当前位置: 仪器信息网 > 行业主题 > >

液相色谱容量

仪器信息网液相色谱容量专题为您提供2024年最新液相色谱容量价格报价、厂家品牌的相关信息, 包括液相色谱容量参数、型号等,不管是国产,还是进口品牌的液相色谱容量您都可以在这里找到。 除此之外,仪器信息网还免费为您整合液相色谱容量相关的耗材配件、试剂标物,还有液相色谱容量相关的最新资讯、资料,以及液相色谱容量相关的解决方案。

液相色谱容量相关的论坛

  • 【讨论】高效液相色谱与气相色谱区别!总结在7楼

    高效液相色谱分析法(HPLC),它的基本概念及理论基础(如保留值、塔板理论、速率理论、容量因子、分离度等),与气相色谱是一致的,但又有不同之处:高效液相色谱与气相色谱的主要区别体现在那几个方面? 希望各位版友踊跃发言,叙述越详细将会得到意外惊喜。。。。。。

  • 液相色谱

    [url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]做含量项目时,容量瓶为什么不能有水

  • 液相色谱

    [url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]做含量项目时,容量瓶为什么不能有水

  • 高效液相色谱技术

    高效液相色谱(HPLC:High Performance Liquid Chromatography )是化学、生物化学与分子生物学、医药学、农业、环保、商检、药检、法检等学科领域与专业最为重要的分离分析技术,是分析化学家、生物化学家等用以解决他们面临的各种实际分离分析课题必不可缺少的工具。国际市场调查表明,高效液相色谱仪在分析仪器销售市场中占有最大的份额,增长速度最快。 高效液相色谱的优点是:检测的分辨率和灵敏度高,分析速度快,重复性好,定量精度高,应用范围广。适用于分析高沸点、大分子、强极性、热稳定性差的化合物。其缺点是:价格昂贵,要用各种填料柱,容量小,分析生物大分子和无机离子困难,流动相消耗大且有毒性的居多。目前的发展趋势是向生物化学和药物分析及制备型倾斜。7.1 基本原理 加样 流动相 固定相 流动相 A A B C B C B A 固定相 —— 柱内填料,流动相 —— 洗脱剂。HPLC是利用样品中的溶质在固定相和流动相之间分配系数的不同,进行连续的无数次的交换和分配而达到分离的过程。通常,按溶质(样品)在两相分离过程的物理化学性质可以作如下的分类:分配色谱:—— 分配系数亲和色谱:—— 亲和力吸附色谱:—— 吸附力离子交换色谱:—— 离子交换能力凝胶色谱(体积排阻色谱):—— 分子大小而引起的体积排阻分配色谱又可分为:

  • 【知识解读】你了解二维液相色谱吗?

    2012 年 4 月 19日,北京——安捷伦科技公司宣布推出 Agilent 1290 Infinity 二维液相色谱解决方案,可实现全二维方式以及中心切割方式的二维分离。该仪器对极为复杂的样品有出色的分离能力,例如生物药品、肽谱、植物提取物、食品基质、聚合物以及其他难以分离的混合物。其采用1290 Infinity二元泵及创新的二维液相色谱阀,配合专用的二维色谱软件,可在短短数分钟内完成二维液相色谱的配置和方法设置。通过组合两个正交的HPLC分离到一个单一的二维液相色谱分析中,色谱峰容量将成倍地增加,与常规的液相色谱相比,分离能力也随之大大增加。因此,对于需要最高分离能力的极其复杂样品而言,二维液相色谱无疑是理想的工具。1. 你了解过二维液相色谱吗?2. 你知道二维液相色谱和普通液相色谱的差异吗?3. 你心目中的二维液相色谱是怎么一回事?

  • 高效液相色谱方法及应用__(第二版)

    跟大家分享一本书《高效液相色谱方法及应用》第二版,感兴趣的版友可以下载附件查阅,也欢迎补充。全书的目录如下:作 者: 于世林出 版 社: 化学工业出版社 本社特价书所属丛书: 色谱技术丛书 册 数: 条 形 码: 9787502569068 ; 978-7-5025-6906-8I S B N : 7502569065 出版时间: 2005-6-1开 本: 小16开 页 数: 333定 价: 39 元第一章 绪论第一节 高效液相色谱法的特点一、与经典液相(柱)色谱法比较二、与气相色谱法比较三、高效液相色谱法的优点四、高效液相色谱方法发展简介第二节 高效液相色谱法的分类一、按溶质在两相分离过程的物理化学原理分类二、按溶质在色谱柱洗脱的动力学过程分类第三节 高效液相色谱法的应用范围和局限性一、应用范围二、方法的局限性参考文献第二章 高效液相色谱仪简介第一节 流动相及储液罐一、储液罐二、流动相脱气第二节 高压输液泵及梯度洗脱装置一、高压输液泵二、输液系统的辅助设备三、梯度洗脱装置第三节 进样装置一、停流进样装置二、六通阀进样装置三、自动进样器第四节 色谱柱一、柱材料及规格二、柱填料三、保护柱四、柱连接方式五、柱温控制第五节 检测器一、检测器的分类和响应特性二、紫外吸收检测器三、折光指数检测器四、电导检测器五、荧光检测器六、蒸发光散射检测器第六节 色谱数据处理装置一、微处理机二、色谱工作站参考文献第三章 液固色谱法和液液色谱法第一节 分离原理一、吸附系数二、分配系数第二节 固定相一、液固色谱固定相二、液液色谱固定相第三节 流动相一、表征溶剂特性的重要参数二、液固和液液色谱的流动相第四节 二元溶剂体系中液固和液液色谱的保留规律一、溶质保留值的基本方程式二、液固色谱的保留值方程式三、液液色谱的保留值方程式参考文献第四章 键合相色谱法第一节 分离原理一、正相键合相色谱法的分离原理二、反相键合相色谱法的分离原理第二节 固定相一、键合固定相的制备及分类二、键合固定相的性质三、使用键合固定相应注意的问题第三节 流动相一、溶剂的选择性分组二、在键合相色谱中选择流动相的一般原则三、改善色谱分离选择性的方法四、多元混合溶剂的多重选择性五、溶质保留值随溶剂极性变化的一般保留规律六、用线性溶剂化自由能关系(LSER)来表征反相液相色谱中溶质的保留值方程式第四节 新型高效液相色谱的固定相和流动相一、新型高效化学键合固定相二、化学键合固定相分类方法简介三、整体色谱柱四、超热水流动相第五节 离子对色谱法一、分离原理二、固定相、流动相和对(反)离子三、影响离子对色谱分离选择性的因素参考文献第五章 梯度洗脱第一节 基本原理一、等度洗脱二、梯度洗脱第二节 影响梯度洗脱的各种因素一、梯度洗脱时间(tG)对分离的影响二、强洗脱溶剂组分B浓度变化范围的影响三、梯度陡度对保留值的影响四、柱温变化对保留值的影响五、梯度洗脱程序曲线形状的影响六、影响梯度洗脱的其他变量第三节 优化梯度洗脱的方法一、建立梯度洗脱方法的一般步骤二、梯度洗脱中的实验条件第四节 梯度洗脱的图示方法一、二元溶剂梯度洗脱二、三元溶剂梯度洗脱三、四元溶剂梯度洗脱四、用极坐标和球面坐标描述梯度洗脱参考文献第六章 体积排阻色谱法第一节 分离原理一、分布系数二、体积排阻色谱法的特点第二节 固定相一、固定相的分类二、凝胶固定相的特性参数三、凝胶色谱柱的制备及谱图特点第三节 流动相一、凝胶渗透色谱的流动相二、凝胶过滤色谱的流动相第四节 凝胶渗透色谱法测定聚合物分子量分布一、聚合物分子量、分子量分布及测定的意义二、凝胶渗透色谱图的解析及数据处理参考文献第七章 高效液相色谱法的基本理论第一节 表征液相色谱柱填充性能的重要参数一、总孔率二、柱压力降三、柱渗透率第二节 高效液相色谱的速率理论一、影响色谱峰形扩展的各种因素二、范第姆特方程式的表达及图示第三节 诺克斯方程式一、描述色谱柱性能的折合参数二、诺克斯方程式第四节 色谱柱操作参数的优化一、三个柱操作参数的表达式二、HPLC中实用柱操作参数的优化三、柱操作参数优化的图示表达方法第五节 “无限直径”效应和柱外效应一、“无限直径”效应二、柱外效应第六节 超高效液相色谱一、超高效液相色谱的理论基础二、实现超高效液相色谱的必要条件三、超高效液相色谱的应用参考文献第八章 高效液相色谱分离条件的优化第一节 高效液相色谱中色谱参数的相关性一、色谱参数的分类二、色谱参数的相关性第二节 色谱分离条件优化标准的选择一、难分离物质对的峰对分离优化标准二、整体色谱图的优化标准第三节 色谱响应函数和色谱优化函数一、Morgan和Deming提出的色谱响应函数二、Watson和Carr提出的色谱响应函数三、Glajch和Kirkland提出的色谱优化函数四、Berridge提出的色谱响应函数第四节 色谱分离条件的优化方法一、单纯形法二、窗图法三、混合液设计实验法四、重叠分离度图法五、等强度洗脱和梯度洗脱的优化图示法第五节 优化HPLC分离的计算机辅助方法一、实验设计系统二、人工智能系统第六节 高效液相色谱专家系统简介一、专家系统的组成二、专家系统的使用方法参考文献第九章 微柱液相色谱法第一节 方法简介一、微型柱的分类二、微柱液相色谱法的优点和缺点第二节 基本理论一、柱外效应二、管壁效应三、稀释效应四、分离阻抗第三节 仪器装置一、输液泵系统二、进样系统三、柱系统四、检测器系统五、连接管和接头第四节 微柱的制备一、评价微柱性能的重要参数二、影响微柱分离效率的相关参数三、微柱的制备方法第五节 微柱液相色谱的新技术一、纳米液相色谱技术二、超高压液相色谱技术参考文献第十章 二维高效液相色谱法第一节 描述分离体系效能的参数一、峰容量二、信息量第二节 二维高效液相色谱的技术功能一、切割功能二、反冲洗脱功能三、痕量组分的富集功能第三节 二维高效液相色谱的流路系统一、多通路切换阀二、二维高效液相色谱的流路系统第四节 二维高效液相色谱在蛋白质组学研究中的应用参考文献第十一章 建立高效液相色谱分析方法的一般步骤和实验技术第一节 样品的性质及柱分离模式的选择一、样品的溶解度二、样品的分子量范围三、样品的分子结构和分析特性第二节 分离操作条件的选择一、容量因子和死时间的测量二、色谱柱操作参数的选择三、样品组分保留值和容量因子的选择四、相邻组分的选择性系数和分离度的选择第三节 高效液相色谱法的实验技术一、溶剂的纯化技术二、色谱柱的装填技术三、色谱柱的平衡、保护与清洗、再生技术四、梯度洗脱技术五、色谱柱前和柱后的衍生化技术六、样品的预处理技术参考文献符号表

  • 【资料】液相色谱法

    液相色谱法   [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]不能由色谱图直接给出未知物的定性结果,而必须由已知标准作对照定性。当无纯物质对照时,定性鉴定就很困难,这时需借助质谱、红外和化学法等配合。另外大多数金属盐类和热稳定性差的物质还不能分析。此缺点可高效液相色谱法来克服。液相色谱法就是用液体作为流动相的色谱法。1903 年俄国化学家M.C.茨维特首先将液相色谱法用于分离叶绿素。 原理和分类 液相色谱法的分离机理是基于混合物中各组分对两相亲和力的差别。根据固定相的不同,液相色谱分为液固色谱、液液色谱和键合相色谱。应用最广的是以硅胶为填料的液固色谱和以微硅胶为基质的键合相色谱。根据固定相的形式,液相色谱法可以分为柱色谱法、纸色谱法及薄层色谱法。按吸附力可分为吸附色谱、分配色谱、离子交换色谱和凝胶渗透色谱。近年来,在液相柱色谱系统中加上高压液流系统,使流动相在高压下快速流动,以提高分离效果,因此出现了高效(又称高压)液相色谱法。 品质软件试用下载:[URL=http://www.gztaiyou.com/jian/download.asp?instrument=315]http://www.gztaiyou.com/jian/download.asp?instrument=315[/URL]  ①液固吸附色谱。高效液相色谱中的一种,是基于物质吸附作用的不同而实现分离。其固定相是一些具有吸附活性的物质如硅胶、氧化铝、分子筛、聚酰胺等。   ②液液分配色谱法。基于被测物质在固定相和流动相之间的相对溶解度的差异,通过溶质在两相之间进行分配以实现分离。根据固定相与流动相的极性不同,分为正相色谱和反相色谱。前者是用硅胶或极性键合相为固定相,非极性溶剂为流动相;后者是硅胶为基质的烷基键合相为固定相,极性溶剂为流动相,适用于非极性化合物的分离。   ③离子交换色谱法。基于离子交换树脂上可电离的离子与流动相中具有相同电荷的溶质离子进行可逆交换,依据这些离子对离子交换基具有不同的亲和力而实现分离。薄壳型离子交换树脂柱效高,主要用来分离简单的混合物;多孔性树脂进样容量大,主要用来分离复杂混合物。   ④凝胶渗透色谱法[1] 。又称为尺寸排阻色谱法 。1959年首先用于生物化学领域。以溶剂为流动相,多孔填料(如多孔硅胶、多孔玻璃)或多孔交联高分子凝胶为分离介质的液相色谱法。当混合物溶液入凝胶色谱柱后,流经多孔凝胶时,体积比多孔凝胶孔隙大的分子不能渗透到凝胶孔隙里去而从凝胶颗粒间隙中流过,较早地被冲洗出柱外,而小分子可渗透到凝胶孔隙里面去,较晚地被冲洗出来,混合物经过凝胶色谱柱后就按其分子大小顺序先后由柱中流出达到分离的目的。用凝胶渗透色谱的优点是:分离不需要梯度冲洗装置 ;同样大小的柱能接受比通常液相色谱大得多的试样量;试样在柱中稀释少,因而容易检测;组分的保留时间可提供分子尺寸信息;色谱柱寿命长。它的缺点是:不能分离分子尺寸相同的混合物,色谱柱的分离度低;峰容量小;可能有其他保留机理起作用时引起干扰。凝胶渗透色谱法为测定高聚物分子量和分子量分布提供了一个有效的方法,此外还可用来分离齐聚物、单体和聚合物添加剂等。   ⑤[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]法。采用柱色谱技术的一种高效液相色谱法,样品展开方式采用洗脱法。根据不同的分离方式,[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]可以分为高效[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url] 、离子排斥色谱和流动相[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]3类。高效[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]法使用低容量的离子交换树脂,分离机理主要是离子交换。离子排斥色谱法用高容量的树脂,分离机理主要是利用离子排斥原理。流动相[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]用不含离子交换基团的多孔树脂,分离机理主要是基于吸附和离子对的形成。   [url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url]由淋洗液贮存器 、泵 、进样阀 、分离柱 、抑制柱、电导检导器和数据处理单元等组成。[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url]最重要的部件是分离柱,装有离子交换树脂。抑制柱是抑制型[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url]的关键部件,其作用是将淋洗液转变成低电导部分,以降低来自淋洗液的背景电导,同时将样品离子转变成其相应的酸或碱,以增加其电导。分离阴离子,抑制柱填充强酸性阳离子交换树脂;分离阳离子,抑制柱填充强碱性阴离子交换树脂。检测器分通用型检测器与专用型检测器。前者如电导检测器,对检测池中所有离子都有响应;后者如紫外-可见分光光度计,对离子具有选择性响应。   [url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]法具有快速、灵敏、选择性好和同时测定多组分的优点。尤其对于阴离子的测定,[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]的出现是分析化学中的一项突破性的新进展。[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]法主要用于测定各种离子含量,广泛应用于水、纸浆和漂白液、食品分析、生物体液、钢铁和环境分析等各个领域。   设备 高效液相色谱仪由输出泵、进样装置、色谱柱 、梯度冲洗装置、检测器及数据处理和微机控制单元组成。输出泵的功能是将冲洗剂在高压下连续不断地送入柱系统,使混合物试样在色谱中完成分离过程 。常用的进样方式有3种:注射器隔膜进样、阀进样和自动进样器进样。色谱柱的功能是将混合物中各组分分离。梯度冲洗又称溶剂程序,通过连续改变冲洗剂的组成,改善复杂样品的分离度,缩短分析周期和改善峰形,其功能类似于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]中的程序升温。检测器的功能是将从色谱柱中流出的已经分离的组分显示出来或转换为相应的电信号,主要有紫外吸收检测器、荧光检测器、电化学检测器和折光示差检测器,其中以紫外吸收检测器使用最广。现代化的仪器都配有计算机,以实现自动处理数据、绘图和打印分析报告。

  • 【资料】-液相色谱流动相的性质要求

    [b]液相色谱流动相的性质要求[/b]一个理想的液相色谱流动相溶剂应具有低粘度、与检测器兼容性好、易于得到纯品和低毒性等特征。 选好填料(固定相)后,强溶剂使溶质在填料表面的吸附减少,相应的容量因子k降低;而较弱的溶剂使溶质在填料表面吸附增加,相应的容量因子k升高。因此,k值是流动相组成的函数。塔板数N一般与流动相的粘度成反比。所以选择流动相时应考虑以下几个方面:  ①流动相应不改变填料的任何性质。低交联度的离子交换树脂和排阻色谱填料有时遇到某些有机相会溶胀或收缩,从而改变色谱柱填床的性质。碱性流动相不能用于硅胶柱系统。酸性流动相不能用于氧化铝、氧化镁等吸附剂的柱系统。  ②纯度。色谱柱的寿命与大量流动相通过有关,特别是当溶剂所含杂质在柱上积累时。  ③必须与检测器匹配。使用UV检测器时,所用流动相在检测波长下应没有吸收,或吸收很小。当使用示差折光检测器时,应选择折光系数与样品差别较大的溶剂作流动相,以提高灵敏度。  ④粘度要低(应2cp)。高粘度溶剂会影响溶质的扩散、传质,降低柱效,还会使柱压降增加,使分离时间延长。最好选择沸点在100℃以下的流动相。  ⑤对样品的溶解度要适宜。如果溶解度欠佳,样品会在柱头沉淀,不但影响了纯化分离,且会使柱子恶化。  ⑥样品易于回收。应选用挥发性溶剂。来源:色谱网。

  • 【实战宝典】制备液相色谱和半制备液相色谱有什么区别?

    【实战宝典】制备液相色谱和半制备液相色谱有什么区别?

    [b][font='Times New Roman'][font=宋体]解答:[/font][/font][/b][font=宋体][font=宋体]([/font]1[font=宋体])[/font][/font][font='Times New Roman'][font=宋体]分析型液相色谱是用来给一种或多种组分进行定量和定性,而制备型液相色谱则是用来对产品的单体进行提取和纯化。所以将制备型高效液相色谱仪定义为大容量色谱柱和高流速是不准确的。[/font][/font][font=宋体][font=宋体]([/font]2[font=宋体])[/font][/font][font='Times New Roman'][font=宋体]与传统的纯化方法(如蒸馏、萃取)比较,制备液相是一种更有效的分离方法,因此被广泛应用在样品和产品的提取和纯化上。随着合成、植化、生化和制药等领域对高纯度组份的需求不断增加,制备型液相色谱仪应用的领域也在迅速的扩大发展。[/font][/font][font=宋体][font=宋体]([/font]3[font=宋体])[/font][/font][font='Times New Roman'][font=宋体]半制备液相色谱通常也称为分析兼半制备液相色谱,理论上分析型液相色谱都是可以进行半制备的,只不过分析兼半制备液相色谱在流速和样品通量上有所提高。一般来说,按照流量划分,半制备一般为[/font]50mL/min[font=宋体],譬如[/font][font=Times New Roman]Thermo Fisher[/font][font=宋体]的[/font][font=Times New Roman]UltiMate? 3000 [/font][font=宋体]半制备系统[/font][/font][font=宋体];[/font][font='Times New Roman']100mL/min[font=宋体]以上的大流量为制备色谱。[/font][/font][font='Times New Roman'][font=宋体][img=,256,256]https://ng1.17img.cn/bbsfiles/images/2021/03/202103172149596942_4027_3389662_3.jpg!w256x256.jpg[/img][/font][/font]

  • 【讨论】你认识、使用过纳升级液相色谱吗?

    是针对纳升级、毛细管、窄径分离而设计的,目的在于获得最高效色谱分辨率、灵敏度及重现性。 直接纳升流速在常规纳升流纳升级液相色谱速分离技术的基础上又有了重大改进。用户将看到改进后的峰容量和峰形,每次分离后检测得到的组分数量增加。 纳升级液相色谱可高效分离各种多肽和蛋白质,与质谱联用后是蛋白组学研究的最佳工具,纳升液相色谱采用微流控制系统,可在20 nL/min 的流量水平下实现精确控制和梯度洗脱;微流控技术也极大地提高了质谱检测的灵敏度,可对更多的低丰度多肽进行分离和鉴定。 此外,纳升级液相色谱还可拓展应用至代谢靶分子、致病蛋白分子的鉴定,在纳升级稳定流量下质谱检测器可获得很好的灵敏度、分辨率和重现性。[color=#f10b00][size=6]说说你的认识、见解、或者使用经验吧?[/size][/color]

  • 液相色谱流动相小议

    液相色谱流动相小议一、液相色谱流动相的性质要求 一理想的液相色谱流动相溶剂应具有低粘度、与检测器兼容性好、易于得到纯品和低毒性等特征。 选好填料(固定相)后,强溶剂使溶质在填料表面的吸附减少,相应的容量因子k降低;而较弱的溶剂使溶质在填料表面吸附增加,相应的容量因子k升高。因此,k值是流动相组成的函数。塔板数N一般与流动相的粘度成反比。所以选择流动相时应考虑以下几个方面: ①流动相应不改变填料的任何性质。低交联度的离子交换树脂和排阻色谱填料有时遇到某些有机相会溶胀或收缩,从而改变色谱柱填床的性质。碱性流动相不能用于硅胶柱系统。酸性流动相不能用于氧化铝、氧化镁等吸附剂的柱系统。 ②纯度。色谱柱的寿命与大量流动相通过有关,特别是当溶剂所含杂质在柱上积累时。 ③必须与检测器匹配。使用UV检测器时,所用流动相在检测波长下应没有吸收,或吸收很小。当使用示差折光检测器时,应选择折光系数与样品差别较大的溶剂作流动相,以提高灵敏度。 ④粘度要低(应正相色谱的流动相通常采用烷烃加适量极性调整剂。 反相色谱的流动相通常以水作基础溶剂,再加入一定量的能与水互溶的极性调整剂,如甲醇、乙腈、四氢呋喃等。极性调整剂的性质及其所占比例对溶质的保留值和分离选择性有显著影响。一般情况下,甲醇-水系统已能满足多数样品的分离要求,且流动相粘度小、价格低,是反相色谱最常用的流动相。但Snyder则推荐采用乙腈-水系统做初始实验,因为与甲醇相比,乙腈的溶剂强度较高且粘度较小,并可满足在紫外185~205nm处检测的要求,因此,综合来看,乙腈-水系统要优于甲醇-水系统。 在分离含极性差别较大的多组分样品时,为了使各组分均有合适的k值并分离良好,也需采用梯度洗脱技术。 反相色谱中,如果要在相同的时间内分离同一组样品,甲醇/水作为冲洗剂时其冲洗强度配比与乙腈/水或四氢呋喃/水的冲洗强度配比有如下关系: C乙腈=0.32C 2甲醇+0.57C甲醇 C四氢呋喃=0.66C甲醇 C为不同有机溶剂与水混合的体积百分含量。100%甲醇的冲洗强度相当于89%的乙腈/水或66%的四氢呋喃/水的冲洗强度。 四、液相色谱流动相的滤过 所有溶剂使用前都必须经0.45μm(或0.22μm)滤过,以除去杂质微粒,色谱纯试剂也不例外(除非在标签上标明"已滤过")。 用滤膜过滤时,特别要注意分清有机相(脂溶性)滤膜和水相(水溶性)滤膜。有机相滤膜一般用于过滤有机溶剂,过滤水溶液时流速低或滤不动。水相滤膜只能用于过滤水溶液,严禁用于有机溶剂,否则滤膜会被溶解!溶有滤膜的溶剂不得用于HPLC。对于混合流动相,可在混合前分别滤过,如需混合后滤过,首选有机相滤膜。现在已有混合型滤膜出售。 五、液相色谱流动相的脱气 所用流动相必须预先脱气,否则容易在系统内逸出气泡,影响泵的工作。气泡还会影响柱的分离效率,影响检测器的灵敏度、基线稳定性,甚至使无法检测。(噪声增大,基线不稳,突然跳动)。此外,溶解在流动相中的氧还可能与样品、流动相甚至固定相(如烷基胺)反应。溶解气体还会引起溶剂pH的变化,对分离或分析结果带来误差。 溶解氧能与某些溶剂(如甲醇、四氢呋喃)形成有紫外吸收的络合物,此络合物会提高背景吸收(特别是在260nm以下),并导致检测灵敏度的轻微降低,但重要的是,会在梯度淋洗时造成基线漂移或形成鬼峰(假峰)。在荧光检测中,溶解氧在一定条件下还会引起淬灭现象,特别是对芳香烃、脂肪醛、酮等。在某些情况下,荧光响应可降低达95%。在电化学检测中(特别是还原电化学法),氧的影响更大。 除去流动相中的溶解氧将大大提高UV检测器的性能,也将改善在一些荧光检测应用中的灵敏度。常用的脱气方法有:加热煮沸、抽真空、超声、吹氦等。对混合溶剂,若采用抽气或煮沸法,则需要考虑低沸点溶剂挥发造成的组成变化。超声脱气比较好,10~20分钟的超声处理对许多有机溶剂或有机溶剂/水混合液的脱气是足够了(一般500ml溶液需超声20~30min方可),此法不影响溶剂组成。超声时应注意避免溶剂瓶与超声槽底部或壁接触,以免玻璃瓶破裂,容器内液面不要高出水面太多。 离线(系统外)脱气法不能维持溶剂的脱气状态,在你停止脱气后,气体立即开始回到溶剂中。在1~4小时内,溶剂又将被环境气体所饱和。 在线(系统内)脱气法无此缺点。最常用的在线脱气法为鼓泡,即在色谱操作前和进行时,将惰性气体喷入溶剂中。严格来说,此方法不能将溶剂脱气,它只是用低溶解度的惰性气体(通常是氦)将空气替换出来。此外还有在线脱气机。 一般说来有机溶剂中的气体易脱除,而水溶液中的气体较顽固。在溶液中吹氦是相当有效的脱气方法,这种连续脱气法在电化学检测时经常使用。但氦气昂贵,难于普及。 六、液相色谱流动相的贮存 流动相一般贮存于玻璃、聚四氟乙烯或不锈钢容器内,不能贮存在塑料容器中。因许多有机溶剂如甲醇、乙酸等可浸出塑料表面的增塑剂,导致溶剂受污染。这种被污染的溶剂如用于HPLC系统,可能造成柱效降低。贮存容器一定要盖严,防止溶剂挥发引起组成变化,也防止氧和二氧化碳溶入流动相。 磷酸盐、乙酸盐缓冲液很易长霉,应尽量新鲜配制使用,不要贮存。如确需贮存,可在冰箱内冷藏,并在3天内使用,用前应重新滤过。容器应定期清洗,特别是盛水、缓冲液和混合溶液的瓶子,以除去底部的杂质沉淀和可能生长的微生物。因甲醇有防腐作用,所以盛甲醇的瓶子无此现象。

  • 制备液相色谱柱的长相

    制备液相色谱柱的长相

    [color=#333333]制备柱是高效液相色谱是一种分析方法,制备色谱是一种分离纯化手段。我们学习了太多的理论,但是对制备柱知之甚少,我从相关网站上找了两张Kromasil制备柱的图片。[/color][color=#333333]制备柱和分析柱的最大区别就是柱容量。普通液相色谱柱的直径约为0.5厘米,而制备色谱柱的直径多为1到10厘米。制备柱所需的填料是分析柱的数倍,甚至几百倍。[/color][color=#333333][img=,280,280]http://ng1.17img.cn/bbsfiles/images/2018/07/201807031307373153_9331_2428063_3.jpg!w280x280.jpg[/img][img=,254,241]http://ng1.17img.cn/bbsfiles/images/2018/07/201807031307482187_2703_2428063_3.png!w254x241.jpg[/img][/color]

  • 制备型高效液相色谱系统的应用领域

    制备型高效液相色谱系统的应用领域制备型高效液相色谱系统主要应用在植化、合成、制药、生物及生化等领域的产品的提取及纯化工作中。在不同的工作领域中,组份的提取和纯化量的差异是很大的。在生物技术领域中,酶的分离是微克级;在植化和合成化学领域中,为了鉴别未知成份并进行结构测定,需要得到一至若干毫克的纯品;在药品和医药学测试中,需要克级的标准品和对照品;在当今的工业级提纯中,制药成份往往需要千克级的提取。制备型高效液相的应用领域可以归纳在下表中。 成份量:所在领域 微克: 生物技术领域的酶的分离、生物学和生化学测试 毫克: 结构描述和特征鉴定,包括:生产中的副产品、生物矩阵的新陈代谢产物、天然产物 克级: 对照品(分析标准)毒物学分析所需组份:高纯品中的主要成份、副产品的分离提取 千克级:工业规模生产,活性成份,药物 制备方法的发展和扩大规模的计算  在分析液相中色谱柱的典型进样量是微克级,甚至更低。样品量和固定相之比有的甚至小于1:100000。进样体积一般来说都大大小于色谱柱体积(小于1:100)。 在这种条件下,会达到很好的分离效果,峰形尖锐并且很对称。而在制备液相中,最大的区别就是超量进样。其结果,超量进样的方法和分析方法的放大将在下章内介绍。 吸附变化线  分析液相的目的是给一种组份定性、定量。重要的色谱参数有溶解度、峰宽和峰的对称性。如果进样量越来越多,峰高和峰面积会增加,但峰的对称性和容量因子保持不变。如下图。   在分析液相中,最佳的峰形应是一条高斯曲线。峰的标准背离 бV 描述了其对称性和与高斯曲线的相似性。容量因子是与一种不保留物质的保留时间t0相关的保留时间。  如果将超过一定量的样品注射进色谱柱,吸附变化线就会成非线性。这意味着峰形会变的不再对称,表现为严重的拖尾和容量因子的缩小。如下图。在制备液相中,这种效果称作浓缩超量进样。在一些情况中,根据进样量的增加,容量因子也相应变大,并造成很强的前峰。既然吸附变化线取决于组份的多少,那么液相色谱柱的载样能力就必须根据不同的制备液相实验来决定。 色谱柱载样和超量载样  大样品量的纯化有两种可行的方法:分析系统的放大或色谱柱超量载样。分析系统的放大意味着使用直径更大的制备柱、更高的流速和根据色谱柱的长度增加进样量并保持样品浓度不变。峰形仍会保持尖锐而对称。这种方法需要大型的色谱柱和大量的溶剂来分离较少的样品,因此这种方法是不经济的。 因此色谱柱超量载样,暨在相同的分析条件下超量进样通常是一种很好的选择。使用色谱柱超量载样的方法,在分析柱上甚至可以进行毫克级的分离。但更大 量的样品分离就需要整个系统的放大。色谱柱超量载样可以通过两钟方法进行— 浓缩法和体积超载法。 在浓缩法中,样品的浓度会提高,但进样体积保持不变。容量因子k’降低,同时峰形从高斯曲线变为矩形。如下图。浓缩法超量载样只有在样品组份在流动相中具有良好的溶解性的条件下才有可能采用。   如果样品组份的溶解性很差,浓缩法超量载样不能使用。同时更多的样品体积注射到色谱柱中,这种技术称作体积法超量载样。超过一定的进样体积,峰高不变,但峰变宽并且呈矩形。在制备液相中浓缩法超量载样比体积法超量载样更受欢迎,因为可被分离的样品量更高。既然组份的溶解性通常是一个限制因素,所以两钟超量载样技术通常被结合起来使用。两种技术的概览浓缩法超量载样   体积法超量载样 取决于组份在流动相中的溶解性   取决于进样体积 吸附变化线的制备部分   吸附变化线的分析部分 生产效率决定于选择性   生产效率决定于制备柱直径 受固定相粒度大小的影响不大   需要小颗粒填料 方法的放大 浓缩法超量载样和体积法超量载样都会导致组份溶解性的降低。既然组份的分离需要一定的溶解性,那么在放大分析方法的时候,优化溶解性、特别是选择性就是一项很重要的工作。   因为选择性和超量载样潜力是相互依靠的,选择性的提高会提高一次运行中所分离的样品量,因此从分析方法到制备方法的放大和方法的优化需要三个步骤。 1. 优化分析方法的选择性。2. 在分析柱上进行超量载样。3. 放大到制备柱 制备型高效液相色谱的目的  判断制备型高效液相色谱使用的结果有三个重要参数:产品的纯度、产量和生产效率。三个参数之间是相对独立的,因此很难同时使用这三个参数来优化制备型高效液相色谱方法。见图形6。 色谱图1显示在制备型高效液相色谱的使用中有很高的生产效率,但是两种组份的分离效果却是很差的。这种方法很可能得到两种组份的高纯品,但是产量和收率却是很低的。  在色谱图2中峰有很好的分离,因此这种方法可以得到两种组份的高纯品和高产量,但是生产效率却很低。  色谱图3中的情况是三个参数综合后得到的最优化的结果。峰在基线上被完全分开,这使得产品纯度、产量和生产效率都达到最高。  在实际应用中,每个参数的重要性都是不同的。如为了进行活性或药物测试,某种组份必须被完全单独提取,那么组份的纯度是最重要的参数,产量和生产效率是其次的。如果某种合成中间体必须被纯化,并且需要有足够的量为下一步合成作准备,那么纯度就不是最重要的了。而生产效率在这种情况下就是个首先需要解决的问题,因为其直接关系到完成整个合成工作的进程和速度。同时产量也是很重要的,因为高价值组份的损失需要控制在最少的范围内。

  • 咨询高效液相色谱高手一个出峰问题。

    咨询高效液相色谱高手一个出峰问题。

    请问,为什么我同一个样品的高效液相色谱出峰时间不一样?都是在同一个容量瓶里取的样。色谱图如下。[img]http://ng1.17img.cn/bbsfiles/images/2006/04/200604131009_16708_1418198_3.jpg[/img]

  • BCEIA2015——液相色谱大盘点

    BCEIA2015——液相色谱大盘点

    高效液相色谱法(High Performance Liquid Chromatography \ HPLC)又称“高压液相色谱”、“高速液相色谱”、“高分离度液相色谱”、“近代柱色谱”等。高效液相色谱是色谱法的一个重要分支,以液体为流动相,采用高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,在柱内各成分被分离后,进入检测器进行检测,从而实现对试样的分析。 高效液相色谱方法已成为化学、医学、工业、农学、商检和法检等学科领域中重要的分离分析技术。现在几乎每个医药、食品、化工等企业都会配备一到几台高效液相色谱,高效液相色谱法也已经成为了分析测试领域的标配了。 BCEIA2015已经过去一周,但是期间精彩纷呈的报告和各厂商展出令人眼花缭乱的仪器去还是让人久久回味。尤其是液相色谱,液相色谱厂商特点是国内与国外百花齐放,国外的厂商是几家知名的大厂商,安捷伦、赛默飞、岛津,国内也有好几家液相色谱的厂商参与此次BCEIA,像大连依利特、上海伍丰等,下面就让我们来回味一下,BCEIA期间都有哪些精彩的液相色谱。赛默飞: 赛默飞展出的是UHPLC系列,Ultimate3000和Vanquish Flex。这两款超高效液相都是赛默飞最新的超高效液相系统。http://ng1.17img.cn/bbsfiles/images/2017/10/2015111210110018_01_1947624_3.jpgUltimate3000 DGLC双三元液相系统 双三元液相色谱是赛默飞世尔科技的独特技术,从纳升液相、常规液相、超快速液相到生物液相均可提供双三元梯度分离技术。主要特点:1、能够进行在线固相萃取;2、可进行二维或多维色谱系统;3、在线柱后衍生和反梯度补偿满足特殊应用需求;4、并联、串联方式可实现超高的样品通量;5、流动相在线除盐,可谓质谱前端的不二选择。http://ng1.17img.cn/bbsfiles/images/2017/10/2015111210114647_01_1947624_3.jpgVanquish Flex UHPLC Thermo Scientific Vanquish Flex UHPLC系统是Vanquish色谱系列产品的新成员,仪器拥有1,000bar的泵耐压,可以加载进样器,整体进样量可达到8,832个样品,同时仪器可高精度地控制进样量。在检测器方面,Vanquish Flex UHPLC有着自己独特的LightPipe技术以及电雾式检测器,可以检测对紫外没有吸收的样品。Vanquish Flex 还是生物兼容液相色谱系统。安捷伦:http://ng1.17img.cn/bbsfiles/images/2017/10/2015111210124597_01_1947624_3.jpgAgilent 1290 Infinity II 液相色谱系统 Agilent 1290 Infinity II 液相色谱系统于2014年10月上市,与安捷伦过往的优秀产品一样,具有极高的稳定性和耐用性,辅以突破性的技术。主要特点:1、采用双针进样,进样周期更短(小于5s),从而实现更高的样品通量;2、使用新型Agilent 1290 Infinity II液相色谱系统HDR-DAD或Agilent 1290 Infinity II液相色谱系统ELSD,可实现极低的检测限和超宽的动态范围;3、智能系统模拟技术(ISET)实现了液相色谱系统间方法的无缝转移,不论什么品牌,均可获得不变的保留时间和峰分离度;4、可与色谱数据系统无缝集成—得益于安捷伦仪器控制框架(ICF),在第三方色谱数据系统(例如,Waters Empower或Dionex Chromeleon)控制安捷伦液相色谱系统仪器时,其运行状况比之前更为流畅。5、提升单个实验台空间的样品容量—最多可容纳6144份样品,不会增加标准安捷伦仪器的占用面积。岛津:http://ng1.17img.cn/bbsfiles/images/2017/10/2015111210133725_01_1947624_3.jpgNexera-e全二维液相色谱系统 Nexera-e通过对第一洗脱液进行精细馏分捕集可以达到最大可能的峰容量,并且凭借其双样品环交替切换设计,连续地将所有馏分在线注入第二维系统。Nexera-e结合日本岛津公司的二维液相色谱阵容,使得主要推向制药和临床市场的Co-Sense系列(可用于生物样本分析(BA)或用于杂质分析)颇具特色。由于能对复杂基质的样品进行全面的分析,Nexera-e非常适用于各种研究领域和应用领域,包括蛋白水解、食品和天然提取物。http://ng1.17img.cn/bbsfiles/images/2017/10/2015111210144048_01_1947624_3.jpgNexera-i LC-2040高效液相色谱仪 Nexera-iLC-2040是一体化高效液相色谱系统,耐压 66 MPa / 9,500psi,Nexera-i还可以被广泛用作LCMS前端。Nexera-iLC-2040是以UHPLC规格设计的超高效液相色谱,66MPa的系统压力支持使用2.5um或更小粒径填料的色谱柱,以及使用“核壳式”填料色谱柱,这进一步扩大了所适用的分析方法范围。双重温度控制功能控制光学系统和流通池温度,保证了基线的稳定,使用流动相即使在易受室温波动的短波长区域测量,也可以获得高度精确的数据。这使得基线漂移水平是Alliance系统的1/20。即使在小于1L的微体积进样中,i-Series系列也可以获取高度精确的数据。这意味着高浓度样品无需任何稀释就可以直接进样,节省了时间并免除了制备样品的麻烦。低至0.0025%的交叉污染,满足从高极性到低极性物质的大范围样品的分析。 具有远程监控功能可以通过智能终端远程监控分析状态并且实时监控色谱图。http://ng1.17img.cn/bbsfiles/images/2017/10/2015111210152422_01_1947624_3.jpg岛津Essentia LC-16主要特点:LC-16 送液单元LC-16通过改良公认的高精度结构,提高送液准确度和精确度,是能够长期、放心分析的新时代送液泵。SPD-16 紫外可见双波长检测器SPD-16延续广受好评的Prominence SPD-20A的设计,是高灵敏度的紫外可见双波长检测器。在此基础上进一步追求低噪音,实现超越等级的高灵敏度。使用选配件流动相循环阀,能够节约流动相,不仅降低分析成本,更有利于环保。SIL-16 自动进样器SIL-16是耐久性、可靠性和高性能并存的高性价比自动进样器。通过已有成熟使用经验的全量进样方式实现出色的定量重现性,同时也将交叉污染的影响降至最低。最短进样速度10秒以下的超高速进样动作使分析效率得到飞跃提高。还带有稀释、添加等前处理程序,广泛对应各种用途。日立:http://ng1.17img.cn/bbsfiles/images/2017/10/201511

  • 【求助】C18液相色谱柱的死体积怎么测得?

    测理论塔板数、容量因子等参数时经常要用到柱子死体积,死体积的概念是知道的,但是一直不清楚怎样才能求得,实际操作中真的是找一个在柱子上完全没有保留的物质进样吗?具体的对于C18液相色谱柱的死体积究竟怎样测得呢?

  • 【讨论】超高效液相色谱 PK 高效液相色谱——色谱论坛

    [color=#156200][size=3]超高效液相色谱是大家谈论的热点,你认为是厂家故意炒作还是真的有其发展的空间和生存的价值?超高效液相色谱会取代高效液相色谱么?他们的关系如何?超高效液相色谱的发展前景如何?你使用过超高效液相色谱么?使用的情况如何?欢迎大家一起来PK~[/size][/color]============================================================2010中国科学仪器发展年会的下午让我们一起与业内专家和知名厂商一起解读此问题。

  • 【资料】-高效液相色谱柱的管理

    [b]高效液相色谱柱的管理[/b]摘 要:介绍了影响色谱柱使用寿命的几个因素,探讨了色谱柱规范化管理和保养的经验。关键词:高效液相色谱 柱 管理 保养 高效液相色谱法是20世纪70年代急剧发展起来的一项高效、快速的分离、分析技术。液相色谱法是指流动相为液相的色谱技术,在经典的液相色谱法基础上,引入[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法理论,在技术上采用高压泵、高效固定相和高灵敏度检测器,实现了分析速度快、分析效率高和操作自动化,它具有高压、高速、高效、高灵敏度等特点。它是用高压输液泵将具有不同极性的单一溶剂或不同比例的混合溶剂,缓冲液等流动相泵入装有固定相的色谱柱,经进样阀注入供试品,由流动相带入柱内,在柱内各成分被分离后依次进入检测器,色谱信号由记录仪、积分仪或色谱工作站记录。高效色谱柱是高效液相色谱的心脏,在高效液相色谱仪的使用中,保持色谱柱的柱效、容量和渗透特性,延长柱子的使用寿命非常重要。色谱柱使用时间后就会出现柱压升高、柱效降低、峰形畸变和分离度降低、保留时间改变等变化,如不采取措施,将会缩短色谱柱的使用寿命,影响工作效率,并造成一定的经济损失。因此,有必要加强和规范色谱柱的管理,从而延长色谱柱的使用寿命。本文从影响色谱柱使用寿命的几个因素出发,从管理的角度,探讨色谱柱的维护与保养。1 色谱柱的类型常用的色谱柱填充剂有硅胶和化学键合硅胶、离子交换树脂、凝胶或玻璃微球等填充剂。在化学键合硅胶中以十六烷基硅烷键合硅胶最常用,辛基硅烷键合硅胶次之,氰基或氨基键合硅胶也有使用。近年来,由于蛋白质等生物大分子物质分离提纯技术的飞速发展,离子交换色谱柱、凝胶色谱柱的应用也越来越广。2 影响色谱柱使用寿命的因素2.1 流动相在以水溶液为流动相时,水溶液中的微生物例如细菌容易生长,当用水溶液或有机酸缓冲液保护柱子时,一些霉菌可能在色谱柱中滋生,堵塞固定相颗粒间的空隙。由于湿法填充技术的问世,目前普遍使用的色谱柱填料直径一般都小于10um,流动相中的颗粒杂质很容易先沉积在柱头然后慢慢堵塞柱子。流动相的pH值对色谱柱也有影响,特别是对化学键合硅胶填料,水溶液的pH最适范围在2~7.5之间,当pH8时,硅胶会释出生成絮状物堵塞柱子,且难以复原,柱效很快降低,甚至完全失效。当在缓冲液中加入有机溶剂例如甲醇或乙腈时,盐类的溶解度下降,会析出盐沉淀,堵塞柱子。同时流动相中的有机溶剂和盐会腐蚀色谱柱头的筛板,产生柱头凹陷。流动相的极性对柱子也有一定影响,对于硅胶柱,甲醇、水、冰乙酸等极性较大物质会破坏填料,反之,对于化学键合硅胶,极性小的物质如正丁醇、二氯甲烷等也起同样的作用。碱性溶液会破坏阳离子交换树脂色谱柱,而酸性溶液容易损坏阴离子交换树脂柱。

  • 【分享】香连丸—黄连素的测定方法—高效液相色谱法

    方法名称: 香连丸—黄连素的测定—高效液相色谱法 应用范围: 本方法采用高效液相色谱法测定香连丸中黄连素的含量。本方法适用于中成药香连丸。 方法原理: 供试品于容量瓶中,加HCl-CH3OH超声提取,放冷,摇匀,滤过,滤液注入高效液相色谱仪进行色谱分离,用紫外吸收检测器,于波长345nm处检测黄连素的吸收值,计算出其含量。 试剂: 1.甲醇(色谱纯)2.乙腈(色谱纯)3.盐酸 仪器设备: 1仪器1.1高效液相色谱仪1.2色谱柱μBONDAPAK-C18(3.9mm×250mm,10μm)1.3紫外吸收检测器2色谱条件2.1流动相:乙腈 磷酸盐缓冲液(PH5.2) 甲醇 +1.3%SDS = 5 6 1 12.2检测波长:345nm 试样制备: 1.称取供试品 精密称取香连丸(过3号筛)1.116g。2.对照品溶液的制备精密称取105℃干燥至恒重的盐酸小檗碱对照品11.36mg置于50mL容量瓶中,加适量乙醇使溶解,并加乙醇至刻度,作为盐酸小檗碱对照品溶液。3. 标准溶液的制备分别精密吸取上述盐酸小檗碱对照品溶液1mL,2mL,3mL,4mL置10mL容量瓶中,用乙醇稀释至刻度,摇匀,作为绘制标准曲线的系列浓度标准溶液。4.供试品溶液的制备 将供试品置50mL容量瓶中,加HCl-CH3OH(1:100)至刻度超声处理30min,放冷至室温,加HCl-CH3OH至刻度,摇匀,滤过,取续滤液作为供试品溶液。注:“精密称取”系指称取重量应准确至所取重量的千分之一。“精密量取”系指量取体积的准确度应符合国家标准中对该体积移液管的精度要求。 操作步骤: 1.标准曲线绘制 将上述系列标准浓度的对照品溶液,各进样10μL,以峰面积积分值对浓度进行回归,绘制标准曲线。2.供试品溶液的测定分别精密吸取上述对照品溶液与供试品溶液各10μL注入高效液相色谱仪,用紫外吸收检测器,于波长345nm处测定黄连素的峰面积积分值,用外标法计算出黄连素的含量。

  • 液相色谱仪的应用

    液相色谱仪的应用 现在液相色谱仪的应用很多、很广,液相能检测有机物的70%以上的物质,检测的项目很多。现在国家规定越来越严,尤其是在食品行业,药品行业,饲料行业,水质,土壤等,这样也是促进液相色谱仪发展的一个机会。在科研、医疗、医药、教学上用的也越来越多。在农业、石油、石化、炼钢、水利、商检、法检、环境、大气、卫生等很多行业都有很大的发展和需求。 市场需求大是液相色谱发展的动力,市场要求高是液相色谱发展的立足点。液相色谱能承受高压,能采用梯度洗脱,能很好的分离化合物,具有多种检测器,能满足各种化合物的检测,有着种类繁多的色谱柱,能满足不同需求及要求。 液相色谱还有一个很大的特点就是现在很多仪器和行业为了达到某种功能,逐渐采用了联用技术。比如液相色谱和原子吸收、原子荧光联用,叫形态分析。液相色谱与ICP联用,与质谱联用等。在很多像制备、纯化技术也在不同程度的采用了液相分离、检测技术。随着微量液相色谱,超高压、超高效液相色谱,手性液相色谱,亲和液相色谱,手性液相色谱,毛细管液相色谱等的发展,相信液相涉及的技术和市场领域还会越来越广,前景还会更好。当然像离子、凝胶色谱这几大类色谱也属与液相色谱范围,这样液相色谱的领域和覆盖面就相当广了吧。 所以液相色谱的市场很大、很好,前景一片光明。

  • 液相色谱压力过高或过低的可能原因

    [url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]压力过高或过低可能是是管路被堵塞,需要清除和清洗。压力降低的原因则可能是管路有泄漏。检查堵塞或泄漏时应逐段进行。在进行梯度洗脱时,由于多种溶剂混合,而且组成不断变化,因此带来一些特殊问题,必须充分重视:PS:(在[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]中对组分复杂的样品采用梯度洗脱的方法。在同一个分析周期中,按一定程序不断改变流动相的浓度配比,称为梯度洗脱。从而可以使一个复杂样品中的性质差异较大的组分能按各自适宜的容量因子k达到良好的分离目的。梯度洗脱的优点:1.缩短分析周期;2.提高分离能力;3.峰型得到改善,很少拖尾;4.增加灵敏度。但有时引起基线漂移。)

  • 液相色谱基线不稳

    液相色谱基线不稳

    液相色谱分析甲醛基线不稳仪器:waters600检测器:waters2487色谱柱:C18反相色谱柱,无柱温箱流动相:乙腈:水=65:35甲醛衍生剂(0.1g 的2,4-二硝基苯肼与1000ml容量瓶中,加6ml磷酸,用乙腈定容)我分析产品为聚合物乳液,称取0.5g样品至离心管,加25ml纯水溶解后震荡15min,震荡后在9000转下离心20min,取上层清液1ml,加4ml甲醛衍生剂和5ml乙腈于棕色试管中,衍生15min,使用0.45um有机微膜过滤,过滤后手动进样。未使用梯度洗脱程序,参考标准为YC/T332-2010图谱见附件,请专家帮忙解答是哪里出了问题,谢谢!无法上传附件、请见谅[img=,690,1227]http://ng1.17img.cn/bbsfiles/images/2017/09/201709291310_01_3231774_3.png[/img][img=,690,1227]http://ng1.17img.cn/bbsfiles/images/2017/09/201709291310_02_3231774_3.png[/img]

  • 【转帖】液相色谱流动相的性质要求

    一个理想的液相色谱流动相溶剂应具有低粘度、与检测器兼容性好、易于得到纯品和低毒性等特征。 选好填料(固定相)后,强溶剂使溶质在填料表面的吸附减少,相应的容量因子k降低;而较弱的溶剂使溶质在填料表面吸附增加,相应的容量因子k升高。因此,k值是流动相组成的函数。塔板数N一般与流动相的粘度成反比。所以选择流动相时应考虑以下几个方面: ① 流动相应不改变填料的任何性质。低交联度的离子交换树脂和排阻色谱填料有时遇到某些有机相会溶胀或收缩,从而改变色谱柱填床的性质。碱性流动相不能用于硅胶柱系统。酸性流动相不能用于氧化铝、氧化镁等吸附剂的柱系统。 ② 纯度。色谱柱的寿命与大量流动相通过有关,特别是当溶剂所含杂质在柱上积累时。 ③ 必须与检测器匹配。使用UV检测器时,所用流动相在检测波长下应没有吸收,或吸收很小。当使用示差折光检测器时,应选择折光系数与样品差别较大的溶剂作流动相,以提高灵敏度。 ④粘度要低(应2cp)。高粘度溶剂会影响溶质的扩散、传质,降低柱效,还会使柱压降增加,使分离时间延长。最好选择沸点在100℃以下的流动相。 ⑤对样品的溶解度要适宜。如果溶解度欠佳,样品会在柱头沉淀,不但影响了纯化分离,且会使柱子恶化。 ⑥样品易于回收。应选用挥发性溶剂。

  • 【资料】-液相色谱流动相小议

    [b]液相色谱流动相小议[/b]一、液相色谱流动相的性质要求 一个理想的液相色谱流动相溶剂应具有低粘度、与检测器兼容性好、易于得到纯品和低毒性等特征。 选好填料(固定相)后,强溶剂使溶质在填料表面的吸附减少,相应的容量因子k降低;而较弱的溶剂使溶质在填料表面吸附增加,相应的容量因子k升高。因此,k值是流动相组成的函数。塔板数N一般与流动相的粘度成反比。所以选择流动相时应考虑以下几个方面: ①流动相应不改变填料的任何性质。低交联度的离子交换树脂和排阻色谱填料有时遇到某些有机相会溶胀或收缩,从而改变色谱柱填床的性质。碱性流动相不能用于硅胶柱系统。酸性流动相不能用于氧化铝、氧化镁等吸附剂的柱系统。 ②纯度。色谱柱的寿命与大量流动相通过有关,特别是当溶剂所含杂质在柱上积累时。 ③必须与检测器匹配。使用UV检测器时,所用流动相在检测波长下应没有吸收,或吸收很小。当使用示差折光检测器时,应选择折光系数与样品差别较大的溶剂作流动相,以提高灵敏度。 ④粘度要低(应正相色谱的流动相通常采用烷烃加适量极性调整剂。 反相色谱的流动相通常以水作基础溶剂,再加入一定量的能与水互溶的极性调整剂,如甲醇、乙腈、四氢呋喃等。极性调整剂的性质及其所占比例对溶质的保留值和分离选择性有显著影响。一般情况下,甲醇-水系统已能满足多数样品的分离要求,且流动相粘度小、价格低,是反相色谱最常用的流动相。但Snyder则推荐采用乙腈-水系统做初始实验,因为与甲醇相比,乙腈的溶剂强度较高且粘度较小,并可满足在紫外185~205nm处检测的要求,因此,综合来看,乙腈-水系统要优于甲醇-水系统。 在分离含极性差别较大的多组分样品时,为了使各组分均有合适的k值并分离良好,也需采用梯度洗脱技术。 反相色谱中,如果要在相同的时间内分离同一组样品,甲醇/水作为冲洗剂时其冲洗强度配比与乙腈/水或四氢呋喃/水的冲洗强度配比有如下关系: C乙腈=0.32C 2甲醇+0.57C甲醇 C四氢呋喃=0.66C甲醇 C为不同有机溶剂与水混合的体积百分含量。100%甲醇的冲洗强度相当于89%的乙腈/水或66%的四氢呋喃/水的冲洗强度。

  • 求高效液相色谱污染原因

    [color=#444444]高效液相色谱分析,某一样品,进行分析发现多了一个杂质,每次进空白没有,进样品就有。[/color][color=#444444]已确定不是样品的问题![/color][color=#444444]现排除了柱子的问题,流动相的问题,样品瓶(包括容量瓶和进样小瓶)[/color][color=#444444]的问题。[/color][color=#444444]初步认为是仪器的问题,仪器的话,会有那几个部件容易污染,求分析高手指点一二。[/color]

  • 关于各种液相色谱的区别。

    请问液相色谱分为多少种?比如有正相液相色谱、反相液相色谱、高效反相液相色谱、超高效反相液相色谱……还有什么?具体有些啥区别?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制