当前位置: 仪器信息网 > 行业主题 > >

呼气采样系统

仪器信息网呼气采样系统专题为您提供2024年最新呼气采样系统价格报价、厂家品牌的相关信息, 包括呼气采样系统参数、型号等,不管是国产,还是进口品牌的呼气采样系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合呼气采样系统相关的耗材配件、试剂标物,还有呼气采样系统相关的最新资讯、资料,以及呼气采样系统相关的解决方案。

呼气采样系统相关的论坛

  • 法国IDEF SYSTEMES DMCR 3.0变压器油采样系统油箱气体继电器

    法国IDEF SYSTEMES DMCR 3.0变压器油采样系统油箱气体继电器是一款专为全密封充油配电变压器设计的先进监测与保护设备。该继电器集成了油采样系统和油箱气体监测功能,能够实时、准确地监测变压器油箱内的气体状态和油质情况,为变压器的安全稳定运行提供重要保障。以下是对该产品的详细介绍: [b]一、产品概述[/b] 品牌与型号:法国IDEF SYSTEMES DMCR 3.0 产品类型:变压器油采样系统油箱气体继电器 主要应用:全密封充油配电变压器油箱气体和油质的监测与保护 [b]二、油采样系统[/b] DMCR 3.0配备了先进的油采样系统,这一系统位于继电器的顶部,便于用户进行气体和介质的取样及填充。油采样系统的存在,使得用户可以定期对变压器油箱内的油质进行检测,及时发现并处理油质问题,如油质老化、污染等,从而避免这些问题对变压器运行造成的不良影响。 [b]三、油箱气体监测[/b] 除了油采样系统外,DMCR 3.0还具备油箱气体监测功能。通过内置的传感器,该继电器能够实时监测变压器油箱内的气体情况,包括气体的种类、浓度等参数。当油箱内出现异常气体(如氢气、甲烷等)时,继电器将立即触发报警信号,并通过预设的保护机制采取相应的保护措施,以防止变压器因气体问题而受损。 [b]四、集成化设计[/b] DMCR 3.0采用集成化设计,将油采样系统和油箱气体监测功能整合在一个单一、紧凑和坚固的设备中。这种设计不仅节省了安装空间,还提高了设备的可靠性和稳定性。同时,集成化设计也使得设备的维护和检修工作更加方便快捷。 [b]五、其他功能特点[/b] [list=1][*][font=-apple-system, BlinkMacSystemFont, &]多功能集成[/font]:除了油采样系统和油箱气体监测外,DMCR 3.0还集成了温度、压力等多种监测功能,为变压器提供全方位的保护。[*][font=-apple-system, BlinkMacSystemFont, &]高精度监测[/font]:采用高精度传感器和先进的监测算法,确保监测数据的准确性和可靠性。[*][font=-apple-system, BlinkMacSystemFont, &]可调节阈值[/font]:用户可以根据实际需求设置不同的监测阈值,提高产品的通用性和灵活性。[*][font=-apple-system, BlinkMacSystemFont, &]实时监测与报警[/font]:能够实时监测变压器油箱内的各项参数,并在异常时立即触发报警信号。[*][font=-apple-system, BlinkMacSystemFont, &]高防护等级[/font]:设计和制造符合IEC标准,具有IK10和IP56的防护等级,确保在恶劣环境下也能正常工作。[*][font=-apple-system, BlinkMacSystemFont, &]易于安装与维护[/font]:提供完整的固定套件和便捷的维护接口,使得安装和维护过程更加方便快捷。[/list] [b]六、应用领域[/b] DMCR 3.0广泛应用于电力配送系统的全密封充油变压器中,为变压器油箱气体和油质的监测与保护提供了可靠的解决方案。同时,它也适用于各种工业环境下的配电变压器,为电力系统的稳定运行提供了有力支持。 综上所述,法国IDEF SYSTEMES DMCR 3.0变压器油采样系统油箱气体继电器是一款功能强大、性能优越的保护设备。其集成的油采样系统和油箱气体监测功能,使得用户能够实时、准确地监测变压器油箱内的气体状态和油质情况,为变压器的安全稳定运行提供了重要保障。

  • 14呼气试验是检查什么的

    碳14呼气试验一般是检查有无幽门螺杆菌感染。碳14呼气检查或碳13呼吸检查,都可以用来检查有无幽门螺杆菌感染情况产生。碳14呼气试验检查相对来说敏感度较高,比较安全、简单,是一种无创、无痛的检查方法。如果进行碳14呼气试验检查时出现阳性情况,说明有幽门螺杆菌感染,需要积极就医检查治疗。如果不及时治疗,可能会诱发一系列疾病,比如可能会产生慢性胃炎、胃溃疡、十二指肠溃疡,同时还有可能会诱发胃癌等疾病。出现幽门螺杆菌感染后可以在医生指导下使用四联药物治疗,例如奥美拉唑肠溶片、阿莫西林胶囊、克拉霉素片、枸橼酸铋钾胶囊等。

  • CO呼气检测对新生儿黄疸的重要性

    新生儿黄疸是新生儿临床上极为常见的病症。新生儿由于胆红素代谢异常或红细胞破坏加速产生的胆红素过多,超出了人体代谢能力,引起体内胆红素水平升高,外部表现为巩膜、皮肤黄染。易发展为新生儿高胆红素血症,病情加重亦可导致高胆红素脑病、核黄疸的发生,进而危害到新生儿的生命健康,造成脑神经损伤、视觉听觉障碍等严重后果。国内和国外的研究机构已经通过研究发现,可以根据呼出气体中痕量的一氧化碳(CO)浓度来反应红细胞破坏速率(胆红素的生成速率),即用呼气试验法代替侵入式穿刺采血来准确获取胆红素生成速率,并且已取得相应的诊断或干预切点。胆红素与CO同为红细胞破坏后血红蛋白的代谢产物,具有一定的数量关系,通过测定CO的浓度可快速准确判断出胆红素的产生速率,从而判断红细胞破坏速率,动态无创的监测新生儿黄疸水平,如果新生儿呼出CO浓度过高,医生可尽早采取干预措施。这种测试方法简便安全,可真正实现对新生儿黄疸进行无创、可量化的动态监测。但是,人呼出的气体中含有大约3000种成分,其中一氧化碳(CO)含量仅为百万分之一,极易受到多种因素的干扰,实现准确采集和测算的技术难度非常大,所以一氧化碳(CO)呼气试验法一直无法有效应用于临床。国外虽有医疗器械厂商研发出可用于新生儿黄疸检测的呼气试验仪器,但因测试精度不够,不能实现定量检测,没有使一氧化碳(CO)呼气试验法得到普及。[img=879711,239,300]http://news.isweek.cn/wp-content/uploads/2024/03/879711-239x300.png[/img]随着气体传感器的快速发展,目前新型的CO呼气检测仪可以用在新生儿黄疸检测干预,可实现对各种干扰因素的气体干扰进行屏蔽与优化,使其不受影响,特别是在新生儿在,容易出现乳糖不耐受的情况,会产生H2的干扰,这对CO传感器检测精度产生很大影响。而CO气体传感器作为CO呼气检测仪的主要核心器件,起到决定性作用,所以使用高精度(PPB浓度级别),不受干扰的CO传感器很重要。工采传感(ISWEEK)推荐来自英国Alphasense厂家的一款高精度,高分辨率PPB检测级别CO-B4系列传感器,同时也有带有抗高H2的CO-B4X系列。CO-B4是高分辨率一氧化碳传感器,可以检测4ppb的CO气体,分辨率高达4ppb灵敏度高,易于信号处理线性度好,具有稳定性好的特点,非常合适用在医疗呼气检测仪上。[img=英国alphasense 高分辨率一氧化碳传感器(CO传感器),300,300]https://www.isweek.cn/Thumbs/300/0170831/59a76a9d5718d.jpg[/img]英国Alphasense高分辨率一氧化碳传感器CO-B4具体性能如下:[img=998711,538,278]http://news.isweek.cn/wp-content/uploads/2024/03/998711.png[/img]

  • 顺磁氧测量AD采样系统设计

    现在手上有个项目,传感器信号输出是0-1V, 对应显示是0-25.000%,要求波动要不超过0.01%我现在用的MAX1241采样,1mv就对应0.025%, 并且在半小时内有+-1mv的波动,完全不行.用万用表测量信号输出,和我做的采样电压结果是一致的,但是看了万用表电压值,可能有时会跳1mv,单大多数数据一直是不变的,现在我硬件书信号出来 接RC滤波接跟随器接AD采样, 软件滤波是取11次AD值,每次20ms,从小到大排,取中间5次的平均值记做1个采样数据,存进数组,数组满20个数据后取平均值输出,有新的数据进来就把数组里的第一个剔除,新的放到最后,然后取20次的平均值.这样做出来就是采样的电压和万用表是一样的,但是还是不够稳定,就像上面说的,而要求达到0.01%的波动,更加不可能.求大神指点,有没有什么解决方案

  • 【分享】车辆驾驶人员血液、呼气酒精含量

    中华人民共和国国家标准——车辆驾驶人员血液、呼气酒精含量阈值与检验标准 (由国家公安部提出,国家质量监督检验检疫总局发布的《车辆驾驶人员血液、呼气酒精含量阈值与检验标准》于2004年5月31日正式实施。) 1 范围 本标准规定了车辆驾驶人员饮酒及醉酒驾车时血液\呼气中的酒精含量阈值和检验方法。 本标准适用于驾车中的车辆驾驶人员。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GA/T105 血、尿中乙醇、甲醇、正丙醇、乙醛、丙酮、异丙酮、正丁醇、异戍醇的定性分析及乙醇、甲醇、正丙醇的定量分析方法 GA307 呼出气体酒精含量探测器

  • 新型手机可即时显示减肥效果 测量使用者呼气中的丙酮量即可

    科技日报讯 据物理学家组织网8月12日报道,日本最大的移动电话供应商NTT Docomo公司开发出一款新型智能手机外部设备,可以通过测量使用者呼气中的丙酮量来了解其燃烧了多少脂肪,显示出减肥效果。该设备在与高档实验室设备测试比较中体现出了优势。研究成果发表在最新一期的《呼吸研究》上。 减肥的困难之一是缺乏实时的反馈。努力减肥的显著效果通常不显示在当下。但人们在处于不稳定的、中间过渡状态的节食或锻炼过程中时,总想知道自己正在做的是否正确或有效果。为了解决这样的问题,研究人员找到一种可以给节食者提供更多即时反馈信息的方式,即通过测量呼气中的丙酮量。 丙酮是一种体内脂肪分解的代谢产物,当人在呼气时被排出,因此可作为脂肪燃烧的一个很好指标。测量的一般方法是气相色谱法或质谱法来测量,但这些昂贵且笨重的实验室设备不适合人们日常使用。 新研制的设备却便携实用,与智能手机的尺寸大致相同。其原型是两种具有不同灵敏度特性的半导体气体传感器,在计算丙酮浓度的同时又考虑到乙醇、氢气和湿度。用户可将一个小管放在口中,然后吹气,该设备会测量出呼气中丙酮的量,伴随着一个令人鼓舞的消息,设备屏幕上会显示出一个脂肪燃烧的图形。 需要强调的是,该设备并非噱头。研究人员招募了超重志愿者来验证其准确性。一组志愿者被要求在一段日子里进行少量锻炼;另一组被要求既锻炼又减少卡路里的摄入量;再有一个对照组,既不减少热量也不锻炼。研究人员发现,该设备的表现几乎精确得像准确测量丙酮水平的气相色谱仪,其获得的测量呼气中丙酮浓度的结果表现出很强的相关性。此外,控制热量摄入和体育锻炼的人体内脂肪明显下降,而其呼出丙酮的浓度显著增加。 结果表明,该设备对于在家中自我监测脂肪燃烧非常实用,将有助于防止和减轻肥胖和糖尿病。这将是越来越多与智能手机相结合设计的医疗设备之一,用于危急时刻而非为了娱乐的设备,在未来将显示出强劲的增长趋势。(华凌) 《科技日报》(2013-08-14 二版)

  • 14C呼气检测仪校准关键技术研究

    14C呼气检测仪校准关键技术研究

    [align=center][size=14px][b]14C呼气检测仪校准关键技术研究[/b][/size][size=14px][color=#808080]发布时间:2020-07-13[/color][/size] [size=14px][color=#808080]作者:宋海龙[/color][/size] [size=14px][color=#808080]来源:[/color][/size] [size=14px][color=#808080]浏览:174[/color][/size][/align][b][size=14px]一、研究背景和意义[/size][size=14px][/size][/b][size=14px][/size][size=14px][/size][size=14px] 幽门螺旋杆菌存在于人的胃部和十二指肠的区域,是一种被证明与胃部疾病有密切关系的细菌。研究发现,超过90%的十二指肠溃疡和80%的胃溃疡,都是由感染幽门螺旋杆菌引起的。另外,该细菌还能通过共同进食的方式在人群中传播,危害极大,因此引起了医学[/size][size=14px]界的广泛关注。目前,检测是否感染幽门螺旋杆菌的常规方式是通过内窥镜,取活组织进行培养,观察是否感染。此方法的优点是直接有效、准确率高,缺点是做胃镜对患者的心理造成压力,并存在创伤。[/size][size=14px][/size][size=14px][/size][size=14px][size=14px] 14[/size][/size][size=14px]C呼气检测仪越来越多地使用在常规体检和专科检查中,而该仪器的校准工作除了厂家不定期的维保,基本上处于空白。其量值准确性成为一大隐患。而目前国内还无该仪器的校准方法的研究,更无现成的校准标准物质或设备,急需对该仪器的校准方法和校准标准开展研究。[/size][size=14px][color=inherit][/color][/size][color=inherit]二、[/color][b]仪器的工作原理[size=14px][/size][/b][size=14px][size=14px][size=14px] 14[/size][/size][size=14px]C呼气检测仪的工作原理是利用幽门螺旋杆菌会分泌一种尿素酶,让患者口服含有放射性同位素[/size][size=14px][size=14px]14[/size][/size][size=14px]C的尿素药丸,该药丸进入胃部被酶分解,形成H[/size][size=14px][size=14px]2[/size][/size][size=14px]O和[/size][size=14px][size=14px]14[/size][/size][size=14px]CO[/size][size=14px][size=14px]2[/size][/size][size=14px],通过呼气排出体外,再收集该气体处理后进行测量,确定是否有相当含量的放射性气体排出,进而确定幽门螺旋杆菌存在与否。[/size][size=14px][size=14px]14[/size][/size][size=14px]C呼气检测仪主要是通过G-M计数管或光电倍增管进行放射性的甄别和测量,而收集气体的方式也主要通过闪烁液和直接固化[/size][size=14px][size=14px]14[/size][/size][size=14px]CO[/size][size=14px][size=14px]2[/size][/size][size=14px],其方式也各有优缺点。如果胃部存在幽门螺旋杆菌,测量结果和没有幽门螺旋杆菌会有明显差异,从而确定是否感染该细菌。[/size][/size][size=14px][/size][font=&][size=14px][color=inherit]三、[/color][/size][/font][font=&][b][size=14px]校准项目[/size][/b][/font][font=&][/font][b][size=14px][/size][size=14px][size=14px]1.仪器示值误差[/size][/size][size=14px][size=14px][/size][/size][/b][size=14px][size=14px] 呼气检测仪示值误差,通过特定活度的[/size][size=14px][size=14px]14[/size][/size][size=14px]C标准物质进行校正,测量3次,计算取其平均值,再由低本底的[/size][i][size=14px]α[/size][/i][size=14px]、[/size][i][size=14px]β[/size][/i][size=14px]测量仪进行定值,由此可得仪器的示值误差。[/size][/size][img]http://www.chinajl.com.cn/Uploads/image/20200713/20200713154739_13721.jpg[/img][size=14px][/size][size=14px] 式中:[/size][i]c[/i]i——仪器的i次测试值;[i] c[/i]0——校准用标准物质的约定真值; [img=,35,54]https://ng1.17img.cn/bbsfiles/images/2020/07/202007262327036389_5015_1626275_3.png!w35x54.jpg[/img]——被校仪器的测量平均值。[size=14px][/size][size=14px][/size][b][size=14px]2.测量重复性[/size][/b][size=14px][/size] 对于测量仪器,重复性主要考查仪器测量的稳定性和测量结果的复现性。在同样的条件下对仪器测量6次以上,由贝塞尔公式计算其重复性。[size=14px][/size][size=14px][/size][img]http://www.chinajl.com.cn/Uploads/image/20200713/20200713154739_12489.jpg[/img][size=14px][/size][size=14px][/size][size=14px][size=14px][/size][/size][b][size=14px][size=14px]3.仪器的本底计数[/size][/size][size=14px][size=14px][/size][/size][/b][size=14px] 测量仪即使在本底条件下,也会受到周围环境的放射性影响。[/size][size=14px]该计数会对样品的测量结果带来干扰。[/size][size=14px]在排除电磁干扰和不存在外来电离辐射的气体下,仪器对空气的测量结果应不大于一个特定的值([/size][i][size=14px]DPM[/size][/i][size=14px][size=14px])。[/size][/size][size=14px][/size][size=14px][/size][b][size=14px]4.仪器的探测效率[/size][size=14px][size=14px][/size][/size][/b][size=14px] 被校仪器的测量值对于已知活度的放射源,以低本底的[/size][i][size=14px]α[/size][/i][size=14px]、[/size][i][size=14px]β[/size][/i][size=14px][size=14px]测量仪为约定真值,其比值为其探测效率,该值应不超过某一特定值。[/size][/size][size=14px][/size][size=14px][/size][b][size=14px]5.辐射防护性能[/size][size=14px][size=14px][/size][/size][/b][size=14px] 对仪器表面的计量当量进行测量,通过[/size][i][size=14px]α[/size][/i][size=14px]、[/size][i][size=14px]β[/size][/i][size=14px]表面沾染仪对仪器的防护性能进行确定,其测量结果应不超过某一确定值(Bq/cm[/size][size=14px][size=14px]2[/size][/size][size=14px])。[/size][img]http://www.chinajl.com.cn/Uploads/image/20200713/20200713154739_61473.jpg[/img][font=&][size=14px][color=inherit]四、[/color][/size][/font][b]校准标准[/b][size=14px][/size] 对[size=14px][size=14px]14[/size][/size]C活度的测量目前主要采用的是液闪的方式,其方法是通过先将[size=14px][size=14px]14[/size][/size]C溶于有机溶剂(如正十六烷),再添入闪烁物,然后再通过测量仪器进行放射性测量。该方法的特点是准确度高。目前,市面上大多数[size=14px][size=14px]14[/size][/size]C呼气检测仪应用的均是该方法。中国计量科学研究院生产的[size=14px][size=14px]14[/size][/size]C有证标准物质,有确定的活度量值,而且[size=14px][size=14px]14[/size][/size]C作为同位素放射源,其半衰期为5.7×10[size=14px][size=14px]3[/size][/size]年,较为稳定,如果存放条件理想,其衰减变化也可以通过放射性物质的衰减规律获得。据此,该标准物质可以作为量传的标准,实现对[size=14px][size=14px]14[/size][/size]C呼气检测仪的校准。[font=&][size=14px][color=inherit]五、[/color][/size][/font][b][size=14px]小结[/size][size=14px][/size][/b][size=14px][/size][size=14px][/size][size=14px][size=14px] 胃部感染幽门螺旋杆菌与否会使检测数据出现很大差别,因此仪器主要是通过阴阳性判定确定是否感染。检测数据的高低主要是判断幽门螺旋杆菌的活跃程度,不判断其数量的多少。因此,笔者通过对医院目前主要使用的仪器的研究,确定以上技术路线是切实有效的。下一步的主要工作是通过实验来确定各项技术指标,最终形成[/size][size=14px][size=14px]14[/size][/size][size=14px]C呼气检测仪的校准规范。[/size][/size]

  • 【原创大赛】大气采样器校验方法

    【原创大赛】大气采样器校验方法

    大气采样器校验方法 (老兵)1、概述 大气采样器的主要原理是以采样泵抽取样品,采用不同的稳流措施及同步计时的方法,达到定量采集大气中气态或蒸气样品,用于分析其中的有害组分。采样器分普通型和恒温恒流型两类。普通型采样器由可调节的流量计、定时控制器、采样系统及电源构成,用于短期采样;恒温恒流型采样器由单片机、恒温恒流控制器、采样系统和电源组成,可实现恒温恒流下的连续采样。2、计量性能要求2.1 流量示值误差:流量示值误差应不超过±5%。2.2 流量重复性:流量重复性应不大于2%。2.3 流量稳定性:普通型在1h内、恒温恒流型在8h内的采样流量变化应不大于5%。 2.4 控温稳定性:恒温恒流型采样器的控温稳定性应不大于2℃。3、通用技术要求3.1 常规检查 3.1.1仪器结构完整,连接可靠,各旋钮应能正常调节。仪器外观应无影响采样器正常工作的损伤。 3.1.2显示部分应显示清晰。 3.1.3采样系统气密性能良好。3.1.4仪器名称、型号、计量器具许可证标志、编号、制造年月和厂名应齐全、清晰。3.2 安全性检查 绝缘电阻:仪器外壳的绝缘电阻应大于 20 MΩ。4、实验条件4.1 环境条件4.1.1环境温度:15℃~35℃。4.1.2环境湿度:≤85%。4.2 校准用设备:TH—BQX1便携式气体、粉尘、烟尘采样仪校验装置,允许误差不大于±1%;标准温度计:范围0~50℃,分度值不大于0.2℃,示值误差不大于±0.5℃。5、校验项目和方法5.1常规检查:按3.1要求进行;气密性检查为在仪器运转状态下,将系统入口密封,采样流量计的浮子应逐渐下降到零。5.2安全性检查仪器处于非工作状态,开关置于接通位置,将绝缘电阻表的接线端分别接到仪器电源插头的相线与机壳上,稳定5s后,读取绝缘电阻表指示的绝缘电阻值。5.3 流量示值误差的校验5.3.1对转子流量计依次校准满量程的40%、60%、80%、100%处刻度或处在使用流量对应的刻度处(如SO20.5L/min,NO20.4L/min);对恒温恒流型采样器只校验恒流点。注意校验时务必连接瓶阻合格的吸收管。http://ng1.17img.cn/bbsfiles/images/2013/12/201312161017_482207_1634717_3.jpg

  • 【求购】PM2.5采样仪器采购

    全国将建立PM2.5监测网络,所以欲采购大批PM2.5采样系统。有意者请将仪器的特点,适用范围等技术信息,以及报价,厂商和代理商的相关资料传递至floora16790@126.com望从速!

  • 关于大气采样器流量校准问题

    环境空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量手工监测技术规范(HJ 194-2017)中6.3.3.5中提到使用经检定合格的标准流量计对采样器流量进行检查,当流量示值误差超过采样流量2%时,应对采样器进行流量校准。但是6.3.3.11中提到采样前、后用经检验合格的标准流量计校验采样系统的流量,流量误差应小于5%。想问一下各位大佬,这两句话是不是矛盾,要怎么理解呢?

  • 烟气脱硝系统中CEMS 存在的主要问题

    1.1 粉尘浓度高引起的采样系统堵塞问题脱硝系统的CEMS 布置在省煤器和空预器之间,由于烟气没有经过除尘器,烟气中的粉尘浓度高达30g/m3,有的甚至更高,极易造成烟气采样系统堵塞。用探头位置设置过滤装置,避免粉尘颗粒进入采样管,引起采样管线堵塞,一旦堵塞,处理起来的难度就会很高。同样,在测量烟气流速时,也要考虑皮托管的堵塞问题。因而解决好采样系统中过滤器的堵塞和清理对烟气样气分析至关重要。共性问题:1.烟气采样系统中采样管线伴热效果差,采样管线的伴热温度不能维持在烟气露点温度以上,造成烟气在管内结露、在烟气中粉尘的共同作用下引起采样管堵塞。2.因锅炉投油助燃,烟气中的大量油烟污染并堵塞取样探头。3.烟气中粉尘含量过大,导致取样探头内的过滤器堵塞。4.取样探头内的过滤器滤芯孔径的选择不合理,孔径过大,进入取样管线的灰尘过多。5.采样探头中过滤网的孔径的选择太小,增大了堵塞几率。6.安装时,管道弯曲半径过小或打折,流道受阻,产生堵塞。7.吹扫时间间隔设置过长。8.吹扫用压缩空气是带水、含油,从而污染堵塞管道。1.2 分析仪因无流量而失灵由于脱硝CEMS 的工作环境相当恶劣,可能造成取样系统堵塞,因此分析仪会因无流量而失灵,监测分析数据失效。共性问题:1.取样管道或探头堵死。2.预处理系统内部过滤器堵塞。3.预处理系统中冷凝器结冰,除湿效果差;4.预处理系统中蠕动泵故障,冷凝器不能正常工作,除湿效果差。5.预处理系统中的抽气泵长时间带水运行,烟气抽取不出。1.3 高温的问题一般情况下,脱硫系统入口的烟温约为115~150℃,脱硫系统出口的烟温约为50℃(无GGH)。而在脱硝系统入口的烟温在310~420℃左右,出口烟温与入口相差不大。因此,如果采用与脱硫CEMS 系统相同的测量方法,则采样探头、皮托管流量计的取压元件,温度仪表等需插入烟道中设备必须选用耐高温的材料,确保其能在高温环境下安全、稳定的运行,从而保证数据的准确性。1.4 腐蚀变形的问题脱硝系统中的烟气中含有、NO、NO2、水蒸气、NH3、和SO2 等。烟气在反应过程中可能生成酸或者碱以及强酸弱碱盐等物质。工作环境比较恶劣,采样探头、皮托管流量计的取压元件、温度仪表都置于烟道内,同时烟道内的烟气流速比较快(一般为15m/s),这些都会导致传感器的变形和腐蚀,引起测量仪表失效。共性问题:脱硫脱硝系统中的SO22 气体都易溶于水,溶解体积比分别为1:40(水:气)和1:4(水:气)。SO22 气体溶于水后分别生成硫酸和硝酸溶液,该酸性溶液的腐蚀性随其浓度的增大而变大。脱硫系统的SO2/SO3 原烟气露点温度在120℃~130℃;脱硝系统的NOx 原烟气露点温度在60℃左右。对于直接抽取式CEMS,如果取样管线温度控制不当,则污染物气体会直接结露。脱硝系统净化烟气中NH3 与SO3 反应生成硫酸氢铵和硫酸铵。这两种物质都是强酸弱碱盐,水溶液具有一定的腐蚀性。并且,硫酸铵固体在280℃开始分解,分解物质为硫酸氢铵和氨气,因此这两种物质在取样管中有结晶的可能。1.5 分析传感器的量程以及检出限的问题针对燃煤锅炉的实际情况,脱硝装置前烟道内NOx 的浓度在400~1000 mg/Nm3,《大气污染物排放标准》(GB13223-2011)规定脱硝后的氮氧化物浓度不大于100mg/Nm3。因此脱硝装置前后NOx的检测要求传感器具有较大的量程,并且具有较低的检测限,确保脱硝前后NOx 的检测的准确性。同时,为了防止脱硝过程中还原剂NH3 的逃逸造成二次污染,以及生成氨盐腐蚀下游设备,在脱硝装置的出口设置了氨逃逸检测设备,《火电厂烟气脱硝工程技术规范_SCR》(HJ_562-2010)逃逸氨的浓度不大于3 ppm,因此对逃逸氨设备最低检测限的要求则更高,一般要求为0.15~0.3 ppm。3 针对主要问题的解决措施针对以上脱硝系统中CEMS 系统中存在的主要问题,提出相应的对策,以供参考。3.1 取样管堵塞解决对策3.1.1 加强电加热器装置的定期维护,保证设备的正常运行,建议伴热管线的温度设定的参考值为150℃-180℃。3.1.2 根据实际烟气成分,选择合适的过滤器滤芯。3.1.3 安装时,管道弯曲度要平缓,保证流道通畅。3.1.4 吹扫频率或者间隔时间必须满足取样管基本使用要求。3.1.5 提高吹扫压缩空气品质,确保满足要求。3.2 取样探头堵塞解决对策:3.2.1 锅炉启动投油阶段,一直进行取样器反吹,避免油烟进入。3.2.2 根据实际烟气成分,选择适合的过滤器滤芯。3.2.3 定期清洗、及时维护取样探头,如每三个月清洗维护一次。3.3 分析仪因无流量而失灵解决对策:3.3.1 取样管道或者探头防堵见前面相应的对策。3.3.2 定期检查

  • pm2.5采样和检测 分开和一体的优劣?

    pm2.5和pm10等的区别就在于采样系统的吧。TEOM1405等火热设备都属于在线监测 那使用单独的采样系统,回归实验室检测与在线监测的优劣在哪里呢?有没有一种采样设备可以连续一周甚至更长自动采样,更换滤膜的呢?在线检测的能达到这要求吗?我刚刚接触的哈,还请多多关照,呵呵

  • 气体采样器流量校准请教

    HJ/T 167-2004《室内环境空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量监测技术规范》4.7.4流量校准:采样前和采样后要用经检定合格的高一级的流量计(如一级皂膜流量计)在采样负载条件下校准采样系统 的采样流量,取两次校准的平均值作为采样流量的实际值。... 两次校准的误差不得超过5%。请老师指教:这里的“取两次校准的平均值作为采样流量的实际值”中是指采样前校准的值、与采样后校准的值这“两次”的值的平均值吗? 或是采样前进行两次校准的平均值,或采样后进行两次校准的平均值,作为采样流量的实际值呢?

  • 采样时如何封闭采样孔?

    4.2.2.5 采样步骤(1)滤膜称重及灼烧(石英滤膜应放在马弗炉中于500℃下灼烧,去除其中的杂质)。(2)采样系统气密性检查。(3)加热用于湿度测量的全加热采样管,根据干、湿球温度和湿球负压计算烟气湿度。(4)测量烟气温度、大气压和排气筒直径。(5)测量烟气动、静压,预测流速。(6)计算烟气含湿量、烟气密度、烟气流速、等速采样流量及颗粒物切割流量确定采样嘴直径。(7)安装采样嘴及滤膜。(8)将采样管放入烟道内,封闭采样孔。(9)设置采样时间及采样流量,开动采样泵采样。采样时间的设定应使滤膜采集样品量满足后续称重、组分分析等样品量要求。(10)记录采样期前后累积体积、滤膜编号、采样流量、表头负压、温度及采样时间。同时应记录采样对象工况负荷、燃料类型、耗量、空气污染控制设施及运行状况等信息。(11)采样结束后取出采样滤膜,立即放入便携式冰箱内冷冻保存。

  • HJ 38-2017采样与曲线

    38-2017里的气袋采样系统各位都是什么样的,求个整套的图。再者请问标准曲线制作时都怎么稀释的,取1L800umol/mol气袋,注射器取出500mL加入空袋再加入500mL标准气体稀释气?高浓度的样进完之后,残留很大,怎么破?

  • 教你如何选购烟气分析仪————————————————

    教你如何选购烟气分析仪————————————————

    目前越来越多的实验室和研究单位,需要采购烟气分析仪。但是鉴于烟气分析仪的品牌较多,性能各异,大家往往无从选择,最后往往只看重价格,结果不能买到最合适自己使用的烟气分析仪。本文从以下几个方面,简单介绍一下如何选购烟气分析仪:1、传感器: 现在主流的烟气分析仪所涉及的测量单元,主要包括两种传感器:1)电化学传感器: 优点: a 体积小:所以手持式的机型,一般采用电化学的。 b 便宜:价格较为便宜,如果预算比较低的话,可以选购电化学传感器的烟气分析仪。 缺点: a 准确度稍差:一般误差在读数的±5%,单符合环保国家标准要求。 b 交叉干扰:电化学传感器容易受到其他气体的干扰,使测量结果误差增大。 c 寿命短:寿命一般都是2-3年,所以总是得考虑更换的问题。2)非分散红外传感器: 优点: a 测量准确:一般测试结果不会超过满量程的±2%,可以作为分析精密仪器使用。 b 不存在交叉干扰:由于测量原理的原因,其他气体不会对红外传感器产生测试干扰。 c 寿命长:红外传感器一般没有寿命的概念,使用时间非常长,一般都在10年以上,日常也不需要特别的维护,目前正渐渐的成为主流传感器。 缺点: a 价格稍贵:价格一般是电化学传感器的几倍至十几倍。 2、采样系统: 烟气分析仪的采样系统分为常规采样系统和加热采样系统。 1)常规采样系统:一般采用耐酸碱,耐高温的塑料管,保证对气体无吸附。 适用情况:含水量较低样气的短时间测试; 不含酸性气体的样气的短时间测试。 2)加热采样系统:就是在常规采样系统的基础上,融入加热的功能,保证在采样过程中样气温度在120℃以上,从而能保证采样过程中没有水份的凝结。 适用情况:含水量较高的样气测试; 长时间连续在线测试; 酸性气体(如NO2,SO2)含量的测试;3、样气处理系统: 1)汽水分离器:除去液态的水分,主要是手持机型采用这种除水处理系统。 适用情况:不含酸性气体(如SO2,NO2)的测试; 环保部门实地监察的抽检测试; 锅炉燃烧效率测试。 2)帕尔贴电子制冷器:瞬间将样气温度降低到5℃,瞬间脱去样气水分,保证进入测试单元的样气是标准温度且含水量低的,这样传感器才能测试的准确。 适用情况:样气中含有酸性气体(如SO2,NO2)的测试; 样气中含有水分的气体的测试; 较高温度气体成分的测试; 高校研究所相关的脱硫脱销实验; 长时间的联系在线测试; 必须选用红外传感器测试的实验项目; 锅炉燃烧实验 ; 新能源开发与利用相关的实验项目。4、自动零点校准功能: 有的烟气分析仪具有自动零点校准功能,适合无人监守长期的在线连续测试。这种功能可以保证测试过程中传感器的零点不漂移,从而确保测试结果准确。 如果没有此项功能,那仪器只能通过人工校准,仪器不能实现长时间的连续测试。5、考虑测试的样气特点: 样气的特点就是指:烟气的温度,样气的含水量,烟气中所含气体的种类及酸碱性,特殊气体条件等。 举例:如在高湿环境中测二氧化硫的浓度,就必须选用加热采样系统和帕尔贴电子制冷器,这样才能测得较准确的结果。 如气体种还有高浓度的氢气,要测试其中其他气体的成分的话,必须选用红外传感器的仪器,因为高浓度的氢气对电化学传感器具有很大的干扰作用。6、维修,产地和口碑: 维修:就是看是否有较完善的维修部门,这样可以保证售后服务的质量。 产地:产地较为重要,这主要体现在产品质量和可靠性上。 最好的品牌当然是德国品牌;其次是美国,英国的品牌;最后是其他国家和国产品牌。 http://ng1.17img.cn/bbsfiles/images/2012/02/201202071625_348165_1668260_3.jpg 土豆:欢迎分享资料,但论坛不提倡放联系方式。

  • 【一周一题】采样——检验的第一道工序

    采样的目的:从被检验的总体物料中取得有代表性的样品。通过对样品的检测,得到在容许误差内的数据,从而求得被检验物料的某一特性的平均值及其变异性。采样的基本原则:为了掌握总体物料的成分、性能、状态等特性,需要按一定方案出总体物料中采得能代表总体物料的样品,通过对样品的检测了解总体物料的情况。因此,被采得的样品应具有充分的代表性。采样的误差:采样随机误差,是在采样过程中由一些无法控制的偶然因素所引起的偏差,这是无法避免的。增加采样的重复次数可以缩小这个误差。采样系统误差,是由于采样方案不完善、采样设备有缺陷、操作者不按规定进行操作,以及环境影响等所引起的误差。系统误差的偏差是定向的,必须极力避免。增加采样的重复次数不能缩小这类误差。

  • 【金秋计划】非甲烷总烃检测器污染应急处理方法

    [b][size=20px][back=url(&]一、污染原因[/back][/size][/b] 非甲烷总烃检测器是一种高灵敏的设备,如果出现污染将会影响其检测准确度,甚至导致假阳性结果。导致非甲烷总烃检测器污染的原因有很多,主要包括以下几个方面: 1. 检测器内部材料老化或损坏,导致气液混合不良。 2. 采样系统受到破坏或污染,导致采样气体中含有不同程度的污染物,使得检测器的测量结果产生偏差。 3. 检测器表面或采样系统被沾染,导致检测器的灵敏度降低,进而影响检测精度。 [b][size=20px][back=url(&]二、应急处理方法[/back][/size][/b] 1. 检测器内部污染 如果检测器内部发生污染,应及时进行清洗。清洗方法根据不同的检测器型号而有所差别,应根据具体清洗方法进行清洗。常见的清洗方法包括:超声波清洗、溶剂清洗、加热清洗等。 2. 采样系统污染 如果采样系统发生污染,需要对采样系统进行清洗或替换。一般采用高温灭菌法或酒精清洗法等进行清洗。也可以将采样系统替换为新的,以免发生类似问题。 3. 检测器表面污染 如果检测器表面被沾染,可以使用纯棉布或无纺布轻轻擦拭,或使用微型真空吸尘器吸尘进行清洁。

  • 傅若农:吹口气,知健康——GC-MS检测呼气疾病标记物

    [b][color=#00b0f0]编者注:[/color][/b]傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]研究的发展,为我国培养了众多色谱研究人才。[url=http://www.instrument.com.cn/news/20140623/134647.shtml][b][color=#0070c0]第一讲:傅若农讲述[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术发展历史及趋势[/color][color=#0070c0][/color][/b][/url][url=http://www.instrument.com.cn/news/20140714/136528.shtml][b][color=#0070c0]第二讲:傅若农:从三家公司GC产品更迭看[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]技术发展[/color][color=#0070c0][/color][/b][/url][url=http://www.instrument.com.cn/news/20140811/138629.shtml][b][color=#0070c0]第三讲:傅若农:从国产[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]产品看国内[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]发展脉络及现状[/color][color=#0070c0][/color][/b][/url][url=http://www.instrument.com.cn/news/20140902/140376.shtml][b][color=#0070c0]第四讲:傅若农:[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定液的前世今生[/color][color=#0070c0][/color][/b][/url][url=http://www.instrument.com.cn/news/20141009/143041.shtml][b][color=#0070c0]第五讲:傅若农:气-固色谱的魅力[/color][color=#0070c0][/color][/b][/url][url=http://www.instrument.com.cn/news/20141104/145381.shtml][b][color=#0070c0]第六讲:傅若农:PLOT[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱的诱惑力[/color][color=#0070c0][/color][/b][/url][url=http://www.instrument.com.cn/news/20141205/147891.shtml][b][color=#0070c0]第七讲:傅若农:酒驾判官——顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的前世今生[/color][color=#0070c0][/color][/b][/url][url=http://www.instrument.com.cn/news/20150106/150406.shtml][b][color=#0070c0]第八讲:傅若农:一扫而光——吹扫捕集-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的发展[/color][color=#0070c0][/color][/b][/url][url=http://www.instrument.com.cn/news/20150211/153795.shtml][b][color=#0070c0]第九讲:傅若农:凌空一瞥洞察一切——神通广大的固相微萃取(SPME)[/color][color=#0070c0][/color][/b][/url][url=http://www.instrument.com.cn/news/20150312/155171.shtml][b][color=#0070c0]第十讲:傅若农:悬“珠”济世——单液滴微萃取(SDME)的妙用[/color][color=#0070c0][/color][/b][/url][url=http://www.instrument.com.cn/news/20150417/158106.shtml][b][color=#0070c0]第十一讲:傅若农:扭转乾坤——神奇的反应顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析[/color][color=#0070c0][/color][/b][/url][url=http://www.instrument.com.cn/news/20150519/160962.shtml][b][color=#0070c0]第十二讲:擒魔序曲——脂质组学研究中的样品处理[/color][color=#0070c0][/color][/b][/url][url=http://www.instrument.com.cn/news/20150617/164595.shtml][color=#00b0f0][b][color=#0070c0]第十三讲:离子液体柱——脂质组学中分离脂肪酸的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱[/color][color=#0070c0][/color][color=#0070c0][/color][/b][/color][/url][url=http://www.instrument.com.cn/news/20150716/167186.shtml][color=#00b0f0][b][color=#0070c0]第十四讲:脂肪酸[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析的故事[/color][color=#0070c0][/color][color=#0070c0][/color][/b][/color][/url] 人体呼吸气体的测试是一种无损伤的检测方法,日益受到重视,它可以评估健康状态、检测疾病类型,呼吸气体的检测可以利用简单的分析仪器进行。古代希腊医生已经知道人类呼吸气体的气味可以用于疾病的诊断,糖尿病人的呼吸气味由于含有丙酮,具有恶臭,呼吸气具有尿骚味预示肾脏有毛病。肺脓肿病人的呼吸气具有下水道的气味,这是由于厌氧菌繁殖而形成的气味。而有肝病的病人呼出气体具有臭鱼烂虾气味。  当我们从口中呼出气体,有成千上万的分子排放到空气中,呼出气体样品常常是无机气体(如NO, CO2, 和 CO)、挥发性有机化合物(例如异戊二烯、乙烷、戊烷和丙酮)以及其他典型的非挥发性物质的混合物(例如:异前列素、过氧化亚硝酸盐、细胞激素等)。由于这些分子源于内源性和外源性物质,详细分析这些物质的组成,可以提供多种体内所发生的生理学过程的特征(即呼吸谱),以及摄取和吸收物质的途径。如果获取和分析得到的呼吸谱是正确的,那么他就可以为你提供一个当前的健康状态,以及可预示将来的可能的后果。  呼吸气检测相比其他通常医疗检测的最大优点是非侵害性和安全性,由于其在临床诊断和明确的评估方面具有巨大的优势,所以呼吸气检测今天受到极大的重视,这一方法成为一些病人每天控制重要指标的必要测试项目(就像测血糖和尿液一样)。  已经开发了多种方法可以检测呼出气体,可以把它们分为几大类:  1. 基于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]和质谱联用(GC-MS)(或其他类型的质谱方法)  2. 化学传感器  3. 激光-吸收光谱  在表 1 中列出这些分析方法以及相关信息。表 1 用于分析呼出气体的一些方法[align=center][img=,655,193]http://img1.17img.cn/17img/images/201508/insimg/e4ae96e5-f897-456e-9062-19d09d296e08.jpg[/img][/align]文献:  1 Cao W,et al, Crit Rev Anal Chem,2007, 37:3.  1. Pleil J D, et al, Clin Chem, 1997, 43:723.  2. Smith D, et al, Int Review Phys Chem, 1996,15:231  3. McCurdy M R, et al,J Breath Res, 2007,1 : 1.  4. Pleil J D, et al, J Toxicol Environ Health, B, 2008,11: 613.  5. Schubert J K, et al, G.F.E. Expert Rev Mol Diag, 2004, 4 : 619.  6. Zayasu K, et al, Am J Respir Crit Care Med, 1997,156:1140.  7. Hansel A, et al, Int J Mass Spectrom Ion Processes, 1995, 150: 609.  8. Boschetti A, et al, Postharv Biol Technol,1999, 17:143.  10 Huang H H, et al, Sens Actuators, B, 2004,101: 316.[b][url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析呼吸气体[/b]  使用最多的是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url](GC)或者[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]与质谱、离子淌度谱(IMS)结合来分析人的呼出气体。用GC直接进行分析,把样品直接注入[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的进样口即可,样品混合物经色谱柱分离成单一化合物(或几个化合物),用各种检测器检测其含量,人呼出气多为极性化合物,要用极性色谱柱进行分析。GC-FID是使用最多的模式,因为FID灵敏度高,线性范围宽,噪声低。GC和MS结合是现代分析检测的极为普遍的方法。下面举一个例子说明用GC-MS来对肺癌和其他肺病病人呼吸气进行测定。  呼吸气体可以鉴定出由于细胞膜脂质中脂肪酸被过氧化而产生的饱和烃和含氧化合物,用以鉴别肺癌患者。意大利 Diana Poli等(J Chromatogr B,2010,878:2643-2651)研究发现通过呼吸气体中含有的VOCs(脂肪族和芳香族烃)的类别可以区分非小细胞肺癌患者(非小细胞肺癌(Non-small-cell carcinoma )属于肺癌的一种,它包括鳞癌、腺癌、大细胞癌,与小细胞癌相比,其癌细胞生长分裂较慢,扩散转移相对较晚,非小细胞肺癌约占肺癌总敉的80-85% ,目前采用化疗的方式进行治疗 )、慢性阻塞性肺病(COPD)患者、非临床症状吸烟者和健康人,灵敏度达72.2%,特异性达93.6%。在此基础上研究者们进一步寻找呼出气体中的其他物质可以更灵敏地区分健康人和肺病患者,并早期检查出肺癌患者。  多种羰基化合物作为二级氧化产物,他们选择挥发性直链醛作为组织破坏的生物标记物,特别是饱和醛像己醛、庚醛和壬醛是n-3和n-6不饱和脂肪酸(PUFAs)的过氧化产物,它们是细胞膜磷脂的主要成分,同时因为挥发性醛不溶解在血液中,所以当它形成时就会进入到呼吸气体中。  在呼吸气体中这种物质的浓度在10?12M(pM)和10?9M(nM)之间,所以在测定时需要进行预浓缩。这一研究中使用固相微萃取(SPME)进行预浓缩,用纤维内衍生化方法可以很好地解决呼吸气体中挥发性化合物的浓缩,包括脂肪和芳香烃,以及羰基化合物。但是并非能把所有呼吸气中的各种化合物都直接萃取出来,这决定于吸附剂涂层和萃取化合物的物理化学性质。  这一研究的目的是使用SPME上进行衍生化方法结合[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱的方法检测人呼气的最后一部分气体(肺泡气),肺泡气参与肺中的气体交换。[b]1. 人体呼气取样[/b]  取样如图1 所示:[align=center][img=,352,366]http://img1.17img.cn/17img/images/201508/insimg/73c261c9-6342-4ddb-8b29-305dd7d51e26.jpg[/img][/align][align=center][img=,284,425]http://img1.17img.cn/17img/images/201508/insimg/307031d7-8bfe-4c5b-8ec7-b2c5624f1cf6.jpg[/img][/align]图1 人体用Bio-VOC管呼气取样 取样是让进行试验个体进行一次肺活量测试呼吸,以便得到最后150mL呼出气体。加入1μL 10[sup]?[/sup][sup]5[/sup]M内标物(IS)(丙醛, n-丁醛, n-戊醛, n-己醛, n-庚醛, n-辛醛,n-壬醛, 2-甲基戊醛),把Bio-VOC管在4℃下保存,在2 h内进行分析。Bio-VOC管在使用前要进行再生,即用氮气彻底吹拂干净。[b]2 SPME 进行样品衍生化[/b]  SPME萃取头保存在图 2 的装置里。  醛类用65μm PDMS/DVB萃取头进行萃取,新萃取头要先进行老和处理,在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]进样口中,在250℃下在氢气气流里加热30 min,每次使用前在气化室里于280℃下加热 1 min,目的是除去可能有的污染物,然后把萃取头插入4ml 带有聚四氟乙烯盖的茶色样品瓶中,瓶内装有浓度为17 mg/mL 的1mL PFBHA(五氟苄基羟胺盐酸盐)水溶液,在室温和电磁搅拌下萃取10 min,然后把此萃取头放入Bio-VOC呼吸气进样装置中于室温下处理45min(进行萃取头上的衍生化), 之后在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的进样口中于280℃下进行热脱附。PFBHA试剂与醛类进行衍生化反应得到两种PFBHA-肟异构体(顺,反异构体)。[align=center][img=,453,310]http://img1.17img.cn/17img/images/201508/insimg/2be3e5b2-1340-448c-a51f-4586ba7b2969.jpg[/img][/align]图 2 SPME萃取头保存装置 保存管包括上管(A)和密封管(B),萃取头(C)必须旋紧在A管中 然后插入到下面的B管中,B管用带弹簧的聚四氟乙烯盖密封[b]3 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱分析(GC-MS)[/b] 使用HP 6890 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]和HP 5973质谱选择性检测器进行分析。色谱柱使用HP-5MS(30m×0.25mmID 0.50 μm膜厚),氢气作载气,载气流速为1ml/min。色谱条件:柱温:以8℃/min速度从100℃升温到150℃,然后再以30℃/min速度升温到250℃,然后保持1 min。整个分析时间为10.58 min。用选择离子检测(SIM) 进行定量分析。获取质谱碎片m/z181(间隔时间400ms),每个醛的鉴定离子为181,是五氟苄-肟的特征离子碎片。同时以纯化合物的保留时间进行确认。[b]4 测试对象[/b] 40个在接受肺切除治疗之前的非小细胞肺癌(NSCLC)I 或 II期患者,所有患者都进行了胸腹部CT扫描,做了脑CT,腹部超声检测或骨质的闪烁扫描,没有一个患者进行过抗癌治疗。 38个对照健康没有临床治疗的人员,他们没有肿瘤或临床肺病历史。研究对象的特点见表 2。 吸烟是根据受试者自己讲述目前的吸烟情况,他们报告了吸烟的数量和吸烟的年数,在一年前就停止吸烟者定义为前-吸烟者(ex-smokers)。NSCLC的确认是根据组织学检查确定的,有23个肺腺癌(ADCs)患者,13个鳞状细胞癌(SCCs) 患者,和一个大细胞癌患者,但是所有这些患者都是临床手术前I 或 II期,最后病理学显示I期有29人(18个IA期11个临床IB),6个IIB,5个IIIA。见表2.表2. 测试对象特点[align=center][img]http://img1.17img.cn/17img/images/201508/insimg/09890691-2141-4f44-970b-bbd4bcbd33c3.jpg[/img][/align][b]5 测试结果探究[/b] 肺癌的早期诊断可以提高存活率,呼吸气的检测可以探测出呼吸道肿瘤形成的信息,而且呼吸气体的检测无伤害、安全,有利于在临床实践中的应用。由于肺比其他器官更直接暴露于较高氧气浓度的环境中,所以更容易诱发呼吸道疾病。研究数据显示肺癌是由于脂质被氧化而引起,很少人知道在呼出气体中含有直链醛类,知道在呼出气中含有直链醛类和肺癌有关的人更少。有研究结果显示,在肺癌患者的其他生物样品(如尿样、血液/血浆以及凝缩的呼吸气)中含有醛类。在健康人、哮喘患者和慢性阻塞性肺病(COPD)患者的液态呼吸气体(EBC)中也检测到醛类,特别是丙二酰二醛。 呼吸气体分析需要娴熟的技术和昂贵的仪器,因为这些目标化合物来自脂质过氧化过程,含量很低(10[sup]?[/sup][sup]12[/sup]M 到10[sup]?[/sup][sup]9 [/sup]M) ,所以需要严格的预浓缩步骤。使用SPME可以简化人呼出气体的分析,而且SPME已经在VOCs分析中有大量应用,而且SPME不会受到大量水分的影响,所以这一方法十分适合于人呼出气体的预浓缩。呼出气体中含有大量水汽,会影响预浓缩和某些化合物的GC-MS分析。不过SPME需要进行严格的操作参数的优化和认证,特别是对痕迹量化合物的情况。并非所有呼出气体的组分都可以轻易地被萃取,这就要选择SPME萃取头的选择性了,在许多情况下就需要进行事先的衍生化处理。 SPME萃取头上用PFHBA进行衍生化从生物样品中萃取醛类乙腈有所使用,本研究作者改进了这一方法,使用Bio-VOC 能够检测到呼出气体中的痕迹量的醛类,可以无害地从呼吸道中抽取小气泡,除去己醛、庚醛和壬醛(它们是3n和16n不饱和脂肪酸被过氧化产生)外,本研究作者还研究了其他直链醛类,覆盖了整个丙醛(C3)到壬醛(C9),甲醛和乙醛没有包括,因为它们他们存在于户内和户外环境中,是烟草燃烧的产物,而且许多肺癌患者过去吸烟,或者现在还在吸烟。而且呼出气体中乙醛的含量还取决于乙醇的代谢。检测对象的呼出气中的醛含量见表3表3 不同人群呼出气体检测结果[align=center][img=,659,263]http://img1.17img.cn/17img/images/201508/insimg/8c5c169b-7177-4a9f-bd98-26787c3fb459.jpg[/img][/align][b]6 测试中的问题[/b] 呼出气体醛类的稳定性,醛是不稳定化合物,在呼出气体中的醛会随时间而降解,但是在SPME上吸附并衍生化的醛要稳定的多,见图3所示[align=center][img=,567,492]http://img1.17img.cn/17img/images/201508/insimg/6017e878-1352-44c4-8312-a7e6f23af89e.jpg[/img][/align][align=center][img=,515,484]http://img1.17img.cn/17img/images/201508/insimg/f8ad4a39-89b4-4347-9971-c2fed8a0e18d.jpg[/img][/align] 图 3 呼出气体中醛类随时间降解图(propanal 丙醛,butanal 丁醛,pentanal 戊醛,hexanal己醛,Heptanal庚醛, octanal辛醛)为了对比外源和内源醛含量,如图 4所示[align=center][img=,687,488]http://img1.17img.cn/17img/images/201508/insimg/ea38f46b-53ef-4901-b398-c6d336e70de4.jpg[/img][/align][align=center][img=,590,470]http://img1.17img.cn/17img/images/201508/insimg/cddaa414-9479-4894-a2f0-569187d430e8.jpg[/img][/align]图 4 内源和环境中醛类含量测定的对比(Exhaled Air 呼气,Environmant 环境)[b]小结[/b] 把这一方法用于NSCLC早期患者和一组无临床症状人群,结果证明所择的醛类谱对区分无临床症状不吸烟人群和NSCLC早期患者有效,鉴别NSCLC早期患者成功率为90%。鉴别对照健康人群成功率为92.1%。吸烟或年龄影响不大。

  • 【原创】气体分析系统

    气体分析系统是锅炉燃烧效率、烟气脱硫排放、转炉煤气回收和充油催化裂化等工业领域实现生产控制的必要监测系统。 在现代工业中,工业自动化控制对企业生产的安全、效率、管理、环保等方面起着重要的作用。分析系统(检测系统、监测系统)作为自动化控制的重要组成部分,必须精确、高效地采集相关数据,为自动化控制提供所需的所有控制依据。 气体的分析精度不仅仅依靠分析仪表的分析精度,因为大多数分析仪表必须要有超净、干燥、恒温、恒流的样气才能进行准确分析。所以气体分析系统不可或缺的组成部分是:采样系统、预处理系统、分析仪表、系统控制单元。 我们的气体分析系统能在粉尘大于10g/m3,湿度等于100%,温度小于1800℃等极端工况中正常连续采样并将样气处理到标准的分析级别。 该系统由四个相对独立的单元组成。1、气体采样单元:电加热采样探头内置过滤器,能在粉尘大于10g/m3,湿度等于100%,温度小于1800℃等极端工况中正常连续采样;加热采样线能够恒温输送气体达50米,有效解决结露问题,保障气体组份不丢失。2、预处理单元:无氟压缩机除湿器采用JetStream方法在26厘米内迅速除湿,同时将气体冷却至分析温度5±0.1C°;分析隔膜泵耐腐蚀、大流量保障系统快速响应时间;0.1um粉尘过滤器和气溶胶过滤器将气体中的杂质完全祛除,使被测气体达到超净、干燥、恒温、恒流的分析级别。3、分析单元:单组份、多组份分析仪器,精度高、反应时间短、多种指示及流量、湿度状态报警,输出标准信号到监测控制系统。4、系统控制单元:完成对取样探管的自动吹扫,自动取样,并完成系统流量低、分析值超限、股长等各种系统内部故障的报警,分析成分的预报警、联锁等功能。

  • 呼出气采样装置

    请问一下市面上要有没有售卖呼出气采样装置的?用于采集呼出气后进行离线分析

  • 地下水采样器具简介

    地下水采样器具简介

    [b]Bailer采样器环保CEO [/b][align=center][img=,542,356]http://ng1.17img.cn/bbsfiles/images/2017/02/201702031522_01_3178946_3.jpg[/img][/align][b]应用概述环保CEO [/b]Bailer采样器属敞口式采样器。采样器底部设止回阀,用绳索放入井内,入水阀门打开,上提阀门关闭,取出预定深度的水样。[b]优功能特点环保CEO[/b]结构简单,价格便宜,使用方便;不受采样深度和监测井直径的限制。技术指标环保CEO取样深度:不限采样器容积:1L~2L采样器直径:50mm~70mm[b]惯性采样泵环保CEO [/b][align=center][b][img=,454,257]http://ng1.17img.cn/bbsfiles/images/2017/02/201702031523_01_3178946_3.jpg[/img][/b][/align][b]应用概述环保CEO[/b]主要功能:惯性泵有机械驱动式和人工驱动式。惯性泵可连续采集地下水样品。在地下水取样泵中惯性泵最容易使用而且使用成本最低。用途:可应用于监测井(孔)特别是无电源监测井(孔)的清洗和地下水水样的采取。[b]功能特点环保CEO[/b]结构简单,价格便宜,使用方便;适合小直径监测井。[b]技术指标环保CEO[/b]※最大取样深度:人工动力30m 机械动力100m※采样速度:5L/min~200L/min※泵头直径:8mm~30mm※适宜井径:20mm~300mm[b]地下水定深采样器环保CEO[/b][align=center][b][img=,550,230]http://ng1.17img.cn/bbsfiles/images/2017/02/201702031524_01_3178946_3.png[/img][/b][/align][b]手动|电动 应用概述环保CEO[/b]主要功能:能够从漂浮的油及其它物质之下采取有代表性的地下水样品;可以在取样器设定的范围内,采取任意深度的地下水样品。用途:可应用于地下水研究和地下水污染调查孔内定深水样的采集,也可应用于江、河、湖、海水域定深水样的采取。[b]技术指标环保CEO[/b]最大取样深度:手动泵充气水下100m氮气瓶充气水下300m电动水下300m取样容量:1L~5L取样器直径:50~89mm[b]气囊泵 环保CEO[/b][align=center][img=,679,278]http://ng1.17img.cn/bbsfiles/images/2017/02/201702031525_01_3178946_3.png[/img][/align][b]应用概述环保CEO[/b]原理:在设有进、排水止回阀的腔体内安装气囊形成气囊泵体,泵下入水位以下后,在水压力作用下,水经底部进水口进入气囊腔,腔内充满水后进水口止回阀关闭,在泵体与气囊间注入压缩气体挤压气囊,水沿出水管线从排水口排出。释放气体,气囊腔再次充水。经反复注、排气,监测井中水上升至地表,达到采样的目的。用途:可用于监测井(孔)抽水、监测井(孔)地下水水样采取。[b]功能特点环保CEO[/b]采样速率可调,压缩气体不与水样接触;易损件少,运行可靠。[b]技术指标环保CEO[/b]气囊泵外径:Φ25、Φ60、Φ85抽水(采样)速率:1L/min~5L/min(可调节)气囊泵扬程:150m[b]地下水分层采样系统环保CEO[/b][align=center][b][img=,338,318]http://ng1.17img.cn/bbsfiles/images/2017/02/201702031526_01_3178946_3.png[/img][/b][/align][b]应用概述环保CEO[/b]原理:地下水分层采样系统是通过封隔器将采样目的层段两端的非目的层段隔离,然后采用抽水器具抽取目的层段的水,以获得目的层段水样或者目的层段抽水的有关参数。用途:适用于监测井分层抽水、地下水分层采样。技术指标: 适宜井径:110~150mm 最大采样深度:200m 出水量:2~5m3/h 孔内工具最大直径:95mm 封隔器膨胀比:1.2~1.5 封隔器耐压:≥20MPa 过电缆封隔器过缆直径:≥12mm[b]充气封隔器环保CEO[/b][align=center][b][img=,465,626]http://ng1.17img.cn/bbsfiles/images/2017/02/201702031526_02_3178946_3.png[/img][/b][/align][b]应用概述环保CEO[/b]原理:充气封隔器(packer)以金属骨架增强型胶筒或帘子布型胶筒作为密封元件,利用高压气体作为胶筒的膨胀动力,将高压气体注入密封腔内,使胶筒纵向扩张紧贴孔壁,实现不同目的和用途的孔下封隔与桥堵。适用于地层渗透性试验、压水试验、分段注水试验、分层抽水试验、分层采样等。 用途:可用于地层渗透性试验、压水试验、分段注水试验、分层抽水试验、分层采样、岩石原位应力测量、套管完整性测试、灌浆作业、水力压裂、工程作业、地层加固、液体废料处理等。[b]技术指标环保CEO[/b]充气封隔器规格型号:KZ80、KZ85、KZ95、KZ150、KZ190、KZ195膨胀比:1~2倍耐压:大于20MPa

  • 【金秋计划】非甲烷总烃分析仪常见故障怎么解决

    非甲烷总烃分析仪是一种用于检测和分析空气中非甲烷总烃(NMHC)浓度的仪器。它广泛应用于环境监测、工业排放控制、石油化工等领域。然而,在使用过程中,非甲烷总烃分析仪可能会出现一些故障,影响其正常运行。 1. 传感器故障:非甲烷总烃分析仪的核心部件是传感器,用于检测空气中的非甲烷总烃浓度。如果传感器出现故障,仪器将无法正常工作。常见的传感器故障包括灵敏度下降、响应时间变慢等。解决方法是定期对传感器进行校准和维护,确保其准确性和稳定性。如果传感器损坏严重,需要更换新的传感器。 2. 采样系统故障:非甲烷总烃分析仪的采样系统负责采集空气样品,并将其输送到传感器进行检测。如果采样系统出现故障,可能导致样品采集不准确或无法采集。常见的采样系统故障包括泵堵塞、管路漏气等。解决方法是定期检查和维护采样系统,清理泵和管路,确保其正常运行。如果故障严重,需要更换损坏的部件。 3. 控制系统故障:非甲烷总烃分析仪的控制系统负责控制仪器的运行状态和数据处理。如果控制系统出现故障,可能导致仪器无法启动、数据异常等问题。常见的控制系统故障包括电路板损坏、程序错误等。解决方法是检查控制系统的电路连接和程序设置,修复或更换损坏的部件。如果故障复杂,需要请专业人员进行维修。 4. 电源故障:非甲烷总烃分析仪需要稳定的电源供应才能正常工作。如果电源出现故障,可能导致仪器无法启动或运行不稳定。常见的电源故障包括电压波动、电源线接触不良等。解决方法是检查电源线路和插头,确保其连接良好。如果电源问题严重,需要更换电源或调整供电设备。 5. 软件故障:非甲烷总烃分析仪通常配备有数据处理和分析软件,用于显示和处理检测结果。如果软件出现故障,可能导致数据显示异常或无法保存。常见的软件故障包括程序崩溃、数据丢失等。解决方法是重新安装软件或更新软件版本,确保其正常运行。如果软件问题复杂,需要请专业人员进行修复。 6. 环境因素:非甲烷总烃分析仪的性能受环境因素的影响较大,如温度、湿度、气压等。如果环境条件不符合要求,可能导致仪器测量结果不准确或无法正常工作。解决方法是确保仪器处于适宜的环境条件下工作,如提供稳定的温度和湿度控制设备,避免过高或过低的气压等。 非甲烷总烃分析仪在使用过程中可能出现各种故障,影响其正常运行。为了确保仪器的准确性和稳定性,需要定期进行维护和校准,及时解决故障。对于复杂的故障问题,建议请专业人员进行维修和调试。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制