数字化显微镜

仪器信息网数字化显微镜专题为您提供2024年最新数字化显微镜价格报价、厂家品牌的相关信息, 包括数字化显微镜参数、型号等,不管是国产,还是进口品牌的数字化显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合数字化显微镜相关的耗材配件、试剂标物,还有数字化显微镜相关的最新资讯、资料,以及数字化显微镜相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

数字化显微镜相关的厂商

  • 400-860-5168转3750
    企业概况英国工业显微镜有限公司是一家专业从事开发和生产人机工学的体视显微镜和非接触式测量系统的制造厂商。自1958年创立以来,英国Vision已成为世界上最具有创新活力的显微镜制造厂商,其分支机构遍及欧亚及北美。 世界各地的工程人员和科学家广泛地使用着我们的产品系统来从事他们在工业领域以及生物工程的日常的放大、检测和测量应用。迄今为止,已在全球各地安装 超过30万套设备系统。 英国Vision主要的生产基地设立在英国伦顿南部的沃京。商业运行及生产装配部门也设立在附近的厂房。英国Vision的北美生产分部设立在美国康州丹堡丽市,并在美国东岸和西岸的独立机构进行直销和分销网络运作。 本公司分别在日本、中国、法国、德国、意大利、以及比利时-荷兰-卢森堡经济联盟等国家建立了多个分支机构,此外加上由120多个拥有库存并经过专业技术培训的分销代理商所组成的服务网络,在所有其它发达国家里为企业提供解决问题的应用方案。同时我们根据发展,不断地扩大新代理的加盟机会。 出口和分销渠道英国Vision的产品出口占总产值的80%%以上,所以我们认识健全分销渠道的重要性。在1991 年,英国Vision荣获出口成就的英女皇奖。公司获得的其他荣誉还包括:1997年度科技创新的威尔士亲王奖和 1974 年度技术成就的英女皇奖。**的光学技术 英国Vision所拥有的世界**光学技术改变了在传统双目显微镜上安装目镜的必要。这些技术来源于采用英国Vision的高能光学(Dynascope)装置、扩大光瞳和宽阔成像光学系统、以及先进的人-机工学所带来的舒适使用、光学的清晰度、和减轻眼部疲劳。这一系列的功能改善了客户的生产效益和产品质量。Vision 的 Mantis 体视观察器在各行业得以广泛采用的实例可说明无目镜光学技术的优势效益。 在1994 年推出的第一代Mantis体视观察器主要是填补台式放大镜与显微镜之间的空白。 从此Mantis 就成了所有体视观察器的首选,超过13 万套的Mantis设备已在全球安装使用。 英国Vision的新一代Mantis系列产品于2005年开始在各行业里使用,它秉承原型产品的实用价值,并融合人机工学以进一步优化Mantis的设计。 产品研发近年来,大量的研发投入已成为取得 成功的关键,它确保了新产品和现有产品的持续的发展,以不断满足科学界和制造领域的需求。英国Vision不断地以研发新产品和新技术在光学革新和技术前沿引领全球。
    留言咨询
  • 400-878-6829
    帕克(Park)公司的创始人是世界上第一台原子力显微镜发明组的一员,1986年研制了世界首台商用原子力显微镜,一直致力于原子力显微镜技术的开发与应用,帕克(Park)在原子力显微镜的发展过程中一直占有重要的一席之地。本公司作为纳米显微镜和计量技术领域的领导革新者,一直致力于新兴技术的开发。我们的总部遍及中国大陆,宝岛台湾,韩国,美国,日本,新加坡和德国等地,我们为研究领域和工业界提供世界上最精确,最高效的原子力显微镜。我们的团队正在坚持不懈的努力,力求满足全球科学家和工程师们的需求。随着全球显微镜市场的迅速增长,我们将持续创新,不断开发新的系统和功能,确保我们的产品始终得到最有效最快捷的使用!Park产品主要有以下特点: 1.非接触工作模式:全球唯一一家真实实现非接触式测量模式的原子力显微镜厂家,非接触模式使原子力针尖磨损大大降低,延长了探针寿命,提高了测量图像的重复性; 2.高端平板扫描器:所有产品型号均采用的高端平板扫描器,远远优于传统的管式扫描器 3.全球最高的测量精度:Z轴精度可达0.02nm; 4.智能扫描Smartscan:仪器操作极其简单,可实现自动扫描,对操作者无特殊要求,并且有中文操作界面; 5.简单的换针方式:换针非常方便,采用磁拖直接吸上即可,不需调整激光光斑; 6.Park拥有全球最广泛的工作模式:可用于光学,电学,热学,力学,磁学,电化学等方面的研究与测试。
    留言咨询
  • 原FEI公司,2016年被赛默飞世尔科技收购,成为赛默飞材料与结构分析(MSD) 电镜事业部,是显微镜和微量分析解决方案的创新者和供应商。 我们提供扫描电子显微镜SEM,透射电子显微镜TEM和双束-扫描电子显微镜DualBeam?FIB-SEM,结合先进的软件套件,运用最广泛的样本类型,通过将高分辨率成像与物理、元素、化学和电学分析相结合,使客户的问题变成有效可用的数据。更多信息可在公司官网上找到:http://thermofisher.com/EM 或扫描二维码,关注我们的微信公众号
    留言咨询

数字化显微镜相关的仪器

  • [ 产品简介 ]蔡司正置显微镜Primostar 3是一款非常适合数字教学和常规实验的耐用紧凑型显微镜,稳定性强、操作简单、即插即用。Primostar 3可提供透射光明场、暗场、简易偏光、相差及荧光等观察方式,您可根据应用随心畅选。结合Labscope 应用软件,Primostar 3 HDcam 可实现数码互动教学。将教室中的显微镜连接到同一个局域网内,让学生们一起讨论学习,并让高清拍摄、共享显微图像变得更方便快捷。凭借其出色的数字化功能,蔡司Primostar 3将为现代数字教学和远程教学定义新标准。[ 产品特点 ]&bull 预定义固定科勒和全科勒照明套装,可配备卤素灯和LED光源&bull 4/ 5位物镜转盘&bull 视野数20/22&bull 两个目镜均有屈光度调节功能&bull 目镜观察筒可360度自由旋转&bull 镜架两侧5档蓝色发光强指示灯&bull 人机学载物台移动手柄,双玻片样本夹&bull 光强管理、节能模式[ 应用领域 ]&bull 教学&bull 组织学&bull 细胞生物学 &bull 医学和兽医学 &bull 微生物学 &bull 植物学 传染性软疣,明场,40X物镜铃兰草,荧光,5X物镜
    留言咨询
  • 本产品属于医疗器械,仅限医疗专业人士查看,注册证号:国械注进20222060186数字化神经外科手术扬帆起航,开启无限可能数字化显微镜,专为神经外科手术打造 ARveo 8ARveo 8 将来自增强现实荧光、IGS 导航系统和内窥镜图像的信息结合在一起,提供增强的可视化信息,实现更加可靠精准的神经外科手术。ARveo 8 数字化显微镜具有超快的处理速度和直观的图形用户界面,有助于提高整个团队的工作效率。徕卡显微系统有限公司针对 ARveo 8 的未来升级和系统兼容性推出 EnhancePath“视觉无限”概念,无缝演进到神经外科的数字化未来,增强医者信心。并非所有产品或服务在所有市场均获批出售或提供,获得批准的标贴和指示也有可能因不同的国家而异。关于详情,请联系您当地的徕卡代表。徕卡全国统一服务热线:400-650-6632增强可视化,精度更高ARveo 8 将多层信息添加在显微镜图像上,增强可视化,因此神经外科医生能够在为患者实施手术期间获取更多信息。ARveo 8 将世界知名的光学品质与术前/术中成像和增强现实荧光技术相结合,让神经外科医生能够做出精准、可信的决策。ARveo 8 超快的处理速度可将延迟降低 44%,更快地向主刀医生传递信息 — 进一步提高精确度。ARveo 8 让主刀医生得以真正地“实时”手术,医者更有信心,患者预后效果更佳。*与前代 ARveo 手术显微镜相比ARveo 8 提供可选配的安装在台车上的 55 英寸 4K 3D 显示器,以及安装在显微镜上的 31 英寸 4K 3D 显示器。集成在显微镜立柱上的 2 合 1 图像显示系统,既可用于显示图形用户界面,也可用于显示附加显微镜图像。增强现实技术辅助的脑血管外科手术GLOW 增强现实 (AR) 生态系统是 ARveo 8 数字可视化能力的组成部分。复杂精密的成像传感器和算法,优化并合成多光谱波段的可见光和荧光。生成完全同步、实时的手术部位增强视图。通过 GLOW800 增强现实荧光 (AR 荧光) 和 ICG 吲哚菁绿造影剂,观察色彩自然的颅脑解剖结构,全深度知觉实时血流的增强效果。一张图像同时呈现解剖结构和血流GLOW800 增强现实荧光 (AR 荧光) 与 ICG 吲哚菁绿造影剂搭配使用,您可以在白光下观察颅脑解剖结构和血流。不再需要像过去那样,努力在黑白血流视频与解剖视图之间转换并在大脑中努力构建成一幅图像 — 现在,尽享解剖结构和血流同时呈现在一张视图中的便捷。全深度感知,图像均质消除周边图像暗区,让您时刻保持方位感GLOW800 模式,让您在动静脉畸形 (AVM) 切除、动脉瘤摘除、搭桥或微血管减压手术中增强信心增强的图像通过 CaptiView 镜内图像投射显示在目镜中,也显示在手术室的显示器上。GLOW800 增强可视化技术血管骤然间亮起来,但我们仍能看清血管周围的脑部结构。这种效果令人惊叹:忽然间,我们可以看到更多细节,距离我们认为的增强现实真的更近了。瑞士巴塞尔大学医院和大学儿童医院,神经外科副主任,神经外科教授,Raphael Guzman 教授 (医学博士) 第一次使用 GLOW800 时的感受。FL400 肿瘤荧光在神经外科开放手术中,荧光模块 FL400 与活性物质 5-氨基酮戊酸 (5-ALA) 搭配使用。区分肿瘤组织和健康的脑组织,为切除术提供支持。* 关于产品在您所在地区的获批指示和注册情况,请咨询徕卡显微系统有限公司法规事务部智能增强光学可视化ARveo 8 光学器件的核心是突破性的创新:FusionOptics 融合光学。FusionOptics 融合光学技术将大景深和高分辨率相结合,以此增强可视化。结合 400 W 氙灯和精显照明装置,可在目镜中呈现景深更大、更明亮的视图。FusionOptics 融合光学技术1、两条独立光路2、一条光路提供高分辨率3、另一条光路提供大景深4、大脑将两张图像合成为一幅最佳立体图像FusionOptics 融合光学技术:1. 两条独立光路 2. 一条光路提供高分辨率 3. 另一条光路提供大景深 4. 大脑将两张图像合成为一幅最佳立体图像整个团队效率得以提高ARveo 8 能支持整个手术团队实现协作性更强的流程,提高手术效率*稳定性卓越图形用户界面清晰简洁,可根据每个主刀医生和每场手术进行更快的设置随时快速调节全团队实现 3D 可视化和协作* 与前代 ARveo 手术显微镜相比ARveo 8 支持协同流程。全神贯注如果不愿意在术中将目光离开患者去查看屏幕,使用目镜是明智的选择。通过 CaptiView 镜内图像投射,您会直接在目镜中看到所有需要的成像信息。CaptiView 显示:不同来源的图像,例如术前 CT 或 MRI 扫描其它图像,例如来自内窥镜GLOW800 增强现实荧光来自不同领先制造商的导航系统的数据1080p 全高清显示屏具有 LED 背光,可提供高质量的高分辨率、高对比度图像,无需再分神去查看屏幕。在 3D 显示器上为整个手术团队显示您看到的图像。整个团队共享同一 3D 视图如果您喜欢在工作中“平视”,就无需通过目镜观察。您可以利用全深度感知和高分辨率,通过以下途径在更大的范围内看清自然色彩分明的细微解剖结构:手术显微镜上一体化的 31 英寸显示器,或安装在台车上的 55 英寸 4K 3D 显示器手术流程的可视化方案共享 3D 视图让您的整个手术团队即使在复杂的手术中也能有条不紊地提前做好准备。3D 可视化推动教学迈上新台阶,每个人都能在大型 4K 3D 显示器上观看被放大的手术图像ARveo 8 是一种混合系统,因此您可以随时选择使用目镜或者 3D 显示器观察术野。ARveo 8 神经外科手术显微镜 — 无需通过目镜观察单一图形用户界面,兼具显微镜操作和图像摄取功能ARveo 8 图形用户界面采用极其友善的操作界面,让使用者不言自明。它逐步引导您完成显微镜设置,在动态中进行术中调节,并能进行图像采集和传输。它也可以作为附加显示器,显示镜下的图像。操作简单选择并设定不同的用户角色和权限密码保护默认设置和各个用户设置,例如 GLOW800 可视化提高网络安全性,保护患者和用户数据轻松成像利用高压缩 2TB 存储空间记录 2D 或 3D 影像和图像快速储存图像,并通过 USB 和以太网导出到医院网络针对 PACS 和 DICOM 优化的数据处理和连接性ARveo 8 图形用户界面解锁数字未来的大门成像技术不断发展,并推动医学进步时而循序渐进,时而迅猛发展。在这条技术变革的道路上,ARveo 8 将成为您的左膀右臂:您可以在将来增加新的技术和增强现实应用程序,为患者带去意义非凡的影响为您打造通向神经外科数字化未来的坦途我们将这一理念称作 EnhancePath“视觉无限”,即我们的承诺 —— ARveo 8 数字化显微镜伴您共同演进到数字未来。添加多重信息术前图像与术中成像相结合,让您可以在手术期间做出更果断的决策。 借助 ARveo 8 数字化显微镜,您可以通过目镜或 4K 3D 屏幕观看来自导航系统和内窥镜的增强的可视化视图。轻松集成导航系统数据来自领先制造商提供的导航系统,支持您进行术中评估。术中使用显微镜的图像用于图像对齐提供画中画导航选项,更符合人体工效学的观察要求与 KARL STORZ 影像系统技术兼容显微镜手柄一键无缝来回切换显微镜图像和内窥镜图像 — 让您的手术过程流畅无中断。轻松集成导航系统 | 与 KARL STORZ 影像系统技术兼容导航控制机器人神经外科用 ARveo 8 数字化显微镜通过 Brainlab IGS 导航系统实现显微镜主镜的机器人联动。得益于 BrainLab 新的颅脑神经导航软件的尖端聚焦功能,为您在整个神经外科手术过程中保持图像聚焦。得益于“Follow Tip”尖端追踪或“Move to Pin”尖端追随功能,即使显微镜移动,您也始终能看到居中视图。
    留言咨询
  • 产品简介:HT7800作为全球畅销的日立120kV透射电镜的新机型,是日立高新技术公司为生物、制药、纳米技术和软材料等领域而开发的先进的透射电子显微镜。HT7800具有优异的操作性与多样的自动功能,通过将CCD相机与显微镜主机的操作相统一,可以在显示器画面上轻松、简便地进行操作,高刷新率的CMOS荧光相机可以实现在明亮环境下操作,独特的双隙物镜可以实现高分辨率和高反差观察的一键切换,满足不同领域的需求。HT7800还可以和光学显微镜联用,即MirrorCLEM系统,可对样品的同一位置进行观察,将电镜图像和光镜图像重合,获得更多样品信息。 主要参数: 线分辨率:0.2nm(120kV,off-axis)加速电压:20~120kV(100V/step 连续可调)放大倍率: (HC模式) ×200~×200,000 (HR模式) ×4,000~×600,000 (低倍模式) ×50~×1,000 应用领域: 生物、农林、医学、纳米材料、高分子材料
    留言咨询

数字化显微镜相关的资讯

  • 病理学数字化——介绍虚拟显微镜以及要问的问题
    • Katharina Eser病理学实验室作为一个机构正在发生变化。即使有一段时间的滞后,这门至关重要的医学学科也正在转向数字化:实验室正在变得虚拟。这个过程的一部分也是虚拟显微镜,它支持向数字病理学的转变。许多病理学家仍然通过模拟显微镜观察,同时决定作为切片制剂位于他们面前的一小段组织是否注入了肿瘤细胞。在其他实验室,这项任务已经由一个自动化系统完成,该系统将切片制剂独立放置在扫描显微镜下,扫描样本,最后由人工智能识别、标记和计数肿瘤细胞。要采取这一步骤,你不仅需要合适的设备,还需要实验室中的新工作流程和经过培训的人员。本文将有助于强调这一过程中的挑战和出现的问题。全球病理学家短缺如今,癌症发病率正在上升,同时,能够治疗和检测癌症的人数正在减少。世界上许多地方的医疗服务不足,但即使在最富裕的国家,也缺乏病理学家等专家。造成这种情况的原因包括医学院期间的教育和广告太少,以及在实验室工作是孤立的情绪因素,与患者的接触往往仅限于观察他们的组织。但也有一个事实是,大多数疾病观察的时间越长,就会变得越复杂。人类无法提供识别某些相关性所需的数据量。因此,病理学实验室的数字化带来的可能性是无限有吸引力的。病理学的一个重要支柱是在显微镜下观察组织样本。虚拟显微镜为用户提供了独立于时间和位置对标本进行数字显微镜检查的能力。为此,显微镜制剂被数字化,因此可以在以后的屏幕上查看和处理,而不考虑位置和/或工作站。这些数字制剂可以存储在数据库中,并与无限数量的用户共享。为了生成样本的数字图像,可以使用配有额外摄像头的模拟显微镜。然而,病理学的发展趋向于使用数字显微镜。根据模型的不同,这些显微镜通常不仅可以产生标本的实时图像,还可以对其进行扫描。数字显微镜不仅可以显示单个视场,还可以扫描整个标本。数字化显微镜载玻片可以称为虚拟载玻片、扫描或全载玻片图像。这些术语描述了完全数字化的显微镜标本。为了产生数字图像,该仪器逐片扫描载玻片上的整个样本。该软件将生成的高分辨率单个图像合并为一个完整的图像。这个过程叫做缝合。在电脑上,用户可以浏览样本,放大并分析。图1:虚拟显微镜为用户提供了独立于时间和位置对标本进行数字显微镜检查的能力。©Precision股份有限公司试样质量至关重要与所有显微镜手术一样,标本的质量在虚拟显微镜中也起着重要作用。样品必须尽可能均匀地切割,因为软件在扫描过程中会自动设置焦点。过大的高度差异可能导致平面跳跃和完成扫描中的模糊区域,并且无法校正。样本也必须在仪器的固定扫描区域内。样本必须均匀染色,以正确表示所有细胞结构。此外,应避免样品出现气穴、重叠和其他污染。在特殊情况下,样本的性质会退隐到背景中。例如,在肿瘤手术过程中,通常会在手术过程中对切除的组织进行切片,即所谓的冷冻切片。然后在显微镜下只观察样品的某些区域。数字样本的质量也取决于所用相机的质量。模拟显微镜上的相机附件通常不能提供高质量,因为这些系统不是为数字化过程设计的。数字显微镜是为这一过程设计的,除了扫描功能外,它还具有实时视图,因此可以在屏幕上实时观察样本。纯幻灯片扫描设备为用户提供了在速度和分辨率之间进行选择的可能性。较高的扫描速度会导致图像质量的损失。然而,由于这些设备是自主操作的,因此也可以通过调整扫描仪的工作时间来调整时间损失,例如在晚上。为了充分利用显微镜扫描,需要合适的图像查看软件。根据图像格式的不同,只有非常专业的程序才能处理病理切片的图像。所谓的查看软件也提供了评估图像的不同可能性。例如,使用不同的注释工具,可以绘制直线和圆,也可以附加书面注释。此外,还可以将人工智能集成到此类程序中。在集成人工智能的帮助下,对某些结构或细胞的自动评估成为可能。理想情况下,可以根据图像来存储注释和评估。可以将查看软件集成到云中。这样一来,扫描不仅可以通过网络服务器与其他用户共享,还可以直接在平台上查看。此外,通常可以提供关于图像的特定信息。在大多数云服务中,图像存储、图像共享和图像查看设施都是可用的。任何终端设备都可以查看扫描结果。不管是大屏幕、智能手机、平板电脑还是笔记本电脑。然而,屏幕的性质对于再现的图像质量是决定性的[1]。表1:拥有数字工作流程可以使病理实验室的工作更快、更高效,并为创新腾出空间。©Precision股份有限公司今天的病理学是手工工作目前,在大多数情况下,需要在病理学实验室进行检查的样本都会带着一张提交单到达,上面会手工注明如何处理。这些信息由工作人员传输到实验室信息系统。在病理学家对组织进行宏观检查后,医疗技术人员准备样品进行进一步检查。这些标本有时需要大量的手工制作、切割、在煤油中固定,并使用各种组织化学和免疫组织学技术进行染色;它们被切割,安装在载玻片上,并用玻璃覆盖。然后将标本分类到文件夹中,并提交给病理学家进行检查。在某些情况下,标本也会被扫描。为此,还必须手动插入样本并进行登记。如果存在质量缺陷,则必须重复该过程。这个工作流程在这里只是粗略地概述,涉及许多手册和小规模的工作步骤,其中有许多错误来源。在向完全数字化病理学实验室发展的另一端,大量切片制剂的自动扫描、诊断的数字提供以及临床数据以及数字报告文本生成即将到来。该系统可以在输入样本注册后对订单进行优先级排序和处理,并处理质量控制。此外,人工智能用于支持组织病理学诊断。此外,该系统可以将分析的图像数据和分子信息集成到工作流程中。与此同时,几个研究项目正在接近实现这一愿景,揭示了这一理论的实际机遇和挑战。图2:有了数字样本,算法就有可能取代昂贵的计数和注释工作。©Precision股份有限公司算法打开了广泛的可能性尽管数字图像有很多优点,但它并不能解决用户的许多问题和要求。然而,数字化为使用算法进行图像分析开辟了广泛的可能性。经典算法可以检测和计数定义明确的结构,如肿瘤细胞。这使得病理学家能够通过具体的测量值进行量化。在这样做的过程中,算法有效地进行并且没有偏差。压力或时间压力以及影响人类的视错觉的影响等因素在这里不会发生。现在市场上有许多产品可以用于不同的分析方法。这些程序可以快速有效地找到预定义的结构,并可重复地对其进行量化。有许多研究描述了算法在不同器官和各种疾病的组织学制备中的应用[3]。通常,对这些算法进行训练,以便专家在组织学切片中标记定义的结构。该算法用一系列类似的部分进行训练,直到它自己识别出标记的结构。市场上常见的程序通常专门针对特定的疾病模式;他们的任务是识别和量化预定义的结构。一个算法只能和它所训练的数据集的质量一样好[4]。所寻求的结构的数量越多,变化越大,评估就越好、越可靠。这就是目前正在世界各地建立的生物库发挥重要作用的地方。这些不仅提供了许多物理样本,而且还提供了许多已经数字化的样本。下一步是专门针对用户的应用需求进行训练的算法。在这里,一系列有趣的产品也在开发[2]。挑战在于将获得的数据集转换成什么格式,以及如何最终将其整合到实验室信息系统和相关部门的系统中。当然,还有实验室人员和工作流程的问题。图3:正确的样品制备是虚拟显微镜的关键。©Precision股份有限公司结论病理学实验室向数字化病理学实验室的转变只能循序渐进。该过程的开始是所有过程的文档化和可视化,必须根据各种参数(如人员、机器和开发程度)以及IT和过程支持级别对其进行分析。由此可以产生有意义的转型规划。其中一部分是虚拟显微镜、满足要求的设备以及支持这项工作的算法。现在有许多公司专门帮助实验室进行这种转变。这是一项非常明智的服务,因为这种转变很复杂,需要时间和金钱,而且还必须在人员方面得到很好的支持才能发挥作用。References[1] Brochhausen C. et al (2015) A virtual microscope for academic medical education: the pate project. Interact J Med Res. 4: e11. [2] Li Z et al. (2021) Deep Learning Methods for Lung Cancer Segmentation in Whole-Slide Histopathology Images – The ACDC@LungHP Challenge 2019. IEEE J Biomed Health Inform 25: 429-440[3] Mun SK et al. Artificial Intelligence for the Future Radiology Diagnostic Service. Front Mol Biosci. 2021 Jan 28 7:614258. DOI: 10.3389/fmolb.2020.614258 [4] Cui, M., Zhang. D.Y. Artificial intelligence and computational pathology. Lab Invest 101, 412-422 (2021). DOI: 10.1038/s41374-020-00514-0 .关于作者Katharina Eser在学习艺术史之前曾在一家日报担任编辑。2021年,她加入PrecisPoint,担任业务创新经理,现在是该公司的自由职业者。来源:Going digital in pathology——Introducing Virtual Microscopy and what questions to askMicroscopy Light Microscopy Lab Automation Image Processing , 17 May 2023供稿:符 斌,北京中实国金国际实验室能力验证研究有限公司
  • Echo Revolve显微镜助力香棒虫草的生药学与数字化表征研究
    前言香棒虫草主产于山西省,主要分布在山西南部中条山一带,民间常用它代替冬虫夏草作为滋补品使用。除了山西,香棒虫草在我国甘肃、云南、青海、广东、海南及国外斯里兰卡和欧洲也有分布。虽山西民间将香棒虫草作为冬虫夏草的替代品,但其未收载进药材标准,且药用历史较短。《中国真菌志》虽明确了其真菌的来源,但对其宿主来源和形态均未有详细的描述。鉴于此,本研究应用性状及显微鉴定法,对香棒虫草的虫体形态、头部特征、子座长出方式、环纹及分节、复毛区刚毛等特征进行详细研究和科学描述,同时与冬虫夏草进行比较,有助于香棒虫草资源的开发及其质量标准的制定,同时可以为冬虫夏草的市场监管和监督检验提供参考依据。本研究应用数码相机、体式显微镜与其数码成像系统对香棒虫草子座和虫体的外观性状特征进行观察和表征;通过冷冻切片和荧光染色,体式荧光显微镜与其数码成像系统、荧光显微镜工作站,对香棒虫草子座和虫体部位的横切面显微特征进行观察和表征;应用扫描电镜对表面及剖面的特征进行探究,并与冬虫夏草进行了生药学鉴别特征比较。作者采用calcofluor white stain试液染色后,在Echo Revolve荧光显微镜 DAPI、FITC和RFP 3个通道下分别观察继发性荧光及自发性荧光,将3个通道的图像叠加,可见虫体内部菌丝层与表皮分别呈紫红及黄色,动物组织与菌丝组织荧光差异明显,见图1。▲ 图1 香棒虫草虫体的横切面(标尺为该图片比例)A-calcofluor white stain染色,3通道叠加(A1-dapi通道;A2-fitc通道;A3-rfp通道);B-直接制片,白光下观察;C-乳酸酚棉蓝染色,白光下观察;D-calcofluor white stain染色,荧光下观察本研究系统阐明了香棒虫草头部上颚、胸足、腹节环节、尾部刚毛及体壁针状毛等性状特征,子座部位不同菌丝层荧光显微特征及虫体部位中虫体组织和菌丝组织荧光显微特征差异。香棒虫草与冬虫夏草相比,在虫体形态、腹足有无、气孔形态、子座长出部位等性状特征,以及体壁被毛、刚毛、毛片等显微特征中存在明显差异。通过对香棒虫草进行生药学研究,可为香棒虫草资源的开发与利用提供参考;通过与冬虫夏草的对比研究,可以避免混淆用药,为市场监管提供科学依据,也为虫草类药用品种数字化表征规范的建立奠定基础。 研究亮点: ▶ 首次采用calcoflouor white stain乳液进行荧光染色,子座与虫体及其不同组织间区别明显,证明该方法可对虫草类药材不同组织结构进行区分和表征。▶ 阐明了香棒虫草与冬虫夏草的区别性特征,可以通过性状和显微特征来区分冬虫夏草与香棒虫草,以防混用及掺伪的情况,也可为粉末和制剂的检验提供参考,同时也为其他混淆品的鉴别研究提供依据。文献原文:doi:10.11669/cpj.2022.06.006Revolve Gen 2正倒置一体电动荧光显微镜新一代Revolve正倒置一体电动荧光显微镜,拥有流行的触屏操控方式,配备智能荧光成像系统,将Z-Stacking全景深成像和DHR数字处理功能有机联合,提升分辨率告别照片模糊,为您打造全新的成像体验。Revolution则是Revolve的升级版,在保留了所有功能的同时,实现了多通道荧光的全切片扫描,20倍镜下3通道荧光,仅需45秒即可扫描完成,系统简洁,APP式样软件操作,任何一位从未接触过该系统的用户,均可快速学会操作,拍出高质量的图像!▶ 高速多通道全切片扫描▶ Apple App触屏操控,界面简洁,极易掌握▶ Apple Store 安装和更新▶ 移动端数据分享更加便捷高效▶ Retina视网膜屏幕高清显示
  • 显微镜数字化自动化利于生命科学和纳米技术发展
    p  Frost & Sullivan最近提供了一份全球分析显微镜市场的详细报告。报告研究分析了显微镜的关键技术及其市场的影响趋势。在这份研究中,Frost & Sullivan的分析师将市场分为以下细分市场:扫描探针显微镜、电子显微镜、光学显微镜 应用领域包括:a style="COLOR: #ff0000 TEXT-DECORATION: underline" title="" href="http://www.instrument.com.cn/application/SampleFilter-S01-T000-1-1-1.html" target="_self"span style="COLOR: #ff0000"strong生命科学/strong/span/a、材料科学、纳米技术。/pp  对于提供降低人为干扰以及能够高速准确检查等功能的自动显微系统的需求一直很高。在各应用领域中,生命科学领域一直是显微镜的最大终端用户。这是因为该领域重点聚焦于神经学研究、药物开发和细胞分析,需要更高的、小型化的工具。生命科学的持续发展也促进了纳米技术的发展,相应的也扩大了显微镜市场的潜力。/pp  未来显微镜可能采用集成软件系统,可以解决测量和自动调节过程的复杂性。这将确保及时识别错误、促进更快数据积累。/pp  值得注意的是,数码显微镜、扫描探针显微镜为研究和开发提供了大量的机会。光学、电子、扫描探针显微镜与创新技术结合,将产生更加灵活微观系统。同时,显微镜公司应该通过提供定制显微镜解决方案和优越的客户支持改善公司的品牌形象。/ppimg style="FLOAT: none" title="1.jpg" src="http://img1.17img.cn/17img/images/201603/insimg/999116e6-5a7f-4952-92a0-7390c93e696a.jpg"//ppimg style="FLOAT: none" title="2.jpg" src="http://img1.17img.cn/17img/images/201603/insimg/7b5af27a-e6d7-48eb-b8e2-fa99d0658cd2.jpg"//ppimg style="FLOAT: none" title="3.jpg" src="http://img1.17img.cn/17img/images/201603/insimg/9b2bdb73-e233-4ee1-bf2a-5cacf662ae33.jpg"//pp style="text-align: right "编译:刘丰秋/p

数字化显微镜相关的方案

  • 扫描电子显微镜图像系统改造方法
    扫描电子显微镜是观察物质微观表面形貌的主要工具,它主要由真空系统、电子光学系统、图像系统和控制系统组成。现代扫描电子显微镜图像显示系统和控制系统都已经实现PC控制下的数字化,同时增加了图像处理功能,能够容易的与通用软件相结合,方便编辑报告、论文和信息传送。对于早期模拟图像系统和专用计算机控制的数字图像系统的扫描电子显微镜可以通过外接计算机图像采集系统实现模拟图像数字化,或图像系统数字化。什么是模拟图像数字化?就是将获取的图像模拟信号经过模数转换器(ADC)变成数据输入到计算机中存储、显示和处理。根据这种原理制成的图像系统,就是我们常说的被动式图像系统。其优点:采集卡电路简单,价格便宜。缺点:安装、调试困难,因为它需要和扫描电子显微镜的扫描系统同步,所以要改变原扫描电子显微镜内部电路,稍不小心就会造成事故,给扫描电子显微镜带来硬伤。另外,由于不能和扫描电子显微镜扫描真正同步,采集到的图像变形,最为明显的是圆变为椭圆,同时不能实时处理,只有将采集到的图像存储以后进行处理,才可以输出。什么是图像系统数字化?用数字扫描系统替代模拟扫描系统,由此获取的图像信号数据,完全对应电子束扫描点上的样品信息,图像显示分辨率对应电子束在样品上扫描过的行和列的点数,图像扫描和图像显示全数字化。需要说明的是现代数字扫描电子显微镜自定义分辨率值为:1024×1024,这是一个最佳值(从采集速度和分辨率两方面考虑),这和被动式图像系统所谓的图像分辨率不是一个概念。我们称这样的系统为主动式图像系统,国外升级扫描电子显微镜也是采用此种方法。其优点:图像质量高,速度快,不会产生图像变形等问题,安装简单,因为所有扫描电子显微镜都预留有外部图像控制接口,当外部控制信号到来时,内部扫描部分自动被旁路,显示部分被消隐,不需要改变任何内部电路结构。缺点:采集卡电路复杂,成本高。 综述,以上介绍了两种扫描电子显微镜改造图像系统的方法,最主要的区别在于是“被动式图像系统”还是“主动式图像系统”上,其中主动式图像系统是近年来国际上普遍使用的,因为被动式图像系统是一种早期图像数字化过渡产品,所谓的图像分辨率实质上是模拟信号取样点数,并非数字图像分辨率,像质较差,而主动式图像系统标称的分辨率才真正是数字图像分辨率,可以有效提高图像质量。
  • 提高单次数字全息显微镜在两个正交方向上的分辨率
    我们展示了一种单镜头数字全息显微镜技术,通过双通道正交偏振复用方法同时提高两个正交方向上的衍射极限分辨率。采用正交偏振的两个倾斜光束照射样品,在定制设计的马赫-曾德尔配置中,两个相互正交偏振的参考光束与物体光束干涉。该技术有可能有利于在单个记录全息图中同时编码来自两个正交方向的高频样本信息,其中通过选择性光谱拼接合成高频光谱。因此,在这项工作中,单次拍摄全息图的分辨率沿两个方向增强。模拟和实验结果都显示了所提出的技术的分辨率在衍射极限上提高了约2倍。
  • 光谱成像技术应用于岩画数字化及文博保护与鉴定
    光谱成像技术可以高效、无损、准确、非接触、高通量地记录和研究分析岩画、壁画、雕塑等的表面信息,实现物质文化遗产研究和保护的数字化。对于露地如岩画、石碑、雕塑等文化遗产,表层生物侵蚀如藻类、地衣侵蚀危害评估和防治,是文物保护的重要环节,对此可采用叶绿素荧光成像等技术进行研究监测分析。

数字化显微镜相关的资料

数字化显微镜相关的试剂

数字化显微镜相关的论坛

  • 显微镜数字化改造求助

    我处有一台奥地利REICHERT的金相显微镜,型号应该是Nr。 261640。30多年的机器,想做数字化改造。高手指点一下,是否有改造价值。谁可以干这个活。

  • 【讨论】光学显微镜升级为数码显微镜的方法

    【讨论】光学显微镜升级为数码显微镜的方法

    数码目镜数码目镜也称为显微相机,可以使现有的普通光学显微镜立刻升级为数码显微镜显微相机,是专门为普通光学显微镜图像数字化而开发设计的。她具有安装简便,通用性强、使用成本低廉、功能齐全、简单易用等特点。安装只需要2个步骤:1、取下原有的显微镜目镜,2、插入电子目镜替换原有目镜。即可通过USB线缆将显微镜下的图像传输至电脑进行实时显示,并可以随时抓怕冻结图像、录像、测量长度、角度、弧度、矩形面积及周长、不规则图形面积及周长、细胞计数、色彩分割、伪彩色还原、虚拟3D、图像边缘识别、傅立叶变换、光点测量及部分PS图像处理功能。可满足大多数专业应用。非常适合教师教学和装备数字化实验室、医学研究、工业生产(PCB线路版检查,IC质量控制)、医疗(病理切片观察)、食品(微生物菌落观察、计数)、科研、教育(教学、演示、学术交流)、公安(印章验证、弹头检测)等领域...... DCM系列显微相机从普教级到科学级有十几个型号,可以按照不同的要求,选择合适的配置。显微相机的光学接口为国际标准目镜尺寸,适用于任何目镜筒内径为23.2mm、30.0mm或者30.5mm的各类生物显微镜、体视显微镜、金相显微镜、荧光显微镜、偏光显微镜、熔点仪、硬度计等光学设备。另有C-Mount接口的专用型号,可配在标准的C接口上使用。显微相机的光学部分全部采用高透光率优质光学玻璃制成,比树脂镜头产品性能有极大的提高。组装车间装备有千级无尘,超高压静电除尘设备,并采用新型防尘结构,确保每件产品的优质效果。jacobxu7001@163.com[img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911201009_185541_1734324_3.jpg[/img]

  • 金相显微镜在教学的适用性

    金相显微镜电子目镜是一种针对普通光学显微镜通用目镜筒而开发的一种能替代人眼观察视野,将镜下图像真实反映在电子图像显示及输出设备上的光电设备,从而实现了图像时时共享,资料数字化、电子存档化。金相显微镜电子目镜是一种针对金相显微镜成像专门研制而成的光学电子仪器。该系列金相显微镜电子目镜作为一款新型光电装置,传输接口为USB2.0高速接口,金相显微镜电子目镜采用1/2″CMOS大面阵图像传感器及大口径光学镜头,使获取的图像具有极高的清晰度;单幅照相影像更佳。分辨率可达130-300万像素,并可以方便地应用于任何标准生物显微镜、体视显微镜及望远镜中。从而给观察、教学、科研、临床、家庭带来了极大的快捷和便利。金相显微镜电子目镜采用高分辨率图像传感器、光学部分由国家光学重点实验室设计,性能优异、体积小巧,更适合教师教学和装备数字化实验室。

数字化显微镜相关的耗材

  • 数字全息显微镜
    瑞士Lyncee Tec SA www.lynceetec.com 瑞士Lyncee Tec SA公司的数字全息显微镜&ldquo DHM(Digital Holographic Microscopy)是划时代性的高科技技术产品,科学史上第一次, 数字全息显微镜可以直接观测到纳米尺度的分辨率,即时得到样品三维型貌,并且是无接触式的无损测量。 DHM 1000 Family将波长630nm的半导体激光分成照射到试料的光和参照光两部分来使用。共包括两大品种,一种是试料反射光与参照光进行干涉的&ldquo 技术参数: 测量原理: 反射式数字全相术干涉显微镜 (R1000系列) 或 穿透式数字全相术干涉显微镜(T1000 系列) 取像型式: 强化与量化的相位对比影像 光源: 单波长雷射光源 样品台: 手动3 轴, x, y, z 各可位移25毫米 选配:较大位移的样品台 选配:软件自动控制的2轴或3轴样品台 照相机: 1392 x 1040 像素, 8 bits 可选物镜: 1.25x, 2.5x, 5x, 10x, 20x, 50x, 63x, 100x 选配:长工作距离物镜, 油浸渍物镜 物镜安装: 单物镜安装, 双物镜的滑动块或四物镜的转盘安置 计算机: 应为DHM配置含最新的Pentium? 处理器和视窗XP 专业版个人电脑为佳, 显示则需19寸, 1280 x 1024 像素的显示屏 软件: Lyncee Tec专利的&ldquo 袋熊"经典软件, 是利用C++ 和 .NET技术,专为在视窗XP?的3维表面成型, 曲面测量, 步进高度与粗度测量写成的. 选配工作模式: 垂直扫描与频闪观测模式 性能 垂直的分辨率(*) 瞬间:0.2° (在空气中0.2奈米) 空间:0.6° (在空气中0.6奈米) 垂直数字聚焦范围 视区50倍深度(取决于物镜) 垂直测量范围: 对平滑样品, 取决於测量区域的深度 340 奈米 (用选配的垂直扫描模式, 范围可以测得更高) 横向的分辨率 (**): 取决于物镜: 用油浸渍的物镜(1.4 NA), 最低可测到300奈米, 可视区域: 取决于物镜可达到4.40毫米 横向取样: 1024 x 1024 像素 (全像照相) 撷取影像速率 实时影像:15 fps (512 x 512 像素), 4 fps (1024 x 1024像素) 离线重建:15 fps (1024 x 1024) (10000 fps速率为选配) 样品照明: 低至 1?W/cm2 最大样品尺寸: H x W:200毫米 x 123毫米 (R1000系列) 50毫米 x 150毫米 (T1000 系列) 工作距离: 取决于物镜:从 0.30毫米 至 20毫米 取样反射率 (R1000系列): 低至小於1% 撷取时间: 单一影像撷取, 低至小於 1微秒 (无扫描机械装置, 无相位移) 主要特点: 实时监测影像 获取与重建速率(标准15 fps, 大于15 fps为选配) 非常快速, 使得影像可以实时监看. 观看动态事件的过程和活细胞的相互作用现象由此变为可能. 坚固 & 稳定 非常短的取像时间 (数微秒) 使得此设备在测量时, 几乎不受外在的振动影响, 用防震台面也变得不需要. DHM? 的坚固与稳定性, 允许非常微弱, 缓慢的变形或移动, 需稳定性非常好或时间超常的测量. 高分辨率 沿着垂直 (Z) 轴的分辨率,小于1奈米. 横向的分辨率 (在XY平面) 取决于物镜的数值孔徑 (用油浸渍的物镜可测得300奈米), 像传统的光学显微镜. 非接触式 & 完全非侵入式测量 低功率可见光的样品照明 (至少低于共焦式显微镜10"000倍), 与试片表面不接触, DHM? 可以保存你样品完整的特性. 此外, 生物试片可以直接观看不需染色, 因此可以防止化学性或物理性的危害. 值得有效的解决方案 DHM? 的安装费与操作费用都非常低廉. 适应性与弹性使它们在高分辨率显微镜领域非常有竞争性. 这些特性使DHM?在研发和制程品管上, 成为非常值得, 有效的工具. 友善的操作 无须样品准备, 无须特别的环境 (温度, 真空, ...), 样品不需高精准度的位置与方向摆放, DHM? 简化技术, 让使用者可以非常容易并快速的获得准确的测量. 功能强大三维空间处理软件 可以用相同的仪器, 不同的操作模式去延伸你的应用范围. DHM-提供了无与伦比特有的数字工具, 改善了仪器使用的容易性与耐用性, 也增加了测量的准确性与稳定性. 标准和先进的量测接口, 使外在控制可在欢乐和弹性的环境中达成. 瑞士Lyncee Tec SA公司的数字全息显微镜&ldquo DHM(Digital Holographic Microscopy)是划时代性的高科技技术产品,科学史上第一次, 数字全息显微镜可以直接观测到纳米尺度的分辨率,即时得到样品三维型貌,并且是无接触式的无损测量。DHM 1000 Family将波长630nm的半导体激光分成照射到试料的光和参照光两部分来使用。共包括两大品种,一种是试料反射光与参照光进行干涉的&ldquo R1000 series&rdquo ,另一种是试料透过光与参照光进行干涉的&ldquo T1000 series&rdquo 。照射到试料上的光线与参照光产生的干涉图案使用CCD相机,作为数字数据保存下来,由此算出三维数据。计算三维数据时使用的是专用软件&ldquo Koala Software&rdquo 。 应用: 其主要应用是在MEMS研发中用于测量工作,以及在生产线用于缺陷检测。与上述用途中现在经常使用的共焦显微镜相比,在同行分辨率下能够更高速地进行测量。垂直方向的分辨率为0.6nm,水平方向为200nm~300nm(取决于物镜)。使用1.25倍率的物镜时视野为4mm× 4mm,可以15视野/秒的速度进行测量。因此,1cm见方的试料几分钟即可完成观察。使用现有共焦显微镜时,同等范围的观察则需要几个小时~10小时。 此次的产品最大可将观察速度扩展至1万视野/秒。由于摄影速度快,因此不需除震台,可用来检测流水线上的产品。 u 材料科学 u MEMS/MOEMS 微型词典系统 u Micro-optics 显微光学 u Semiconductor 半导体 u Nanotechnology纳米技术 u 生命科学 u Cellular biology 细胞生物 u Biochips生物芯片 u Bio-sensors生物传感器
  • 数字全息显微镜
    瑞士Lyncee Tec SA www.lynceetec.com 瑞士Lyncee Tec SA公司的数字全息显微镜&ldquo DHM(Digital Holographic Microscopy)是划时代性的高科技技术产品,科学史上第一次, 数字全息显微镜可以直接观测到纳米尺度的分辨率,即时得到样品三维型貌,并且是无接触式的无损测量。DHM 1000 Family将波长630nm的半导体激光分成照射到试料的光和参照光两部分来使用。共包括两大品种,一种是试料反射光与参照光进行干涉的&ldquo技术参数:测量原理: 反射式数字全相术干涉显微镜 (R1000系列) 或穿透式数字全相术干涉显微镜(T1000 系列)取像型式: 强化与量化的相位对比影像光源: 单波长雷射光源样品台: 手动3 轴, x, y, z 各可位移25毫米选配:较大位移的样品台选配:软件自动控制的2轴或3轴样品台照相机: 1392 x 1040 像素, 8 bits可选物镜: 1.25x, 2.5x, 5x, 10x, 20x, 50x, 63x, 100x选配:长工作距离物镜, 油浸渍物镜物镜安装: 单物镜安装, 双物镜的滑动块或四物镜的转盘安置计算机: 应为DHM配置含最新的Pentium? 处理器和视窗XP 专业版个人电脑为佳, 显示则需19寸, 1280 x 1024 像素的显示屏软件: Lyncee Tec专利的&ldquo 袋熊"经典软件, 是利用C++ 和 .NET技术,专为在视窗XP?的3维表面成型, 曲面测量, 步进高度与粗度测量写成的.选配工作模式: 垂直扫描与频闪观测模式性能垂直的分辨率(*) 瞬间:0.2° (在空气中0.2奈米)空间:0.6° (在空气中0.6奈米)垂直数字聚焦范围 视区50倍深度(取决于物镜)垂直测量范围: 对平滑样品, 取决於测量区域的深度340 奈米 (用选配的垂直扫描模式, 范围可以测得更高)横向的分辨率 (**): 取决于物镜: 用油浸渍的物镜(1.4 NA), 最低可测到300奈米,可视区域: 取决于物镜可达到4.40毫米横向取样: 1024 x 1024 像素 (全像照相)撷取影像速率 实时影像:15 fps (512 x 512 像素), 4 fps (1024 x 1024像素)离线重建:15 fps (1024 x 1024) (10000 fps速率为选配)样品照明: 低至 1?W/cm2最大样品尺寸: H x W:200毫米 x 123毫米 (R1000系列)50毫米 x 150毫米 (T1000 系列)工作距离: 取决于物镜:从 0.30毫米 至 20毫米取样反射率 (R1000系列): 低至小於1%撷取时间: 单一影像撷取, 低至小於 1微秒 (无扫描机械装置, 无相位移)主要特点:实时监测影像获取与重建速率(标准15 fps, 大于15 fps为选配) 非常快速, 使得影像可以实时监看. 观看动态事件的过程和活细胞的相互作用现象由此变为可能.坚固 & 稳定非常短的取像时间 (数微秒) 使得此设备在测量时, 几乎不受外在的振动影响, 用防震台面也变得不需要. DHM? 的坚固与稳定性, 允许非常微弱, 缓慢的变形或移动, 需稳定性非常好或时间超常的测量.高分辨率沿着垂直 (Z) 轴的分辨率,小于1奈米. 横向的分辨率 (在XY平面) 取决于物镜的数值孔徑 (用油浸渍的物镜可测得300奈米), 像传统的光学显微镜.非接触式 & 完全非侵入式测量低功率可见光的样品照明 (至少低于共焦式显微镜10"000倍), 与试片表面不接触, DHM? 可以保存你样品完整的特性. 此外, 生物试片可以直接观看不需染色, 因此可以防止化学性或物理性的危害.值得有效的解决方案DHM? 的安装费与操作费用都非常低廉. 适应性与弹性使它们在高分辨率显微镜领域非常有竞争性. 这些特性使DHM?在研发和制程品管上, 成为非常值得, 有效的工具.友善的操作无须样品准备, 无须特别的环境 (温度, 真空, ...), 样品不需高精准度的位置与方向摆放, DHM? 简化技术, 让使用者可以非常容易并快速的获得准确的测量.功能强大三维空间处理软件可以用相同的仪器, 不同的操作模式去延伸你的应用范围. DHM-提供了无与伦比特有的数字工具, 改善了仪器使用的容易性与耐用性, 也增加了测量的准确性与稳定性. 标准和先进的量测接口, 使外在控制可在欢乐和弹性的环境中达成.瑞士Lyncee Tec SA公司的数字全息显微镜&ldquo DHM(Digital Holographic Microscopy)是划时代性的高科技技术产品,科学史上第一次, 数字全息显微镜可以直接观测到纳米尺度的分辨率,即时得到样品三维型貌,并且是无接触式的无损测量。DHM 1000 Family将波长630nm的半导体激光分成照射到试料的光和参照光两部分来使用。共包括两大品种,一种是试料反射光与参照光进行干涉的&ldquo R1000 series&rdquo ,另一种是试料透过光与参照光进行干涉的&ldquo T1000 series&rdquo 。照射到试料上的光线与参照光产生的干涉图案使用CCD相机,作为数字数据保存下来,由此算出三维数据。计算三维数据时使用的是专用软件&ldquo Koala Software&rdquo 。应用:其主要应用是在MEMS研发中用于测量工作,以及在生产线用于缺陷检测。与上述用途中现在经常使用的共焦显微镜相比,在同行分辨率下能够更高速地进行测量。垂直方向的分辨率为0.6nm,水平方向为200nm~300nm(取决于物镜)。使用1.25倍率的物镜时视野为4mm× 4mm,可以15视野/秒的速度进行测量。因此,1cm见方的试料几分钟即可完成观察。使用现有共焦显微镜时,同等范围的观察则需要几个小时~10小时。 此次的产品最大可将观察速度扩展至1万视野/秒。由于摄影速度快,因此不需除震台,可用来检测流水线上的产品。u 材料科学u MEMS/MOEMS 微型词典系统u Micro-optics 显微光学u Semiconductor 半导体u Nanotechnology纳米技术u 生命科学u Cellular biology 细胞生物u Biochips生物芯片u Bio-sensors生物传感器
  • 3R无线数字显微镜
    3R无线数字显微镜可以看清肉眼无法看清的许多微小物体,可用于皮肤检视、头皮检视、动物解剖检视、植物生长观测、纺织检视、印刷检视、电子生产品质检测、工业观测(如印刷电路板、精密机械等)、古玩鉴定、助视器、学校研究工具等。主要特点与金刚石线切割机(如STX-201、STX-202、STX-402)和SYJ-400CNC划片切割机配用,便于微小且不易拿取试样切割时的对刀调整,提高切割精准度。技术参数1、电源电压:5V2、锂电池:完全充电需3h左右,可持续工作5h左右,寿命为完全充放电500次3、无线功率:10mW4、无线传输距离:不小于5m(无障碍)5、频道:4个6、光学芯片:CMOS 35万像素7、颜色:24bit RGB8、光学镜头:双轴27×或100×显微镜头9、手动调焦范围:8mm-300mm10、放大倍数:10×-200×11、照片像素:720×480,640×480,320×24012、光源:内置8个可调暖白发光灯13、显微镜尺寸:Φ36mm×135mm14、其他:自动白平衡、自动曝光产品规格包装尺寸:100mm×70mm×25mm重量:140g
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制