当前位置: 仪器信息网 > 行业主题 > >

气相色谱能测

仪器信息网气相色谱能测专题为您提供2024年最新气相色谱能测价格报价、厂家品牌的相关信息, 包括气相色谱能测参数、型号等,不管是国产,还是进口品牌的气相色谱能测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合气相色谱能测相关的耗材配件、试剂标物,还有气相色谱能测相关的最新资讯、资料,以及气相色谱能测相关的解决方案。

气相色谱能测相关的资讯

  • 气相色谱新的市场增长点!2项氢能国标做出明确规定
    近日,住房城乡建设部(以下简称“住建部”)发布两项氢能领域国家标准征求意见稿。根据《国家标准化管理委员会关于下达2022年碳达峰碳中和国家标准专项计划及相关标准外文版计划的通知》(国标委发〔2022〕23号)的要求,住建部组织中国市政工程华北设计研究总院有限公司等单位起草了国家标准《燃气掺氢混气装置(征求意见稿)》和《氢能输配设备通用技术要求(征求意见稿)》(见附件)。两项标准均对氢能储运体系中的关键环节提出了明确要求,强调燃气掺氢混气装置与氢能输配设备必须配备气体组分分析仪/浓度分析仪,以及完善的监测控制系统与可燃气体报警系统,以确保氢能应用的安全性与高效性。其中,气体组分分析仪/浓度分析仪的核心测试仪器为气相色谱仪,其详细规格与要求亦在标准中得以明确阐述,如下所示:(1)氢气组分/浓度分析仪、甲烷组分/浓度分析仪的精确度、灵敏度、分辨率、重复性、线性度、死区及响应时间等技术指标,应满足工艺要求,并应技术先进,性能稳定可靠,操作维护简便。(2)气相色谱仪的检测器可选用热导检测器(TCD)、氢焰检测器(FID)和火焰光度检测器(FPD)等类型,分析浓度下限不宜低于1x10-4。(3)每台气相色谱仪分析的流路数不宜超过3个,每个流路组分数量不宜超过6个;(4)气相色谱仪应采用防爆设计。(5)氢气组分/浓度分析仪输出信号应符合下列要求:a) 用于安全联锁的分析仪输出信号应为4mA~20mA DC 或干接点;b) 用于过程控制的分析仪输出信号应为4mA~20mA DC;c) 用于过程监测的分析仪输出作信号宜为4mA~20mA DC或MODBUS RTU、以太网 TCP/IP 等通信接口。d) 气相色谱仪宜带 4mA~20mA DC 和干接点输出,以及 MODBUS RTU、以太网TCP/IP 等通信接口。(6)气相色谱仪的计量性能应符合JJG 700的要求,并符合下列要求:a) 测量范围:0~100 %VOL;b) 精度:≤±2 %FS(普通精度); c) 灵敏度:≥800 mV.ml/mg;(热导检测器(TCD))d) 定性重复性≤1%;e) 定量重复性≤3%; f) 防爆等级不应低于IICT4 ,防护等级不应低于IP 65。氢能作为一种清洁能源,对于实现碳达峰、碳中和目标具有重要意义。这两项标准的出台将有助于推动氢能产业的快速发展,为国家的绿色发展战略提供有力支持。未来,随着这两项国家标准的逐步落地实施,以及氢能产业的蓬勃发展与一系列重大项目的加速推进,气相色谱技术作为关键支撑,其市场需求将迎来前所未有的增长机遇,为行业注入新的活力与动力。 附件:氢能输配设备通用技术要求(征求意见稿).docx燃气掺氢混气装置(征求意见稿).doc
  • 赋能创“芯” | 赛默飞电子气体气相色谱分析解决方案
    赋能创“芯” | 赛默飞电子气体气相色谱分析解决方案原创 飞飞 赛默飞色谱与质谱中国 关注我们,更多干货和惊喜好礼高丽电子气体是半导体工业中使用的一类特殊气体,广义上的电子气体是指具有电子级纯度的特种气体,广泛应用在包括集成电路、显示面板、半导体照明和光伏等泛半导体行业。电子气体按其门类可分为纯气、高纯气和半导体特殊材料气体三大类。其中,特殊材料气体主要用于外延、掺杂和蚀刻工艺,高纯气体则主要用作稀释气和运载气。按纯度等级和使用场合分类,可以分为电子级、LSI(大规模集成电路)级、VLSI(超大规模集成电路)级和ULSI(特大规模集成电路)级。按用途可分为大宗气体,包括氮气、氢气、氩气、氦气、氧气、二氧化碳等;电子特种气体,包括笑气、氨气、三氟化氮、四氟化碳、六氟化硫、氯化氢、甲烷等气体。电子气体的使用对电子工业的发展至关重要,随着技术的进步,对电子气体纯度和洁净度的要求也越来越高,需要达到5N(99.9999%)以上的纯度,因为即使是痕量级杂质和污染物也会对最终器件质量和制造产量造成严重影响。赛默飞针对电子大宗气体、电子特气分析需求,推出高纯气分析解决方案。配置Trace1600系列气相色谱主机、脉冲放电氦离子检测器(PDD)、可安装色谱柱的大体积阀箱、带吹扫保护气阀的多阀多柱分析系统等,为用户提供数十种电子气体杂质的检测方案。01高纯氙中杂质分析氙气是一种天然稀有的惰性气体。由于具有较高的密度,低导热系数及可吸收X射线等特征,氙气被广泛的应用于电子电器,光电工业,医疗,电子芯片制造等行业。近年来随着氙气被应用于越来越多高端性产品的生产,行业对氙气纯度的要求也非常严格。赛默飞Trace GC-PDD系统可对高纯氙气中ppb及至ppm级浓度的氢气,氩气,氧气,氮气,一氧化碳,甲烷,二氧化碳,氧化亚氮,氪气,六氟化硫,六氟乙烷等杂质进行定性定量检测,其灵敏度完全符合GB/T 5828-2006的要求,同时具有优异的分离度和重现性。1.1仪器配置及色谱分析条件表1 气相色谱仪仪器配置及色谱分析条件(点击查看大图)1.2氙气中杂质分析色谱图如图1所示,标准气体中氢气,氩气,氧气,氮气,一氧化碳,甲烷,二氧化碳,氧化亚氮,氪气,六氟化硫,六氟乙烷等组分均得到良好的分离效果,氧气和氩气实现了基线分离(分离度大于1.5)。标气中浓度较大的氙气组分通过反吹放空,不进入检测器,从而避免了样品中氙气基质对目标组分的干扰。图1 高纯氙气中杂质典型色谱图(点击查看大图)1.3重现性表2分别列出了各个组分样品连续进样6次的峰面积重现性:各个组分的峰面积相对标准偏差(RSD)均低于1%;表3分别列出了各个组分样品连续进样6次的保留时间重现性:各个组分的保留时间重现性相对标准偏差(RSD)均低于0.01%。表2 各杂质连续6针进样峰面积重现性(点击查看大图)表3 各杂质连续6针进样保留时间重现性(点击查看大图)从测试结果可以发现,方案完全满足国标GB/T 5828-2006中对各杂质组分的检测要求。Trace GC-PDD系统在高纯氙气痕量杂质的分析中表现出优异的性能。反吹技术避免了氙气基质对系统的干扰,高分离效率色谱柱的使用实现了无需使用冷却装置即可分离氩气和氧气。02高纯氪中杂质高纯氪无色、无臭、无味、无毒、不可燃的单原子气体,化学上惰性。广泛应用于各类照明中,是良好的保护气和发光气。还应用于电真空、激光器、医疗卫生等领域。目前,高纯氪主要由大型空分设备从空气中提取,因其在空气中含量极少。因此售价高昂,被誉为“黄金气体”。由于高纯氪中杂质组分含量要求极低,脉冲放电氦离子化检测器(PDD)对痕量杂质组分有很高的灵敏度,被用于做高纯气体中痕量杂质的检测。针对以上检测需求,赛默飞采用Trace 1600系列气相主机、带有脉冲放电氦离子检测器(PDD)、多阀多柱分析系统,实现稀有气体高纯氪中痕量的氢气,氩气,氧气,氮气,一氧化碳,四氟化碳,甲烷,二氧化碳,氙等9种杂质含量的检测。方案分离效果好,检测限低,重复性好,完全满足标准GB/T 5829-2006 氪气的检测要求。2.1仪器配置及色谱分析条件表4 气相色谱仪仪器配置及色谱分析条件(点击查看大图)2.2氪气中痕量杂质分析色谱图按照2.1的色谱分析条件,对标气样品进样测定。如图2所示,以高纯氪为底的标准气体中痕量的氢气,氩气,氧气,氮气,一氧化碳,四氟化碳,甲烷,二氧化碳,氙各组分离效果理想,氧气和氩气实现了基线分离(分离度大于1.5)。标气中绝大部分的基质组分氪气通过阀切换被放空,不进入检测器,从而避免了基质组分氪气对痕量目标组分的干扰。图2 高纯氪气中痕量杂质典型色谱图(点击查看大图)2.3重复性连续进标气样品6针,考察高纯氪标气中各样品组分的峰面积重复性,其峰面积相对标准偏差(RSD)均低于2.33%,重复性结果见表5;表6是高纯氪标气中各个样品组分连续进样6次的保留时间重复性结果,其保留时间重复性相对标准偏差(RSD)均低于0.03%。表5 高纯氪标气中各杂质组分连续6针进样峰面积重复性结果(点击查看大图)表6 高纯氪标气中各杂质组分连续6针进样保留时间重复性结果(点击查看大图)从测试结果可以发现,方案完全满足国标GB/T 5829-2006中对各个杂质组分的检测要求。方案实现一次进样,完成高纯氪中多痕量杂质组分的检测,通过阀放空技术,有效避免了高纯氪基质对痕量杂质的干扰;优化的色谱柱分析系统实现了样品气中氩气和氧气的基线分离。03电子特气六氟化硫和三氟化氮中杂质分析赛默飞针对电子气体六氟化硫和三氟化氮中杂质检测的要求,配置 Trace 1610和大体积色谱阀箱、双通道设计、配置两个PDD检测器。一次进样实现六氟化硫和三氟化氮样品中H2, O2+Ar, N2, CH4, CO, CF4, CO2, SF6, N2O, SO2F2杂质组分分析,方案满足标准GB/T 21287和GB/T 18867的检测要求。3.1仪器配置及色谱分析条件表7 气相色谱仪仪器配置及色谱分析条件(点击查看大图)3.2六氟化硫和三氟化氮中杂质分析色谱图按照3.1的色谱分析条件,分别对六氟化硫标气和三氟化氮标气样品进样测定。F-PDD通道用于分析六氟化硫和三氟化氮样品中H2, O2+Ar, N2, CH4, CO, 杂质组分;B-PDD通道用于分析六氟化硫和三氟化氮样品中CF4, CO2, SF6, N2O, SO2F2杂质组分。六氟化硫中杂质组分典型色谱图见图3和图4;三氟化氮中杂质组分典型色谱图见图5和图6。图3 六氟化硫中杂质分析F-PDD通道色谱图(点击查看大图)图4 六氟化硫中杂质分析B-PDD通道色谱图(点击查看大图)图5 三氟化氮中杂质分析F-PDD通道色谱图(点击查看大图)图6 三氟化氮中杂质分析B-PDD通道色谱图(点击查看大图)滑动查看更多3.3重复性连续进标气样品6针,考察三氟化氮标气中各样品组分的峰面积重复性,其峰面积相对标准偏差(RSD)均低于2.88%,重复性结果见表8。表8 电子气体三氟化氮标气中各杂质组分连续6针进样峰面积重复性结果(点击查看大图)从测试结果可以发现,方案完全满足国标GB/T 21287和GB/T 18867中对各个杂质组分的检测要求。方案实现一次进样,双通道同时分析,完成电子气体六氟化硫和三氟化氮中杂质的检测。总 结赛默飞提供模块化气相色谱仪(Trace 1600系列)、模块化PDD检测器、搭载功能强大的大体积阀箱多阀多柱分析系统,为多种电子气体中痕量杂质分析提供高效的解决方案。实现一次进样,完成样品中痕量杂质组分的检测;方案通过阀放空技术,有效避免了高纯基质组分对痕量杂质的干扰;方案可提供填充柱分析系统或毛细柱分系统,优化的毛细柱分析系统实现了样品气中微量氩气和氧气的基线分离。此外,赛默飞在电子气体、高纯气分析领域,为广大用户提供更多完全定制化的解决方案,满足用户各不相同的检测需求。如需合作转载本文,请文末留言。
  • 赋能数字化转型 色谱产品变动——访西门子(中国)有限公司产品经理沈毅和气相色谱及集成业务经理王凯
    西门子全面推进数字化业务的发展,助力各工业企业加速高质量发展。2023年售出过程气相色谱业务,统筹未来战略布局。仪器信息网采访了西门子(中国)有限公司产品经理沈毅和气相色谱及集成业务经理王凯。西门子通过组织架构调整、合并收购和构建生态,成功实现工业数字化转型升级,未来将通过品牌底蕴和技术基础释放价值,通过数字化赋能工业企业,助力高质量可持续发展。西门子剥离色谱业务是公司产品线的正常调整,也是未来战略规划的一部分。除了出售色谱业务外,公司还计划引入新的产品线,比如新型激光分析仪等,并将继续加强在线分析行业的推广和应用。在中国市场,西门子在线分析仪表业务在2023年保持了每年4亿的销售额,加上常规仪表业务,销售额超过10亿,保持平稳发展;截至2023财年,分析仪业务增长10%-20%。西门子非常关注中国市场变化,对于未来面临的机遇和挑战,将采取适应性措施,比如,整合现有的研发、销售等人员,成立战略产品部。未来,西门子不只提供进口仪表产品,还将推出中国本土化产品,为客户提供更全面的数字化服务。色谱业务出售后,将融入唯美德自动化系统的业务板块,成为单独的业务单元,从技术、产品和应用等多维度增强维美德自动化业务实力。唯美德将继续加大色谱业务的投入,包括研发、本地化等方面,为全球加工行业客户提供优质的气相色谱产品和解决方案。自2024年4月1日起,西门子与唯美德公司将正式完成色谱业务的交接,所有的服务将平稳转移,并在原有承诺基础上,为客户提供更加高效的服务;更多详细计划将在适当的时候公布。
  • 气相色谱“黑科技”助力全行业分析检测
    p 身处在被各种“黑科技”轰炸的时代,作为分析行业从业者,您是否一直在等待气相色谱“黑科技”的出现,是否一度怀疑传统的气相色谱能否再继续出现技术创新和突破。当您了解完本文应用实例中所体现的Intuvo 新技术、新科技、新特点时,相信您将不禁产生如此共鸣:“我们的气相色谱技术的确在进步,而这些技术创新和突破就在Intuvo”。/ppbr//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/cd9755ef-c54f-4507-8054-37afa297b87b.jpg" title="i1.jpg"//ppstrongIntuvo 的看家本领/strong/pp 首先来了解一下 Intuvo 都有哪些“看家本领”:直接加热柱温箱大幅提升了升温速率,为分析效能的提升提供潜能;芯片式保护柱和创新流路设计免去了色谱柱切割等复杂的维护,即使是色谱新手也能很快掌握使用技巧。那 Intuvo 是如何在各行业利用这些“看家本领”大显神威的?且听我慢慢道来。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/3b08ae9b-3ecc-4655-9dc6-cda47dd7bd1d.jpg" title="i2.jpg"//ppbr//ppstrong多残留农药分析/strongbr//pp 多残留农药分析现已成为食品分析的主流方法,该方法能够同时测定多种农药。随着全新的食品安全国家标准GB 23200.113-2018《植物源性食品中 208 种农药及其代谢物残留量的测定气相色谱-质谱联用法》的颁布和执行,农药检测数目大幅提升,给想遵循此方法的实验室提出了更高的要求。/pp 对于复杂基质食品的农药残留分析,必须进行一定程度的样品前处理,将样品进行均质化处理并将其萃取到适合色谱分析的溶剂中。QuEChERS 萃取法是样品前处理的优选方法,它能够减少基体载入量,但获得的样品还不够干净,由于背景信号较高,可能会给准确鉴定和定量分析带来问题,久而久之,农药分析仍然会出现响应降低以及色谱峰不对称的情况。对于这一问题,传统气相色谱系统的合理解决方案是减少批次规模,提高进样口、色谱柱和保留间隙柱的维护频率。毫无疑问,这些方法都会使分析效率大打折扣,对于有大量样品的实验室,这是难以接受的。br//pp Intuvo 重新设计的模块化流路和创新性的芯片式保护柱,保护分析柱免受基质污染,从而无需修剪色谱柱,节省了仪器维护的时间。对于复杂的分析物,即使不采用反吹技术,也能够获得一致的回收率和峰形。利用超快速气相色谱分析技术,分析时间缩短约 2 分钟,一个工作日内可以完成更多的分析,有效解决积压的样品。此外,Intuvo 体积较小,还能最大化地利用实验室空间。/ppbr//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/bb00e95a-2267-439d-88fc-5b7b164c0892.jpg" title="i3.jpg"//ppstrong基因毒性杂质排查/strong/pp 基因毒性杂质的排查一直是制药企业关注的重点,在溶剂和原材料的添加过程以及药物合成过程中都有可能产生,检测这些基因毒性杂质就变成了一个棘手的问题。对于 N,N-二甲基-3-氯丙胺盐酸盐中基因毒性杂质 1,3-溴氯丙烷,传统分析方法是采用 GC-FID 进行检测,但该方法实验操作繁琐,重复性较差,且样品基质对 1,3-溴氯丙烷的检测有干扰,使得 1,3-溴氯丙烷的含量检测不准确,以至于无法真实体现出样品的质量。/pp 采用 Intuvo 气相色谱系统配备 5977B 单四极杆质谱检测器(IntuvoGC/MSD)对基因毒性杂质 1,3-溴氯丙烷进行检测,目标物的峰形和重现性良好,可有效与样品中的杂质进行分离,并得到准确的测定结果。此外,Intuvo 搭配顶空进样器和液体进样器时无需进行硬件更改,操作简单,节省了安装和维护成本。br//ppbr//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/85c0809b-d7d8-43f1-911c-27783c69c8ea.jpg" title="i4.jpg"//ppstrongTPH快速分析/strong/pp 环境样品中烃类污染物的分析通常称为TPH 测定或总石油烃测定。进行TPH 分析时,无需对单个化合物进行色谱分离。相反,可以将整个样品洗脱为大部分未分离的流分进行定量分析。常规检测土壤中的 TPH 方法使用二氯甲烷和丙酮混合液萃取,水中的化合物使用二氯甲烷萃取,但分析时间约 20 min,不能满足商业实验室大通量分析的要求。/pp结合Intuvo 快速升温特点,采用短色谱柱、快速程序升温的超快速气相色谱分析技术,分析时间小于3.2 min,一个工作日内可以完成更多的分析,大大提高了分析效率。Intuvo 独特的保护柱芯片和全新的超惰性流路芯片设计可以最大程度地保护色谱柱,有效降低系统维护频率,保证数据的稳定可靠。br//ppbr//ppstrongIntuvo 就是“小身材,大能量”/strong/pp 相信大家已经对“小身材,大能量”的 Intuvo 刮目相看了。无论是对环境分析课题的复杂性,还是对食品分析组分的多样性;无论是对制药残留的分析论证,还是对能源化工痕量分析的初探,在 Intuvo 创新科技的运用下,克服这些分析障碍将不再是难题。br//pp 安捷伦将推出《 Agilent Intuvo 9000 气相色谱系统全面解决方案》应用文集,对各行业应用进行精彩剖析,敬请期待!正可谓“创新永无止境,精彩你我相随”,就让此文集成为您和安捷伦联系的纽带,开启解决色谱应用研究的新篇章!/ppbr//p
  • 科捷气相色谱仪/液化气中二甲醚检测气相色谱仪促销
    科捷气相色谱仪/液化气中二甲醚检测气相色谱仪促销南京科捷液化气中二甲醚检测气相色谱仪销售热线:025-83738955,尹先生13951792301新闻报导广州液化气充装二甲醚将吊销充装证 10月11号广州质监局和广州城管委联合主办液化石油气行业市场监管和诚信经营活动启动仪式。相关负责人透露,接下来将对充装单位进行诚信评级,对充装二甲醚、充装非自有气瓶等严重违法行为的不诚信企业,实施停业整顿或吊销充装证的处罚。 二甲醚为易燃气体。与空气混合能形成爆炸性混合物。接触热、火星、火焰或氧化剂易燃烧爆炸。接触空气或在光照条件下可生成具有潜在爆炸危险性的过氧化物。气体比空气重,能在较低处扩散到相当远的地方,遇火源会着火回燃。若遇高热,容器内压增大,有开裂和爆炸的危险。 为保证广大消费者的利益,南京科捷分析仪器有限公司提供液化气中二甲醚检测方案,方案内容如下,检测结果符合《GB/T 13610-2003天然气的组成分析气相色谱法》,《GB/T 10410-2008 人工煤气和液化石油气常量组分气相色谱分析法》。科捷气相色谱仪检测石油液化气中二甲醚主要配置:TCD检测通道► 六通阀 1只,用于气体进样和填充色谱柱切换► 分析柱1:&Phi 3× 3m 1根► 分析柱1:&Phi 3× 3m 1根► 热导检测器 1只► 分离分析:H2、O2、N2、CH4、CO2、CO FID检测通道► 六通阀 1只,用于气体进样► 分流/不分流毛细管进样器 1只► 毛细管柱:氧化铝 30m× 0.53mm× 20um 1根► FID检测器 1只► 分离分析:CH4、C2H6、C2H4、C3H8、C3H6、iC4H10、nC4H10、正丁烯、异丁烯、反丁烯、顺丁烯、异戊烷、正戊烷、1,3-丁二烯、异己烷、正己烷N2000双通道色谱工作站 1套► 信号通道A 用于TCD检测通道信号数据采集► 信号通道B 用于FID检测通道信号数据采集科捷液化气中二甲醚检测气相色谱仪主要特点  1、全兼容惠普HP5890II气相色谱仪,可直接接驳HP5890微型单丝热导检测器、氢火焰离子化检测器及相关检测器控制板.仪器技术指标、性能,检测器灵敏度可与HP5890相媲美!   2、全新集成数字电子电路,控制精度高,性能稳定可靠,温控精度可达0.01℃.   3、独特的进样口设计解决进样歧视;双柱补偿功能不仅解决升温带来的程序漂移,而且减去背景噪音的影响,可以得到更低的最小的检测限。  4、柱箱容积大,智能后开门系统无级可变进出风量,缩短了程序升/降温后系统稳定平衡时间;加热炉系统:(温度范围)环境温度+7℃~400℃.三阶程序升温,升温速率0-50℃/min;增量0.1℃/min可以由用户重新校正炉温,并随意设定最高温度。由用户决定加热炉温度平衡时间。  5、可同时安装两种进样系统:填充柱、毛细管分流/不分流进样系统(具有隔膜清扫功能);可同时安装两种相同或不同的检测器:氢火焰离子化检测器(FID)、热导检测器(TCD).可选配自动/手动气体六通进样阀进样器、顶空进样器、热解析进样器、甲烷转化炉.   6、检测器系统:火焰离子检测器容易拆卸和安装,便于清洁或更换喷嘴;高阻值单柱热导检测器检测灵敏度高,基线稳定快(15分钟即可稳定);输入信号可进行对数放大,减少干扰,提高灵敏度.可选配TCD、ECD、NPD。  7、具有开机自诊断功能、秒表功能(方便流量测定)、运转定时器功能、停电储存保护功能、键盘锁定功能。科捷液化气中二甲醚检测气相色谱仪技术指标  1、温控  控温范围:室温上7℃~400℃(增量0.1℃)  程升阶数:三阶  程升速率:0.1℃~50℃/min(增量0.1℃)   2、检测器TCD  敏感度:&ge 10000mV· ml/mg(正十六烷)  基线噪声:&le 30uV(载气为99.999的氢气金秋10月,科捷液化气中二甲醚检测气相色谱仪大促销,欢迎来电详询优惠资讯!联系电话:025-83738955,尹先生13951792301
  • 食品检测实验室气相色谱质谱仪的选型
    p style="text-indent: 2em "现在绝大多数食品检测实验室均是配置色-质联用仪,单独使用质谱仪检测的已经非常少了。唯一单独使用的是应用同位素质谱仪检测蜂蜜等食品中的同位素比,以确定产品是否掺伪。本文主要介绍一下GC-MS购置时需要考虑的主要性能及功能。/pp  GC-MS是高分离功能的GC与能提供被测物质分子信息的MS联用分析仪器。两种仪器功能互补,使仪器的分析功能更强大。例如:质谱能提供被测物的特定分子信息,对化合物的定性更加准确。但是,质谱无法区分同分异构体,而色谱分离同分异构体很容易。所以,色-质联用仪的功能是 1+1 2。/pp  现在GC-MS的GC部分均采用高分离性能的毛细管色谱,可以选配不同类型的进样口,如:最常用的分流/不分流进样口和(温度/压力)可编程控制进样口。柱箱多级程序升温控制。在谈到气质联用性能时,现在国内市场上比较常见品牌的主流型号GC的性能、功能并无多大差异。故在GC方面不再做比较。/pp  MS的类型有多种,通常是按照分析器的类型来分,有四极杆质谱、离子阱质谱、飞行时间质谱、四极杆串联质谱、高分辨磁质谱等。不同厂家的不同型号的MS性能、功能、价格或者说性价比都存在较大差异。所以,本文将主要围绕MS进行论述。目前食品检测实验室配置使用的GC-MS联用仪多配置低分辨MS,这类仪器以目标化合物的定性、定量为主,兼有一定的未知物定性功能。选用这类仪器有两个目的:/pp  第一, 也是主要目的,是对食品中残留物进行分析。/pp  既然是用于残留物分析,仪器的灵敏度至关重要,也是选仪器时首先应考虑的。但这不是唯一的指标(特别是不能仅看标称指标),还要综合考虑仪器的分辨率、质量稳定性、质量范围、动态线性范围、抗污染能力(包括仪器离子源、预四极等部件的清洗维护是否方便)、以及软件操作是否方便等。/pp  GC-MS在残留物的分析中应用愈来愈普遍,是因为MS是一个通用型检测器,对大多数有机化合物都有比较好的响应。另一方面,四极杆质谱检测时有一个选择离子方式(SIM方式),与全扫描方式相比可以提高检测灵敏度2、3个数量级,检测灵敏度较氢火焰检测器(FID)、火焰光度检测器 (FPD)、氮磷检测器(NPD)高,稍逊于电子俘获检测器(ECD)对有机多卤素化合物的检测。残留物分析多为目标物检测,所以,用SIM方式检测既有广谱性(对化合物的响应而言),又有特异性(对不同化合物各自的特征离子而言),因而特别适合用于多种残留物的检测,提高分析效率。/pp  现在仪器公司买仪器时所列出的技术指标有:灵敏度、分辨率、质量稳定性、质量范围、动态线性范围等。/pp  市场上厂家标称的灵敏度为什么这么高?/pp  现在表述灵敏度是用八氟萘(OFN),如:EI+,1pg OFN信/噪(S/N) 100。现在的信/噪比是RMS(均方根)方式,数值上与过去的灵敏度值相比高了很多。过去信/噪比是峰-峰比,即:信号的峰高/基线噪音的峰高,比较一目了然,自己拿尺子量都能量出来。但据厂家说,在选择基线噪音时有人为误差。现在厂家将信/噪比编成固定的程序,比如信号值与固定时间段(如1~2min,其实这段时间的基线是比较平的)噪音的比值。但现在的测定方式厂家其实同样有很多偷手,比如测试时用厂家自带的短测试柱 (10m或15m),质量的扫描范围减少,进样量增加(过去是空气-样液-空气绝对1μL,而现在1μL是包括针头死体积)。没办法,现在厂家为了竞争都这样做,用户也只好跟着走。所以,现在仅看厂家的标称指标是不够的。/pp  做灵敏度指标时应该注意几个问题:/pp  (1)应该先做分辨率,在保证单位质量分辨时,再做灵敏度。如下图所示,可以采用一种近似方法,即,半峰高处的峰宽不小于1/2峰宽(此图转载自www.antpedia.com网dingdang的“谈谈有机质谱的分辨率”一文。在此表示感谢。)。灵敏度与分辨率成反比,若为了灵敏度而损失分辨率,会降低了质谱定性功能。/pp  (2)质量扫描范围也应有规定,比如:OFN,200-300amu,扫描范围减小也能提高信/噪比。这些限制性条件应在谈合同时就确定下来。/pp  (3)检测电压应该是正常检测时的工作电压,不同型号的质谱仪因参数表示的含义有差异,所以,各家仪器推荐使用的检测电压值也不同。但是,做灵敏度测试时的电压不应高于推荐正常使用时的工作电压。否则在实际工作时就会有问题,因为实际样品检测时是有基质干扰的,高电压不能提高信/比,而且还会使电子倍增器寿命降低。/pp  现在国内出现了一些过分强调,或者说厂家过分宣传自己仪器灵敏度高的现象,导致现在标称的灵敏度越来越高,听说RMS信/噪比都有给出 1000的了。其实做标准品的指标只是个参考,将来做基质复杂的实际样品(如动物内脏)能得到好的、稳定的结果才是关键。现在有仪器的单位越来越多了,可以在购仪器前做一个实际样品到各家仪器上实测一下,并且了解一下各种仪器用户的反应,这比仅仅比指标更好。/pp  仪器的其它指标一般不会有太大问题。/pp  对于低分辨质谱,分辨率达到单位分辨一般没有问题。/pp  质量范围现在多标称为2~1025(或1500)u,这个质量范围对于GC-MS够用了。因为,GC-MS分析物是挥发或半挥发物质,分子量一般不会太大。唯一要注意的是若做污染物十溴联苯(MW 954)和十溴联苯醚(MW 970)检测,不能选质量数小于1025u的(个别厂家的MS质量范围最高只有800u)。/pp  质量的稳定性一般在0.1amu/8hr,这个指标其实也挺重要的。好的仪器几个月校正一次质量数即可,差的每周都要校正。虽不影响检测,但增加操作者的工作量。/pp  线性范围大于10e4,对残留分析够用了。这些指标验收仪器时均需要按照合同的规定认真做。/pp  此外,仪器的一些功能在验收仪器时也一定要都亲手做一遍,比如:化学电离源(CI)的更换、直接进样杆的操作、复合电离切换方式 (EI/CI)、复合扫描方式(TIC/SIM)等。许多农药含有卤素和电负性基团,因此有电负性。负化学源(NCI)检测这类物质可以获得较高灵敏度,这是由于NCI的本底较低,检测电负性物质时可以获得更高的信/噪比。对于定性也可以起到补充确证的作用。做NCI时需要通入反应气,所以,要求仪器的真空系统要比较好。现在厂家提供的GC-MS配置是可以选配的,若配NCI就一定要配置大抽率的真空泵,起码大于250L/min,最高配置有2× 200L /min。另外,还应考虑更换离子源的方便性,有的型号仪器更换离子源可以不破坏真空。/pp  残留分析通常是目标物检测,目标物多为农药、兽药、添加剂、化学污染物等。这里的定性仅仅是对目标物进行确证。对于这种定性可以用两种方法,一是与仪器自带的NIST谱库(2006版提供约14万多张)的质谱图进行比对,二是与对应的标准品的质谱图进行比对。实际检测时后者的比对方法更好、更准确。因为,被测物经过前处理和毛细管柱后,基质的干扰会使被测物质谱图的离子碎片和丰度比与NIST谱库的质谱图(通常是由纯品直接进样得到的) 产生偏差。而且,定量时也需要有标准品。/pp  第二个分析功能是对未知物分析/pp  这里的未知物并非真正意义上完全未知的物质,若真是那种完全未知的物质仅仅靠MS,特别是低分辨的MS对其准确确证还是很难做到。这里的所谓未知物其实是已被人们认知的物质,该物质的质谱信息已被收录在了NIST谱库中,只是我们检测的物质中不知含有这些物质中的那一种。比如,不同地域的同一种天然产物产品的成分是不太一样的,同为玫瑰精油,国产的和进口的成分组成存在差异,通过MS分析及与NIST谱库比对,就能找出两种精油特征物质是什么,量有多少差异,不同在那里。再如,养鱼塘里的鱼突然死了,搞不清是什么原因,那么就取鱼塘里的水化验一下,水里含有什么物质并不清楚,这时我们就认为水里含有某种未知物。拿到实验室化验,经质谱NIST谱库检索比对,初步认为验出了甲胺磷。为保险起见,再打一针甲胺磷的标准品,结果保留时间、离子的丰度比都一致,最终确定水里含有的甲胺磷是致鱼死亡的原因。这类工作在日常工作中遇到的比较少,其对仪器的要求就是检测得到的质谱图与NIST谱库的尽可能相近,这样得到的结果会更准确些。所以,这种最好选择四极杆质谱、飞行时间质谱或高分辨磁质谱。而离子阱质谱,特别是内源式离子阱质谱得到的谱图与 NIST库谱图差异要大些。/ppbr//p
  • 变压器油检测专用气相色谱仪的主要特点与参数
    变压器油检测专用气相色谱仪的简介    变压器油分析气相色谱仪是根据电力部部颁标准,广泛吸收国内外同类仪器的优点而创新设计的多用途气相色谱仪。仪器采用双柱并联分流柱系统,具有热导和双氢焰三检测器及转化炉,能一次进样实现油中溶解气体组分的全分析。仪器主要应用于电力系统充油电气设备内部故障检测,仪器兼有一机多用功能,可用于六氟化硫杂质分析,氢冷发电机冷却介质分析,锅炉烟气分析,天然气分析和环境检测分析等。另外,还广泛应用于石油.化工.矿山等系统的气体分析。    变压器油检测专用气相色谱仪的主要特点    1、采用微机控制,键盘设定,液晶显示,有随即记忆功能;    2、检测器的信号,加热器的数值,加热炉温度,流量传感器读数或储存的柱补偿基线的信号都可以分配到一个模拟的输出通道;    3、自机检测及故障诊断,断电保护储存的实验数据,秒表和运转定时器,键盘锁定功能;    4、氢火焰离子检测器容易拆卸和安装,便于清洁或更换喷嘴,操作简单;输入信号可进行对数放大,减少了干扰,灵敏度高,线性好,量程宽。可安装美国HP-5890气相色谱仪微型热导检测器,实现完全对接;    5、高性能检测器及甲烷转化器,检出能力完全满足电力部对变压器油中气体组分含量的测定及环保监测对微量CO,CO2检测;    6、采用二次分流柱系统,分析速度快,重现性好;    7、双氢焰设计,使低含量的烃类和高含量的CO,CO2分别检测,避免相互干扰,提高了检测灵敏度;    8、可安装本公司生产的顶空进样器,减少了对样品的污染;    9、采用新型柱填料,双柱温流程,使C2H2检出时间提前,灵敏度提高,分析周期缩短。    10、测定组分:TCD:H2,O2。    变压器油检测专用气相色谱仪的技术参数    1、柱室温度:室温+5℃~400℃,控温精度±0.05℃    2、检测室温度:室温+15℃~400℃,控温精度±0.05℃    3、转化炉温度:室温+15℃~360℃,控温精度±0.1℃    4、TCD灵敏度,对H2的最小检测浓度5ppm    5、FID检测限    对C2H2的最小检测浓度0.1ppm;对CO,CO2的最小检测浓度2ppm    6、电源条件:220V±10%,50±0.5HZ    7、功率:约2kw
  • 色谱检测方法新标准来啦(十一)——GB/T 40845-2021 化妆品中壬二酸的检测 气相色谱法
    近年来,消费者对功效化妆品的需求与日俱增,庞大的需求吸引着越来越多的企业布局相关领域。但是,随之而来的夸大功效等乱象,严重侵害了消费者权益。为规范和指导化妆品功效宣称评价工作,2021年4月9日国家药监局网站发布了《化妆品功效宣称评价规范》,中国化妆品行业正式迈入功效评价时代。按照要求:2021年5月1日-2021年12月31日期间注册备案的化妆品,应当于2022年5月1日前按照《化妆品功效宣称评价规范》要求,上传产品功效宣称依据的摘要。 同时,《化妆品标签管理办法》也将正式施行,对标签的要求做了更进一步的释义和规范。按照要求,自2022年5月1日起,申请注册备案的化妆品,必须符合《化妆品标签管理办法》的规定和要求。此前申请注册备案的化妆品,未按照本《办法》规定进行标签标识的,应在2023年5月1日前完成产品标签的更新。中国化妆品标签监管也将迈入新台阶。 壬二酸结构 壬二酸(Azelaic acid,CAS 123-99-9),又名杜鹃花酸,是一种天然存在的直链饱和二羧酸,分子式为C9H16O4。壬二酸在医学临床上常用来治疗玫瑰痤疮及寻常型痤疮,同时可以用于美白类和祛痘类化妆品,能有效抑制皮肤上的痤疮杆菌和租房阻断脂肪酸的生成,防止黑色素的形成,可预防斑点形成,减少黑色素沉着。近年来由于其疗效显著以及相对安全性,壬二酸在皮肤保护和皮肤病治疗类化妆品中得到越来越多的使用。科学的检测方法对于目前市场上化妆品标签准确标注壬二酸成分的含量具有非常重要的意义。为此,国家市场监督管理总局和中国国家标准化管理委员会正式发布了《GB/T 40845-2021 化妆品中壬二酸的检测 气相色谱法》。 检测方法 方法原理试样在浓硫酸和乙醇条件下衍生,用正己烷萃取,浓缩后经气相色谱分离检测,根据保留时间定性,外标法定量。 气相色谱法仪器配置:GC主机+SPL+FID,可选配液体自动进样器色 谱 柱:SH-5 Cap. Column 30m x 0.25mm x 0.25um 方法参数初始温度60℃(保持2min),以10℃/min升到150℃(保持1min),以5℃/min升温至165℃(保持2min),以25℃/min升温至250℃;SPL进样口温度:260℃;FID检测器温度:280℃;分流比:5:1;进样量:1微升;标准曲线浓度:10mg/L,20mg/L,50mg/L,100mg/L,200mg/L,500mg/L,1000mg/L 壬二酸衍生物气相色谱图(壬二酸二乙酯) 灵敏度要求:本方法检出限15mg/KG,定量限50mg/kg。 岛津推荐仪器 气相色谱仪: GC-2010 Pro / AOC-20系列 GC-2010 Pro继承了高性能毛细柱气相色谱仪GC-2010Plus的基本性能。其良好的重现性确保其具备高可靠性。配备了高性能检测器使高灵敏度分析得以实现。同时,高速柱温箱冷却技术可大幅缩短分析时间,是一款高性价比气相色谱仪产品。扫码了解更多信息 气相色谱仪: Nexis GC-2030 / AOC-30系列Nexis GC-2030加强版气相色谱仪配备了全新智能交互界面,仅需触屏即可完成仪器操作并可以实时了解仪器运行状态。创新ClickTek技术全面提升用户分析体验,使色谱柱的安装和仪器维护进入徒手时代。通过不断强化Analytical Intelligence功能,优化人机交互体验,为实验室赋能。预老化功能、基线检查和系统适应性测试、远程控制和监视以及LabSolutions平台可形成从仪器启动到完成分析的全自动化工作流程。 扫码了解更多信息参考资料:1、GB/T 40845-2021 化妆品中壬二酸的检测 气相色谱法2、https://pubchem.ncbi.nlm.nih.gov/compound/Azelaic-acid3、国家药监局关于发布《化妆品功效宣称评价规范》的公告(2021年 第50号) 本文内容非商业广告,仅供专业人士参考。
  • 速看!两项气相色谱检测国家标准正在公示
    2024年01月22日,国家标准计划《天然气 用气相色谱法测定组成和计算相关不确定度 第7部分:用两根填充柱快速测定氦气含量》和《天然气 用气相色谱法测定组成和计算相关不确定度 第8部分:用微型热导测定氢、氧、氮、一氧化碳、二氧化碳和C1至C5和C6+的烃类》两项标准进行公示。(点击查看气相色谱专场)《天然气 用气相色谱法测定组成和计算相关不确定度 第7部分:用两根填充柱快速测定氦气含量》主要起草单位中国石油天然气股份有限公司勘探开发研究院 、中国石油天然气股份有限公司西南油气田分公司天然气研究院 、中国石油天然气股份有限公司西南油气田分公司勘探开发研究院 、中国石油天然气股份有限公司西南油气田公司成化总厂 、中国石油化工股份有限公司西南油气分公司勘探开发研究院 、中国测试技术研究院化学研究所 、中国石油大学(北京) 、陕西延长石油(集团)有限责任公司研究院 。背景氦气是航空航天、原子能、低温超导等尖端科技发展不可替代的关键资源,也是我国“卡脖子”战略稀缺资源;氦气含量准确分析关系到氦气资源评价结果准确性,当前国内氦气检测技术参差不齐、分析结果差异大,现有国家或行业标准天然气中氦气组分含量分析范围较窄、分析条件宽泛,缺少专门针对氦气含量的快速分析标准,给准确评价氦气资源潜力和工艺升级等带来挑战。因此,制定氦气含量快速分析标准,使不同部门间数据可以相互比对和共享,无论对氦气资源潜力评价还是对氦气生产技术水平的提高都有重要的意义。现行的天然气和稀有气体分析国家和石油行业标准中有氦气分析的条款,但因其分析范围小,不能满足高含量氦气如温泉气、地层流体脱附气、氦气富集过程中含量变化等的监测,分析条件限制较少,使各实验室之间的数据可比性较差。因此,制定能够满足任何含量范围、各实验室再现性好的氦气快速分析标准非常必要的,它将使更多单位具备快速、规范、准确的氦气定量分析技术,更好地服务国家核心技术攻关。适用范围适用于天然气或者其他各类气体样品中氦气的定量分析。主要技术内容本标准拟设置8个章节,包括:范围、 规范性引用文件、术语与定义、 实验原理、设备和材料、 样品分析、质量要求和分析报告。在设备与材料一章,较为详细说明了材料的规格和型号,规定了标准气体的制备。在样品分析一章,从样品的准备到仪器的连接和准备都有相对统一的指令,使实验室分析人员很容易上手操作。标准曲线的制作,规定了合格和置信区间以外数据的取舍,充分保证了分析结果的可靠性。质量要求是多个实验室比对分析结果的结晶,进一步保证了氦气的定量分析结果的准确性。分析报告规范了分析结果的表达形式和样品相关信息。《天然气 用气相色谱法测定组成和计算相关不确定度 第8部分:用微型热导测定氢、氧、氮、一氧化碳、二氧化碳和C1至C5和C6+的烃类》主要起草单位国家管网集团联合管道有限责任公司西气东输分公司 、中国测试技术研究院化学研究所 、中国计量科学研究院 、中国石油天然气股份有限公司西南油气田分公司天然气研究院 、广东大鹏液化天然气有限公司 、中国石油化工股份有限公司天然气榆济管道分公司 、成都思创睿智科技有限公司 、艾默生过程控制有限公司 。背景热导气相色谱仪已广泛应用于天然气组分分析,随着微机电加工工艺等技术发展,微型热导气相色谱仪逐渐走向市场,微型气相色谱继承了传统气相色谱的所有优点,同时还具有分析速度快,灵敏度高,能耗低,耗气量小,体积小可随身携带等诸多优势,目前利用微型热导气相色谱替代传统气相色谱进行常见气体的快速分析在欧美发达国家已经成熟并得到广泛应用,近年来该方法在我国的应用领域也在稳步扩展,天然气管网中,具有微型化特性的色谱仪(AGILENT、ELSTER、ABB等)应用比例已超过半,小型化、智能化、绿色环保的色谱仪已逐渐成为主流。目前基于气相色谱法的天然气分析标准(GB/T 13610、 GB/T 27894系列、GB/T17281等)内容主要对应到传统气相色谱仪制定,微型气象色谱仪的分析原理和分析方法符合现有标准规定,但存在若干特殊性内容有必要进一步规范: 1、在传统分析标准中,色谱仪采用六通阀、十通阀等进行进样控制以及流程切换,而微型色谱仪采用微型阀控结构进行流程控制,分为独立的2~3个检测单元完成气质分析,针对这种新型阀控结构的分析流程有必要重新规范。2、应用微机电加工技术制作的微型色谱具有死体积小、耗气量少、灵敏度和线性度水平高,结构小型化等优点,有必要对产品关键参数进行广泛测试,明确相关指标。3、微型色谱进气量小,流量低,特别对于在线分析应用场景,有必要规范其旁通气路设置,以使分析结果具有实时代表性,避免分析样气与采样点间实际组分实际存在较大滞后。基于以上需求,有必要制定微型气象色谱仪的分析方法标准,明确其核心部件参数及控制方法,选择适宜的分析方法,对微型气象色谱仪应用给出具体指导。适用范围规定用微型热导气相色谱法在线测定天然气及类似气体混合物的化学组成的分析方法,分析气体范围包括C1~C6+、CO2、N2、H2、O2、CO、He。 主要技术内容 1、研究明确微型气象色谱仪进样模块、色谱柱、检测器及温控等核心组件技术要求,以及对灵敏度、线性度等技术参数进行研究及确认; 2、微型气象色谱仪典型进样和分析流程技术要求及示例; 3、在线微型气象色谱仪满足取样代表性需满足的技术要求; 4、微型气象色谱仪适用分析方法选择及其不确定度评估。
  • 气相色谱检测器选择指南
    p style="line-height: 1.5em " strong气相色谱检测器/strong(Gas chromatographic detector)是检验色谱柱后流出物质的成分及浓度变化的装置,它可以将这种变化转化为电信号,是气相色谱分析中不可或缺的部分。经过检测器将各组分的成分及浓度转化为电信号并经由放大器放大,最终由记录仪或微处理机得到色谱图,就可以对被测试的组分进行定性和定量的分析了。气相色谱检测器相当于气相色谱的“眼睛”,选择合适的检测器对于应用气相色谱检测目标物质至关重要,仪器信息网编辑对气相色谱检测器相关的分类、性能指标以及常用检测器进行了整理,方便大家在选择检测器时进行参考。/pp style="line-height: 1.5em text-align: center "strong style="text-align: center "span style="font-size: 20px color: rgb(31, 73, 125) "检测器分类/span/strong/pp style="line-height: 1.5em "  气相色谱检测器种类繁多,有多种分类:/pp style="line-height: 1.5em "  1、根据对被检测样品的响应范围可以被分为:/pp style="line-height: 1.5em "  strong通用型检测器:/strong对绝大多数检测无知均有响应,如:TCD、PID /pp style="line-height: 1.5em " strong 选择型检测器:/strong对某一类物质有响应,对其他物质的无响应或很小,如:FPD。/pp style="line-height: 1.5em "  2、根据检测器的检测方式不同可以分为:/pp style="line-height: 1.5em "  strong浓度型检测器:/strong测量的是载气中某组分浓度瞬间的变化,即检测器的响应值和组分的浓度成正比,如TCD、PID /pp style="line-height: 1.5em "  strong质量型检测器:/strong测量载气中某组分单位时间内进入检测器的含量变化,即检测器的响应值和单位时间内进入检测器某组分的质量成正比。如FID、FPD。/pp style="line-height: 1.5em "  3、根据信号记录方式不同进行分类/pp style="line-height: 1.5em " strong 微分型检测器:/strong微分型检测器的响应与流出组分的浓度或质量成正比,绘出的色谱峰是一系列的峰。/pp style="line-height: 1.5em "  strong积分型检测器:/strong测量各组分积累的总和,响应值与组分的总质量成正比,色谱图为台阶形曲线,阶高代表组分的总量。/pp style="line-height: 1.5em "  4、根据样品是否被破坏可以分为:/pp style="line-height: 1.5em "  strong破坏性检测器:/strong组分在检测过程中,其分子形式被破坏,例如:FID、NPD、FPD /pp style="line-height: 1.5em "  strong非破坏性检测器/strong:组分在检测过程中,保持其分子结构,例如:TCD、PID、ECD。span style="text-align: center " /span/pp style="line-height: 1.5em text-align: center "strong style="color: rgb(31, 73, 125) text-align: center "span style="font-size: 20px "性能指标/span/strong/pp style="line-height: 1.5em "  气相色谱检测器一般需满足以下要求:通用性强,能检测多种化合物或选择性强,只对特定类别化合物或含有特殊基团的化合物有特别高的灵敏度。响应值与组分浓度间线性范围宽,即可做常量分析,又可做微量、痕量分析。稳定性好,色谱操作条件波动造成的影响小,表现为噪声低、漂移小。检测器体积小、响应时间快。/pp style="line-height: 1.5em "  根据以上要求,气相色谱检测器的主要性能指标有以下几个方面:/pp style="line-height: 1.5em "  strong1. 灵敏度/strong/pp style="line-height: 1.5em "  灵敏度是单位样品量(或浓度)通过检测器时所产生的相应(信号)值的大小,灵敏度高意味着对同样的样品量其检测器输出的响应值高,同一个检测器对不同组分,灵敏度是不同的,浓度型检测器与质量型检测器灵敏度的表示方法与计算方法亦各不相同。/pp style="line-height: 1.5em "  strong2. 检出限/strong/pp style="line-height: 1.5em "  检出限为检测器的最小检测量,最小检测量是要使待测组分所产生的信号恰好能在色谱图上与噪声鉴别开来时,所需引入到色谱柱的最小物质量或最小浓度。因此,最小检测量与检测器的性能、柱效率和操作条件有关。如果峰形窄,样品浓度越集中,最小检测量就越小。/pp style="line-height: 1.5em "  strong3. 线性范围/strong/pp style="line-height: 1.5em "  定量分析时要求检测器的输出信号与进样量之间呈线性关系,检测器的线性范围为在检测器呈线性时最大和最小进样量之比,或叫最大允许进样量(浓度)与最小检测量(浓度)之比。比值越大,表示线性范围越宽,越有利于准确定量。不同类型检测器的线性范围差别也很大。如氢焰检测器的线性范围可达107,热导检测器则在104左右。由于线性范围很宽,在绘制检测器线性范围图时一般采用双对数坐标纸。/pp style="line-height: 1.5em "  strong4. 噪音和漂移/strong/pp style="line-height: 1.5em "  噪声就是零电位(又称基流)的波动,反映在色谱图上就是由于各种原因引起的基线波动,称基线噪声。噪声分为短期噪声和长期噪声两类,有时候短期噪声会重叠在长期噪音上。仪器的温度波动,电源电压波动,载气流速的变化等,都可能产生噪音。基线随时间单方向的缓慢变化,称基线漂移。/pp style="line-height: 1.5em "  strong5. 响应时间/strong/pp style="line-height: 1.5em "  检测器的响应时间是指进入检测器的一个给定组分的输出信号达到其真值的90%时所需的时间。检测器的响应时间如果不够快,则色谱峰会失真,影响定量分析的准确性。但是,绝大多数检测器的响应时间不是一个限制因素,而系统的响应,特别是记录仪的局限性却是限制因素 。/pp style="line-height: 1.5em text-align: center "strong style="color: rgb(31, 73, 125) font-size: 20px text-align: center "常用检测器/strong/pp style="line-height: 1.5em " 在日常应用中,主要会用到的气相色谱检测器主要有FID、ECD、TCD、FPD、NPD、MSD等,针对这些检测器,梳理一下它们的优缺点和应用范围。/pp style="text-align: center line-height: 1.5em "span style="color: rgb(31, 73, 125) "strongspan style="font-size: 20px "常见气相色谱检测器汇总/span/strong/span/pp style="line-height: 1.5em "strongspan style="font-size: 20px color: rgb(79, 97, 40) "/span/strong/ptable style="border-collapse:collapse " data-sort="sortDisabled"tbodytr class="firstRow"td style="border: 1px solid windowtext word-break: break-all " valign="middle" rowspan="1" colspan="2" align="center"p style="line-height: 1.5em "检测器/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" rowspan="2" colspan="1" align="center"p style="line-height: 1.5em "工作原理/p/tdtd style="border: 1px solid windowtext " width="145" valign="middle" rowspan="2" colspan="1" align="center"p style="line-height: 1.5em "应用范围/p/td/trtrtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "中文名称/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "英文缩写/p/td/trtrtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "火焰离子化检测器br//p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "FID/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "火焰电离/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "有机化合物/p/td/trtrtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "电子俘获检测器/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "ECD/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "化学电离/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "电负性化合物/p/td/trtrtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "热导检测器/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "TCD/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "热导系数差异/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "所有化合物/p/td/trtrtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "火焰光度检测器/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "FPD/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "分子发射/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "磷、硫化合物/p/td/trtrtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "氮磷检测器/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "NPD/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "热表面电离/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "氮、磷化合物/p/td/tr/tbody/tablep style="line-height: 1.5em "span style="font-size: 18px color: rgb(31, 73, 125) "strongFID——火焰离子化检测器/strong/spanbr/  FID是多用途的破坏性质量型通用检测器,灵敏度高,线性范围宽,广泛应用于有机物的常量和微量检测。F其主要原理为,氢气和空气燃烧生成火焰,当有机化合物进入火焰时,由于离子化反应,生成比基流高几个数量级的离子,在电场作用下,这些带正电荷的离子和电子分别向负极和正极移动,形成离子流,此离子流经放大器放大后,可被检测。/pp style="text-align: center line-height: 1.5em "img src="http://img1.17img.cn/17img/images/201807/noimg/e368385d-2632-45d8-9d34-f6dcefd84528.jpg" title="201506242255_551533_2984502_3.jpg"//pp style="text-align: left line-height: 1.5em "  span style="color: rgb(0, 0, 0) "火焰离子化检测对电离势低于Hsub2/sub的有机物产生响应,而对无机物、永久气体和水基本上无响应,所以strong火焰离子化检测器只能分析有机物/strong(含碳化合物),不适于分析惰性气体、空气、水、CO、COsub2/sub、CSsub2/sub、NO、SOsub2/sub及Hsub2/subS等。/span/pp style="text-align: left line-height: 1.5em "span style="color: rgb(0, 0, 0) " FID特别适合于strong有机化合物的常量到微量分析/strong,是目前环保领域中,空气和水中痕量有机化合物检测的最好手段。抗污染能力强,检测器寿命长,日常维护保养量也少,一般讲FID检测限操作在大于1× 10sup-10/supg/s时,操作条件无须特别注意均能正常工作,也不会对检测器本身造成致命的损失。由于FID响应有一定的规律性,在复杂的混合物多组分的定量分析时,特别对于一般的常规分析,可以不用纯化合物校正,简化了操作,提高了工作效率。/span/pp style="line-height: 1.5em "span style="color: rgb(31, 73, 125) "strongspan style="font-size: 18px "ECD——电子捕获检测器/span/strong/span/pp style="line-height: 1.5em "  span style="color: rgb(0, 0, 0) "电子捕获检测器是一种高选择性检测器,在分析痕量电负性有机化合物上有很好的应用。它仅对strong那些能俘获电子的化合物/strong,如卤代烃、含N、O和S等杂原子的化合物有响应。由于它灵敏度高、选择性好,多年来已广泛用于环境样品中痕量农药、多氯联苯等的分析。ECD是气相电离检测器之一,但它的信号不同于FID等其他电离检测器,FID等信号是基流的增加,ECD信号是高背景基流的减小。ECD的不足之处是strong线性范围较小/strong,通常仅102-104。/span/pp style="text-align: center line-height: 1.5em " img src="http://img1.17img.cn/17img/images/201807/noimg/4dcdf2d1-8cb9-4e96-b3f9-a09ced241d86.jpg" title="2015062422302130_01_2984502_3.jpg" style="text-align: center "//pp style="line-height: 1.5em "span style="color: rgb(31, 73, 125) "strongspan style="font-size: 18px "/span/strong/span/pp style="line-height: 1.5em " ECD是浓度型选择性检测器,对电负性的组分能给出极显著的响应信号。用于分析卤素化合物、一些金属螯合物和甾族化合物。其主要原理为检测室内的放射源放出β-射线(初级电子),与通过检测室的载气碰撞产生次级电子和正离子,在电场作用下,分别向与自己极性相反的电极运动,形成基流,当具有负电性的组分(即能捕获电子的组分)进入检测室后,捕获了检测室内的电子,变成带负电荷的离子,由于电子被组分捕获,使得检测室基流减少,产生色谱峰信号。/pp style="line-height: 1.5em "  由于ECD在常用的几种检测器中灵敏度最高,再加上ECD结构、供电方式和所有操作条件都对ECD主要性能产生影响。可以说,ECD选用在所有常用检测器中也是比较困难的,遇到使用中问题也最多。br//pp style="line-height: 1.5em "  选择性:从选择性看,ECD特别适合于环境监测和生物样品的复杂多组分和多干扰物分析,但有些干扰物和待定性定量分析的组分有着近似的灵敏度(几乎无选择性),特别做痕量分析时,还应对样品进行必要的预处理,或改善柱分离以防止出现定性错误。/pp style="line-height: 1.5em "  灵敏度:ECD分析对电负性样品具有较高的灵敏度,如四氯化碳最小检测量可达到1× 10sup-15/supg。/pp style="line-height: 1.5em "  线性范围:传统的认为ECD线性范围较窄,但由于ECD的不断完善,线性范围已优于104,可基本满足分析的需求。同时,针对高浓度样品,可以通过稀释样品后再使用ECD进行分析。/pp style="line-height: 1.5em "  操作性:ECD几乎对所有操作条件敏感,其对干扰物和目标物都具有高灵敏度的特性使得ECD的操作难度较大,有很小浓度的敏感物就可能造成对分析的干扰。/pp style="line-height: 1.5em "  因此,在使用ECD进行样品分析时,应当了解被分析样品的特点和待定性定量的组分的物理性质,确定选用ECD是否分析合适。/pp style="line-height: 1.5em "span style="color: rgb(31, 73, 125) "strongspan style="font-size: 18px "TCD——热导检测器/span/strong/span/pp style="line-height: 1.5em "span style="font-size: 16px color: rgb(0, 0, 0) " 热导检测器是一种通用的非破坏性浓度型检测器,理论上可应用于任何组分的检测,但因其灵敏度较低,故一般用于常量分析。其基于不同组分与载气有不同的热导率的原理而工作。热导检测器的热敏元件为热丝,如镀金钨丝、铂金丝等。当被测组分与载气一起进入热导池时,由于混合气的热导率与纯载气不同(通常是低于载气的热导率),热丝传向池壁的热量也发生变化,致使热丝温度发生改变,其电阻也随之改变,进而使电桥输出端产生不平衡电位而作为信号输出,记录该信号从而得到色谱峰。/span/pp style="text-align: center line-height: 1.5em "span style="font-size: 16px color: rgb(0, 0, 0) "img src="http://img1.17img.cn/17img/images/201807/noimg/9cfa17ce-9f01-4263-b262-27853bbe7e3f.jpg" title="2015062422242303_01_2984502_3.jpg"//span/pp style="line-height: 1.5em "span style="color: rgb(31, 73, 125) "strongspan style="font-size: 18px "/span/strong/span/pp style="line-height: 1.5em " TCD通用性强,性能稳定,线性范围最大,定量精度高,操作维修简单,廉价易于推广普及,strong适合常量和半微量分析/strong,特别适合strong永久气体/strong或组分少且比较纯净的样品分析。/pp style="line-height: 1.5em "  对于环境监测和食品农药残留等样品进行痕量分析,TCD适用性不强,其主要原因有:检测限大(常规 10-6g/mL) 样品选择性差,即对非检测组分抗干扰能力差 虽然可在高灵敏度下运行,但易被污染,基线稳定性变差。/pp style="line-height: 1.5em "span style="color: rgb(31, 73, 125) "strongspan style="font-size: 18px "FPD——火焰光度检测器/span/strong/span/pp style="line-height: 1.5em " FPD为质量型选择性检测器,主要用于测定含硫、磷化合物。使用中通入的氢气量必须多于通常燃烧所需要的氢气量,即在富氢情况下燃烧得到火焰。广泛应用于石油产品中微量硫化合物及农药中有机磷化合物的分析。其主要原理为组分在富氢火焰中燃烧时组分不同程度地变为碎片或分子,其外层电子由于互相碰撞而被激发,当电子由激发态返回低能态或基态时,发射出特征波长的光谱,这种特征光谱通过经选择滤光片后被测量。如硫在火焰中产生350-430nm的光谱,磷产生480-600nm的光谱,其中394nm和526nm分别为含硫和含磷化合物的特征波长。/pp style="text-align: center line-height: 1.5em "img src="http://img1.17img.cn/17img/images/201807/noimg/76c52176-d151-497d-be84-393c102e715c.jpg" title="2015062422290693_01_2984502_3.jpg"//pp style="line-height: 1.5em " FPD是一种高灵敏度、高选择性的检测器,对含P和S特别敏感,主要用于strong含P和S的有机化合物和气体硫化物中P和S的微量和痕量分析/strong,如有机磷农药、水质污染中的硫醇、天然气中含硫化物的气体等。/pp style="line-height: 1.5em "  FPD火焰是富氢焰,空气的供量只够与70%的氢燃烧反应,所以火焰温度较低以便生成激发态的P、S化合物碎片。FPD基线稳定,噪声也比较小,信噪比高。氮气(载气)、氢气和空气流速的变化直接影响FPD的灵敏度、信噪比、选择性和线性范围。氮气流速在一定范围变化时,对P的检测无影响。对S的检测,表现出峰高与峰面积随氮气流量增加而增大,继续增加时,峰高和峰面积逐渐下降。这是因为作为稀释剂的氮气流量增加时,火焰温度降低,有利于S的响应,超过最佳值后,则不利于S的响应。无论S还是P的测定,都有各自最佳的氮气和空气的比值,并随FPD的结构差异而不同,测P比测S需要更大的氢气流速。/pp style="line-height: 1.5em "strongspan style="font-size: 18px color: rgb(31, 73, 125) "NPD——氮磷检测器/span/strongbr//pp style="line-height: 1.5em "  span style="font-family: 宋体, SimSun font-size: 16px "NPD是一种质量型检测器。/spanspan style="font-family: 宋体, SimSun "NPD工作原理是将一种涂有碱金属盐如Na/spansub style="font-family: 宋体, SimSun "2/subspan style="font-family: 宋体, SimSun "SiO/spansub style="font-family: 宋体, SimSun "3/subspan style="font-family: 宋体, SimSun "、Rb/spansub style="font-family: 宋体, SimSun "2/subspan style="font-family: 宋体, SimSun "SiO/spansub style="font-family: 宋体, SimSun "3/subspan style="font-family: 宋体, SimSun "类化合物的陶瓷珠,放置在燃烧的氢火焰和收集极之间,当氮、磷化合物先在气相边界层中热化学分解,产生电负性的基团。试样蒸气和氢气流通过碱金属盐表面时,该电负性基团再与气相的铷原子(Rb)进行化学电离反应,生成Rb+和负离子,负离子在收集极释放出一个电子,并与氢原子反应,失去电子的碱金属形成盐再沉积到陶瓷珠的表面上,从而获得信号响应。/span/pp style="text-align: center line-height: 1.5em "img src="http://img1.17img.cn/17img/images/201807/noimg/4fe5acfc-2693-4772-8c2a-8d5c225f7ac7.jpg" title="2015062422312688_01_2984502_3.jpg"//pp style="line-height: 1.5em " NPD结构简单,成本较低,灵敏度、选择性和线性范围均较好,对含N和P的化合物选择性好、灵敏度高,适合做样品中strong含N和P的微量和痕量分析/strong。NPD灵敏度大小和化合物的分子结构有关,如检测含N化合物时,对易分解成氰基(CN)的灵敏度最高,其它结构尤其是硝酸酯和酰胺类响应小。/pp style="line-height: 1.5em "  NPD铷珠的寿命不是无限的,在一般使用条件下,寿命可保证2年以上。但在操作中,铷珠的退化速度不是均匀的,通常使用初期退化快,后期退化慢。实验表明:前50 h灵敏度可能下降20%,而后1300h,每经过250 h,灵敏度下降20%左右。这也就是为什么新的铷珠开始使用前,为获得高稳定性,必须对其进行老化处理的原因,当做半定量,且灵敏度要求不高时,老化时间不宜太长。/pp style="line-height: 1.5em "  NPD的检测器控温和控温精度、气体的流量稳定性、待分析组分分子结构等因素,均对铷珠最佳工作状态有影响,即很难保证性能恒定不变。为保证选择性和灵敏度不变,根据情况需不定时的调整NPD各条件参数。/pp style="line-height: 1.5em "br//pp style="line-height: 1.5em " 气相色谱检测器是气相色谱分析法的重要部分,它所涉及的内容应包括两方面:一是检测器的正确选择和使用,二是其他有关条件的优化。一个好的气相色谱检测器,应该是这两方面均处于最佳状态。br/ 建立气相色谱检测方法首先要针对不同样品和分析目的,正确选用不同的检测器,并使检测器的灵敏度、选择性、线性及线性范围和稳定性等性能得到充分的发挥,即处于最佳状态。br/通常用单一检测器直接检测,必要时可衍生化后再检测,或用多检测器组合检测。检测器正确选用和性能达到最佳,不仅得到的定性和定量信息准确、可靠,而且还可简化整个分析方法。反之,不仅得不到有关信息,浪费了时间和精力,而且可能损坏检测器。br/ 一个良好的检测方法除考虑检测器本身性能外,还应该检测到的色谱峰或信号不失真、不变形。因此,要求柱后至检测器峰不变宽、不吸附,以色谱峰宽度保持柱分离状态进入检测器为佳。还要求检测器产生的信号在放大或变换的过程中,或信号传输至记录器、数据处理系统过程中,或在数据处理过程中不失真。另外,为了充分发挥某些检测器的优异性能,还要求正确掌握某些化合物的衍生化方法等等。/pp style="line-height: 1.5em "br//ppbr//p
  • 色谱检测方法新国标来啦——GB/T 40460-2021 肥料中植物生长调节剂的测定 气相色谱法
    检测方法 气相色谱仪仪器配置:GC主机+SPL+FID,可选配液体自动进样器色 谱 柱:SH-5 Cap. Column 30m x 0.32mm x 0.25μm柱温程序:初始温度60℃,保持1min,以20℃/min升到300℃,保持3min;进样口温度:250℃;检测器温度:300℃;分流比:2:1;进样量:1μL;标准曲线浓度:5mg/L,25mg/L,50mg/L,75mg/L,100mg/L胺鲜酯、多效唑-色谱图 标准灵敏度要求是:测定水溶性肥料时,胺鲜酯和多效唑的检出限是10mg/kg,定量限是30mg/kg;测定有机肥等直接施用肥料产品时,胺鲜酯和多效唑的检出限是2.5mg/kg,定量限是7.5mg/kg。 岛津推荐仪器 气相色谱仪:Nexis GC-2030 / AOC-30系列 Nexis GC-2030加强版气相色谱仪配备了全新智能交互界面,仅需触屏即可完成仪器操作并可以实时了解仪器运行状态。创新ClickTek技术全面提升用户分析体验,使色谱柱的安装和仪器维护进入徒手时代。通过不断强化Analytical Intelligence功能,优化人机交互体验,为实验室赋能。预老化功能、基线检查和系统适应性测试、远程控制和监视以及LabSolutions平台可形成从仪器启动到完成分析的全自动化工作流程。扫码了解更多信息 气相色谱仪:GC-2010 Pro / AOC-20系列 GC-2010 Pro继承了高性能毛细柱气相色谱仪GC-2010Plus的基本性能。其良好的重现性确保其具备高可靠性。配备了高性能检测器使高灵敏度分析得以实现。同时,高速柱温箱冷却技术可大幅缩短分析时间,是一款高性价比气相色谱仪产品。扫码了解更多信息
  • 海能技术参与起草的《粮油检验 植物油挥发性风味成分的测定 气相色谱-离子迁移谱法》公开征求意见!
    近日,国家粮食和物资储备局发布公开征求《青稞储存品质判定规则》等8项标准意见的通知,其中海能技术参与起草了《粮油检验 植物油挥发性风味成分的测定 气相色谱-离子迁移谱法》,并参与联合方法验证。我国植物食用油市场体量巨大, 植物食用油含有人体必需脂肪酸和丰富的油溶维生素, 是人体营养物质和能量的重要来源之一。随着经济水平的提高和饮食观念的改变, 食用油的品质安全和挥发性风味营养也越来越受到人们的重视。油脂挥发性风味是植物油中的次生特异性标志物, 其很大程度上决定了植物油的品质、用途和市场的可接受程度, 是评价植物油质量的重要指标。相关研究表明,油脂风味并不是由一种或几种化合物来体现, 而是由多种成分协同作用的结果。挥发性风味物质相互间通过的累加、协同、抑制等途径, 导致植物油呈现风味特征的差异化和特异性。油脂的风味受原料的品种、成熟度、环境条件、生长区域、储存和加工工艺的影响, 其中, 加工工艺的影响最大,不同工艺将直接影响油脂挥发性有机物(volatile organic compounds, VOCs)的种类、含量和感官阈值。 目前, 植物油脂挥发性风味成分检测方法中, 感官检验法、理化指标检验法、色谱法、光谱法等较为普遍, 但感官检验法因个体差异使得方法准确性存在局限 常规理化检验只能测定油脂中物质的总量, 不能用于物质组成的定性和定量分析 光谱法检测过程尽管简单快速, 却很难实现对样品质量的完整表征 因此, 如何对油脂风味进行科学、快速、准确的品质判定, 受到科研人员的广泛关注。气相色谱-离子迁移谱(gas chromatography-ion mobility spectrometry, GC-IMS)最早应用于检测爆炸物和化学试剂, 是具有高分离能力的气相色谱和快速响应能力的离子迁移谱的有机结合。现已广泛应用于农业食品安全、质量控制、风味分析等领域, 在食用植物油的质量判定中, GC-IMS 结合化学分析检测大量应用于橄榄油、棕榈油、菜籽油等油脂的掺假测定, 为油脂的的掺假、掺杂辨别鉴定提供了新的解决方式。但在油脂风味品质判定、油脂产品风味稳定性监测等方面的研究较少。 本标准依托 GC-IMS 技术, 探究食用植物油脂风味品质判定的检测方法,对于进一步推测产品调配比例, 保证产品品质一致性和稳定性、优化产品生产工艺、实现油脂风味品质判定方法的标准化和适用性具有重要意义。文本-粮油检验 植物油挥发性风味成分的测定--气相色谱-离子迁移谱法.pdf编制说明-粮油检验 植物油挥发性风味成分的测定--气相色谱-离子迁移谱法.pdf
  • 检测分析充油电器设备中气体---得利特气相色谱分析仪
    在电力、石化、制药、科学研究等领域都有着重要的作用,各异的功能要求造成了多样繁杂的分析仪器仪表种类,即使是同样功能的分析仪器,具体到每个行业,又有不同的要求。各类分析仪表仪器之间的原理、设计、制造等有较大区别,每一款分析仪器涉及的专业知识广而深,导致自主研发和市场开发的难度非常大,存在较高的技术壁垒。繁杂多样的下游需求结构和技术壁垒造成了行业细分市场分割特征明显。 相色谱法至今已有50多年的发展历史,现在已成为一种成熟且应用广泛的分离复杂混合物的分析技术。其中,气相色谱仪由于适用性、分离能力及样品回收率等方面的优势,更是受到广大分析测试领域人员的欢迎。 近年来,我国对气相色谱仪的需求有增无减,整个气相色谱市场迎来发展的时机。尽管2020年新冠疫情肆虐,但气相色谱仪市场并未受到影响。A1220气相色谱分析仪是依据GB/T 17623、DL/T 703标准规定的方法设计制造的,适用于分析充油电器设备中(包括变压器、电抗器、电流互感器、电压互感器、充电套管等)溶解于绝缘油中的氢、一氧化碳、甲烷、二氧化碳、乙烯、乙烷、乙炔等气体含量的分析。主要技术特点与参数:1、实现计算机实时控制和数据处理:仪器自带数字接口,通过一根通讯线在计算机上实现实时数据信号采集、数据处理及检测结果。仪器电脑连接互联网,可通过远程计算机与仪器连接,实现远程数据采集和管理。提高了装置的自由度,促进实验室的有效应用。通过人性化软件操作界面,极大方便用户设定包括各路温度、程升、检测器、桥流等参数;直观地操作包括FID点火(先已改成全自动的,无需人工操作),开关桥流,开启关闭控温,和各个时间事件等功能;2、高精度,稳定可靠的温度控制系统:主控电路采用了功能先进的微处理器、大容量存储器的采用,使数据的保存可靠;同时集测量、控制、电路板的一体化设计提高了仪器的抗干扰性和可靠性;采用微处理器的温度控制电路,各加热区被控对象的温度精度达到0.1度; 柱箱具有超温保护装置。任一路温度超过设定极艰,仪器均会停止加热,并在显示器上报告故障部位;3、简洁明了的人机对话界面,操作简便,易学易用仪器采用大屏幕LCD液晶汉字显示,显示直观、操作方便、适合中国国情;自我诊断功能,能显示故障部位;数据断电保护功能,仪器所设定的运行数据在断电后能长期保存;具有秒表、计数功能4、双重稳定的高精度气路控制系统。载气气路采用先稳压后稳流的双重稳定的气路系统流量调节阀采用旋钮调节,直观、可靠性好。配有电子压力显示系统,精度比压力表更高。5、柱室采用跟踪升温方式。6、仪器检测低含量的烃类和高含量的CO、CO2可分开检测,避免相互干扰。7、氢火焰离子化检测器(FID):圆筒型收集极结构设计,金属喷嘴,响应极高检测限:≤2×10-12g/s(正十六烷/异辛烷)基线噪声:≤2×10-13A基线漂移:≤2×10-12A/30min线性:≥106可调式全自动点火,稳定时间:30分钟8、热导检测器(TCD):采用半扩散式结构电源采用恒流控制方式灵敏度:≥5000mVml/mg。基线噪声:≤10μV。基线漂移:≤100μV/30min。线 性:≧1059、大屏幕LCD液晶显示:清晰显示各路温度的设定值,实测值和保护值实时显示仪器状态触摸式键盘,菜单式操作,全自动点火10、温控指标:温度范围:室温上5℃~420℃?精度±0.1℃11、其他参数:电源:220V±22V,50Hz,功率:≥2kW重量:55KG外形尺寸:60cm×50cm×50cm
  • 基于MEMS微型色谱柱技术的便携式气相色谱仪
    气相色谱是英国生物化学家MartinATP等人在研究液液分配色谱的基础上,创立的一种有效的分离检测方法,它可分离和检测复杂的多组分气体混合物。传统的气相色谱系统主要由五个部分组成:载气、进样器、色谱柱、检测器和数据处理系统。可广泛应用于环境监测、石油勘探、生物制药、物质提纯等领域。 色谱柱是气相色谱系统的关键部件,主要用于样品气体组分的分离。传统的气相色谱柱包括毛细管色谱柱和填充柱。当样品随载气流经色谱柱时,由于样品中组分在两相间的分配系数差异,使得各组分在两相间反复多次分配后,依次从色谱柱后流出,从而将气体的不同组分进行分离。分离后的组分再进入检测器中进行检测,最终由微型电脑进行计算和分析。 与传统气相色谱柱相比,基于微机电系统(MEMS)技术制作的微型气相色谱柱是平面二维结构,能大幅度减小柱温箱的体积,具有重量轻、体积小、功耗低、分离快速等优点,便于集成到便携式气相色谱仪中,满足目前对于气相色谱仪小型化、轻便化的需求。 目前,微型气相色谱系统朝着微型化和集成化的方向发展,将进样、预浓缩、分离、检测单元都集成在单个硅片上,大大减小了体积与重量,提高了气相色谱仪器的便携性。 PB-350作为一款微型、便携式气相色谱仪,主要由预浓缩单元、色谱分离单元和检测器单元构成,其用于样品的富集及分离的芯片式预浓缩及气相色谱柱基于MEMS微机电技术,体积小、重量轻、分离速度快、分离效率高,可用于空气、水、土壤中的挥发性有机物的现场测试。
  • 气相色谱客户常见问题整理(一)
    气相色谱仪,其实是一种用气体作为流动相的色谱分析仪器,在很多领域都有其身影。原理主要是利用物质的沸点、极性及吸附性质的差异实现混合物的分离。不过,一些客户对于气相色谱的相关概念和问题还是知之甚少,今天,我们就先整理一部分内容供大家参考。一、气相色谱的分离原理是什么气相色谱是一种物理的分离方法。利用被测物质各组分在不同两相间分配系数(溶解度)的微小差异,当两相作相对运动时,这些物质在两相间进行反复多次的分配,使原来只有微小的性质差异产生很大的效果,而使不同组分得到分离。二、气相色谱法的一些常用术语及基本概念1.相、固定相和流动相:一个体系中的某一均匀部分称为相 在色谱分离过程中,固定不动的一相称为固定相 通过或沿着固定相移动的流体称为流动相。2.色谱峰:物质通过色谱柱进到鉴定器后,记录器上出现的一个个曲线称为色谱峰。3.基线:在色谱操作条件下,没有被测组分通过鉴定器时,记录器所记录的检测器噪声随时间变化图线称为基线。4.峰高与半峰宽:由色谱峰的浓度极大点向时间座标引垂线与基线相交点间的高度称为峰高,一般以h表示。色谱峰高一半处的宽为半峰宽,一般以 x1/2表示。5.保留值与相对保留值:保留值是表示试样中各组分在色谱柱中的停留时间的数值,通常用时间或用将组分带出色谱柱所需载气的体积来表示。以一种物质作为标准,而求出其他物质的保留值对此标准物的比值,称为相对保留值。6.仪器噪音:基线的不稳定程度称噪音。7.基流:氢焰色谱,在没有进样时,仪器本身存在的基始电流(底电流),简称基流。8.峰面积:流出曲线(色谱峰)与基线构成之面积称峰面积,用A表示。9.死时间、保留时间及校正保留时间:从进样到惰性气体峰出现极大值的时间称为死时间,以td表示。从进样到出现色谱峰*值所需的时间称保留时间,以tr表示。保留时间与死时间之差称校正保留时间。以Vd表示。10.死体积、保留体积与校正保留体积:死时间与载气平均流速的乘积称为死体积,以Vd表示,载气平均流速以Fc表示,Vd=tdxFc。保留时间与载气平均流速的乘积称保留体积,以Vr表示,Vr=trxFc。三、何谓气相色谱?有几种类型?凡是以气相作为流动相的色谱*,通称为气相色谱。一般可按以下几方面分类:A、按固定相聚集态分类:(1)气固色谱:固定相是固体吸附剂。(2)气液色谱:固定相是涂在担体表面的液体。B、按固定相类型分类:(1)纸色谱:以滤纸为载体。(2)柱色谱:固定相装于色谱柱内,填充柱、空心柱、毛细管柱均属此类。(3)薄膜色谱:固定相为粉末压成的薄漠。C、按过程物理化学原理分类:(1)分配色谱:利用不同的组分在两相中有不同的分配系数以达到分离的色谱。(2)吸附色谱:利用固体吸附表面对不同组分物理吸附性能的差异达到分离的色谱。(3)其它:利用离子交换原理的离子交换色谱:利用胶体的电动效应建立的电色谱 利用温度变化发展而来的热色谱等等。D、按动力学过程原理分类:可分为冲洗法,取代法及迎头法三种。四、气相色谱法简单分析装置流程是什么?气相色谱法简单分析装置流程基本由四个部份组成:1.气源部分 2.进样装置 3.色谱柱 4.鉴定器和记录器。五、一般选择载气的依据是什么?常用的载气有哪些?作为气相色谱载气的气体,要求要化学稳定性好、纯度高、价格便宜并易取得、能适合于所用的检测器。气相色谱常用的载气有氢气、氮气、氩气、氦气、二氧化碳气等等。以上是今天整理的关于气相色谱的相关内容,后续还将继续分享,*关注我们。
  • Torion便携式气质、ZOEX全二维气相色谱——BCEIA 2011视频采访系列
    仪器信息网讯 2011年10月12-15日,第十四届北京分析测试学术报告会及展览会(BCEIA 2011)在北京展览馆隆重举行。为让广大网友及仪器用户深入了解BCEIA 2011仪器新品动态,仪器信息网特别开展了以“盘点行业新品 聚焦最新技术”为主题大型视频采访活动,力争将科学仪器行业最新创新产品、最新技术进展及最具有代表性应用解决方案直观地呈现给业内人士。以下是仪器信息网编辑采访北京普立泰科仪器有限公司市场部经理王斌先生的视频。  北京普立泰科仪器有限公司是一家推广宣传国际实验室分析先进技术、专业产品以及提供相应技术支持和服务的专业公司。目前是多个国外知名品牌产品的中国地区独家代理。同时,普立泰科公司积极运用多年积累的技术经验,进行自主研发,开发出土壤干燥箱、烟气氮氧化物分析系统、样品自动消解前处理系统、斜吹式氮吹浓缩仪等新产品。  在采访中,王斌先生为我们介绍了普立泰科公司代理的Torion便携式气质、Zoex全二维气质产品的情况。  “Torion便携式气质只有14公斤,是真正做到了便携,随机配备电池与氦气,方便使用。该仪器采用了先进的固相微萃取技术,能快速进行样品前处理,而采用的快速色谱技术能使仪器的升温速度可以达到每秒5摄氏度,分析一个样品只需2-3分钟,能快速帮助用户给出准确结果。”  “ZOEX全二维气相色谱是把两根不同极性不同长度的气相色谱柱串联起来,对于复杂样品的成份分析,可以得到更加丰富的信息。在第一根色谱柱上分离后的样品在经过调制器时被迅速冷却聚焦,然后被脉冲式热气迅速气化,进入第二根色谱柱,这样以两根色谱柱的保留时间分别为X轴和Y轴,就得到一张三维的色谱图,极大地扩展了峰容量。”
  • 气相色谱常见故障及解决方法
    气相色谱仪常见故障分析与解决方法气相色谱仪由六大单元组成,任一单元出现问题都会反映到色谱图上。这里介绍前三个单元。现代的气相色谱仪很多都具备故障诊断功能,不同程度地给出仪器故障的判断。尽管如此,许多的问题像是操作失误的问题仍须靠工作人员的努力。故障和失误可以采用逐个单元检查排法,这里从分析人员的角度来讨论仪器故障的排和分析人员操作失误或操作不当引起问题的排。气相色谱仪是利用色谱分离和检测,对多组分的复杂混合物进行定性和定量分析的仪器。通常可用于分析土壤中热稳定且沸点不过500°C的有机物,如挥发性有机物、有机氯、有机磷、多环芳烃、酞酸酯等。一、气路气路的检查在故障的排中往往是有果,主要是检查:(1)气源是否足(一般要求气瓶压力须≥3MPa,以瓶底残留物对气路的污染);(2)阀件是否有堵塞、气路是否有泄漏(采用分段憋压试漏或用皂液试漏);(3)净化器是否失效(看净化剂的颜色及色谱基流稳定情况);(4)阀件是否失效或堵塞(看压力表及阀出口流量);(5)气化室内衬管是否有样品残留物及隔垫和密封圈的颗粒物(看色谱基流稳定情况);(6)喷口是否堵塞(看点火是否正常);(7)对化合物的分析,气化室的衬管和石英玻璃毛还须经过失活处理。二、色谱柱系统色谱柱是分析的心脏部分,往往色谱图上的许多问题都与色谱柱系统密切相关,为此按以下步骤检查柱系统:1.色谱柱的连接检查柱后是否有载气;柱子连接是否有问题;毛细管柱的柱头是否堵塞;切割是否平整;是否有聚酰亚胺涂层伸过柱端;毛细管柱两头插入气化室和检测器的位置是否正确;柱子是否过温运行或未老化好;密封圈选择是否合理。毛细管柱在选用密封圈时须考虑;石墨垫易变形,有好的再密封性,其上限温度是450℃;Vespe TM很坚硬,再密封性受影响,其上限温度为350℃,VG1和VG2是由石墨和 VeseyTM组成,再密封性好,可重复使用,上限温度为400℃。不锈钢填充柱在高于200℃时,可选用石墨、不锈钢或紫铜作密封圈:在低于200℃时,可选用硅橡胶或聚四氟乙烯作密封圈。玻璃填充柱可根据使用温度分别选用石墨、硅橡胶或聚四氟乙烯做密封圈。2.色谱柱的柱容量柱容量在柱分析中是很重要的影响因素。柱容量的定义:在色谱峰不发生畸变的条件下,允许注入色谱柱的单个组分的大量(以ng计)。当注入色谱柱的单个组分的量出柱容量,则出现前伸峰。柱容量与单位柱长内所存在的固定相数量有关典型的例子是采用0.25mm内径、液膜厚度为0.25m的毛细管柱,分析组分浓度为1~2,进样1L时,其分流比就须控制在1/100,这时被分析组分的量为125~175n,若分析组分浓度高于1~2,就须减少进样量或增加分流比,否则就会出现前沿峰,其他类推。3.载气的线速载气在气相色谱分析中的影响表现在载气速度影响溶质分子沿柱的移动速度,而且溶质扩散会通过载气影响色谱峰的扩,通常表现在对理论塔板高的影响上。在维持柱效低不大于20的情况下,氢气、氦气、氮气的线速分别可采用35~120cm/s、20~60cm/s、10~30cm/s,从而可以看出采用不同的载气,可适用的线速范围有很大的不同。相同载气在不同管径的气相色谱毛细管柱上的佳线速和流量也略有不同,如He可参考表15-1进行调节以获取佳分离果。内径/mm 0.10 0.25 0.32 0.53线速/(cm/s) 40~50 25-35 20-35 18-27流量/(mL/min) 0.2~0.3 0.7~1 1-1.7 2.4~3.5表1毛细管柱佳线速和流量(He)4.色谱柱的流失柱流失一直是色谱工作者关心的课题,当系统泄漏进入氧气或有样品污染,都会导致色谱柱内固定相分解,后表现在基线上,其现象与处理分别如下:①基线急上升,形成峰后呈下降趋势,这可能是因为系统曾泄漏进入氧气,这时色谱柱需老化至基线正常。②基线急上升,伴有假峰持续出现,基线到达高处后成持续下降趋势,这可能是有非挥发性样品污染色谱柱,导致过量柱流失,解决的方法是先截取色谱柱柱头0.5m,而后在高温下老化色谱柱至基线正常。③基线急上升,一直维持在某一水平,这可能是一个未知因素未被排,须想法排。5.溶剂样晶的分析许多样品分析时会出现异常现象,常见的是溶剂样品的分析,其特例为水样的分析。从气相色谱的角度来看,众所周知水不是一种理想的溶剂,主要由于以下几方面原因:①它有很大的蒸发膨胀体积;②在许多固定相中水的润湿性和溶解性较差;③水会影响某些检测器的正常检测和会对色谱柱的固定相造成化学损。在常用的色谱溶剂中,水具有大的气化膨胀体积。通常色谱仪的进样器的衬管体积200~900μL,当进1μL水样时,其气化后的蒸汽体积(大约1010μL)会膨胀溢出衬管,称为倒灌。其将导致气化的样品返入载气和吹扫气路,由于载气和吹扫气路的温度较气化室低许多,样品会凝结在这儿,在后来的分析中被气体吹入分析系统形成鬼峰。解决方法可采用加衬管体积、减小进样体积、降进样器温度、提进样器压力或增加载气流速以减少倒灌现象。水进入色谱柱,水的形态对色谱柱的固定相具有破坏性。因为水的表面能很高,而大部分毛细管柱固定相的表面能都较低,这导致水对固定相的湿润性很差,不能在色谱柱壁上形成光滑的溶剂膜均匀地流过色谱柱,而形成液滴,导致色谱柱性能变差。由于水的这种很差的润湿性和相对其他溶剂较高的沸点,通常在较低柱温的情况下,一部分水以液体状态流过色谱柱,使在水中具有良好溶解性的溶质也会表现出谱带展宽,在特的情况,表现色谱峰分裂。在柱上进样时,不挥发的化合物,如水溶性的盐类,也会被液态水带入色谱柱,污染色谱柱和分析系统。水也会引起检测器出问题:例如水会使FID和FPD灭火;当进较大水样时,为了避检测器灭火,可以加氢气流量以损失敏度为代价助于稳定火焰;水也会降ECD的敏度,为避水的影响,可采用厚液膜柱,使被分析组分保留够长时间,以保出峰时,ECD的性能可以在水流过检测器后得以恢复。严重的问题是水会引起许多固定相的降解,直接破坏色谱柱的性能。在色谱分析时,反映色谱峰分离性能下降、基流不稳、噪声。所以进水样分析及含水量较大的样品时小心。这在溶剂分析的情况也会出现。典型的是微量有机萃取物的分析,无论用二氯甲烷还是二硫化碳做溶剂,进样1μL时,体积膨胀大约为300L,当进样插管体积小于300μL时,就很容易形成倒灌。所以无论什么样品,其进样量的大小都须与进样器内插管的体积相适应,这方面多种型号的仪器都配有多种不同形式的进样插管以供选用;同时大量溶剂也会对固定相形成洗涤作用,直接破坏色谱柱的性能,在色谱分析时,反映出保留时间提前、色谱峰分离性能下降、基流不稳、噪声。所以在分析稀溶液样品时须注意溶剂和进样量的选择。三、各系统的加热控制各系统加热控制的检查多的是属于仪器上的问题,检查各系统的加热控制是否正常,一般可先用手感,后用测温计测量温度,看是否与显示。有问题先看加热元件和测温元件是否正常,然后检查温控板。常见的是加热元件和测温元件出问题,可以换相应元件。检查温控板是否有问题,可以采用换温控板后重新测试的办法,温控板有问题一般采用换板。
  • 气相色谱技术在饮用水水质检测中的应用
    饮用水水质检测包括水质的理化指标及水中微生物指标的检测。 生活饮用水理化检测技术主要包括化学分析法与仪器分析法两大类,色谱法属于仪器分析法。 气相色谱技术可以依据固定相、色谱原理、色谱操作形式等进行分类,其优点包括操作简单、灵活性高、分辨率高、选择性强、应用范围广等。 利用气相色谱技术能够实现饮用水中常见污染物的检测,从而实现饮用水水质检测目标。1 前言  气相色谱法(Gas Chromatography,GC)是一种利用气体作流动相的色层分离分析方法。随着各种各样污染的出现,人们已经逐渐意识到环境污染带来的严重问题。以水污染为例,水是人类赖以生存的重要资源,饮用水的安全与人们的身体健康息息相关。本文以饮用水水质检测的重要性为切入点,对饮用水的水质检测技术进行了简要概述,并分析了气相色谱技术在饮用水水质检测中的应用。  2 饮用水水质检测的重要性  水是人类生命的源泉,饮用水的安全是人们健康生存的基本保障。然而资料显示,我国许多江河水质检测时发现了污染物,水质相关指标超过了正常限值标准。水体污染是指在自然过程或人类生产活动过程中,某些有害污染物进入天然水体影响水体发挥正常功能。饮用含有污染物的水会对人体的胃、肝、肾等造成一定影响,如果长期饮用被污染的水,极有可能诱发一系列严重疾病。这就需要有效、准确的水质检测工作来确保饮用水的质量安全。  3 饮用水水质检测技术概述  我国饮用水水质检测技术主要包括化学与仪器分析法两大类。其中,化学分析法的原理就是依据化学反应、颜色变化来判断饮用水水质的优劣;而仪器分析法中主要是通过“光化学分析”“色谱分析”来判断饮用水水质的好坏。 色谱分析包括气相色谱分析和液相色谱分析。近年来,水质检测工作受到的重视度越来越高,有关部门在已有的检测标准中加入了新的方法。由于气相色谱法的诸多优点,使得饮用水水质检测效果大大提升,在环境检测领域得到了广泛应用。  4 气相色谱技术在饮用水水质检测中的应用  4.1 气相色谱技术的分类  4.1.1 依据固定相分类  气相色谱技术的分类依据固定相的不同可以划分为两大类。 采用固体吸附剂作为固定相的称为气固色谱;采用涂有固定液的单体作为固定相的称为气液色谱。  4.1.2 依据色谱原理分类  依据色谱原理可以将气相色谱技术分为吸附色谱和分配色谱。上文提到的气固色谱为吸附色谱,而气液色谱为分配色谱。  4.1.3 依据色谱操作形式分类  气相色谱的色谱操作形式为柱色谱[3]。 依据色谱柱的粗细可以将其分为两类。其一为填充色谱,是指将固定相装在一根金属或者玻璃管中,内径 2~6mm;其二为毛细管柱,毛细管柱可以分为填充与空心两类。空心毛细管柱是指将固定液涂在内径为 0.1~0.5 mm的金属或玻璃毛细管内壁;而填充毛细管柱是指将某些多孔性的颗粒装入厚壁玻璃中加热拉成毛细管,是一种新型技术,内径一般为 0.25~0.5 mm。  4.2 气相色谱技术的优点  4.2.1 分辨率高、选择性强  采用气相色谱技术能够在一根色谱柱形成上千甚至上百万个分离的搭板,可大大提升分离效率,尤其是在分离一些多组分物质时具有良好的有效性。另一方面,检测一些相似度高的物质时,采用气相色谱技术能够有效地将复杂物质分离开,实现定性和定量分析,反映出该技术强大的选择性。  4.2.2 灵活性强、应用范围广  气相色谱技术能够实现水质检测、 空气检测等,对液体、气体、固体进行检测的同时不影响其含量,反映出气相色谱技术具有强大的灵活性和广泛性。  4.2.3 分析速度快  采用传统方法进行水质检测往往需要较长时间,气相色谱技术可以通过自身的自动分析处理能力提升结果获取速度,缩短检测时间,具有较快的分析速度。  4.3 气相色谱技术在饮用水水质检测中的应用举例  4.3.1 检测有机磷农药  有机磷农药是饮用水中常见的污染物, 常见的有机磷农药有马拉硫磷、甲基对硫磷、对硫磷等[5]。有机磷农药是一种不溶于水的液体,但可溶于动植物油且容易被碱性物质分解。水中有机磷检测时,可以利用气相色谱技术并配置火焰光度检测器, 检测时可以固定 5%苯基+95%二甲基聚硅氧烷的毛细管柱,通过有效程序升温检测饮用水中的有机磷农药。  4.3.2 检测有机氯农药  有机氯农药(常见的种类有七氯、狄氏剂、硫丹等)是饮用水中常见且对人体健康危害较大的污染物一。资料指出,有机氯农药具有神经毒性和肝毒性,其不仅会危害人体健康, 还会对环境造成巨大的不良影响。有机氯农药的物化特征为分解困难、残留时间长。采用气相色谱技术检测时,需要配置电子捕获检测器和毛细管柱,并利用程序升温进行检测。  4.3.3 检测(半挥发性)有机物  饮用水中常见的有机物与半挥发性有机物如甲苯、硝酸苯、四氯化碳等都是对人体有害的物质,采用气相色谱技术可以进行有效的检测并将有害物质分离出来,从而实现饮用水水质检测。  5 结语  饮用水的水质污染问题关乎人类的健康和安全。随着人们健康意识的不断提高,对水质质量要求也在不断增加,水质检测是控制饮用水安全的关键。 目前我国对饮用水水质检测方法较多,气相色谱技术是其中应用最广泛的技术之一,该技术具有操作简单、分辨率高、选择性强、灵活度高等诸多优点,可得到广泛应用。
  • 舜星教你怎样选购气相色谱仪
    (1):几点考虑   仅从实验室用气相色谱仪为例来说,仅国产各种类型和型号就不下百种,不同产品的技术性能,功能特点,价格,操作特性相差甚大。再加上被分析样品千奇百怪,分析目的和要求又不相同,对于那些工作时间不长,经验不多的色谱用户,要能根据自身的需要选购一台性能/价格比适当的仪器,的确不是一件容易的事。为协助大家,快,好,省地选购一台色谱仪,现把如何选购一种气相色谱仪几点考虑因素归类分析,供大家参考。 1. 被分析样品情况: ⑴样品本身的组成和状态,是气态,液态,固态还是混合态,能直接用气相色谱仪分析吗? ⑵被测组分是热不稳定,易分解,还是易催化反应。时间,温度,压力等变化是否会引起被测组分的变化; ⑶样品中是否有烟尘,悬浮物,高佛点组分和有腐蚀性成分。以考虑样品如何采集获得,如何进行样品的预处理; ⑷样品来源容易吗?允许样品的消耗量,有利于选择进样方式; ⑸不需分析的组分及大致的浓度范围; ⑹每天需要分析样品的次数,两次分析的间隔时间; 2.分析的目的如何? ⑴做定性分析:被分析组分已知或未知,有无标准物? ⑵定量分析:在那个范围&mdash 常量(10-1`~10-3);半微量(10-3~10-5);微量(10-5~10-7);痕量(10-6~10-9)或超痕量(&le 10-9) ⑶定量精度和分析准确性,若是半定量要求就简单的多。 3.购货单位的定位: ⑴科研院所&mdash &mdash 要求高; ⑵监测和分析中心&mdash &mdash 准确可靠; ⑶第一线的现场分析用&mdash &mdash 重复再现; 4.同一种样品,从理论上讲可能有用多种仪器的分析方法,从仪器的性能/价格比,操作特性,维修服务多方比较,列出选用气色谱仪分析的理由。 5.咨询寻找有无被分析样品的国标,行标,企标或国外有关参考资料,若有,在标准中会给出在一般场合下,应使用仪器的功能和技术要求。 6. 本工作单位的周围有无做同类样品的分析者,若有对选型和日后建立色谱分析方法会有直接帮助; 7搜集各种类型的气相色谱仪(含附件)的样本和资料,给最终选型做基础准备工作; 8任务是长期?还是短期的?因任务不同决定投资多少,选用何种仪器?是否要作长期打算? 9现有条件如何?对于一件新的分析任务有许多单位,现有的仪器经适当改造,重新建立分析方法,完全可以胜任工作;若条件具备,没有理由再做大的投资购买新仪器设备; 10考虑到所选仪器设备的工作效率,运行成本,自身的人力(技术水平),财力条件不易选择那些所谓高,精,尖的产品。总之以实用经济为主。 11.色谱数据处理装置是最终给出分析结果的必备设备,要根据分析结果所需信息的种类和格式的具体要求来选购,千万不能不考虑财力,而选择那些价格,功能过剩一类的色谱工作站。有些样品组分少,分离好,用几千元的记录仪,色谱数据处理机能完成的工作,何必花几万元买一台使用效率不高,操作费时的计算机进行数据处理呢? 12.使用场合和仪器安装地点: 虽然气相色谱仪相对光学仪器在使用场合,安装位置要求不严格,但在操作某些检测器和高灵敏度工作时还应注意以下条件: ⑴使用场合:温度,湿度,大气压力,震动,电磁干扰,有无腐蚀性气体,通风,杂光,水源,尘埃等可能对仪器工作的影响; ⑵仪器安装基座平稳抗震,面积大小,位置,维修是否方便; ⑶气源的供给方法,安装操作,纯度等能否满足要求。 (2):气相色谱仪的适用范围和用途 原则上讲,凡是分子质量不大,有一定挥发性,在汽化或柱温情况下不分解的物质,或分子量大,但可以通过各处理, 衍生为易挥发的化合物也可以进行气相色谱分析。具体到目前商品气相色谱仪来讲,一般GC适用于佛点低于350℃的分析组,高温GC可以分析组分的佛点不超过500℃。在仪器分析方法中,色谱分析可同时进行分离和检测分析的特点与其它仪器分析方法相比有独特的优点。由于它分离效率特别高,对于多组分的复杂混合物,同分异构体和旋光异构体以及痕量组分的样品分析几乎是不可缺少的分析手段。目前随着检测技术,样品处理技术,微电子技术的不断发展,GC检测限已从最初的10-2扩展到10-13级甚至某些分析可达10-15数量级。但是见于目前一般和气相色谱配套的商品常规检测器, 还不能根据被分析组分的构成给出特征信号,用常规GC做定性分析还受到一定限制,对于这类问题还需要采用多种仪器分析联用配合印证。目前用于在线联用的仪器分析方法主要有:GC/MS,GC/FIR,LC/MS,LC/NMR等。 (3):气相色谱仪用户的粗略分类 不同类型的GC用户,对于分析目的和要求存在着较大差别。因此,对于选购同类型仪器的功能,性能,操作特性等也有很大不同,作为新客户首先定位自己属于那个层次范畴。对于选购好仪器也是几个主要因素之一。我们把GC用户可大体分为三类: 1.国家设的科研院所和大专院校中的研究部门:主要用做生命科学环境科学新材料科学,法医科学,军事科学,航天科学,考古发掘研究,农林,地质海洋,药物动力功能和毒理学研究等的分析测试手段。 2.国家各部委,局,总公司,国民经济中的重点行业,大型企业设置的研究所,分析中心,检测中心,监测中心等:如典型的行业有:化学工业,石油工业,冶金工业,能源(核能,煤炭)工业,半导体工业,机械工业,制药工业,轻工业(食品,日用化工),商业,建筑业等。 3.用于第一线分析的客户如:工厂生产过程中的工艺控制和质量保证,进出口商品的质量监督,疾病诊断,卫生防疫,工业卫生调查和评价,公安侦破取证,军工装备有关监控(军事环境如:导弹发射现场,潜艇等空气质量监测),生物制品分析,环境监测日常分析,资源开发现场分析(油田,天然气热值计算),日常商品(化妆品,香料组成,玻璃,陶瓷,纸业等)质量监测,装修材料质量的监控,教学实验室等。 (4):气相色谱仪的分类 常用1~2种检测器,进样系统也仅配备1~2种,使用最高温度一般也不高于350℃。要想扩大这类仪器的功能常常需要再加一些附件或辅件并进行适当的改装。但是,由于设计制造是针对某一检测器和特别功能,所以反而容易作到合理。因此在某些特别功能,技术性能(如稳定性,信/噪比)和操作特性不亚于多检测器气相色谱仪。另外仪器结构相对简单,操作方便,维修可以自理,价格较低,工作效率高,利于普及。特别适合第二(三)类用户中,分析工作单一,技术力量比较薄弱的单位。 3.用于某项分析的专用气相色谱仪 这类仪器实质上是在单(双)检测器通用气相色谱仪上配备一根合格的色谱柱,在出厂前由厂家帮助用户实验建立好一套针对某一项分析的方法。常称做交钥匙工程。可以作到只要有电源,仪器到货,安装后便可以进行实际样品的分析。当然厂家除收取仪器费用外,还要适当加收建立色谱分析方法的软件费用。但是,由于厂家专门生产制作这类仪器,从费用,时间,技术性能上对于客户还是非常合算的。例如:国内可批量供应的专用气相色谱仪有:⑴天然气;⑵液化石油气;⑶煤气;⑷炼厂气;⑸变压器油中气;⑹煤矿中空气品质;⑺空气用SF6成分分析;⑻大气的总烃(非甲烷)⑼微量水;⑽金属(合金)玻璃中的微量气体;(11)居住区大气中苯,甲苯,和二甲苯卫生检验标准方法检测;(12)室内空气中总挥发性有机化合物(TVOC)的测定等。可以说,只要有国标,行标,企标或能提出具体分析要求,均能和国内制造厂商协商定做成专用气相色谱仪。 4现场用便携式气相色谱仪: 便携式气相色谱仪一般只是专用型,它是针对不同分析任务设计生产的便携式仪器,在现场使用立即能取得分析结果。现场化学分析提供有用的信息,有利于迅速作出决策。有些分析任务,是无法在实验室内完成的,另外,由于现场采样灵活性强,减少了多次采样的需要,可以节省不少开支。目前,国外便携式气相色谱仪主要用于环保领域,法庭调查,工业卫生等,在化学武器应用现场分析也有不少应用实例。携式气相色谱仪和常规仪器相比主要区别是要有独立电源供电和便携式气源。由于现场使用,在仪器结构,可靠性上有较高的要求,因此,国外这类仪器的价格并不低,对同一种分析目的,国内研制生产此类仪器还有一定困难,单靠进口更难于普及。另人可喜的是中国科学院大连化学物理研究所,研制鉴定了&ldquo 微型气相色谱仪&rdquo 能胜任国外便携式仪器现场分析的某些工作。 三.在线气相色谱仪: 在线气相色谱仪又称流程气相色谱仪或工业气相色谱仪,它与其它用途的气相色谱仪相比要求自动化,计算机化程度更高,色谱柱的使用寿命要足够长,以保证仪器能长期连续运转(检修期大于6个月),分析数据要准确,可靠和稳定不变。在线气相色谱仪主要一般由:⑴样品预处理装置;⑵主机分析器;⑶程序执行软件;⑷数据处理等四部分组成,在结构上它和实验室用气相色谱仪不同,一般把前两部分放在现场,仪器的控制和数据处理放在总仪表控制室。由于分析现场的条件和安全要求不同,分析器又多为防爆型。由于仪器分析监测控制各种功能不同要求不同,工业色谱又分开环和闭环两大类。 四.物质的某些物化常数测定用气相色谱仪 由于气相色谱仪特有的分离特点,因而在催化热力学和动力学方面有很多方面可以应用。用经典方法测定物质的物化常数,通常手续麻烦,时间较长,需要纯物质,而用气相色谱仪设备简单,操作方便,可同时测两种或多种物质相差极其微小的物化常数。如:分配系数,活度系数,溶解热,蒸汽废度,自由能,自由等.特别是固定物质的比表面积和孔径分布,已有多种型号的专用气相色谱仪供用户选择并有专著出版. 五.制备用气相色谱仪 制备用色谱法是指利用色谱的高分离效率来分离纯化有机或无机化合物的方法。经色谱法制备的化合物纯度称为色谱纯,纯度一般都大于99.999%。制备的目的主要有: ⑴制备色谱纯的化合物作为化工和科研工作中所需要的高纯试剂和标准品 ⑵制备物质作为其它大型分析仪器进一步进行定性鉴定。根据制备目的的不同, 制备用气相色谱仪可分为大型工厂规模的制备色谱装置(年产量可达万吨以上)和小型作为多功能气相色谱仪附件的制备装置,制备量一般在几毫克到几克范围内。值得指出的是随着分析仪器技术的发展和某些大型分析仪器的灵敏度的提高,已没有必要通过样品制备后再进行定性分析,而是直接采用气相色谱仪和其他大型仪器(质谱,光谱,核磁等)联用进行定性分析。如:GC/MS定性分析已进入普及阶段。 (5)&mdash &mdash 痕量气相色谱分析选购仪器的几点考虑-(4) 样品采集、前处理和选购GC的关系? 通过以上几讲,我们在一次体会到,用气相色谱法做痕量分析确实是一门综合的实验技术。我们可把痕量色谱分析过程归纳以下四个阶段: ①样品采集; ②样品制备(予处理); ③色谱分析; ④数据处理与结果表达。 如果样品采集和前处理比较成功,在色谱分析和数据处理时,即使选用的色谱仪所配用的检测器灵敏度不高,分析柱分离效率较低,数据处理装置性能、功能一般,也能获得比较理想的实验结果。反过来说,若所选购的仪器和数据处理装置、配置较高又选择了一根高效色谱柱,那么可大大降低样品的予处理过程。在目前的痕量分析中,耗时、费力和效率低的样品采集与处理仍是整个色谱分析中的瓶颈。样品采集和处理时间有时要占了整个分析时间的三分之二。 应当指出,无论是何种最先进的色谱仪和设备,真正高性能色谱柱,最完善的数据处理装置,都不能从一个采集处理不适当样品得到满意的分析结果。因此,在选购仪器(含数据处理装置)类型和性能时,要考虑如何充分发挥所选仪器的综合分析能力,以便简化样品的予处理过程或根本不需要样品的予处理。 为了在做痕量气相色谱分析时,更有效选购好气相色谱仪和配套设备,我们把样品采集和制备的一些原则、方法以及和色谱分析方法的关系总结如下:(若了解更详细的内容请参考有关专业书刊) 1. 样品采集: 目前国内在做分析时,一般样品制备(予处理)由色谱分析人员完成,而样品采集是由其他工作人员去做。为了选择好合适的样品制备方法和分析结果的准确可靠,我们应提昌,不但分析人员对所制备样品的来源、采集方法、采集过程有所了解,而且负责选购仪器的人员也不例外。如对采集样品你知道吗? 样品的物质组成?浓度如何? 样品中主要组分是什么? 采集样品的地点和现场条件如何:a)采集样品的最佳时机;b)采集样品的位置;c)采集样品的过程(有效时间);d)采集样品的时间间隔; 应采用破坏性还是非破坏性采样方法? 采集样品的运输与存储; l. 预期采样后会得到那些色谱分析结果? 2. 选择样品采集和处理的方法及其技术应遵循的原则? a 待测组分的样品必须具有代表性; b 采集方法与分析目的应保持一致,保证能采集到您想要的样品; c 样品处理过程中,如何防止和避免待测组分不发生变化和丢失; d 在进行待测组分化学反应(衍生、催化转化)时,必须已知和定量的完成; e 选择样品处理方法应尽可能简单易行,处理装置和样品量要相适应; 3. 为什么要选择样品予处理? 样品予处理目的可归纳为:a)欲分析组分予分离;b)富集;c)转化;d)衍生化(转化成色谱分析的状态); * 不能直接进样分析: 如: a)品种繁多(含水、氧等对仪器和色谱柱的不良影响); b)样品组成及其浓度复杂多变(基体对待分析痕量组分干扰大); c)样品物理形态广(黏度、固体、多相性样品); d)直接分析时干扰因素太多; * 考虑用样品予处理方法弥补现有仪器或分析条件的不足 a) 分析测试的不同质量要求; 现场环境不允许(如时间); b) 样品的状态、不稳定性或化学活性; c) 现有分析条件不允许; d) 选购的仪器、设备条件不具备; e) 操作人员的技术水平限制; 4. 常用的样品予处理技术和设备: 虽然样品予处理技术仍是痕量色谱分析的瓶颈,但随着科学技术的发展,许多传统的样品予处理技术或设备得到了很大的改进与完善,新的处理方法和技术也相继问世。目前样品的制备方法正处在多种处理技术并存,新老技术不断组合的局面下,选择何种样品处理技术,依赖于分析目的、分析方法或现有条件等。总之要具体问题具体分析。常用或比较新的样品制备技术主要有: a 顶空技术; b 膜萃取技术; c 固相萃取技术; d 固相微萃取技术 e 微捕集技术; f 超临界萃取技术; g 微透析技术; h 微量衍生化技术; i 其他几种制备技术的组合;
  • 岛津独创高灵敏度气相色谱仪系统Tracera 的应用介绍
    单一系统完全满足多种分析要求 高灵敏度气相色谱系统Tracera是基于GC-2010 Plus平台,融合岛津全新开发的BID检测器(介质阻挡放电离子化检测器),属于通用型气相色谱仪,以下介绍其具有代表性的应用实例。人工光合成研究中的反应产物分析例 人工光合成是光催化领域的一个分支,通过模仿植物的光合作用,将水分解后产生氢气,并进行存贮,以获得能源的技术。人工光合成是公认的有望成为继光伏发电、太阳能、生物能之后的第四大可再生能源。下图所示为光催化二氧化碳还原反应中生成CO和H2的同时分析。 从图中可以看出,CO的生成量随着时间延长迅速增加,反应末期,增速逐渐放缓。 Tracera系统可通过单检测器和单载气,实现CO和H2的高灵敏度同时分析。乙烯的杂质分析例 乙烯是一种重要的有机化工原料,用来合成多种高分子化合物,须测定原料乙烯的纯度。下图所示为乙烯的杂质分析: 以H2(30 ppm)、CO(2 ppm)、CO2(15ppm) 、CH4(30 ppm)为痕量杂质进行分析。 Tracera可通过单检测器和单载气,实现永久气体和轻烃类杂质成分的高灵敏度同时分析。锂离子电池产生气体分析例 评估锂离子电池的性能老化状况时,常常需要分析电池衰退过程中产生的气体。Tracera是气体分析的理想选择。下图所示为锂离子电池产生气体分析: 从锂离子电池中提取气体并稀释,导入气相色谱仪进行分析。 Tracera可通过单检测器和单载气,实现锂离子电池生成气分析。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 赛默飞世尔推出金属材质气相色谱柱
    2011年8月22日,赛默飞世尔推出了新的气相色谱柱——Trace GOLD™ 金属色谱柱,该色谱柱为金属材质,为高温下的色谱分离设立了新标准。  这些坚固的、金属材质的毛细管柱相比于标准的气相色谱柱能承受更高的温度范围,并使得活性高的样品和分析物在分离过程中不发生任何损害,特别适用于石化、环保、法医学、食品安全等领域的分析研究者。  新的Trace GOLD™ 金属气相色谱柱能防止重复样品分离时经常导致的色谱柱堵塞和破裂,优化了高通量分析过程。对于应用要求极高的分析者而言,该产品增加了分析流程的灵活性,能提供高质量的分离效果,颇有应用价值。
  • TSQ Quantum GC气相色谱质谱仪新到货及实验应用
    2021年7月23日,谱标实验室新到货TSQ Quantum GC气相色谱质谱仪,品牌:Fhermofisher,安装完好,成色9成新(见下图),TSQ Quantum GC气相色谱质谱仪器兼有色谱对混合物的快速分离,又有质谱对分子结构的鉴定功能,采用不同的扫描方式,可有效的去除干扰。关键价格优惠,欢迎来电咨询。TSQ Quantum GC气相色谱质谱仪,对于台式GC/MS联用仪系统一般由五个部分组成,分别为:1.进样部分 2.离子源(对样品进行离子化,使其能被质量分析器所检测到) 3.质量分析器: 4.质量检测器 5.数据分析系统。实验应用:1)TSQ Quantum GC气质联用仪结合负化学电离源GC-MS/MS技术测定血浆中雌二醇雌二醇是一种内源性的激素,已被发现影响男女的许多生理功能。在疾病诊断以及监控病情发展的过程中,检测血浆和尿液等生物体液中的雌二醇,具有重要的临床应用价值。LC-MS/MS液质联用和GC-MS气质联用这两种方法已经被广泛应用于测定生物体液中的雌二醇,但内源性基质的干扰经常对测量结果有影响,二者各有利弊。LC-MS/MS液质联用的方法,避免了柱上衍生,可测定至 pg 级;GC-MS/MS气质联用的方法,灵敏度更高,可测定至 fg 级。GC-MS/MS气质联用技术的三重四极杆质谱 TSQ QuantumGC,并在负化学电离源(NCI)模式下测定了血浆样品中的雌二醇。雌二醇从血浆中提取出后,用五氟代苯甲酰氯和MSTFA(N甲基-N-三甲基硅烷基三氟乙酰胺)进行衍生。结果在柱上能够检测到55 fg的量(相当于血浆中2.5 pg/mL的浓度)。2)气相色谱/三重四极杆质谱(TSQ Quantum GC)用于18种有机磷杀虫剂的快速检测分析20世纪30年代,德国G.Schradev首先发现有机磷杀虫剂。此类化合物具有药效较高、使用方便等特点,但同时也存在高毒、高残留等缺点。有机磷多为极性较大的农药,易受到基质的影响,检测灵敏度较差。采用三重四极杆质谱的选择性反应监测技术(SRM)对复杂基质(韭菜)中的18种农药同时进行了分析。通过SRM扫描排除基质的干扰,同时凭借三重四极杆质谱高灵敏度的特点,大多数有机磷农药的检测下限可低于1 ppb。3)气相色谱/三重四极杆质谱TSQ Quantum GC用于复杂基质中154种农药残留量的分析目前用于农药残留分析的主要技术为气相色谱/单四杆质谱的选择离子扫描技术( SIM) 离子阱质谱多选择反应监测技术( MRM ) 和全扫描的计算机辅助技术。单四极杆的选择离子技术采集的质谱信息少,选择性较差,结果存在很大的不确定性。离子阱质谱二级质谱技术为时间上的串联,因此对于多组份化合物同时分析存在扫描速度受限的问题。采用Thermo推出的zui新一代气相色谱/三重四极杆串接质谱( TSQ Quantum GC),通过其高通量 离子传输的性能, 碰撞室零串扰技术和高选择性反应监测技术( H-SRM),实现了一针进样对154种化合物的同时分析,整个分析过程可在在22分钟内完成,保证结果准确的同时大幅度提高了分析效率。4)TSQ Quantum GC串联气质在 EI源模式分析亚硝胺类化合物亚硝胺是一类强致癌化合物,例如N-亚硝基二甲胺(NDMA)是其中一种极具代表性的物质,其是水处理领域新近发现的一种氯化消毒副产物。亚硝胺可以通过亚硝酸盐与仲胺类反应生成。近年来这类物质在水环境中的检出率较高,因为其的强致癌性,对水体中的亚硝胺物质进行检测就显得尤为必要。美国环境保护署在2004年出台了亚硝胺的检测方法:USEPAMETHOD 521, 该方法是结合固相微萃取,大体积进样和正化学源进行样品检测。方法中我们开发了在串联气质上用EI源和常规进样体积进行亚硝胺的分析方法,该方法的进样体积是EPA521中的1/10, 低进样量可以避免了在进行大通量样品分析中引入了过多的背景介质,提高仪器的耐脏性。同时EI源是一般实验室中常用的离子源,大部分的分析都是在EI源上完成,这样用EI源分析亚硝胺,可以避免EI和CI的频繁切换,便有利于实验室的整体工作安排。5)TSQ Quantum GC用于甲胺磷,氧乐果和久效磷三种农药分析有机磷农药是农药残留分析中的重点,此类农药药效高,使用方便,被广泛的应用于农业生产中。相比于有机氯类农药的分析,有机磷农药由于极性大,分解较快,分析难度相对较大,尤其是其中的甲胺磷,氧乐果,久效磷等农药,其色谱行为较差,在新的柱效情况下,峰型较好。但是,一旦进过实际基质样品后,其峰型就变的极差,出现严重的拖尾,使得低浓度得样品分析变得非常困难。因此,很多实验室把这类的有机磷农药归类到LC/MS/MS上进行分析,但是,在液质联用上这类农药的出峰往往很早,这对分析也并不有利。实验用TSQ Quantum GC结合带有预柱的TR-Pesticide II气相色谱柱分析甲胺磷,氧乐果,久效磷,得到了非常出色的结果,1pg/ul样品有很好的色谱分离,在1pg/ul-200pg/ul的范围有良好的线性,且在1pg/ul低浓度下连续6针进样的RSD%在1.96%-3.07%。
  • 精科公司重点新品GC126气相色谱仪批试生产
    列入精科公司2009年重点新产品之一━━GC126气相色谱仪,由分析产品部开发,去年九月初批试生产后,今年元月第二次批试生产。据记者了解,第二次批试的该产品有40%已被用户定购,市场前景较为看好。   据了解,上海精科品牌的GC126气相色谱仪为全新设计,适用于各种实验室对其特殊要求的需求;该产品是面向国内外各领域的用户的气相色谱仪,为石油、化工、食品安全和环保提供了精确的、可靠的色谱方法。GC126气相色谱仪汲取了“上海精科”多年的气相色谱仪技术的精华,借鉴了国外气相色谱仪的先进技术,有简便直观和易于使用的操作界面;在一个操作界面上可以完成对仪器各参数的设置,如柱箱、检测器、进样器等调用分析和存储方法。该仪器3.8〞中文的大屏幕液晶显示和滚动式菜单显示和键盘控制自如的设计,能确保用户进行准确地进行操作。
  • 52届标准日100项标准涉及气相色谱-质谱法,液相色谱-质谱法~
    2021年 第52届标准日主题:标准促进可持续发展,共建更加美好的世界 10月14日是第五十二个世界标准日。公安部10月14日召开新闻发布会集中发布100项公共安全行业标准,不断提升执法队伍专业化、执法行为标准化、执法管理系统化、执法流程信息化水平。发布会的主题是,通报公安部党委坚决贯彻落实习近平总书记重要指示精神,紧密结合党史学习教育和公安队伍教育整顿,扎实开展“我为群众办实事”实践活动,集中发布100项公共安全行业标准,有力提升公安执法规范化水平,有效推动公安工作高质量发展的有关情况。 公安部科技信息化局局长厉剑在发布会上通报,截至目前,公安部发布的现行有效公共安全行业标准2256项,报国家标准委批准发布国家标准143项,组织人员参与制定国际标准10余项。覆盖公安信息化、执法规范化、法定证件、安全技术防范、公共安全视频技术、经济犯罪侦查技术、食药环犯罪侦查技术、禁毒技术、治安反恐防控、网络安全保卫等公安各业务领域的标准体系已初步形成。本次发布的标准中,属于全国刑事技术标准化技术委员会归口的标准有90项,涉及毒物du品、微量物证、声像资料、电子物证、法医、DNA、指纹、痕迹、文件检验、警犬技术等专业领域。这些标准的发布,为刑法、刑事诉讼法、禁毒法、治安管理处罚法的实施提供了全方位的技术支持,成为侦查、诉讼、审判过程的科学依据和操作守则。 本次发布的标准中主要涉及的方法有:气相色谱-质谱法、液相色谱-质谱法、气相色谱和气相色谱-质谱法、化学和离子色谱法、液相色谱-质谱和红外光谱法、液相色谱和液相色谱-质谱法、显微镜法、扫描电子显微镜/X射线能谱法、红外光谱法、化学和离子色谱法、毛细管电泳荧光检测法等。标准中相关仪器设备有:气相色谱仪、液相色谱仪、气质联用仪、质谱仪、离子色谱仪、红外光谱仪、显微镜、荧光检测仪等。 附:100项公共行业安全标准
  • 安捷伦推出多模式气相色谱进样口
    2009年3月20日,北京—安捷伦科技公司(NYSE:A)今天推出多模式气相色谱(GC)进样口,具有分流、不分流和程序升温气化(PTV)功能,价格比过去更低,维护需求更少。  除分流/不分流操作外,该进样口的程序升温功能还具有进样体积广泛、能分析热不稳定样品,以及通过减少样品制备步骤提高效率等优势。该进样口结合安捷伦的扳转顶盖功能,可在几秒钟之内更换衬管,不需要使用特殊工具或经过培训。通过大体积进样可以提高灵敏度,并可降低高分子量组分的进样口歧视效应。  新的安捷伦多模式进样口的价格低于原来的程序升温进样口,可与Agilent 7890A GC、 5975C GC/MS、7683和7693自动进样器,以及CTC Combi PAL自动进样器匹配。  “新一代进样器给7890A气相色谱仪增添了非常有用的功能,而价格则比以前的产品更低”安捷伦气相色谱和工作流程自动化营销经理Michael Feeney 说。“用户一直在努力提高仪器能力,减少仪器维护,这款新的多模式进样口正好满足了这些需求。这是安捷伦致力于提高实验室效率的又一个实例。”  PTV和反吹: 强强结合  采用PTV的一个主要优势就是不需要或者很少需要净化,即可注射高基质样品。在Agilent 7890A GC和5975C GC/MS上与反吹功能结合在一起,将提高效率,并减少维护。  “脏”的样品可以进样到GC或GC/MS中。当待测化合物到达检测器时,将气流反向,预柱中的高沸点化合物可从进样口反吹走,使其不能进入分析柱。从而延长色谱柱的使用寿命,减少维护需求。  在模拟蒸馏这类应用中,因为不需要将高沸点化合物烘烤出来,样品通量可以提高5倍。  微板流路控制是安捷伦的开创性技术,能实现气体流路在气相色谱柱箱内可靠的联结并实现精确的气流方向改变。它使许多有用的功能得到了实现,如,反吹、GC x GC、分流使用多个检测器,以及连接质谱检测器时不用释放真空即可更换色谱柱等。  新进样口和标准进样口一样,使用标准的衬管、隔垫、垫圈、螺母和O形圈,因此不需要为其储备特殊备件。  如需进一步了解新的安捷伦多模式PTV进样口,请访问www.agilent.com/chem/multimode  安捷伦长期致力于GC和GC/MS的创新开发,在制造耐用的仪器方面享有盛誉。安捷伦的前身,惠普公司,于1958年进入气相色谱市场,从那时起就一直是GC和GC/MS产品的领导者。1973年第一次引入微处理器控制,1975年推出世界第一台台式GC/MS系统。1996年,HP 5973推出石英镀金双曲面四极杆质量分析器,实现了仪器稳定性和性能上的突破。1999年安捷伦从惠普分离出来,直至今日,仍在GC和GC/MS的硬件和软件方面不断开拓创新。  关于安捷伦科技  安捷伦科技(NYSE: A)是全球领先的测量公司,是通信、电子、生命科学和化学分析领域的技术领导者,公司的19,000名员工在110多个国家为客户服务。在2008财政年度,安捷伦的业务净收入为58亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn http://agilent.instrument.com.cn/ 。
  • 【安捷伦】“拎包入住”式应用解决方案 | 轻松解决固定污染源中的苯系物检测/升级改造您的气相色谱仪
    “拎包入住”式应用解决方案轻松解决固定污染源中的苯系物检测/升级改造您的安捷伦气相色谱仪苯系物包括全部芳香族化合物,狭义上的特指包括BTEX在内的在人类生产生活环境中有一定分布并对人体造成危害的含苯环化合物。由于生产及生活污染,苯系物可在人类居住和生存环境中广泛检出,并对人体的血液、神经、生殖系统具有较强危害。因此很多国家把大气中苯系物的浓度作为大气环境常规监测的内容之一,并规定了严格的室内外空气质量标准和污染源排放标准。2022年7月14日我国首次发布了《固定污染源废气苯系物的测定气袋采样/直接进样-气相色谱法》(HJ1261-2022),并即将于2023年1月15日全面实施。标准采用直接进样结合毛细管色谱柱,用于固定污染源废气中苯、甲苯、乙苯、邻二甲苯、间二甲苯、对二甲苯、异丙苯和苯乙烯的测定,支撑《大气污染物综合排放标准》(GB16297-1996)等13项污染物排放标准实施。安捷伦自成立以来一直致力于可持续发展和环境保护,为环境检测提供了大气、水污染、土壤等众多应用解决方案,为环境监测单位和环境检测企业提供硬件设备、技术培训、应用支持和一站式应用解决方案服务。针对《固定污染源废气苯系物的测定气袋采样/直接进样-气相色谱法》(HJ1261-2022),安捷伦结合用户实际需求,定制专属的固定污染源废气中苯系物的测定应用解决方案,不论您是购买全新安捷伦8890/60系列气相色谱仪,还是基于原有安捷伦气相色谱仪进行升级改造+工厂级别的深度维护或翻新(原有仪器焕然一新),亦或单独进行升级改造,均能实现最快速的达到标准方法的检测要求。无论您原有的气相色谱是6890、7890、7820、8890、8860系列均可升级改造,并完全适用HJ1261-2022标准方法检测要求。(图二)标准色谱图安捷伦阀气体进样技术,拥有极好的准确性和重复性,并支持多种进样方式,无论是气体采样袋手动进样,还是气体自动进样器进样和在线监测连续进样,均能轻松实现。结合安捷伦专利技术聚乙二醇毛细管色谱柱,提供良好的乙苯、间对二甲苯分离效果和较好的保留时间重复性。工程师现场对方法调试、验证,并针对方法进行系统的操作培训,让您轻松应对全新标准。(图三)用户气体进样装置改造实例联系我们即可定制您的专属应用解决方案我们也提供专属GC升级改造方案进行PAMS和VOCs、温室气体、非甲烷总烃、CO2还原气分析、N2检测等各种应用升级改造检测方案关注安捷伦微信公众号,获取更多市场资讯
  • 气相色谱仪的常用操作小技巧
    气相色谱仪是一种多组份混合物的分离、分析工具,它是以气体为流动相,采用冲洗法的柱色谱技术。当多组份的分析物质进入到色谱柱时,由于各组分在色谱柱中的气相和固定液液相间的分配系数不同,因此各组份在色谱柱的运行速度也就不同,经过一定的柱长后,顺序离开色谱柱进入检测器,经检测后转换为电信号送至数据处理工作站,从而完成了对被测物质的定性定量分析。 Gas-PC20气相色谱仪  气相色谱仪的常用操作小技巧  1 加热  由于气相色谱仪的生产厂家和质量的不同,蛤定温度的方式也不相同 对于用微机设数法或拨轮选择法给定温度,一般是直接设数或选择合适给定温度值加以升温,而如果是采用旋钮定位法,则有技巧可言:  1.1 过温定位法  将温控旋钮调至低于操作温度约30℃处 给气相色谱仪升温 当过温至约为操作温度时,配台温度指示和加热指示灯,再逐渐将温控旋钮调至台适位置。  1.2 分步递进定位法  将温控旋钮朝升温方向转动一个角度,升温开始,指示灯亮:当温度基本稳定时,再同向转动温控旋钮。开始继续升温:如此递进调节、直至恒温在工作温度上。  2 调池平衡  调池平衡 实际是调热导电桥平衡.使之有较为台适的输出 讲调节技巧.其实是对具有池平衡、调零和记录调零等调珊能的气相色谱仪而言  3 点火  氢焰气相色谱仪 开机时需要点火,有时因各种原因致使熄火后,也需要点火 。然而,我们经常会遇到点火不着的情况 ,下面介绍两种点火技巧,供同行们相试。  3.1 加大氢气流量法  先加大氢气流量,点着火后,再缓慢调回工作状况 此法通用。  3.2 减少尾吹气流量法  先减少尾吹气流量,点着火后,再调回工作状况 此法适用于用氢气怍载气,用空气作助燃气和尾畋气情况。  4 气比的调节  氢焰气相色谱仪三气的流量比.有关资料均建议为:氮气:氢气:空气=l:l:10 但由于转子流量计指示流量的不准确性.事实上谁会去苛求这个配比呢?本人认为 为各气旌以良好匹配。目的是既有高的检测器灵敏度又能有较好的分离效果。还不致于容易熄火。本着上述原则 气比应按下法调节:  (1)氮气流量的调节  在色谱柱条件确定后、样品组分分离效果的好坏、氮气的流量大小是决定因素 调节氮气流量时.要进样观察组分分离情况.直至氮气流量尽可能大且样品组分有较好分离为止  (2)氢气和空气流量的调节  氢气和空气流量的调节效果,可以用基流的大小来检验 先调节氢气流量 使之约等于氮气 的流量。再调节空气流量 在调节空气流量时,要观察基流的改变情况 只要基流在增加,仍应相向调节,直至基流不再增加不止 最后,再将氢气流量上调少许。  5 进样技术  在定量分析中,应注意进样量读数准确在气相色谱分析中,一般是采用注射器或六通阀门进样 在考虑进样技术的时候,主要是以注射器进样为对象。  5.1 进样量  进样量与气化温度、柱容量和仪器的线性响应范围等因素有关,也即进样量应控制在能瞬间气化。达到规定分离要求和线性响应的允许范围之内 ,填充柱冲洗法的瞬间进样量:液体样品或固体样品溶液一般为0.01~ 10微升,气体样品一般为0.1~ 10毫升 。  (1)排除注射器里所有的空气  用微量注射器抽取液体样品时,只要重复地把液体抽凡注射器又迅速把其排回样品瓶,就可做到遗一点。  还有一种更好的方法,可以排除注射器里所有的空气 那就是用计划注射量的约2倍的样品置换注射器3~5次。每扶取到样品后,垂直拿起注射器,针尖朝上 任何依然留在注射器里的空气都应当跑到针管顶部 推进注射器塞子,空气就会被排掉。  (2)保证进样量的准确  用经换过的注射器取约计划进样量2倍左右的样品,垂直拿起注射器,针尖朝上,让针穿过一层纱布,这样可用纱布吸收从针尖排出的液体 推进注射器塞子。直到读出所需要的数值用纱布擦干针尖 ,至此准确的液体体积已经测得。需要再抽若干空气到注射器里,如果不慎推动柱塞,空气可以保护液体使之不被排走。  5.2 进样方法  双手章注射器 用一只手(通常是左手)把针插入垫片,洼射大体积样品(即气体样品)或输入压力很高时,要防止从气相色谱仪来的压力把柱塞弹出(用右手的大拇指)让针尖穿过垫片尽可能踩的进入进样口,压下柱塞停留1~ 2秒钟,然后尽可能快而稳地抽出针尖(继续压住柱塞)。  5.3 进样时间  进样时间长短对柱效率影响很大,若进样时间过长,遇使色谱区域加宽而降低柱效率 。因此,对于冲洗法色谱而言,进样时间越短越好,一般必须小于1秒钟。
  • 色谱前处理技术专题|岛津:以特色前处理附件不断满足气相色谱多样化分析需求
    近年来,为了提升色谱分析的效率和准确度,满足实验室对实验流程自动化等方面的需求,色谱前处理技术不断发展,新型前处理技术应运而生,同时高自动化、智能化前处理设备也逐渐推出并普及。为了展示当下色谱前处理技术及产品的应用现状,探讨未来前处理技术的发展方向,仪器信息网特别策划了“色谱前处理技术发展专题”,并面向广大色谱前处理技术企业、色谱前处理领域专家学者及业内相关从业人员广泛约稿。以下为岛津的供稿,分享了岛津围绕气相色谱技术,推出的各种特色前处理附件产品,以及如何通过这些创新技术,满足广大分析人员的多样化需求。--------------------------------以特色前处理附件不断满足气相色谱多样化分析需求岛津制作所自1957年推出岛津第一台商用气相色谱仪GC-1A以来,到今年已经65年了。在这跨越一个甲子的发展历程中,岛津始终秉承以用户为本的理念,努力践行“匠人精神”。在这个创新过程中,围绕气相色谱主机,岛津不断推出各种特色前处理附件产品来满足广大分析人员的多样化需求。前处理附件可谓是气相色谱分析的第一道关口,对于分析的重要性不言而喻,没有合适和质量过硬的前处理附件,分析的准确性将无从谈起,可以说前处理附件是高质量气相色谱分析的前提和必要条件。岛津围绕气相色谱进样技术开发了非常完善的前处理附件,包含液体自动进样、顶空自动进样、固相微萃取进样、热脱附进样、热裂解进样、气袋自动进样等。同时,围绕各个领域分析人员的具体需求,创新开发了系列特色技术并将其融入产品设计中,这些技术已经广泛服务于石油化工、环境监测、医药卫生、食品安全、教育科研等众多领域的实验室中。液体自动进样液体自动进样是气相色谱最常用的进样方式之一,广泛用于食品安全、教育科研、医药卫生等领域。岛津液体自动进样技术最早可以追溯到1970年专为GC-5A气相色谱仪所开发的AOC-5液体自动进样器,采用了竖直进样方式,这也是首台亮相中国的岛津液体自动进样器。随后不断创新,又陆续推出了水平进样方式的AOC-6, 以及搭配了方形样品盘的AOC-14等多个明星产品型号。在多年技术积淀的基础上,岛津于1996年正式推出AOC-20经典型号,在不断发展创新的过程中,AOC-20系列已经畅销超过25年了,成为气相色谱历史上非常受欢迎的代表性进样产品之一,为全球各地气相色谱仪用户所熟知。2021年,岛津重磅发布了AOC-30系列,这是岛津最新一代高端液体自动进样器型号。图1. 岛津AOC液体自动进样技术创新之路针对液体进样的使用场景,分析人员常常会关注三个方面的核心性能:交叉污染、样品通量和使用体验,岛津AOC-30的开发人员在广泛调研的基础上,重点围绕这三个方面进行了研发和创新。以交叉污染为例,一些特定分析项目中的化合物非常容易产生残留,比如毒品中甲基苯丙胺分析,甲基苯丙胺响应值很高,非常容易造成下一针的残留,对分析人员造成困扰。AOC-30支持多达4种溶剂来洗针,且可自由设置这4种溶剂交互的洗针程序,实现低交叉污染性能,可以很好的满足此类的分析需求。这一性能特点在化工、科研、工业制造等领域得到广泛欢迎。图2. AOC-30可支持多达4种溶剂的交互洗针程序以样品通量为例,对于一些分析任务比较重的实验室,比如第三方检测机构来说,由于样品量大和仪器长时间连续分析,以往可能会出现批处理分析中,洗针溶剂意外耗尽的风险。针对此问题,AOC-30实现了支持多达12个4mL溶剂瓶的溶剂量,这样超大容量的溶剂使得分析人员再也无须担心溶剂意外耗尽的问题,有助于大量样品长期稳定可靠的连续分析,再加上双塔进样,分析效率翻倍。图3. AOC-30支持双塔进样模式以分析体验为例,针对各个领域中的多样化进样需求,为了不断提升操作体验,AOC-30围绕“Analytical Intelligence”理念,特别设计了【进样助手】功能——基于多年积累的专业分析经验,将适于典型特性样品的六种进样参数预先内置在系统中,分析时仅需设置进样体积和洗针溶剂类型,然后“一键选择”预置的方法参数,即可创建适合的进样方法。比如针对乙二醇,白油,硅氧烷、甘油、润滑油和柠檬油等高粘度样品分析需求,特别预置有【粘性样品模式】;针对内标法进样分析的需求,特别预置有【多层进样模式】,实现自动加内标。图4. AOC-30进样助手功能操作过程针对样品量大和追求完全自动化的法规类型实验室,AOC-30还开发了样品盘读码器功能。可读取样品瓶上的条形码或二维码,自动在工作站中录入样品信息,如分析日期,样品ID,客户信息等内容。此模块读码准确度高,因此能够避免手工录入错误信息的风险,目前已经支持国际通用的13种条形码规格和7种二维码规格。此功能受到医药CRO、临床检验等领域用户的广泛欢迎。图5. AOC-30样品盘读码器模块作为岛津高端液体自动进样器,AOC-30设计了一系列能够满足当下和未来实验室所需的自动化和远程操作等多方面的功能,为现代实验室赋能。正是基于多方面的创新设计,AOC-30斩获了2022年德国红点设计大奖(Red Dot Design Award 2022)和iF设计大奖(iF Design Award 2022 )。图6. AOC-30高端液体自动进样器气袋自动进样气体进样在石油化工,教育科研和环境保护等领域中应用非常广泛,传统上,很多分析人员使用气密针进样或者手挤压气袋进样,此时由于气体的扩散性,这两种操作方式都非常容易造成分析结果的不稳定,重现性差。针对这个现状,岛津开发了cGBS-2030气袋进样器,使得分析作业从原本危险的环境转移到干净的实验室中进行,同时很好解决了硫化物吸附和操作体验不佳这两方面的问题。在石油化工领域中,气体中硫化物的分析通常是一个难点,其原因在于常常会出现由于硫化物吸附现象而导致分析数据不稳定的问题。cGBS-2030气袋进样器采用了惰性化流路设计,从而很好的支持硫化物及其他活性组分的分析,可以得到良好的分析效果。图7. cGBS-2030气袋进样器的分析效果当多个气袋样品等待分析时,由于气袋的体积和形状方面的原因,常常存在连接和操作的诸多不便,cGBS-2030气袋进样器采用可旋转式设计,大幅提升了连接气袋及气瓶的便利性,同时进样指示灯即时掌握进样状态。专门设计的3COsolution 辅助软件,可非常便捷直观的设定和显示气袋安装、分析、拔除、吹扫时间、平衡时间、进样时间等操作,并支持LabSolution软件。大幅改善传统气袋进样器的硬件和软件操作体验问题。正是基于多方面的创新设计,cGBS-2030气袋进样器斩获了2022年德国红点设计大奖(Red Dot Design Award 2022)和iF设计大奖(iF Design Award 2022 )。图7. cGBS-2030气袋进样器顶空自动进样顶空自动进样技术在环境分析、食品安全、医药CRO、公安司法等领域应用非常广泛。岛津顶空进样技术最早可以追溯到1985年研发和生产的HSS-2A(搭配GC-9A),可支持多达40位样品量,随后又推出了HSS-4A(搭配GC-17A),进样针和样品瓶温度均可设置到150℃,且支持顶空自动进样和手动进样之间的便捷切换。在多年技术积累的基础上,岛津陆续发布了HS-10,HS-20,HS-20 NX等产品。图9. 岛津顶空和热脱附进样技术创新之路顶空自动进样技术除了通量之外,大家经常关注的就是高沸点残留和操作体验这两个问题。岛津研发人员在HS-20 NX产品设计之初,就重点探讨和解决了这两个分析痛点。HS-20 NX继承并提高了HS-20在挥发性有机物分析中的优异性能,同时兼容用户友好型设计,是科学研究和质量控制工作的好助手。图10. 岛津Nexis GC-2030加强版搭配顶空自动进样器HS-20 NX在残留性能上,HS-20 NX一方面采用了创新的隔离流路设计,与传统顶空相比,隔离流路可有效减小排空阀中残留物质向定量环的扩散,有效降低交叉污染;另一方面在GC和HS之间采用内置的超短惰性流路设计,可支持高温设定,满足高灵敏度分析要求,一定程度上避免了高沸点物质的残留。研发人员曾测试树脂脱气中环硅氧烷的分析,即使300℃下高沸点物质可以获得高的回收率。图11. HS-20 NX隔离流路设计和短传输线设计在操作体验方面,HS-20 NX可嵌入气相色谱仪的LabSolution软件中实现完全控制,同时引入了在气相色谱仪中应用非常成熟的ClickTek 技术,实现免工具安装色谱柱,简化色谱柱更换及日常维护。对于顶空分析灵敏度要求更高的分析项目,为了进一步提高顶空方法的灵敏度,岛津开发人员专门设计了Trap型号(包括一个电子冷阱),可对宽沸点范围内的物质进行富集,这相比于传统方式,灵敏度再提高10~100倍。这三个前处理技术是岛津众多特色前处理附件的一个缩影,反映了岛津围绕气相色谱主机,不断在前处理相关产品上开拓创新,满足各个领域广大分析人员的多样化需求。岛津在气相色谱领域深耕六十余年,是世界上气相色谱历史最悠久的品牌之一,一直致力于气相色谱仪相关技术的创新。近年来岛津气相色谱研发团队一个很重要的理念就是“与家电相媲美的易用性”,研发时完全以用户的立场作为出发点,以此来开发真正能诠释气相色谱分析技术的内涵和潜能的创新产品,而这样的理念也同样适用于气相色谱相关前处理附件的开发工作。面向未来,针对石油化工、环境监测、医药卫生、食品安全、教育科研等广泛领域用户在分析操作中实际需求,希望通过更多岛津特色附件的导入,不断扩充气相色谱的使用场景,不断改善用户的操作体验和分析效果,不断满足气相色谱多样化的分析需求。
  • 安捷伦推出新型气相色谱自动进样器
    安捷伦科技公司推出新型气相色谱自动进样器  具有新的速度、样品制备功能和灵活性  2009年3月20日,北京—安捷伦科技公司(NYSE:A)今天推出了Agilent 7693A系列自动液体进样器,适用于安捷伦全线的台式气相色谱仪,并且极大地提升了液体自动进样器分析通量、灵活性、自动样品前处理能力。  “分析实验室需要在不影响分析质量的前提下,在更短的时间分析更多的样品,安捷伦不断地以GC设计上的重大突破对此做出了响应,比较典型的实例是安捷伦的微板流路控制技术以及低热容气相色谱技术,这些技术都带来了分析效率的提高”安捷伦副总裁、气相色谱系统和流程自动化总经理Shanya Kane说,“我们今天的发布的新一代气相色谱液体自动进样器,就是安捷伦长期以来帮助气相色谱用户,使其仪器投资价值最大化的最新实例。”  Agilent 7693A以全新的设计取代了行业领先的7683B,将帮助用户更快处理样品,并得到更好的数据。新ALS是模块式的,让用户可以配置其最需要的自动进样器—— 从一个带16位样品塔的基本进样器开始,可以根据需求的扩展不断增添新的功能。可选件包括,第二个进样塔、150位样品盘和样品管加热器/条码阅读器,适用于长时间无人执守操作。自校准的“即插即用”式进样器不用工具即可快速安装,可以从一个进样口移到另一个进样口,甚至可以在不同气相色谱仪之间交互使用,以适应工作量的变化,并方便进样口维护。  速度和性能  安捷伦独有的快速进样技术,速度是其它品牌液体自动进样器的两倍。进样时间不到100毫秒,最大限度地减少了样品降解和针头歧视效应。推杆的速度可以精确控制,真正实现大体积样品进样或复杂分析进样的优化。Agilent 7693A 针对气相色谱获得良好峰形和高度准确的数据进行了专门化设计。新进样器支持三明治进样,可以在进样前加入一定体积的内标和/或溶剂,全新的进样针的设计上能够将交叉污染降到最小,并延长了进样针的使用寿命。  双进样器配置能够实现安捷伦独特的双通道同时进样功能,与单进样器ALS相比,样品通量提高了2倍,从而节省了大量时间。  每个进样塔能放置最多16个样品,还可以容纳两个溶剂瓶和一个废液瓶。在使用样品瓶盘时,进样塔可以放置10个溶剂瓶和5个废液瓶,外加三个样品瓶转移位置。从而给样品处理带来了无可比拟的灵活性。  新的样品盘上样品瓶放置系统有三排50个样品瓶的架子,共能容纳150个样品,比过去增加了50个。这些架子适合放入冰箱冷藏,并且非常节约空间。安捷伦还为7693A提供了全进样盘加热/冷却选件。  自动化样品前处理  为了使许多高通量分析流程(如环境分析、食品安全检测或药物质量控制等)效率更高,安捷伦提供了一个可选件加热器/混合器/条码阅读器,可以自动进行各种样品前处理,如制备高粘度或微溶样品。用户可通过简便易用的软件让仪器进行样品前处理操作,如添加衍生化试剂、加热样品瓶、加入第二种试剂,混合,然后将处理后的样品注入气相色谱系统。  新的自动进样器的样品处理功能能够大量节省时间和人力,也消除了不同操作者之间可变因素的影响,消除因为样品前处理不同带来的重复操作。可以把溶剂消耗和废液减少90%,也减少了人员和溶剂的接触。  如需了解有关新型Agilent 7693A系列ALS的其它信息,可访问www.agilent.com/chem/7693A。  安捷伦长期致力于GC和GC/MS的创新开发,在制造耐用的仪器方面享有盛誉。安捷伦的前身,惠普公司,于1958年进入气相色谱市场,从那时起就一直是GC和GC/MS产品的领导者。1973年第一次引入微处理器控制,1975年推出世界第一台台式GC/MS系统。1996年,HP 5973推出石英镀金双曲面四极杆质量分析器,实现了仪器稳定性和性能上的突破。1999年安捷伦从惠普分离出来,直至今日,仍在GC和GC/MS的硬件和软件方面不断开拓创新。  # # #  关于安捷伦科技  安捷伦科技(NYSE: A)是全球领先的测量公司,是通信、电子、生命科学和化学分析领域的技术领导者,公司的19,000名员工在110多个国家为客户服务。在2008财政年度,安捷伦的业务净收入为58亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn http://agilent.instrument.com.cn/ 。
  • 上海精科即将推出GC112B气相色谱仪
    如果用户希望使用外形美观、功能更多、分析灵敏度更好和自动化程度更高,但价格却是适中的气相色谱仪,那么上海精密科学仪器有限公司现在能帮助用户实现这个愿望。具备这些特点的GC112B气相色谱仪,即将在飞乐精科诞生 目前该产品的研制已处于最后收尾阶段,进展很顺利。  GC112B气相色谱仪采用更为先进技术,具有稳定可靠、配套齐全、专业性强(用户无需改动即可使用,仪器菜单显示使分析测试操作更方便)等诸多特点。同时,我公司提供上门安装调试、人员培训指导、色谱标样及零配件等应用服务,免除了用户一切后顾之忧。  关于上海精密科学仪器有限公司  上海精密科学仪器有限公司系上海飞乐股份有限公司的全资子公司,主要由原上海分析仪器总厂、上海天平仪器厂、上海雷磁仪器厂、上海物理光学仪器厂等合并而成, 是国内著名的集开发、制造和服务为一体的科学仪器制造集团之一 , 连续多年被评为上海市高新技术企业,享有自主进出口权,公司拥有的“棱光牌”、“上分牌”、“上平牌”、“双圈牌”、“雷磁牌”、“申光牌” 等品牌中不乏上海市名牌产品和中国知名名牌。  公司的产品广泛应用、服务于石油、化工、冶金、环保、电站、食品安全、医疗卫生、科研及大专院校等领域。各类产品作为化学分析、检测的实验工具 , 不仅在国内享有很高的声誉 , 还远销欧、美、亚、非的二十多个国家和地区。  公司紧贴市场需求 , 研制了土壤测试专用仪器系统、建筑装 潢室内环境污染检测系统、果蔬农药残毒检测系统 开发了水质监测系统和大气质量自动监测系统等项目。  上海精密科学仪器有限公司以“掌握尖端技术 , 诚挚服务大众”为目标,为提高人们的生活质量,提供高科技产品和优质服务。  公司通过了IS09001质量管理体系认证、IS014001环境管理体系认证。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制