下的三大应用领域从产品应用领域而言,当下,物理科学与生命科学在许多场景下结合紧密。时下火热的超分辨成像技术多数便是一群物理学家在开发生命科学领域的应用仪器。如STED成像技术、SIM成像技术、单分子开关技术等,无一例外都利用了物理科学的一些方法。而ANDOR也是物理科学背景起家,基于对产品的理解,为生命科学家们开发出一系列生命科学的仪器。未来,各学科之间的交叉将会越来越多,科学仪器领域相关交叉表现也十分明显。比如,以往的光谱仪并没有配置显微镜,主要通过拉曼、荧光光谱等检测一些晶体或块状样品。而随着整个研究向微观尺度的发展,拉曼光谱等逐渐开始与电镜、原子力显微镜等联用,以进一步解决纳米尺度的科学问题。从此角度而言,ANDOR也在以仪器为核心,探寻各类仪器之间的契合点,并不断开发或拓展能够满足未来科学发展融合需求的仪器技术或解决方案。基于此,ANDOR主要业务可分为三大应用方向,即生命科学、物理科学,以及工业三大领域。针对个性需求,设立“客户需求定制部门”ANDOR科学相机等产品经常可以搭配在其他仪器上使用,ANDOR会有许多对产品设计有个性化需求的客户。针对此,除了要求每一位销售/售后工程师都具备丰富的产品知识、客户应用知识,ANDOR还特别设置了“客户需求定制部门”,为工业合作伙伴的特殊需求提供便利。比如,ANDOR已有的科学相机、光谱商品化产品可能不能符合这些客户需求,相关个性需求包括:个性外壳需求、公司VI喷涂、不同功能模块的选配、光谱范围的定制等,客户需求定制部门则可以与客户进行沟通并尽量满足。而定制化能力也是ANDOR长期专注于工业领域解决方案的一个基础。ANDOR在中国:科学相机保有量超5000台,加速本土化发展业绩同比增30%,中国业绩占比20%牛津仪器在过去20年,具有保持每年20%左右增长的不俗表现,而ANDOR的业绩表现也十分亮眼。据朱飞介绍,ANDOR中国在去年业绩受疫情影响不大,今年更是通过内部的快速调整、人员架构的变动、新品发布等措施,目前业绩已实现相比去年同期30%的增长。从全球布局来看,ANDOR全球业务按地区分为北美洲、欧洲、亚太,三者基本三分天下,而中国市场业绩占比约近20%,已成为ANDOR最重要的市场之一。ANDOR在中国,除了20余位销售和应用团队的支持,也在2016年成立中国客户服务中心,解决维修等本土化售后问题。同时,为便于更好的售后服务落地,ANDOR中国的售后应用团队规模还在不断壮大。各兄弟部门之间协同合作,提供更全面解决方案2015年,ANDOR加入牛津仪器,随之ANDOR在人事、财务、市场推广等方面得到牛津仪器的大力支持。牛津仪器各个业务部门之间定期会有产品技术培训、市场信息、客户关系等方面的沟通交流活动,为客户提供更加专业高效的服务。例如ANDOR和纳米科学部门在量子领域、ANDOR 和 AR部门在生命科学领域等都可以有很多灵活的合作方式。 同时各业务部门之间会定期安排内部分享会,分享产品技术,增进相互了解与合作;分享各自业务,便于为各自覆盖的用户提供更全面的解决方案,帮助业务得到更好的拓延等。典型的案例就是,牛津仪器在锂电领域开展的综合解决方案便融合了纳米分析、原子力显微镜、拉曼光谱等系列相关技术。ANDOR科学相机中国保有量超5000台!加速中国本土化发展谈及ANDOR中国客户的印象,朱飞回顾道,自己入行15年有余,见证了中国科学家用户的快速成长,从最初许多的跟随发展,到目前中国科学家在许多领域的领衔发展。尤其是近几年,中国在生命科学、量子科学等领域已经走在世界前列,甚至引领世界向前发展。ANDOR也很荣幸能通过一些仪器技术为这些科学家的研究发展不断助力。伴随在中国市场的长期耕耘,ANDOR十分重视中国本土化发展。对于中国本土化建设,朱飞表示,第一,要培养本土化的人才。首先是销售,ANDOR的销售不仅可以做产品演示,也可以做产品安装,甚至走出去也是某一个行业的专家,为客户分享ANDOR产品知识及广泛应用。而售后应用工作者则除了了解产品知识,也需要充分学习客户的研究与应用,为客户的需求提供更加合理的解决方案。第二,要保障售后的落地与高效。根据近期的统计,ANDOR在中国市场科学相机的保有量大概超过5000台!如此庞大的基数和时间积累,难免有故障需要维修。如上文提到,ANDOR已经实现本地维修,为客户提供便捷的售后服务,使服务周期由几个月降至一周以内,帮助客户节省时间与金钱成本。第三,通过相关培训,提高ANDOR中国团队的软实力。越来越多的本土化思维与理念,对团队进行系统培训,不仅仅是产品知识,还包括管理能力、演讲能力、英文口语能力、销售技巧等全方位的培训,让团队每一位员工找到自己的价值,ANDOR希望为大家提供一个共同学习进步的平台,为大家创造更多机会,实现个体与公司共同成长。
  • 走进牛津仪器ANDOR:普通相机到科学相机,为“弱光成像”点亮科技之光
    1989年,ANDOR在贝尔法斯特女王大学创立,总部设立在北爱尔兰的贝尔法斯特, 致力于为学术、工业和政府机构客户提供专业的光学探测解决方案和优质服务。上世纪八十年代,在贝尔法斯特女王大学物理系,ANDOR创始人Donal Denvir在研究工作时发现当时应用的相机不能满足他们的实验需求,因此开发研制了一台全真空密封的相机供自己使用,新研制的相机成功应用于各种成像和光谱研究。此后,女王大学的其他研究团队和众多其他高校研究人员也对此类相机产生了科研需求。此背景下,1989年,ANDOR在贝尔法斯特女王大学创立,总部设立在北爱尔兰的贝尔法斯特, 致力于为学术、工业和政府机构客户提供专业的光学探测解决方案和优质服务。创立32年以来,这家从实验室成功转化的企业已取得系列亮眼成绩,如2000年推出EMCCD相机,为单光子探测、多维活细胞显微观察等应用提供了强大而经济的解决方案,在生命科学等领域被广泛应用;2009年,联合推出sCOMS相机,被广泛应用于物理科学、生命科学、材料科学、工业等领域;2015年,ANDOR推出高速共聚焦显微成像系统Dragonfly,并在市场上取得巨大的成功。2015年,ANDOR加入牛津仪器,引领牛津仪器战略扩展至纳米生物领域。2020-2021两年期间,ANDOR中国实施多项调整措施,发挥出色供应链管理能力,进一步满足国内科研工作者的需求。如上,ANDOR已经发展成为科学成像、光谱解决方案和显微系统的全球知名品牌。其产品技术应用广泛,涵盖物理科学、生命科学,以及工业等领域。为全面认识ANDOR,BCEIA 2021期间,仪器信息网采访了牛津仪器ANDOR中国区经理朱飞,请其分享了他眼中的ANDOR,及ANDOR在中国市场的本土化发展现状。访谈现场(右:牛津仪器ANDOR中国区经理朱飞)从普通相机到科学相机:解决“弱光”、“快速”问题我们生活中常见的单反相机等普通相机与ANDOR主要产品技术的科学相机原理相同,都是一种利用光学成像原理形成影像并记录影像的设备。但也有许多不同之处,为便于理解,本次的访谈首先从结构功能和解决哪些问题两方面谈了科学相机的“科学”之处。结构功能方面的两点不同首先,科学相机的芯片尺寸更大。这意味着可以获得的光子数目更多,更灵敏的探测到光信号,即承载光子的能力越强。如此,在弱光条件下,科学相机相比普通相机,就可以展示其弱光成像的优势。其次,科学相机整体尺寸也更大,这与其配置更多智能化功能有关。比如,在傍晚使用普通相机拍照时,需要较长时间的曝光量,而科学相机或许只需几个毫秒就可以达到更高的清晰度。这是由于科学相机更高的灵敏度,除了芯片更大,另外基于ANDOR的UltraVac技术,将芯片密封于一个真空腔中,与外部环境间的热交换控制在低水平,得以实现对芯片的深制冷,芯片噪声极大下降,进而大大降低了图像的噪点。科学相机主要解决的三个科学问题首先,科学相机解决的更多的是“弱光”成像问题,这是普通相机无法企及的。其次,科学相机可以解决动态范围大的问题,动态范围即在一个视场下最强信号与最弱信号的比值,比值越大,则包容的信息越多,更容易得到各层次都清晰的图像。比如拍摄火焰,普通相机会过曝,而科学相机则可以通过一定的方法,将火焰的每个层次都拍出来,这对于航天发动机的研究中通过火焰成像反演浓度配比、工艺等都十分重要。第三,科学相机可以解决“快”的问题,单反相机连拍功能可以每秒连拍几张照片,而科学相机则可以达到成千上万幅的帧速。而快速成像在物理科学、生命科学等领域都有着广泛的应用。光信号→电信号→数字信号拓展来讲,所有相机的功能都是一样的,就是把光信号转变成电子信号,然后电子信号再通过数位数模转换,转换成数字信号,所以我们看到的图像都是不同信号强度呈现的结果。科学相机大部分的探测器范围在200nm-1100nm之间,在这个波长范围内的光,科学相机都可以探测到。如果超出此范围,则可以在相机探测器前加一个材料(如晶体)将光的波长转换成可以探测的范围内,进而便可以用科学相机观测。比如,电镜中成像的相机,由于发射的二次电子等电子波长超出了科学相机的探测范围,因此往往会在探测器前加一个闪烁体,将其转变成科学相机可以探测的波长进而将信号转变成电信号,再通过数位数模转换成数字信号,最终得到电镜图像。ANDOR业务布局:纵向基于弱光成像,横向围绕多学科交叉纵向:围绕弱光、快速成像的五大产品线从产品层面而言,ANDOR希望产品技术契合的是“弱光”、“快速”成像领域。围绕“弱光”、“快速”,ANDOR推出一系列产品技术方案,并广泛应用于物理科学、生命科学等领域。“弱光”方面,比如EMCCD相机,在物理科学领域可以用于天文观测,通过观测一些恒星微弱的光变,来帮助科学家探寻系外星系。近年来,EMCCD相机在量子光学领域也被大量应用,主要用于冷原子的拍摄,进而探索原子更多纯粹的性能,这些都解决了“弱光”的问题。“快速”方面,是大多数科学研究领域都需要的技术需求。比如ANDOR于2009年推出的sCOMS相机在生命科学领域,应用于DNA测序、高内涵、高通量药物筛选,这些都需要快速的筛选速度,拍摄每秒上百幅的帧频,以极大提高观测的通量。天文观测时,大气抖动会导致星星闪烁,要消除这一现象,可以采用幸运成像的方式,将曝光时间调至很短,如毫秒级,不断拍摄,然后通过后期软件处理得到更清晰图像。再如,生命科学应用中的钙离子成像,通过电火花信号传导,过程很快,也需要短时间内快速拍摄多幅图像,才能通过图像分析整个动态过程。围绕“弱光”与“快速”,ANDOR产品主要涵盖五大类。一是科学相机,基于弱光成像,相关型号比较丰富,从灵敏度高的可以探测到单光子级别的EMCCD,到业内广为使用的sCMOS相机,再到应用于需要长时间曝光的极弱光实验的专用CCD等。产品囊括观测范围小至细胞观察,大至整个宇宙星系观测的科学相机。二是光谱,主要包括光谱仪、紫外-近红外-短波红外光谱相机、光谱附件等。如2019年ANDOR推出智能化光谱仪,利用Adaptive Optics技术,给用户提供了区别于传统光谱仪的智能对焦功能,帮用户简化实验、操作更容易。三是显微成像系统,其中就包括2016年获得R&D 100(国际科技研发领域极为推崇的科技研发奖)的Dragonfly转盘共聚焦成像系统,其扫描速度相比传统点扫描快10倍以上,在市场上被广泛认可,并取得巨大成功。同时,ANDOR收购了Spectra Instrument公司,其Borealis™ 均匀化照明技术帮助ANDOR在显微成像均匀度方面脱颖而出,从小尺寸的细胞到大尺寸的组织等成像方面都具有明显优势。四是Imaris图像分析软件,在多维图像处理领域,三维、四维图像处理软件的客户主要是生命科学研究者,这些研究者用Imaris进行跟踪分析从而得到想要的结果,且该软件可以和高速共聚焦成像平台联合使用。具体应用包括细胞之间动态化研究、神经免疫学、癌症治疗研究等。五是光学恒温器,该产品系列今年首次纳入ANDOR,来自牛津仪器纳米科学部门。该产品系列主要服务于物理科学,为科学家提供从3k到500k范围的低温环境从事相关研究,比如,拉曼光谱、荧光光谱、太赫兹、傅里叶红外光谱等手段表征时,样品材料需要在低温条件下才能更加显著的吸收信号,而光学恒温器就为这些实验提供合适的低温环境。横向:多学科交叉发展下的三大应用领域从产品应用领域而言,当下,物理科学与生命科学在许多场景下结合紧密。时下火热的超分辨成像技术多数便是一群物理学家在开发生命科学领域的应用仪器。如STED成像技术、SIM成像技术、单分子开关技术等,无一例外都利用了物理科学的一些方法。而ANDOR也是物理科学背景起家,基于对产品的理解,为生命科学家们开发出一系列生命科学的仪器。未来,各学科之间的交叉将会越来越多,科学仪器领域相关交叉表现也十分明显。比如,以往的光谱仪并没有配置显微镜,主要通过拉曼、荧光光谱等检测一些晶体或块状样品。而随着整个研究向微观尺度的发展,拉曼光谱等逐渐开始与电镜、原子力显微镜等联用,以进一步解决纳米尺度的科学问题。从此角度而言,ANDOR也在以仪器为核心,探寻各类仪器之间的契合点,并不断开发或拓展能够满足未来科学发展融合需求的仪器技术或解决方案。基于此,ANDOR主要业务可分为三大应用方向,即生命科学、物理科学,以及工业三大领域。针对个性需求,设立“客户需求定制部门”ANDOR科学相机等产品经常可以搭配在其他仪器上使用,ANDOR会有许多对产品设计有个性化需求的客户。针对此,除了要求每一位销售/售后工程师都具备丰富的产品知识、客户应用知识,ANDOR还特别设置了“客户需求定制部门”,为工业合作伙伴的特殊需求提供便利。比如,ANDOR已有的科学相机、光谱商品化产品可能不能符合这些客户需求,相关个性需求包括:个性外壳需求、公司VI喷涂、不同功能模块的选配、光谱范围的定制等,客户需求定制部门则可以与客户进行沟通并尽量满足。而定制化能力也是ANDOR长期专注于工业领域解决方案的一个基础。ANDOR在中国:科学相机保有量超5000台,加速本土化发展业绩同比增30%,中国业绩占比20%牛津仪器在过去20年,具有保持每年20%左右增长的不俗表现,而ANDOR的业绩表现也十分亮眼。据朱飞介绍,ANDOR中国在去年业绩受疫情影响不大,今年更是通过内部的快速调整、人员架构的变动、新品发布等措施,目前业绩已实现相比去年同期30%的增长。从全球布局来看,ANDOR全球业务按地区分为北美洲、欧洲、亚太,三者基本三分天下,而中国市场业绩占比约近20%,已成为ANDOR重要的市场之一。ANDOR在中国,除了20余位销售和应用团队的支持,也在2016年成立中国客户服务中心,解决维修等本土化售后问题。同时,为便于更好的售后服务落地,ANDOR中国的售后应用团队规模还在不断壮大。各兄弟部门之间协同合作,提供更全面解决方案2015年,ANDOR加入牛津仪器,随之ANDOR在人事、财务、市场推广等方面得到牛津仪器的大力支持。牛津仪器各个业务部门之间定期会有产品技术培训、市场信息、客户关系等方面的沟通交流活动,为客户提供更加专业高效的服务。例如ANDOR和纳米科学部门在量子领域、ANDOR 和 AR部门在生命科学领域等都可以有很多灵活的合作方式。 同时各业务部门之间会定期安排内部分享会,分享产品技术,增进相互了解与合作;分享各自业务,便于为各自覆盖的用户提供更全面的解决方案,帮助业务得到更好的拓延等。典型的案例就是,牛津仪器在锂电领域开展的综合解决方案便融合了纳米分析、原子力显微镜、拉曼光谱等系列相关技术。ANDOR科学相机中国保有量超5000台!加速中国本土化发展谈及ANDOR中国客户的印象,朱飞回顾道,自己入行15年有余,见证了中国科学家用户的快速成长,从最初许多的跟随发展,到目前中国科学家在许多领域的领衔发展。尤其是近几年,中国在生命科学、量子科学等领域已经走在世界前列,甚至引领世界向前发展。ANDOR也很荣幸能通过一些仪器技术为这些科学家的研究发展不断助力。伴随在中国市场的长期耕耘,ANDOR十分重视中国本土化发展。对于中国本土化建设,朱飞表示,第一,要培养本土化的人才。首先是销售,ANDOR的销售不仅可以做产品演示,也可以做产品安装,甚至走出去也是某一个行业的专家,为客户分享ANDOR产品知识及广泛应用。而售后应用工作者则除了了解产品知识,也需要充分学习客户的研究与应用,为客户的需求提供更加合理的解决方案。第二,要保障售后的落地与高效。根据近期的统计,ANDOR在中国市场科学相机的保有量大概超过5000台!如此庞大的基数和时间积累,难免有故障需要维修。如上文提到,ANDOR已经实现本地维修,为客户提供便捷的售后服务,使服务周期由几个月降至一周以内,帮助客户节省时间与金钱成本。第三,通过相关培训,提高ANDOR中国团队的软实力。越来越多的本土化思维与理念,对团队进行系统培训,不仅仅是产品知识,还包括管理能力、演讲能力、英文口语能力、销售技巧等全方位的培训,让团队每一位员工找到自己的价值,ANDOR希望为大家提供一个共同学习进步的平台,为大家创造更多机会,实现个体与公司共同成长。
  • 上海百若:不走寻常路专注特色试验机产品
    仪器信息网讯 &ldquo 常规的液压万能试验机、电子万能试验机竞争相当激烈,为了求得生存,我们选择发展一些有技术门槛的特色产品,例如:慢应变速率应力腐蚀试验机、应力腐蚀疲劳试验机和板材成形试验机等。&rdquo 上海百若试验仪器有限公司(以下简称&ldquo 百若&rdquo )总经理林新生说。上海百若试验仪器有限公司总经理林新生  应力腐蚀试验机试验速度可达10-8mm/s  林新生介绍到,研究材料或者构件的裂纹应变在工程上有很重要的意义,因此掌握应力腐蚀试验技术对国内材料裂纹扩展研究具有非常重要的价值。经过多年的积累,今年百若在应力腐蚀试验技术上取得了进展。  据了解,YYF-50慢应变速率应力腐蚀试验机要求试样在特定腐蚀介质环境下以极低速度进行慢速拉伸,试验速度低速可达10-8mm/s,而传统的万能试验机无法达到。  &ldquo 该试验机今年刚刚面世,已经得到一些用户的认可。目前该试验机主要应用于核电、石化、航空航天、船舶、钢铁等领域。&rdquo 林新生补充说。YYF-50型慢应变速率应力腐蚀试验机  应力腐蚀疲劳试验机实时测量材料疲劳裂纹扩展长度  &ldquo 目前,国内很多厂商都可以生产疲劳试验机,但还没有公司可以生产应力腐蚀疲劳试验机。&rdquo 林新生说。  据了解,断裂韧性(K1C)是材料非常重要的基本特性参数,现行的断裂韧性的测量方式是通过三点弯曲加载形式,采用引伸计测量试样V型口张开量来间接计算得到,存在准确度差、不能在腐蚀介质下测量等弊端,并且得到K1C往往需要数十个试样进行试验,要花去半年以上甚至一年多的时间,不仅效率低下,而且因为试样材料本身的离散型使得测量结果存在不确定性。  &ldquo 百若生产的FCC-50型腐蚀疲劳试验机上通过适当的配置可实现在腐蚀环境下实现疲劳加载,采用国际上领先的直流电位差法(DCPD)直接测量紧凑拉伸试样(CT)的疲劳裂纹扩展长度,并能够实时显示试验过程中的各种数据,也只有采用DCPD系统,才可以进行腐蚀介质条件下的裂纹扩展速率的测量,传统的变形测量法无法在30MPa,400℃的高温高压的腐蚀环境下测量。专业的TestLive-DCPD试验软件能够实时显示试验过程中的各种数据,绘制a/W-time曲线,记录控制事件,按任意设置的时间段计算裂纹扩展速率,可进行恒K控制,并自动调整加载力中值和R值。FCC试验机通过多阶段恒K加载控制,在一个CT试样上就能够准确测量得到材料的断裂韧性K1C,解决了准确测量K1C的难题&rdquo 。林新生介绍到。 FCC-50型应力腐蚀疲劳试验机  板材成形试验机灵敏侦测板材出现裂纹瞬间  &ldquo 过去,国内只有北京航空航天大学掌握板材成形试验这项技术,但是求取FLC,只能通过手工测量求取。国外也只有德国ZWICK生产此类试验机,而国内试验机厂商完全为空白。近几年,百若投入大量资金,经过潜心研究,目前在此类试验机上获得了突破。&rdquo 林新生介绍说。  &ldquo 百若生产的BTW-300金属板材成型试验机,采用电子加载、试验板材液压夹紧方式,冲头行程分辨率高达2&mu m,可灵敏侦测板材出现裂纹瞬间,继而自动停止冲压。该试验机在加载的同时还配备了BVE三维全场变形、应变测量系统,实现试样在冲压过程中的动态散斑跟踪,可计算板料的三维全场变形和应变,最终求取板材成形极限曲线FLC,同时,百若公司也可以提供金属管材成形极限曲线FLC的测量。&rdquo 林新生说。BTW-300型金属板材成形试验机  值得一提的是,四年来,百若为国内外三百多家客户提供了试验机设备,产品遍布众多行业,主要客户有上海交大、同济大学、西安交大、西北工大、中科大、中科院、宁波大学、厦门大学、浙江大学、西南科技大、浙江华电、中煤科工集团、尚德电力、广东韶钢、宝钢工业检测、马钢股份、上海皮尔博格、湖北福星科技、浙江特检院、江苏特检院、天祥检测等众多知名高校及企业。上海百若试验仪器有限公司装配车间 上海百若试验仪器有限公司厂房  附录:上海百若试验仪器有限公司简介:  上海百若试验仪器有限公司是国内技术领先的材料试验设备和材料试验方案的专业制造商和服务商,是高科技股份制企业,是集电子、机械、软件应用于材料力学试验设备的专业化研发、设计、生产、销售、服务五位一体的综合性企业。  百若仪器以&ldquo 海纳百川&rdquo 之势、&ldquo 虚怀若谷&rdquo 之容,吸纳了试验仪器行业经验丰富、设计能力过硬的专家型技术人才。基于全面的技术实力,百若仪器推出了一系列国内技术领先的新产品,填补了多项国内空白项目产品:  国内第一台微机控制电液伺服静载锚固试验机,全面实现了伺服控制加载   国内第一台伺服泵技术双工位全自动压力试验机,实现了低功耗、低噪音加载   国内第一台称重测长负公差测量仪,方便了带肋钢筋的长度和重量的同时测量,提高检测效率   国内第一台2000kN电气伺服技术应力松弛试验机,突破了国内普遍600kN电气伺服加载的技术瓶颈   国内第一台横梁升降型2000kN电液伺服万能试验机,克服了大吨位液压抱紧技术的难题,使得单空间机型验空间不变,整机高度降低近1m,同时,大幅度减少液压油的消耗量。  国内第一台30000Nm扭矩轴力联合试验机,解决了大规格紧固件有效力矩的检测   国内第一台600kN紧固件横向振动疲劳试验机,提供紧固件防松性能的分析检测   国内第一台多功能螺栓紧固分析系统,可测量分析螺栓螺母端面摩擦力、螺纹摩擦力、各种摩擦系数   国内第一台300kN金属板材成形试验机,采用动态散斑测量技术,可进行板材延展性检测、杯突值测量、极限曲线FLC测定,采用合适的配置,并可进行热成型试验   国内第一台多功能裂纹扩展速率试验机,可在腐蚀介质环境下进行材料的慢速率拉伸、腐蚀疲劳裂纹扩展长度及速率测量。  上海百若试验仪器有限公司网址:http://www.bairoe.com/
  • 傅若农:一扫而光——吹扫捕集-气相色谱的发展
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。第一讲:傅若农讲述气相色谱技术发展历史及趋势 第二讲:傅若农:从三家公司GC产品更迭看气相技术发展第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状 第四讲:傅若农:气相色谱固定液的前世今生第五讲:傅若农:气-固色谱的魅力 第六讲:傅若农:PLOT气相色谱柱的诱惑力第七讲:傅若农:酒驾判官&mdash 顶空气相色谱的前世今生酒驾判官&mdash 顶空气相色谱的前世今生-2动态顶空进样&mdash &mdash 吹扫捕集  动态顶空常用的方法是吹扫捕集技术,吹扫-捕集实质上是一种连续气体萃取技术,吹扫气(一般使用氮气)通过液体或固体样品,将样品中的可挥发组分(其中包括欲测组分)带出,然后用冷冻或固体吸附剂吸附的方法,将欲测组分捕集下来,再通过热解吸的方法,将欲测组分解吸下来,进行分析。  1974年在美国辛辛那提市环保局工作的Tom Bellar 为了分析10-9浓度挥发性污染物(如苯),开发了&ldquo 吹扫-捕集&rdquo 技术,使分析灵敏度比当时现有方法提高了100倍。1972年成立的Tekmar公司敏感地捕捉到&ldquo 吹扫-捕集&rdquo 技术是一个潜力股,于1976开发了第一个商品化&ldquo 吹扫-捕集&rdquo 设备LSC-1。在以后的发展中Tekmar成为制造分析水、空气和土壤中挥发性有机物的知名厂家。世界上有很多领域使用这一技术,美国EPA601 , 602 , 603 , 624 , 501.1 与524.2 等标准方法均采用吹扫捕集技术。 吹扫-捕集的示意图见图1,实际使用的吹扫-捕集装置如图2所示 图1 吹扫-捕集的示意图  A 是用惰性气体(IG)从样品容器(SV)中把要分析的样品吹扫出来,吸附于吸附剂管(TB)中。  B 是把吸附剂管加热用载气(CG)把样品吹扫到冷阱(CT)中,再去掉冷阱用载气经分流管(SP)到色谱柱(CC)图2 吹扫-捕集(右)连接到气相色谱仪上  吹扫捕集的特点是可使挥发性欲测组分与不挥发性基体和不挥发性干扰组分分离,在捕集的过程中通过吸附剂的选择,可使欲测组分进一步与干扰组分分离,并得到富集。吹扫和捕集是两个独立进行的过程,此技术的主要问题是捕集技术和捕集后的解吸技术。当样品本身是气体时,可直接引入捕集装置捕集,解吸后进行分析。吹扫-捕集装置由吹扫装置、捕集器及解吸系统组成:  (1)玻璃吹扫装置可具有容纳5 mL 或25 mL样品, 当检测的灵敏度能以达到方法的检测限时,使用5 mL 的吹扫装置, 应尽量减少样品上方气体空间,减少死体积的影响, 吹扫瓶底部有一玻璃砂芯, 它使吹扫气成为分散细微的气泡通过水样, 并使吹扫气从距水样底部5 mm 处引入, 初始气泡直径应3 mm , 吹扫装置也可使用针型喷口。  (2)捕集器是一种装有吸附剂短柱的装置, 人们普遍使用的美国EPA 方法。使用Tenax GC 、活性炭和硅胶组成的混合吸附剂,富集样品中痕量挥发性物质。吸附管长度不小于25 cm , 内径不小于0 .27 cm , 为了防止高沸点的有机物使吸附剂永久性吸附,在吸附管入口处分别填充一些固定相如聚二甲基硅氧烷渍在载体的固定相、Tenax GC(聚2,6-苯基对苯醚,担体或等效物)、硅胶等。初次使用前, 捕集器应在180 ℃下, 用惰性气体以不小于20 mL/min 的速度反吹一夜, 排气不得进入色谱柱内。日常使用捕集器前, 应在180 ℃反吹10 min。硅化玻璃棉可以代替捕集器进口的填充物。  (3)解吸器必须在解吸气流到达以前或刚开始时, 可快速地将捕集器加热到180 ℃, 捕集器聚合物部分不要超过200 ℃, 否则会缩短捕集器的使用寿命。解吸系统的作用在于经过解吸器加热解析, 可将被富集的有机物以柱塞式释放, 反吹入气相色谱进样口进行检测。因此, 当吹扫气通过玻璃吹扫装置中样品时, 经鼓泡使挥发性组分由水相转入吹气中, 将含有挥发性组分的吹气经过捕集器, 挥发性有机物则被吸附剂捕集, 由解吸器加热解析将有机物反吹入气相色谱进样口进行检测。如在吹扫时通过捕集器的压力下降3 Psi(1 Pa =0 .0147 Psi)以上或溴仿检测的灵敏度很低均说明捕集器失效。(张莘民,环境污染治理技术与设备,2002,3(11):31-37)  为了了解吹扫捕集实际的应用和多数人所使用的吹扫捕集装置,表1列出了近年国内文献中吹扫捕集技术的应用论文和所使用的吹扫捕集装置。表1 吹扫捕集论文的对象和仪器序号题目仪器文献1常温吹扫捕集-气相色谱法测定海水中氧化亚氮吹扫捕集装置( Encon,美国EST公司)陈勇等,分析化学, 2007,35(6):897~9002吹扫-捕集-气相色谱法测定海水中氯甲烷和溴甲烷自己设计杨桂朋等,分析化学,2010,38(5):719~7223吹扫-捕集-气质联用法分析测定侧柏挥发物TCT-GC/MS(热脱附-气相色谱/质谱联用),(Chrompack公司)武晓颖,等,生态学报,2009,29(10):5708~57124吹扫/捕集-热脱附气质联用法对荷叶挥发油成分的对比分析Gerstel TDS3 半自动热脱附进样器(德国Gerstel公司), 吹扫捕集器(自制)张赟彬等,化学学报,2009,67(20):2368~23745吹扫-捕集气相色谱法测定海水中挥发性卤代烃自己设计杨桂朋等,中国海洋大学学报,2007,37 (2) :299~3046吹扫/捕集与气质联用技术测定水中挥发性有机物TEKMR DOHRMNN 3100 样品浓缩器张灿等,云南环境科学 2006, 25 (2) : 50 ~ 527吹扫捕集2GC-MS-SIM法测定水中挥发性硫化合物Tekmar 2016吹扫捕集自动进样器 , Tekmar 3000吹扫捕集装置吴婷等,分析试验室,2007,26(4):54~578吹扫捕集-GC-MS-测定底泥中的挥发性和半挥发性有机物Tekmar 3000吹扫捕集装置张占恩等,苏州科技学院学报)工程技术版,2006,19(2):42~469吹扫捕集-GC-MS 测定废水中的硝基氯苯Tekmar 3000吹扫捕集装置张丽萍等,环境污染与防治2007,29(4):306~308,31810吹扫捕集- GC/MS法测定生活饮用水中13种苯系物的方法研究美国O I公司4560型P&T装,置配4551A型自动进样器许瑛华等,中国卫生检验杂志, 2006,16(8):914~915,94911吹扫-捕集-气相色谱法测定海水中氯甲烷和溴甲烷自己设计杨桂朋等,分析化学,2010,38(5):719~72212吹扫捕集-GC-MS法测定水中26种挥发性有机物EST 7000 型吹扫-捕集浓缩器、自动进样器张芹等,西南大学学报(自然科学版),2013,35(3):146~15113吹扫捕集- GC /MS法测定饮用水中致嗅物质美国O I公司4660型吹扫捕集样品浓缩仪, 带4551A型液体自动进样器沈斐等,环境监测管理与技术,2010,22(5):31~3414吹扫捕集/GC-MS联用法测定水中挥发性卤代烃的方法优化EST 7000型吹扫-捕集浓缩器、自动进样器张芹等,热带作物学报,2013, 34(9): 1831~183515吹扫捕集-串连双检测器气相色谱同时测定卷烟包装材料中的6种溶剂残留美国O I公司 4660型吹扫捕集样品浓缩仪孙林等,中国烟草学报,2008,14(3):8~1216吹扫捕集- 毛细管气相色谱法测定饮用水中的挥发性有机物美国O I公司4660型吹扫捕集装置,配4552型自动进样器甘凤娟等,中国卫生检验杂志,2008,18(1):92-93 17吹扫捕集/气相色谱- 质谱法测定地下水中30 种挥发性有机物美国O I公司4660型吹扫捕集装置,配4552型自动进样器冯丽等,岩矿测试,2012,31(6):1037~104218吹扫捕集-气相色谱-质谱法测定地下水中苯系物的不确定度评定美国O I公司4660型吹扫捕集装置李松等,光谱实验室,2010,27(2):423~429 19吹扫捕集- 气相色谱/质谱法测定地下水中的挥发性有机物Tekmar Stratum 型吹扫捕集浓缩仪,配Aquatek 70 液体自动进样器李丽君等,岩矿测试,2010,29(5)547 ~ 55120吹扫捕集-气相色谱-质谱法测定地下水中挥发性有机物PTA 3000 型吹扫捕集器及液体自动进样器胡璟珂等,理化检验-化学分册,2009,45(3):280~28421吹扫捕集-气相色谱-质谱法测定海岸带表层沉积物中挥发性有机物PTA 3000 型吹扫捕集器及液体自动进样器胡璟珂等,理化检验-化学分册,2012,48(2):165~16822吹扫捕集- 气相色谱- 质谱法测定水中9 种挥发性有机物HP- 7695 吹扫捕集装置罗光华等,实用预防医学, 2006,13 (4):1036~103723吹扫捕集-气相色谱/质谱法测定土壤中挥发性有机化合物美国O I公司4660型吹扫捕集装置,配4552型自动进样器贾静等,岩矿测试,2008,27(6): 413 ~ 41724吹扫捕集-气相色谱/质谱法分析卷烟烟丝的嗅香成分张美国O I公司4660型吹扫捕集装置,张丽等,烟草化学,2013,(4):63~7025吹扫捕集-气相色谱-质谱法同时测定土壤中27 种挥发性有机物Tekmar Stratum 吹扫捕集浓缩仪, Tekmar Aqua 70 液体自动进样器李丽君等,理化检验-化学分册,2011,47():937-94126吹扫捕集-气相色谱-质谱法同时分析饮用水源水中9 种氯苯系化合物意大利DANI 公司SPT 37.50 型吹扫捕集仪 赖永忠, 化学分析计量, 2011,20 (5 ):50~5327吹扫捕集-气相色谱-质谱联用测定城市饮用水中苯系物Tekmar 3100吹扫捕集装置华树岸等,光谱实验室,2005,22(3):641~64428吹扫捕集-气相色谱-质谱联用法测定饮用水中痕量1,2 - 二溴乙烯与五氯丙烷ENCON Evolution 吹扫捕集浓缩仪, Centurion 自动进样器魏立菲,水资源保护, 2014,30(5): 73~75 29吹扫捕集/气相色谱- 质谱联用法测定水中54 种挥发性有机物Tekmar Atomx 型吹扫捕集仪曹林波等,中国卫生检验杂志 2011,21 (12):2857~286230吹扫捕集/气相色谱- 质谱联用法同时测定水中62种挥发性有机物Tekmar Atomx型吹扫捕集仪郑能雄等,中国卫生检验杂志 2010,20 (6):1268~1270,148931吹扫捕集-气相色谱法测定海水中的氟氯烃吹扫捕集仪( Tekmar-Dohramann 3100,美国Tekmar 公司蔡明刚等,分析化学,2013,41(2):268 ~ 27232吹扫捕集-气相色谱法测定生活饮用水中挥发性有机物美国OI 公司4560 型吹扫捕集仪,配置4551A 型自动进样器,许瑛华等,卫生研究,2006,35(5):644~64633吹扫捕集- 气相色谱法测定水中的乙醛和丙烯醛美国Tekmar 公司3100 型 吹扫捕集仪许雄飞等,环境科学与技术,2011,34 (1):121~123 34吹扫捕集气相色谱法测定水中七种氯苯类化合物吹扫捕集浓缩器( Tekmer-Dohrmann 3100, 配样品加热器)张月琴等,岩矿测试,2005,24(3):189~193 35吹扫捕集&mdash 气相色谱法测定水中一氯苯吹扫捕集设备:Tekmar 8900型,美国安普科技中心罗文斌等,中国科技信息2012 ,(01): 43-4436吹扫捕集-气相色谱法测定水中乙醛、丙烯醛、丙烯腈Tekmar velocity XPT吹扫捕集浓缩仪陆文娟等,理化检验-化学分册,2011,47(10):1214~1215,125237吹扫捕集气相色谱- 质谱法测定全国地下水调查样品中挥发性有机污染物美国OI 公司Eclipse 4660吹扫捕集自动进样器黄毅等,岩矿测试,2009,28(1):15-20 38吹扫捕集气相色谱法测定水性涂料中的苯系物Tekmar Stratum 吹扫捕集浓缩仪张瑞平等,涂料工业,2012,42(10):69~7239吹扫捕集气相色谱法测定水中苯系物TMR-9800 型吹扫捕集浓缩仪( 美国Tekmar 公司)国青等,干旱环境监测,2011,25(2):115~118 40吹扫捕集气相色谱法测定水中苯系物Tekmar velocity XPT吹扫捕集浓缩仪卢明伟, 化学分析计量2008,17(2): 25~2741吹扫捕集气相色谱法测定饮用水中多种卤代烃美国0I公司4660型吹扫捕集 装置,配4551A 型自动迸样器,刘盛田,中国卫生检验杂志,2010,20(10): 2450~245242吹扫捕集气相色谱质谱法测定土壤中挥发性有机物TekmarXPT 吹扫捕集装置秦宏兵等,中国环境监测2009,25(4):38~4143吹扫捕集气相色谱质谱法测定饮用水中挥发性有机物美国Tekmar 公司Tekmar 3100吹扫捕集装置罗添等,卫生研究,2006,35(4):504~5044吹扫捕集气质联用法测定水中4种挥发性有机物美国EST 公司ENCON EVOLUTION吹扫捕集仪秦明友等,环境科学与技术,2013,36(1):93~9645吹扫捕集与气相色谱一质谱联用测定水体中的芳烃化合物Tekmar velocity XPT吹扫捕集装置何桂英等,光谱实验室,2005,22(3):502~50546吹扫捕集与气相色谱-质谱联用测定饮用水和地表水中挥发性有机污染物HP 7695 吹扫捕集浓缩器 刘劲松等,中国环境监测,2000.16(4):18~2247吹扫捕集与色谱质谱联用测定水中挥发性有机物美国 Tekmar 3000吹扫捕集浓缩器张立尖等,上海环境科学,1998,17(9):40~4248吹脱-捕集气相色谱法测定底质中易挥发性有机物HP 7695 吹扫捕集浓缩器 应红梅等,环境污染与防治,1999,21(5):43~4649吹脱捕集-毛细管气相色谱法测定环境空气中的苯系物HL- 800 型二次热解吸仪( 上海科创色谱仪器有限公司)王春风等,科技信息。2008,(13):24~2550吹脱捕集-毛细管气相色谱法测定饮用水及水源水中苯系物 美国O I公司4660型吹扫捕集装置陈斌生等,中国卫生检验杂志,2009,19(9):2008~2009  从表1 中的数据可见使用最多的是美国Tekmar公司的几种吹扫捕集装置和美国O I公司的几种吹扫捕集装置。图 3是美国O I公司4660型吹扫捕集装置。   4660型吹扫捕集样品浓缩器的设计符合美国EPA的方法标准,它将水、空气、土壤/固体/软泥中易挥发的有机物吹扫并浓缩到一个富集管中,然后热脱附与GC或GC/MS联机分析。4660型吹扫捕集样品浓缩器的特点:  1. 专利的水管理器(可有效地去除80-90%的水)消除水对色谱柱及色谱检测器的影响 。  2. Trap的快速升温(800-1000℃/min)、冷却技术,大大缩短运行周期。  3. 红外线样品吹扫管加热器,可有效地提取极性化合物。  4. 泡沫过滤器,防止样品的携带,减少交叉污染,提高回收。  5. 惰性取样路径,减少了样品传输过程中的损失。  6. 反吹烘焙技术,可有效地防止交叉污染的发生。  7. 微阱选择,可实现无分流进样的高灵敏度分析。图 4 是Tekmar 公司的Velocity XPT&trade 吹扫捕集浓缩器和进样器图4 Velocity XPT&trade 吹扫捕集浓缩器和进样器Velocity XPT吹扫捕集浓缩仪特点:  1. Velocity XPT吹扫捕集浓缩仪是美国Tekmar公司根据美国EPA标准方法推出的新一代吹扫捕集浓缩仪。  2. 吹扫时间设定为11 min时,Velocity XPT的运行周期在15min以内,与气相色谱同步运行,可显著提高工作效率。  3. 捕集管后配有专利技术FFC&trade 前聚焦系统能有效改善色谱峰型。  4. 专利技术DryFlow湿气捕集器,从样品解析到色谱柱之前去水效率&ge 90%。  5. 采用加温的High Temperature OptiRinseTM自动清洗样品通道和吹扫系统,有效消除残留,防止交叉污染。  6. 自动进样器同样是根据美国EPA标准方法设计,有70个样品位。图 5是Tekmar 公司的3100吹扫捕集进样系统。图 5 Tekmar 3100吹扫捕集进样系统吹扫捕集的3个步骤的设备:吹扫捕集的样品容器 吹扫捕集的样品容器多为U型玻璃管,典型的结构如图6所示。吹扫捕集容器有各种各样形式见图7。图6中右下方是吹扫气入口,先经过13 X分子筛干燥,通过1.6mm外径的不锈钢管和吹扫容器6.4mm 外径的进口管相连。吹扫管宽的部分直径为14mm,长100 mm,窄的部分为10mm。吹扫气出口为6.4mm,最上面是一个消除泡沫的球,其出口也是6.4mm。扫捕集管顶部是进样口,有两通针阀,通过6mm橡胶隔垫注入样品。图 6 典型吹扫捕集容器(美国卫生协会,试验水和废水的标准方法,1998,p.568)图 7 各种吹扫捕集容器试样捕集管和吸附剂  捕集管用不锈钢制成,内径3-4mm,长100mm,如图 8所示(美国SIS公司&mdash &mdash Scientific instrument services Inc)。管子两端装玻璃棉,中间装所需要的吸附剂。常用聚合物型吸附剂见表2,所用碳类型吸附剂见表 3. 图 8 捕集管示意图 表2 捕集管使用的聚合物型吸附剂类型和性质吸附剂组成比表面/(m2/g)温度上限/℃Tenax GC聚(2,6-二苯基-p-二苯醚19-30450Tenax TA聚(2,6-二苯基-p-二苯醚35300Tenax GR聚(2,6-二苯基-p-二苯醚含23%石墨化炭黑 350Chromosorb 101苯乙烯二乙烯基苯共聚物350275Chromosorb 102苯乙烯二乙烯基苯共聚物350250Chromosorb 103交联聚苯乙烯350275Chromosorb 104丙烯腈二乙烯基苯共聚物100-200250Chromosorb 105聚芳烃600-700250Chromosorb 106聚苯乙烯700-800225Chromosorb 107聚丙烯酸酯400-500225Chromosorb 108交联丙烯酸酯100-200225Porapak N聚乙烯吡咯烷酮225-350190Porapak P苯乙烯二乙烯基苯共聚物100-200250Porapak Q乙基乙烯苯-二乙烯基苯共聚物500-600250Porapak R聚乙烯吡咯烷酮450-600250Porapak S聚乙烯吡啶300-450250Porapak T二甲基己二酸乙二醇酯250-350190HaeSep A二乙烯基苯-二甲基丙烯酸乙二醇酯共聚物526165HaeSep D二乙烯基苯聚合物795290HaeSep N二乙烯基苯-二甲基丙烯酸乙二醇酯共聚物405165HaeSep P苯乙烯二乙烯基苯共聚物165230HaeSep Q二乙烯基苯聚合物582275HaeSep R二乙烯基苯-N-乙烯-2-吡咯烷酮共聚物344250HaeSep S二乙烯基苯-4-乙烯吡啶共聚物583250XAD-2苯乙烯二乙烯基苯共聚物300200XAD-4苯乙烯二乙烯基苯共聚物750150XAD-7聚甲基丙烯酸酯树脂450150XAD-8聚甲基甲基丙烯酸酯树脂140150V Camel et al.,J Chromatogr A,1995,710:3-19表3 捕集管使用的碳吸附剂类型和性质吸附剂比表面/(m2/g)温度上限/℃椰子壳活性炭1070220石墨化炭黑carbotrap100400Carbotrap C10400CarbopackCarbopack B100〉400Carbopack C10〉400Carbopack F5 碳分子筛Corbosive G910225Corbosive S-III820400CorboxenCorboxen 563510400Corboxen 564400400Corboxen 569485400Corboxen 10001200400Corboxen 10041100225V Camel et al.,J Chromatogr A,1995,710:3-19图 9 是各种吸附剂适合适用于各类化合物及温度图 9 吸附剂适合适用于各类化合物及温度对不同的分析样品使用相应的吸附管,有各种针对性商品供应,如:用于 Teledyne Tekmar Velocity 吹扫捕集富集器的捕集管说明 部件号捕集管,Vocarb 3000 5188-2795捕集管,Vocarb 4000 5188-2796捕集管,Tenax #1 5188-2790捕集管,Tenax/硅胶/活性炭,12英寸x1/8英寸(#3) 5188-2791捕集管,Tenax/活性炭,12英寸x1/8英寸(#4) 5188-2792捕集管,OV-1/Tenax/硅胶/活性炭,12英寸x1/8英寸(#5) 5188-2794捕集管,OV-1/Tenax/硅胶,12英寸x1/8英寸(#6) 5188-2793捕集管,BTEX 5188-27972010-2011版名称和部件号用于 Teledyne Tekmar Velocity 吹扫捕集富集器的捕集管说明 部件号捕集管,Vocarb 3000 (K 管) 5182-0775捕集管,Vocarb 4000(l 管) 5182-0774捕集管,Tenax(A管) 5182-0783捕集管,Tenax/硅胶/活性炭(C管) 5182-2781捕集管,BTEX 5182-0773DryFlow 水分捕集管 14-8911-003(Teledyne Tekmar公司是1972年成立后几经合并后,于2003年成立的公司名称)3 捕集管中吸附样品的热脱附 吸附到捕集管中样品要在加热和气流的帮助下脱附,用气流冲洗到色谱仪中进行分离分析。一些自动化吹扫捕集仪器都可以把捕集阱快速地加热, 六通阀的阀芯转换位置, 采用反向的载气流将分析物快速脱附到GC的柱子。旋风式除水系统将在浓缩仪的吹扫阶段, 样品基体中传输过来的大量的水分离之后储存在水分离装置中。然后在烘焙阶段, 除水装置排放掉残留的物质和捕集到的水, 可极大地降低了随后的再次浓缩, 分离以及分析物检测过程中的干扰。 热脱附直接进入色谱仪 热脱附经冷冻浓缩进入色谱仪 图 10 热脱附直接或经冷冻浓缩进入色谱仪图 11 是吹扫捕集和脱附流程的示意图,左面是吹扫捕集,右面是热脱附。 图 11 吹扫捕集和脱附流程的示意图 有关这一课题可参考江桂斌院士主编的&ldquo 环境样品前处理技术&rdquo (化工出版社,2004,第5章,202-229页) 王立、汪正范撰写的&ldquo 色谱分析样品处理&rdquo (化工出版社,2006,118-16)下一讲和大家一起探讨固相微萃取(SPME)-顶空气相色谱的问题。
  • 安捷伦气相色谱柱用于探索火星上的生命迹象
    安捷伦气相色谱柱用于探索火星上的生命迹象 由美国国家航空航天局 (NASA) 发送到火星的&ldquo 好奇号&rdquo 火星车已成功完成车载分析仪器的首次全面检测。仪器的任务是对火星上的土壤和气体进行采样,以期找到火星上存在生命的证据。 火星车上装配有一台气相色谱仪,包含两根 Agilent J&W UltiMetal 气相色谱柱:CP-Chirasil-DEX CB 色谱柱可用于检测土壤中不同种类的氨基酸,CarboBOND 色谱柱可以鉴定大气中的气体。 这两种色谱柱都由安捷伦在荷兰的米德尔堡工厂制造。 仪器的首次检测结果显示,火星土壤中存在一些简单的化合物,但没有确切来源于火星的有机(含碳化合物)分子。&ldquo 好奇号&rdquo 火星车仍在寻找有机分子比如氨基酸的存在,我们知道,没有有机分子就不会存在生命。 一旦发现这类分子,下一个任务将是确定其来源。如果没有发现,&ldquo 好奇号&rdquo 会转移到其它更有可能发现有机分子的地点,或是从更深的土壤中采样,脆弱的有机分子可能会保存在那儿。未来两年&ldquo 好奇号&rdquo 将在火星表面巡游,沿途分析样品,展示&ldquo 将实验室带到样本现场&rdquo 的极其方便的检测。未来两年&ldquo 好奇号&rdquo 火星车将在火星表面巡游;安捷伦气相色谱柱用于探索火星上的生命迹象 关于安捷伦科技 安捷伦科技公司(NYSE:A)是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有 20,500 名员工,遍及全球 100 多个国家,为客户提供卓越服务。在 2012财年,安捷伦的净收入达到 69亿美元。如欲了解关于安捷伦的详细信息,请访问 www.agilent.com。
  • 傅若农:从三家公司GC产品更迭看气相技术发展
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。第一讲:傅若农讲述气相色谱技术发展历史及趋势(1)  1.珀金埃尔默(PerkinElmer)公司  20世纪四五十年代,正值二战之后,百废待兴,能源是工业的命脉,生命科学是延长人类寿命的根本,在二者的牵引下,利用当时机械和电气技术的支持,出现了科学仪器的工业。  第一个真正开发出来的&ldquo 仪器&rdquo 是红外分光光度计,但是使用它的只有很少数的实验室,而且操作和使用它需要熟练的专门技术人员。1952年诞生了气相色谱技术,为了能普遍地利用气相色谱进行石油和石化的发展和探索生命的奥秘,PerkinElmer于1955年5月开发出世界上第一台商品气相色谱仪Model 154,而它代表了真正的自动化分析仪器,每个实验室都可以使用和操作它。同时,PerkinElmer提供了具有广泛分离能力的标准色谱柱,从而可以让该仪器成功地分析各种样品。这一仪器立即获得了广泛的应用,使色谱科学得以迅速发展。  1958年在PerkinElmer工作的M.J.E. Golay博士发明了开管柱(毛细管柱),PerkinElmer在1959年匹兹堡会议上推出另一款气相色谱仪Model 154-C,它具有使用毛细管色谱柱的功能,并可以使用新型火焰离子化检测器,在Model 154-C上火焰离子化检测器的放大器放在仪器主机外的另一个盒子里。而后在1990年的匹兹堡会议上首次亮相的Model 154-D型气相色谱仪就把火焰离子化检测器的放大器整合到仪器内,同时Model 154-D还提供了更完善的毛细管色谱柱进样系统。  在气相色谱仪出现不久以后,从事石油工业方面的化学家想要分析宽沸程的样品,要完成这一类型的分析,单一、等温操作的仪器是不行的,在当时色谱柱程序升温还没有开发出来,所以就采用使用多柱串联的方法,每一支色谱柱使用不同的温度,样品分别逐次进入每一色谱柱后面的热导池。PerkinElmer 1957年推出的Model 188型气相色谱仪就是此类仪器,它本质上是三台Model 154气相色谱仪的柱箱和检测器串联在一起。但是这一仪器的在市场上存在的时间不长,之后单柱程序升温的仪器出现,程序升温很好地解决了石化科学家的这一需求。Model 188 型气相色谱仪  到了上世纪70年代中期,电子技术发展到了一个很高的程度,可以开发完全用微处理器控制的气相色谱仪,技术的进步使得气相色谱仪的更新换代也变得异常快。之后的30年,PerkinElmer开发了四种独特的GC系列。第一个新的气相色谱仪系列是1975-77年开发出来的Sigma系列,新产品在1977年的匹兹堡会议上亮相,四个型号的组件和附件都可以互换,从简单、等温的Sigma 4到很精密、复杂、自动化的Sigma 1。1980年,该系列产品进一步改进出现了Sigma B系列,Sigma 1B包括全部数据处理的功能,在此基础上1981年推出了Sigma 115。1982年在Sigma 2B的基础上改进开发了多功能、高效模块化的仪器,即Sigma 2000。直到最近仍有使用Sigma 3B的文章发表(J Chromatogr. A,2010,1217:2918) 国内发表的气相色谱研究论文也有许多使用Sigma系列气相色谱仪。  到了上世纪80年代,PerkinElmer开发出8000系列GC,这一系列新增了实时色谱图的屏幕显示和内置的方法开发,以及数据处理功能。8000系列由PerkinElmer英国分公司开发,该系列第一个型号是Model 8300,于1983年推出,是一款简易、单通道的气相色谱仪。此后,PerkinElmer又把它进行改进增加其它功能,形成三个型号的新仪器,Models 8400及 8500(1986年推出),和Model 8700(1987年推出)。这三款仪器的独特性能在于有滑动的柱箱门、选择安装附加进样器和检测器,以及自动流失补偿。  到1990年,PerkinElmer推出了AutoSystem&trade GC,它整合了色谱和电子控制的最新成就,有一个完全集成的自动进样器,可以处理多达83个样品,以及注射不同容积的样品 在 1995年10月推出一个改进的型号AutoSystem XL&trade GC,把自动程序气流控制(EPC)用在温度程序的分流/不分流进样或柱头进样,以及大体积进样上,而且配套一些通用和选择性检测器。  进入新世纪,在2002年PerkinElmer推出型号为 Clarus 500 GC,整合了易学、触摸式用户界面,提供了一种全新的用户与仪器交流的方式&mdash &mdash 具有直观的图像用户界面、实时的信号显示和八种语言支持的特点,同时Clarus 500 GC 保持了AutoSystem GC的分析功能。近年PerkinElmer又推出Clarus600 GC,其特点为柱温从450℃降到50℃所需时间不超过2分钟,高效柱箱缩短了每次的分析周期,提高了分析效率。设计更加灵活的自动进样器,可编程的进样器在复杂分析中体现其灵活性,电子气路控制提高了分析的自动化,创新的触摸屏使操作变得更简单。  2. 安捷伦 (Agilent)公司  安捷伦的前身是惠普(Hewlett-Packard)公司,惠普于1965年收购了位于美国费城的气相色谱生产商F&M科技公司而进入分析仪器领域。1999年惠普公司宣布测试与测量、化学分析和医疗仪器事业部从惠普分离出来,成立一家全新的公司安捷伦(Agilent Technologies)。在2000年6月,安捷伦成为全资独立公司。  2010年5月17日,安捷伦宣布已完成对瓦里安公司的收购。对瓦里安的收购是安捷伦历史上第二大的收购事件,它进一步推动了安捷伦的壮大和发展。瓦里安也是较早进入中国市场的气相色谱仪制造商,国内最早建厂的北京分析仪器厂在上世纪80年代引进了瓦里安的气相色谱和液相色谱的制造技术,从而使北分厂的制造技术和产品上了一个台阶,量产了3400系列气相色谱仪。  1981年惠普在中国建立代表处,1985年惠普在中国成立合资高科技公司,把气相色谱仪推向以石油和石化行业为先导的市场。近30年来,安捷伦连续创造了一系列的突破和创新,占有了中国进口气相色谱仪(含GC/MS中的气相色谱仪)的七成。  安捷伦在气相色谱仪关键部件的设计上做出了诸多革命性的突破:(1)上世纪80年代末把电子气路控制器(EPC)用于气相色谱仪,EPC提高了气相色谱仪气路控制的自动化水平,它包括电子流量/压力控制模块,以闭环控制的方式通过小流量比例电磁阀、小流量和压力传感器,微型可调限流装置和颗粒过滤装置,达到控制气体流量/压力的目的。经过多年的使用和改进现在已经发展到第5代EPC,最小控制精度达到0.001psi(1psi=6.895kPa)。  (2)第二个创新性部件是把Deans Switch(狄恩斯气流切换)微型化。所谓微板流控技术是利用了1968年Deans 开发的基于压力平衡的无阀气流切换方法,上世纪80年代西门子利用 Deans 无阀气流切换装置设计生产了二维气相色谱仪。1999年Jan Blomberg 利用Deans无阀气流切换装置设计了GC-FID-MS 的无阀分流(J.Chromatogr. A, 1999,83:257~265)。  安捷伦2007年推出的7890A GC的柱箱内就装了Deans Switch的微板气流控制装置,其也使用了Deans无阀气流切换技术,但是他们的技术诀窍是把 Deans 无阀切换的管件装置进行了高科技的处理:使用两块特殊金属板用光化学刻蚀技术得到低死体积的流路,把两块金属板使用扩散焊接技术焊接形成整体微板流路,样品流路的所有内表面均经脱活处理,具有惰性。装在柱箱侧面的微板如下图所示。微板流控 Deans 无阀切换装置  安捷伦将Deans无阀切换装置称之为&ldquo 微板流控&rdquo 技术,英文名字是Capillary flow control,其只有信用卡大小。微板流控装置加上第五代程序控制压力和流量控制装置,可应用于许多分析中,同时大大提高分析效率而又无需改变现有的分析方法。微板流控技术使过去不可能实现的许多分析成为现实:  (1)反吹--消除后运行烘烤时间,极大地减少进样间隔,同时消除样品间的交叉污染。反吹还能延展色谱柱的寿命、减少检测器的维护。(2)分流--可同时运行三个检测器,包括MSD,以获得最大信息量。(3)中心切割--将有兴趣的色谱峰切至第二根色谱柱,这对复杂基质中的痕量检测十分有用。(4)全二维色谱(GCxGC)--将所有色谱峰转至第二根色谱柱而不需要昂贵的制冷剂。(5)速转换(QuickSwap)--在GC/MS运行中更换色谱柱而不需要断真空,每次可节约数小时。  2013年初安捷伦又推出7890B ,新增集成智能功能如休眠/唤醒模式降低了载气和能源消耗,而7890B和5977A MSD可双向直接通讯,放空时间缩短高达40%。集成在安捷伦数据系统中的GC 计算器可优化方法,并且将计算值自动转移到方法编辑器中。高性能电子气路控制和数字电路为保留时间锁定精度和快速柱箱降温设定了新的标准。内置的氢气安全功能和氦气保存模式帮助实验室在分析运行更经济。  7890B配备了大恒温阀箱,可安装驱动阀、微型闪蒸、针型调节阀、色谱柱(包括1/8英寸填充柱),只用7890B一个加热区,就可支持柱温箱和大阀箱独立控温(可以实现柱温箱在程序控温时,对大阀箱进行恒温控制,可用于快速全组分炼厂气。  3.岛津(SHIMADZU)公司  岛津的气相色谱仪较早进入中国市场的,1956年参加中国第一次国际商品展览会,岛津便开始了与中国的贸易往来,也就在这一年岛津生产出第一台气相色谱仪GC 1A。GC 1A 气相色谱仪  1972年岛津在中国举办多次新技术新产品交流会。1975年中国许多单位引进了GC 5A气相色谱仪,它是一台十分全面的仪器,柱温箱和控制部件是分开的,带有各种检测器和附件,可进行填充和毛细管柱的分析,配置热导、氢火焰、电子俘获和火焰光度检测器,还带有玻璃毛细管拉制机。我所在的实验室也是1975年购进这一款仪器,还用它带的玻璃毛细管拉制机在80年代初就开展了毛细管色谱柱研究。  上世纪80年代中期岛津把GC 5A升级为GC 7A 和GC 9A,这两款仪器都还采用整体加热单元,整体加热单元是指进样口、检测器全部或部分集中在一个大的加热块上,有一个加热棒,一个温度控制器,一个恒温块来控制温度,它的优点是结构简单、元器件少、成本低,由于储热值大,在到达温度后易于保持稳定。但是加热块上的各部件的温度只能设为一致,而不能有所区别,限制使用的灵活性 另由于加热块体积大,升温降温速度缓慢,改变条件困难,升温时所有的部件都被加热,不用的部件也在升温降温过程时经受热疲劳损耗。岛津从GC 17A起才改为现代气相色谱仪多采用的独立单元加热模式。  在柱箱温度控制方面,GC 7A采用机械拨盘方式,很不方便,而从GC 9A才开始利用电子控制,采用键盘输入参数,GC 7A没有柱温箱排热口,使升/降温速度很慢, 而在GC 9A上装有h狭长缝型的排热口,加快了升/降温速度。  GC 7A、GC 9A 的气体流量和压力控制还是用机械式表阀控制,如稳压阀、稳流阀、压力表、转子流量计等,这是早期气相色谱仪的标志。岛津直到GC 14A(1990年)仍然使用机械式表阀控制。到了1995年,岛津推出了GC 17A,这款气相色谱仪才使用电子气体流量/压力控制系统,并配置了化学工作站,可以很方便地进行各种参数的设定控制和数据处理,具备了现代气相色谱仪的要求。  1999年是一个大的转折,岛津推出了全新的GC 2010气相色谱仪,这一款仪器体现了当时各种先进的技术:采用新一代EPC(岛津称之为AFC流量控制器)设计,使载气控制有更高精度,实现了保留时间、峰面积、峰高的优良重现性。同时GC 2010在标准配置下即可满足快速分析所需要的高柱头压(970kPa)、高载气流速(1200mL/min)等要求,使主机不需添加任何附件即可使用0.1mm、甚至0.05mm窄口径的快速分析柱 所有检测器都进行了重新设计,达到小型化、高灵敏度要求,均可满足快速分析的要求,其中,FPD(火焰光度检测器)采用全新镜面全光反射系统和聚光透镜,达到超高灵敏度 化学工作站GC solution的检测器数据采集速率高达250Hz(4msec),保证快速分析时数据的准确性和完整性 柱温箱可达到最快的升温速率250℃/min,加快分析物流出,满足了快速分析所需要的升温要求。主机的大液晶显示屏LCD及帮助功能使操作更为简便直观,让进样口、柱温箱、检测器的所有参数,升温程序以及实时得到的色谱图都一目了然地展现在使用者面前 主机有自诊断功能可定期针对电路、气路及各类消耗品进行自检,并生成自检报告以便进行维护 载气控制采用与分离性能具有相关性的载气线速度进行控制的方案,可以在最短时间内得到最优化分离条件 主机可安装3个进样口和4个检测器,从而省去了拆换检测器的麻烦,使用GC solution化学工作站可进行4种检测器同时检测。  2005年3月岛津推出GC 2014气相色谱仪和GCMS 2010S 气相色谱/质谱仪,这是两款低端性价比高的仪器。  2006年是岛津推出GC五十周年,当年岛津推出新一代高性能气相色谱质谱联用仪,GCMS-QP2010 Plus。  在2009年9月岛津又推出气相色谱仪GC-2010 Plus,新一代的GC-2010 Plus采用高灵敏度检测器(FPD、FID等),以便达到高可靠性、高重现性、高精度的痕量级分析的要求。更快的柱温箱冷却速度和先进的流路技术(如反吹系统等)为缩短分析时间和分析效率。  2010年8月岛津发布了新一代高性能气相色谱质谱联用仪GC/MS-QP2010 Ultra,它能在高速扫描的同时保证仪器的高灵敏度,并且还具有一些非常实用的性能,如Twin Line MS系统、Easy sTop、生态模式,适合用于快速分析和全二维气相色谱等。  2013年2月岛津推出高灵敏度气相色谱仪系统Tracera ,Tracera 气相色谱仪系统配备了岛津新开发的BID检测器(介质阻挡放电等离子体检测器),可以满足除He和Ne之外所有有机和无机化合物0.1ppm含量水平的分析需求。Tracera适用于多种类型的高灵敏度分析,其灵敏度高于TCD 百倍以上,高于FID 两倍以上。  从上述三个公司的气相色谱仪产品发展可以看出,上世纪90年中期是气相色谱仪走向现代化的转折点,进入21世纪各个公司的水平趋于接近,有一些小的改进但没有大的突破,国产气相色谱仪这几年也在突飞猛进地发展,逐步接近先进气相色谱仪的水平,下一章节我将为大家讲述国产气相色谱仪的发展状况。(未完待续)  附录: 三家公司气相色谱技术发展历程一览  (作者:北京理工大学傅若农教授)
  • 沃特世色谱柱2010版中国药典高效液相色谱图有奖征集
    2010年版《中国药典》及增补是新中国成立60年来组织编制的第九版药典,注重创新与发展,全面提升了我国药物质量控制的要求与水准,是国家药品标准体系的核心。作为色谱行业的领导者,沃特世(Waters)公司长期以来得到广大制药行业用户的支持与厚爱,其提供的优质色谱柱及消耗品为药品质量控制提供了强有力的保障和技术支撑。为答谢广大用户对沃特世公司的支持与帮助、进一步增进用户之间的交流,特向广大沃特世色谱柱制药领域用户征集2010版中国药典高效液相色谱图,并将汇编成册回馈客户。 一、征集对象 所有沃特世色谱柱制药领域终端用户。 二、征集要求1、所用的Waters色谱柱规格型号、色谱条件完整准确;图谱真实、清晰,基线稳定,目标成分峰型良好,分离度、保留时间、理论塔板数符合要求。三、评审与奖励1、沃特世将邀请专家为本次征集活动进行评审,所有被录用图谱的作者均将获得沃特世特制U盘一个。2、活动将选出前十名对图谱征集贡献最大的单位或个人成为VIP客户,将给予更低的优惠折扣。 四、征集时间及联系方式 征集时间:2013年1月1日-2013年5月31日 Word文件请电邮至info_chemistry@waters.com(请将附件粘贴到邮件中) 联系人:Anne 联系电话:021-61562630 五、附件 该活动解释权归沃特世科技(上海)有限公司所有作者姓名:单位名称:部门/科室:联系电话:E-mail:邮编:通讯地址:样品名称:色谱条件: 色谱图(若提供数个图谱数据,可另附页面)
  • 探寻微弱电流的律动:世健携超高精度皮安计模块亮相上海慕尼黑生化展
    p style="text-align: justify text-indent: 2em "2020年11月16日,2020慕尼黑上海分析生化展在上海新国际博览中心隆重召开。世健系统(香港)携新一代测试和测量应用方案亮相展会,吸引了众多业内观众围观和交流。本次参展的产品包含了超低失真任意波形发生器和采集模块、6位半数字电压表、宽压大功率SMU、多参数水质测量系统方案、小体积低功耗嵌入式电化学传感器测量模块和超高精度皮安计模块等。/pp style="text-align: center text-indent: 0em "script src="https://p.bokecc.com/player?vid=C4F4509D880788959C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=true&width=600&height=490&playerid=621F7722C6B7BD4E&playertype=1" type="text/javascript"/script/pp style="text-align: justify text-indent: 2em "据介绍,世健公司是亚太区领先的电子元器件分销商,曾被美国权威杂志EPSNews评为“全球电子元器件分销商25强”。世健是新加坡上市公司,总部在新加坡。目前,世健在中国拥有十多家分公司和办事处,遍及中国主要大中型城市。凭借优秀的研发团队,丰富的技术支持和优秀的销售经验,世健在业内享有领先地位。本次展会推出的超高精度皮安计模块由世健技术团队自主研发。/pp style="text-align: justify text-indent: 2em "设计工程师都知道,精确的微弱电流信号测量是各种科学分析仪器、环境监控和过程控制的系统设计核心,尤其是当输入的微电流信号达到pA级,甚至fA级的时候,这对他们来说,将是一个巨大的挑战。世健的新模块为用户提供了一种简单的方法来评估系统性能和完善原型开发。该模块拥有完整的信号链,输入电流通过fA级的输入偏置电流运算放大器ADA4530-1,经由ADA4522-1作为缓存和增益设置级输入到低噪声24位Sima-Delta ADC-AD7124-4采样结果传送到MCU并通过USB端口上传到上位机,通过特别设计的Labview GUI来进行模块配置,实时波形显示直方图和统计分析测试数据将以Excel文件等功能输出。/pp style="text-align: justify text-indent: 2em "此外,该模块具有以下特点,模块上的ADA4530-1,采用跨阻方式配置高达10G欧姆的通孔式反馈电阻;低泄漏及屏蔽技术;线性度好;在0~20pA的输入条件下,该模块以1pA计步达到0.9999的线性度;低均方根噪声;本底RMS噪声小于50μV;输入电流范围0~200pA。该模块的一些应用场合如下,分光光度计、色谱仪、质谱仪、pH计、皮安计以及PCB泄漏测量等。目前该模块已经在世健网店上线。/p
  • 傅若农:气相色谱固定液的前世今生
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。  第一讲:傅若农讲述气相色谱技术发展历史及趋势  第二讲:傅若农:从三家公司GC产品更迭看气相技术发展  第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状  气相色谱(GC)技术至今已有52年的历史了,其现在已经是相当成熟的技术。今天气相色谱仪已经相当普及,就像分析天平一样,在许多实验室都可以见到。而对于分析人员而言,气相色谱仪的操作也很简单,样品处理完以后装到进样瓶中,之后往自动进样器上一放就自动进行分析了。而这一切的实现其实是50年来无数分析人员及厂家设计制造人员的研究,借助现代科学技术集成起来的成就。但是气相色谱仪和气相色谱方法具有相当的科学内涵,值得从事气相色谱分析人员深入地去学习和领会,才能使你在长期气相色谱分析当中应付自如、游刃有余。这里我们先从气相色谱的核心气相色谱固定液谈起,本章所谈只限于液体固定相,即在工作温度下固定相以液态存在。  首先,我讲一个我自己经历的故事。1974年我们买了一台北京分析仪器厂的SP-2305 E型气相色谱仪,为了测试仪器的性能,我们就用仪器附带的、厂家事先配制好的固定液 DNP(邻苯二甲酸二壬酯)做测试,但是厂家没有在固定液的包装上注明它的最高使用温度(低于130 ℃),我们在设定温度时设定为130 ℃,结果由于固定液流失把热导池污染了,不能正常使用,没有办法只好到北京分析仪器厂又更换了热丝。后来查了文献才知道这种固定液在130 ℃就会流失。因此我意识到做气相色谱必须要了解、熟悉气相色谱固定液的性能,当然了解气相色谱固定液的性能的重要性还远不止于此,因为气相色谱固定液的性能是影响色谱分离的主要因素。  一.早期使用的气相色谱固定液  气相色谱发明人马丁(Martin)1950 年使用硅藻土(Celite)做载体,用硅油(DC 550)做固定液,用气体做流动相, 分离氨、脂肪胺和吡啶同系物。 DC 550(含25%苯基的甲基聚硅氧烷)原为工业用的耐高温硅油。  马丁使用硅油(聚硅氧烷)作气相色谱固定液以后,开辟了聚硅氧烷作气相色谱固定液的先河。但是聚硅氧烷类固定液在当时还没有占主导地位,人们更多地使用各种低分子化合物。如1956年有人提出了&ldquo 标准&rdquo 固定液:正十六烷、角鲨烷、苄基联苯、邻苯二甲酸二壬酯、二甲基甲酰胺、二缩甘油。(J.Chromatogr.Sci. 1973,11(4):216)。  后来也使用了一些高聚物用作气相色谱固定液,如聚乙二醇类,各种聚酯类,以及各类从石油提炼出来的润滑脂阿皮松-L 、阿皮松-M等。当时使用的一些聚硅氧类固定液也都是工业品,如 DC-550 、DC-710 、QF -1、 DC-11 、SE-30(聚二甲基硅氧烷),聚二甲基硅氧烷之后成为非常广泛使用的GC固定液 。  1964年又有人提出 58 个常用固定液,使用频率最高的十个固定液是阿皮松-L、SE-30、邻苯二甲酸二壬酯、角鲨烷、PEG 20M、己二酸乙二醇聚酯、PEG 400、DC 550、磷酸三甲酚酯、PEG 1500。  为了适应各种各样混合物的分离,固定液如雨后春笋地增长,在1972年出版的 &ldquo Gas Chromatographic Data Compilation DS 25 A S-1&rdquo 中收集了700多种气相色谱固定液。  在气相色谱以填充柱为主的时代,由于填充柱的柱效有限,为了能分离各类混合物,人们研究发展了上千种固定液,但是固定液量太多了又带来新的麻烦。为此,许多人致力于固定液的分类和精选最常用的固定液,最有影响的是Rohrschneider和McReynolds的固定液表,下表1是McReynolds固定液表的一部分,它发表于1970年的色谱科学杂志上(J chromatogr Sci 1970,8:685-691)。表1 McReynolds 固定液表  说明:X' , Y' ,Z' ,U' ,S' 分别代表苯、正丁醇、2-戊酮、1-硝基丙烷、吡啶  McReynolds用10种典型化合物,苯、正丁醇、2-戊酮、1-硝基丙烷、吡啶、2-甲基2-戊醇、碘丁烷、2-辛炔、二氧六环和顺八氢化茚,在120℃柱温下测定了226种固定液上的保留指数差(△I),以前五种化合物△I之和的大小来表示固定液的极性。  McReynolds 工作的目的是为了解各种固定液的性能,选择时可以寻找性能类似的品种,减少测试比较固定液的数量。  后来Hawkes推荐的较常用的气液色谱固定液有下列一些:  (1) 聚二甲基硅氧烷 (OV-101, OV-1, SE-30 )   (2) SE-54 ( 含5%苯基和1%乙烯基的聚甲基硅氧烷)   (3) OV-7 ( 含20%苯基的聚甲基硅氧烷)   (4) OV-1701 ( 含7%苯基和7% 氰丙基的聚甲基硅氧烷)   (5) OV-17 [ 含50% 苯基的聚甲基硅氧烷(油) ]   (6) OV-17(gum)[ 含50%苯基, 2%乙烯基的聚甲基硅硅氧烷(橡胶) ]   (7) OV-25 [ 含75%苯基的聚甲基硅氧烷(油)]   (8) OV-210 [( 含50% 三氟丙基的甲基硅氧烷(油))   (9) OV-215 [含50%苯基, 2%乙烯基的聚甲基硅氧烷(橡胶)]   (10) UCON HB 5100 ( 约50/50的聚乙/丙基醚 )   (11) OV-225 ( 含25% 氰丙基﹑25% 苯基的聚甲基硅油或硅橡胶 )   (12) Superox-4 ( 高分子量的聚乙二醇, 使用温度可到300℃ )   (13) Superox-0.1 ( 聚乙二醇,使用温度可到 280℃ )   (14) Superox 20M ( 聚乙二醇, 使用温度可到 300℃)   (15) PEG-20M ( 聚乙二醇, 使用温度可到 300℃)  (16) Silar 5CP ( 含 50% 氰丙基﹑50% 苯基的聚甲基硅油 )   (17) SP-2340 ( 含75% 氰丙基的聚甲基硅油 )   (18) Silar 10 CP ( 含100% 氰丙基的硅油 )   (19) OV-275 ( 含 100% 氰乙基的硅油 )。  他还推荐了最常用的 6 种气相色谱固定液如下表2。表2 最常用的6种气相色谱固定液  自从1979年弹性石英毛细管柱问世之后,毛细管气相色谱得到了迅速的发展。以毛细管柱代替填充柱的趋势日益明显,特别是1983年大内径厚液膜毛细管柱的发展和应用。而优秀的气-固色谱毛细管柱&mdash &mdash PLOT柱的出现把填充柱仅剩余的一点优势也给抵消了。  有人认为毛细管柱具有非凡的高柱效,对固定液的选择性就降低了要求,只要有三支毛细管柱(聚二甲基硅氧烷、聚乙二醇20M、氰基聚二甲基硅氧烷)就可以应付80%的分析任务。但是要解决高沸点复杂混合物、各种沸点相近的异构体,性质极为相近的光学异构体,必须要有新的、热稳定性极好的、重复性好的、有不同选择性的固定液,为此多年来研究人员合成了许名适用于毛细管柱的固定液。  二、硅氧烷是现时气相色谱固定液的主体  尽管使用和研究过的气相色谱固定液有千余种,以适应填充柱低柱效和高选择性的要求。但是对现代毛细管色谱柱而言,这些固定液合用者很少。其中尚可在毛细管色谱柱中使用的除去聚乙二醇外几乎都是聚硅氧烷类,因而在新的固定液合成中也还限于以聚硅氧烷作为骨架,同时引入不同的选择性基团。这是因为聚硅氧烷类固定液具有以下的优点:(1)热稳定性好 (2)成膜性能好 (3)玻璃化温度低,使用温度范围宽 ( 4)如在分子中有一定量的乙烯基则易于交联 (5)扩散性能好,传质阻力小,易获高柱效 (6)可在聚硅氧烷侧链上引入各种有机分子片段,调节选择性。从上世纪70年代至今,以聚硅氧烷类固定液为基础发展了一系列优秀的气相色谱固定液。  (一)热稳定性好的固定液  目前有许多高沸点复杂混合物的分离要使用耐高温的毛细管色谱柱,如石油中碳数高达100的烃类,食品中的甘油三酸酯,环境污染物中六、七环多环芳烃等,均需要热稳定性极好的固定液。过去用的固定液几乎没有能经受370℃高温的。为此近年来出现了一些可在400℃左右使用的毛细管柱固定液。  (1)耐高温聚二甲基硅氧烷  有人利用涂有聚二甲基硅氧烷的毛细管柱,在390℃下分离碳数高达90的烃类。用程序升温到430℃ ,可使100-110个碳原子的烃类流出色谱柱。  前几年VIBI公司使用窄分布的聚二甲基硅氧烷(Unimolecular Low Bleed VB-1),它的特点是纯化预聚体除去低聚物,聚硅氧烷链上有支链,减少交联剂量,使用全部交联原理把端基也纳入,使其交联行成一个网络整体,没有低分子化合物。  (2)使用交联的聚硅氧烷固定液提高其热稳定性  在毛细管柱进行原位交联(固相化)是提高液膜稳定性的重要途径,也是制备抗溶剂冲洗的必要手段。但是一些苯基含量高的聚甲基硅氧烷,如OV-17、OV-25、以及OV-225难以用引发剂使之交联,但如引入一定量的乙烯基后它们可以交联,所以在研究毛细管色谱用固定液时,往固定液分子中引入乙烯基或使用端羟基聚硅氧烷固定液。  (a)引入乙烯基  早在80年代初,M.L.Lee研究组和Blomberg研究组就研究把乙烯基引入含苯基和氰丙基的聚硅氧烷的分子中使之易于交联。因为很早人们就知道含有乙烯基的聚硅氧烷很容易被过氧化物或其它引发剂使之交联的。例如在含50%苯基的聚硅氧烷中引入1%的乙烯基,在含70%苯基的聚硅氧烷中引入4%的乙烯基,就可以在加入过氧化物引发剂的情况下较为容易地进行交联。对含有苯基和氰丙基的聚硅氧烷,Markeides等人采用先制备含有乙烯基的预聚体,然后再在柱中进行原位交联。对这类固定液可采用过氧化物、偶氮化合物,甚至臭氧都可以使之引发交联。  (b)用端羟基聚硅氧烷固定液交联并和毛细管壁进行键合  1983年Verzele提出用端羟基的聚硅氧烷固定液。1985年Blum又进一步研究了非极性和中等极性的聚硅氧烷(以羟基为端基)的固定液,以及毛细管柱的制备工艺问题。1986年Lipsky等人首次把端羟基聚二甲基硅氧烷涂渍在弹性石英毛细管柱上,石英柱的外涂层不用聚酰亚胺,而使用金属铝,端羟基聚二甲基硅氧烷在高温下加热(375-400℃),形成交联并键合的液膜。这一色谱柱在8-12h内逐渐从350℃升温到425℃。利用这种色谱柱分离原油组分,程序升温可达425&mdash 440℃。  (3)利用硅氧烷/硅亚芳基共聚物提高热稳定性  在聚硅氧烷中如把主链中的氧原子用亚苯基取代,它的热稳定性就会提高,这类化合物用作气相色谱固定液可以耐高温,其结构如下图1:图1 硅氧烷/硅亚芳基共聚物结构  其热稳定性当R及R为苯基时提高,见下表中的数据。据Buijten等的研究结果,用这类化合物可涂渍出高效毛细管柱,涂渍效率达102%。这种色谱柱可在370 ℃下分离多环芳烃. 下表是硅氧烷/硅亚芳基共聚物在氮中热重分析数据。目前在GC/MS中使用最多的含5%苯基的硅氧烷/硅亚芳基共聚物,硅氧烷/硅亚芳基共聚物的热性能见表3。如DB-5MS色谱柱就是使用这类固定液。表3 硅氧烷/硅亚芳基共聚物在氮中的热重分析数据  (4) 在聚硅氧烷链中引入硼烷提高热稳定性  在硅氧烷链中引入十硼烷,可以提高固定液的耐热性,现在网上有信息显示,北京绿百草科技提供信和固定相Dexsil 300 GC,该固定相主要用于药物、三酸甘油酯和醚、高沸点脂肪烃、高沸点烃、甾族化合物、杀虫剂和糖类。  Dexsil有三个品种及其结构和极性如下表4:表4 三个品种Dexsil的结构及极性  HT-5 高温固定液就是Dexsil 400 GC 固定液制备的色谱柱,用以进行模拟蒸馏的色谱图2:图2 DB-HT Sim Dis 色谱柱的模拟蒸馏色谱图  色谱柱:DB-HT Sim Dis 5 m x 0.53 mm I.D., 0.15 &mu m  载气:氦,18 mL/min, 在 35下测定  拄温:30-430 ℃,程序升温,10℃/min  检测器温度:FID 450 ℃  三、极性固定液  小分子的极性固定液极性最强的是b,b-氧二丙氰,但是它的耐温性很差,于是人们就研究各种极性高的高聚物,聚乙二醇20M (即分子量为20000的聚乙二醇)是使用最多中等极性的固定液。多年来人们知道往聚硅氧烷分子中引入苯基可以提高极性,所以上世纪七八十年代OV公司就合成了含不同数量苯基的甲基苯基聚硅氧烷固定液,OV-7是较早使用的含20% 苯基的甲基聚硅氧烷固定液,又如 SE-54 (含5% 苯基),OV-17 (含 50% 苯基),OV-25 (含 75% 苯基,含5% 苯基的聚二甲基硅氧烷)是各个公司制备毛细管柱的主要气相色谱固定液,如安捷伦公司的 HP-5、DB-5. Restke公司的Rtx-5 SGE公司的BP-5 Supelco公司的SPB-5 PerkinElmer公司的PE-2等。OV-17在农残分析中多有使用,相当于安捷伦公司的DB-17, Restke 公司的 Rtx-50,SGE公司的 BPX-50, Supelco公司的 SP-2250,使用DB-17ms(用于GC/MS的色谱柱)分析22种杀虫剂的色谱如图 3(安捷伦公司的图谱)。图3 使用DB-17ms分析22种杀虫剂的色谱图  另外往聚硅氧烷分子中引入氰乙基、氰丙基、三氟丙基等可提高其极性。如 OV-275,Silar10C ,OV-1701 ,OV-210 。OV-275,Silar10C是含100% 氰乙基或氰丙基的聚甲基硅氧烷,OV-1701是含7% 氰丙基和7% 苯基的聚甲基硅氧烷 ,OV-210含三氟丙基的聚甲基硅氧烷。但是这类种固定液不易涂渍,也不易交联,所以多年来人们研究易于涂渍、易于交联的含高氰丙基的聚硅氧烷固定液,本世纪多个公司有所突破,制备成功各种各样的极性固定液和毛细管色谱柱。用OV-1701涂渍的毛细管色谱柱DB-1701分离22种杀虫剂的色谱见图4(安捷伦公司的图谱)图4 DB-1701 分离22种杀虫剂的色谱图  各种固定液使用频率有很大的差别,国外有人统计各类固定液在色谱柱中使用的百分比见表5。表5 五类典型气相色谱固定液的使用情况  四、选择性固定液  选择性固定液是近年来研究最多的气相色谱固定液,而且主要是针对手性异构体的分离。因为化合物的手性特征十分普遍,它在医药,农药应用中具有重要意义,所以对分析手性化合物提出迫切要求。而分离对映异构体的核心是寻找合适的手性固定相。气相色谱中手性固定相一般讲有三大类:第1类是手性氨基酸的衍生物 第2类是手性金属配合物 第3类是环糊精衍生物和其他主客体相互作用固定液,如冠醚类、杯芳烃类固定液。  第1类和第2类手性固定相有不少好的固定相,例如1978年有人把手性氨基酸的衍生物接枝到聚硅氧烷上,并有商品色谱柱上市,即把L-缬氨酸-特丁酰胺接枝到聚硅氧烷上,商品名&ldquo Chirasil-Val&rdquo 。这一固定液可以使用到220℃。特别适用于氨基酸手性异构体的分离,以及对手性胺类、氨基醇类、&alpha -羟基基酸酰胺类的分离。但是近年来大量研究的手性固定液的、能成为商品毛细管的只有环糊精(CD衍生物固定液。基于美国密苏里-罗拉大学的环糊精研究者Armstrong的研究结果,1990年美国的ASTEK公司推出一套CD毛细管色谱柱,典型的有下列9种,见表6。表6 ASTEK公司的9种环糊精衍生物毛细管商品柱  五、近年商品柱所使用的新固定液  近几年在气相色谱的进展中只有气相色谱固定相的发展有所突破,即室温离子液体的研究和用它们制备的商品化气相色谱柱 金属有机框架化合物用于气相色谱固定相的研究有很大进展 碳纳米管作气相色谱固定相的研究也所发展,但是后二者应属于气-固色谱固定相,而且还没有商品化色谱柱的出现,所以本章暂不讨论。  室温离子液体是在常温下呈液态的离子型化合物,常由较大的有机阳离子( 如烷基咪唑盐、烷基吡啶盐、烷基季铵盐、烷基季膦盐) 和相对较小的无机或有机阴离子( 如六氟磷酸根、四氟硼酸根、硝酸根)构成。室温离子液体所以能在许多领域获得广泛的应用,是因为它的热稳定性好、粘度高而且随温度变化的波动小、表面张力小、蒸汽压力低、物理性能可变换幅度大、有成千上万的品种可供选择。而这些性能正好符合气相色谱固定相的要求,所以选择它作气相色谱固定相是很自然的事。下表7是Supelco公司的商品离子液体固定相的牌号和极性(J Chromatogr A, 2012,1255:130-144)。表7 几种商品离子液体固定相的极性(Supelco公司)  *相对极性数=(Px x 100)/ PSLB-IL 100= McRynolds 极性乘以100再除以SLB-IL 100的McRynolds 极性  小结:  气相色谱固定液是气相色谱仪的核心和灵魂,也是迄今为止气相色谱不断研究的课题之一。现在聚硅硅氧烷类固定液是气相色谱固定液的主体,其中含5%苯基的聚甲基硅氧烷占有半壁江山,而极性固定相使用较多的是聚乙二醇固定液和含氰丙基、三氟丙基聚甲基硅氧烷的固定液。选择性固定液目前有商品柱的主要是环糊精衍生物固定液,近年发展和研究最多并成为商品柱的新型固定液主要是室温离子液体固定液。下一章,我将为大家讲述气相色谱固体固定相的今夕。(未完待续)  (作者:北京理工大学傅若农教授)
  • RESTEK推出全新Pinnacle液相色谱柱
    pinnacle db c18高纯碱去活硅球由restek生产 单层c18键和相。疏水c18键合相适合宽范围化合物,从酸性至偏碱性。粒径(μm):1.9、3、5,球型孔径(?):140碳载量(%):11封尾:是ph范围:2.5 - 8温度上限(°c):80可以替换hypersil bds c18 和 pinnacle ods amine 货号粒径长度内径包装94142521.9 μm50 mm2.1 mmea.94142121.9 μm100 mm2.1 mmea.94143153 μm100 mm4.6 mmea.94145655 μm150 mm4.6 mmea.94145255 μm200 mm4.6 mmea.94145755 μm250 mm4.6 mmea. pinnacle db c8 高纯碱去活硅球由restek生产。单层c8键合相。与pinnacle db c18相似,但是烷烃链更短,对疏水性化合物保留更弱一些。保留弱,在分离度能接受的情况下,可以相应的缩短分析时间。粒径(μm):1.9、3、5,球型孔径(?):140碳载量(%):6封尾:是ph范围:2.5 - 8温度上限(°c):80货号粒径长度内径包装94132521.9 μm50 mm2.1 mmea.94132121.9 μm100 mm2.1 mmea.94133153 μm100 mm4.6 mmea.94135655 μm150 mm4.6 mmea.94135255 μm200 mm4.6 mmea.94135755 μm250 mm4.6 mmea. pinnacle db 氰基 高纯碱去活硅球由restek生产。氰基键合相,适用于宽范围的化合物从酸性化合物至弱碱性化合物。也可以作为c18色谱和c8色谱柱的确认柱。可以用在正相和反相环境下。粒径(μm):1.9、3、5,球型孔径(?):140 碳载量(%):4封尾:是ph范围:2.5 - 8 温度上限(°c):80氰基键合相,适用于宽范围的化合物分析。可以作为c18色谱和c8色谱柱的确认柱可以用在正相和反相环境下可以替换hypersil bds cyano 和pinnacle cyano货号粒径长度内径包装94162521.9 μm50 mm2.1 mmea.94162121.9 μm100 mm2.1 mmea.94165655 μm150 mm4.6 mmea.94165255 μm200 mm4.6 mmea.94165755 μm250 mm4.6 mmea. pinnacle db biphenyl 高纯碱去活硅球由restek生产。pinnacle db苯基柱提供和长链烷烃柱不同的选择性,尤其是对芳香烃化合物。可以替换hypersil bds phenyl 和 pinnacle phenyl amin。粒径(μm):5,球形孔径(?):140碳载量(%):8封尾:是ph范围:2.5 - 8温度上限(°c):80 货号粒径长度内径包装94092521.9 μm50 mm2.1 mmea.94092121.9 μm100 mm2.1 mmea.94093153 μm100 mm4.6 mmea.94095655 μm150 mm4.6 mmea.94095255 μm200 mm4.6 mmea.94095755 μm250 mm4.6 mmea. pinnacle db pfp propyl 五氟苯基团键和与高纯碱去活球型硅胶基体上。对宽范围的化合物有很好的峰形,包括核苷、核苷酸类和卤代化合物。粒径(μm):1.9、3、5,球型孔径(?):140碳载量(%):6封尾:是ph范围:2.5 - 8温度上限(°c):80对宽范围的化合物有很好的峰形,包括核苷、核苷酸类和卤代化合物货号粒径长度内径包装94192521.9 μm50 mm2.1 mmea.94192121.9 μm100 mm2.1 mmea.94193153 μm100 mm4.6 mmea.94193653 μm150 mm4.6 mmea.94195655 μm150 mm4.6 mmea.94195255 μm200 mm4.6 mmea.94195755 μm250 mm4.6 mmea. pinnacle db aqueous c18严格的碱去活填料,在疏水长链上键和极性基团。高度碱去活、独特的选择性可以减少流动相添加剂的使用。粒径(μm):1.9、3、5,球型孔径(?):140 碳载量(%):6封尾:否ph范围:2.5 - 8温度上限(°c):80货号粒径长度内径包装94182521.9 μm50 mm2.1 mmea.94182121.9 μm100 mm2.1 mmea.94183153 μm100 mm4.6 mmea.94183653 μm150 mm4.6 mmea.94185655 μm150 mm4.6 mmea.94185255 μm200 mm4.6 mmea.94185755 μm250 mm4.6 mmea. pinnacle ii pah专为多环芳烃分析设计。pinnacle ii pah键合相对epa 610列表的16种pahs化合物有很好的空间选择性。每一批pinnacle ii pah填料,都按照epa610方法,使用简单的水/乙腈流动相严格测试。此款填料基于restek自己生产的硅球键和的,所以能够完全的控制质量和重现性。可以替换pinnacle pah色谱柱。pinnacle ii pah是分析pah的可靠、节约的选择。粒径(μm):4,球型孔径(?):110封尾:是ph范围:2.5 - 8温度上限(°c):80专为多环芳烃分析设计 货号粒径长度内径包装92194654 μm150 mm4.6 mmea.92194254 μm200 mm4.6 mmea.92194754 μm250 mm4.6 mmea.
  • 傅若农:酒驾判官—顶空气相色谱的前世今生
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。  第一讲:傅若农讲述气相色谱技术发展历史及趋势  第二讲:傅若农:从三家公司GC产品更迭看气相技术发展  第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状  第四讲:傅若农:气相色谱固定液的前世今生  第五讲:傅若农:气-固色谱的魅力  第六讲:傅若农:PLOT气相色谱柱的诱惑力  很多人是通过酒驾司机血液中酒精含量检测知道&ldquo 顶空进样气相色谱&rdquo 这一名称的。可能顶空进样气相色谱这一方法应用较多之一也是检测酒驾人员血液中的酒精含量(使用公安部的法定标准GA/T842-2009 进行检测)。  其实顶空进样气相色谱现在是应用非常广泛的一种分析方法,如果你用&ldquo 顶空进样&rdquo 这一关键词检索&ldquo 知网&rdquo 就会有两千多篇文章 在仪器信息网上的仪器展播中有关顶空进样的仪器有50多种,再看下面一张从1990年到2001年发表的有关顶空气相色谱文章的增长趋势图,12年里发表文章的总数达到4000篇,可见这一方法的应用有多么广阔。图 1 1990-2001年顶空进样气相色谱文献增长趋势HS-GC 全部顶空气相色谱 Dynamic 动态顶空气相色谱,SPME 固相微萃取顶空气相色谱( TrAC 2002, 21:608)  1 顶空进样气相色谱的起源  这里我简要地讲述一些顶空进样气相色谱的故事。  其实顶空进样气相色谱由来已久,先給大家讲一个故事:在 1958&ndash 1959 冬季 Leslie S. Ettre (国际知名色谱学家,匈牙利人,当时在Perkin-Elmer 公司作应用研究工程师),有一个马铃薯片公司的化学家要求他给这个公司设计一个用 GC 分析马铃薯片在贮存过程中变质后产生特有怪味的方法,用以检测马铃薯片变质的程度。几天后 Ettre 收到马铃薯片公司给他发来的一个大箱子样品,箱子里面有 144 个马铃薯片的袋子,这是他们可以运输的最少数量了,Ettre 把一些马铃薯片袋存放在室温下,另外一些马铃薯片袋存放在热的屋子里。几天以后 Ettre 打开常温和高温屋子存放的马铃薯片袋子,发现它们有很不同的气味。但是问题是如何把袋子里的气体注入到色谱仪里,当时气体进样常规的方法是使用气体进样阀,但是进样阀需要有正压才行。Ettre 就使用了一个医用注射器(0.5&ndash 1 mL),当时还没有微量注射器,用注射器针刺穿马铃薯片袋子吸取其中的0.5&ndash 1 mL 气体,注射到气相色谱仪中。的确,不同的马铃薯片袋子中的气体得到的色谱是不一样的。自然这一方法就是顶空气相色谱的方法了。据 Ettre 称 GC 中顶空进样的第一篇论文是在 1960 年一月份的 Food Technology 上由 Stahl 等人发表的,( W.H. Stahl, W.A. Voelker, and J.H. Sullivan, Food Technol. 1960,14 :14&ndash 16 ),文章的标题是&ldquo 罐头顶空气体(主要是氧气)的测定&rdquo 。  第一篇有关顶空进样的应用文章是在 1939年发表的,是 R.N.Harger 等人(印第安纳大学生物化学和药物学系)在一篇美国生物化学家学会的33届年会的报告(J. Biol. Chem.1939, 128:xxxviii&ndash xxxix )中叙述的,他们叫做&ldquo 气体测量法&rdquo (aerometric method),用来快速测定水和体液中的乙醇。这一方法,把动态和静态方法结合起来,把液体样品上面的气体通过一个硫酸-高锰酸盐试剂(进行氧化还原测定),用以定量测定乙醇的含量。作者们还用这一方法测定了空气-水体系在 0&ndash 40 ° C 的温度范围内的分配系数。  把顶空进样和气相色谱结合起来的分析开始于 1958 年的 Amsterdam 国际会议上,是 比利时 Schelle 电站的 Bovijn 等人用这一方法分析高压锅炉水中微量( 1-ppb 数据级)的烃类,取一部分平衡下的气相样品到气相色谱仪中,用热导池进行检测。据作者说这一装置在文章发表前在电厂已经运转了一年多。  Stahl 等人发表的标题为&ldquo 罐头顶空气体(主要是氧气)的测定&rdquo 文章中,他们是把罐头顶部刺一个孔,用注射器抽取 0.5&ndash 1 mL 顶空的气体注入气相色谱仪进行分析。显然 Stahl 的工作推动了 Beckman 公司开发出一种设备用于罐头顶空气体或其他密闭空间气体的测定(&ldquo Beckman Headspace Sampler, bulletin number 7012,&rdquo Beckman Scientific and Process Instruments Division (Fullerton, California,September 1962).)。  这一装置有一个带有刺孔针的抽取样品气的密闭容器,刺入要分析的罐头罐时可以把顶部气体吸入此密闭容器中,这一装置所用的原理是测定罐中存在的氧气,为了测定这一装置连接到一个极谱测定氧的传感器,并连接到直接读数的显示器上。(值得一提的是这一氧传感器也用于探测水星计划的空间舱中)。此外,气体样品可以通过这一容器侧面的橡胶隔垫用注射器抽出来,用于气相色谱分析,图 2 就是这一装置的照片图。这一仪器几乎被人们遗忘了。图 2 顶空取样容器照片  2 顶空进样气相色谱的基本原理和类型  顶空气相色谱(GC headspace Analysis,GC-HS analysis ) 是指对液体或固体中的挥发性成分进行气相色谱分析的一种间接测定法,它是在热力学平衡的蒸气相与被分析样品同时存在于一个密闭系统中进行的。例如测定血液中的乙醇,把血样置于一个密闭恒温的样品瓶中,测定恒温后样品瓶蒸气相中的乙醇浓度,通过校准曲线计算血样中的乙醇含量。这一方法从气相色谱仪角度讲,是一种进样系统,即&ldquo 顶空进样系统&rdquo 。有不少仪器公司有商品的顶空进样系统。有关顶空气相色谱分析的名称,美国称为:GC headspace Analysis,前苏联的文献称为: Equilibrium Vapour Analysis,德国叫做 Dampfraumanalyse ( 英文为:Vapour Volume Analysis ) 。我国一般称为:顶空气相色谱分析,但早期有人称为: &ldquo 液上气相色谱分析&rdquo ,这样的名称不全面,因为有不少样品是固体。所以现在统一名称还是用&ldquo 顶空气相色谱分析&rdquo 。  有关顶空进样气相色谱原理详细的描述由于篇幅的关系这里就不讲解了,需要了解的读者可以读读早期出版的书,在国内全面介绍顶空进样气相色谱分析的书有 Hachenberg等1977年出版的 Gas chromatographic headspace Analysis(气相色谱顶空分析),翻译本为&ldquo 液上气相色谱分析&rdquo (见下图3)。图4是1984年出版的原苏联列宁格勒国立大学(现名圣彼得堡大学)的 Ioffe 撰写的&ldquo 气相色谱中的顶空分析及相关方法&rdquo 和1997年出版(修订版是2006年)的Kolb 等撰写的&ldquo 静态顶空气相色谱分析&rdquo 封面,。图3 1977年(中译本1981年)出版的顶空气相色谱书图4气相色谱中的顶空分析及相关方法(Ioffe等)和 静态顶空气相色谱(B. Kolb 等)  顶空进样气相色谱的类型有:  (1)静态顶空气相色谱:所谓静态顶空气相色谱是在一个密闭恒温体系中,液汽或固汽达到平衡时用气相色谱法分析蒸气相中的被测组分 。如下图5图5 静态顶空气相色谱示意图1&mdash 注射器 2&mdash 密封隔垫 3&mdash 螺帽 4&mdash 容器 5&mdash 样品 6&mdash 恒温浴 7&mdash 温度计  (2)动态顶空气相色谱:也叫做吹扫-捕集(Purge-Tranp)分析法,这一方法是用惰性气体通入液体样品(或固体表面),把要分析的组分吹扫出来,使之通过一个吸附剂进行富集,然后再把吸附剂加热,使被吸附的组分脱附,用载气带到气相色谱仪中进行分析。如图6的示意图。图 6 动态顶空气相色谱示意图1&mdash 捕集管 2&mdash 冷却水 3&mdash 样品管 4&mdash 水浴 5&mdash 洗气瓶  (3)固相微萃取(SPME)顶空气相色谱:这种方法是在静态顶空瓶顶空蒸汽中装一支固相微萃取头,在一定温度下吸附顶空重的蒸汽分子一定时间,然后把固相微萃取头取出,插入气相色谱仪的进样口中,进行气相色谱分析。如下图7所示:图7 固相微萃取(SPME)顶空气相色谱示意图(Forensic Sci Intern 2000,107:129)左图4ml 顶空瓶,内装10mg头发,内标和1mL 4%的NaOH,0.5gNa2SO4,使头发消化预热30min。中间图:顶空吸附30min。右图:在气相色谱仪进样口脱附。  固相微萃取(SPME)装置如下图8所示:图8 固相微萃取装置示意图  (4)一滴溶剂顶空进样气相色谱:这种进样方式类似于SPME顶空进样,只是把固相微萃取进样装置换成一支注射器,在注射器针头处悬一滴萃取用溶剂液滴,如下图9所示:图 9 一滴溶剂顶空萃取示意图(J Chromatgr A 2007,1152:184)  3 静态顶空气相色谱的方法  静态顶空最简单的方式是在一个 恒温系统(空气浴、水浴、甘油浴或金属块加热,. 样品瓶多为玻璃样品瓶,加可穿刺的密封盖,瓶体积为十至数十毫升,. 注射器宜用气体注射器或气密性较好的医用注射器。样品在恒温器中于一定温度下加热一定时间,取蒸汽样注入气相色谱仪进行分析,当然在转移中由于温度降低会出现误差。所以现在多用各种顶空进样器连接在气相色谱仪上,通过保温管线转移到气相色谱仪中。  顶空气相色谱进样必须从密闭的样品瓶的顶空取样到气相色谱仪中,要控制取样的重复性是至关重要的,常使用压力平衡进样。所谓平衡压力进样就是使用惰性气体往恒温的密闭样品瓶中加压,然后让受压的顶空气体在一定的时间里膨胀到色谱柱中。依靠控制压力和时间可以很精确地从样品瓶中吸取一定容积的顶空气体样品。这一方法叫做&ldquo 平衡压力进样&rdquo ,平衡压力进样的过程如图 10所示。(a)恒温样品瓶和进样针是分开的,(b) 通入气体加压,(3)关闭载气,顶空瓶中的气体膨胀到色谱柱中。图 10 平衡压力进样的过程  根据上述原理P-E公司开发了顶空气相色谱自动进样器F-40,于1967年在德国法兰克福举行的化工展览会上展出,见图11。近年有大量各种各样的顶空进样器出现。图 11 F-40自动顶空进样器(L.S. Ettre, LC-GC,2002, 20(12), 1121)  4 静态顶空进样方法的应用  静态顶空的应用极为广泛,遍及各个领域,如食品、医药、环境、农业等,表1列举了近年利用顶空气相色谱进行分析检测的文章,同时也看出大多使用各种顶空进样器完成分析。  自动顶空进样器有很多种,在仪器信息网上展播的就有50多种,那些是使用比较多的呢,表1列举了60篇国内期刊上发表有关顶空进样气相色谱文章。从表中可以看出顶空进样气相色谱用于各种各样的分析中。第60篇是最新一期色谱杂志上的文章,他们使用Agilent 7697 自动顶空进样器和Agilent 7000气相色谱-三重四极杆质谱仪分析了化妆品中常见及禁用的36种有机溶剂,使用双柱(极性的VF-1301柱和非极性的DB-5ms柱,利用NIST MS search 2.0作检索工具,研究了36种挥发性有机溶剂的分析方法。表 1 顶空进样气相色谱论文所使用的顶空进样器序号题名使用顶空进样器文献1测定尿中三氯乙酸的自动顶空气相色谱法Agilent 7694E 自动顶空进样器李添娣等,职业与健康,2012,28(6):1982-19832顶空-毛细管气相色谱法测定葡萄酒中的甲醇TurboMatrix 40自动顶空进样器曾游等,现代食品科技,2013,29(2):405-4083顶空-气相色谱法测定水产品中一氧化碳TurboMatrix HS 40 Trap 顶空自动进样器王萍亚等,浙江海洋学院学报(自然科学版),2012,31(6):518-520,5354顶空- 气相色谱同时测定比卡鲁胺原料药中6 种有机溶剂残留量HP7694E 顶空进样器许瑞征等,现代仪器,2004,(3):15-165顶空萃取-气相色谱-质谱法分析芝麻油中的挥发性成分Agilent 7694E 自动顶空进样器陈俊卿等,质谱学报,2005,26(1):49-516顶空进样一毛细管气相色谱法侧定啤酒的香味组分Agilent 7694E 自动顶空进样器王莉娜等,啤酒科技,2001,(1):9-117顶空进样-气相色谱法测定大气中吡啶的研究DANI HSS 86.50 顶空进样器王艳丽等,中国环境监测,2013,29(2):62-648顶空进样器在快速检测食品美拉德反应风味物质中的新应用TurboMatrix HS 40 Trap 顶空自动进样器钟罗宝等,现代食品科技,2009,25(9):1091-10959顶空气相色谱-质谱联用法分析粪便中挥发性脂肪酸瑞士CTC CombiPAL 顶空进样器江振作等,分析化学,2014,42(3):429-43510顶空气相色谱法测定生物柴油中的微量甲醇Agilent 7694E 自动顶空进样器李长秀等,石油化工,2012,41(10):1196-120011顶空气相色谱法测定食品包装中残留乙烯TurboMatrix HS 40 Trap 顶空自动进样器周相娟等,食品工程,2012,(6):128-12912顶空气相色谱法测定药品中残留溶剂的影响因素考察Agilent 7694E 自动顶空进样器秦立等,药物分析杂志,2005,25(7):823-82613顶空气相色谱法快速检测卫生纸中的细菌含量Agilent 7694E 自动顶空进样器田迎新等,造纸科学与技术,2012,31 (2):59-6214顶空气相色谱内标法测定血液中乙醇含量Agilent 7694E 自动顶空进样器邹黎,检验医学与临床,2011,8(2):2761-276215顶空气相色谱.质谱法测定玩具中的10种挥发性有机物Agilent 7694E 自动顶空进样器吕庆等,色谱,2010,28(8):800-80416顶空气相色谱一质谱法测定婴幼儿食品中的呋喃Agilent 7694E 自动顶空进样器刘平等,色谱,2008,26(1):35-3817纺织品中挥发性有机物(VOCs) 的检测-静态顶空气相色谱质谱法Agilent G1888自动顶空进样器:涂貌贞,中国纤检,2009,(9):66-6819基于HS-GC-MS 的棉织物鱼腥味检测Agilent 7694E 自动顶空进样器王晓宁等,纺织学报,2011,32(2):68-7220利用气相色谱顶空装置测定红磷储存过程中生成的磷化氢Agilent 7694E 自动顶空进样器陈海群等,色谱,2004,22(4):442- 44421两种轻烃分析方法(&ldquo PTV切割反吹&rdquo 和&ldquo 顶空&rdquo )的对比研究意大利 FISONS 8500 气相色谱仪, HS800 顶空自动进样装置肖廷荣等,色谱,2001,19(4):304-30822啤酒中挥发性风味物质的分析及风味评价TurboMatrix 40自动顶空进样器王志沛等,酿酒科技,2001,21,(4):59-6123使用自动顶空进样器测定梨中代森锰锌残留量的电子捕获气相色谱法HT2000 自动顶空进样器(意大利)聂春林等,精细化工中间体,2010,40(6):63-6624水中12种卤代有机物的自动顶空- 气相色谱测定方法研究Agilent 7694E 自动顶空进样器张燕等,中国卫生检验杂志,2010,20(11):2716-271825水中54种挥发性有机物的顶空- 气相色谱法研究自动顶空进样器, 成都科林公司高玲等,中国卫生检验杂志,2010,20(7):1645-164826水中三氯甲烷、四氯化碳的QHSS-40 自动进样顶空气相色谱测定法QHSS-40 全自动顶空进样器(QUMA Elektronik & Analytik GmbH)罗黎明,职业与健康,2012,28(14): 1722-172327血中乙醇的顶空气相色谱分析安捷伦1888型自动顶空进样器刘兆等,中国人民公安大学学报(自然科学版),2008,(4):18-1928衍生- 顶空气相色谱法测定化妆品中游离甲醛Agilent 7694E 自动顶空进样器环境与职业医学,2012,29(7):459-46129液液萃取- 顶空气相色谱法测定饮用水中卤乙酸Tekmar7000自动顶空进样器中国卫生检验杂志,2011,21(6):1338-134030乙基纤维素乙氧基含量的顶空气相色谱法测定HS86-50型自动顶空进样器,意大利DANI公司付时雨等,华南理工大学学报(自然科学版),2011,39(11):17-2131用顶空进样法分析烯烃废碱液中硫化物TurboMatrix HS 40 Trap 顶空自动进样器高巍等,齐鲁石油化工,2013 ,41 ( 3 ) :252 - 25432蒸气顶空富集装置- 自动顶空气相色谱法在海水中痕量苯系物检测中的应用顶空自动进样器( 瑞士CTC Analysis AG 公司)孙秀梅等,山东化工,2014,43(7):73-7633柱前衍生化顶空气相色谱法同时检测非布司他原料药中3 种微量有机酸G1888 型自动顶空进样器(美国安捷伦科技公司朱圣亮等,中国药房,2012,23(25) :2372-237334自动顶空-毛细管气相色谱法测定水中苯系物德国MS6多功能自动进样器刘俩燕,中国卫生检验杂志,2010,20 (8):1918-192035自动顶空-毛细管气相色谱法测定饮用水中11 种挥发性有机物Agilent G1888 顶空自动进样器、刘兰侠等,上海预防医学,2014,26(1):27-28,4836自动顶空-气相色谱法测定地表水中乙醛的方法研究Agilent 7694E 自动顶空进样器邢志贤等,河北工业科技,2010,27(3):143-145,17337自动顶空- 气相色谱法测定食品包装材料中残留氯乙烯单体Agilent G1888 顶空自动进样器、戴华等,中国卫生检验杂志,2011,21(1):36-3738自动顶空- 气相色谱法测定水质中苯系物的研究Agilent G1888 顶空自动进样器刘保献等,现代仪器,201,18(3):30-3339自动顶空- 气相色谱法测定水中甲醇的方法优化Agilent G1888 顶空自动进样器付翠轻等,中国环境监测,2012,28(4):61-6440自动顶空- 气相色谱法测定水中四乙基铅方法研究DANI HSS 86.50 顶空进样器王玲玲等,环境科学与技术,2014,37(5):99-10141自动顶空-气相色谱法检测食品包装材料中挥发性有机物TurboMatrix HS 40 Trap 顶空自动进样器方 益等,食品科技,2013,38(2):291-29542自动顶空-气相色谱法同时测定水中7种挥发性卤代烃TurboMatrix HS 40 Trap 顶空自动进样器王建蓉等,供水技术,2012,6(4):62-6443自动顶空- 气相色谱质谱联用技术测定化工原料中1,2-二氯乙烷TurboMatrix HS 40 Trap 顶空自动蔡志斌等,中国卫生检验杂志, 2013,23(3):622-624,62744自动顶空GC /MS测定血液中乙醇含量不确定度评定DANI HSS 86.50 顶空进样器周枝凤,中国法医学杂志,2010,25(1):43-4645自动顶空进样-气相色谱法测定柠檬酸中溶剂残留AutoHS自动顶空进样器(成都科林)李锋格,检验检疫学刊,2011,21(1):6-1046自动顶空毛细管柱气相色谱法测定食品包装中残留丙烯腈单体PE Turbo Matrix 40 Trap 自动顶空进样器周相娟等,食品科技,2008,(10):240-24247自动顶空毛细管柱气相色谱法同时检测生活饮用水中7 种挥发性卤代烃Tekmar 7000 自动顶空进样器周闰等,中国卫生检验杂志,2013,23(6):1417-141948自动顶空气相色谱法测定番茄酱中二硫代氨基甲酸酯的残留量AutoHS自动顶空进样器(成都科林)姚伟琴等,中国卫生检验杂志,2009,19(1):52- 5348自动顶空气相色谱法测定番茄酱中二硫代氨基甲酸酯的残留量AutoHS自动顶空进样器(成都科林)姚伟琴等,中国卫生检验杂志,2009,19(1):52- 5349自动顶空气相色谱法测定番茄酱中乙烯利的残留量AutoHS自动顶空进样器(成都科林)姚伟琴等,中国卫生检验杂志,2008,18(8):1537- 153850自动顶空气相色谱法测定化妆品中的甲醇Agilent 7694E 自动顶空进样器高建民等, 化学分析计量,2003,12(3):7-1051自动顶空气相色谱法测定食品包装材料中残留丙烯腈单体AutoHS自动顶空进样器(成都科林)刘俊等,中国卫生检验杂志,2008,18(10):2021-202252自动顶空气相色谱法测定水中苯系物的研究AOC - 5000 液体自动进样、顶空、固相微萃取三合一自动进样器王臻等,中国热带医学2008,8(1):128-12953自动顶空气相色谱法测定血液中的乙醇Tekmar 7000 自动顶空进样器刘文卫等,1502 中国卫生检验杂志 2012,22(7):1502-1503 ,150654自动顶空气相色谱法测定液体餐具洗涤剂中的甲醇PE Turbo Matrix 40 Trap 自动顶空进样器王禄等,日用化学品科学2013,36(12):21-2455自动顶空气相色谱法测定饮用水中三氯甲烷和四氯化碳Combi PAL 自动顶空进样器杨志国等,中国卫生检验杂志 2013,23(3):589-59156自动顶空气相色谱法间接测定水中的苦味酸顶空自动进样器( 瑞士CTC Analysis AG 公司)邵国健等,中国卫生检验杂志, 2012,22(6):1275-1276.128057自动顶空气相色谱法快速测定饮用水中多种挥发性卤代烃Agilent 7694E 自动顶空进样器叶金伟等,工业用水与废水,2010,41(2): 90-9158自动顶空气相色谱法同时测定服装中残留丙烯腈和氯乙烯单体Agilent G1888 顶空自动进样器、刘俊等,中国卫生检验杂志2010,20(9):2164-216659自动顶空气相色谱法同时测定水中的甲醇乙醇丙酮和苯系物Agilent 7697 自动顶空进样器 邵红艳等,污染防治技术,2013,26(5):66-68,71 60化妆品中挥发性有机溶剂的通用检测方法Agilent 7697 自动顶空进样器 达晶等,色谱,2014,32(11):1251-1259  看看他们使用了那些自动顶空进样器。从表中可以看出使用较多的有Agilent 7694E 自动顶空进样器,Agilent G1888 顶空自动进样器,PE Turbo Matrix 40 Trap 自动顶空进样器,意大利DANI HSS 86.50 顶空进样器和国产成都科林公司的AutoHS自动顶空进样器。有关这些公司的进样器资料网上可以找到。图12是安捷伦公司的 7694E自动顶空进样器。图 12 7694E自动顶空进样器图 13 AutoHS自动顶空进样器(成都科林)图 14 PE Turbo Matrix 40 Trap 自动顶空进样器  由于篇幅的关系,有关吹扫捕集顶空进样、固相微萃取顶空进样、反应顶空进样,在下一讲继续讨论。
  • 食品亦需防疫,北京一公司进口猪肉和水果混检呈弱阳性
    2021年10月10日晚,北京西城区疾病预防与控制中心发布关于北京物美京门商贸有限公司西安门店进口猪肉和水果混检呈弱阳性相关情况的通报。10月9日,西城区委托第三方检测机构对进口冷链食品进行核酸检测,其中北京物美京门商贸有限公司西安门店的1件进口猪肉和龙眼、火龙果、脐橙、奇异果等4件进口水果涂抹混检的检测结果(10月10日报告)呈弱阳性。西城区立即启动应急响应机制,第一时间开展实验室复核、流行病学调查、相关物品与环境的采样检验、人员管控及环境消杀等处置工作。多批次采集水果和肉类样本,并扩大采集店内环境和相关人员样本,结果均为阴性。经核实,该批进口猪肉未销售。目前,该门店已暂停营业,相关产品下架封存。综合上述情况,经专家研判,风险较低。请在北京物美京门商贸有限公司西安门店于9月17日—22日购买过进口脐橙、9月29日—10月4日购买过进口龙眼、10月3日—8日购买过进口奇异果、10月5日—9日购买过进口火龙果的市民主动向所居住社区报告。
  • 傅若农:扭转乾坤—神奇的反应顶空气相色谱分析
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。 第一讲:傅若农讲述气相色谱技术发展历史及趋势第二讲:傅若农:从三家公司GC产品更迭看气相技术发展第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状第四讲:傅若农:气相色谱固定液的前世今生第五讲:傅若农:气-固色谱的魅力第六讲:傅若农:PLOT气相色谱柱的诱惑力第七讲:傅若农:酒驾判官&mdash 顶空气相色谱的前世今生第八讲:傅若农:一扫而光&mdash &mdash 吹扫捕集-气相色谱的发展第九讲:傅若农:凌空一瞥洞察一切&mdash &mdash 神通广大的固相微萃取(SPME)第十讲:傅若农:悬&ldquo 珠&rdquo 济世&mdash &mdash 单液滴微萃取(SDME)的妙用 我们在前面讨论了四讲和顶空分析有关的色谱分析方法,它们都是针对挥发和半挥发性物质的,也就是说难挥发和不挥发性物质是不可以用这些方法分析的。但是化学是一种很神奇的东西,可以扭转乾坤,本来不可为,但是用化学的力量可以变成可为。反应顶空分析就是可以把难挥发和不会发性物质进行顶空分析。  反应顶空分析是反应气相色谱的一个分支,另外两个大的分支是裂解气相色谱和衍生化气相色谱,反应气相色谱就是不可能进行气相色谱的对象经过化学反应,使被分析物转化为有挥发性的物质,从而可以用气相色谱进行分析它们。  2001年华南理工大学的柴欣生教授在美国亚特兰大佐治亚理工大学造纸科学技术研究院任职期间和朱俊勇教授等最先提出了反应顶空分析的概念 [(J. Chromatogr. A,2001, 909:249&ndash 257)(Snow N. H. TrAC,2002,21(9+10):608)]。之后2003年Guzowski等[J Pharm Biomed Anal, 2003,33:963-974] 也把相转化反应技术应用于顶空气相色谱,用以测定化学试剂中的羟胺。通过在醋酸钠缓冲溶液中与FeCl3反应,羟胺在单步反应中可以转变成氧化亚氮(N2O) ,产物气体N2O用电子捕获检测测进行测定。大家知道氧化亚氮(笑气)是比较稳定的化合物,用气相色谱测定很容易。  在之后的十几年里,柴欣生教授在结合制浆造纸、生物质、高分子合成等学科的研究中开发出许多用顶空气相色谱分析不挥发样品的新方法,开通了可以使用顶空气相色谱分析不挥发和难挥发化合物的道路。反应顶空气相色谱的应用1. 测定造纸厂黑液中的碳酸盐含量  碳酸盐和酸作用生成二氧化碳,用顶空气相色谱测定CO2含量估算样品中的碳酸盐量,用纯碳酸钠标准溶液进行仪器的标定(J. Chromatogr. A,2001, 909:249&ndash 257),测定方法如下:  把一个21.6 ml的样品瓶配以有隔垫的瓶盖,用130 ml/s流速的氮气吹扫此样品瓶2 min,以排除样品瓶空气中的CO2气,然后加入0.5 ml 2mol/L 的硫酸溶液,用注射器加入10&ndash 1000 ml样品溶液,把样品瓶置于自动进样器上,进行顶空分析。许多工业液体如浓缩的黑液,白液,和绿液可以直接进样,无需预处理。而固体样品必须先溶解成溶液之后进行分析。(1) 温度的影响  二氧化碳于20℃下在水中的溶解度为(体积比)1:0.878,而在25℃下在水中的溶解度为(体积比)1:0.759,所以提高温度可以减少它在水中的溶解度,把它从水溶液中释放出来,从而提高测定的灵敏度,在本研究中使用60℃,同时溶液有过量的酸保证可以把CO2气体全部释放出来。不过不能是使用太高浓度的酸以防腐蚀仪器。(2) 检测器线性和恒定的凝固相释放气体速率  这一方法的基础是在给定实验条件下从凝固相中释放出气体的速率时恒定的,大家知道热导池检测CO2在空气中浓度变化的范围,是在热导池的线性范围之内,可以用检测器的线性来考察从凝固相中释放CO2气体的速率是否恒定。用碳酸钠溶液作标准样进行试验,实验证明碳酸钠的浓度可以达100 &mu mol。实验证明从碳酸钠转化为CO2气体的速率是恒定的。(3) 顶空气体稀释变化对分析准确度的影响  用碳酸钠标准溶液加入量的变化测试顶空气体稀释变化对分析准确度的影响,顶空气体稀释度的变化,可以通过两种反应物的起始样品量的变化,来改变反应瓶中反应后的顶空体积(。作者进行了两组实验,用固定体积的硫酸(反应物R)溶液(VR=0.5 ml)与碳酸钠标准溶液反应。第一组实验使用9个碳酸钠标准溶液含有同样数量的碳酸钠1.06&mu g,但是他们的体积不同,从Vs=100&mu L 到350&mu L,同样数量碳酸钠反应后近似的顶空体积等于[VT-(VR+VS)],由于样品体积变化带来的顶空稀释度的影响可以用GC信号的变化来计算,对使用21.6 ml样品瓶来说,当样品体积从100&mu L到1100&mu L ,GC信号的变化不超过5%。使用的商品自动进样器是恒压近样,可以抵消一部分样品体积变化带来的影响。测定出的相对标准偏差只有1.3%,可以忽略不计,见表1.  表 1 样品体积变对准确度的影响(1) 空气中二氧化碳的影响  空气中含有二氧化碳,会对结果又影响,在标准空气中二氧化碳的量约为15&mu mol/L,在21.6mL样品瓶中含有约0.3&mu mol二氧化碳,这一量高于检测灵敏度0.1&mu mol,这样对低浓度样品就会有影响。为了提高测定准确度需要把顶空瓶中的二氧化碳排除,在加入反映了物之前用用一只23号注射针以氮气彻底吹扫顶空瓶,降低二氧化碳的浓度,结果说明氮气以130mL/min的速度吹扫2min就可以使二氧化碳降低到检测不出来的程度。(2) 测定精度  作者测定了碳酸钠标准和造纸厂黑液中二氧化碳的浓度,把100&mu L 0.1mol 的碳酸钠标准溶液分析5次,100&mu L造纸厂黑液也分析5次,其结果见表2,标准偏差分别为0.62%和3.74%。  表 2 测定了碳酸钠标准和造纸厂黑液中二氧化碳的精度 2 用顶空气相色谱测定样品中少量酸和碱的方法  柴欣生等[J Chromatogr A, 2005,1093 : 212&ndash 216]使用顶空气相色谱测定少量含酸和含碱样品,这次是与前面的方法相反,使用标准的碳酸氢钠溶液和酸性盐反应产生二氧化碳,用气相色谱的热导检测器测定二氧化碳的含量。(1) 测定使用的仪器和条件  所有的测定都使用HP-7694自动进样器和HP-6890毛细管气相色谱仪,用热导检测器进行检测。  色谱条件:  色谱柱:大内径涂渍二乙烯基苯聚合物的PLOT柱(GS-Q PLOT柱)  柱温:60℃  载气:He 3.1 mL/min  样品瓶用He加压0.2 min,  样品环注入样品0.2 min  样品环平衡 0.05 min  样品瓶装液体样品平衡2 min  样品瓶装固体样品平衡 10 min(2)样品分析步骤  (a)分析样品中的碱:取一定量的样品(液体或固体)加入一定体积的0.100 mol/L的盐酸标准溶液中,把样品中的碱中和掉,还有多余的盐酸标准溶液,用注射器取一定量的此溶液,注入含有4mL标准碳酸氢钠溶液的顶空样品瓶中,进行顶空GC分析。  (b)分析样品中的酸:用注射器取一定量的被测溶液,直接注入含有4mL标准碳酸氢钠溶液的顶空样品瓶中,进行顶空GC分析。  (3)分析条件的影响  (a)温度:60℃时二氧化碳的无因次分配系数大于1000,几乎全部从溶液中释放出来,所以能够用测定二氧化碳进行定量分析样品中的酸或碱。但是在高温下碳酸氢钠会分解。但是碳酸氢钠分解放出二氧化碳也是一个平衡反应,碳酸氢钠分解出来的蒸汽相和液相之间完全平衡,在一个给定的样品瓶密闭空间中需要约8 min,约有10%的碳酸氢钠分解为二氧化碳,所以这样会影响样品测定的准确度,特别是测定的酸含量较低时更为显著。分解与碳酸氢钠的浓度有直接关系,根据实验研究在一个密闭空间、短时间内分解出来的二氧化碳来的二氧化碳量远小于样品分解出来的二氧化碳的量,如图 1所示,在60℃时短时间内分解量很小。 图 1 碳酸氢钠分解出CO2随时间的变化  (b)空气中二氧化碳的影响  在本实验中采用进行空白试验的方法,通过校准抵消空气中二氧化碳的影响。  (c)液体样品的体积  一般来讲,往顶空样品瓶中加入较多的样品量,可以提高测定灵敏度,但同时需要过量的碳酸氢钠,使用现行的商品自动进样器,改变顶空体积就会就会影响检测结果,所以避免大幅度改变顶空的体积,例如在一个20mL的顶空瓶含有4mL碳酸氢钠溶液,使用的样品量为200&mu L,这样会使用顶空体积改变1.25%,对测量结果没有多大影响。对固体样品可以用制备成的溶液量来调节。(3)这一方法的准确度和精密度  使用现有的商品仪器进行反应顶空气相色谱的精密度和准确度与经典方法进行了对比,如表3和表4所示。表3 测定酸与滴定法的比较样品盐酸/(mol/L)相对偏差/%本方法滴定法1号溶液0.10020.10000.22号溶液0.04980.0500-0.33号溶液0.02470.0250-1.24号溶液0.01010.01001.0表4 测定碳酸钠与电导法的比较样品碳酸钠/%相对偏差/%本方法电导法1号黑液4.94.74.32号黑液23.224.1-3.73号黑液25.124.52.44号黑液42.042.8-1.93 用反应顶空气相色谱测定木纤维中羧基  在纤维材料中含有的羧基(COOHs)代表它的离子交换能力,即在加工过程中吸收金属阳离子的能力,它影响木纤维的膨胀和均匀性,从而有助于纤维的结合,有利于造纸助留剂的吸附,纸的电性能决定于木纤维中羧酸基团结合金属离子的数量。另一方面,被羧酸基团吸着的阳离子对纤维和纸张干燥时的变色机制有影响。这些羧酸基团对木纤维的改性起着重要作用,因为有很强的反应能力,对加成和取代反应至关重要,最后这些羧酸基团可以增加专用级别溶解木浆的粘度并降低纤维的溶解度。  所以对木纤维羧基含量的测定无论是基础研究还是应用研究都是至关重要的。柴欣生等开发了用反应顶空气相色谱分析木纤维中的羧基含量[Ind. Eng. Chem. Res. 2003, 42:L5440-5444],关键问题是优化分析条件,把羧基完全转化为气相色谱可以检测的挥发性物质,以提高测定的准确性。(1) 测定原理  木纤维上的羧基与碳酸氢钠反应,可以释放出二氧化碳,用气相色谱热导检测器进行检测分析,反应如下:(2) 测定使用的仪器和条件  所有的测定都使用HP-7694自动进样器和HP-6890毛细管气相色谱仪,用热导检测器进行检测。  色谱条件:  色谱柱:大内径涂渍二乙烯基苯聚合物的PLOT柱(GS-Q PLOT柱30m x 0.53mm )  柱温:60℃  载气:He 3.1 mL/min,使用不分流模式  样品瓶用He加压0.2 min,  样品环注入样品0.2 min  样品环平衡 0.05 min  样品瓶装液体样品平衡2 min  样品瓶装固体样品平衡 10 min  样品瓶如图2所示:图 2 反应顶空气相色谱测定木纤维中羧基的样品瓶(3)测定步骤  首先在室温下把纤维样品用0.100mol/L盐酸溶液处理1h,以匀速用磁搅拌器进行搅拌,烘干的纤维在酸溶液中的浓度为1.2%,然后把纤维样品在一个离心果汁萃取器中脱水浓缩,确定脱水纤维的浓度,这样就确定了纤维中残留盐酸的量。  取4mL 0.005mol/L标准碳酸氢钠和0.1mol/L NaCl的混合溶液,注入顶空测试瓶中,取一支长 2.54 cm 的针,穿过顶空瓶隔垫(如图2),称量0.15g脱水纤维置于隔垫里面的针上,样品不要和瓶中的溶液接触反应,把顶空瓶的隔垫盖紧,把针拔出,纤维样品就落入反应溶液中。(4)这一方法的准确和精密度  表4列出用反应顶空气相色谱分析木纤维中羧基的比较结果表4 顶空气相色谱分析木纤维中羧基的比较结果样品纤维中羧基含量/(mmol/g)相对偏差/%本方法滴定法1号样品0.07890.07860.352号样品0.06820.0739-7.113号样品0.04130.0415-0.574号样品0.06950.06940.045号样品0.08150.07558.016号样品0.06110.06100.107号样品0.02250.0241-6.878号样品0.05770.0581-0.69(1) 方法的进一步改进  两年后柴欣生教授的研究组又进一步把方法加以改进[Ind. Eng. Chem. Res. 2005, 44, 10013-10015],把样品制备(即样品酸化之后把样品进行水洗),反应试剂的浓度(即降低碳酸氢钠的浓度,减少它的分解),和样品加入方式(即直接加入样品)进行改进。新方法更为简洁、可靠、更为实用,可以用于非纤维状的样品。  (a)修改后的方法:取烘干后的纸浆样品0.2g 置于装有200mL 0.1mol/L盐酸溶液的烧杯中,在室温下用电磁搅拌混合 1 h,之后把纸浆样品用去离子水彻底清洗,除去残留的盐酸,测定洗涤水的pH值以确定是否清洗彻底,把清洗后的纸浆样品放在恒温恒湿的环境下进行空气干燥。根据纸浆含有羧基的量用分析天平称取0.03-0.08 g样品置于顶空样品瓶中,加入4 mL碳酸氢钠溶液后立即把瓶密封,摇动顶空瓶使样品分散到溶液中,之后置于气相色谱仪的自动进样器中,进行顶空气相色谱分析。  (b)如果样品中含有更强的酸,就会和碳酸氢钠溶液立刻反应产生出二氧化碳,所以既要把样品和碳酸氢钠溶液的混合在顶空瓶密封之后进行,因此设计了如图3的方式,即把碳酸氢钠置于一个小试管中,等顶空瓶加上隔垫盖之后,使之倾倒与样品反应。图3 测定纸浆中羧基的顶空样品瓶4 用反应顶空气相色谱测定氧脱木质素过程溶液中的草酸盐  ( JChromatogr A,2006,1122:209-214)  测定造纸过程中氧脱木质素液体中的草酸盐对研究工艺条件有重要作用,大家从基础分析化学知道,测定草酸盐用高锰酸钾标准溶液以滴定法进行测定,反应如下:  这一反应在提高温度是会加速反应,以高锰酸钾的消耗量进行定量,但是这一反应如果样品中含有还原物时不能使用,如有机物,氧脱木质素液体很复杂,其中的草酸盐不能用此法进行定量分析。但是柴欣生教授的研究组把反应顶空气相色谱【他们叫做&rdquo 相变反应&rdquo (Phase conversion reaction,PCR)顶空气相色谱】与他们以前研究的&ldquo 多次顶空萃取&rdquo (multiple headspace extraction)(用于测定造纸厂黑液中甲醇形成的动力学研究(J Chromatogr A,2002,946:177-183)气相色谱相结合来解决这一问题。  氧脱木质素液体中的草酸盐与酸性高锰酸钾反应很快便产生出二氧化碳,但是和其中的有机物经氧化反应产生出二氧化碳要慢得多,因此可以用测定后者产生规律和数据来修正测定氧脱木质素液体中的草酸盐含量的方法。(这一方法相对复杂一些,由于篇幅不做详述,有兴趣的可以阅读柴教授的原文)。  柴欣生教授的研究团队还有许多文章阐述反应顶空气相色谱的应用,这里无法一一介绍。  下面列出部分相关的文献供读者参考:序号题目原始文献1制浆过程废液挥发性有机化合物的生成规律(顶空气相色谱法)J. Pulp Paper Sci., 1999, 256-262.2顶空气相色谱分析复杂基质中的非挥发性物质J. Chromatogr. A, 2001, 909:249-257.3木质纤维羧基含量: 1.顶空气相色谱法测定羧基含量Ind. Eng. Chem. Res., 2003, 42: 5440-5444.4顶空气相色谱测定酸和碱组分J. Chromatogr. A, 2005, 1093:212-216.5顶空气相色谱测定木质素的甲氧基含量J. Agric. Food Chem., 2012, 60: 5307&minus 5310.6顶空气相色谱快速测定纸浆漂白废液的过氧化氢含量J. Chromatogr. A, 2012,1235:182-184.7顶空气相色谱测定丁二酸酐改性纤维素的取代度J. Chromatogr. A,2012,1229:302-304.8一种实用的顶空气相色谱法测定纸浆漂白废液的草酸根含量J. Ind. Eng. Chem., 2014,20:13-16.9一种新颖的顶空气相色谱法分析乙基纤维素的乙氧基含量Anal. Lett., 2012, 45: 1028-1035.10顶空气相色谱技术快速测定个护用品中的甲醛含量Anal. Sci., 2012, 28: 689-692.11顶空气相色谱测定以甲醛为原料的聚合物乳液中的残余甲醛含量J. Ind. Eng. Chem.,2013,19:748-751.12顶空气相色谱法检测纸浆中羰基含量的研究中国造纸, 2014,33(10): 36-39.13静态顶空气相色谱技术化学进展, 2008,20(5): 762-766.5 更多反应顶空气相色谱的应用  国内还有不少学者在许多领域使用反应顶空气相色谱解决诸多分析问题,下面列出一些用例。序号题目方法要点 1顶空进样-气相色谱法测定大气中吡啶的研究用硫酸溶液为吸收液采集大气中的吡啶,吸收液倒入20 mL 顶空瓶中,加入3 g 氯化钠,少量氢氧化钠,调节pH为12,密闭摇匀至所加盐全部溶解,于顶空进样器进样,气相色谱仪分析。王艳丽等,中国环境监测,2013,29(2):62-642顶空气相色谱法测定粮食中的氰化物称取试样5-10 g于100 ml顶空管中加入纯水至80 ml, 混匀, 在超声波清洗器中超声提取20 min, 取出, 分别加入磷酸盐缓冲溶液1.0 ml和1%氯胺T溶液0.25 ml, 立即用橡胶反堵胶塞密封, 混匀, 置于40℃恒温水浴中, 反应及平衡50 min, 抽取顶空气体100 &mu l注入气相色谱仪进行测定。刘宇等,中国卫生检验杂志2009,19(3):552-5533顶空气相色谱法测定膨化大枣中的亚硫酸盐含量将粉碎样品放入500mL 顶空瓶中, 加入浓盐酸, 在40℃恒温水浴中反应10min, 亚硫酸盐在酸性条件下转化为SO2气体, 取顶空气体进行气相色谱分析。通过测定气相中二氧化硫的含量, 间接测定样品中的亚硫酸盐含量王晓云等,山东化工,2007,36(1):36-384使用自动顶空进样器测定梨中代森锰锌残留量的电子捕获气相色谱法在20 mL 顶空瓶中加入0.1 g 抗坏血酸、0.2 gEDTA 络合物,然后称取5.0 g 匀浆后的样品于此顶空瓶中,再加入10 mL 预先配制好的氯化锡盐酸溶液,加盖密封,超声震荡2 min,然后在水温为80℃的水浴锅中加热2 h,每隔30 min 摇匀一次,摇匀时间为1 min,待反应完成,稍冷,然后置于自动顶空装置托盘,顶空平衡温度60℃,平衡时间3 min,分析反应产生的二硫化碳聂春林等,精细化工中间体,2010,40(6):63-665测定尿中三氯乙酸的自动顶空气相色谱法尿中的三氯乙酸加热脱羧生成三氯甲烷进星气相色谱分离,,取5 ml 样品移入顶空瓶中,同时取5 ml 双蒸水作为空白对照,立即加盖密封。顶空瓶放入90 ℃水浴中150 min,然后依次放入顶空装置内,启动自动进样分析李添娣等,职业与健康 2012,28(16 ):1982-1983 小结:化学反应很神奇,利用它创造出瑰丽的世界,制造出无数无奇不有的物件,满足人们的各种需求,为人们提供了绚丽多彩的生活条件。利用化学反应把本来不能进行顶空气相色谱的样品变为可能,大大提高了它的应用范围。这一方法是有限的,但是这一思路是无限的。致谢:感谢柴欣生教授提供部分资料并对本文进行审阅和修改。
  • Waters 高效液相色谱分析柱特点(二)
    高效液相色谱分析柱 USP分类号pH范围(室温下)温度限制粒径孔径比表面积含碳量XBridge HPLC色谱柱对应于UPLC柱供方法无忧转移、提升效率:ACQUITY UPLC BEH 系列, 1.7&mu mBEH300 C18(肽分离技术,参见&ldquo 肽分离技 术&rdquo 章节)  L11-12Low pH = 80℃ High pH = 60℃3.5, 5, 10µ m300Å 90m2 /g12%选择性特点:对pH和温度耐受稳定,大孔径,C18,专用于肽分析与纯化,按肽谱方法特别质控。柱规格覆盖从UPLC柱到OBD制备柱。产品详细见于肽分离专用色谱柱分。键合相:基于亚乙基桥杂化颗粒(BEH)基质的三键键合C18,全封端BEH300 C4(蛋白质分离技术,参见&ldquo 蛋 白质分离技术&rdquo 章节)  L261-10Low pH = 80℃ High pH = 50℃3.5µ m300Å 90m2/g8%选择性特点:对pH和温度耐受稳定,大孔径,C4,专用于蛋白反相分析,按蛋白混标特别质控。产品详细见于蛋白质分离专用色谱柱部分。键合相:基于亚乙基桥杂化颗粒(BEH)基质的专利的单键键合C4BEH C18(寡核苷酸分离技术 ,参见&ldquo 寡核苷酸分离技术&rdquo 章节)  L11-12Low pH = 80℃ High pH = 60℃2.5µ m130Å 185m2/g18%选择性特点:对pH和温度耐受稳定,小孔径,C18,专用于合成DNA和RNA的分析与纯化。按合成DNA阶梯混标特别质控。柱规格覆盖从UPLC柱到HPLC柱。产品详细见于寡核苷酸分离专用色谱柱部分。键合相:基于亚乙基桥杂化颗粒(BEH)基质的三键键合C18,全封端SunFire HPLC色谱柱C18 L12-8Low pH = 50℃ High pH = 40℃2.5, 3.5, 5,10µ m100Å 340m2 /g16%选择性特点:通用型方法开发色谱柱。极高的样品载量,特别适用于在低pH条件下对碱性分析物的分析与分离。特别适用于纯化制备与杂质表征。键合相:二键键合C18,全封端,基于高纯硅胶基质C8 L72-8Low pH = 40℃ High pH = 40℃2.5, 3.5, 5,10µ m100Å 340m2 /g12%选择性特点:通用型方法开发色谱柱。极高的样品载量,特别适用于在低pH条件下对碱性分析物的分析与分离。疏水性稍弱,因此相对于C18柱对大多数分析物的保留性弱。键合相:二键键合C8,全封端,基于高纯硅胶基质Atlantis HPLC色谱柱T3 L12-8Low pH = 45℃ High pH = 45℃3, 5, 10µ m100Å 330m2/g14%选择性特点:保留极性化合物,与100%水相流动相完全兼容,在低pH条件下具有卓越的稳定性。特别设计用于增强对极性分析物的保留。键合相:基于高纯硅胶基质的T3(C18)键合相与封端技术HILIC L31-5Low pH = 45℃ High pH = 45℃3, 5µ m100Å 330m2/g无键合选择性特点:对高极性、碱性、水溶性分析物的保留极佳。特别设计并经质控测试用于在高有机相比例条件下的HILIC分离键合相:未经键合的高纯硅胶颗粒dC18 L13-7Low pH = 45℃ High pH = 45℃3, 5,10µ m100Å 330m2/g12%选择性特点:保留极性化合物,与100%水相流动相完全兼容键合相:基于高纯硅胶基质的二键键合C18,全封端HSS HPLC色谱柱对应于UPLC柱供方法无忧转移、提升效率:ACQUITY UPLC HSS 系列, 1.7&mu mHSS C18 L11-8Low pH = 45℃ High pH =45℃ 3.5, 5µ m 100Å 230m2/g15%选择性特点:高性能C18固定相,增加了保留能力,峰形卓越,在低pH条件下抗酸性水解。设计满足用户需要硅胶基质C18选择性的UPLC分离时。可在UPLC与HPLC之间进行无缝转移。键合相:高覆盖的三键键合C18,全封端,基于高强度硅胶(High Strength Silica,HSS)HPLC硅胶颗粒。HSS C18 SB L12-8Low pH = 45℃ High pH = 45℃3.5, 5µ m100Å 230m2/g8%选择性特点:独特的、未经封端的C18固定相,为方法开发科学家特别设计。为低pH条件下对碱性分析物提供独特的选择性(Selectivity for Base,SB)。可在UPLC与HPLC之间进行无缝转移。键合相:中等覆盖的三键键合C18,无封端,基于高强度硅胶(High Strength Silica,HSS)HPLC硅胶颗粒。HSS T3L12-8Low pH = 45℃ High pH = 45℃3.5, 5µ m100Å 230m2/g11%选择性特点:能兼容于全水相的HPLC色谱柱,设计用于极性分析物的保留。可在UPLC与HPLC之间进行无缝转移。键合相:基于高强度硅胶(High Strength Silica,HSS)HPLC硅胶颗粒的T3(C18)键合相与封端技术*SunFire与Atlantis HPLC柱不提供亚二微米粒径规格所有系列均有制备柱产品可供无忧放大,详见&ldquo 制备色谱产品&rdquo 章节。
  • 傅若农讲述气相色谱技术发展历史及趋势(1)
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。   一、气相色谱伴随和促进科技革命的发展  16世纪以来,世界科技大致发生了五次革命(两次科学革命和三次技术革命),包括近代物理学诞生、蒸汽机和机械革命、电力和运输革命、相对论和量子信息化革命等。  近几年国内外对第六次科技革命的核心内涵正在讨论探索之中,没有达成共识。 徐光宪院士认为第六次科技革命的核心内涵必须解决当前中国和世界的迫切问题,缓解世界经济危机,使各国都走上健康的发展道路。目前大致有14个问题值得我们特别关注:  (1)彻底改造污染环境的化工厂,建立绿色化学和化工以及冶金企业。  (2)现在的化工原料主要来自石油或煤炭(利用煤焦油或电石)。因为它们也作为能源燃料使用,如果维持现在的消耗速度,世界的石油资源将在几十年内耗竭,煤炭资源在一二百年内耗竭。  (3)温室气体二氧化碳的减少排放问题,即少用煤和石油,大力发展节能材料和新能源,如稀土节能灯,利用稀土材料做发电机的风能,利用稀土光电转换材料的太阳能,利用钍的核能等。  (4)不可再生、不能取代的稀土等矿产资源的节约高效开采,保护环境和综合利用。开发从废品中回收稀土的技术,避免浪费和快速耗竭稀土以及其他不可再生的战略矿产资源。  (5)淡水资源节约利用和海水的高效、低成本淡化问题。  (6)高新技术材料的研发和合成问题。  (7)海洋和太空资源(例如海底的可燃冰和月球上大量的He-3核聚变能源)的开发利用问题。  (8)人类的健康和新药物、新医学以及人工器官的研发问题。人工生命的合成,使化学与生物学互相连接的问题。研究合成直接导向病灶的靶点药物,大幅降低药物的副作用。  (9)人工合成固氮酶,使水稻、小麦等非豆科植物,也能利用空气中的氮,不必使用氮肥,或用生物科技新技术培养含有固氮酶的非豆科植物,引发农业科学技术的革命。  (10)研究光合作用的基本原理,找出光合作用的催化机理,提高太阳能的利用效益,有可能引发农业技术的革命。  (11)天气预报、地震预报、台风预报,以及其他自然和人为灾难的预防和急救问题。  (12)军事科学技术问题。中国要呼吁世界和平,必须有先进的军事科学技术,才有维护世界和平的发言权。世界上主要国家的军力必须平衡,才能制止第三次世界大战。  (13)和平科学的理论和实践问题。20世纪发生了两次世界大战和不断的局部战争,21世纪必须避免第三次世界大战,因为如果发生,那将是毁灭一半人类的核大战。所以必须研究和平科学的理论和实践。  (14)研究世界人口的节制和优生优育问题,研究中国和世界各国人民和谐相处,共同富裕、共同幸福的理论和实践。  并且认为大化学(广义分子科学)革命与上述14个世界迫切需要解决问题的前10个问题密切相关。  大化学的支柱之一是分析测试,而在分析测试技术中,色谱和与其相联用的检测技术又是关键性重要领域,所以它们必然是第六次科技革命的进程中重要工具,实际上近年色谱和与其相联用的检测技术在不断发展,以适应各个领域的需要。  二、气相色谱技术初期的发展  气相色谱是色谱领域中发展较早、相当成熟的技术,由于它是快速、简易、相对便宜而又重复性好的分析方法,可以分析各种基质中的成分,如石油石化产品、环境污染物、药物、食品等等,而且由于气相色谱所固有的高分离效率以及可以和各种灵敏的、选择性好的检测器相连接,所以配备各种检测器的气相色谱仪成为各个领域成分鉴定、分析不可或缺的工具。色谱学的发展是伴随着科技革命,而又促进科技革命的发展进程。  第三次科技革命(20世纪四五十年代)发生在二战后,资本主义推行福利制度与国家垄断资本主义,政局稳定。20世纪初科学理论的重大突破和一定的物质、技术基础的形成,出现了对石油、人工合成材料、分子生物学和遗传工程等高新技术的需求,人们在研究这些复杂物质混合物时,就需要把他们分离开来考察其性能,因而必然要发展各种分离技术,而色谱是分离技术中效率最高的一类方法,所以在上世纪四十年代末五十年代初诞生了以气体为流动相,液体或固体为固定相的气相色谱,1955年PerkinElmer公司开发出第一台气相色谱仪。而第一台气相色谱仪的诞生有一个传奇的故事。  在 1953-1954 年间,PerkinElmer公司的代表首次听到气相色谱先驱者A.T. James 和 A.J.P. Martin在英国伦敦British Medical Council实验室,以及 C.S.G.Phillips在牛津大学所进行的GC研究工作。随后访问了他们的实验室,学习了这一新技术的原理,以这一信息为基础,在位于美国康涅狄格州Norwalk的公司总部启动了研究开发这一仪器的计划,最终在 1955 年推出了世界上第一台商品化气相色谱仪 Model 154 Vapor Fractometer (Model 154 气相色谱仪)。  在当时,这一仪器的主要特点是:使用了空气恒温器(&ldquo 柱箱&rdquo ),可以使分离色谱柱在室温和150 ° C之间保持恒温,有一个快速蒸发器,可以用注射器通过橡胶隔垫把液体和气体样品送到载气里,以及使用热敏型热导检测器。同时,PerkinElmer提供了具有广泛分离能力的标准色谱柱,从而可以让仪器成功地分析各种样品。这一仪器立即获得了成功,在美国分析化学杂志(Analytical Chemistry,AC)的社论里对其评价为:&ldquo 是一个自动分析的辉煌典范&rdquo ,它得到的色谱图&ldquo 赏心悦目&rdquo 。在仪器推出之后不久,PerkinElmer 公司出版了一本简单的小册子,解释气相色谱的原理和如何选择操作参数。AC在新的一期社论里赞美这一小册子,把它称做&ldquo 一个简短而信息充实的概要&rdquo ,帮助&ldquo 传播科学技术知识&rdquo 。自然,在推出 Model 154 以后,PerkinElmer的研究和开发工作并没有停息,在1956年初又推出一个改进的型号,即Model 154-B,在这一新型号仪器上使用温度提高到225 ° C,并可选择旋转阀和各种定量进样管,用于气体的进样。这一措施十分引人注目,现在众多公司提供的多端口进样和切换阀设计都可以追溯到这一个阀的设计上。Model 154-B 气相色谱仪  (图注:在这一装置左侧的门后是色谱柱箱,在右侧上面的面板是加热控制部件,热导检测器的控制器在右侧下面的面板上。流量计在中间部位,左侧的下面是注射器的加热进样口,电位差计记录仪常放在另外的地方,Model 154和这一仪器的样子和尺寸相同。)  (以上信息转自PerkinElmer公司资料&ldquo PerkinElmer 公司气相色谱仪的发展过程&rdquo )  三、国内气相色谱初期(上世纪50到60年代)的发展历程  新中国建立后百废待兴,各个工业部门蓬勃发展,其中以石油和煤为主要能源的研究和工业急需发展,因而发展气相色谱就成为必不可少的前提了。下面是色谱老专家俞惟乐老师在1980年为美国分析化学写的有关中国气相色谱发展的历程(Anal. Chem. 1980, 52:324R-360R):  中国从1955年开始进行气相色谱的研究,首先进行气相色谱研究的是中科院大连石油研究所,之后,中科院在北京、上海和长春的一些研究所也参与进来,几年之后气相色谱的研究和应用便普及开来。  1958年,中科院大连石油研究所一分为三,分别成立了中科院大连化学物理研究所,中科院兰州化学物理研究所和中科院太原煤炭化学研究所。拆分后,三个所都进行他们各自所关心的气相色谱研究,如色谱条件的优化、色谱固定相的研究、色谱仪各种配件的研制。  在此阶段,中国高校在进行气相色谱的教学之外,也进行气相色谱的专业研究和基础数据的编纂,出版了十多本有关气相色谱的教科书、手册及字典。此外,在这20年中,我国科学界举办了三次气相色谱学术会议。第一次全国色谱报告会于1961年10月在大连举行,共收到45篇报告。4年后在兰州举行第二次全国色谱报告会,发表的报告数达到100篇。受四人帮动乱干扰,全国色谱学术报告会中断,十年之后的1979年,在大连召开了第3届全国色谱报告会(包括气相色谱、液相色谱和薄层色谱),此次共收到有12篇综述报告和122篇论文。这一时期各个工业部门、研究单位和高校也组织了许多有关气相色谱的讨论会、报告会,而且地方的科学学会也各自举行地方气相色谱会议,部分有关气相色谱的论文在科学通报、化学学报、燃料化学学报上发表。  有关这一时期国内气相色谱仪器的发展,俞惟乐老师在上述综述文章中提到:上世纪60年代初已经有商品化的气相色谱仪了,但商品化仪器仍然不能满足一些研究所、大学和各个工业部门的要求,他们相继开发适合自己需求的专用气相色谱仪,当时有大约十个国家级工厂可提供20多种型号的气相色谱仪,年产量大约有2000台。  在这些产品中有上海分析仪器厂的103型气相色谱仪及北京分析仪器厂的SP 2308型气相色谱仪。SP 2308型气相色谱仪配备了各种现代化检测器、裂解器、色谱图积分仪和打印机。103型气相色谱仪可用填充柱和毛细管柱,103型和SP 2308型气相色谱仪都可用于实验室级别的制备。此外,其他型号的气相色谱仪器,有便携式及在线监测用气相色谱仪,用途也很广泛,包括专用于检测水分、比表面积、孔径分布等。其中二氧化碳激光裂解器气相色谱仪、半导体薄膜气相色谱仪,以及一些专用的原型机都是由一些研究机构制造。  国内记述这段历史的著作有大连化学物理研究所编纂的《气相色谱法》,1973年出版,书后列举了11种商品化气相色谱仪,SP-2302型、SP-2304型、SP-2305型、SP-2306型(北京分析仪器厂生产) 100型、102型(上海分析仪器厂生产) DQS-5101型(威海天平仪器厂生产) SP-01型、SP-02型、SP-05型(自动制备色谱仪)、SP-07型(大连第二仪表厂生产)。(未完待续)  (作者:北京理工大学傅若农教授)
  • 液相色谱柱进展及其在药品标准中的应用(一)
    p style="text-align: center "  strong液相色谱柱进展及其在药品标准中的应用(一)/strong/pp style="text-align: right "strong——液相色谱柱及其填料种类/strong/pp  高效液相色谱法(HPLC)已成为药物分析,特别是多组分分析和杂质控制中最重要、最广泛的分析技术之一。伴随着理论体系不断完善,分离方法不断更新,仪器性能不断改进,应用领域不断扩展,液相色谱分析技术已经、正在和必将继续飞速发展。就技术领域发展而言,主要包括仪器性能、数据处理以及色谱柱技术等方面的提高和改进。如今,色谱柱技术的不断改进创新,填料种类的日益丰富,分离模式和分离方法的逐步完善,为分离分析科学描绘了一幅幅绚丽的图景。由于色谱柱是液相色谱分离的核心,开发新型或高性能的高效液相色谱填料(又称为填充剂、固定相),提供多种色谱柱类型一直是色谱研究中最丰富、最有活力、最富于创造性的内容。本文将主要讨论液相色谱柱及其填料的进展分类,以及在药品标准、特别是在药典中的应用现状。/pp  span style="color: rgb(0, 0, 0) "strong1 液相色谱柱及其填料种类/strong/span/pp  改善分离度和色谱峰形一直是分析工作者关注的主要问题,通过改变流动相组成来提高色谱柱的选择性是分析工作中常用的手段。不过,由于改变流动相如有机相比例、pH、缓冲盐浓度等以提高色谱柱的选择性或分离能力有限,为适应日益增加的分离要求,开发选择性更高、性能更优越的色谱柱就成为液相色谱法的研究热点之一。如今,为适应分离工作数量和难度的需求,越来越多的色谱固定相被开发出来,并不断地被应用于实际分析包括药物分析工作中。色谱柱填料的基质、形状、尺寸、类型、直径、孔径、比表面积等因素将影响色谱柱的性能。为便于理解,下文按不同的方式对色谱柱或填料进行分类。/pp  span style="color: rgb(0, 112, 192) "strong1.1 按色谱填料种类不同分类/strong/span/pp  按基质材料化学组成的不同,液相色谱填料主要分为两大类:有机基质填料和无机基质填料。无机基质填料是研究和应用的主流,其中应用最多的材料是硅胶,其具有机械强度高,比表面积大及表面易于修饰等特点,是开发最早,研究最为深入,应用最为广泛的液相色谱填料,其应用占液相色谱填料的90%以上。硅胶表面覆盖着强极性的硅醇基,在非极性流动相中与样品分子发生作用,也可以作为化学键合相的反应位点。因此,硅胶、键合硅胶是正反相液相色谱法中最常用的色谱柱填充剂。/pp  最初使用的硅胶填料是无定形微粒硅胶,无定形硅胶易于制备,价格低廉,但涡流扩散大,渗透性差,柱效不高,重现性较差。20世纪70年代,科克兰(J. J. Kirkland)采用硅珠堆砌技术制备全多孔球形ZORBAX 硅胶,该填料平均粒径约7微米,具有更好的渗透性、比表面积和更高的柱效,而且球形填料易于填装,重现性好。到1995年,在分析色谱中不定型填料基本被5-10微米的球形颗粒填料取代,前者因为价格便宜,主要是用于制备色谱分离 现在的分析色谱中,球形颗粒硅胶基质的色谱填料已经占绝对地位。/pp  硅胶基质分为A型硅胶和B型硅胶:A 型硅胶金属含量较高,导致硅胶纯度较低,且酸性较强,从而导致色谱峰拖尾和某些化合物回收率很差 B 型硅胶是通过全合成获得的填料,称之为高纯硅胶,可有效地控制金属离子的含量(一般控制在0.05%以内),避免活性化合物在色谱柱上与金属离子产生螯合,也降低了硅醇基的活性,有利于避免碱性化合物拖尾。另外,为了提高硅胶基质的稳定性,在硅胶表面进行有机改性,如聚合物包覆,或引入有机杂化基团,可以使基质填料表面的部分硅羟基被有机基团代替,从而提高pH 耐受性,也能降低碱性化合物的拖尾。/pp  有机基质填料主要分为多糖型和聚合物型两大类,前者是以天然多糖化合物为原料,用物理方法加工成微球并经过交联而得到的凝胶,如葡聚糖、琼脂糖等基质的凝胶,主要用于凝胶渗透色谱(GPC)。后者以合成单体与交联剂为原料,用化学聚合方法制备的交联高聚物微球,如苯乙烯- 二乙烯基苯共聚物以及聚甲基丙烯酸酯类树脂等,有机聚合物填料排除了硅醇基的影响,具有较强的色谱容量,不容易产生不可逆的非特异性吸附,有较好的化学稳定。/pp  span style="color: rgb(0, 112, 192) "strong1.2 按键合相种类不同分类/strong/span/pp  中国药典(0512 高效液相色谱法)按键合相种类不同分类如下:/pp  反相色谱柱:以键合非极性基团的载体为填充剂填充而成的色谱柱。常见的载体有硅胶、聚合物复合硅胶和聚合物等 常用的填充剂有十八烷基硅烷键合硅胶(C18)、辛烷基硅烷键合硅胶(C8)和苯基键合硅胶等。/pp  正相色谱柱:用硅胶填充剂或键合极性基团的硅胶填充而成的色谱柱。常见的填充剂有硅胶、氨基键合硅胶和氰基键合硅胶等,在使用正相体系时,一般都采用弱极性的溶剂作为流动相。此类极性固定相如硅胶、氨基键合硅胶和氰基键合硅胶等也可使用含水的流动相,此时化合物的保留随着流动相中水的比例增加而减弱,这种分离模式称为亲水作用液相色谱(hydrophilic interaction liquid chromatography,HILIC)。/pp  离子交换色谱柱:用离子交换填充剂填充而成的色谱柱。有阳离子交换色谱柱和阴离子交换色谱柱。/pp  手性拆分色谱柱:用手性填充剂填充而成的色谱柱。/pp  在中国药典分类所述的各类色谱柱中,反相色谱柱是应用最广泛、最常见的一种。/pp  span style="color: rgb(0, 112, 192) "strong1.3 按色谱柱填料粒径大小分类/strong/span/pp  根据色谱填料粒径的大小,色谱柱可分为常规色谱柱、亚2 微米填料色谱柱和大粒径色谱柱。常规的色谱柱内径一般为3.9~4.6 mm,填充剂粒径为3~10微米。限于仪器系统、载样量、柱效、分离度等因素的影响,5微米粒径,4.6 mm× 250 mm 尺寸的色谱柱依然是常规液相分析中最广泛的色谱柱尺寸。但在常规液相体系中使用3微米或3.5微米的填料时,可在获得较快分析速度的同时,节省溶剂,故又称溶剂节省柱。/pp  亚2微米填料色谱柱通常填充1.3~2.0微米 的颗粒填料,色谱柱内径一般为2.1~3.0 mm,长度一般为30~150 mm。由于这样的色谱柱填料粒径小,在液相系统中会产生极高的反压,压力通常大于40 MPa,故需要在更高的超高压(或超高效)液相色谱系统中使用。/pp  大粒径色谱柱(粒径大于10微米)现主要用于制备色谱分离纯化,即制备色谱柱 或者用于大分子物质分析如凝胶渗透色谱或体积排阻色谱(GPC/SEC)。用于大分子物质,如聚合物、蛋白、单抗等分析时,一般相对分子质量都大于2000,采用的色谱填料孔径应大于300 。/pp  span style="color: rgb(0, 112, 192) "strong1.4 按色谱柱填料结构类型分类/strong/span/pp  在色谱分离过程中,溶质分子与固定相间的传质速率通常被其在色谱柱填料中的扩散所左右。颗粒形状和大小,孔的结构、孔径及其分布等与比表面积有关。按照色谱填料孔结构类型主要有无孔型、全多孔型和表面多孔型。/pp  无孔型的填料表面无孔,消除了溶质在孔内较慢地扩散传质引起的谱带展宽效应,可提高柱效,但由于其比表面积非常小,载样量也很小,故应用不多。一般使用非常细的填料(1~1.5 微米),填充于较长的色谱管柱中,用于大分子物质分析。/pp  全多孔型填料是在硅胶制备过程中形成的多孔硅胶,多孔体系的形成有利于提高溶质在固定相中的分配和保留,具有柱容量大和选择范围宽等优点。全多孔型填料又分为颗粒型(particles)和整体化色谱柱(monolithic column),其中全多孔型填料颗粒(total porous particles)是目前使用最多的液相色谱固定相材料。/pp  表面多孔型填料是在无孔实心的硅胶核外面生成一个均匀的多孔外壳。由于颗粒内核是实心的,溶质成分在通过固定相时,只在颗粒填料表面的多孔成分进行吸附和分配,其扩散路径缩短,传质效率提高,只需要花费少量的时间便能扩散至硅球表面的颗粒孔中,在较短时间完成扩散,更快地传质。与相同粒径的全多孔型填料相比,其传质速度和柱效得到大大提高。全多孔颗粒填料和核壳型填料的颗粒构造如图1所示。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/8a99a421-5f3e-456d-aac4-1acc6d21ba4a.jpg" title="图1_副本.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "strong图1 全多孔颗粒填料与表面多孔壳填料比较示意图/strong/span/pp  span style="font-family: 黑体, SimHei "注:近年来,液相色谱柱技术发展的非常迅速,这同时也促进了高效液相色谱法在药物分析中更为广泛的应用。据统计,一个典型的制药企业甚至可能会拥有成百上千支液相色谱柱,在一种药物分析方法的开发过程中,如何选择适当的色谱柱往往会给实验人员带来很多困扰。/span/pp  span style="font-family: 黑体, SimHei "本文献原文刊登于《药物分析杂志》2017年37卷第2期,作者为洪小栩、石莹、宋雪洁等八人,分别来自国家药典委员会、扬子江药业、安捷伦科技和江苏省食品药品监督检验研究院等单位。本文为该文献的第一部分,详细介绍了液相色谱柱及其填料的种类。仪器信息网后续还将发布该论文其余内容,为广大色谱柱用户以及色谱柱供应商提供相关参考。/span/pp  br//ppbr//p
  • 香港确诊新冠肺炎患者的宠物狗测出弱阳性反应
    p style="text-indent: 2em "2月28日凌晨,香港特区政府发布新闻公报,称特区政府渔农自然护理署(渔护署)发言人今日(二月二十八日)表示,一只居于2019冠状病毒病确诊者家中的狗只对有关病毒测试呈弱阳性反应。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 500px height: 214px " src="https://img1.17img.cn/17img/images/202002/uepic/d08693e4-0957-4091-a6f9-befa52cf7938.jpg" title="0.png" alt="0.png" width="500" height="214" border="0" vspace="0"//pp style="text-indent: 2em "渔护署发言人表示,为确保公众及动物的健康,署方强烈建议2019冠状病毒病确诊者的宠物(哺乳类动物)接受检疫。它会被送往渔护署指定动物居留设施接受为期14天的检疫和兽医学监察,及按情况进行新型冠状病毒测试。/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "strong公告原文如下:/strong/span/pp style="text-indent: 0em text-align: center "strong狗只对2019冠状病毒测试呈弱阳性反应/strong/pp style="text-indent: 2em "渔农自然护理署(渔护署)发言人今日(二月二十八日)表示,一只居于2019冠状病毒病确诊者家中的狗只对有关病毒测试呈弱阳性反应。/pp style="text-indent: 2em "渔护署于二月二十六日接获卫生署转介,指一名2019冠状病毒病确诊者的狗只需交予渔护署。渔护署人员同日傍晚到大坑一住所接走有关狗只,随即送往港珠澳大桥口岸动物居留所,并从其口腔,鼻腔及肛门抽取样本进行新型冠状病毒测试。其中口腔及鼻腔的样本在测试中呈弱阳性反应。该狗只并无任何相关病征。/pp style="text-indent: 2em "目前港珠澳大桥口岸动物居留所内只有以上狗只接受检疫,并没有其他动物。署方人员会加强清洁消毒居留所内的设施。/pp style="text-indent: 2em "虽然渔护署现时未有数据证明宠物会感染而发病或传播2019冠状病毒,但署方对上述狗只进行密切监察,并进一步抽取样本化验,以确定该狗只是已感染该病毒或是其口及鼻部从环境中沾染病毒。署方会继续为有关狗只进行反覆测试,待测试结果呈阴性后,才会把狗只交还。/pp style="text-indent: 2em "渔护署发言人表示,为确保公众及动物的健康,署方强烈建议2019冠状病毒病确诊者的宠物(哺乳类动物)接受检疫。它会被送往渔护署指定动物居留设施接受为期14天的检疫和兽医学监察,及按情况进行新型冠状病毒测试。/pp style="text-indent: 2em "发言人提醒畜养宠物人士,须经常保持良好卫生习惯,当与宠物接触后,应使用肥皂和水或酒精搓手液彻底清洁双手;畜养者外出应佩戴口罩。发现宠物的健康状况出现变化,应尽快寻求兽医的意见。/pp style="text-indent: 2em "完/pp style="text-indent: 2em "2020年2月28日(星期五)/pp style="text-indent: 2em "香港时间0时55分/ppbr//p
  • 以极限感知确立“中国精度”:之江实验室量子传感极弱力测量装置通过里程碑验收
    以极限感知确立“中国精度”之江实验室以人工智能为骨干支撑,以智能感知、智能计算、智能网络和智能系统为主要方向开展基础研究和核心技术攻关,目标建成世界一流的人工智能基础研究中心。朱世强主任认为,“之江实验室要打造全新的人工智能技术生态体系,不能简单的停留在算法研究的层面,更不能单纯利用国外开源开放的算法做应用开发。未来人工智能领域的核心竞争在于更前沿的基础研究,从科学的角度来看,真正的智能起源于对外部世界信息的精确感知,培育超级感知能力是之江实验室打造人工智能技术生态的重要基础。这也是我们谋划建设量子精密测量大科学装置的初衷。”之江实验室首席科学家房建成院士介绍说,“我们将投入15亿元建设量子精密测量科学装置,基于原子自旋效应、原子干涉效应、光子动量效应等原理,实现超高灵敏惯性、极弱磁、极弱力、绝对重力等多种物理量的超高精度测量,突破传统测量方法的理论极限,确立‘中国精度’。”要实现国际领先水平的超高精度传感与测量,之江实验室的科研团队有底气。量子精密测量科学装置集结了北京航空航天大学、浙江大学等国内最顶尖的专家团队,在极弱磁测量、惯性测量等研究领域多次获得国家级奖励。促进基础研究与应用研究融通发展据介绍,量子精密测量大科学装置将支撑科学家开展诺奖级前沿科学问题的探索,如在验证宇宙空间CPT对称破缺、新的相互作用力、非牛顿引力,研究纳米间距Casimir效应、量子—经典转换问题等前沿物理学方面发挥重要作用。“建设大科学装置不仅仅是实验室自己的科研需要,我们更希望依托重大装置吸引全世界最优秀的科学家到之江实验室探索前沿科学问题,同时做好技术的转化应用,服务于产业发展。”之江实验室主任朱世强表示。量子精密测量大科学装置不仅可以帮助拓展人类的认知边界,还具有很广阔的应用前景,如大幅提升导航、激光制导、水下定位、医学检测和引力波探测等的准确性和精度。科技进步最终用于改善民生,也是建设这一大科学装置的主要任务之一。子项目新型无损被动高分辨率心脑磁研究装置负责人说,“量子传感研究中心正在研究的新型被动式原子磁强计(fT级),能在屏蔽外界磁场环境下直接测量大脑发出的磁场,有望实现脑神经系统的功能测量。SERF极弱脑磁心磁测量可能带来变革性技术,破解目前核磁共振等观测设备对婴幼儿、体内含金属部件患者等特殊人群无法使用的问题。”之江实验室将建成国际一流的心磁和脑磁两类研究装置,结合医学成像技术,攻关心脑极弱磁测量。“体制机制创新就是生产力”“如果从零开始谋划的话,一个大科学装置往往需要十几年的时间,才能从构想到建成落地。之江实验室成立不到两年的时间,已经有两个大科学装置通过论证,这主要源于我们在科研体制机制创新上的优势,后续我们还将启动一个、筹划一个,再培育一个。”朱世强介绍。实验室最先通过论证的就是量子精密测量大科学装置。房建成院士对于该装置的快速启动给出了干脆利落的回答:“体制机制创新就是生产力。”“之江实验室从项目发现、团队组建,再到论证立项和过程管理都进行了一系列的制度创新,大兵团作战的协同攻关推动科研提质增速。半年多的时间,我们完成了项目各种环节的多轮论证,在提升效率的同时保证科研的严谨性。”房建成院士说据介绍,量子精密测量大科学装置的目标是引领国际。在2020年底之前,项目组将结合之江实验室新园区建设工作,开展关键技术研究平台搭建,完成装置的总体设计。到2023年,在条件设施更优化的新建实验室中继续优化提升指标,持续引领国际水平。
  • 纠正误区:反相液相色谱柱不是LC-MS/MS分析的主流
    对于LC-MS/MS色谱柱人们的惯性思维通常是由反相液相色谱柱开始研发, 产生这种惯性思维是因为常规高效液相色谱分析中C18等反相高效液相色谱柱占有统治地位,另一方面是色谱公司不懂LC-MS/MS分析误导用户的结果。这惯性思维是不正确的!  LC-MS/MS分析的实用战略和HPLC有很大不同! LC-MS/MS分析的方法的选择性最重要!  色谱公司不能简单地将现成的反相液相色谱填料装成5cm x 2.1mm短柱充当LC-MS/MS柱使用, 但事实上几乎所有色谱公司都是这样做的。这样的反相液相色谱LC-MS/MS柱有三个明显的弱点:  (1) 许多极性化合物难以保留,质谱灵敏度差。  许多重要的物质,如抗癌药物DTIC, 抗痛药物河豚毒素,污染物质三聚氰胺, 中草药中糖肽等非常极性, 在反相液相色谱柱上没有保留。还有许多的化合物比较极性, 使用少量的甲醇或乙腈就从反相液相色谱柱上洗脱。在药物代谢研究中, 观察到许多化合物自己疏水, 但代谢产物亲水的情况。甲醇或乙腈含量低, 离子化程度低, 质谱灵敏度差。所谓水相C18柱在LC-MS/MS分析中没有价值。  (2) 用常规反相色谱填料装成2.1mm内径的色谱柱在LC-MS/MS和LC/MS应用中常陷入记忆效应(Carryover Effect)的“陷阱”  LC-MS/MS和LC/MS应用中另一个重大问题是记忆效应(Carryover Effect)。记忆效应是指在进样后, 再进一针空白在同样的保留时间仍然观察到化合物峰。记忆效应的副作用是明显的: 它可能人为地增加下一样本的MRM信号, 影响定量分析的精密度和准确度。US FDA Bioanalytical Regulatory Guidances限制最高校准标准(highest calibration standard) 的记忆效应不能超过20 %最低校准标准(lowest calibration standard)MRM信号的20%。  由于大部分色谱公司都使用现成的反相液相色谱填料简单地装成5cm x 2.1mm短柱充当LC-MS/MS柱, 在许多情况下,使记忆效应强, 校准标准曲线范围必须人为缩短, 或不得已在进样后, 再进一针甚至两针空白最小化记忆效应, 然后进下一个样品。所有这些严重地降低了生产效率。  (3) 峰形拖尾或扭曲  因为活性硅醇基无法完全封闭, 许多碱性化合物在几乎所有色谱公司的反相液相色谱柱上面有明显的峰形拖尾。这种峰形拖尾是记忆效应的一个重要的根源。  另一方面,使用不正确方法过分封闭致使一些酸性和两性化合物分离效果不佳, 特别是出现峰失真和分裂现象。  Chrom-Matrix公司认为LC-MS/MS色谱柱和色谱方法的第一选择是亲水色谱(Hydrophilic Interaction)! 亲水色谱使用乙腈作为弱溶剂和水为强溶剂, 彻底解决质谱灵敏度差, 记忆效应等问题。疏水化合物首先流出, 然后是亲水化合物。不仅彻底解决极性化合物难以保留的问题, 而且同时分析了疏水化合物, 也提高了疏水化合物质谱灵敏度。峰形拖尾问题也获得彻底解决。此外,乙腈提取液不需要蒸发和重新溶解,从而节省了大量的时间。另一方面, 反相LC-MS/MS色谱柱和色谱方法仍然重要, 不仅是一些重要的中性化合物如抗癌药物紫杉醇, 抗免疫器官植入药物FK 506和雷帕霉素(rapamycin), 降脂药等必须使用反相LC-MS/MS色谱柱和色谱方法, 还因为大多数客户习惯于反相LC-MS/MS色谱柱和色谱方法。即使这样反相液相色谱填料也必须通过处理才能装成5cm x 2.1mm短柱充当LC-MS/MS柱使用。Chrom-Matrix公司研发出InnovationTM 反相液相色谱填料通过超临界流体技术封端最大程度封闭活性硅醇基, 非常好的解决了碱性化合物峰形拖尾的问题,然后通过特殊处理最大程度消除了记忆效应。  Chrom-Matrix公司成功研发了三种亲水LC-MS/MS色谱柱和五种反相LC-MS/MS色谱柱, 而且为客户成功研发了数百个LC-MS/MS应用。Chrom-Matrix公司至成立起,就凭着领先一代的观念、技术和产品赢得美国FDA、美国能源部、美国农业部、国际禁毒组织、许多欧美制药集团、第三方检测机构、大学及研究机构等顾客的由衷欢迎。  Chrom-Matrix公司的目标就是帮助客户开发, 验证和应用先进, 正确, 精确, 真实, 像岩石一般坚实, 同时又灵敏, 快速, 便宜的LC-MS/MS定量分析方法。
  • Adv. Mater.:attoMFM助力SrRuO3中缺陷工程与电场调控拓扑自旋结构的研究
    近期,北京师范大学的张金星与中国科学技术大学的王凌飞教授课题组的研究以封面文章的形式发表在《Advanced Materials》杂志上(见图1),这项工作主要研究了缺陷工程与电场调控SrRuO3中拓扑自旋结构的工作。文章指出在钙钛矿结构的SrTiO3(001)衬底和SrRuO3薄膜之间的界面上,不同的化学势使氧空位优先从SrTiO3扩散到SrRuO3。这种单向氧空位扩散过程可以在化学计量和缺氧SrRuO3层之间创建一个新的界面,由此产生的反转对称性破坏可以进一步触发涡旋状自旋织构,即斯格明子磁泡。图1. 《Advanced Materials》杂志封面文章:缺陷工程与电场调控SrRuO3中拓扑自旋结构拓扑自旋织构,如磁旋涡、螺旋和斯格明子,不仅是利用真实空间磁拓扑的理想平台,而且是下一代量子器件的构建基础。其中,磁性斯格明子,一种纳米旋转的自旋结构,可通过低密度电流进行操作,并通过拓扑霍尔效应(THE)进行电检测。这些特征意味着拓扑自旋结构在能量高效的磁存储、逻辑门等方面具有巨大潜力。通常,Dzyaloshinskii–Moriya相互作用(简称DMI)稳定了特征自旋旋转织构, 而DMI来源于自旋轨道耦合(SOC)和磁体中的反转对称性破缺。在此基础上,DMI的确定性控制仍然具有挑战性但可以提供一种可选策略,将拓扑磁性推向实际的器件应用。图2. a: 氧空位引入异质结中的DMI示意图;b-f: STEM表征SROT/SROl/STO(001)异质结样品,存在氧空位引入的SROl界面;g: 计算的DMI强度,SROT/SROI/STO(001) 异质结中DMI强度大(红色,星形)。在这项工作中,通过利用SrRuO3/SrTiO3(001)上氧空位的不同形成能和扩散势垒,在缺氧和化学计量的SrRuO3之间构建了一个锐的界面(见图2)。这种界面反转对称性破缺导致了一个相当大的DMI,它可以在超过10个单位晶胞厚度(简称10uc)的SrRuO3中诱导斯格明子磁泡和拓扑霍尔效应。这种拓扑自旋织构可以通过电场调控氧空位的迁移进行可逆操纵。特别是,拓扑霍尔信号可以确定性地打开和关闭。图3. a: 低温磁力显微镜MFM表征50uc厚度的SRO薄膜;b: MFM表征10uc厚度的SRO薄膜,磁场强度范围:0.9T-1.4T;c: 10uc厚度的SRO薄膜中,磁泡畴数量(拓扑霍尔效应电阻)与磁场关系。文章中,作者使用了一套attoMFM I低温磁力显微镜,显微镜可以在闭循环低温恒温器attoDRY1000内被冷却到低的液氦温度,显微镜直观的检测到了尺寸在几十到几百纳米尺寸的磁泡畴。低温磁力显微镜(MFM)的测量结果(图3b)证实了在10uc厚度的SRO薄膜中磁泡畴数量随着磁场强度的变化而变化。并且磁芯的磁化强度要么向上要么向下,随H值变化而可调控。有意思的是,作者发现SROT/SROI异质结构的拓扑霍尔效应电阻和磁泡密度之间表现出线性关系。该观察到的拓扑霍尔效应电阻与MFM结果之间的强相关性进一步加深磁泡的拓扑性质。而在50uc厚度的SRO薄膜中磁泡畴尺寸在微米别。图4. a: 不同电场下,10uc厚度SRO薄膜电阻随磁场变化;b: 不同电场下,MFM表征10uc厚度的SRO薄膜;c: 电场调控磁畴泡数量数据;d:外置电场调控氧空位来打开与关闭拓扑霍尔效应电阻。如图4d所示,在STO的背面施加电偏压,可产生±3 kV cm–1的垂直电场来操纵氧空位的分布。氧空位的移动特性使其能够有效地控制拓扑霍尔效应(图4a)和斯格明子磁泡。低温磁力显微镜(MFM)的测量结果(图4b)证实了在10 uc厚度的SRO薄膜中磁泡畴数量可以通过不同的外置电场消除或创建。作者指出,拓扑霍尔效应完全可切换的开关状态为未来基于拓扑磁通的逻辑器件的设计提供了一个确定性的电气旋钮。点缺陷的可移动性可以使所得界面量子和新功能高度可控,这可能对未来自旋电子学和电子器件的设计具有大吸引力。 图5. 低温强磁场原子力磁力显微镜以及attoDRY2100低温恒温器 低温强磁场原子力磁力显微镜attoAFM/MFM I主要技术特点:▪ 温度范围:1.8K ..300 K▪ 磁场范围:0...9T (取决于磁体, 可选12T,9T-3T矢量磁体等)▪ 工作模式:AFM(接触式与非接触式), MFM▪ 样品定位范围:5×5×4.8 mm3▪ 扫描范围: 50×50 μm2@300 K, 30×30 mm2@4 K ▪ 商业化探针▪ 可升PFM, ct-AFM, SHPM, CFM,cryoRAMAN, atto3DR等功能 参考文献:1. Jingdi Lu, Liang Si, Qinghua Zhang, Chengfeng Tian, Xin Liu, Chuangye Song, Shouzhe Dong, Jie Wang, Sheng Cheng, Lili Qu, Kexuan Zhang, Youguo Shi, Houbing Huang, Tao Zhu, Wenbo Mi, Zhicheng Zhong, Lin Gu, Karsten Held, Lingfei Wang*, and Jinxing Zhang*, Defect-Engineered Dzyaloshinskii–Moriya Interaction and Electric-Field-Switchable Topological Spin Texture in SrRuO3,Advanced Materials., 2021, 33, 2102525.2. Jingdi Lu, Liang Si, Xiefei Yao, Chengfeng Tian, Jing Wang, Qinghua Zhang, Zhengxun Lai, Iftikhar Ahmed Malik, Xin Liu, Peiheng Jiang, Kejia Zhu, Youguo Shi, Zhenlin Luo, Lin Gu, Karsten Held, Wenbo Mi, Zhicheng Zhong, Ce-Wen Nan, and Jinxing Zhang , Electric field controllable high-spin SrRuO3 driven by a solid ionic junction. Phys. Rev. B 101, 214401 (2020) .
  • SGLC:浅谈液相色谱柱现代史
    p style="text-indent: 2em "span style="font-family: 楷体, 楷体_GB2312, SimKai "色谱是一种分离分析手段,分离是核心,因此担负着分离工作的色谱柱是色谱系统的心脏。目前市场上色谱柱种类和规格繁多,在制药、食品、环保、石化、农林、医疗卫生等领域有应用广泛,相关从业人数不断增长。/span/pp style="text-indent: 2em "span style="font-family: 楷体, 楷体_GB2312, SimKai "以往大家比较关注色谱柱的应用情况,为使大家更全面的了解色谱柱类别、相关技术及最新应用进展等内容,仪器信息网特别策划了strong“/strong/spana href="https://www.instrument.com.cn/zt/spzfl" target="_self"strongspan style="font-family: 楷体, 楷体_GB2312, SimKai text-decoration: underline "i走近色谱的‘心脏’——色谱柱新技术新应用/i/span/strong/aspan style="font-family: 楷体, 楷体_GB2312, SimKai "strong”/strong专题,并邀请色谱柱主流厂商来分享对色谱柱类别、技术发展及最新应用进展的看法。以下为岛津(上海)实验器材有限公司市场部(SGLC)相关负责人分享的对液相色谱柱现代史的看法。/span/pp style="text-indent: 2em "span style="font-family: 宋体, SimSun "“千锤万凿出深山,烈火焚烧若等闲”,于谦的《石灰吟》用来记述硅胶填料的生产、制作过程,也恰如其分。从最初的硅酸岩原材料处理成水玻璃,进而通过溶胶-凝胶等方法制备成多孔性硅胶微球,最后在硅胶表面进行化学修饰,键合特定的基团,这其中每一道工艺的优化都凝聚了色谱柱相关从业人员数十年来不懈的努力。/span/pp style="text-indent: 2em "span style="color: rgb(84, 141, 212) font-family: 宋体, SimSun "strong填料基质:硅胶vs聚合物/strong/span/pp style="text-indent: 2em text-align: justify "span style="font-family: 宋体, SimSun "在过去的五十年中,高效液相色谱(HPLC)色谱柱的开发与HPLC仪器开发并行,有时甚至超过了仪器的进步。 随着色谱分离技术的发展,对固定相填料也有了更高的要求,现有HPLC填料大部分为硅胶基质,其次为聚合物基质。硅胶因原材料经济、高机械强度、高比表面积、化学修饰简单等优点而应用广泛,但同时也存在从原材料、制作过程中继承的缺点——金属残留、硅醇基残留以及Si-O键在碱性条件下(pH 8)断裂的问题。相较于硅胶填料,聚合物基质的优势在于无碱性吸附、无金属离子残留,pH值稳定性好,但也存在柱效低和溶胀的问题。80年代,色谱研究人员创造性的将硅胶和有机聚合物的优势结合,通过在硅胶表面包覆一层聚合物薄膜,使内部的硅胶基体不受影响,具有高机械强度和分析效率;同时表面的聚合物层保护颗粒在碱性条件下不会溶解(耐pH=10),阻隔硅胶中残留的金属及硅醇基与化合物的相互作用(图1)(比如岛津Shim-pack GIST 系列,ACE Super系列,大阪曹達Capcell pak MG-III系列等)。进入21世纪后,研究人员又开发了“杂化颗粒技术”,用烷基桥来取代连接在碱性条件下不稳定的Si-O键,使其pH耐受范围拓宽到1-12(图2,3)(比如岛津Shim-pack Scepter系列, 沃特世XBridge系列等)。/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/25eb2763-8d26-4313-9301-26847e4aa249.jpg" title="1_副本.png" alt="1_副本.png"//pp style="text-align: center "span style="font-size: 12px font-family: 宋体, SimSun "strong图1 聚合物包被硅胶/strong/span/ppspan style="font-family: 宋体, SimSun "strongspan style="font-family: 宋体, SimSun font-size: 14px "/span/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/9f8cbcd6-2fcb-44eb-b47e-351c9e14e79e.jpg" title="2_副本.png" alt="2_副本.png"//pp style="text-align: center "span style="font-family: 宋体, SimSun font-size: 12px "strong图2 有机杂化硅胶/strongbr//span/ppspan style="font-family: 宋体, SimSun "strongspan style="font-family: 宋体, SimSun font-size: 14px "/span/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/22c959b8-51ab-4d72-8956-e859ea991aaf.jpg" title="3_副本.png" alt="3_副本.png"//pp style="text-align: center "span style="font-family: 宋体, SimSun "span style="font-family: 宋体, SimSun font-size: 12px "strong图3 在不同的pH 流动相条件或者不同的流动相添加剂条件下, 岛津Shim-pack Scepter LC 色谱柱都表现出了优异的稳定性/strong/spanstrongspan style="font-family: 宋体, SimSun font-size: 14px "/span/strongbr//span/pp style="text-indent: 2em "span style="color: rgb(84, 141, 212) font-family: 宋体, SimSun "strong色谱发展趋势之一:快速液相/strong/span/pp style="text-indent: 2em text-align: justify "span style="font-family: 宋体, SimSun "快速液相体现在表面多孔硅胶的发展和小粒径短柱日益广泛的应用两个方面。20世纪60年代在高效液相发展的初期,便已出现了薄壳型硅胶固定相,使液相色谱实现了高效和快速分离。但受低的样品负载量限制,未能推广使用。直到2007年,一种新研制的2.7um(1.7um熔融硅核和 0.5um的多孔层薄壳)表面多孔粒子的出现,总体积约75%为多孔结构,解决了早期薄壳粒子负载样品容量低的问题。而柱性能的突破来自2013年,亚2um 表面多孔硅胶粒子的使用,实现了更高的柱效(比如岛津Shim-pack Velox系列,安捷伦Poroshell系列,沃特世Cortecs系列等)。QA-QC部门、LCMS和LCMSMS分析对高通量的需求,以及组合化学领域对提高灵敏度的需求,都在驱使向小粒径短柱和表面多孔硅胶柱的转变。但受现有仪器技术的限制,短期内不会出现小于1um填料的应用。/span/pp style="text-indent: 2em "span style="color: rgb(84, 141, 212) font-family: 宋体, SimSun "strong色谱发展趋势之二:丰富的固定相选择/strong/span/pp style="text-indent: 2em text-align: justify "span style="font-family: 宋体, SimSun "以C18为代表的高效反相液相色谱柱一直被描述为药物发现、方法开发的心脏,常规HPLC方法的开发几乎总是从C18作为出发点。C18固定相主要利用疏水性保留和分离化合物,因此当遇到在C18柱上保留弱的化合物(如:极性化合物)和疏水作用力相似的物质(如:同分异构体)的分离问题时,实在是力有未逮。近年来色谱柱研究人员开发了键合相迵异的色谱填料以增强色谱柱的选择性,从而满足实际样品分离过程的需要。如针对极性化合物及其杂质的分析项目而开发的五氟苯基(PFPP)色谱柱,由于含有五个氟,因此具有较强的氢键作用力和阳离子交换作用力,对芳香族化合物和含硝基、卤素的化合物,具有强大的分离能力,保留能力甚至可以达到接近HILIC模式的强度(如岛津Shim-pack Scepter PFPP系列, 岛津Shim-pack Velox PFPP系列)。另一类无法用反相C18柱解决的分离难题就是异构体的分离。二苯基柱就是针对这一类难题而开发的色谱柱(如岛津Shim-pack Biphenyl系列,图4),键合的两个联苯具有十字交叉结构,立体选择性很强,因此对位置异构体的识别度较高,适合用来做诸如基因毒性杂质的分析项目。/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/f87756b8-cff9-48c6-82c0-0c08211a1ce0.jpg" title="4_副本.png" alt="4_副本.png"//pp style="text-align: center "span style="font-size: 12px font-family: 宋体, SimSun "strong图4 二苯基柱分离维生素D3及其3种同分异构体,展现了优于普通C18固定相的空间选择性/strong/span/pp style="text-indent: 2em "span style="color: rgb(84, 141, 212) font-family: 宋体, SimSun "strong色谱发展趋势之三:特定解决方案色谱柱/strong/span/pp style="text-indent: 2em text-align: justify "span style="font-family: 宋体, SimSun "随着生物制药行业的持续增长,新兴的生物仿制药在生物制药领域也越来越受欢迎。然而,生物仿制药可在制造过程中经历各种翻译后修饰,影响产品的生物活性和稳定性。准确表征和监测生产过程中如蛋白质聚集、电荷异构等关键质量属性(CQAs),是确保药物研发稳定性和过程一致性的重要环节。专为解决此类问题而此设计的液相色谱柱也应运而生(图5,6)。/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/f1b2e341-23b5-4c58-a329-2221fc9f5313.jpg" title="5_副本.png" alt="5_副本.png"//pp style="text-align: center "span style="font-size: 12px font-family: 宋体, SimSun "strong图5 盐梯度方法,用岛津Shim-pack Bio IEX分离贝伐单抗生物仿制药的电荷异质/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/c13665cd-a00d-4a96-8015-944434c12eb8.jpg" title="6_副本.png" alt="6_副本.png"//pp style="text-align: center "span style="font-size: 12px font-family: 宋体, SimSun "strong图6 岛津Shim-pack Bio Diol 分离贝伐单抗生物仿制药的单体和二聚体/strong/span/pp style="text-indent: 2em text-align: justify "span style="font-family: 宋体, SimSun "从60年代第一台商品化的高压液相色谱仪器的面世,液相色谱已经历了50多年的发展历程,在这过程中,针对小分子的分离问题,衍生了全多孔颗粒和表面多孔颗粒的技术。近年来,更多的兴趣转向了大分子的分离项目,可用于表征复杂系统的色谱技术具有广阔的应用前景。在不久的将来,可以预见,表面多孔的反相色谱柱将成为市场上的主导产品,同时,具有不同选择性的苯基柱的发展趋势也日渐明晰。/span /p
  • 沃特世隆重推出XBridge HILIC 液相色谱柱
    沃特世隆重推出XBridge HILIC 液相色谱柱 用于解决强极性化合物的色谱分离难题 2008年6月18日,马萨诸塞州米尔福德&ndash 沃特世公司 (WAT:NYSE)XBridge&trade 分析色谱柱系列从今天起将增加一个新成员-XBridge HILIC色谱柱。此产品能够有效地提高极性化合物的保留,而如果用传统反相色谱柱,则极性化合物保留很弱。现在全球的用户都可以从沃特世公司购买此产品。 首先,对于从事关于极性化合物的液相色谱/质谱分析的人来说, HILIC(亲水相互作用色谱)色谱柱比反相HPLC色谱柱有更多的优势。一个很显著的表现就是LC/MS分析的灵敏度会提高,一般可以高达 10~20倍 (具体数值将取决所使用的方法)。这主要是因为HILIC色谱需要使用高比例有机溶剂做流动相,这能够提高化合物在质谱仪器中的电离和去溶剂效果。 再有,由于省去了经过反相SPE处理后的蒸发和再定容过程,HILIC色谱大大地增加了在给定时间内所能分析的样品量。 最后值得指出的是,XBridge HILIC 色谱柱采用创新的亚乙基桥杂化颗粒(BEH)技术,与ACQUITY UPLC BEH HILIC色谱柱具有同样的分离选择性。科学家们能够轻松地将HPLC分离升级为UPLC,而不必担心会有任何选择性差异。与硅胶柱相比,BEH技术色谱柱拓展了pH 使用范围,并延长了色谱柱寿命。 我们提供5.0、3.5和2.5 µ m 的XBridge HILIC 色谱柱供用户选择。 成功构建 XBridge 色谱柱系列产品 XBridge系列色谱柱产品是专门为最灵活地开发液相色谱方法而设计的,科学家能够在1~12的全pH范围内调控流动相pH值,以产生更大的分离选择性差异,在更短的时间内即可开发出稳定耐用的LC方法。XBridge色谱柱结合了尖端的键合、封端技术以及填料合成技术,为最具挑战性的色谱分离提供可靠的解决方案。 XBridge系列产品还包括以下的类型:XBridge C18、XBridge Shield RP18、 XBridge 肽分析专用色谱柱 (PST)、XBridge 寡核苷酸分析专用色谱柱 (OST)、XBridge Phenyl柱以及OBD技术制备柱。 如果您需要了解更多信息或下载最新XBridge 色谱柱资料,请浏览http://www.waters.com/hilic。关于沃特世公司 沃特世公司(NYSE:WAT)为基于实验室机构创造商业优势条件已有50年的历史,通过实际可持续的创新使其在很多领域都能取得重大的研究进步,比如医疗卫生服务、环境管理、食品安全和全球水质等。 实验室信息管理、质谱分析和热分析等领先分离科学的联合,沃特世在技术上的突破和实验室解决方案为全球的客户提供了经久不衰的平台。 沃特世2007年年收入为14.7亿美元,拥有5000名员工。它不断进行科学探索,为全球客户提供卓越的操作方法。 媒体查询,请联络: 沃特世科技(上海)有限公司 谢迎锋 小姐 电话:+86 21 68794051 传真:+86 21 68794588 Email:xie_ying_feng@waters.com 网址:www.waters.com
  • 免费领取|珍贵资料--色谱研究泰斗傅若农教授精选集
    p style="text-indent: 0em "a href="https://at.umtrack.com/5bCCGr" target="_self"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/6d27b727-461a-44fa-b36e-ed508eb229af.jpg" title="学习考试成绩公布查询公众号首图 .jpg" alt="学习考试成绩公布查询公众号首图 .jpg"//a/pp style="text-indent: 2em "傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业——色谱研究。/pp style="text-indent: 2em "傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特整理傅若农教授近年来在本网连载的一系列文章,亲述中国气相色谱技术发展的历史趋势,以及个人步入分析化学的蹉跎岁月。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 287px height: 402px " src="https://img1.17img.cn/17img/images/202011/uepic/c45f1c9a-5b33-4b30-83da-f517168cb1d6.jpg" title="1.png" alt="1.png" width="287" height="402"/img style="width: 295px height: 405px " src="https://img1.17img.cn/17img/images/202011/uepic/1ead7dbe-522b-4279-8371-4e6b104aea95.jpg" title="2.png" width="295" height="405"//pp style="text-align: center "span style="font-size: 14px color: rgb(165, 165, 165) "《色谱研究泰斗傅若农教授精选集》目录/span/pp style="text-indent: 0em "领取方式:br//pp style="text-indent: 0em "1.打开或安装仪器信息网APP/pp style="text-indent: 0em "扫描下方二维码按照提示进行下载安装(微信中识别二维码可能会被微信要求先安装应用宝,然后再安装仪器信息网APP)/pp style="text-indent: 0em "img style="max-width: 100% max-height: 100% width: 200px height: 200px " src="https://ng1.17img.cn/bbsfiles/images/2020/01/202001101812144573_7771_147_3.png!w500x500.jpg" width="200" height="200"//pp/pp style="text-indent: 0em "2.点击首页顶部轮播处领取(如图所示),在积分商城中获取/pp style="text-indent: 0em "img style="max-width: 100% max-height: 100% width: 346px height: 291px " src="https://img1.17img.cn/17img/images/202011/uepic/c34ab611-711c-4832-a983-ff883175d079.jpg" title="微信截图_20201117135236.png" alt="微信截图_20201117135236.png" width="346" height="291"//pp/pp style="text-indent: 0em "如遇到问题,您可添加仪器信息网APP小助手微信好友:yqxxwapp 她会为您解决/pp style="text-indent: 2em "br//p
  • 新疆油田实验检测研究院:填补国内外弱碱性介质缓蚀剂研究空白
    近日,新疆油田实验检测研究院申报的“化合物、包含其的缓蚀剂组合物、缓蚀剂的制备方法和用途”近日获得国家发明专利授权。随着国内很多油田逐渐进入中、高含水期,油田采出水矿化度增高,并且富含腐蚀性无机离子及二氧化碳、硫化氢等溶解性气体,对油田注输管线和设备极易产生腐蚀,严重影响油田生产安全。缓蚀剂因具有成本低、效果好、操作方便等优点,在油田生产中被广泛采用。目前,国内油田生产中所使用的采出水缓蚀剂多以醛、酮、胺的缩合物及其衍生物等有机分子类为主,在水、油气或油气水等不同酸性介质中使用,效果表现优良,而在国内呈弱碱性(pH值7.5~9)的油田采出水水质中,使用效果欠佳,甚至无效。这是因为,有机类缓蚀剂在弱碱性的油田采出水中易发生分子结构断链、开环改变,难以在金属表面形成完整致密的保护膜,从而导致缓蚀性能降低,甚至无缓蚀性能。针对弱碱性介质中缓蚀剂的研究,目前在国内外仍处在探索期。2013年开始,新疆油田实验检测研究院科研人员潜心钻研,查找文献、反复实验,通过分子结构设计、优化实验工艺,成功研发出适用于弱碱性油田采出水的缓蚀剂,就像“护肤品”一样,能在油田采出水管道内壁快速形成一层保护膜,具有缓蚀、阻垢、杀菌多种功能,填补了弱碱性油田采出水缓蚀剂研究领域的空白。此项成果的研发与应用,更适用于采出水水质呈弱碱性的沙漠、戈壁及碱滩油区,可有效缓解油田注输管线及设备的结垢腐蚀,更好地护航油田安全运行。
  • DIONEX推出ProSwift整体型液相色谱柱
    DIONEX(戴安)公司最新推出了采用独特的整体柱封装技术,用于快速、高分辨率的分离蛋白质、肽、低聚核苷酸以及其它生物大分子的高效液相色谱柱。  四种全新的基于整体柱技术的高效液相色谱柱最近面世,其中包含三种反相色谱柱RP-1S, RP-2H and RP-3U,以及一种弱离子交换柱WAX-1S。整体柱技术是指采用一个单独的整体的圆柱形聚合物柱体,它与传统的填充床技术相比具有显著的优点。整体柱被设计和制造成包含由特殊的可控粒度范围的材料构成的不间断的交联网状管道,即使是生物大分子,这些大的流通管道也可以实现快速均匀的物质传输。这样,就确保了在很宽的线性流速范围内都会有好的分辨率,同时,这些通道产生的背压也很小。与传统的珠式填充的柱子相比,这种整合了高分辨率和快速分离的ProSwift整体柱就具有很大的优势。蛋白质、肽、低聚核苷酸以及其它生物大分子可以高通量进行分离和净化以便进行定性分析或液质连用分析。  ProSwift 整体高效液相色谱柱可以使非多孔介质材料拥有突出的分辨能力。而且,低的背压允许使用高流速以实现快速色谱分离。比较了一组蛋白质混合物在不同流速下的分离发现:当流速增加至8mL/Min时,保留时间减少至2分钟,却仍然有很高的分辨率。这种快速分离说明:ProSwift整体色谱柱在实现高通量的同时可以实现高的产出率。DIONEX(戴安)中国市场部
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制